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ABSTRACT 

Thermal systems often feature composite regions that are mechanically mated. In general, 

there exists a significant temperature drop across the interface between such regions which may 

be composed of similar or different materials. The parameter characterizing this temperature 

drop is the thermal contact resistance, which is defined as the ratio of the temperature drop to the 

heat flux normal to the interface.  The thermal contact resistance is due to roughness effects 

between mating surfaces which cause certain regions of the mating surfaces to loose contact 

thereby creating gaps.  In these gap regions, the principal modes of heat transfer are conduction 

across the contacting regions of the interface, conduction or natural convection in the fluid filling 

the gap regions of the interface, and radiation across the gap surfaces. Moreover, the contact 

resistance is a function of contact pressure as this can significantly alter the topology of the 

contact region.  The thermal contact resistance is a phenomenologically complex function and 

can significantly alter prediction of thermal models of complex multi-component structures.  

Accurate estimates of thermal contact resistances are important in engineering 

calculations and find application in thermal analysis ranging from relatively simple layered and 

composite materials to more complex biomaterials.  There have been many studies devoted to 

the theoretical predictions of thermal contact resistance and although general theories have been 

somewhat successful in predicting thermal contact resistances, most reliable results have been 

obtained experimentally.  This is due to the fact that the nature of thermal contact resistance is 

quite complex and depends on many parameters including types of mating materials, surface 

characteristics of the interfacial region such as roughness and hardness, and contact pressure 
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distribution.  In experiments, temperatures are measured at a certain number of locations, usually 

close to the contact surface, and these measurements are used as inputs to a parameter estimation 

procedure to arrive at the sought-after thermal contact resistance.  Most studies seek a single 

value for the contact resistance, while the resistance may in fact also vary spatially. 

 In this thesis, an inverse problem (IP) is formulated to estimate the spatial variation of the 

thermal contact resistance along an interface in a two-dimensional configuration.  Temperatures 

measured at discrete locations using embedded sensors appropriately placed in proximity to the 

interface provide the additional information required to solve the inverse problem.  A 

superposition method serves to determine sensitivity coefficients and provides guidance in the 

location of the measuring points.  Temperature measurements are then used to define a 

regularized quadratic functional that is minimized to yield the contact resistance between the two 

mating surfaces.  A boundary element method analysis (BEM) provides the temperature field 

under current estimates of the contact resistance in the solution of the inverse problem when the 

geometry of interest is not regular, while an analytical solution can be used for regular 

geometries.  Minimization of the IP functional is carried out by the Levenberg-Marquadt method 

or by a Genetic Algorithm depending on the problem under consideration.  The L-curve method 

of Hansen is used to choose the optimal regularization parameter.  A series of numerical 

examples are provided to demonstrate and validate the approach. 
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CHAPTER ONE: INTRODUCTION 

Thermal systems generally feature composite regions that are mechanically mated. In 

general, there exists an often significant temperature drop across the interface between such 

regions which may be composed of similar or different materials.  The parameter characterizing 

this temperature drop is the thermal contact resistance, R”
t,c = ∆T/q”, which is defined as the ratio 

of the temperature drop, ∆T to the heat flux normal to the interface, q”.  The thermal contact 

resistance is due to roughness effects between mating surfaces which cause certain regions of the 

mating surfaces to lose contact thereby creating gaps.  In these gap regions, the principal modes 

of heat transfer are conduction across the fluid filling the gap and radiation across the gap 

surfaces.  Moreover, the contact resistance is a function of contact pressure as this can 

significantly alter the topology of the contact region.  Clearly, the thermal contact resistance is a 

phenomenologically complex function and can significantly alter prediction of thermal models of 

complex multi-component structures.  Accurate estimates of thermal contact resistance are thus 

important in engineering calculations and find application in thermal analysis ranging from 

relatively simple layered and composite materials to more complex bio materials.  There have 

been many studies devoted to the theoretical predictions of thermal contact resistance, for 

instance, (DeVaal et al 1987; Negus et al 1987; Marotta and Fletcher 2001; Muzychka et al 

1996), and comprehensive reviews of previous work on thermal contact resistance can be found 

in (Yovanovich 1998; Madhusudana and Fletcher 1986; Blackwell et al 2000).  Although general 

theories have been somewhat successful in predicting thermal contact resistances, most reliable 

results have been obtained experimentally.  This is due to the fact that the nature of thermal 
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contact resistance is quite complex and depends on many parameters including types of mating 

materials, surface characteristics of the interfacial region such as roughness and hardness, and 

contact pressure distribution.  In experiments, temperatures are measured at a certain number of 

locations, usually close to the contact surface, and these measurements are used as inputs to a 

parameter estimation procedure to arrive at the sought-after thermal contact resistance.  Most 

studies seek a single value for the contact resistance, while the resistance may in fact also vary 

spatially. 

In this thesis, an inverse problem (Beck et al 1985; Alifanov 1994; Kurpisz and Nowak 

1995) is formulated to estimate the variation of the thermal contact resistance along an interface 

in two-dimensional configuration.  Temperature measured at discrete locations using embedded 

sensors placed in proximity to the interface provide the information required to solve the inverse 

problem.  The contact resistance is found by using a superposition method to determine 

sensitivity coefficients (Blackwell and Dowding 2002; Bialecki et al 2003) for specific 

temperature measurement points in the geometry.  This serves to guide in the location of the 

measuring points.  Temperature measured at these discrete locations are then used in a 

regularized least-squares problem to yield the contact resistance between the two mating 

surfaces.  A boundary element method (BEM) (Brebbia et al 1985; Kassab and Wrobel 2000; 

Divo and Kassab 1997; Divo and Kassab 1998; Kassab et al 2005; Divo and Kassab 2003) is 

also used to solve for the temperature under current estimates of the contact resistance during the 

solution of the inverse problem.  An analytical solution is derived to verify the BEM.  The 

inverse problem is solved using sensitivity analysis and also via a regularized BEM Genetic 

Algorithm (GA) (Goldberg 1989 ) approach previously developed by the authors (Divo et al 

2002).  The L-curve method of Hansen and O’Leary (1993; Hansen 1992) is used to choose the 
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optimal regularization parameter.  A series of numerical examples are provided to demonstrate 

the approach. 
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CHAPTER TWO: PROBLEM DEFINITION 

 In general the thermal contact resistance may vary spatially along the contact surface 

between mating regions.  Most studies neglect that variation and rather seek a single value of the 

contact resistance as a function a certain parameters, such as temperature, contact pressure, and 

interfacial fluid.  In this thesis, we consider an intermediate model, whereby the contact 

resistance is assumed to vary with position along a contact line in a 2-D configuration.  We 

simulate a steady-state experiment seeking to characterize the unknown variation of the contact 

resistance. 

