
University of Central Florida University of Central Florida

STARS STARS

Electronic Theses and Dissertations, 2020-

2021

Energy-Aware Real-Time Scheduling on Heterogeneous and Energy-Aware Real-Time Scheduling on Heterogeneous and

Homogeneous Platforms in the Era of Parallel Computing Homogeneous Platforms in the Era of Parallel Computing

Ashik Ahmed Bhuiyan
University of Central Florida

 Part of the Computer Engineering Commons

Find similar works at: https://stars.library.ucf.edu/etd2020

University of Central Florida Libraries http://library.ucf.edu

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted

for inclusion in Electronic Theses and Dissertations, 2020- by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

STARS Citation STARS Citation
Bhuiyan, Ashik Ahmed, "Energy-Aware Real-Time Scheduling on Heterogeneous and Homogeneous
Platforms in the Era of Parallel Computing" (2021). Electronic Theses and Dissertations, 2020-. 648.
https://stars.library.ucf.edu/etd2020/648

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd2020
https://network.bepress.com/hgg/discipline/258?utm_source=stars.library.ucf.edu%2Fetd2020%2F648&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd2020
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd2020/648?utm_source=stars.library.ucf.edu%2Fetd2020%2F648&utm_medium=PDF&utm_campaign=PDFCoverPages

ENERGY-AWARE REAL-TIME SCHEDULING ON HETEROGENEOUS AND
HOMOGENEOUS PLATFORMS IN THE ERA OF PARALLEL COMPUTING

by

ASHIK AHMED BHUIYAN
B.Sc., Bangladesh University of Engineering and Technology, 2013

A dissertation submitted in partial fulfilment of the requirements
for the degree of Doctor of Philosophy

in the Department of Electrical and Computer Engineering
in the College of Engineering and Computer Science

at the University of Central Florida
Orlando, Florida

Summer Term
2021

Major Professor: Zhishan Guo

c© 2021 Ashik Ahmed Bhuiyan

ii

ABSTRACT

Multi-core processors increasingly appear as an enabling platform for embedded systems, e.g.,

mobile phones, tablets, computerized numerical controls, etc. The parallel task model, where a

task can execute on multiple cores simultaneously, can efficiently exploit the multi-core platform’s

computational ability. Many computation-intensive systems (e.g., self-driving cars) that demand

stringent timing requirements often evolve in the form of parallel tasks. Several real-time embed-

ded system applications demand predictable timing behavior and satisfy other system constraints,

such as energy consumption.

Motivated by the facts mentioned above, this thesis studies the approach to integrating the dynamic

voltage and frequency scaling (DVFS) policy with real-time embedded system application’s inter-

nal parallelism to reduce the worst-case energy consumption (WCEC), an essential requirement for

energy-constrained systems. First, we propose an energy-sub-optimal scheduler, assuming the per-

core speed tuning feature for each processor. Then we extend our solution to adapt the clustered

multi-core platform, where at any given time, all the processors in the same cluster run at the same

speed. We also present an analysis to exploit a task’s probabilistic information to improve the

average-case energy consumption (ACEC), a common non-functional requirement of embedded

systems.

Due to the strict requirement of temporal correctness, the majority of the real-time system anal-

ysis considered the worst-case scenario, leading to resource over-provisioning and cost. The

mixed-criticality (MC) framework was proposed to minimize energy consumption and resource

over-provisioning. MC scheduling has received considerable attention from the real-time system

research community, as it is crucial to designing safety-critical real-time systems. This thesis fur-

ther addresses energy-aware scheduling of real-time tasks in an MC platform, where tasks with

iii

varying criticality levels (i.e., importance) are integrated into a common platform. We propose

an algorithm GEDF-VD for scheduling MC tasks with internal parallelism in a multiprocessor

platform. We also prove the correctness of GEDF-VD, provide a detailed quantitative evaluation,

and reported extensive experimental results. Finally, we present an analysis to exploit a task’s

probabilistic information at their respective criticality levels. Our proposed approach reduces the

average-case energy consumption while satisfying the worst-case timing requirement.

iv

Dedicated to my family members.

v

ACKNOWLEDGMENTS

First of all, thanks to my almighty lord for providing me the strength, patience, ability to make a

successful end of this long journey. Without the shower of his blessing throughout my graduate

life, it would be impossible to complete the research successfully.

I was fortunate to have two supervisors, Zhishan Guo and Abusayeed Saifullah (Wayne State Uni-

versity), in my Ph.D. life. Without them, it wouldn’t have been possible to draw a successful

ending. I’ve received an enormous amount of help and support and from both of them. I am

infinitely indebted to my supervisors, and I want to express my deep and sincere gratitude. Prob-

ably like everyone else, the beginning of this journey was extremely challenging and frustrating.

However, they always believe in me, give me the freedom to think and develop the research that

attracts me, and help me to understand how interesting to dive into computer science research and

how wonderful an academic life is. All these factors allow me to nourish myself as a successful

researcher. Their guidance and motivation have a profound positive impact throughout my Ph.D.

Career. Ph.D. is not only about mastering a specific problem or research domain but also about

learning many valuable life lessons, such as time management, learning how to learn, commu-

nicating with people etc. Under their supervision, I have learned the methodology to carry out

the research and the essential real-life skills mentioned above. During the job-hunting period, nu-

merous recommendation letters from my supervisors (along with other recommenders) helps me

tremendously to achieve my first academic position.

My sincerest appreciation goes to my other dissertation committee members: Rickard Ewetz, Fan

Yao, and Yanjie Fu. Thanks to all of them for agreeing to serve on my dissertation committee and

for their insightful comments on my dissertation. I am also thankful to my research collaborators:

Samsil Arefin, Aamir Khan, Sai Sruti, Kecheng Yang, Di Liu, Nan Guan, Federico Reghenzani,

vi

William Fornaciari, and Hayoi Xiong. Their fruitful discussion and collaboration help to produce

several impactful works.

My six years long graduate life was indeed a pleasant experience, thanks to all members of the real-

time and intelligent systems (RTIS) research group. I am lucky to have you as my labmates and

co-workers. My special thanks go to Samsil Arefin, Sai Sruti, Aamir khan, Sudharsan Vaidhun,

and Abdullah Arafat. I am indebted to you for your collaboration, feedback, suggestions in the

presentation, job talks, research paper writing. You also helped a lot build a friendly, professional,

and collaborative environment in the lab.

Finally, I am indebted to my parents for their unconditional love, sacrifice, and inspiration. They

have made every effort to prepare me for a better future. To my father, I wish you could stay with

us till today to see this achievement: thank you for all your effort throughout your life. To my

mother, no matter how far I go, I will never forget you taught me how to make the first step. To my

wife, Fayrose Sayeda, thank you for your constant support, trust, and patience. Thank you for your

love and belief during many frustrating and challenging times in my life. Thanks to my brother

and sister-in-law for their supports towards the completion of my degree and for taking care of our

family, which keeps me relaxed and tension-free. Finally, thanks to my only niece, Rufaida, who

makes me feel that life is more beautiful than I thought.

