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ABSTRACT 

In this dissertation, the response time issue of the liquid crystal (LC) devices is 

investigated in meeting the challenges for display and photonic applications. The correlation 

between the LC director response time and the optical response time is derived theoretically and 

confirmed experimentally.   

This thesis begins with a description of liquid crystal materials and their physical 

properties, and then introduces the simulation methodologies. These brief but relevant 

introductory chapters pave the foundation for fully understanding the dynamic response of LC 

devices. After that, three chapters pertaining to optical response time are presented. 

A major contribution of this thesis is that, based on the small angle approximation, we 

derive rigorous analytical solutions for correlating the LC director response time to its 

consequent optical response times (both rise and decay) of a vertical-aligned nematic LC cell. 

Pretilt angle effect on the LC dynamics is studied, and it is found that a modified rotational 

viscosity is needed in order to explain the experimental results. Grayscale switching is also 

analyzed numerically. This work successfully fills the gap in the literature of LCD switching 

dynamics. 

An important effect related to response time, backflow is analyzed using a homogeneous 

LC cell in an infrared wavelength. Due to the relatively high voltage applied in an optical phased 

array (OPA), the backflow effect which takes place in the first few milliseconds influences the 

LC response time dramatically. However, the corresponding Leslie viscosity coefficients, which 

are crucial in investigating the dynamic response of LC devices with backflow, can hardly be 

found in the literature. A new effective approach to estimate the Leslie coefficients of LC 
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mixtures based on MBBA data is proposed in this dissertation. Using this method, the Leslie 

coefficients of the LC material under study can be extracted based on its order parameters. The 

simulation results agree with the experimental data very well. This method provides a useful tool 

for analyzing the dynamic response including backflow, in order to obtain accurate optical 

response time under a high biased voltage. 

Cell gap is an important factor affecting the LC response time. Usually a thinner cell gap 

is chosen to achieve faster response time, since normally both rise and decay times are known to 

be proportional to d2. However, they are valid only in the thth VV 2<<V  region, where V  

stands for the threshold voltage of an LC cell. In the large voltage region whereV

th

iVV <<π , the 

optical decay time is independent of d. In this thesis, we find that between these two extremes 

the response time is basically linearly proportional to d. Our analytical derivation is validated by 

experimental results. Therefore, in the whole voltage region, the physical picture of the optical 

response time as a function of the cell gap is completed. This analysis is useful for understanding 

the grayscale switching behaviors of the LC phase modulators. With the help of cell gap effect in 

phase modulator, we can effectively reduce the response time by using a thick cell or double 

cells to achieve the intended phase retardation in an anticipated operating wavelength.   

In conclusion, this dissertation has solved some important issues related to LC optical 

response time and supplied valuable tools for scientists and engineers to numerically analyze the 

LC dynamics.   
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CHAPTER 1: INTRODUCTION 

1.1 Motivation 

Liquid crystal technology, which is related to multi-disciplinary science, has found its 

way into every modern household in displays and photonics. In display area, liquid crystal 

displays (LCDs) can be found in handheld (0.5-4″), notebook computers (10-15″), desktop 

monitors (15-21″), LCD-TVs (17-46″+), HDTVs (82″), and digital movies (42’×27’). In mobile 

communications, LCDs are commonplace in palm pilots, handheld terminals, mobile Internets, 

wearable computers, wearable TVs, and car navigations. In photonics area, liquid crystal (LC) 

spatial light modulator (SLM) has been used as a phase-only modulation for laser beam steering, 

tunable-focus lens, and other photonic devices. Liquid crystal devices have been improved 

remarkably over the last several years. Moreover, innovation has been taking place every one 

and a half years. 

LCDs have unique features such as flat and compact structure, high image quality, low 

cost, low power consumption than Cathode Ray Tubes (CRTs), and they are easily interfaced 

with integrated circuits (IC). However, there are still some technical issues remain to be 

overcome. Compared to flat screen CRTs and Plasma monitors, their video refresh rate is slower, 

and the viewing angles are narrower. In this dissertation, we focus on the response time issue. 

For TV applications, LCD is expected to displace CRT very soon, as it does in the 

computer monitors. The rapidly shifting videos require the LC device to operate at the true video 

rate that is less than 16 ms. However, the response time of LCDs using nematic is still not fast 
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enough for video display. Blurred edges in moving images impede its acceptance in the TV 

market.  

For transmissive LCDs, the present response time (rise + decay) is approaching 10 ms, 

but in some fast-moving pictures, the response time should be less than 5 ms. For projection 

displays, the response time could be faster than 16 ms, thanks to the thermal effect of the high 

power lamp. In handheld displays, the response time in the Guest-Host (GH) display is about 50 

ms and that in the Mixed-mode Twisted Nematic (MTN) mode is ~20 ms, depending on the cell 

gap. However, for a color sequential microdisplay, the required frame time should be less than 1 

ms. This presents a technical challenge to nematic LCDs, especially in the low temperature 

region.  

In meeting the challenges, the goal of this research work is to discover the appropriate 

fast response approaches of LC devices. In pursuit of improving the response time of nematic 

LCDs, a lot of approaches have been carried out. For instance, to improve the material 

performance new molecular structures with low rotational viscosity (γ1) and high birefringence 

(∆n) [1],[2] have been developed. With the adaptive overdrive and undershoot method conceived 

in late 1980s [3],[4], the intrinsic slow inter-gray response time can be reduced to less than one 

fourth that of the conventional method [5],[6]. With the introduction of Dynamic Capacitance 

Compensation (DCC) for active-matrix (AM) LCDs in 2000 [7], LCDs made a jump in image 

quality. By incorporating DCC driving scheme and faster liquid crystal material, Samsung 

developed a TFT-LCD with all gray levels less than 10 ms [8].  

Among all LC modes, Optically Compensated Bend (OCB) mode has the fastest response 

potential. However, two major technological issues still need to be addressed: 1) how to speed up 

the initial 'splay to bend' transition, and 2) how possibly to accomplish an excellent image quality 
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that surpasses those of conventional wide viewing LCD modes. To realize its bend transition at a 

low voltage and speed up this transition, Uchida group [9] studied bend-shaped polymer 

network formation and Bos group [10] developed high pretilt alignment layer to keep the bend 

orientation at low voltage. Nakamura et al. [11] proposed a method to speed up the 'splay to 

bend' transition by applying repeated pulse type bias voltage. Ezhov et al. [12] developed a 3D 

system based on LC-shutters and polarization switchable large panels. Lee group [13] developed 

new driving method in 17.0” SVGA panel to speed up the initial splay to bend transition time 

and without sacrificing the performance of OCB panel.  

To achieve fast response time, several approaches have been reported. One approach is to 

use dual-frequency liquid crystal (DFLC) materials [14],[15]. In a DFLC device, electric field is 

present during both turn-on and turn-off periods to accelerate the LC reorientation processes. As 

a result, the rise and decay times are greatly improved. However, a DFLC material is a mixture 

containing positive and negative ∆ε LC components. Therefore, their ∆ε values at low and high 

frequency regimes are not large. That means, the required operating voltage is relatively high. 

Moreover, the crossover frequency shifts noticeably as the operating temperature increases. This 

makes precise grayscale control difficult.  

Polymer network liquid crystal (PNLC) [16] exhibits a fast response time. Usually, a 

PNLC scatters light in the visible region. However, as the wavelength increases, light scattering 

diminishes in the λ=1.55 µm region. For a 12-µm planar LC cell, the response time for achieving 

a 2π phase change is about 2 ms at room temperature. However, due to the 10 wt% polymer 

concentration and small network domains, the operating voltage is relatively high, 7 Vrms/µm. To 

reduce voltage, a high birefringence and large ∆ε LC material needs to be developed. 
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Liquid crystal response time is limited by its slow free relaxation. To shorten its decay 

time, another orthogonal electrode along the substrate is suggested, which is used to control its 

decay process. In other words, the decay is driven by the electric field. The concept of this 

crossed-field effect was first proposed in 1975 [17], however, it had not been actually 

implemented in display devices because of the following shortcomings: high voltage, low 

contrast, more complicated driving, more complicated structure, and non-uniform transmission. 

In the past two years, Xiang et al. [18]-[22] analytically explored the electro-optic properties of 

VA and HAN cells with different electrode configurations (three electrodes [18]-[20] or four 

electrodes [21],[22]) to achieve a fast decay time using the crossed-field effect. 

To improve on the motion image quality, Lee et al. [7] and Pan et al. [23] independently 

found that the slow response of LCD is not a dominant factor of motion blur. The slow response 

of LCD only contributes to 30% of the motion blur, while the hold-type rendering mode 

contributes to 70%. To reduce the hold-type motion blur, several companies, such as Samsung, 

Philips, NEC, et al. have some useful solutions. The first approach is to introduce an impulsive 

behavior to the transmittance, either by inserting black data between every two frames [24], or 

by using blinking backlight to eliminate the flickers [25],[26]. However, these solutions have the 

intrinsic shortcomings of low transmittance and contrast ratio. Another approach is to double the 

frame rate [27]. However, it requires extensive signal processing especially for motion 

estimation and interpolation. Phillips applied MCIF (Motion-compensated inverse filtering) on a 

30” LCD-TV pane in 2004 and obtained a CRT-like display without motion blurring [28]. 
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1.2 Thesis Overview 

The research work discussed in this dissertation covers liquid crystal devices with a goal 

of meeting the response time challenges for displays and optical communications. It can be 

divided into three categories: 1) Motivation and introduction, 2) Various novel electro-optical 

effects that related to optical response time in nematic LC mixtures, and 3) Summary. 

The dissertation is organized as follows. 

Chapter 2 introduces the LC mixtures and their corresponding physical properties. 

Chapter 3 reviews the numerical simulation methods for liquid crystal devices. 

In Chapter 4, we give the detailed derivation of the correlations between the LC director 

reorientation time and the optical response (both decay and rise) time of a Vertically Aligned 

(VA) cell. Pretilt angle effect in response time is also calibrated by the modified rotational 

viscosity.  

In Chapter 5, an important effect related to response time, backflow is analyzed using a 

homogeneous LC cell at λ =1.55 µm, which is commonly used for laser communication. Due to 

the relatively high voltage applied in an optical phased array, the backflow takes place in the first 

few milliseconds. We have modified the expressions of two Leslie coefficients (α1 and α2) in 

order to extend their validity to two high birefringence LC mixtures, E7 and UCF-2 based on the 

Imura and Okano (IO) theory. With these modifications, the simulation results agree quite well 

with the experimental data.  

In Chapter 6, an interesting approach to achieve fast response time was investigated. This 

chapter provides a complete physical picture of optical response time as a function of cell gap (d) 

in a wide voltage regime. Normally both rise and decay times are known to be proportional to d2 
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in the small angle approximation ( thth VVV 2<< ), and in the high voltage regime where 

 the optical decay time is independent of d. In this chapter, we found that between 

these two extremes, there is a region where the response time is linearly proportional to d. Our 

analytical derivation is confirmed by experimental results. 

iVVV <<π

Finally, in Chapter 7, we summarize the key achievements for this dissertation. 
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CHAPTER 2: LIQUID CRYSTAL MATERIALS AND PHYSICAL 
PROPERTIES 

Although liquid crystal only occupies a small portion in an LC device, it plays a key role 

in determining the device performances. For example, the LC material and molecular alignment 

jointly determine the device contrast ratio, operation voltage, response time, viewing angle, and 

operating temperature. Even the material stability is critical to the lifetime of the devices. LC 

material is the fundamental of the whole LCD industries and researches. Therefore, this chapter 

will briefly introduce the LC classes and its important physical properties. 

2.1 LC Mixtures 

Liquid crystal is an organic molecule. Liquid crystals possess physical properties that are 

intermediate between solid crystals and isotropic liquids [29]. They have the flow and 

conformability properties of liquid, but exhibit crystalline properties, e.g., optical, dielectric, and 

elastic anisotropies, when the LC molecules are aligned by a surfactant. There are three major 

LCs of interest: thermotropic, lyotropic, and polymeric. Among these three, the thermotropic 

LCs have been studied extensively and their applications mature. Thermotropic LCs can exist in 

three phases: nematic, smectic and cholesteric, as illustrated in Figure 1.  

In the nematic phase shown in Figure 1(a), the rod-like molecules are, on average, line up 

parallel to a preferred direction, which is characterized by a unit vector n, called the director. The 

director can be reoriented by an external electric field when the applied voltage exceeds the 

Freedericksz transition threshold. Since the liquid crystals are birefringence media, the field-

induced director reorientation imparts a large phase changes on a traversing wave. Due to their 
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simple molecular alignment and natural gray scale capability, nematic LCs have become the 

mainstream for display and tunable photonics applications. In our research interest, emphasis is 

mainly on the nematic phase. 

 

 

                  (a)                                                    (b)                                                       (c) 

Figure 1: Schematics of three thermotropic LCs: (a) nematic, (b) smectic, and (c) cholesteric. 

 

In the smectic phase shown in Figure 1(b), the molecules are in layered structures and 

arrange well with each other. There are at least nine distinct phases depending on the degree of 

ordering within those planes. An exciting feature of the chiral smectic-C phase is that it exhibits 

ferroelectricity. Using its spontaneous polarization, the response time of a bistable ferroelectric 

liquid crystal (FLC) modulator is in the 10-100 µs range. FLC has been demonstrated on a 

silicon backplane for virtual and projection displays [30].  Due to its fast response time, the FLC 

can perform color sequential and pulse-width modulation to obtain gray scales. In the cholesteric 

phase shown in Figure 1(c), it is thermodynamically equivalent to nematic phase except for the 

chiral-induced helix in the directors. There is parallel ordering in the same plane, but helical 

rotation along the axis perpendicular to different planes. The LC directors follow the helical 
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rotation of the chiral. The polarization states of the reflected and transmitted waves depend on 

the pitch length of the cholesteric. Because of its bistable nature (low power consumption), the 

cholesteric display is an attractive candidate for electronic books [31]. 