The general configuration of interest is a two-dimensional region illustrated in Fig. 1.  

Two blocks of materials of different conductivities ku and kb are joined at an interface located at 

a level y = l.  The top and bottom surfaces of the sample are kept at constant but different 

temperatures, and the sides are modeled as adiabatic. In practice, temperature measurements are 

carried out at a series of locations close to the interface, here, illustrated by solid dots in Fig. 1 

and the purpose of the inverse problem is to identify the functional variation of R”
t,c. In this 

thesis, these measurements including certain levels of uncertainties in the measurements are 

simulated numerically and these are considered inputs to the inverse problem.  
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Figure 1. Illustration of the model of a simulated steady-state experiment to retrieve thermal 
contact resistance 
 

 

It is instructive to broadly describe inverse problems and contrast these to traditional or 

forward problems.  Analysis of engineering field problems can broadly be classified as either 

forward or inverse.  Forward problems are most commonly encountered, and in a forward 

problem, the following are explicitly specified: 

1. Governing equation for field variable 

2. Physical properties 

3. Boundary conditions 

4. Initial conditions 

5. System geometry 
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The purpose of solving the forward problem is to determine the field variable given these 

inputs.  In contrast, in an inverse problem, the following are explicitly specified: 

1. Part of conditions 1-5 in a forward problem 

2. An over-specified condition 

 
The purpose of solving the inverse problem is to find the unknown in conditions 1-5 of 

the forward problem, using the over-specified condition.  Typically, the over-specified condition 

is provided by measuring a field variable at the exposed boundary or at the interior.  Inverse 

problems are ill-posed by nature and very sensitive to noise input measurement.  As such, some 

stabilization (regularization) is required, see Tikonov and Arsenin (1977), Beck and Blackwell 

(1885), Alifanov (1994), and Kurpisz and Nowak (1995). 

In our case, the inverse problem is a thermal one with the field variable identified as the 

contact resistance with the geometry, thermal conductivity and boundary conditions fully 

specified.  A typical inverse problem algorithm consists of the following three components: 

1. An objective function providing a quantitative measure between the difference of the 

predicted temperature at the measuring points and the measured temperature there given 

the current estimate of the thermal contact resistance distribution: we will define a 

regularized least-squares functional. 

2. A minimization algorithm to automatically update the estimated heat transfer coefficient 

distribution in the process of minimizing the objective function: we will use the 

Levenberg-Marquadt method or a genetic algorithm depending on the problem at hand. 

3. A forward problem solver: we will use either an analytical solution when possible or 

alternatively a numerical method to provide flexibility in geometric modeling and in the 
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case of non-linear variation of the contact resistance that preclude an analytical solution.  

In the latter case, we use the boundary element method (BEM) in particular. 

 
Each of the components of the formulation is described in turn in the following chapters. 
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CHAPTER THREE: THE INVERSE PROBLEM 

There are two formulations developed in this thesis for the solution of the inverse 

problem under consideration.  Both define a quadratic functional and minimize that functional in 

order to determine the unknown contact resistance.  The first method requires the computation of 

sensitivities (elements of the Jacobian of the objective function) while the second method only 

requires functional evaluations.  Each of these formulations is now developed in detail. 

Modeling of the Spatial Variation of the Contact Resistance 

 In solving for the contact resistance, one may solve directly for the values of the contact 

resistance R”tc(x) at discrete locations ),...,( 21 Mxxx .  This can lead to problems in the inverse 

formulation in that a relatively large number of unknowns must be resolved.  It is often good 

practice to parametrize the contact resistance prior to solution, thereby reducing the number of 

unknowns and providing a certain degree of flexibility in the modeling of the variability of the 

contact resistance.  In such a case, we use radial basis function (RBF) interpolation and represent 

the contact resistance as ),()(
1

,
"

jj

N

j
jct xxfRxR ∑

=

= .  Here we use fj as the radial distance between 

the expansion (anchor) point and any field point; fj = 1+r.  In such a case the expansion 

coefficients Rj become the unknowns.  These are solved by collocation at the discrete locations 

),...,( 21 Nxxx , where in inverse problem application N is taken as a small number to reduce the 

number of sought-after unknowns. A typical RBF interpolation of a complex  thermal contact 

resistance is displayed in Figure 2, where N is taken as 11.  
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Figure 2.  RBF interpolation for a typical R”

t,c(x) distribution using N=11. 
  

Sensitivity-Based Inverse Formulation 

In this approach to the inverse problem, the sensitivities are obtained using a notion  

borrowed from Zhang et al (1997) and Bialecki et al (2003).  This technique requires that the 

measurements, in our case temperatures, are linearly dependent on the sought-after variables in 

the inverse problem, in our case the discrete values of the contact resistance.  Here a series of 

forward problems are solved to evaluate the temperature at the measurement locations as a 

function of a unit value of contact resistance at x-locations along the contact surface (resistance 
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measuring points).  For this purpose, an analytical solution  may be used if available or a 

numerical method may be used in general.  

The notion here is that the vector of measured temperatures can be expressed in a linear 

relation to the thermal contact resistance as "

~int RSTT baselinespomeasuring += .  The sensitivities, 

Sij , defined as 
j

i
ij R

TS
∂
∂

= can thus be evaluated numerically evaluated.  The first column of the 

matrix, S , is the corresponding sensitivities for all thermocouple locations when there is a 

perturbation at a resistance R(x1), and zero resistance at all other x locations.  The second column 

is the same information for a perturbation resistance at the resistance R(x2) and zero resistance at 

all other locations.  Thus the entries of the matrix represent the sensitivity of the thermocouple 

locations to resistance at each of the measurement locations.  The locations ),...,( 21 Nxxx  used in 

generating the sensitivity matrix may be physical locations where contact resistance is sought, or 

selected points used in a parametric model of the contact resistance, see for instance (Divo et al 

2002 ).  In any case, we refer to these as anchor points.  The results can be displayed in a 

sensitivity matrix, as shown in Figs. 3 and 4. 

A baseline temperature distribution was computed by allowing the resistance to be zero 

everywhere.  The baseline temperature distribution was subtracted from each measurement point 

run and divided by r(x) to determine the sensitivity.  For this work, a constant value of 

perturbation resistance is used and set to WKmr /0005.0 2=  for scaling purposes as a unit 

perturbation is much larger than any expected value of actual contact resistance and would lead 

to very high baseline temperature values and consequently numerical issues in solving the 

inverse problem. 