vii

TABLE OF CONTENTS

LIST OF FIGURES . xv

LIST OF TABLES . xx

CHAPTER 1: INTRODUCTION . 1

1.1 Challenges in Energy-Aware Real-Time Scheduling 2

1.2 Thesis Statement . 3

1.3 Thesis Contribution and Organization . 4

CHAPTER 2: PRELIMINARIES AND NOTATION . 6

2.1 Real-Time Parallel Task Model . 6

2.1.1 DAG Task Model . 6

2.1.2 Gang Task Model . 8

2.2 Power/Energy Model . 9

CHAPTER 3: ENERGY-EFFICIENT FEDERATED SCHEDULING OF REAL-TIME DAG

TASKS WITH INTRA-TASK PROCESSOR MERGING 12

3.1 Introduction . 12

viii

3.2 Related Work . 15

3.3 Energy-Sub-Optimal Federated Scheduling for DAG Tasks 17

3.3.1 Task Decomposition . 17

3.3.2 Segment Extension . 20

3.3.3 Problem Transformation . 23

3.4 Processor Sharing: Efficiency Improvement . 29

3.4.1 Merging Processors Assigned to the Same DAG 31

3.5 Simulation Study . 35

3.5.1 Experiment Under Single Merging of Processors 35

3.5.1.1 Varying Task Periods . 37

3.5.1.2 Varying Numbers of Nodes in a DAG Task 38

3.6 Conclusion . 39

CHAPTER 4: ENERGY-EFFICIENT FEDERATED SCHEDULING OF REAL-TIME DAG

TASKS WITH INTER-TASK PROCESSOR MERGING 40

4.1 Multiple Merging Among the Processors Assigned to the Same DAG 40

4.2 Calculating Optimal Segment Length After the Intra-DAG Processor Merging . . . 41

4.3 Merging Processors Assigned to Different DAGs 43

ix

4.4 Experiment Under Multiple Merging of Processors 45

4.4.1 The Effect of Varying Task Periods or Utilization 47

4.4.2 Varying Numbers of Nodes in a DAG Task 49

4.5 Conclusion . 50

CHAPTER 5: ENERGY-EFFICIENT PARALLEL REAL-TIME SCHEDULING ON CLUS-

TERED MULTI-CORE . 51

5.1 Introduction . 51

5.2 Related Work . 54

5.3 Background and Existing Concepts . 56

5.4 Speed-Profile for Task and Cluster . 58

5.4.1 Speed-Profile for Each DAG . 58

5.4.2 Speed-Profile for the Cluster Containing Multiple DAGs 62

5.5 Task Partitioning Algorithm . 63

5.5.1 Creating the Speed-Profile of a Task . 63

5.5.2 Task Partition: Greedy Merging with Speed-Profiles 67

5.6 System Experiments . 69

5.7 Simulations . 74

x

5.7.1 Identical Heterogeneous Platform with a Continuous Frequency Scheme . . 75

5.7.1.1 Constrained Deadline Task . 76

5.7.1.2 Implicit Deadline Task. 78

5.8 Discussions: Assumptions and Applicability . 79

5.8.1 Assumptions Behind the Power Model . 80

5.8.2 A Note on the Overhead Delay . 81

5.9 Conclusion . 82

CHAPTER 6: ENERGY-EFFICIENT PARALLEL REAL-TIME SCHEDULING ON CLUS-

TERED MULTI-CORE: ADAPTING THE FREQUENCY DISCRETIZATION

AND PLATFORM HETEROGENEITY . 83

6.1 Discretization of the Speed-Profile . 83

6.2 Handling Platform Heterogeneity . 85

6.3 Simulation Study . 87

6.3.1 Uniform Heterogeneous Platform with a Continuous Frequency Scheme . . 88

6.3.1.1 Constrained Deadline Task . 88

6.3.1.2 Implicit Deadline Task . 90

6.3.2 Uniform Heterogeneous Platform With a Discrete Frequency Scheme . . . 91

6.3.2.1 Constrained Deadline Task . 92

xi

6.3.2.2 Implicit Deadline Task . 93

6.4 Conclusion . 93

CHAPTER 7: MIXED-CRITICALITY REAL-TIME SCHEDULING OF GANG TASK

SYSTEMS . 95

7.1 Introduction . 96

7.2 Related Work . 100

7.3 Dual-Criticality Gang Task Model . 102

7.4 GEDF-VD for Dual-Criticality System . 107

7.4.1 EDF-VD and GEDF-VD: An Overview 108

7.4.2 GEDF-VD: A Detailed Description . 109

7.4.3 Proof of Correctness in the LO-Criticality Mode 113

7.4.4 Proof of Correctness in the HI-Criticality Mode 115

7.5 Speed-up Bound Analysis . 117

7.5.1 Speedup Bound for Gang Tasks under GEDF 120

7.5.2 Speedup Bound for Gang Tasks under GEDF-VD 122

7.6 Evaluation . 127

7.6.1 Experimental Setup . 127

xii

7.6.2 Evaluation Results . 128

7.7 Conclusion . 134

CHAPTER 8: ENERGY EFFICIENT PRECISE SCHEDULING OF MIXED-CRITICALITY

TASKS . 135

8.1 Traditional MC Task Model . 138

8.1.1 System Model . 139

8.1.2 Scheduling Policies for the Precise MC Task Model 141

8.1.2.1 EDF-VD . 141

8.1.2.2 Fluid Scheduling . 142

8.1.2.3 A Generalized Fluid Scheduling Approach 143

8.1.3 Evaluation . 147

8.2 Probabilistic MC Task Model . 150

8.2.1 System Model and Correctness Criteria 151

8.2.2 Response Time Analysis . 153

8.2.2.1 Existing RTA for Non-MC and MC Tasks 153

8.2.2.2 RTA of Our Algorithm . 155

8.2.3 Evaluation . 161

xiii

8.3 Conclusion . 162

CHAPTER 9: CONCLUSION . 164

9.1 Summary of Results . 164

9.2 Future Direction . 166

APPENDIX : PERMISSION TO REUSE PUBLISHED MATERIAL 167

LIST OF REFERENCES . 188

xiv

LIST OF FIGURES

2.1 An example heavy DAG task τi. 7

2.2 Comparison of the power model (Equation (2.1)) with experimental results

in [71]. 10

2.3 Energy consumption for executing a job with 109 computation cycles with a

fixed α, β and a variable γ value. 11

3.1 Partial work-flow of a UAV system represented as a DAG. 13

3.2 A DAG task and its equivalent decomposed structure. 18

3.3 The segment-node mapping for τi (from Figure 2.1) after segment extension. 20

3.4 The sub-optimal segment length assignment for power efficiency of the sam-

ple task τi (in Figure 2.1), with an average power consumption of 2.94 Watts. 29

3.5 The execution pattern for τi (in Figure 2.1) after merging two different Pro-

cessors. 30

3.6 The equivalence of the MPS problem and the MIS problem 33

3.7 Power consumption comparisons for task sets for various settings under sin-

gle merging. 36

4.1 The modified DAG task τi (from Figure 2.1) after applying the intra-task

processors merging technique. 42

xv

4.2 The sub-optimal segment length assignment (after merging Processors) for

power efficiency of the sample task τi. 43

4.3 Power consumption comparisons for task sets for various settings under mul-

tiple merging. 48

5.1 (a) A DAG task, τi (b) transformed DAG τi after applying task decomposi-

tion. Both of them are adopted from [67]. 57

5.2 Impact of different release offset when multiple tasks share the same cluster. 60

5.3 The energy consumption and the frequency variation of our proposed ap-

proach on ODROID XU-3. 71

5.4 The energy consumption and the frequency variation of the reference ap-

proach on ODROID XU-3. 72

5.5 Frequency occurrence probabilities. 73

5.6 Power consumption comparison between different approaches for the con-

strained deadline tasks considering a continuous frequency scheme on the

identical heterogeneous platform . 76

5.7 Power consumption comparison between different approaches for the im-

plicit deadline tasks considering a continuous frequency scheme on the iden-

tical heterogeneous platform . 78

xvi

6.1 Power consumption comparison between different approaches for the con-

strained deadline tasks considering a continuous frequency scheme on the

uniform heterogeneous platform . 89

6.2 Power consumption comparison between different approaches for the im-

plicit deadline tasks considering a continuous frequency scheme on the uni-

form heterogeneous platform . 91

6.3 Power consumption comparison between different approaches for the con-

strained deadline tasks considering a discrete frequency scheme on the uni-

form heterogeneous platform . 92

6.4 Power consumption comparison between different approaches for the im-

plicit deadline tasks considering a discrete frequency scheme on the uniform

heterogeneous platform. 94

7.1 A GEDF scheduling of the MC gang task-set from Table 7.1 and the execut-

ing (E)/non-executing (NE) intervals of τ1. 103

7.2 Any value of the scaling factor x, where A ≤ x ≤ B, guarantees an MC-

correct schedule. 116

7.3 Acceptance ratio for GEDF-VD with a different (after a mode-switch) aver-

age degrees of parallelism. 129

7.4 Acceptance ratio for GEDF-VD in an 8-core platform with R = 4, and under

same ranges of degrees of parallelism. 130

xvii

7.5 Acceptance ratio for GEDF-VD in an 8-core platform with R = 8, and under

same ranges of degrees of parallelism. 131

7.6 Acceptance ratio for GEDF-VD in an M -core platform (with R = 4). 131

7.7 Acceptance ratio for GEDF-VD in an M -core platform (with R = 8). 132

7.8 Acceptance ratio for GEDF-VD in an 8-core platform with R = 4 and a

varying range of mavg. 132

7.9 Acceptance ratio for GEDF-VD in an 8-core platform with R = 8 and a

varying range of mavg. 133

8.1 Modified EDF-VD schedulability condition and scaling factor x 141

8.2 Relation between fluid execution speed and cumulative execution over time

of a task under MCF framework. 143

8.3 Modified MCF speed assignments and schedulability condition 144

8.4 Comparison of schedulability ratio between F2VD, EDF-VD and the MCF. . 148

8.5 Comparison of schedulability ratio between F2VD, EDF-VD and the MCF. . 149

8.6 Time needed by F2VD to return the solution for a different size of task-set. . 150