2.2 Basic Physical Properties 

Liquid crystal exhibits a certain degree of order in the molecular arrangement. As a 

result, there is anisotropy in the mechanical, electrical, magnetic, and optical properties. A 

number of unique characteristics make LC particularly suitable for displays. For electro-optic 

applications employing a nematic LC, birefringence, elastic constants, dielectric anisotropy, and 

rotational viscosity all play important role affecting the device performance. The following 

sections will give an overview on the basic physical properties of LC materials. 

2.2.1 Birefringence 

The birefringence ( oe nnn −=∆ ) of a uniaxial liquid crystal represents the difference 

between the refractive indices of the extraordinary ray ( ) and the ordinary ray ( ). High 

birefringence LC materials are essential for both display and optical communication applications 

[32]. For a cholesteric liquid crystal display (Ch-LCD) [14],[31], the reflection bandwidth (∆λ) is 

linearly proportional to the LC birefringence and pitch length (p) as: 

en on

pn ⋅∆=∆λ . In the visible 

spectral region, the pitch length is ~350 nm. Thus, if ∆n =0.6, then ∆λ =210 nm which would 

resemble a normally white Ch-LCD. For a Polymer-Dispersed Liquid Crystals (PDLC) [33],[34] 

or holographic PDLC [35], high ∆n enhances the light scattering efficiency and thus improves 

the display contrast ratio. For fiber-optic switches (λ =1.55 µm) using optical phased arrays [36], 
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the required phase change ( λπδ /2 nd∆= ) is 2π. If we want to retain the cell gap d =4 µm to 

achieve a fast response time, the required ∆n should be ~0.4 at λ =1.55 µm, which implies ∆n 

~0.5 in the visible region. 

,,oe
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n
n

3
4

2
1

2

2
,o N απ
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In order to describe the refractive index dispersion of LC materials, two issues need to be 

taken into account: wavelength effect and temperature effect.  

2.2.1.1 Wavelength Effect 

Vuks proposed the following equation to correlate the macroscopic observables 

(refractive indices) of an anisotropic LC to its microscopic properties (the molecular 

polarizability α) [37]:  

       (2.1) 

where 3/)2( 222
oe nnn += is the average value of the refractive indices in the nematic phase, N is 

the number of molecules per unit volume.  

Wu proposed a single-band model, where the wavelength-dependent birefringence of a 

LC can be expressed as follows [32],[38],[39]: 

,
3
2)(),( 2*2

2*2

λλ
λλλλ
−

+≈ GSnTn ie      (2.2) 
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)(),( 2*2
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=∆ Gn        (2.4) 
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In Eq. (2.4), the parameter G is temperature dependent but wavelength 

independent, and  is the mean electronic transition wavelength. For a LC substance, the 

electronic transition bands are located in the UV region. 

)( //
∗

⊥
∗ −= ffgNZS

*λ

Equation (2.4) involves two parameters G and λ*. Thus, by measuring the birefringence at 

two wavelengths, these two parameters can be determined and the entire birefringence dispersion 

curve can be obtained. From Eq. (2.4), as the wavelength increases, ∆n decreases gradually and 

saturates in the near infrared region. In the IR or millimeter region where λ>>λ*, Eq. (2.4) is 

reduced to , except in the vicinities of some local molecular vibration bands.  2*λGn ≈∆

In the IR region, some harmonics of molecular vibration bands exist. Figure 2 and Figure 

3 show the wavelength-dependent birefringence curves of two eutectic mixtures E-7 (cyano-

bipheny mixtures) and ZLI-1132 (cyano-phenyl-cyclohexanes mixtures) in the visible and IR 

region, respectively, at room temperature. The dashed lines represent the theoretical results using 

Eq. (2.4).  In Figure 3, positive dispersion of C≡N bonds (centered at 4.5 µm) and C-H bands 

(~3.4 µm) are observed in both materials. As a result, the intrinsic absorption can be relatively 

large depending on the detailed molecular composition. An LC with a long alkyl chain would 

enhance the absorption intensity of the C-H band. The birefringence saturates in the near infrared 

region except in the vicinities of some local molecular vibration bands. The measured 

birefringence results (E-7 and BL006 at 30GHz are 0.192 and 0.223, respectively) by Lim [40] 

are consistent with this analysis.  
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Figure 2: Wavelength-dependent birefringence in VIS [38]. 

 

Figure 3: Wavelength dependent birefringence in IR [38].  

 

Wu also proposed a three-band model, which takes all three electronic transition bands: 

one σ→σ* and two major π→π* into consideration [41],[42]: 
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where  are proportionality constants, Z is the number of σ electrons, and Ziii fNZg ~ 0 21 Z=  is 

the number of π electron in the LC mixture. In the off-resonance region, the three-band model 

( 16.0) ≈∞→(∆ λn ) agrees well with measured birefringence results (5CB at 35 GHz are 0.158). 

For LC molecules with mainly saturated bonds (such as CH3, CH2, C6H12), the σ→σ* transitions 

makes the primary contribution to birefringence. Their resonance wavelength is in deep UV 

(<180 nm) so that their birefringence is low. While for the LC molecules with unsaturated bonds 

(such as phenyl ring), the two π→π* transitions make dominant contribution to LC birefringence. 

As conjugation length increases, π→π* transition is more important. The first π→π* transition 

band (λ1) stays at around 210 nm while the second π→π* transition band (λ2) increases rapidly 

toward the visible wavelength [41] resulting in a higher birefringence.  

Wu et al. [42] and Li et al. [43] extended the Cauchy equations to LC mixtures:  

,42 λλ
ee

ee
CB

An ++=        (2.7) 

,420 λλ
oo

o
CB

An ++=        (2.8) 

where Ae,o, Be,o, and Ce,o are the Cauchy coefficients of the LC. This model fit the experimental 

data well in the off-resonance spectral region. 

2.2.1.2 Temperature Effect 

Temperature is another important factor affecting LC refractive indices. The temperature-
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dependent refractive index is governed by the order parameter S in Eqs.(2.2) and (2.3), where S 

is described as: 

β)/1( cTTS −=        (2.9) 

Eq. (2.9) is Haller’s approximation for the order parameter. This approximation holds 

reasonably well if the temperature is not too close to the clearing temperature (Tc). The exponent 

β is dependent on molecular structure, not on wavelength. For most LC compounds studied, β is 

around 0.20-0.25.  

Li et al. derived the four-parameter model for describing the temperature effect on the LC 

refractive indices [44]: 

( )
,)1(

3
2

)( 0 β

c
e T

Tn
BTATn −

∆
+−≈      (2.10) 

( )
.)1(

3
)( 0

0
β

cT
Tn

BTATn −
∆

−−≈      (2.11) 

Figure 4 plots the measured temperature-dependent refractive indices of 5CB (K 24 N 

35.3 I) at three wavelengths: λ =450, 550, and 650 nm, respectively. The filled data points are for 

no, while the open points are for ne. The solid lines are fitting results using the four-parameter 

model. The agreement is excellent. As the temperature increases, the refractive index decrease 

gradually, this trend is more pronounced as temperature approaches Tc. For a high Tc mixture, its 

refractive index is less sensitive to temperature in the vicinity of room temperature.  
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Figure 4: Temperature-dependent refractive indices of 5CB at λ = 450 (triangles), 550 (circles) 

and 650 nm (squares). Open dots are for  and closed dots are for [43]. en on

 

By taking temperature derivation of Eqs. (2.10) and (2.11), Li et al. further derived the 

following equations [44]: 
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This implies that ne decreases as the temperature increases throughout the entire nematic 

range, while n0 may initially increase or decrease with temperature, depending on the sign of Eq. 

(2.13). As T approaches Tc, dn jumps to a large positive number. In the intermediate, there 

exists a transition temperature (T0) where dn =0. Li et al. analyzed two critical parameters 

dT/0

dT/0
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affecting , which are high birefringence and low clearing temperature. Based on this, 

they formulated two exemplary LC mixtures using the laterally substituted isothiocyannato 

compounds. 

dTdn /0

The birefringence effect on the response time is through the cell gap dependence. High 

birefringence LC materials lead to a thinner cell gap which, in turn, reduces the response time.  

2.2.2 Dielectric Anisotropy  

The dielectric anisotropy is defined as ⊥−=∆ εεε // , where ε// and ε⊥ denote the 

dielectric permittivity parallel and perpendicular to the director, respectively. In notebook PC 

and other applications, low power consumption is critical. Thus, 3.3V and even 2.5V driving 

voltage are considered for TFT-LCDs. Therefore, high dielectric anisotropy LC-materials are 

attractive for low operating voltage.  

From the molecular point of view, the origin of the dielectric anisotropy is the anisotropic 

distribution of the molecular dipoles in the liquid crystal phases. Therefore, nematic phases 

formed by elongated molecules carrying longitudinal and transverse dipoles have respectively 

positive and negative dielectric anisotropy, whose magnitude increases with that of the molecular 

dipoles and with the degree of ordering. Some software i.e. MOPAC [46] can be used to 

compute the molecular properties (such as dipole moment) before synthesis. 

Maier and Meier [47] extended Onsager theory to nematic LC. In their theory, a molecule 

is represented by an anisotropic polarizability α with principal elements αl and αt in spherical 

cavity of radius a. Denoting the dipole moment with αl at an angle θ, the LC dielectric 

components ε//, ε⊥ and ∆ε can be expressed as: 

16 



[ ]{ },)cos31(1)3/( 22 SkTFNhF llll θµαε −−+=     (2.14) 

[ ]{ },2/)cos31(1)3/( 22 SkTFNhF θµαε −++= ⊥⊥    (2.15) 

( ){ },cos31)2/()( 22 θµααε −−−=∆ kTFNhFS tl    (2.16) 

where N is the molecular packing density, µ is the dipole moment, F is the Onsager reaction field 

and n  is average refractive index. Here h and F are dependent on the average dielectric 

constant ε  and average refractive index n : 
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Based on Eq. (2.16), the dielectric anisotropic of an LC material is influenced by three 

factors: molecular structure, temperature, and frequency. Let us discuss each factor separately. 

2.2.2.1 Molecular Structure Effect 

For a non-polar linear LC compound, its dipole moment µ ~0, thus its dielectric anisotropic 

∆ε is small. For a polar LC compound with a polar group, e.g., cyano or fluoro, its ∆ε can be 

positive or negative depending on the positions of the polar groups. When , the dipole 

contribution to ∆ε is positive, while when  it is negative, as illustrated in Eq.(2.16). The 

sign of the dielectric anisotropy ∆ε will affect the molecular alignment. Positive ∆ε material 

tends to align parallel to the electric field, which negative one normal to the electric field. Most 

discotic shaped molecules have negative ∆ε.  

°< 55θ

°> 55θ
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In order to measure either ε// or ε⊥, capacitance method is commonly used. It is achieved 

by keeping the electric field parallel or perpendicular to the director with ac excitation at low 

frequency (normally 1 kHz). Two-cell method or one-cell at two voltages approach can both be 

used.   

To increase ∆ε, more than one polar group can be considered. The final ∆ε value is 

determined by the vector sum of the total dipole moments. The magnitude of ∆ε and polar group 

type of an LC mixture will affect the threshold voltage, operating voltage, power consumption, 

resistivity,  and viscosity. 

2.2.2.2 Temperature Effect 

The temperature dependence of ∆ε is proportional to the order parameter S. Usually as 

temperature increases, ε// decreases while ε⊥ increases gradually, resulting in a decreased ∆ε. As 

T >Tc, the isotropic state is reached and the dielectric anisotropy is vanished. 

2.2.2.3 Frequency Effect 

Frequency dependent dielectric constant is another important factor in anisotropic LC 

material. At low frequency, ∆ε > 0, while at high frequency, ∆ε could become negative. As f 

increases, ε// decreases while ε⊥ stays constant, which results in a decreased ∆ε. The dielectric 

anisotropy ∆ε changes its sign at the crossed frequency fc. For a pure LC compound, its fc is 

usually higher than 10 MHz, which is too high to be employed. Dual-frequency effect is a useful 

approach for achieving fast response time. However, the DFLC often exhibit a small ∆ε (i.e., 
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high voltage) and high viscosity, and its crossover frequency is too sensitive to the operating 

temperature. These issues limit the widespread applications of DFLC materials. 

2.2.3 Visco-elastic Properties 

High birefringence is not the solely consideration of LC material, we need to account the 

overall performance, which is the Figure of Merit (FoM). Thus, another important parameter, 

visco-elastic coefficient, needs to be introduced, which is related to viscosity and elastic 

constants characteristics. Each factor will be analyzed in detail. 

2.2.2.1 Elastic Constants 

The free volume elastic energy (Frank energy) density of a nematic liquid crystal is 

written as: 
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2
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2
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33
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11 nnKnnKnKfelastic
rrrrr

⋅∇⋅+×∇⋅+⋅∇=    (2.19) 

where K11, K22, and K33 are the elastic constants associated with spray, twist, and bend 

deformation, as shown in Figure 5, respectively. 

 

            a) Splay (Homogeneous)          b) Bend (homeotropic)              c) Twist (twisted cell) 

Figure 5: Demonstrations of three basic deformations of LC. 
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Each of them relates to a specific alignment of the LC cell, in that K11 for homogeneous 

cell, K22 for twisted nematic cell, and K33 for homeotropic cell. From Maier-Saupe theory, the 

elastic constants are linearly proportional to S2 as: 

2
221133 ~ SKKK >> .      (2.20) 

A small elastic constant is favorable to achieve a low operation voltage, but it leads to a 

slow response time because the response time is proportional to 1/Kii. In practical uses, response 

time and viewing angle are usually more important than threshold voltage. Thus, multi-domain 

vertical alignment is a favorable approach for LCD TVs.  