 

11 

With the matrix S  of the sensitivities in hand, the calculated solution to the linear 

forward model for the temperatures at the measurement points for any distribution of thermal 

contact resistance values becomes simply 

 
 

~ ~ ~calculated baseline
T T S R= +  (1) 

 
where R

%
 would be known values of the contact resistance at the anchor points.  Because of the 

linearity, this approach is valid if the baseline case is not far from the actual case.  An example of 

the sensitivity matrix is provided below for the problem under consideration. 

 

 
 

 

 

 

 

 

 

 
Figure 3. Sensitivity matrix S (W/m2).  The columns correspond to the measurement location, the 
rows to the anchor point location, shown here for a location 0.00625m above the interface region 
 

860 750 238 186 74 68 30 30 10 28 14 8 4 4 2 2 0 2 0
512 1024 452 304 108 92 40 38 12 34 16 8 4 4 2 2 2 2 0
238 660 696 632 194 148 58 52 16 48 22 12 6 6 2 4 2 2 2
126 304 432 958 426 280 96 82 22 74 32 16 8 8 4 4 2 2 2
74 160 194 620 680 616 188 142 32 126 50 22 10 10 6 6 2 4 2
46 92 100 280 422 946 420 276 52 240 84 32 14 14 8 8 4 4 2
30 58 58 144 188 614 676 612 94 520 162 48 22 22 10 10 6 6 4
22 38 36 82 94 276 420 944 188 820 358 78 32 32 14 16 8 8 6
14 26 24 50 54 140 186 612 328 644 590 140 54 48 22 22 12 12 8
10 18 16 32 34 80 94 274 446 464 446 274 94 80 34 32 16 18 10
8 12 12 22 22 48 54 140 590 270 328 612 186 140 54 50 24 26 14
6 8 8 16 14 32 32 78 358 134 188 944 420 276 94 82 36 38 22
4 6 6 10 10 22 22 48 162 74 94 612 676 614 188 144 58 58 30
2 4 4 8 8 14 14 32 84 46 52 276 420 946 422 280 100 92 46
2 4 2 6 6 10 10 22 50 30 32 142 188 616 680 620 194 160 74
2 2 2 4 4 8 8 16 32 20 22 82 96 280 426 958 432 304 126
2 2 2 4 2 6 6 12 22 16 16 52 58 148 194 632 696 660 238
0 2 2 2 2 4 4 8 16 12 12 38 40 92 108 304 452 1024 512
0 2 0 2 2 4 4 8 14 10 10 30 30 68 74 186 238 750 860
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Figure 4. Plot of the sensitivity matrix.  Shown here for a location 0.00625m above the interface  
region.  On the gray scale white is high sensitivity and black is zero sensitivity. 
 

 
With the sensitivity matrix in hand, an inverse problem may now be formulated.  When 

the number of thermocouples equals the number of resistance anchor points, an unknown 
~
R  can 

be determined for observed temperatures from the simple inversion of Equation 14: 

 
 ( )baselineobs TTSRJ −= −1

~
)(  (2) 

 
However, this is often leads to unacceptable results due to the fact that S is ill-conditioned.  Thus  

input noise in the measurements usually leads to values of R with very large errors.  Thus, in 

solving inverse problems, many more measurements are taken than the number of sought-after 

unknowns and a least-squares formulation is used to find the unknown 
~
R : 
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 )()()(

~~

1

~ baselineobs

TT TTSSSRJ −= −                    (3) 

 
supplemented by a regularization (stabilizing) scheme. One of the best known regularization 

methods for inverse problems is Tikhonov regularization (Hansen 1992), also called damped 

least squares shown in Fig. 5.   

 

 

 

 

 

 

 

 

 

 

 
Figure 5.  An example of a least-squares fit polynomial approximation through the current values 
of the contact resistance, here taken as a constant.  
  
 

A first order regularized solution is defined using the following augmented least squares 

functional (Hansen and O’Leary 1993). 

 

 ( ) 2 2

~ ~ ~ ~ ~ 0
min

obs baseline
S R T T R Rβ⎧ ⎫

− − + −⎨ ⎬
⎩ ⎭

 (4) 
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Least-squares polynomial fit of the thermal  
contact resistance 
 
RBF fit of the thermal contact resistance 
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The parameter β  controls how much weight is given to minimization of 
0~~

RR−  relative to 

minimization of the residual norm.  Traditionally, 
0~

R  is taken as a constant, and this does not 

provide flexibility in damping spatially-varying functions. To overcome this limitation, we take  

0~
R  as a least-squares fit polynomial approximation through the current values of the contact 

resistance, effectively bringing the RBF approximation towards its mean value at the  RBF 

anchor points.  Since 
0~

R  is not known, it is initially set to zero in order to find 
~
R  as a result of 

the first iteration.  Subsequently, 
0~

R  is updated in all future iterations.  The minimization of this 

least squares problems is accomplished via the Levenberg-Marquadt method. 

Genetic Algorithm-Based Inverse Problem Solution 

We have carried the idea of regularized least squares forward into the BEM/GA method 

that does not require evaluation of the sensitivities and that does not require a linear relationship 

between the temperature measurements and the sought-after values of the contact resistance. 

Moreover, the GA minimization technique promises to find the global minimum within the 

search space.  We minimized an objective function Z extended to include the discrepancy 

between computed ,c iT  and measured temperatures ,m iT  under current estimate of the contact 

resistance at anchor points ,c iR .  Following the sensitivity-based developments, the objective 

function is regularized with respect to the running least-squares fit of the contact resistance at the 

anchor points ,m iR  as: 
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icim
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This function is then minimized in an effort to arrive at a contact resistance which best fits the 

measurement data.  We use a genetic algorithm (GA) (Goldberg 1989) to minimize Eqn. 5.  It is 

noted that Eqn. 5 is different in form than from 4.  This is because Eqn. 5 is better suited for 

implementation in the existing GA implementation.  Better results are expected from the 

BEM/GA method because it is not necessary to assume a linear perturbation about a baseline 

case as was taken by the sensitivity approach.  Thus, more general dependencies of the thermal 

contact resistance can be pursued, including temperature dependence.  However, this is left to 

future studies. 

Genetic algorithms are non-gradient based optimization algorithms that use random 

searches mimicking natural selection rules of evolution.  Actually, GA's maximize objective 

functions as they naturally seek the "best fit."  Thus the objective function computed by the GA 

is (Divo et al 2002): 

 

~
~ )(

1)(
RZ

RZ GA =                                                               (6) 

 
Traditional optimization processes such as hill-climbing, nonlinear dynamic 

programming, and non-linear simplex algorithms have been widely used for optimization.  