8.7 Percentage of solution returned by the F2VD algorithm under different uti-

lization and ρ values. 151

8.8 Schedulability ratio based on the RTA with a different sLO values. In this

experiment, [Zd, Zu] = [1, 4]. 160

xviii

8.9 Schedulability ratio based on the RTA with a different sLO values. In this

experiment, [Zd, Zu] = [1, 8]. 161

xix

LIST OF TABLES

5.1 Summary of experimental results. 72

6.1 Estimated parameters for different cluster of an ODROID XU-3 board. . . . 86

6.2 The ”uncore” power consumption for different cluster of an ODROID XU-3

board. 87

7.1 An MC gang task set with GEDF schedule shown in Figure 7.1. 105

7.2 Acceptance ratio for different amount of tasks generated under various aver-

age utilization and R value. 129

xx

CHAPTER 1: INTRODUCTION

A real-time system application requires strict timing guarantees, energy efficiency, and high per-

formance. Besides the high-performance requirement and temporal constraints, a real-time system

must guarantee the logical constraints also, i.e., in response to the event generated by the sur-

rounding environment, the system must react within precise time constraints. In modern society,

an increasing number of complex systems depend on computer control, and real-time systems are

widely deployed in these areas. In such a system, the computing platforms need to satisfy the

time preciseness, e.g., chemical and nuclear plant control, automotive applications, flight control

systems, smart grid, telecommunication systems, robotics, space missions, and many more [34].

Many embedded system applications have hard real-time constraints, and such an application must

preserve precise timing correctness. Many real-time embedded systems include critical applica-

tions requiring not only a predictable timing behavior, but also to satisfy other system constraints.

Energy consumption is one of them, which might be a non-functional or functional requirement.

Embedded systems applications rely on unreliable energy sources, e.g., batteries, energy har-

vesters, making it essential to consider the energy-efficient design [108]. Energy-efficient design

of an embedded system is a prime requirement for many reasons, such as increased battery life,

reducing power bills, controlling heat dissipation etc.

Multi-core processors are increasingly receiving attention as an enabling platform for embedded

system applications. In a multi-core platform, multiple tasks can execute simultaneously. How-

ever, an individual task can not execute on multiple cores simultaneously. Therefore, such a task

model, i.e., the sequential task model fails to utilize the benefits of a multi-core platform. The

parallel task model is introduced to tackle the problem mentioned above, where an individual task

can simultaneously utilize multiple cores. Many computation-intensive systems (e.g., self-driving

1

cars) that demand stringent timing requirements often evolve in the form of parallel tasks. Also,

energy-efficient scheduling of parallel task model is a promising direction to utilize the multi-core

platform’s computational power. This model promotes a balanced distribution and simultaneous

execution of the tasks among the computing platforms, which lead to energy efficiency and re-

duced computation. The directed acyclic graph (DAG) model is considered as one of the most

generalized deterministic workload models to represent intra-task parallelism [17], where nodes

represent threads of execution and edges represent their dependencies.

1.1 Challenges in Energy-Aware Real-Time Scheduling

Many recent studies on real-time scheduling and analysis have focused on the DAG task model

[102, 17, 81, 30, 109, 82, 16]. However, to date, only a little work has been done for energy-aware

real-time scheduling of the DAG task models. In general, minimizing energy/power consumption

of a real-time system is challenging for the following reasons:

• In real-time system, a task model is often characterized by the task arrival pattern, the dead-

line, and the execution time. The relation ship between platform (where the task is running)

execution speed, energy consumption, and execution time of each task is non-linear.

• Some approaches proposed minimizing system energy consumption via per-core dynamic

voltage and frequency scaling (DVFS). Unfortunately, per-core DVFS becomes inefficient

as it increases the hardware cost [70].

• Existing policies (for energy efficiency) assumed that a task would execute up to its Worst-

Case Execution Time (WCET), which often differs from reality. A task rarely executes up

to its WCET [111]. For several real-life applications, WCET based schedulability analy-

sis is proved to be very pessimistic [84], mainly because of the significant variability be-

2

tween actual execution requirements and their WCET. Such a WCET-based energy-efficient

approach may lead to system over-provisioning, low utilization, high costs, and excessive

power/energy consumption [25, 88].

• Mixed-Criticality (MC) framework [122] was proposed to efficiently utilize the non-negligible

gap between the WCET and the actual execution time and to minimize energy consumption.

Different software components with varying levels of criticality are integrated into a com-

mon platform in an MC setup. However, energy-efficient MC scheduling is still immature as

it may entirely discard the low-criticality tasks when the system switches to a high-criticality

mode [26, 25].

• Although the MC platform allows integrating different software components with varying

levels of criticality into a common platform, further improvement in the resource manage-

ment is possible, as the state of the arts MC scheduling approaches still rely on WCET based

estimation at each criticality-levels [25].

1.2 Thesis Statement

Many real-time embedded systems include critical applications requiring timing constraints and

other system requirements, such as energy consumption. This thesis aims to answer whether we

can integrate the existing energy-aware approaches to the intra-task parallelism so that the overall

energy consumption is minimized while maintaining the temporal correctness of a real-time sys-

tem application. This thesis presents the new energy-aware scheduling techniques, verifies their

correctness, and reports empirical evaluation, supporting the following thesis statement:

By appropriately leveraging the energy-saving techniques with the internal parallelism

of real-time embedded system applications, it is possible to significantly reduce the

3

system energy consumption without violating the strict timing requirement imposed by

the real-time system applications.

1.3 Thesis Contribution and Organization

In this thesis, we tackle the above challenges and make a series of contributions to the theory and

system for energy-aware real-time scheduling of parallel task model, as mentioned below:

First, we propose an energy-efficient task scheduling approach considering the DAG task model.

Considering a multiprocessor platform, we propose an energy sub-optimal federated scheduling

algorithm for sporadic DAG tasks with implicit deadlines (Chapter 3). Based on the solution under

federated scheduling, we also present a greedy intra-task processor merging technique which im-

proves the power efficiency. We further improve the processor intra-merge technique by allowing

multiple processors to merge at a single one. Besides, we also present the inter-task processor

technique (Chapter 4).

Second, we propose a novel technique for energy-efficient scheduling of both the constrained and

implicit deadline parallel tasks in a cluster-based homogeneous multi-core system (Chapter 5).

As stated earlier, the per-core DVFS technique is becoming inefficient because of its increased

hardware cost. The cluster-based platform (processors in the same island execute at the same

speed) seems a promising platform to balance energy efficiency and hardware cost. However, the

cluster-based platform introduces several challenges as well. The existing solutions were deduced

considering the per-core DVFS is no longer valid in a clustered platform. Also, the execution speed

of a cluster becomes unpredictable if multiple tasks share it with sporadic release patterns. We

introduce a new concept of speed-profile that models per-task and per-cluster energy-consumption

variations during run-time to minimize the expected long-term energy consumption. Later, we

4

extend our technique to adapt the more realistic features such as discrete processor frequency

scheme and the platform heterogeneity (Chapter 6).