2.2.2.3 Rotational Viscosity 

For almost all LC-related applications, fast response time is critical issue. Therefore, low 

viscosity LC materials are essential for TFT-LCDs. Rotational viscosity γ1 plays a critical role to 

LC dynamics. Both rise time and decay time are linearly proportional to γ1. Thus, for most LC 

devices, low rotational viscosity γ1 LC material is favorable. The temperature-dependent 

rotational viscosity could be written as [29]: 

),/exp( 01 TkEbS=γ        (2.21) 

where E is the activation energy, T is the Kelvin temperature and S is the order parameter shown 

in Eq. (2.9). From the molecular standpoint, the rotational viscosity depends on the molecular 

constituents, dimensions, molecular interactions, and moment of inertia. Thus, a linearly 

conjugated liquid crystal should exhibit a relatively low rotational viscosity. At the elevated 

temperature, γ1 decreases dramatically. For every 10°C temperature increase, viscosity is 
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decreased by ~2X. 

Low viscosity and high resistivity are essential for TFT-LCDs where the LC 

birefringence is about 0.1. The commonly used molecular structures are fluorinated cyclohexane-

phenyl (CP) two-ring and CCP three-ring compounds. Using a low viscosity LC mixture or 

operating a LC mixture at an elevated temperature, a small visco-elastic coefficient can be 

obtained. As a consequence, response time is reduced. 

2.2.2.4 Figure of Merit 

To characterize the overall performance of LC materials, a figure-of-merit (FoM) which 

takes birefringence and response time into account has been defined as [29]: 

,
/ 111

2

K
nFoM

γ
∆

=        (2.22) 

where K11 is the splay elastic constant, ∆n is the birefringence, γ1 is the rotational viscosity.  All 

of these parameters are temperature dependent. Both viscosity and elastic constants are also 

dependent on the order parameter S and can be approximated as: 

( ) ,0 Snn ∆=∆         (2.23) 

.2aSKii =         (2.24) 

Substituting Eqs. (2.21)-(2.24) into Eq.(2.22), the temperature dependent FoM is derived as: 

),/exp()/1())(/( 0
32

0 TkETTnbaFoM c −−∆= β    (2.25) 

where ∆n0 is the birefringence at S =1, E is activation energy of the liquid crystal and k0 is the 

Boltzmann constant. The value of the β parameter is around 0.25 and insensitive to liquid 

crystal structures. 
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Figure 6: Temperature-dependent birefringence of UCF-2. Blue dots are experimental data at λ 

=633 nm.  
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Figure 7: Temperature-dependent visco-elastic coefficient γ1/k11 of UCF-2. Blue dots are 

experimental data. 
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Figure 6 shows the temperature dependent birefringence of UCF-2 at λ =633 nm. The 

nematic range of UCF-2 is from 10.3°C to 141°C. As the temperature increases, the 

birefringence decreases gradually. Figure 7 gives the visco-elastic coefficient of UCF-2. As can 

be seen from the figure, γ1/k11 decreases as the temperature increases. When the temperature 

increases from T =23°C to T =70°C, the visco-elastic coefficient drops from γ1/k11= 22 to 4. 

Since LC switching time is proportional to γ1/k11, as a result, a fast response time is achieved by 

the reduced visco-elastic coefficient at an elevated temperature.  

 

Figure 8: Temperature dependent figure-of-merit of UCF-2 (squares) and E7 (circles). Solid lines 

are fittings to the experimental data of UCF-2 using E =340 meV, β =0.25, and Tc =141°C at λ = 

633 nm. 

 

From above discussions, it can be seen that elastic constant, viscosity and birefringence 

are all dependent on temperature. Accordingly, the figure of merit strongly depends on the 

temperature. The temperature-dependent figure of merit for UCF-2 is depicted in Figure 8. At 

low-temperature region, even though birefringence, dielectric anisotropy, elastic constants and 

viscosity all reduce as temperature increases, the dropping speed of visco-elastic coefficient in 
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Figure 7 is faster than that of ∆n2. Therefore the figure of merit first increases with increasing 

temperature and reaches a maximum value at ~115°C. As the temperature approaches the 

clearing temperature Tc, birefringence has very steep drop as shown in Figure 6, which causes a 

sharp decrease in the figure of merit. The higher figure of merit a LC possesses, the faster 

response time it exhibits. Thus operating a LC device at an elevated temperature is beneficial for 

reducing response time. However, it brings complication to the driving scheme by the additional 

temperature control system.  Also included in Figure 8 for comparison is a commercial E7 

mixture. At 70°C, the UCF-2 mixture has 10X higher FoM than that of E7 at 48°C. 

2.3 Anchoring Energy 

The structure of liquid crystal directors in close proximity to an interface is different from 

that in the bulk, and this surface structure changes boundary conditions and influences the 

behavior of the LC director in the bulk. Therefore, the anchoring energy is an important 

parameter for a LC cell. It affects not only the LC alignment but also the electro-optic properties 

such as threshold voltage and response time. 

The anchoring energy depends on cell thickness. A thinner cell exhibits a higher anchoring 

energy. 

In contrast to the strong anchoring energy, weak anchoring can results in: 1) Lower 

threshold, 2) Rise time decreases, and 3) Fall time increases 
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2.4 Factors Affecting LC Response Time    

To summarize the above discussions, we find that the LC response time depends on 

several factors, including the LC layer thickness, viscosity, temperature and surface treatment, as 

well as the driving waveform.  The pretilt angle effect will be numerically analyzed in Sec. 4.3.1 

in detail. The effects of these factors on the response time are listed in Table 1. 

Table 1: The effects of different factors on response time 

Factors Trise Tdecay 

Viscosity (γ1) ↓ ↓ ↓ 

Elastic constants (Kii) ↑ ↑ ↓ 

Dielectric anisotropy (∆ε)↑ ↓ ↓ 

Thickness (d) ↓ ↓ ↓ 

Pretilt angle (θ0) ↓ ↑ ↓ 

Anchoring energy (W) ↑ ↑ ↓ 

Temperature  (T) ↑ ↓ ↓ 

Voltage (V) ↑ ↓ ↓ 

To achieve a fast response time, low rotational viscosity (γ1) LC mixtures are preferred 

[16],[49]. Another straightforward approach is to use a thin cell gap filled with a high 

birefringence (∆n) and low viscosity LC mixture [36],[50]. High birefringence also enhances the 

display brightness and contrast ratio of polymer-dispersed liquid crystal (PDLC) [33],[34], 

holographic PDLC [35], cholesteric LCD [14],[31], and LC gels [51]-[53]. Recently, many 

manufacturers have reported the display devices with reduced cell gaps of below 4 µm in order 

to achieve fast response time. 
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CHAPTER 3: SIMULATION METHODOLOGIES 

Numerical simulation is an important tool in the design and optimization of liquid crystal 

(LC) devices with high quality performance, which includes fast response time and wide viewing 

angle. In this chapter, we will review recent development of LCD modeling methods. 

In general, the modeling of liquid crystal devices can be divided into two steps: (1) find 

director distribution; and (2) simulate optical response. 

3.1 Simulation of Director Distribution 

For a homogeneous LC cell that is strong anchored at the surface of z1=0 and z2=d with a 

small pretilt angle (~3°) to the normal, when no voltage is applied, the LC molecules are parallel 

to the electrodes except a small pretilt angle to avoid reverse tilt disclination. When the applied 

voltage exceeds Freedericksz transition voltage Vth, the LC molecules will rotate and be 

reoriented by the electric field, causing the change of the permittivity of substrate.  

The director distribution under applied voltage of LC devices should be solved first. 

Whether the backflow effect should be considered depends on the applied voltage. Thus we 

divide it into two categories: without or with backflow effect. 

       3.1.1 Without Backflow Effect 

 Under the circumstance when backflow effect is not considered, two-step approach is 

used: solve the voltage distribution using the finite element method (FEM) [54], and then obtain 

the director distribution using the finite difference method (FDM) [55]. 

The steady-state LC director distribution is controlled by the balance of the torques 
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between the elastic free energy and electric energy. The electric energy under applied voltage is 

defined as [56]: 

) )dvVVdvEDfElectric ∇⋅∇
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2
1

2
1 .                                            (3.1) 

where V is the voltage distribution, and ε is the dielectric tensor of the LC cell. The relative 

dielectric tensor of the LC cell is given by [57]: 
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,φ

φ

,φ

,

Here, no and ne is the ordinary and extraordinary refractive indices of the LC medium, 

respectively, θ is the tilt angle of the LC director, which is the angle between the LC director and 

the x-y plane, and φ is the azimuthal angle between projection of the LC director on the x-y plane 

and the x-axis as shown in Figure 9.  

27 



 

Figure 9: The coordinate system of LC director. 

 

Using rectangular elements, the voltage distribution can be expressed as a set of linear 

equations [57]: 
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where V is the unknown voltage at the node i of element e, Ne is the total number of elements, 

and  is the shape function.  

e
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To minimize this functional, the variation of the electric energy F  on the voltage Vm 

of node m is equal to 0.  After solving the following linear algebraic equation [56], the voltage 

distribution is obtained.  
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In the following, we will discuss the solution of director distribution. 

The main idea is to use Euler-Lagrangian equations to minimize the free energy. After 

applying the Gibbs free-energy density f g to the Erickson-Leslie theory, we have [59]:  

[ ] zyxinf
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dn

ing
i

i
,,,1 =+−= λγ            (3.12) 

where γ1 is the rotational viscosity, ni is Cartesian component of the director, λ is a Lagrange 

multiplier used to maintain the unit length of the director and [fg]ni is the Euler-Lagrangian 

equations.  However, it is impossible to solve for both an update formula for the director and λ, 

so we drop the Lagrange multiplier term and simply renormalize the director after each iteration. 

The Euler-Lagrangian equations [fg]ni are expressed as [59]: 
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where fg is the Gibbs free energy density given by:  

Electricelasticg fff −= .       (3.14) 

Here felastic and fElectric are the elastic free energy density and electric energy density, as expressed 

in Eqs. (2.19) and (3.1), respectively. 

With the known electric energy density fElectric and elastic energy density felastic, the 

updated director components after each time step ∆t can be derived from equation Eq. (3.12) as 

[ ] .,,,
1

zyxiftnn
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i =

∆
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                                                  (3.15) 
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After this update, the director must be renormalized to have a unit length. This 

renormalization also depends on the numerical time step ∆t. Therefore, the setting time step will 

be critical to the calculation accuracy. In our simulation, we use a flexible time step ∆t, which is 

less than the maximum time step given by [59]: 

,
2 11

1
2

max k
xt γ∆

=∆        (3.16) 

where ∆x is the minimum meshing size of the x, y, z direction. At each time step, the director 

distribution is visualized, which will be used to solve the electro-optical performance of the 

simulated LC device. After the LC director distribution is updated, the voltage distribution and 

the electric energy distribution must be updated to represent the changes of the voltage 

distribution. This iteration continues until setting convergence criteria is reached. This is a good 

approach in reducing the computation time while maintaining a reasonable accuracy. 

3.1.2 With Backflow Effect 

When backflow effect is considered, another step should be added in the director update 

using finite difference method. The director is therefore under the tilt deformation, associated 

with the viscous torque. In the Cartesian coordinate, the director is fully described as 

, the director distribution in 1-D case will follow the rule as: ),,( zyx nnn=n
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where F is the Frank free energy density, 1γ  is the rotational viscosity, n , , and n  are the 

differential of n to time t, and νx, νy are flow velocity along x and y direction.  Notice the 

inertial terms have been neglected in the director equation. The last terms in the above equations 

are related to the viscous torque. So we have another two parameters need to be solved first: 
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where 1α  to 6α are six Leslie coefficients, and ρ is the fluid density. Because the inertia is small, 

and can be omitted, the following equations are derived: 
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To get the solutions of 
z
vx

∂
∂

 and
z

vy

∂
∂

, we need to find the C  first. With the 

boundary condition 

21,C

0=
∂

∂
=

∂
∂

z
v

z
v yx  at z =0 and d, and the director distribution ( at time 

step (i), we can obtain the solutions of . After that, the values of 

),, zyx nnn

21,CC
z
vx

∂
∂

 and
z

vy

∂
∂

, can be 

obtained from Eqs.(3.22) and (3.23). Substituting them into Eqs. (3.17)-(3.19), the updated 

director distribution (  at this time step (i) is obtained. Using our in-house developed 

program, the dynamics of LC cells with backflow effect is investigated and the results will be 

explored in Chapter 5. 

)',',' zyx nnn

3.2 Optical Simulation 

In this section, two commonly employed approaches for calculating the transmittance is 

introduced: 1) the 4 by 4 matrix method [61]-[64], 2) the extended Jones matrix (2 by 2 matrix) 

[65]-[69]. Berreman’s 4×4 Matrix approach takes into account the effects of the refraction and 

multiple reflections between adjacent plate interfaces [62]. However, it needs lengthy 

calculations and it is generally employed only for the normal incidence. Over these years many 

approximations to this scheme has been proposed. Yeh [65] and Lien’s [67] extended Jones 

matrix methods were derived to generalize the 4×4 Matrix formulation to the oblique incidence. 