However, a common feature shared by all these schemes is that they are local in scope.  The 

optima they seek are the best in a neighborhood of the starting point.  Once a minimum is 

reached, a new starting point has to be set-up in order to seek the possibility of a better solution.  
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Optimization schemes based on random variation such as evolutionary algorithms answer some 

of the short-comings of classical minimization techniques.  The most common of such 

techniques include evolutionary strategies, evolutionary programming, and genetics algorithms 

(GA's).  All of these schemes possess a common characteristic: they each involve reproduction, 

random variation, competition, and selection of contending individuals in a population within a 

given environment.  Genetic algorithms (GA) are robust adaptive search techniques that mimic 

the idea of Darwinian evolution, Goldberg (1989), and use natural selection rules to investigate 

highly complex multi-dimensional problems.  GA's have been successfully applied to a wide 

range of optimization problems implicit to most inverse formulations.  Some advantages of GA's 

over classical optimization include: (1) no need for sensitivity coefficient evaluation as 

optimization is performed only by objective function evaluation, (2) based on randomness of 

optimization operators at each generation stage increasing the likelihood of finding several or 

even a global minimum, (3) continuity of the function or its derivatives is not required.  Finding 

a global minimum is by no means assured by adopting a GA, and proof of a global minimum 

relies on convexity of the objective function.  However, it can certainly be stated that a GA 

increases the likelihood of finding such a minimum, and, in the least, GA's provide an automated 

and logical manner to search the parameter landscape for multiple minimae (Divo et al 2002). 

The GA optimization process begins by setting a random set of possible solutions, called 

the population, with a fixed initial size or number of individuals.  Each individual is defined by 

optimization variables and is represented as a bit string or a chromosome (see Fig. 6 below).  
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Figure 6. Individual in the population characterized by four parameters (genes) encoded in a 
chromosome yielding the individual's fitness value F1 (Divo et al 2002) 
 

 
An objective function, ZGA, is evaluated for every individual in the current population defining 

the fitness or their probability of survival.  At each iteration of the GA, the processes of 

selection, cross-over, and mutation operators are used to update the population of designs.  A 

selection operator is first applied to the population in order to determine and select the 

individuals that are going to pass information in a mating process with the rest of the individuals 

in the population.  This mating process is called the crossover operator, and it allows the genetic 

information contained in the best individuals to be combined to form offsprings.  Additionally, a 

mutation operator randomly affects the information obtained by the mating of individuals.  This 

is a crucial step for continuous improvement (Divo et al 2002). 

A series of parameters are initially set in the GA code, and these determine and affect the 

performance of the genetic optimization process.  The number of parameters per individual or 

optimization variables, the size of the bit string or chromosome that defines each individual, the 

number of individuals or population size per generation, the number of children from each 

mating, the probability of crossover, and the probability of mutation are among the parameters 
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that control the optimization process.  This set of operations is carried out generation after 

generation until either a convergence criterion (a preset level of acceptable fitness) is satisfied or 

a maximum number of generations is reached. It is also important to point out that three 

important features distinguish GA's from the others evolutionary algorithms, namely: (1) binary 

representation of the solution, (2) the proportional method of selection, and (3) mutation and 

crossover as primary methods of producing variations  (Divo et al 2002). 

 In nature, the properties of an organism are described by a string of genes in the 

chromosomes.  Therefore, if one is trying to simulate nature using computers one must encode 

the design variable in a convenient way.  We adopt a haploid model using a binary vector to 

model a single chromosome.  The length of the vector is dictated by the number of design 

variables and the required precision of each design variable.  Each design variable has to be 

bounded with a minimum and a maximum value and in the process the precision of the variable 

is determined.  The number of divisions used in the discretization has to be integer power of two. 

This procedure allows an easy mapping from real numbers to binary strings and vice versa.  This 

coding process represented by a binary string is one of the distinguishing features of GA's and 

differentiates them from other evolutionary approaches.  The haploid GA's place all design 

variables into one binary string, called a chromosome or off-spring.  The information contained 

in the string of vectors comprising the chromosome characterizes an individual in a population.  

In turn, each individual is equipped with a given set of design variables to which corresponds to 

a value of the objective function.  This value is the measure of "fitness" of the individual design.  

In GA's, poorly fit designs are not discarded, rather they are kept, as in nature, to provide genetic 

diversity in the evolution of the population.  This genetic diversity is required to provide forward 
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movement of the population during the mating, cross-over, and mutation processes which 

characterize the GA (Divo et al 2002). 

 The initial population size may grow or diminish to mimic actual biological systems.  

However, in the GA used here, the population size is not allowed to change while the program is 

running.  Once the population size is fixed, the algorithm initializes all of the chromosomes.  

This operation is carried out by assigning a random value of 0 or 1 for each bit contained in each 

of the chromosomes.  After initializing the population, evaluation of the fitness of each 

individual is performed by computing the objective (or fitness) which of course represents a set 

of possible solutions.  Having the values of the objective function for each individual, the 

selection process can be started.  First values of the fitness function for each individual have to 

be added, and then the probability of being a selected individual is calculated as the ratio 

between the value of the fitness function of each individual and the sum of all objectives function 

values.  This is given by: 

 

1

( )

( )

i
selected pop size

i
i
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−

=

=

∑
                                                      (7) 

 
where vi is i-th member of the population, and Fitness(vi) is the measure of the fitness of that 

member  under its currently evolved parameter set configuration.  A weighted roulette wheel is 

generated, where each member of the current population is assigned a portion of the wheel in 

proportion to its probability of selection.  The wheel is spun as many times as there are 

individuals in the population to select which members mate.  Obviously, some chromosomes 

would be selected more than once, where the best chromosomes get more copies, the average 

stay even, and the worst die off.  Once selection has been applied, cross-over and mutation occur 
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to the surviving individuals.  These operations further expand genetic diversity in the current 

population.  All other probabilities referred to in the description of the GA adopted in this paper 

are computed in an analogous fashion as the selection probability (Divo et al 2002). 

 The probability of crossover Pc is an important parameter that defines the expected 

population size Pc•pop-size of chromosomes which undergoes crossover operation.  This is a 

mating process that allows individuals to interchange intrinsic information contained in the 

chromosomes.  The operation may be implemented in two steps: (1) a random selection based on 

the probability of crossover is performed to obtain pairs of individuals, and (2) a random number 

is generated between the first position of the binary vector and the last one, to indicate the 

location of the crossing point which delineates the location about which genetic information is 

interchanged between two chromosomes (Divo 2002 et al). 

 The mutation operator is the final operator implemented.  The probability of mutation Pm 

gives the expected number of mutated bits and every bit in all chromosomes in the whole 

population has an equal chance to undergo mutation: switch of a bit from 0 to 1 or vice-versa. 