Third, we incorporate the MC context into other well-known parallel task models, i.e., the gang

task model (Chapter 7). To schedule such task sets, we propose a new technique GEDF-VD,

which integrates Global Earliest Deadline First (GEDF) and Earliest Deadline First with Virtual

Deadline (EDF-VD). We also derive the first speedup bound (a widely accepted tool for evaluating

the effectiveness of multiprocessor scheduling algorithms) for GEDF schedulability of non-MC

gang tasks and further derived the bound for GEDF-VD of MC gang tasks.

Finally, we show the response time analysis of MC task so that the probabilistic technique de-

scribed in [25] minimizes the average energy consumption while guaranteeing the (worst-case)

timing correctness for all tasks, under any execution condition (Chapter 8).

5

CHAPTER 2: PRELIMINARIES AND NOTATION

This chapter introduces a widely used representative of a real-time parallel task model, power

model and some of the major notations used throughout this thesis.

2.1 Real-Time Parallel Task Model

Now, we describe two different types of parallel tasks considered in this thesis. There are multiple

parallel languages and libraries, e.g., Intel Cilk Plus [73], OpenMP [96], etc., to write parallel

programs. The directed acyclic graphs (DAG) task model and the gang task model is often used to

model these programs.

2.1.1 DAG Task Model

The set of DAG task is denoted by denoted by τ = {τ1, · · · , τn}, where each τi ∈ τ (1 ≤ i ≤ n)

is represented as a DAG with a minimum inter-arrival separation (i.e., period) of Ti time units,

and a relative deadline of Di(≤ Ti) time units. An implicit deadline task has the same relative

deadline and period, i.e., Di = Ti, while for a constrained deadline task, the relative deadline Di

is less than Ti. The nodes in a DAG stand for different execution requirements while the edges

represent the dependencies among the corresponding execution requirements. A parallel task τi

contains a total number of Ni nodes, each denoted by N j
i (1 ≤ j ≤ Ni). A directed edge from

N j
i to N k

i (N j
i → N k

i) implies that execution of N k
i can start if N j

i finishes for every instance

The contents of this chapter have been previously published at and available at:
1. Bhuiyan, A., Guo, Z., Saifullah, A., Guan, N., & Xiong, H. (2018). Energy-efficient real-time scheduling of DAG
tasks. ACM Transactions on Embedded Computing Systems (TECS), 17(5), 1-25.
2. Bhuiyan, A., Yang, K., Arefin, S., Saifullah, A., Guan, N., & Guo, Z. (2021). Mixed-criticality real-time scheduling
of gang task systems. Real-Time Systems, 1-34.

6

Figure 2.1: An example heavy DAG task τi.

(precedence constraints). In this case, N j
i is called a parent of N k

i (N k
i is a child of N j

i). A

node may have multiple parents or children. The degree of parallelism, Mi, of τi is the number

of nodes that can be simultaneously executed. cji denotes the execution requirement of node N j
i .

Ci :=
∑Ni

j=1 c
j
i denotes the worst case execution requirement (WCET) of τi.

A critical path is a directed path with the maximum total execution requirements among all other

paths in a DAG. Li is the sum of the execution requirements of all the nodes that lie on a critical

path. It is the minimum make-span of τi, i.e., in order to make τi schedulable, at least Li time units

are required even when number of cores is unlimited. Since at least Li time units are required for

τi, the condition Ti ≥ Li (implicit deadline tasks) and Di ≥ Li (constrained deadline tasks) must

hold for τi to be schedulable. A schedule is said to be feasible if upon satisfying the precedence

constraints, all the sub-tasks (nodes) receive enough execution from their arrival times, i.e., Ci

within Ti (implicit deadline) or Di (constrained deadline) time units.

A DAG is heavy if its execution requirement is greater than its period (i.e. Ci > Ti). A schedule

is said to be feasible when all sub-tasks (nodes) receive enough execution (up to their execution

requirements) within Ti time units from their arrivals, while all precedence constraints are satisfied.

The aforementioned terms are illustrated with the help of Figure 2.1 and Example 1.

7

Example 1. The DAG task τi (shown in Figure 2.1) is a heavy DAG with total execution time

Ci = 18 and minimum inter-arrival separation Ti = 12. It has a critical path length of 10

(N 1
i → N 4

i → N 6
i orN 1

i → N 5
i → N 6

i). As the critical path length Li is less than the task period

Ti, this task may meet its deadline provided enough processors.

2.1.2 Gang Task Model

In traditional gang task model, each task τi is represented with a 4-tuple (mi, ci, Ti, Di), where

mi is the degree of parallelism and each job of task τi requires access to mi cores for at most ci

time units to complete its execution, Ti is the task period, and Di is the relative deadline. In gang

scheduling, each task is consists of multiple threads (referred to as a gang), and each thread of the

same task occupies a processor for the same time quantum [76, 46]. Hence, in the time-space, the

execution requirement of any job τi,j ∈ τi can be represented as an mi × ci rectangle. The relative

deadline Di specifies that for each of the released jobs τi,j (of task τi), its deadline di,j = ri,j +Di,

where ri,j denotes the release time of τi,j [46].

The utilization ui of each task τi ∈ τ is given by ui = (mici)/Ti, and the overall system utilization

is: Usum =
∑

τi∈τ ui. Note that, it is possible that the value of ui is larger than one, which is

different from the traditional sequential task model. Based on the scheduling flexibility, a gang

task τi can be categorized into three groups. A task τi is said to be:

• rigid, if mi is fixed a priori and does not change throughout the execution,

• moldable, if mi is fixed during its activation and does not change throughout the execution,

• malleable, if mi is not fixed and can be changed during its execution by the scheduler.

In this thesis, we restrict our attention to the rigid task model. This model suits various applications

8

that use parallelism, some of which are implemented using the message-passing approach and tools

like MPI.

2.2 Power/Energy Model

Let s(t) (we are assuming continuous frequency scheme) denote the main frequency (speed) of a

processor at a certain time t. Then its power consumption P (s) can be modeled as:

P (s) = Psta + Pdyn(s) = β + αsγ, (2.1)

where Psta denotes the static power consumption which is introduced in the system due to the leak-

age current and Pdyn(s) denotes the active power consumption. Pdyn(s) is introduced due to the

switching activities and it depends on the processor frequency. Pdyn(s) can be represented as αsγ

where the constant α > 0 depends on the effective switching capacitance[98], γ ∈ [2, 3] is a fixed

parameter determined by the hardware, and β > 0 represents the leakage power (i.e., the static part

of power consumption whenever a processor remains on). Clearly, the power consumption func-

tion is a convex-increasing function of the processor frequency. By means of dynamic voltage and

frequency scaling (DVFS), it is possible to reduce Pdyn(s) by reducing the processor frequency.

In this paper, we focus on minimizing the active energy consumption (due to Pdyn(s)) by means

of DVFS. We also target to minimize the static power consumption (due to Psta) by reducing the

number of processors by allowing intra-task processor sharing.

Note that static power consumption is partially related to frequency. It is mainly because highest

frequency (that can be used) can be margined by the voltage level which is inversely proportional to

the circuit delay. Such relationship is counted towards the dynamic part of the power consumption

by adopting a slightly larger γ value. Various platforms may take different values, yet the pro-

9

posed approach should work in general. Besides, we assume that each core can execute with any

frequency ranged between fmin to fmax, where, fmin ≥ critical frequencies1 [98]. Within this al-

lowable frequency range [fmin−fmax] we consider the upper bound of static energy consumption.

Hence we can consider that static energy consumption is fixed w.r.t. the frequency.

Our motivation behind selecting this power model comes from the fact that it complies with

many existing works in the community, few to mention [7, 98, 99, 72, 92, 67, 23]. Beside

this, recently this model was shown to be highly realistic by showing its similarity with actual

power consumption [99]. Figure 2.2 (adopted from [98]) shows comparison between the original

power consumption results from [71] and the power model in Equation (2.1), where we consider

α = 1.76Watts/GHz3, γ = 3, and β = 0.5 Watts.

Figure 2.2: Comparison of the power model (Equation (2.1)) with experimental results in [71].

The energy consumption of any given period [b, f] can be calculated as E(b, f) =
∫ f
b
P (s(t)) dt,

which is known as a nice approximation to the actual energy consumption of many known systems.