Huang et al. [69] used an improved 4×4 Matrix for optimizing the liquid crystal Fabry-Perot 

etalon for telecom application.  
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3.2.1 4×4 Matrix Method 

Let us consider an unpolarized light entering a LC panel at an oblique direction. We 

choose a coordinate system in which the wave vector k of the incident plane wave lies in the x-z 

plane. Here the +z axis points from the bottom glass substrate to the exit polarizer. The wave 

vector of the incident wave in this coordinate system is given by 

                                         ,cos0sin0 kok kk θθ zyxink +⋅+=                                            (3.24) 

where k0 is the wave number in free space, θk is elevation angle of the incident plane wave, and x, 

y, and z are the unit vector in the x, y, z directions, respectively. The whole LCD system is 

divided into N layers in the z direction. N is normally a number less than 100 such that each layer 

is considered as a homogeneous one. The liquid crystal layer shown in the figure usually consists 

of 30-50 layers. In simulations, each layer is treated as a single homogenous one. 

 

Figure 10: Schematic diagram of a LC panel, which is divided into N layers. 

 

For simplicity, the magnetic field intensity  is normalized as: H
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Assuming E and  are exp(-iwt) dependent, the time harmonic Maxwell equation can be 

expressed as: 

Ĥ
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.ˆ EH εoik−=×∇                                                                       (3.27) 

With  and ∂ , after expansion of Maxwell’s equations, we can derive 

the following form: 
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where Q is a coupling matrix given by 
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For each sub-layer, the matrix Q can be transformed to a diagonalized matrix: 
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where q1 to q4 are the four eigenvalues, and T is composed of the corresponding eigenvectors. q1 

to q4  are given by 
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,13 qq −=                                                                                               (3.33) 

,24 qq −=                                                                                             (3.34) 

where q1 and q2 correspond to two forward eigenwaves, and q3 and q4 correspond to two 

backward eigenwaves. 

With the diagonalized Q matrix, we can further conduct a variable transformation of the 

tangential field components as:  
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where T is expanded as: 
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Substituting Eqs. (3.30) and (3.35) into Eq. (3.28), we have the decoupled equations as: 
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For the nth sub-layer, the solution of Eq. (3.37) is given by: 
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where  and are the eigenwaves on the input and output boundaries of the nth sub-

layer , respectively and dn is the thickness of the corresponding nth layer,  The matrix Hn is 
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where 
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Substituting Eq. (3.38) into Eq. (3.35), the electric field on the output boundary of the nth 

layer is related to the electric field on the input boundary of the same layer by 
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where Pn is the 4-by-4 matrix of the nth sub-layer and is given by 
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                                                                      (3.45) .1−= nTHTP nnn

Since the tangential E field components are continuous in the interfaces of adjacent 

layers, the 4-by-4 matrix of the simulated LC device can be expressed as: 

                                                    (3.46) .121NN PPPPP K−=

3.2.2 2×2 Matrix or Extended Jones Matrix Method 

If we assume the reflection inside the LC device is negligible and only consider the 

forward eigenwaves, Eq. (3.35) becomes: 
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For the eigenwave in the nth layer, we have 
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Applying equation  (3.47) to equation (3.46), the extended Jones matrix of the nth layer is 

               (3.50) ,1−= nnnn SGSJ

from which we can obtain the extended Jones matrix of the simulated LC device as 

             (3.51) .121NN JJJJJ K−=

Considering the transmission loss in the air-LCD interface, the transmitted electric field 

is related to the incident electric field by: 
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where JExt and JEnt are the matrices considering the transmission losses in the air-LCD interfaces, 

which are given by 
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where np is the refraction index of the polarizer, and θp is given by 
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where ne,p and no,p are the two refractive indices of the polarizer. 

Thus, the overall optical transmittance top is given by 
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CHAPTER 4: CORRELATIONS BETWEEN LIQUID CRYSTAL 
DIRECTOR REORIENTAION AND OPTICAL RESPONSE TIME OF A 

HOMEOTROPIC CELL 

4.1 Introduction 

Response time is one of the most critical issues for nearly all liquid crystal (LC) devices 

involving dynamic switching. Based on the small angle approximation, Jakeman and Raynes 

derived the LC director reorientation times [72]. Since then, numerous papers dealing with LC 

response time have been published, however, the response time formula that most literatures 

refer to is the LC director reorientation time rather than the optical response time. For amplitude 

modulation, e.g., liquid crystal display devices [32], the LC device is usually sandwiched 

between two polarizers. The measured quantity is transmittance change and the associated 

dynamic response is optical rise or decay time. On the other hand, for a phase-only modulator 

such as optical phased arrays [36], the measured response time is phase change. There is no 

doubt that the optical response time for amplitude modulation and phase response time for phase 

modulation must be related to the LC director reorientation time.  To quantify a display device, 

the rise and decay time is usually defined as intensity change between 10% and 90%. However, 

the correlation between the director reorientation time and the optical and phase response time 

has not been carefully studied. Based on a simplified model, Wu [73] found that the optical 

decay time could be ~2X faster than the director reorientation time in a homogeneous LC cell. It 

is important to establish the detailed correlation between the LC director reorientation time and 

the optical and phase response time.  
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In this chapter, we derived the analytical correlation between the director reorientation 

time and its consequent optical rise and decay times based on the small angle approximation. A 

vertical-aligned (VA, also known as homeotropic, DAP cell) [74] nematic LC cell was used for 

these studies due to its simple electro-optic characteristics and widespread applications in 

transmissive direct-view and reflective projection displays [75]-[77]. In that situation, the 

incoming linearly polarized light with a wave vector k in parallel to the z axis does not encounter 

birefringence, and arrives at the second substrate with an unchanged state of its polarization, If 

the analyzer is crossed with the polarizer, the light is blocked at the output for all the wavelength 

and independent of d, This is the normally black state. To validate the derived correlations, in 

Sec. 4.2 we numerically solved the dynamic Erickson-Leslie equation. Results indicate that the 

optical response time is linearly proportional to the director reorientation time and is weakly 

dependent on the initial bias voltage. Pretilt angle effect is found to make an important 

contribution to the LC dynamics. Gray scale switching of the VA cell is also studied and results 

are discussed in Sec. 4.3. 

4.2 Theory 

When the backflow and inertial effects are ignored, the dynamics of the LC director 

reorientation is described by the following Erickson-Leslie equation [78],[79]:  
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where γ1 is the rotational viscosity, K11 and K33 represent the splay and bend elastic constants, 

respectively,  is the electric field energy density, ∆ε is the LC dielectric anisotropy, and φ 2Eo εε ∆
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is the tilt angle of the LC directors. In general, Eq. (4.1) can only be solved numerically. 

However, when the tilt angle is small ( φφ ~sin ) and K33~K11 (so called small angle 

approximation) [72], the Erickson-Leslie equation is reduced to:  
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Under such circumstances, both rise time and decay time have simple analytical 

solutions.  

4.2.1 Decay Time 

When the electric field is switched off, i.e., E=0, Eq. (4.2) is further simplified as: 
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The solution of Eq. (4.3) can be expressed as  
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where  mφ  is the maximum tilt angle of the LC directors in the response of the applied voltage, d 

is the LC cell gap, z is the position of the oriented LC layer under discussion, and oτ  is the LC 

director reorientation time (1→1/e). It should be pointed out that in the Erickson-Leslie equation 

the strong surface anchoring and zero pretilt angle at the surface boundaries are assumed. Under 

such conditions, the Freedericksz transition threshold exists [80]:  
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The time-dependent phase change associated with this angle change is described as 

follows: 
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where  and  are the refractive indices for the extraordinary and ordinary rays, respectively. 

If a VA cell is initially biased at a voltage (Vb) which is not too far above Vth, and the voltage is 

removed instantaneously at t =0, the transient phase change can be approximated from Eq. (4.7) 

as [81]: 
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where oδ  is the net phase change from V=Vb to V=0. From Eq. (4.8), the phase decay time 

constant (1→1/e) is 2/oτ  which is 2X faster than the LC reorientation time.  

To find optical response time, we need to calculate the intensity change. The time-

dependent normalized intensity change I(t) of the VA cell under crossed polarizers can be 

calculated using the following relationship: 
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Substituting Eq. (4.8) into Eq. (4.9), we find  
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In a display device, two definitions of response time are encountered: optical 

transmittance change from 90% to 10% or from 100% to 10%. The process for correlating the 

optical response time to the director reorientation time is similar. Let us consider the former case 

first.  

Based on Eq. (4.10), the normalized transmittance at t =0 has the following simple 

expression: 
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= .                 (4.11)  

Let us assume from t1 to t2 the transmittance decays from I1 = 90% to I2 = 10%. From Eq. 

(4.10), I1 and I2 have the following forms:                
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Using Eqs. (4.11), (4.12), and (4.13), we can easily solve the optical decay time Tdecay 

(90%→10%) as follows 
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Equation (4.14) correlates the optical decay time to the LC director reorientation time 

( oτ ). Similarly, the optical decay time from 100% to 10% can be derived easily and result is 

shown below: 
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Based on Eqs. (4.14) and (4.15), the optical decay time of a VA cell is linearly 

proportional to the director decay time. The initial phase retardation (δo) also plays an important 

role, but not too substantially. The detailed numerical results will be shown in Sec. 4.3.   

4.2.2 Rise Time 

Rise time is much more complicated to deal with than relaxation. The original small 

angle approximation used by Jakeman and Raynes for rise time is oversimplified [72]. They have 

assumed that the LC director’s tilt angle increases exponentially with time. This approximation is 

valid only in a very short time regime. Blinov has considered the second order term and the fact 

that the LC directors will eventually reach an equilibrium stage. Thus, Eq.(4.2) is rewritten as 

[82]: 

      ,
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In Eqs. (4.17) and (4.18), the electric field intensity E is expressed as: 

                           (4.19) ,/ dVE =

where the bias voltage V should satisfy (V-Vth)/Vth ≤1. Under such a circumstance, the solution of 

Eq. (4.16) can be approximated as: 
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Substituting Eq. (4.20) to Eq. (4.16), we obtain: 
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Equation (4.21) has following solution:   
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where  is the steady-state value of )( ∞→=∞ tφφ mφ  corresponding to the biased voltage, 

 is the initial directors fluctuation, and )0( =t=o φφ rτ  is the directors rise time: 
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Under small angle approximation, the transient phase change is obtained as:  
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where oδ  is the total phase change from the voltage-off state to the voltage-on state. By 

substituting Eq. (4.24) into Eq. (4.8), we obtain the transient transmittance state: 
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At t →∞, the exponential term in Eq. (4.25) vanishes and I(t) reaches a plateau:                 

            )
2

(sin)( 2 oI
δ

=∞ .                                         (4.26) 

To solve the optical rise time, let us assume the transmittance rises from I1 to I2 as the 

time increases from t1 to t2. Substituting t1 and t2 to Eq. (4.25), we obtain the corresponding 

transmittance at 10% and 90%:  
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By solving t1 and t2 from Eqs. (4.27) and (4.28), we derive the optical rise time Trise 

(10%→90%) as:  
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Equation (4.29) correlates the optical rise time (Trise) to the commonly used director rise 

time ( rτ ) as described in Eq. (4.23). Basically, it is a linear relationship except for the additional 

logarithm term of the phase dependence. As will be discussed in Sec. 4.3, this phase dependence 

is relatively modest.   

4.3 Results and Discussion  

To validate Eqs. (4.14) and (4.29), we numerically solve Eq. (4.1) using the finite 

element method (FEM) [54]. Once the LC director distribution is obtained, we then use the 

extended Jones matrix method [57], [61] to calculate the transient phase change δ(t).   

Figure 11 shows the system configuration of the VA LC under study. A commercial 

Merck negative nematic MLC-6608 mixture was used in our computer simulations. The material 

parameters of MLC 6608 are: n  4748.1=o 5578.1=en , the dielectric anisotropy 2.4−=∆ε , the 

rotational viscosity γ1 = 186 mPas at 20°C, the splay elastic constant K N, twist 

elastic constant K N, and bend elastic constant K N. The buffing 

induced pretilt angle is assumed to be 2° from surface normal unless otherwise mentioned.  

1210−×11 7.16=

12101.18 −×12
22 100.7 −×= 33 =
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Figure 11: The VA cell used for this study. The LC cell is sandwiched between two crossed 

polarizers. The inner side of each glass substrate is coated with a thin layer of indium-tin-oxide 

and polyimide for producing homeotropic alignment. The LC has a small pretilt angle. 

 

For a thin-film-transistor liquid crystal display using transmissive VA cell, the on-state 

voltage is preferred to be restricted to ~5 Vrms for the interest of low power consumption. 

Therefore, we choose d∆n = 0.7λ, which is slightly larger than the required half-wave phase 

retardation in order to reduce the on-state voltage. By using MLC-6608, the corresponding cell 

gap is d =4.64 µm and the total phase retardation is δ = 1.4 π at λ = 550 nm. Based on Eq. (4.15), 

the threshold voltage V  is calculated to be 2.19 Vrms. At the first transmission peak (i.e., δ =π), 

V = 2.146 Vth. We have also studied the response time between gray scales.  

th

4.3.1 Pretilt Angle Effect 

For a VA cell, pretilt angle (α) affects the device contrast ratio and response time. Here, 

we define pretilt angle as the angle of the LC directors deviated from cell normal. If α =0, it 

implies that the LC directors are aligned perpendicular to the substrate surfaces. Figure 12 plots 
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the voltage-dependent transmittance (or called VT curve) at α =0.01°, 2°, and 5°. Please note 

that oτ was derived by assuming α =0. However, in a real LC device a small pretilt angle is 

required for LC directors to relax back without creating domains. Therefore, we use α =0.01° to 

animate the results for α =0. As the pretilt angle deviates from the cell normal, the threshold 

behavior is gradually smeared and the turn-on voltage is decreased. We have calculated the 

quantitative LC director reorientation time and optical response time at various voltages for 

different pretilt angles. However, it will be tedious to tabulate all the results here. To find the 

tendency while not losing generality, we choose the simulation results with α =0.01° and 2°, as 

shown in Table 2 and Table 3, respectively.  