This process is implemented by generating a random number within the range (0...1) for each bit 

within the chromosome.  If the generated number is smaller than Pm the bit is mutated.  When the 

mutation is done on a bit-by-bit basis is called the creep mutation.  Another type of mutation is 

the jump mutation which is applied to an individual selected to be mutated from this perspective.  

In this case all bits within the chromosome are switched from 0 to 1 and vice-versa.  Following 

selection, crossover and mutation the new population is ready for its next evolution until the 

convergence criteria "fitness" is reached.  It is the very nature of the binary representation of the 

design variables of the objective function and the random search process which provide yet 

another but implicit degree of regularization in this optimization process.  The sensitivity of the 
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objective function can be tuned depending on the size of each element of the chromosome.  

Thus, low bit representation is insensitive to large variations in input (regularized but may lead to 

poor solution due to low resolution), while high bit representation is sensitive to large variations 

in input (not regularized and therefore may lead to poor solution as well).  There is a range of bit 

size which produces a regularized and sensitive response leading to stable solutions (Divo et al 

2002). 

 This completes the description of the inverse problem formulations considered in this 

thesis. Attention is now given to the analytical and numerical solution of the forward problem 

and, subsequently, numerical validation results will be presented. 
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CHAPTER FOUR: ANALYTICAL SOLUTION FOR CONDUCTION 
WITH CONTACT RESISTANCE 

 In certain applications, the contact resistance does not depend on the temperature and 

geometry is regular so that the problem geometry can be framed in a separable coordinate system 

and such a situation lends itself to the use of an analytical solution to the forward problem.  The 

forward problem for the problem illustrated above is formulated considering the upper block 

temperature Tu(x,y) and the lower block temperature Tb(x,y) as: 
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where, R(x) is the spatially varying contact resistance. A general analytical solution can be 

derived for the temperature distribution on the upper block and on the lower block by satisfying 

the governing equations and boundary conditions specified in Eqn. 8a through Eqn. 8e, leading 

to: 
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The unknown coefficients, cn’s, can be explicitly computed by applying the temperature 'jump' 

condition at the interface, Eqn. 8e, and using the orthogonality properties of the ⎟
⎠
⎞

⎜
⎝
⎛ x

L
nπcos  

eigenfunctions.  Each term, cn, is computed through an independent superposition process.  

Details of the derivation are provided in the appendix.  This approach can be generalized to as 

many terms as necessary to ensure convergence of the series.  In our work we set  the upper limit 

in the summation to 20 terms to generate the numerical results used in the sensitivity analysis. 
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CHAPTER FIVE: BOUNDARY ELEMENT MODEL FOR CONDUCTION 
WITH CONTACT RESISTANCE   

The Boundary Element Method (BEM) is a numerical implementation of boundary 

integral methods for solution of field problems.  The BEM is now a well established numerical 

method which can be efficiently used to solve heat conduction problems in linear and non-linear 

media as well as non-homogeneous media using boundary-only discretization.  In addition to 

boundary-only discretization, a distinct feature of BEM is that unknowns which appear in the 

BEM formulation are the surface temperature and heat flux.  

Assuming that the conductivity is constant, the Laplace equation governs the temperature 

field in each region in Fig. 1.  Should the conductivity significantly vary as a function of 

temperature, the Kirchhoff transform can be used to linearize the heat conduction equation to the 

Laplace equation in the Kirchhoff transform (Brebbia et al 1985; Kassab and Wrobel 2000).  In 

the direct BEM used in this thesis, the governing equation is first converted to a boundary 

integral equation (BIE) by: (1) multiplying the governing equation by a test function G(x,ξ), (2) 

integrating over the spatial domain and using Green's second identity, and (3) invoking 

properties of the Green free-space solution identified as the test function G(x,ξ), resulting in  

 
( ) ( ) ( )[ ] Γ−= ∫

Γ

dxGxqxTxHTC ),()()(, ξξξξ       (11) 

 
 
This BIE is valid for boundary or interior points.  Here, Γ is the domain boundary of a domain Ω, 

n∂
∂  denotes the normal derivative with respect to the outward-drawn normal, 
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ηξξ ∂∂−= /),(),( xGkxH and  η∂∂−= /)(),( xTktxq .  The free term, )(ζC  is 1, for Ω∈ξ  and 

is equal to the internal angle subtended at a point on the boundary, Γ∈ξ , divided by π2 degrees 

in 2D and π4  steradian in 3D. The Green free space solution for the Laplace equation solves the 

adjoined diffusion equation perturbed in free space by a Dirac delta function located at the 

source point ξ=x  and is, krxG πξ 2/ln),( −=  in 2-D with ξ−= xr .  The boundary Γ  is 

discretized using N boundary elements,and the flux and temperature are discretized over the 

boundary to lead to the following form, 

 

 
1 1

N N

i i ij j ij j
j j

C T H T G q
= =

+ =∑ ∑  (12) 

 
where the coefficients ijH  and ijG  involve integrals of products of ),( ixH ξ  and ),( ixG ξ  with 

the appropriate shape function over the boundary element j.  These are numerically evaluated by 

Gauss-type quadratures.  The discretized BIE relates the temperature at any collocation point iξ  

(either on the boundary or in the domain) with boundary temperatures and heat fluxes.  

Collocating at iξ  ),( ixH ξ  boundary nodes ),..,1( Ni =  the above yields the standard form  

 
 [ ]{ } [ ]{ }H T G q=  (13) 

 
The above is re-arranged into the standard algebraic form [ ]{ } { }bxA =  by imposing boundary 

conditions.  Applying the BEM formulation to the 2-region problem, we arrive at two equations 
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at the contact region which is the interface of regions I and II.  Here, flux continuity and 

temperature jump conditions are enforced: 

 

 int

"
, int

                    for  1, 2..

( )    for  1, 2..

I II
j j

I II I
j j j t c j

q q j N

T T q R x j N

= − =

− = =
 (15) 

 
where intN  is the number of interfacial nodes.  In standard BEM, Eqn. 14 is assembled into a 

global matrix using the interfacial conditions of Eqn. 15, and the subsequent equations are 

solved. When multiple regions are involved, the global matrix is structured with many zero 

entries, and the resulting system is commonly solved using specially-tailored block solvers 

reminiscent of the FEM frontal solvers.  However, in this thesis, Eqn. 14 is solved iteratively 

region-by region until convergence is achieved, that is until the interfacial conditions in Eqn. 15 

are satisfied.  It is noted that in the case of perfect thermal contact 0)("
, =jct xR , and continuity of 

temperature is enforced.  