Specifically, given a unit-amount of workload to be executed on a speed-s processor, the total

energy consumption is the integral of power over the period of length 1/s; i.e.,

E(s) = (β + αsγ)/s = β/s+ αsγ−1 (2.2)

1Optimal frequency to reduce the energy consumption (considering a negligible sleeping overhead).

10

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Frequency [GHz]

E
n

e
rg

y
 [

J
o

u
le

]

γ=2

γ=2.4

γ=2.7

γ=3

Figure 2.3: Energy consumption for executing a job with 109 computation cycles with a fixed α, β
and a variable γ value.

Figure 2.3 shows how different values of γ (varying from 2 to 3) and processor speed s may affect

the total energy consumption to complete a certain (fixed) amount of computation. This figure

reports the energy consumption for executing a job with 109 computation cycles under various

γ values, where α = 1.76 watts/GHz, and β = 0.5 watts. Energy Consumption is calculated

according to Equation (2.2), and the lowest points represent the most energy efficient execution

frequency,i.e., critical frequency. It is obvious that execution under a speed much lower than the

critical frequencies is extremely energy inefficient (as leakage power becomes the major “con-

tributior”). The power model we adapted complies with much existing (and recent) work in the

community, e.g., [7] [125] [44] [98] [99] [67].

11

CHAPTER 3: ENERGY-EFFICIENT FEDERATED SCHEDULING OF

REAL-TIME DAG TASKS WITH INTRA-TASK PROCESSOR MERGING

This chapter studies energy-aware real-time scheduling of a set of sporadic Directed Acyclic

Graph (DAG) tasks with implicit deadlines. While meeting all real-time constraints, we try to

identify the best task allocation and execution pattern such that the average power consump-

tion of the whole platform is minimized. This work addresses the power consumption issue in

scheduling multiple DAG tasks on multi-cores and allows intra-task processor sharing. We adapt

the decomposition-based framework for federated scheduling and propose an energy-sub-optimal

scheduler. Then, we derive an approximation algorithm to identify processors to be merged to-

gether for further improvements in energy-efficiency. The effectiveness of the proposed approach

is evaluated both theoretically via approximation ratio bounds, and also experimentally through

simulation study. Experimental results on randomly generated workloads show that our algorithms

achieve an energy saving of 60% to 68% compared to existing DAG task schedulers.

3.1 Introduction

Due to size and weight limitations in embedded systems, energy consumption is a cornerstone in

their design, especially for battery-operated ones. Energy-efficient and power-aware computing

therefore are gaining increasing attention in the embedded systems research. It is important due to

the market demand of increased battery life for portable devices. Moreover, reducing energy con-

sumption could lead to smaller power bills. Being motivated by this goal, there has been a trend

in embedded system design and development towards multi-core platforms. In order to better uti-

This chapter has been previously published at ACM Transactions on Embedded Computing Systems and available
at Bhuiyan, A., Guo, Z., Saifullah, A., Guan, N., & Xiong, H. (2018). Energy-efficient real-time scheduling of DAG
tasks. ACM Transactions on Embedded Computing Systems (TECS), 17(5), 1-25.

12

Satellite GPS

RC Receiver
Remote
Control

Flight
Control

Figure 3.1: Partial work-flow of a UAV system represented as a DAG.

lize the capacity of multi-core platforms, parallel computation (where an individual task executes

in multiple processors simultaneously) needs to be considered. For Example, a recent study [98]

has shown that the energy consumption of executing certain workload perfectly distributed in two

cores is significantly less than that of executing the same workload in one core at double frequency.

In this chapter, we deal with workloads that are represented as directed acyclic graph (DAG) —

that are considered to be one of the most representative models of deterministic parallel tasks [17].

Several real-world application uses the DAG model ([68, 102, 74]). For example, consider the

application shown in Figure 3.1. In this figure, we present the partial work-flow of an unmanned

aerial vehicle (UAV) which is adopted from [112]. Here, each rectangular box denotes a sub-

task (or node in the DAG) with their execution requirements (not shown in the figure) and edges

represent data dependencies among them. As described above, a node cannot start execution until

all of its parents are completed, and some of the nodes can be executed in parallel, e.g. Satellite and

Remote Control. There are many existing works that focused on real-time scheduling of parallel

tasks or their schedulability analysis [17] [30] [81][10] [82]. However, none of them addressed the

energy consumption issue.

Energy-Aware Real-Time Scheduling. In the design of embedded systems, energy minimization

is a prime requirement. Much work has been done on minimizing the energy cost with respect to

sequential tasks for multi-core systems [55] [99] [98] [92]. Specifically, [98] and [99] present an

energy efficient task partitioning scheme, where the cores are grouped in frequency islands. The

13

authors in [7] considers both feasibility and energy-awareness while partitioning periodic real-time

tasks on a multi-core platform. For EDF scheduling, they show that if the workload is balanced

evenly among the processors, deriving optimal energy consumption and finding a feasible partition

is NP-Hard. Till date, only a little work has been done for energy-aware real-time scheduling of

parallel tasks. In general, minimizing energy/power consumption of a real-time system is chal-

lenging due to the complex (non-linear) relationship between frequency, energy consumption, and

execution time of each task.

In this chapter, we study the scheduling of a set of sporadic DAG tasks with implicit deadlines on

a multi-core platform. We assume that all the cores that are assigned to a DAG task will always

remain active, which leads to a non-negligible power consumption. In order to reduce this effect,

we allow intra- and inter-task processor sharing to remove or reduce the number of lightly loaded

cores. After merging, the cores that are not required can be shut off completely. When the average

case execution times are typically small compared to the worst-case execution time (WCET), the

cores will remain idle (in that case the active power consumption will be minimized, refer to the

Power model described at Chapter 2). Specifically, we make the following key contributions:

(i) We propose a power-consumption-aware scheduling algorithm for sporadic DAG tasks with

implicit deadlines.

(ii) Under the federated scheduling and task decomposition framework, our table-driven scheduler

is shown to be optimal in the sense of average power consumption (i.e., named sub-optimal due to

extra constraints included).

(iii) We propose an efficient processor merging technique that is widely applicable for energy-

efficiency improvements to most of the existing work on federated DAG task scheduling. We

formally prove the NP-completeness of the problem, propose an approximation algorithm, and

prove the upper bound of its approximation ratio.

14

(iv) Based on randomly generated workload, simulations are conducted to verify the theoretical

results and demonstrate the effectiveness of our algorithm.

The rest of this chapter is organized as follows. Section 3.2 discusses related work. Section 3.3

adapts the task decomposition scheme and proposes an (sub-) optimal federated scheduler based on

segment extension and problem transformation (into a convex optimization with linear inequality

constraints). Section 3.4 relaxes the federated limitation by presenting and analyzing techniques

for intra-DAG and inter-DAG processor merging, so that energy consumption is further reduced.

Section 3.5 implements gradient based solvers and compares the proposed method with state-of-

the-art schedulers. Section 3.6 concludes the chapter.

3.2 Related Work

The work that deals with schedulability tests for various scheduling policies on parallel task model

is already mentioned in Section 3.1. None of them has considered power/energy consumption

issues. In addition, much work has been done in energy/power consumption minimization for

sequential tasks. Bini et al. discuss the problem of finding an optimal solution for a system with

discrete speed levels for a set of periodic/sporadic tasks [28]. They have considered both EDF and

Fixed-Priority (FP) scheduling policies. Jejurikar has considered non-preemptive tasks in order to

deal with shared resources [75]. Chen et al.and Liu et al. presents an energy-efficient design for

heterogeneous multiprocessor platform in [39] and [85] respectively. No previous work considers

parallel task model.

For parallel task models, several results are obtained on schedulability tests under various schedul-

ing policies in [17] [30] [10]. [30] prove a speedup bound of (2 − 1/m) for Earliest Deadline

First (EDF) and (3 − 1/m) for Deadline Monotonic (DM) respectively, where m is the number

15

of processors. For global EDF scheduling, these techniques are further generalized [10] with an

improved pseudo-polynomial time sufficient schedulability test. Analysis of federated and global

EDF scheduling is performed in [81] [82]. Processor-speed augmentation bounds for both pre-

emptive and non-preemptive real-time scheduling on multi-core processors are derived in [109].