 

Figure 12: The simulated voltage-dependent transmittance of a VA cell at λ = 550 nm with three 

different pretilt angles, α = 0.01° (dashed line), 2° (solid line) and 5° (dashed dot line). The 

parameters used in simulations are listed in the text. 
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From Table 2, the phase decay time data (the tp /τo column) agree with the LC director 

decay time quite well in the low voltage regime. Here, to compare with oτ , we simply calculated 

the phase decay from 1 to 1/e2 (Eq. (4.8)). As the voltage increases, the tp /τo ratio gradually 

deviates from unity. At V/Vth ~1.6, tp /τo increases by ~14%. At δ ∼π, the phase decay time is 

~23% longer than τo. On the other hand, the optical decay time (from 90% to 10%) remains 

relatively constant (Tdecay /τo~0.65±0.03) in the Vth<V<1.4Vth regime. As the voltage increases to 

V/Vth~2.15, Tdecay /τo increases to 0.87.   

 

Table 2: Simulation results of phase decay time and optical decay time at different voltages of a 

VA cell. LC: MLC-6608, d = 4.64 µm, pretilt angle α = 0.01° and Vth =2.19 Vrms. Here, tp is the 

phase decay time, Tdecay is the optical decay time, and τo =22.4 ms is the director’s decay time as 

defined in Eq. (4.5). 

Voltage 
(Vrms) 

V/Vth Phase 
(π) 

tp (1→1/e2) 
(ms) 

tp /τo Tdecay (90→10%) 
(ms) 

Tdecay /τo 

2.30 1.05 0.0640 22.6 1.01 15.1 0.67 
2.40 1.10 0.1239 22.8 1.02 14.2 0.63 
2.50 1.14 0.1846 23.0 1.03 14.0 0.62 
2.60 1.19 0.2452 23.3 1.04 14.0 0.62 
2.80 1.28 0.3625 23.7 1.06 14.5 0.65 
2.90 1.32 0.4181 24.0 1.07 14.7 0.66 
3.00 1.37 0.4709 24.3 1.08 15.1 0.67 
3.20 1.46 0.5675 24.8 1.11 15.9 0.71 
3.50 1.60 0.6892 25.5 1.14 17.0 0.76 
3.70 1.69 0.7558 25.9 1.16 17.7 0.79 
4.00 1.83 0.8375 26.5 1.18 18.4 0.82 
4.40 2.01 0.9199 27.2 1.21 19.2 0.86 
4.70 2.15 0.9672 27.6 1.23 19.5 0.87 
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Table 3: shows the calculated results for α = 2°. A similar trend as that of α =0.01° is still 

observed except that both phase and optical decay times are somewhat slower. The theoretical 

director decay time τo is assumed unchanged. The slower phase and optical decay time is 

believed to originate from the slightly weaker restoring elastic torque due to the increased pretilt 

angle.  

 

Table 3: Same as Table 2 except the pretilt angle α = 2°. 

Voltage 
(Vrms) 

V/Vth Phase 
(π) 

tp (1→1/e2) 
(ms) 

tp/τo Tdecay (90→10%) 
(ms) 

Tdecay/τo 

2.30 1.05 0.1425 26.4 1.18 16.1 0.72 
2.40 1.10 0.1958 26.1 1.17 15.7 0.70 
2.50 1.14 0.2516 26.0 1.16 15.5 0.69 
2.60 1.19 0.3081 26.0 1.16 15.6 0.70 
2.80 1.28 0.4184 26.1 1.17 15.9 0.71 
2.90 1.32 0.4706 26.3 1.17 16.3 0.73 
3.00 1.37 0.5202 26.4 1.18 16.5 0.74 
3.20 1.46 0.6108 26.8 1.20 17.3 0.77 
3.50 1.60 0.7246 27.3 1.22 18.4 0.82 
3.70 1.69 0.7869 27.7 1.24 19.0 0.85 
4.00 1.83 0.8632 28.2 1.26 19.8 0.88 
4.40 2.01 0.9404 28.9 1.29 20.3 0.91 
4.70 2.15 0.9849 29.3 1.31 20.5 0.92 

 

In Figure 13(a) and (b), we plot the calculated optical decay time (90%→10%) and rise 

time (10→90%), respectively, as a function of V/Vth at α = 1°, 2°, 3°, and 5° pretilt angles. The 

Erickson-Leslie equation was used for these calculations. In general, at a given V/Vth a smaller 

pretilt angle would lead to a faster decay time but slower rise time. In the vicinity of threshold, 

the rise time is particularly slow, as described in Eq. (4.23). As the voltage increases, the optical 
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rise time is decreased rapidly. At V ~2.2Vth (peak transmittance), the rise time is reduced to ~10 

ms.  
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Figure 13: (a) Optical decay time (90%→10%) and (b) rise time (10%→90%) as a function of 

V/Vth at four different pretilt angles, α = 1°, 2°, 3°, and 5°. 
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Strictly speaking, the threshold behavior exists only when the pretilt angle is zero. 

However, in most LC devices a non-zero pretilt angle is required in order to avoid domain 

formation during molecular reorientation. The free relaxation time oτ  is derived based on the 

assumptions that α =0 and the applied voltage is not too far above the threshold. In reality, these 

assumptions may not be valid. Taking into account the pretilt angle effect, we modify the free 

relax time according to the following equation: 

,*
oo βττ =         (4.30) 

where oτ  is the free relaxation time when pretilt angle is zero, and can be calculated according to 

Eq. (4.5). In Eq. (4.23), oτ  is dependent on the pretilt angle. Since most of display cells have a 

pretilt angle, this correction factor is necessary to match theory with experimental results [84]. 

We have used the Erickson-Leslie equation to calculate the LC response time including pretilt 

angle effect but without using the small angle approximation. The β values we found are listed in 

Table 4. At a very small pretilt angle α ~0.01°, ~*
oτ oτ ; i.e., the correction factor β=1, as 

expected. As the pretilt angle increases, β gradually increases. At α =5°, β is found to be higher 

than the ideal value, which is unity, by nearly 30%.  

The pretilt angle is dependent on the polyimide alignment layer, rubbing strength, and LC 

material employed [85], [86]. For a given polyimide alignment layer, different LC materials may 

have a slightly different pretilt angle depending on the molecular interactions. The typical pretilt 

angle for a VA cell is ~2°. Thus, β ~1.16 has been taking into consideration whenever we 

calculated the response time of a VA cell with α =2o.  
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Table 4: Pretilt angle effect on the LC director’s decay time . *
oτ

Pretilt angle α( °)  oo ττ /*
 

0.01 1 
1 1.10 
2 1.16 
3 1.21 
5 1.30 

4.3.2 Gray Scale Switching 

The beauty of a nematic LCD is that it has natural gray scales. Each primary color (red, 

green, and blue) can display 8-bits gray scales. Thus, a full-color display with 16 million colors 

can be obtained. To investigate gray scale switching, we divide the voltage-dependent 

transmittance curve into eight equal intensity gray levels, as shown in Figure 14. Level 1 

represents the dark state and level 8 for the brightest state. The maximum transmission shown in 

Figure 14 is 35% after taking the absorption of the polarizer and analyzer into consideration.  

 

Figure 14: The eight gray levels of the VA cell at λ = 550 nm LC: MLC-6608, d = 4.64 µm and 

pretilt angle α = 2°. 
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Table 5 lists the calculated optical response time using the finite element and finite 

difference time domain methods for both decay and rise processes of the eight-level gray scales. 

The data in the right top triangle represent the rise time, while the left bottom are the decay time. 

The rise time from gray level 1 to 2 is the slowest because the applied voltage is so close to the 

threshold voltage. In a VA cell, gray scale 1→2 represents the switching from the darkest state to 

the second darkest state. Although it is slow, it is forgiven because human eye could not resolve 

this change too well. In the high voltage regime, gray scale switching is relatively fast. The 

actual switching time depends on the cell gap and visco-elastic coefficient (γ1 /K33) of the LC 

material employed. To improve the switching speed between gray levels, the over-drive and 

undershoot method has been proposed and implemented in real display devices [3], [4]. The data 

in the first row and the first column will be further used in our correlation. 

 Table 5: The calculated eight gray level optical rise time (10%→90%) and decay time 
(90%→10%) of the VA cell shown in Figure 14. 

Rise time, ms 
 1 2 3 4 5 6 7 8 

1  124.5 90.7 72.1 58 45.7 33.1 11.3 

2 15.5  69.4 58.9 49.2 39.8 29.2 9.6 

3 15.7 70.8  53.6 45.5 37.1 27.5 8.6 

4 16.1 64.4 57.5  43.4 35.7 26.6 8 

5 16.7 60.2 54.7 48.5  34.9 26.2 7.4 

6 17.5 57.4 52.9 47.4 41.3  26.2 7.0 

7 18.6 55.8 52.1 47.1 41.6 35.2  6.4 

8 20.5 55.9 53 48.7 43.8 38.3 31.3  
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4.3.3 Detailed Correlations 

In this section, we show the detailed simulation results between the director reorientation 

time and optical response time. The Erickson-Leslie equation was used for these calculations. A 

good correlation between the LC director reorientation time and optical response time is found.   

4.3.3.1 Decay Time 

In the small angle approximation, one of the important assumptions is θθ ~)

o

sin( . Under 

such a circumstance, the analytical form of LC director reorientation time constant τ  can be 

derived. However, the LC director reorientation time is difficult to measure directly in an 

experiment. For display applications, the optical response time is a more practical term. How to 

correlate the LC director reorientation time to the measurable optical response time is an 

important task.  

Figure 15(a) depicts the director distribution (φ(z)) as a function of normalized cell gap 

(z/d) at V ~1.37 Vth. Although the voltage is not too high from threshold, a large director 

deformation has already occurred. In the middle layer, the maximum director tilt angle (φm) has 

reached ~53o. Therefore, it is difficult to foresee whether the small angle approximation still 

holds. If it does, then Eq. (4.8) should be valid and [ ])(/ toln δδ  should be a linear function of 

time with slope equal to oτ/2 . From the slope measurement, oτ  can be extracted.  

In experiment, the VA cell sandwiched between crossed polarizers is biased at a voltage 

Vb. When the LC cell relaxes from Vb to 0, the total phase change is oδ . For a VA cell intended 

for intensity modulation, πδ ≤o . When the voltage is released instantaneously at t =0, the time-
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dependent transmittance is recorded. This time-dependent transmittance can be converted to the 

transient phase decay described by )(tδ . Figure 15(b) plots the calculated ln[ ])(/ to δδ  as a 

function of time for the VA cell. Indeed, a straight line with slope of 0.0755/ms is obtained. 

Based on this slope, 5.26=oτ ms is found. Using the LC parameters, we find 4.22=oτ ms from 

Eq. (4.5) and  ms from Eq. (4.28) with β =1.16 because of the 2° pretilt angle. The 

agreement between the small angle approximation and the Erickson-Leslie equation is amazingly 

good in this case.  

26=∗
oτ

o

oδ

oδ

Next, we validate the correlation between the optical decay time (Tdecay) and the director’s 

decay time ( oτ ), as expressed in Eq. (4.14).  If we neglect the logarithm term, then Tdecay =0.5 oτ ; 

the observed optical response time is 2X shorter than that of the LC director decay time. With the 

phase-dependent term included, the change is still not too significant. Figure 16 plots Tdecay / oτ  at 

different oδ , as described in Eq. (4.14). In Figure 16, circles represent the simulation results 

using the Erickson-Leslie equation, while the solid line represents the small angle approximation. 

In the small δ  region, i.e., V is not too far above Vth, the agreement between these two methods 

is reasonably good. As  increases, the discrepancy increases slightly. At the biased voltage 

Vb/Vth =2.146 which corresponds to ~ 1π, the maximum error observed is ~14 %. 
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Figure 15: (a) The calculated LC director distribution φ(z) as a function of normalized cell gap 

(z/d). (b) Time-dependent ln[ )(/ to ]δδ  of the VA cell. Dots are calculated data and solid line is 

the fitting curve. From the slope of the straight line,  is found to be ~26 ms. ∗
oτ
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Figure 16:  The correlation of the optical decay time Tdecay (90%→10%) vs. the LC director 

reorientation time ( oτ ) as a function of oδ . Circles represent the simulation results using the 

Erickson-Leslie equation, while the solid line is the correlation obtained from the small angle 

approximation [Eq. (4.14)]. 

4.3.3.2 Rise Time 

Rise time is much more difficult to solve than the decay time because it also depends on 

the applied voltage. Equation (4.29) correlates the optical rise time with the LC director rise 

time. At a given voltage, the optical rise time is 2X shorter than the LC director rise time if we 

neglect the logarithm term. Even the phase dependence term is included, the results are not 

affected too greatly. Figure 17 depicts the ratio of Trise/ oτ  at different oδ as described by Eq. 

(4.29). In Figure 17, circles represent the simulation results using the Erickson-Leslie equation, 
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while the solid line represents the small angle approximation.  A very good agreement is 

obtained except in the near threshold region.  

 

Figure 17: The correlation of optical rise time Trise (10%→90%) vs. the director reorientation 

time ( oτ ) as a function oδ . Circles represent the simulation results using the Erickson-Leslie 

equation, while the solid line is the correlation obtained from the small angle approximation  

[Eq. (4.29)]. 