Quadratic iso-parametric discontinuous boundary elements with nodes offset at 25% are 

used in all computations reported in this thesis (see Fig. 7). 
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Figure 7. Boundary element model for the contact resistance problem 
 
 

It should be noted that the Cartesian geometry adopted to model the test coupon in this thesis is 

chosen only for convenience, but any other simple geometry, such as axisymmetric test coupons, 

are readily modeled using BEM.  The iteration process follows the initial step of guessing the 

interface conditions.  In all examples reported in this thesis, an adiabatic condition 0=Iq  was 

arbitrarily imposed initially along the interface between the two regions.  After the initial 

systems are formed and solved, mismatched temperatures are found along the interfaces for 

neighboring sub-domains.  The interface temperatures are replaced for the average as: 
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the same search process is followed for the other side of the interface to produce the average as 

follows, 

 

 "int int
int , int2

I II
II II

t c
T TT R qΓ Γ

Γ Γ

+
= +  (17) 

 
where "

,ctR  is the thermal contact resistance, IT intΓ  and IIT intΓ  are the interfacial temperatures from 

region one and region two respectively, and Iq intΓ  and IIq intΓ  are the interfacial heat fluxes from 

region one and region two. 

Once the resulting averaged temperatures are imposed as boundary conditions, a resulting 

set of normal heat fluxes along the interfaces will be matched from neighboring sub-domains 

requiring continuity as: 
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to ensure the flux continuity condition III qq intint ΓΓ −=  after averaging.  The iteration process is 

continued until a convergence criterion is satisfied.  A measure of convergence may be defined 

as the measure of mismatched temperatures along the interface as: 
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This is the standard deviation of BEM computed interface temperatures IT intΓ  on the region I side 

of the interface and IIT intΓ  on the region II side of the interface and their averaged-out updated 

interface values IT intΓ ,and IIT intΓ , respectively given by Eqn. 15 and Eqn. 16.  The iteration routine 

can be stopped once this standard deviation reaches a small fraction ε  of T∆  (typically 10-6), 

where T∆  is the total temperature span of the global field. It is shown in (Divo, 2002 #23) that 

the above iteration converges for jumps in interfacial temperature due to physically realistic 

values of the thermal contact resistance.  Global iteration of the assembled BEM equations can 

be carried out alternatively using Newton-Raphson iteration. 
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CHAPTER SIX:  TEST CASE SIMULATIONS 

In this thesis, two sets of results are presented.  The first obtained using the sensitivity 

based inverse problem method derived above and the second is using a regularized BEM/genetic 

algorithm (GA) numerical approach.  In all test cases considered, the top and bottom regions are 

taken to be made of the same material, namely AISI 304 stainless steel with a constant 

conductivity value of 14.9 W/mK.  Two cases of contact resistance are considered: (1) the first is 

constant, and (2) the second varies with position as 

( ) ( )'' 2 2
, 0.0015 0.004 0.004 0.00005sin 4  /t cR x x x x Km Wπ= − + + .  The dimensions of the model 

are taken as 0.1 x yL L m= = , the location of the contact region is taken as 0.05 l m= .  Nineteen 

equally spaced measuring points are located 0.00625 m above the interface region.  The location 

of the measuring points was determined in a series of forward problems which examined the 

sensitivity of the temperature field to variations of the interface thermal contact resistance while 

still maintaining a physically realistic distance from the interface at which one could place 

sensors such as thin wire thermocouples in an actual experiment.  Sensitivity maps are shown in 

Fig. 8 for two representative anchor point locations at the interface.  It is clear that the 

measurement locations in this case should be placed as close to the contact interface as possible.  
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Figure 8. Sensitivity contour maps for the contact resistance problem 
 

 
The resulting temperatures from the forward solution are considered as exact.  In order to 

simulate error from the measurements, random noise is added to computed temperatures.  

Assuming measurement errors are additive, the measured temperatures are simulated as  

 
 , ,observed j BEM j jT T= + ∈  (21) 

 
where ,BEM jT  is the computed temperature at node j from the forward BEM solution.  The 

additive error, j∈ , is produced by a random number generator, and its magnitude is controlled by 

the imposed standard deviation.  Random error drawn from a normal distribution with a standard 

deviation of 0.25 K is then added to the temperatures at the measuring points.  This value was 

chosen as being representative of experimental capability.  The simulated error corresponds to 
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approximately a maximum of +/-0.64K for 99% of generated random errors.  Several seeds were 

used to generate random numbers.  The results are summarized in Table 1.  

 
 

Table 1. Simulated observed temperatures for constant and variable R”
t,c. 

 

 

   

X/L 0 Error in Input [K] +/- 0.64K Error Input 0 Error in Input [K] +/- 0.64K Error Input

0.050 282.870 282.770 285.754 285.656
0.100 282.870 283.010 285.590 285.730
0.150 282.870 282.930 285.186 285.248
0.200 282.870 282.790 284.558 284.475
0.250 282.870 282.770 283.787 283.688
0.300 282.870 282.910 283.056 283.096
0.350 282.870 282.890 282.556 282.581
0.400 282.870 282.780 282.395 282.306
0.500 282.870 282.770 282.608 282.507
0.550 282.870 282.840 283.050 283.027
0.600 282.870 282.960 283.539 283.628
0.650 282.870 282.770 283.908 283.813
0.700 282.870 283.010 284.040 284.183
0.750 282.870 282.840 283.951 283.920
0.800 282.870 282.890 283.726 283.752
0.850 282.870 282.920 283.530 283.581
0.900 282.870 282.830 283.531 283.496
0.950 282.870 282.990 283.777 283.895
1.000 282.870 282.970 284.190 284.291

Input Temperature [K] at y = 0.05625 [m]

R" t,c = 0.0005 Km 2 /W R" t,c  = 0.0015 - 0.004x + 0.004 x 2  + 0.00005 sin (4 π x) Km 2 /W
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CHAPTER SEVEN:  RESULTS FROM THE INVERSE ANALYSIS 

In this chapter, two sets of results are presented in turn: (1) the sensitivity based 

approach, and (2) the BEM/GA based approach. In all cases the methodology of problem 

simulations described in chapter 6 is followed. 

The Sensitivity-Based Results 

Fig. 9 shows the result for the constant resistance case and the straightforward inversion 

of Eqn. 1 with no simulated input errors.  It can be seen that the values are non-physical at the 

center with a very large error.   

 

 

Figure 9. R”
t,c = 0.0005 K m2/W.  No error was added to simulated temperature readings. 
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The standard root mean square (RMS) error between the known resistance and the calculated 

resistance is 2.4x10-4 Km2/W.  This unacceptable result is due to round off error in the values of 

the sensitivity matrix and the inherent stiffness of the matrix.  To get around this problem the 

regularization method was applied using Eqn. 11.  The results are shown in Fig. 10.  It can be 

seen that the results are realistic.  The choice of the regularization parameter by the L-curve will 

be illustrated in the next section where the BEM/GA results are presented. The RMS error 

between the estimated and the known resistance is 9.965x10-5 Km2/W.  Although the RMS only 

improved by a factor of two, the impact of the regularization is apparent in comparing Fig. 9 and 

Fig. 10.  