The work in [16] studies global EDF scheduling for conditional sporadic DAG tasks, which is an

extension to the normal sporadic DAG task model. Certain conditional control-flow constructs

(such as if-then-else constructs) can be modeled using the conditional sporadic DAG task model.

Despite those nice preliminary work on the schedulability analysis of parallel tasks, none of them

addresses the energy/power consumption issue.

Actually, intra-task parallelization and power consumption issues have not yet received sufficient

attention. Zhu et al. have considered power-aware scheduling for graph-tasks [129]. The work in

[130] proposed the greedy slack stealing algorithm that is able to deal with the task represented

by AND/OR graphs. It proves the correctness of the proposed algorithm in terms of meeting

the applications time constraint considering it is executing on an N-processor system. Through

simulation, it has also analyzed the performance of the algorithm in terms of processor energy

saving and showed that the GSS is able to achieve some energy efficiency. However, that work

considered the scheduling of only a single DAG and the DAG was not periodic/recurrent. For

dependent tasks, [37] provides techniques that combine dynamic voltage and frequency scaling

(DVFS) and dynamic power management, where each core in the platform can be switched on and

off individually. For block-partitioned multi-core processors (where cores are grouped into blocks

and each block has a common power supply scaled by DVFS), energy efficiency is investigated

in [103]. The authors in [101] consider power-aware policy for scheduling parallel hard real-time

systems, where the multi-thread processing is used. [100] considers dealing with parallel tasks

under Gang scheduling policy, where all parallel instances of a task use a processor in the same

window. The authors in [124] have considered energy minimization for frame-based tasks (i.e.,

16

same arrival time and a common deadline for all the tasks) with implicit deadlines. Similar frame

based model is considered in [64], where precedence constraints can be specified among the tasks.

As mentioned previously, no existing work allows intra and inter-task processor sharing when

considering the (more general) sporadic DAG task workload model.

3.3 Energy-Sub-Optimal Federated Scheduling for DAG Tasks

In this section, we restrict our focus on the federated scheduling of DAG tasks, refer to Section

2.1.1 for details regarding the DAG model. Under the federated approach to multi-core scheduling,

each individual task is either restricted to execute on a single processor (as in partitioned schedul-

ing), or has exclusive access to all the processors on which it may execute. Since each processor is

dedicated to one DAG task, we can consider each task individually, and try to minimize the energy

consumption for a single DAG task (which is the goal of this section).

Given a DAG task, we first apply the existing task decomposition [109] technique to transform a

parallel task into a set of sequential tasks with scheduling window (for a specific node it denotes

the time frame from its release offset to its deadline) constraints for each node (Subsection 3.3.1)

– they are further relaxed into necessary conditions by segment extension (Subsection 3.3.2). By

variable substitution, we then transform the energy minimization problem into a convex optimiza-

tion problem with linear inequality constraints, which can be solved optimally with gradient-based

methods (Subsection 3.3.3).

3.3.1 Task Decomposition

Task decomposition is a well-known technique that simplifies the scheduling analysis of parallel

real-time tasks [109]. In our approach, we adopt task decomposition as the first step that converts

17

each node N l
i of the DAG task τi to an individual sub-task τ li with a release offset (bli), deadline

(f li), and execution requirement (cli). The release time and deadlines are assigned in a way that all

dependencies (represented by edges in the DAG) are respected. Thus the decomposition ensures

that if all the sub-tasks are schedulable then the DAG is also schedulable. For the sake of com-

pleteness, we briefly describe how task decomposition works in this subsection with an example.

We adapt a slightly modified version of the approach used in [109]. First, we perform the task

decomposition using the techniques in [109] as described below. Assuming the execution of the

task is on an unlimited number of cores, we draw a vertical line at every time instant where a

node starts or ends for each node starting from the beginning. These vertical lines split the DAG

into segments, and each segment consists of an equal amount of execution by the nodes that lie

in the segment. Parts of different nodes in the same segment can now be considered as threads

of execution that run in parallel, and the threads in a segment can start only after those in the

preceding segment have finished their executions. Now we will say that the resulting segmented

structure of the task is converted into synchronous form and will denote it as τ syni . We first allocate

time to the segments and then add all times assigned to different segments of a node to calculate

its allocated time.

(a) A DAG task, τi. (b) Scheduling window constraints for all nodes in τi after task
decomposition.

Figure 3.2: A DAG task and its equivalent decomposed structure.

18

Since the minimum makespan, Li ≤ Ti, at the end of each period, there may be a slack where all

processors are idle (which is typically energy inefficient). We allocate such idle period uniformly

by multiplying each segment by a common factor of Ti/Li for task τi. Task decomposition provides

its processor assignmentMl
i (i.e., a node-to-processor mapping) and a scheduling window [bli, f

l
i)

on top of it, in which each node N l
i of a task τi will be scheduled. In Example 2 and Example 3,

we demonstrate the concept of task decomposition and scheduling window.

Example 2. Consider task τi shown in Figure 3.2(a). First, we assign all the nodes with no parent

(N 1
i andN 2

i) to separate processors. Then we continue to consider nodes only when all its parent

node(s) are assigned. As a result, the beginning of the node will be the latest finishing time of

its parent(s) — these are boundaries of the segments, denoted by vertical lines in Figure 3.2(b).

Specifically, if a node has a single parent, we can start to consider the node right after the finishing

time of its parent. For example, when N 2
i is completed, N 3

i is immediately assigned to the same

processor (as N 2
i is the only parent).

When a node has multiple parents, we consider the parent that has the latest finishing time. The

child node may be assigned to the same processor assigned to its parent with the latest finishing

time. For example, N 4
i has two parents N 1

i and N 2
i where N 1

i completes execution later. So N 4
i

is assigned to the same processor of N 1
i . Please note that a node may have multiple siblings such

that it may not always share the same processor with its latest finished parent node — under such

scenario, a new processor is allocated to the node. For example, the only parent of N 5
i is N 1

i

which completes execution at t2i . So N 5
i would be able to execute in the same processor starting

from the third segment. But N 5
i is assigned to a different processor as that specific processor at t3i

is already “taken” by its sibling N 4
i .

Example 3. Let, mk
i denotes the degrees of parallelism at kth segment and the node-core mapping

is: M̄i = {1, 2, 2, 1, 3, 1}. Scheduling windows for these nodes (from Figure 2.1) are as follows:

N 1
i = [1, 2], N 2

i = [1, 1], N 3
i = [2, 3], N 4

i = [3, 3], N 5
i = [3, 3], N 6

i = [4, 4]. In this example,

19

Figure 3.3: The segment-node mapping for τi (from Figure 2.1) after segment extension.

the average power consumption (under such settings) is 3.33 Watts after extending each segment

by a common factor of Ti/Li = 1.2.

3.3.2 Segment Extension

For a DAG task τi, the aforementioned task decomposition results in a mapping between a node

(N l
i) and a processor (Ml

i). One of the key issues with the task decomposition process is that

the identified scheduling window constraints for the nodes may not be necessary. Take the task

described in Figure 3.2 as an example, where NodeN 3
i may execute in the 4th segment. However,

task decomposition requires that NodeN 3
i must finish by the end of Segment 3, which is unneces-

sary. In this subsection, we describe a systematic way of eliminating such unnecessities so that the

boundary constraints for all nodes (bli’s and f li ’s) are both necessary and sufficient.

Each DAG τi is first converted to a synchronous form denoted by τ syni with techniques described

in Section 3.3.1. We use mk
i to denote the number of parallel threads in the k-th segment of

τ syni . We then apply Algorithm 1 to greedily extend the deadlines f li of each node N l
i , following

any topological order. Note that while performing task decomposition, a node starts execution

immediately when all of its predecessors finish execution. Thus the starting time bli cannot be

20

moved earlier — only fi’s have room to be relaxed.