 
When Vb gets close to Vth, the pretilt angle effect becomes more pronounced. In our 

simulations, pretilt angle is assumed to be 2°. Due to the smeared and decreased threshold, the 

required voltage for obtaining oδ ~ 0.25π is lower. As a result, the calculated rise time is longer 

than τo, as indicated by Eq. (4.23).   
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4.4 Conclusion 

We have derived the correlations between the LC director reorientation time and the 

optical response (both decay and rise) time of a vertically aligned cell. Results indicate that the 

optical response time (Trise and Tdecay) is linearly proportional to the LC director reorientation 

time. The initial bias voltage effect is not too strong. Pretilt angle is found to make an important 

impact to the LC dynamics. To correct for the pretilt angle effect, a modified rotational viscosity 

needs to be used.  
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CHAPTER 5: BACKFLOW EFFECT ON THE DYNAMIC RESPONSE OF 
LIQUID CRYSTAL PHASE MODULATOR 

5.1 Introduction 

Liquid crystal (LC) optical phased array (OPA) [36] is an efficient device for laser beam 

steering. In an OPA, a blazed phase grating is generated by controlling the spatial voltage 

patterns of the pixilated electrodes. The incoming linearly polarized light interacts with the phase 

grating and gets deflected. The steering angle (or the deflection angle) can be as large as 5-7o 

depending on the electrode gap and birefringence of the LC employed. For achieving a pure 

phase modulation, nematic LC with homogeneous alignment is commonly used. In a 

homogeneous cell, the maximum obtainable phase difference due to the voltage-induced 

molecular reorientation is λπδ /2 nd∆= , where d is the cell gap, ∆n is the birefringence, and λ is 

the wavelength. For laser beam steering at λ =1.55 µm, the required 2π phase change leads to 

d∆n~1.55 for a transmissive OPA. This d∆n requirement is ~3X higher than that of a visible 

wavelength. Moreover, due to the birefringence dispersion effect [87] the LC birefringence drops 

~20% in the near IR region as compared to that at λ =550 nm. For the interest of achieving a fast 

response time, using a thin LC cell with a high birefringence LC is a favorable approach. Due to 

the thin cell gap, a relatively high (10 Vrms) voltage is needed in order to completely reorient the 

LC directors. Under such a driving condition, backflow is inevitable in the dynamic response 

[88],[89]. 

The response time of a homogeneous LC cell is proportional to , where 11
22

1 / Kd πγ 1γ is 

the rotational viscosity and K  is the splay elastic constant [72]. To achieve a fast response 11
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time, high birefringence and low viscosity materials are particularly desirable [1],[2]. High 

birefringence enables a thinner cell gap to be used so that the response time is faster. Low 

viscosity is also helpful for reducing the response time. A simple method for reducing viscosity 

is to operate the LC device at an elevated temperature. As the temperature increases by 10 °C, 

the viscosity decreases by ~2X.    

The available data on the viscous properties of LC materials are almost always 

incomplete. So far, the only complete set of the six Leslie viscosity coefficients [78] was 

published by Kneppe and Schneider about two decades ago in their complicated rotating 

magnetic field experiments [90]. The LC compound studied was 4-methoxybenzylidene-4’n-

butylaniline (MBBA). However, MBBA is not a practical compound for OPA applications 

because of its poor material stability. Presently, many commercial high birefringence LC 

mixtures are based on cyano-biphenyl and -terphenyl compounds. To study the dynamical 

response of OPA, it is necessary to find an effective method to estimate the Leslie coefficients 

for high birefringence LC mixtures. 

In our experiments, we used E7 LC mixture (Merck) and a high birefringence and low 

viscosity LC mixture, UCF-2 [1],[2], as exemplary materials for validating our model.  In Sec. 

5.2, we derive the dynamic response of LC including backflow at various temperatures. In Sec. 

5.3, we briefly describe the experimental methods. In Sec. 5.4, we extend the temperature-

dependent Leslie viscosity coefficients of MBBA to E7 based on the Imura and Okano (IO) 

theory [91]. We first justify the α2 and α4 of E7 using the experimental data and then validate the 

fitting equations by the experimental data. Using these parameters, we simulate the OPA 

dynamics including backflow effect. The agreement between theory and experiment is excellent.  
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5.2 Theoretical Background 

5.2.1 Erickson-Leslie Equation  

In the dynamic Freedericksz transition of a homogeneous nematic cell, the azimuthal angle 

φ is constant so that the LC director can be solely described by the tilt angle θ(z,t). The motion of 

the LC director is coupled with the flow ν in the x direction. The evolution of θ and ν under an 

applied voltage is governed by the following Erickson-Leslie equation [78],[79], which takes 

into account the balance of elastic and electric-field-induced torques: 
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where iα  are the Leslie viscosity coefficients, I is the inertia of the LC, θ is the polar angle of 

the LC director (the angle between the LC director and the x-y plane, as depicted in Figure 18), 

 are the Frank elastic constants, iiK ε∆  is the dielectric anisotropy, and v  is the flow velocity.  
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Figure 18: The coordinate system of LC director, where θ  is the tilt angle of the LC director, 

which is the angle between the LC director and the x-y plane, and φ is the angle between 

projection of the LC director on the x-y plane and the x-axis. 

In general, the inertial effect is much smaller than the elastic and viscous torques and can 

be neglected. Neglecting the inertial term, the flow velocity is governed by:  
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Solving ∂  from Eq. (5.2), and substituting this into Eq. (5.1), we obtain the effective 

rotational viscosity  as [92]: 
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where γ1 is the rotational viscosity, and si 'α  are the Leslie coefficients. In the low voltage 

regime (V < Vth) of a homogeneous (splay-mode) cell,  can be approximated by , where 

[92]: 
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At a higher offset voltage (V >> Vth), the LC directors are reoriented perpendicular to the 

substrates except the boundary layers. Thus, the effective rotational viscosity ( ) for the bend-

mode (θ  = 90°) is [92]: 
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It is evident from Eqs. (5.4) and (5.5) that in a splay or bend mode, the director 

reorientation depends largely on 2α  and 54 αα + ; the 3α  values are one to two orders of 

magnitude smaller and are neglected. Similar effect is also observed in the twisted nematic cell 

[93]. For laser beam steering, we need a pure phase modulator with phase change πδ 2≥ . The 

pure phase modulation of a TN cell has been demonstrated in the low voltage regime; below the 

optical Freederisckz transition threshold [94]. However, to archive the required π2  phase 

change, the TN cell gap would be too large so that the response time would be too slow. Both 

homogeneous and homeotropic cells can be used for pure phase modulation. However, from a 

molecular design standpoint it is easier to obtain LC compounds with a large and positive ∆ε. 

Thus, here we focus on the LC directors’ deformation of a homogeneous cell with strong 

anchoring at surface boundaries.  

 5.2.2 Temperature Effect 

Temperature has a great influence on the physical properties of a thermotropic LC. As 

temperature increases, the birefringence, dielectric anisotropy, viscosity, and elastic constant all 

decrease but at different rates. The temperature-dependent physical properties are governed by 

the order parameter S as [95]: 

,)( Snn o∆=∆                                (5.6) 

,
T
SA=∆ε                (5.7) 

,)( 2SKK oiiii =                       (5.8)                        

),/'exp( 01 TkEbS=γ        (5.9)                    
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where (∆n)o and (Kii)o are the birefringence and elastic constant, respectively, at S=1, i.e., T=0 K, 

A and b are proportionality constants, E’ is the activation energy of molecular rotation, and k0 is 

the Boltzmann constant. If the temperature is not too close to , the order parameter S can be 

approximated as [80]: 

cT

.)/1( β
cTTS −=                                  (5.10) 

Equation (5.10) is Haller’s approximation for the order parameter where T  is the 

clearing point of the LC mixture and β is a material constant. The ratio of T  is called 

reduced temperature. This approximation holds quite well if the temperature is not too close to 

the clearing temperature. The exponent β is dependent on molecular structure, but not on 

wavelength. For most LC compounds studied, β ≈ 0.20. For the E7 LC mixture we studied, Tc 

=333 K. From the measured temperature-dependent birefringence data, we obtain (∆n)o=0.304 

and β = 0.222.  These results are consistent with the published literature values [40].  

c

cr TT /=

5.2.3 Temperature-dependent Leslie Coefficients 

In the Imura and Okano theory, all six Leslie coefficients (α1-α6) are expressed in terms 

of the order parameter S as [95]:  

,2
11 SA=α          (5.11) 

,)()( 2
22112 SCBSCB +−+−=α       (5.12) 

,)()( 2
22113 SCBSCB −−−−=α       (5.13) 

,2 2
34 SAaSis +−= ηα        (5.14) 
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,)()
2
3( 2

2215 SBASBa +++=α       (5.15) 

,)()
2
3( 2

2216 SBASBa −+−=α       (5.16)                         

where the coefficients a, Ai, Bi and Ci (i =1, 2) are weakly dependent on the temperature. For 

different LC materials, for simplicity let use assume that these coefficients (a, Ai, Bi and Ci) 

remain unchanged but the order parameter would vary due to different β and Tc.  

According to the definitions, 231 ααγ −=  and 562 ααγ −= . Based on the Parodi 

relationship [97], 2γ  can be rewritten as α3 + α2. In Eq. (5.14), ηis is the flow viscosity of the 

LC in the isotropic state 

),/exp( TkE Bois ηη =                       (5.17) 

where E >0 is the activation energy of molecular diffusion, and ηo is a proportionality constant. 

Equation (5.17) is the well-known Arrhenius law for isotropic liquids.  

5.2.4 Method to Estimate Leslie Coefficients 

Based on the above discussion, we propose a method to estimate the Leslie coefficients. 

So far, the only complete set of Leslie coefficients was published for MBBA using the rotating 

magnetic field experiments [90]. Using the MBBA data to fit Eqs. (5.11)–(5.17), we found E= 

0.414 eV. During fittings, we have assumed that all the coefficients a, Ai, Bi and Ci (i =1, 2) are 

constants and used the recommended six Leslie coefficients of MBBA listed in Table 6.    

Using the MBBA data to fit the IO theory, we obtain a set of coefficients, listed in Table 

7. From these fittings, we find that the experimental data fit reasonably well with the IO theory 
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for 4α , 5α , and 6α , but poorly for 1α , 2α , and 3α . For 1α , a better fitting is found if we include 

a third-order S term in Eq. (5.11):  

                                                                                              (5.18) ,)( 2
541 SASA +=α

where A4 = 0.2072 Pa s and A5 = 0.0748 Pa s. The fitting result of 1α  in Eq. (5.18) is sketched in 

Figure 19 (a), where open circles represent the measured results and filled circles are the fitting 

results. The agreement between fitting and experiment is very good. Also included in Figure 19 

(b) for comparison are the fitting results using Eq. (5.11). Without the third order term, the fitting 

of Eq. (5.11) with experiment is quite unsatisfactory.  

Table 6: Recommended Leslie coefficients for MBBA (from Ref [90]). All αi’s are in unit of Pa 
s. S is calculated from  with β = 0.188 and Tc = 319.2 K. β)/1( cTTS −=

T (C) S α1 α2 α3 α4 α5 α6 

20 0.625 -0.0215 -0.1534 -.00077 0.1095 0.1071 -0.0471 

25 0.600 -0.0181 -0.1104 -.00110 0.0826 0.0779 -0.0336 

30 0.571 -0.0141 -0.0800 -.00151 0.0644 0.0572 -0.0244 

35 0.533 -0.0095 -0.0573 -.00194 0.0515 0.0417 -0.0176 

40 0.477 -0.0054 -0.0387 -.00223 0.0422 0.0285 -0.0124 

42 0.443 -0.0036 -0.0310 -.00218 0.0394 0.0224 -0.0109 

44 0.392 -0.0012 -0.0210 -.00179 0.0374 0.0136 -0.0092 

 

 

Table 7: Parameters obtained from fitting MBBA data with the IO theory (Eqs. (5.11)–(5.17)). 

All the parameters are in units of Pa s. 
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A1 B1 C1 B2 C2 ηo a A2            A3 

-0.0417 -0.1442 -0.1568 0.4004 0.4179   4.33x10-9 -0.0437     0.1729     -0.0829
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Figure 19: The Fitting results of 1α  for MBBA (a) using Eq. (5.18) and (b) using Eq. (5.11). 

Open dots are measured data and filled dots are the fitting results. 
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The rotational viscosity is related to the Leslie coefficients (α3 and α2) as γ1 = α3 - α2.  

From Eqs. (5.12) and (5.13), we obtain the following expression for γ1: 

.22 2
211 SCSC +=γ                        (5.19) 

However, Eq. (5.19) does not fit the MBBA data well, as shown in Figure 20. A better 

fitting is found using the following expression proposed by Wu and Wu [98]: 

)./'exp( 01 TkEbS=γ             (5.20) 

In Eq. (5.20), b is the proportionality constant, E’ is the activation energy of molecular 

rotation, and k0 is the Boltzmann constant. From Eq. (5.20), the activation energy E’, which is 

determined by the LC structures, has a dramatic effect on the rotational viscosity.  
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Figure 20: The temperature-dependent rotational viscosity of MBBA. Dots are the experimental 

data calculated from Table 6, dashed lines are fitting results using Eq. (5.19), and solid line is 

fitting using Eq. (5.20). 
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Figure 20 plots the MBBA data (dots) and fitting results using Eq. (5.19) (dashed lines) 

and Eq. (5.20) (solid line). It is obvious that Eq. (5.20) has a much better fitting than Eq. (5.19). 

From Table 6, the α3 of MBBA is negative but very close to zero, which leads to:                                   

)./'exp(12 kTEbS−=−≈ γα                                                                  (5.21) 

Thus, 2α can be determined through the measurement of 1γ . Therefore, in our simulations 

we use Eqs. (5.18) and (5.21) for α1 and α2, and Eqs. (5.14)-(5.16) for α4, α5 and α6, 

respectively.  In the following, we will validate this method by comparing the experimental and 

simulation results using two LC mixtures, E7 and UCF-2.  