 

 

Figure 10. R”
t,c = 0.0005 K m2/W.  Regularized inverse solution. 
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For the variable contact resistance case, the results are shown in Fig. 11 and Fig. 12.  It can be 

seen that the results are realistic and have an RMS error of 2.38x10-4 Km2/W.  As can be seen in 

Fig 10 and Fig. 12 the result is insensitive to noise. 

 

Figure 11. Regularized inverse solution for exact inputs for 
( ) ( )'' 2 2

, 0.0015 0.004 0.004 0.00005sin 4  /t cR x x x x Km Wπ= − + + .    
 

C
on

ta
ct

 R
es

ist
an

ce
 [K

m
2 /W

]

1
X/L

C
on

ta
ct

 R
es

ist
an

ce
 [K

m
2 /W

]

1
X/L



 

36 

 

Figure 12. ( ) ( )'' 2 2
, 0.0015 0.004 0.004 0.00005sin 4  /t cR x x x x Km Wπ= − + + .  Regularized 

inverse solution with noise, the error in the estimated resistance only increases to  
2.45 x 10-4Km2/W.  
  

The BEM/GA-Based Results 

In the GA we used to generate results presented in the example section, the following 

parameters are chosen: population size of 10 individuals/generation, with a string of ten bits to 

define each parameter within each individual, two children per mating, a 1% probability of 

mutation, and a 70% probability of crossover.  The population is not allowed to grow.  This 

combination of parameters has been proven to yield efficient and accurate optimization results 

for different studies carried out by the authors Divo et al (2002). 
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The BEM discretization is shown in Fig. 13.  A (1x1) Square with boundary conditions as 

shown with each of the two regions are discretized with 30 quadratic isoparametric 

discontinuous elements.  There are 19 sensor locations at ( ): 0.05,  0.1,  ...,  0.95x  and 

( ): 0.5625y .  There are 11 anchor points at ( ): 0,  0.1,  ...,  1x  and ( ): 0.5y .  The genetic 

algorithm uses anchor points to parameterize the contact resistance function at the mating 

surface. 

Results from the first case, '' 2
, 0.0005 /t cR Km W= , are plotted in Fig. 13. Anchor points 

are used to determine ''
,t cR .  
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Figure 13. BEM discretization, boundary conditions, and inverse problem setup   
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With exact temperatures input at the measuring points, the contact resistance is accurately 

retrieved. Random error drawn from a normal distribution with a standard deviation of 0.25 K is 

then added to the temperatures at the measuring points.  The simulated error corresponds to 

approximately a maximum of 0.64 for 99% of generated random errors.  Several seeds were used 

to generate random numbers.  

The results shown in Fig. 14 are for a value of β  equal to 0.0005.  This results in a RMS 

error of 1.8 x 10-7 Km2/W, which is lower than the errors computed for the original objective 

function, i.e. β = 0 where the RMS error is 8 x 10-6 Km2/W.  Fig. 15 shows the effect of noise 

added to the simulated thermocouple readings.  In this case, with β = 0.0005, the RMS error 

increased to 5.7 x 10-6 Km2/W, which is still better than β  = 0, which yields a RMS error of 8.6 

x 10-6 Km2/W.  It is interesting to note that the apparent randomness in Fig. 14 is lost in Fig. 15 

when the noise was added.  However the points are not in a symmetric pattern and are distributed 

both above and below the known resistance, suggesting that it is indeed random. 

Next, the case of variable contact resistance is considered: 

( ) ( )'' 2 2
, 0.0015 0.004 0.004 0.00005sin 4  /t cR x x x x Km Wπ= − + + .  Here one level of random 

error is introduced and added to the computed temperatures at the measuring points.  These 

errors are normally distributed with a maximum of ± 0.5 for 99% of generated random errors.  
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Figure 14. Results for case of '' 2

, 0.0005 /t cR Km W=  
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Figure 15. '' 2
, 0.0005 /t cR Km W=  case with random noise 

 
 

The algorithm is able to retrieve an accurate distribution for the contact resistance.  In the 

case of no simulated input error, Fig. 16, input temperatures the algorithm retrieves ( )''
,t cR x  with 

a relative error of 6.1 x 10-5 Km2/W, using  β = 0.0002.  The error computed for the original 

objective function, i.e. β  = 0 is 7 x 10-5 Km2/W.  For the case of variable contact resistance with 

noise, the relative error (Fit2) was computed as 0.32 Km2/W, using  β = 0; 0.27 Km2/W for  β = 

0.001; and 0.22 Km2/W for β = 0.01.  Fig. 17 shows the effect of noise in the thermocouple 

readings on the retrieved thermal contact resistance.  
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curve technique (Hansen, 1992; Hansen and O’Leary 1993).  The value of β  is an important 

parameter in the process.  In this method, the choice of the value of β  involves comparing the 

residuals in the minimum of the first term of Eqn. 5 (Fit1), which is the residuals in the 

temperatures, to the residuals in the second term of Eqn. 5 (Fit2) which represents the residuals 

in the resistance.  These are shown in Fig. 18 and Fig. 19, for a range of β  from 0 to 1.  These 

fits are a function of a value of β  chosen for the process.  The desired value of β  minimizes the 

residuals and maintains them equally balanced between both terms. In the case of the contact 

resistance variation of ( ) ( )'' 2 2
, 0.0015 0.004 0.004 0.00005sin 4  /t cR x x x x Km Wπ= − + + , the 

optimal value of β  is chosen to be 0.002. It is worth noting, the competing relation between Fit1 

and Fit2: as Fit2 is driven down, Fit1 will increase, and this is clearly seen in Figs. 18 and 19. 