Task decomposition technique determines scheduling window constraints for the nodes which are

sufficient but may not be necessary. If segment extension is performed (using Algorithm 1) after

applying task decomposition, scheduling window constraints become necessary and sufficient (see

Lemma 1). It may happen that for some particular DAG structure, Algorithm 1 fails to change (i.e.

expand) scheduling window for any node. However, it does not impact the schedulability of the

DAG. From this discussion, it should be clear that performing segment is not mandatory but it is

done to further reduce the energy consumption.

Note that we have considered table-driven schedulers which usually pre-compute which task would

run when. This schedule is stored in a table at the time the system is designed. When a set of n tasks

is to be scheduled, then the entries in the table will replicate themselves after LCM (T1, T2 · · ·Tn),

where LCM (T1, T2 · · ·Tn) is the hyper-period for the tasks. However, while considering energy

consumption we did not consider the space complexity of the scheduling solutions.

Algorithm 1: Segment Extension
1: Input: A DAG τi, scheduling windows after decomposition [bli, f

l
i] for any node N l

i ∈ τi.
2: Output: Extended segment window [bli, f

l
i) for each node N l

i ∈ τi.
3: Assume that all nodes N l

i are ordered topologically, such that predecessor constraint may
only occur between N l

i −→ N l′
i when l < l′.

4: for each node N l
i ∈ τi do

5: if node N l
i has successor node(s); i.e., ∃l′,N l

i −→ N l′
i

6: then f li ← minl′|N l
i−→N l′

i
{bl′i } − 1;

7: else f li ← last segment of τ syni ;
8: end for
9: return [bli, f

l
i] for each node N l

i .

Example 4. Consider again the DAG task τi shown in Figure 2.1. Algorithm 1 greedily extends

the ending segment f li of the nodes as much as possible in the topological order (i.e., increas-

ing l). After applying Algorithm 1, scheduling windows for all the nodes changes as follows:

[1, 2], [1, 1], [2,4], [3, 3], [3, 3], [4, 4], i.e., Node N 3
i can now execute in Segment 4 (dashed rectan-

21

gle at Figure 3.3) and the execution window for all the other nodes remain unchanged. Note that

the processor assignment Ml
i for any node N l

i of a task τi remains unchanged in the segment

extension process. Such an extension results in an average power consumption of 3.08 Watts.

Lemma 1. Under the task decomposition and scheduling framework, after running Algorithm 1,

the timing constraints we set for each node in a DAG become necessary and sufficient.

Proof. First, we show that if task decomposition is considered the timing constraints set for each

node in a DAG is only sufficient. Then we prove that if the segment extension is applied after

employing the task decomposition, it makes the timing constraints necessary and sufficient.

Upon task decomposition, calculated scheduling window for each node satisfies all predecessor

constraints, without changing the deadline for the DAG and it completes the proof of sufficient

part. Now we prove that the timing constraints are unnecessary by proving a simple example.

Consider the task described in Figure 3.2 again. Task decomposition requires that Node N 3
i must

finish by the end of Segment 3, which is unnecessary because it may execute in the 4th segment.

Now consider both task decomposition and segment extension are applied to a DAG. In that case,

the sufficient part is trivial. The scheduling window satisfies all predecessor constraints, while the

deadline for the DAG task does not change.

Assume the window after modification [bli, f
l
i] for some node N l

i is not necessary; i.e., it can be

further extended. Then it must be one of the following two cases:

• An earlier bli still satisfies all predecessor constraints, which is impossible since it is the time

all parents are finished.

• A later f li is possible, which contradicts with Lines 5 - 7 of Algorithm 1 as it is already the

starting point of its child, or the deadline of the whole DAG.

22

3.3.3 Problem Transformation

After task decomposition and segment extension, we have identified the scheduling window [bli, f
l
i]

for each node N l
i , and there is no overlap for any two windows (for different nodes) on the same

processor. A natural question arises: Given a specific node (job) with a pre-determined scheduling

window on a dedicated processor, what is the most energy-efficient execution (speed) pattern?

Theorem 2. The total energy consumption (assuming processor remains on)
∫ a+∆

a
s(t)γ dt is min-

imized in any scheduling window [a, a + ∆] of length ∆ when execution speed remains the same;

i.e., s(t) ≡ C/∆, where C =
∫ a+∆

a
s(t) dt is the (given) task demand in the window.

Proof. We define p(t) = s(t)/C, then p(x) is a probability density function (PDF) over [a, a+ ∆];

i.e., ∫ a+∆

a

p(t) dt = 1. (3.1)

As a result, ∫ a+∆

a

s(t)γ dt =

∫ a+∆

a

(C · p(t))γ dt

{re-arranging}

=
Cγ

∆γ−1
·
(

1

∆

∫ a+∆

a

(∆ · p(t))γ dt
)

{Jensen’s Inequality [36], the convexity of function xγ

when 2 ≤ γ ≤ 3 and x ≥ 0, and p(x) being a PDF}

(3.2)

23

≥ Cγ

∆γ−1

(∫ a+∆

a

p(t) dt

)γ
{From (3.1)}

=
Cγ

∆γ−1

{Definition of integrating a constant function}

=

∫ a+∆

a

(
C

∆

)γ
dt.

(3.3)

Thus, the minimal total energy consumption in the specified interval
∫ a+∆

a
s(t)γ dt can be achieved

when speed s(t) remains constant (C/∆) throughout the interval [a, a+ ∆].

According to Theorem 2, executing all segments with a uniform speed yields minimum possible

power consumption under such framework. Hence we can assume that the speed of any processor

does not change within a segment. Let Skj denote the speed of processor j in the k-th segment

(executing node N l
i), and tki denote the length of the segment. The objective is to determine the

length of each segment tki (≥ 0) and its execution speed Skj (≥ 0) such that total power consumption

is minimized.

The first set of constraints guarantees the real-time correctness that each node N l
i receives enough

execution within its designated window [bli, f
l
i) on its assigned processorMl

i; i.e.,

∀l,N l
i ∈ τi :

f li∑
k=bli

tki S
k
Ml

i
≥ ci,l. (3.4)

We need one more set of inequalities to bound the total length for all segments of each DAG by its

24

period:

∀i,
∑
k

tki ≤ Ti. (3.5)

Any non-negative speed assignment and segment length setting that satisfy the constraints de-

scribed in (3.4) and (3.5) yield a correct schedule that all nodes receive enough execution in their

specified scheduling windows (that satisfy all predecessor constraints). Based on these constraints,

we would like to add our objective for minimizing average energy consumption per period:

Minimize{tki ,Sk
j } MiβTi +

ζi∑
l=1

f li∑
k=bli

tki α(SkMl
i
)γ,

where Mi is the degree of parallelism (and also the number of processors assigned to the task)

and ζi is the total number of segments assigned to DAG task τi (determined in the previous step).

Since the constraints represented in (3.4) are non-convex quadratic inequalities, it is in general

computationally intractable to solve in polynomial time. We transform this problem into a convex

optimization by substituting some variables.

Remark 1. According to Theorem 2, executing all segments with a uniform speed yields minimum

possible power consumption. If any segment of any core remains idle (scheduling window for any

node does not fall at that segment), we consider that the execution speed for that segment is 0.

Remark 2. In this chapter, we are assuming that the time required to finish a task is exactly equaled

to their WCET. However, it may happen that some of the tasks may finish early than their WCET.

In that case, some of the cores (that are assigned to that tasks) may remain idle for some time. In

this work, we did not consider that the cores can switch into a deep sleep state during the idle time.

Entering into the deep sleep state costs additional energy consumption and it is not beneficial if the

idle time slot is less than a certain threshold. By remaining idle we mean that one or more cores

are active but not executing any task. It helps to reduce the active power consumption (i.e. Pd(s) in

25

Equation (2.1)). It would lead to the further minimization of the total power consumption (refer to

the Power/Energy model described at Section 2). So our model actually provides the upper bound

of the energy consumption.