5.3 Experiment 

In experiments, we measured the physical properties such as birefringence and visco-

elastic coefficient of E7 and UCF-2 using homogeneous cells. The inner sides of the indium-tin-

oxide glass substrates were coated with a thin polyimide layer and then rubbed in anti-parallel 

directions. The buffing induced pretilt angle is ~3° and the anchoring energy is ~3×10-4 J/m2 

[101]. The cell gap was determined from the transmitted interference fringes through a 

spectrophotometer. The cell gap was found to be d =13.4µm for E7 and 7.81 µm for UCF-2. The 

elastic and dielectric constants of E7 and UCF-2 were measured using a computer-controlled 

APT III manufactured by Displaytech. The birefringence (∆n) was determined by measuring the 

voltage-dependent transmittance of the LC cell at λ =1.55µm through the LabVIEW data 

acquisition system [99]. Table 8 lists the measured physical properties of E7 at T =20.3, 33.3, 

and 46.9 °C.   
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For the temperature studies, the cell was held in an oven (INSTEC STC-200D) which has 

0.2 °C stability. To mimic the operating condition of an OPA, the LC cell was initially biased at 

=10 Vrms. During the relaxation process, the voltage was removed at t=0 and the optical 

response monitored by the photodiode detector and displayed by a digital oscilloscope.  

iV

 

Table 8: Some measured and calculated LC parameters of E7 at various temperatures. λ =1.55 
µm and Tc =60°C. 

T 

(°C) 

K11 

(pN) 

K33 

(pN) 

ε// ∆ε ∆n α1 

(mPa⋅s) 

α2 

(mPa⋅s)

α3 

(mPa⋅s)

α4 

(mPa⋅s) 

α5 

(mPa⋅s)

α6 

(mPa⋅s)

20.3  11.7 19.5 19.6 14.5 .190 -21.2 -281.8 -1.0 224.7 92.1 -190.6 

33.3  10 16.5 17 12 .175 -14.2 -123.5 -1.4 120.4 67.2 -57.7 

46.9  7 10 15 10 .148 -6.2 -52 -1.9 70 34 -19.9 

5.4 Results and Discussion   

To compare with the experimental results, we numerically solved Eq.(5.1) using the finite 

element [83] and finite difference time domain methods assuming that the anchoring energy is 

infinite. The dynamic response of two LC mixtures was studied: E7 and UCF-2. E7 was used in 

the first generation OPA. However, its figure of merit [100], defined as , is 

only ~4 ms/µm2 at T ~48°C. To enhance FoM, we formulated a new mixture (UCF-2) consisting 

of isothiocyanato-tolane compounds. The FoM of UCF-2 reaches ~40 ms/µm2 at T =70°C. As a 

result, the OPA would have a much faster response time. However, the backflow effect needs to 

be investigated.  

1
2

11 /)( γnKFoM ∆=
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5.4.1 E7 

 Figure 21 depicts the voltage-dependent transmittance curves at λ =1.55 µm and three 

different temperatures, T = 20.3°C (gray line), 33.3°C (dot-dashed line), and 46.9°C (solid line). 

From these curves, we find that the birefringence of E7 at λ =1.55 µm is ∆n =0.190, 0.175, and 

0.148 at T =20.3, 33.3, and 46.9 °C, respectively.     
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Figure 21: Voltage-dependent transmission of a 13.4-µm-thick homogeneous E7 cell between 
crossed polarizers at three different temperatures: T =20.3°C (gray line), 33.3°C (dot-dashed 

line) and 46.9°C (solid line). λ =1.55 µm. 

 

The temperature-dependent rotational viscosity of E7 is shown in Figure 22 where the 

dots are the measured data and the solid line represents the fitting curve using Eq. (5.20). To fit 

the experimental data, we use the same β (=0.222) for the order parameter (S) and a, {Ai, Bi, Ci} 

(i=1, 2), and A3, A4, and A5 as MBBA and leave b and E’ as adjustable parameters. From the 

fittings, we find b=1.3x10-8 Pa s and E’ = 0.439eV for E7. The obtained activation energy agrees 
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very well with that reported in [81] (E’ =0.440 eV). The relatively large E’ is caused by the 

dimmer formation of cyano-biphenyls in the E7 mixture. 
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Figure 22: The temperature dependent γ1 of E7. Dots are measured data and solid lines are the 
fitting curves using Eq. (5.20). 

 

Figure 23 plots the measured optical dynamic response of the E7 LC cell at T= 20.3°C 

(grey line), 33.3°C (dashed line), and 46.9°C (solid line), respectively. Before relaxation starts, 

the LC cell was biased at V =10 Vrms. Under such a circumstance, the LC directors are 

reoriented almost perpendicularly to the substrates throughout the bulk except the boundary 

layers. These boundary layers still preserve some residual phase retardation. Thus, under 

crossed-polarizer conditions, a small transmittance is observed at t =0, as shown in Figure 23. 

This residual transmittance is affected by the d∆n, threshold voltage, and surface anchoring 

energy of the LC cell. As the temperature increases, both birefringence and threshold voltage 

decrease. Thus, the initial transmittance is suppressed. Moreover, the rotational viscosity 

b

75 



decreases as the temperature increases. Thus, the time required to reach the first transmittance 

peak is reduced. 

0 100 200 300
0.0

0.2

0.4

0.6

0.8

1.0

 

 

Tr
an

sm
itt

an
ce

Time, ms

 

Figure 23: The experimental optical dynamic responses of a homogeneous E7 cell at three 

different temperatures: T = 20.3°C (grey line), 33.3°C (dot-dashed line) and 46.9°C (solid line). 

d =13.4 µm and λ = 1.55 µm. 

 

 In Figure 23, the backflow effect is clearly observed in the first few milliseconds. At the 

first stage of relaxation, the transmittance curve shows a steeper slope at each temperature due to 

the backflow effect. During the abrupt relaxation, the LC directors initially overshoot with time 

and attain a maximum value at a very short time before decaying monotonically to zero. Figure 

24 shows the simulated tilt angle distributions of the E7 cell at T = 46.9°C during its first 30 ms 

relaxation. At t =0, the 10 Vrms biased voltage is removed instantaneously. Right before the 

electric field is removed, the bulk molecules are reoriented to be perpendicular to the substrates 
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except the boundary layers due to their pretilt angle and strong surface anchoring. The tilt angle 

increases to beyond 90° with time so that the LC molecules are driven to the opposite direction. 

At t ~10 ms, the tilt angle reaches its maximum value. Afterwards, the tilt angle starts to decay 

and the molecules are driven back to the forward direction. This flow-induced phenomenon 

occurs normally when the strength of the field is well above the threshold and the field transition 

is abrupt. At the center of the cell, there exists equal but ‘opposite’ torques, so the molecules are 

driven to the opposite direction temporarily. After the initial backflow, the velocity decreases 

quickly, changes sign, and finally approaches zero. Van Doorn [88] and Berreman [89] have 

numerically analyzed the director reorientation independently.  

 

Figure 24: The simulated tilt angle distribution of a homogeneous E7 cell at T = 46.9°C during 

its first 30 ms relaxation. d =13.4 µm and λ =1.55 µm. The parameters used for simulations are 

listed in Table 8. 
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The transient optical dynamic response of the E7 cell at three different temperatures, T = 

20.3, 33.3, and 46.9 °C are shown in Figure 25 (a-c), respectively. In these figures, the solid lines 

represent the experimental results and the dashed lines show the simulation results. The 

parameters used for the simulations are listed in Table 8. The general agreement between the 

simulations and experimental results is quite good. As already discussed in theory, the director 

reorientation depends largely on 2α  and 4α + 5α  in the form of Eq. (5.4). In our simulations, we 

only adjusted the 4α  value to best fit the experimental results at each temperature. The values of 

4α  in Table 8 have already been updated for the best fittings. Here, we need to mention that the 

choice of 4α  is sensitive to the elastic constants, K11 and K33. As the elastic constant increases, a 

larger 4α  is required to decrease the frictional torque, thus getting the new equilibrium between 

the elastic and viscous torques.  
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Figure 25: The transient optical dynamic responses of a homogeneous E7 LC cell at three 

different temperatures: (a) T = 20.3°C, (b) T =33.3°C and (c) T =46.9°C. d =13.4 µm and λ 

=1.55 µm. The solid lines represent the experimental results, while the dot-dashed ones are the 

simulation results. The parameters used for simulations are listed in Table 8. 
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After having optimized the α4 values at all three temperatures, we still use Eq. (5.14) to 

do the fitting by only changing the activation energy of molecular diffusion. Figure 26 shows the 

fitting results. From the fittings, the activation energy (E) of the isotropic state can be extracted.  

For E7, we obtain E = 0.432 eV, which is comparable to that of MBBA (E = 0.414 eV) due to 

similar molecular conformations.  
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Figure 26: The temperature-dependent Leslie coefficient α4 for E7. The solid line represents the 

fitting curve using Eq. (5.14) with E =0.315 eV, while the dots represent the optimal values of α4 

at each temperature. 

5.4.2 UCF-2 

Further to verify the essential correctness of this approach we also tried the high 

birefringence LC mixture, designated as UCF-2, that we formulated. Its nematic range is from 
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10.3 to 139.7 °C. All the parameters used for simulations are listed in Table 9. At λ =1.55 µm 

and T =70°C, UCF- 2 has ∆n ~0.319 which is ~2X higher than that of E7 at T ~47°C. Due to the 

higher birefringence, the required cell gap to achieve 2π phase change is reduced in proportion. 

By comparing Table 9 with Table 8, we find that the α2 (or γ1) of E7 at T ~47oC is about the 

same as that of UCF-2 at T =70°C. However, UCF-2 has a much higher clearing temperature 

than E7, which leads to a higher K11. The visco-elastic coefficient ( 111 / Kγ ) of UCF-2 at T 

=70°C is ~3X smaller than that of E7 at T ~47°C. As a result, UCF-2 should have ~10X higher 

FoM than E7.   

Table 9: Some measured and calculated LC parameters of UCF-02 at T =70 °C and λ =1.55 µm. 

T 

(°C) 

K11 

(pN) 

K33 

(pN) 

ε// ∆ε ∆n α1 

(mPa⋅s)

α2 

(mPa⋅s)

α3 

(mPa⋅s)

α4 

(mPa⋅s) 

α5 

(mPa⋅s) 

α6 

(mPa⋅s)

70 13.9 37.8 13.4 10.1 0.319 -25.9 -50.9 -0.7 72 107.9 56.3 

 

Figure 27 plots the optical dynamic response of the UCF-02 LC cell (d =7.81µm) at T = 

70°C.  The simulation results (dashed line) fit very well with the experimental results (solid line). 

From the value of α4, we find that E = 0.343 eV, which is ~10% higher than that of E7. Recall 

that E is the activation energy in the isotropic state. Although UCF-2 exhibits a lower viscosity 

than E7 in the nematic phase, its activation energy in the isotropic state is slightly higher than 

that of E7. In the isotropic state, the inter-molecular association is much weaker and the dimmers 

of cyano-biphenyls are separated. The moment of inertia of cyano-biphenyl is smaller than that 

of isothiocyanato-tolane, the major composition of UCF-2. As a result, E7 exhibits slightly 

smaller activation energy than UCF-2.  
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Figure 27: The transient optical dynamic responses of a homogeneous cell using UCF-02 LC 

mixture at T =70°C. d =7.81 µm and λ =1.55 µm. The solid line shows the experimental results 

and the dot-dashed lines are the simulation results. The parameters used for simulations are listed 

in Table 9. 

5.5 Conclusion 

Backflow is found to make an important impact to the response time of the phase 

modulator using a homogeneous LC cell. For laser beam steering at a near infrared wavelength, 

the required cell gap is around 5-7 µm, depending on the LC birefringence. Due to the relatively 

high voltage applied, the backflow takes place in the first few milliseconds. We have modified 

the expressions of two Leslie coefficients (α1 and α2) in order to extend their validity to two high 

birefringence LC mixtures, E7 and UCF-2. With these modifications, the simulation results agree 

quite well with the experimental data. The transient LC director distributions during backflow 

occurrence are analyzed.  
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CHAPTER 6: CELL GAP EFFECT ON THE DYNAMICS OF LIQUID 
CRYSTAL MODULATORS 

6.1 Introduction 

Liquid crystal spatial light modulator (SLM) has been used as a phase-only modulation 

for laser beam steering [36], tunable-focus lens [102]-[106], and other photonic 

devices[107],[108].  To obtain a large phase shift while keeping operating voltage below 10 Vrms, 

homogeneous cell (also called parallel-aligned cell) is a favorable choice. Response time of a 

homogeneous cell is a critical issue. To achieve a fast response time, low rotational viscosity (γ1) 

LC mixtures are preferred [45],[49],[50]. Another straightforward approach is to use a thin cell 

gap filled with a high birefringence (∆n) and low viscosity LC mixture [16],[51]. The LC 

directors rise time τrise and decay time τdecay are known to be proportional to d2, where d is the 

cell gap. However, the theoretical derivation of this d2 dependence is based on the small angle 

approximation [72]. Thus, these equations are valid only in the thth VV 2<<V  region, marked 

as Part I in Figure 28, where V is the applied voltage and Vth is the threshold voltage. Since the 

optical response time is linearly proportional to the LC director reorientation time [108], the 

corresponding optical response time is also proportional to d2. 

In the large signal regime where V iVV <<π , marked as Part III in Figure 28, the surface 

modes dominate, where V is the voltage corresponding to last transmittance minimum and V  

the initial voltage at the high voltage regime. As a result, both rise and decay times are fast. 

Moreover, the optical decay time is independent of the cell gap d [110],[111].  

π i
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However, the optical response time in the middle voltage regime has not been studied yet. 

In this paper, we found that between Part I and Part III there is a region where the response time 

is linearly proportional to d. To validate this experimental observation, in Sec. 6.2, a complete 

derivation based on small angle approximation using a parallel-aligned cell is given. 