 

 

Figure 16. Plot of the variable thermal contact resistance case, eleven anchor points, and after 
3000 iterations.  The resistance is 
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Figure 17. Plot of the variable resistance case, with random errors added to exact input 
temperatures.  Results after 3000 iterations of the GA for the contact resistance.  
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Figure 18. L curve for the contact resistance variation of 
( ) ( )'' 2 2

, 0.0015 0.004 0.004 0.00005sin 4  /t cR x x x x Km Wπ= − + + .    
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Figure 19. L curve for the contact resistance variation of 
( ) ( )'' 2 2

, 0.0015 0.004 0.004 0.00005sin 4  /t cR x x x x Km Wπ= − + + .  A simulated noise error with 
a standard deviation of +/-0.25K was added for this case. 
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CHAPTER EIGHT: CONCLUSION 

A two dimensional contact resistance model problem has been solved analytically for a 

known contact resistance between two mated surfaces.  An inverse problem was then formulated 

to estimate the spatial variation of the contact resistance by using specific interior temperature 

measurement points.  It was found that the inverse problem is sensitive to noise and requires 

using a regularization technique to obtain physically possible results.  A variation of the 

Thikonov regularization method along with the L-curve was employed to determine the optimal 

regularization parameter value.  A sensitivity based method was devised for linear problems 

while the regularization technique was then extended to a BEM/genetic algorithm to perform the 

inverse analysis for more general cases.  Numerical simulations were carried out to demonstrate 

the approach.  Random noise was used to simulate the effect of input uncertainties in measured 

temperatures at the sensors.  It was demonstrated that the regularization technique for the genetic 

algorithm consistently provided in an improved result.  Even though the cases presented here 

showed only a slight improvement, it is worth noting when working with real data one seeks the 

best method. 



 

46 

APPENDIX: ANALYTICAL SOLUTION 
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Figure 20. Nomenclature used in deriving the analytical solution. 
 

The governing equations for the upper and bottom regions of the model problem are: 

 
2

2

0

0
u

b

T

T

∇ =

∇ =
           (1A) 

 
The boundary conditions are: 

 

BC 1)  ( ) ( ) ( ) ( )0, , 0, , 0U U b bT T T Ty L y y L y
x x x x

∂ ∂ ∂ ∂
= = = =

∂ ∂ ∂ ∂
     (2A) 

 

BC 2)  ( ) ( ), ,U b
U b

y l

T Tk x y k x y
y y =

∂ ∂
=

∂ ∂
       (3A) 

 
The variation of the contact resistance is taken as a general function of space 

  
R(x) = f(x)          (4A) 

 
The ratio of conductivities of the upper and bottom regions is  

y=L 

y=l 

y=0 
x=0 x=L 

ku 

kL 

Tcold 

Thot 
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b

u
r k

k
k =            (5A) 

 
and the eigen-values of the homogeneous problem are denoted by 

 
πλ nn =            (6A) 

 
A separation of variables solution for each region with the boundary conditions 2A and 3A 

applied leads to the following temperature expressions for the top and bottom regions: 

 

( ) ( ) 0, 1 1 cos sinhn
u hot cold n n n

r r

c cy x yT x y T T
k l k L L

λ λ λ
⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − − − − −⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦
∑   (7A) 

( ) ( ) 0, cos sinhb hot cold n n n
y x yT x y T T c c
l L L

λ λ⎡ ⎤⎛ ⎞ ⎛ ⎞= − + ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
∑     (8A) 

 
Imposing the temperature jump condition at the interface of the top and bottom regions leads to: 

 

BC 3)  ( ) ( ) ( ) ( ), , ,b
b u b y l

y l

TR x k x y T x y T x y
y =

=

∂
= −

∂
      (9A) 

 
which collapses to a continuity condition of ( ) 0R x =  that is, ( ) ( ), ,u b y l

T x y T x y
=

=  , in such a 

case.  Using BC3 to find 0c : 

 

( ) ( ) 0, cos coshb n n
hot cold n n

T c c x yx y T T
y L L L L

λ λ λ∂ ⎡ ⎤⎛ ⎞ ⎛ ⎞= − + ⎜ ⎟ ⎜ ⎟⎢ ⎥∂ ⎝ ⎠ ⎝ ⎠⎣ ⎦
∑     (10A) 

( ) ( ) 0, cos coshb b n n b
b hot cold n n

T c k c k x lk x l T T
y L L L L

λ λ λ∂ ⎡ ⎤⎛ ⎞ ⎛ ⎞= − + ⎜ ⎟ ⎜ ⎟⎢ ⎥∂ ⎝ ⎠ ⎝ ⎠⎣ ⎦
∑    (11A) 
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so: 
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∑

∑

∑

    (12A) 

           
Re-arranging gives: 
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     (13A) 

       
Multiply Eqn 13A by dx and integrate from 0 to L: 

 

( ) 0
0 0

0

1
L

b

r

k c L l lR x dx c L c L
L k L L

⎛ ⎞= − − −⎜ ⎟
⎝ ⎠∫        (14A) 

( )
0

0 1

L

b
r

R x dx
L lc k l L

L k L

⎛ ⎞
⎜ ⎟

⎛ ⎞⎜ ⎟+ − + =⎜ ⎟⎜ ⎟⎝ ⎠
⎜ ⎟⎜ ⎟
⎝ ⎠

∫
        (15A) 

 
Solving for c0: 
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( )
0

0 1

L

b
b

u

Lc
R x dx

k l lk
L k L L

=

⎛ ⎞+ − +⎜ ⎟
⎝ ⎠

∫
        (16A) 

 
Check if ( ) 0 and 1rR x k= = . 

 

0
1 1

1
c l l

L L

= =
− +

          (17A) 

 

To get nc  from Eqn. 13A, multiply by cos n
x
L

λ⎛ ⎞
⎜ ⎟
⎝ ⎠

 and integrate 0 to L. 

 

( )0 ,
0

cos cosh
L

b
b n n n n n m

kx lk c R x dy c II
L L L

λ λ λ⎛ ⎞⎛ ⎞ ⎛ ⎞+⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
∑∫      (18A) 

= ,I cosho m n n n n m
lc c II
L

λ λ⎛ ⎞+ ⎜ ⎟
⎝ ⎠

∑  

 
where: 

 

( )
0

cos
L

m b m
xI k R x dx
L

λ⎛ ⎞= ⎜ ⎟
⎝ ⎠∫          (19A) 

( )0
,

cos cos
L

b n m

n m

x xk
L L

II R x dx
L

λ λ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠=

∫
       (20A) 

 
The problem is how to isolate an expression for cm when it is buried in the summation term.  The 

solution is to recast the equation in a matrix form, for example for x/L=0.5: 
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            (21A) 

 
Note that we are considering only the first 4 terms in the series to show how the approach works.  

In reality there are an infinite number of terms and the matrices have an infinite number of 

elements.  In the analysis we used about 20 terms in the series and the matrices were 1x20 and 

20x20. 

 

Forming the inverse for the II matrix 

 
1−= IIE            (22A) 

 
And multiplying the inverse through the equation gives 
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            (23A) 

 
When expanded out this results in 4 equations.  Each equation will involve c0, one of the c’s, one 

of the elements of E and one of the λ’s.  
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We are only interested in the third equation that involves Emm.  That equation allows us to solve 

for cm directly without knowing any of the other c’s.  This approach can be generalized to many 

terms; the addition of terms changes the values of the inverse elements and hence affects the 

values of the c’s.   
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