Experimental methods are described in Sec. 6.3. In Sec 6.4, the validity of our analytical 

derivation is confirmed by experimental results and the complete physical picture of optical 

response time as a function of cell gap in the whole voltage regime is given. 

 

 

Figure 28: Simulated voltage-dependent transmittance curve of a 15.6-µm homogeneous E7 cell 

with 3° pretilt angle between paralleled polarizers at 633=λ  nm and 23°C, where in small 

signal region (Part I), small angle approximation holds well; while in high signal region (Part 

III), the transient nematic effect is satisfied. 
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6.2 Theoretical Background 

The voltage-dependent transmission of a 15.6 µm, parallel-aligned E-7 cell under parallel 

polarizers is shown in Figure 28. Although E-7 is chosen as an example, the results should be 

applicable to other LC materials. Here the maximum obtainable phase difference due to the 

voltage-induced molecular reorientation is λπδ /2 nd∆= , where d is the cell gap, ∆n is the 

birefringence, and λ is the wavelength.  To illustrate the theory, let us divide the EO curve in Fig. 

1 into three parts according to the biased voltage V. 

6.2.1 Small Signal Region 

The electro-optic effect of a parallel-alligned LC layer in the small signal regime has 

been studied previously [72]. When V is not far from Vth ( thth VV 2<<V ), the small angle 

approximation is hold. Then the Erickson-Leslie equation under small angle approximation can 

be simplified to: 

                                     .1
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∂
∂ θγθεεθ                                                                  (6.1) 

Under such circumstances, both rise time and decay time have simple analytical 

solutions, as shown in Eq. (6.1), where they are both proportional to d2. 
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where m stands for the number of the mode. The higher order mode (surface mode) exhibits a 

smaller time constant. For m =0, the lowest spatial mode switches the slowest. 

The main feature in this working scheme is that a large phase change can be achieved by 

a small voltage swing, which is profitable to spatial light modulators. However, this response 

time is relatively slow; it is proportional to 111 / Kγ  and d2, where 1γ  is the rotational viscosity 

and  the splay elastic constant.  11K

6.2.2 Large Single Region 

The physical mechanism of the LC device operating in this regime is the transient 

nematic effect. The idea of the transient nematic effect is to operate the LC device at its last 

transmittance cycle, from the states V  to V , marked as Part III in Figure 28. At this relatively 

high voltage region (V >>Vth), the directors are reoriented to be perpendicular to the substrates 

except the boundary layers. So during the free relaxation process, the surface modes (the higher 

order modes) dominate, as shown by the solid line in Figure 29. Thus, LC device can reach its 

first minimum rapidly. Moreover, Perregaux [111] and Wu [3],[110] found that the optical decay 

time in this regime is independent of the cell gap d by experimental method. Here we also verify 

it by numerical simulation, and the results will be shown in Sec. 6.4. 

i π
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Figure 29: Director distribution of a 16.6-µm homogeneous E7 cell between paralleled polarizers 

at 633=λ  nm and 23°C. Solid line corresponds to its free decay from initial biased voltage Vi  = 

14.8 Vrms to its first transmittance minimum, while dotted line is its free decay from initial phase 

δi  =2π to 1π. 

6.2.3 Middle Signal Region 

To obtain a complete physical picture of optical response time as a function of cell gap in 

the whole voltage regime, we study the middle signal region in this chapter. Using a LC 

modulator to modulate light intensity, one π phase change is usually sufficient. Thus, the 

objective of our study is to operate the LC device between its transmittance crest (maximum) and 

adjacent trough (minimum). Here we only analyze its decay process. The position of the starting 

point corresponds to the exactly middle part in its total phase retardation of EO curve, thus, we 
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call it middle cycle. In Figure 28, where the total phase retardation of the LC device is ~13π, the 

middle cycle is from point A to B, corresponding to the LC device switching from initial phase δi 

~6π (point A) to point B, which leads to 1π phase change.  

Since the voltage-dependent intensity changes fast in the low voltage regime and 

saturates in the high voltage regime, indeed, the voltage Va that corresponds to the starting point 

of the middle cycle (point A) is not high, which is 1.8Vrms as Figure 28 shows. As the total phase 

retardation increases, the voltage of this point will decrease. So the small angle approximation 

still holds in this regime. This gives us a hint to use the small angle approximation to solve the 

optical response time in this region. The detailed confirming numerical results will be discussed 

in Sec. 6.4. If the voltage is removed instantaneously from point A at t=0, the transient phase 

change can be approximated as [80]:  

            )2exp()(
o

i
tt

τ
δδ −≅            (6.6) 

where iδ  is the net phase change from V=Va to V=0.  

To find optical response time, we need to calculate the intensity change. The time-

dependent normalized intensity change I(t) of the PA cell under crossed polarizers can be 

calculated using the following relationship 
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Substituting Eq. (6.6) into Eq. (6.7), we obtain  
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Let us assume from t1 to t2 the transmittance decays from point A to point B. From Eq. 

(6.8), I1 and I2 have the following forms:                
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Upon comparing Eq.  (6.9) with Eq. (6.10), we conclude that  
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Therefore, the solution of the optical decay time Tdecay (point A→point B) is as follows: 
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Meanwhile, the initial phase δi can be expressed as: 

                  .)2/int( 00 ππδδδ −=i                                                                                 (6.13) 

Substituting Eq. (6.13) to Eq. (6.12), we can obtain the optical decay time Tdecay as a 

function of the total phase retardation δ0 as: 
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If the following assumption is made: δ0 is large so that int( ,2/1)2/ 00 πδπδ ≈+  Eq. 

(6.14) can be greatly simplified as: 
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  Equation (6.15) indicated that the optical response time Tdecay in the middle cycle is 

linearly proportional to d. In the following, we will verify our derivation by comparing the 

experimental and simulation results. 

6.3 Experiment 

We prepared a set of homogeneous cells with different thickness using a commercial LC 

material E7. The cell gaps were determined from transmitted interference fringes through a 

spectrophotometer and found to be 7.8, 10.7 and 16.2 µm. We measured and analyzed the 

electro-optic characteristics of the LC cells at 633=λ  nm through a LabVIEW data acquisition 

system. To study the optical response times in different voltage regimes, the LC cell was initially 

biased at . During the relaxation process, the voltage was removed at t =0 and the optical 

response monitored by a photodiode detector and displayed by a digital oscilloscope.  

iV

6.4 Results and Discussion 

To verify our derivation in Eq. (6.15), we numerically solve the Erickson-Leslie equation 

using the finite element method (FEM) [53]. To compare with experimental results, we also use 

E7 in our simulations. 

6.4.1 Middle Signal Region 

The simulated transient phase change in the middle cycle of a 10-µm homogeneous E7 

cell with 3° pretilt angle at T = 23°C and 633=λ  nm released from V rmsi V815.1=  is depicted 
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in Figure 30, where the gray line shows the simulated phase change, while the red dash line is the 

fitting data in Eq. (6.6). The initial phase change δ0 is 4π. It is evident that the small angle 

approximation holds well in this regime, even though Vi =1.8 Vth. Thus, the assumption of our 

derivation is validated. Therefore, we can use the small angle approximation to solve the optical 

response time in this region as presented in Sec. 6.2. 
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Figure 30: Simulated transient phase change in the middle cycle of a 10-µm homogeneous E7 

cell with 3° pretilt angle at T = 23°C and λ =633 nm released from Vi =1.815 Vrms. The gray line 

shows the simulated transient phase change, while the red dash line is the fitting data using Eq. 

(6.6). Thus, the transient phase change in the middle cycle follows the small angle 

approximation. 
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We also measured the optical decay time t  in this region with these three cells. The 

measured results are plotted in Figure 31 (filled square). Also included in Figure 31 for 

comparison are the calculation results from Eq. (6.15) (open squares). The measured results 

agree well with the theoretical expectation. It is obvious that in this part the optical response time 

is linearly proportional to d. 
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Figure 31: Measured and calculated optical decay times in the middle cycle as a function of the 

cell gap, where the filled and the empty squares show the experimental and calculation 

results in Eq. (6.15), respectively. 

6.4.2 Large Signal Region 

Our study not only predict the theory of optical response time in the middle cycle, but 

also verify the transient nematic effect in the large signal region and small angle approximation 

in the small signal region. Here we only show some results in the large signal region. 
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In Figure 32, the above light blue line shows the experimental optical decay curve of a 

10.7-µm homogeneous E7 cell between crossed polarizers at 633=λ  nm and 23°C, the bottom 

dark blue curve is the driving square wave which initial biased at 14.8 Vrms and dropped to 0 at t 

=0. The optical response time top of this cell from Vi =14.8 Vrms at the last cycle (from t =0 to first 

maximum) is ~2.6 ms. This result agrees well with the published value [110].  

 

Figure 32: Experimental optical decay curve of a 10.7-µm homogeneous E7 cell between crossed 

polarizers at T =23°C and 633=λ  nm from the initial bias voltage Vi =14.8 Vrms (light 

blue line). 

 

Figure 33 compares the results of the optical response time in the last cycle, where the 

red squares show the experimental optical response times of these three cells released from Vi 

=1.815 Vrms, while the black diamonds give the simulation data. It is clear that the simulation 
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data match the experimental results quite well. Furthermore, beyond d >10 µm, top is insensitive 

to d as indicated in Sec. 6.2. 
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Figure 33: Optical response time top at the last cycle is as a function of the cell gap. LC used is 

E7 at T = 23°C and 633=λ  nm. Beyond d >10 µm, top is insensitive to d as expected in 

Sec. 6.2. 

 

Table 10 summarizes the measurement results of the optical response time t  of these 

three cells at different voltage regimes. The optical response time in the last cycle is initially 

biased at Vi =19.5 Vrms. Let us look at column by column. In the last cycle, the decay time is 

really fast, due to the surface mode effect. Moreover, the optical response time is independent of 

the cell gap. In the middle cycle, the measured response time, as the filled square plotted in 

Figure 33, is linearly proportional to the cell gap. In the first cycle, because of the smaller elastic 

torque, the optical response time is relatively slow. Furthermore, the measured optical response 

time is proportional to d2 as predicted by the theory. 

op
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Table 10: Measured optical response times of three various cells d = 7.78, 10.7 and 16.2 µm in 

different cycles. The optical response time in the last cycle is initially biased at Vi =19.5 Vrms at t 

=0 ms. 

d 
 (µm) 

First Cycle 　
(ms) 

Middle Cycle 
(ms) 

Last Cycle 
(ms) 

16.2 840 43 2.2 

10.7 250 26 2.4 

7.78 80 18 2.5 

 

6.5 Conclusion 

We have analyzed theoretically and confirmed experimentally that the optical response 

time in the middle phase cycle of the EO curve is linearly proportional to d. The analytical 

solution of the optical response time is derived based on the small angle approximation. The 

confirming experimental and the simulation results agree well with the theoretical expectation. 

Therefore, in the whole voltage regime, the physical picture of optical response time as a 

function of cell gap is completed. This analysis is useful for understanding the grayscale 

switching behaviors of the LC phase modulators. This approach will be helpful to achieve the 

fast response time in phase modulators using a thicker cell gap or double cell gaps. Considering 

the birefringence dispersion of LC mixtures, it is more attractive in the low wavelength regime, 

especially in the visible light. 
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CHAPTER 7: SUMMARY  

This dissertation investigates optical response time with objectives to meet challenges in 

liquid crystal applications for display and photonic systems. From the research topics covered 

here, the dissertation can be categorized into two parts. 

The first three introductory chapters present the motivation of our research work and 

simulation methodologies of LC that we used in our studies. The second part, Chapter 4-6, is 

devoted to various novel electro-optic effects that related to optical response time of nematic LC 

materials. The major emphasis is to explain the physical nature of the phenomena.  

One major work in this thesis is that we give the rigorous analytical solutions of the 

correlation function between the LC director response time and its consequent optical response 

times (both rise and decay) of a vertically aligned nematic LC cell, which is based on the small 

angle approximation. Pretilt angle effect on the LC dynamics is studied, and we find that a 

modified rotational viscosity should be used to justify this effect. Grayscale switching is also 

analyzed numerically. This work successfully fills the gap in the literature on LCD switching. 

Backflow is an important effect related to LC response time while the applied voltage is 

high. We analyze the backflow effect using a homogeneous LC cell in an infrared wavelength. 

Due to the relatively high voltage applied in optical phased array (OPA), the backflow takes 

place in the first few milliseconds, which subsequently affects the LC response time. However, 

the complete set of Leslie viscosity coefficients, which are critical to investigate the dynamic 

response of LC devices with backflow, are only available for MBBA. A new effective approach 

to estimate the Leslie coefficients of LC mixtures based on MBBA data is proposed. Using this 

method, the material’s Leslie coefficients can be extracted based on its order parameter. The 
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simulation results agree with experiment very well. This method supplies a useful tool for 

analyzing the dynamic response with backflow, which can be used to obtain accurate optical 

response time under a high biased voltage. 

Cell gap is critical to LC response time. Usually a thinner cell gap is chosen to achieve 

faster response time since normally both rise and decay times are known to be proportional to d2. 

However, they are valid only in the thth VV 2<<V  region. In the large signal region, where 

, the surface modes dominate and the optical decay time is independent of d. We 

find that between these two extremes, the response time is linearly proportional to d. Our 

analytical derivation is confirmed by experimental results. Therefore, in the whole voltage 

region, the whole physical picture of the optical response time as a function of the cell gap is 

completed. This analysis is useful for understanding the grayscale switching behaviors of the LC 

phase modulators. Understanding the cell gap effect on phase modulators, we can effectively 

reduce the response time by using a thick cell or double cells to achieve the specific phase 

retardation for a given wavelength.  

iVVV <<π

In conclusion, this dissertation has solved some important issues related to LC response 

time and developed useful tools for scientists and engineers to simulate the LC dynamics. 
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