Replacing speed with period lengths and executions. Fortunately, Theorem 2 provides us the

basis to get rid of part of the variables. Since all nodes are executed at constant speeds within their

scheduling windows, given the total length of each assigned segments (i.e., scheduling window),

the execution speed of any given node can be determined. As a result, the energy consumption to

finish this node can also be calculated. I.e., given a node N l
i with total execution requirement of

cli, to be executed on segments between bli and f li , we have:

∀k ∈ [bli, f
l
i], S

k
Ml

i
= cli/(

f li∑
j=bli

tji), (3.6)

which means although a node may be executed in consecutive segments ∀k ∈ [bli, f
l
i], the speed

remains constant throughout the scheduling window and can be represented by a function of exe-

cutions cli and segment lengths tji . Substituting Equation (3.6) into the second term of the objective

function, we have:

ζi∑
l=1

f li∑
k=bli

tki α(SkMl
i
)γ =

ζi∑
l=1

 f li∑
k=bli

tki α(cli)
γ(

f li∑
j=bli

tji)
−γ

{moving unrelated terms out of the summations}

= α

ζi∑
l=1

(

f li∑
j=bli

tji)
−γ(

f li∑
k=bli

tki)(c
l
i)
γ

(3.7)

26

{combining similar terms}

= α
∑

l|Ml
i=j

cγl (

f li∑
k=bli

tki)
1−γ.

Thus, the original optimization problem can be equivalently transformed into the following one

with only tki as variables.

Minimize{tki } MiβTi + α
∑

l|Ml
i=j

cγl (
∑f li

k=bli
tki)

1−γ

Subject to ∀i,
∑

k t
k
i ≤ Ti, (3.8)

∀i, tki ≥ 0.

Lemma 3. The objective function (according to Equation (3.8)) is a convex function.

Proof. Since leakage power consumption remains constant (which is convex), we will prove that

the dynamic part of the energy consumption function is convex:

E(τ) =
∑

1≤i≤n

Cγ
i (< αi, τ >)1−γ. (3.9)

Here τ refers to a k-dimension positive vector, in which each element is positive and refers to

the length of a specific segment of a DAG task. αi is a binary vector, in which each element

αi,j ∈ {0, 1} identifies if the node is selected for the segment. |αi| ≥ 1 since at least one segment

must be assigned). < αi, τ > refers to the inner-product of the two vectors, Ci refers to a non-

negative constant, and γ ∈ [2, 3]. Thus the energy consumption is modeled as E(τ) – a function

over the time-allocation τ ∈ Rk
+.

We prove the convexity of E(τ) when τ ∈ Rk
+ with the following four steps:

27

1. We name f(τ) =< α, τ > as a function of inner-product of τ with any binary vector α and

|α| ≥ 1. Obviously, this function is a linear function over τ and should be both convex and

concave. Further, given τ ∈ Rk
+, we have f(τ) > 0. Thus we can conclude f(τ) is a positive

concave function.

2. According to page 3-3 of [31], xp is convex when x > 0 and p ≤ 0. Thus, when γ ∈ [2, 3]

(i.e., −2 ≤ 1 − γ ≤ −1) and x > 0, the function g(x) = x1−γ should be a non-increasing

convex function.

3. According to page 3-17 of [31], if g(x) is a non-increasing convex function and f(τ) is a

concave function over ∀τ ∈ Rk
+, then g(f(τ)) is a convex function over ∀τ ∈ Rk

+.

4. The function E(τ) and fi(τ) could be written as:

E(τ) =
∑

1≤i≤n

Cγ
i g(fi(τ)) (3.10)

fi(τ) = (< αi, τ >) (3.11)

As Cγ
i is non-negative, E(τ) could be considered as the non-negative-weighted sum of con-

vex functions (i.e., g(fi(τ))), and E(τ) is a convex function.

Theorem 4. Any gradient based method (e.g., fmincon[56] in Matlab) would lead to sub-optimal

power consumption under federated scheduling scheme with task decomposition.

Proof. The sub-optimality comes from three facts:

28

Figure 3.4: The sub-optimal segment length assignment for power efficiency of the sample task τi
(in Figure 2.1), with an average power consumption of 2.94 Watts.

• The objective function is convex as it is a sum of several convex (including linear) functions

of the variables tki (detailed proof in Lemma 3).

• The linear equality constraints are necessary and sufficient (Lemma 1) for real-time schedu-

lability and predecessor conditions from the input DAG task.

• The variables tki are sufficient to represent a possible optimal scheduler regarding power

consumption; i.e., it is safe to assume uniform speed during each segment (Theorem 2).

Figure 3.4 shows the sub-optimal segment length assignment for the given task τi. As usual, the

height of each block represents the speed of the processor during each segment.

3.4 Processor Sharing: Efficiency Improvement

Task decomposition transforms the parallel task into a set of sequential tasks. The process tries

to maximize the degree of parallelism (i.e., assigning as many processors to each DAG task as

possible). However, some of these processors may be lightly loaded with poor energy efficiency as

29

Figure 3.5: The execution pattern for τi (in Figure 2.1) after merging two different Processors.

the leakage power consumption becomes the majority cost (as demonstrated in Figure 2.3). Thus

the solution derived in Section 3.3 is only sub-optimal and can be further improved if we allow

merging the lightly loaded processors into a single one, such that leakage power is reduced (see

Figure 3.5 and Example 5).

Example 5. The execution pattern for τi (in Figure 2.1) after merging Processors 2 and 3. Here,

Node N 3
i and Node N 5

i will share Processor 2 (i.e., execute under EDF) within time window

[4.81, 7.59) at a higher execution speed. Such a merging results in a reduction of average power

consumption to 2.80 Watts.

In this section, we deal with this issue and further improve the overall energy efficiency of our

scheduler by merging the workloads assigned to different processors onto a single one. Specifi-

cally, in Subsection 3.4.1, we merge processors that have been assigned to the same DAG task. In

this step, each DAG task is handled individually and the resulting processor-node/DAG assignment

remains in the federated scheduling framework. However, in this subsection, we have assumed that

each processor to be merged only once. That is we only allow the combination of two processors

that have never been part of any merging previously. In Subsection 4.1, this constraint is relaxed

and we allow merging three or more processors into one. In Subsection 4.2, we discuss the impor-

tance (in order to improve the overall energy efficiency of our scheduler) of applying any gradient

based method to calculate the optimal segment length after an intra-DAG processor merging. In

30

Subsection 4.3, we further extend the technique for inter-DAG processor merging.

Remark 3. Normally, the effect of task migrations and context switches is not considered while

deriving schedulability test for real time tasks. We are also ignoring the effects of these phenomena.

3.4.1 Merging Processors Assigned to the Same DAG

Federated scheduling of DAG tasks provides isolation among tasks during execution, such that

inter-task interference as well as context switch delays remain small during run-time. In this sub-

section, we stay in the federated scheduling framework and only consider potential merges among

processors of the same DAG.

Given a DAG task τi with a federated task-to-processor assignment j = Mk
i , the processor ex-

ecution speeds Skj for each segment, segment lengths tki , and the period Ti. For any processor j

assigned to this DAG, its original power consumption can be calculated as

Pj = β +
∑
k

tki
Ti

(Skj)γ. (3.12)

Any pair of processors {j, j′} share the same period and segment information as they are assigned

to the same DAG task. As a result, the new execution speed for each segment (when merged

together) will simply be the sum of the two old ones; i.e., Slj + Slj′ , and the average power con-

sumption for this new processor can be calculated as:

Pj,j′ = β +
∑
k

tki
Ti

(Skj + Skj′)
γ. (3.13)

31

The pairwise potential power saving can be calculated directly by:

Pj,j′ = Pj + Pj′ − Pj,j′ . (3.14)

With the pairwise potential power saving, the Maximization of Power Saving (MPS) problem we

are dealing with in the section can be described as follows:

• Given the potential power savings (PMi×Mi
) for merging each pair of the Mi processors, we

wish to find a list of mutual exclusive processor-pairs {(p1, p
′
1), ..., (pN , p

′
N)}(N ≤ Mi/2),

such that the total power saving Pi =
∑N

j=1Ppj ,p′j is maximized.

Theorem 5. The MPS problem is NP-Complete.

Proof. MPS is in NP as it takes linear time to verify whether a given solution satisfies the mutual

exclusion constraints. The NP-Hardness comes from the reduction of a well known NP-Complete

problem: Maximum Independent Set (MIS). An independent set is a set of (weighted) nodes in a

graph that no two of which are adjacent. For each node in the graph of MIS, we can construct an

edge with same weight in the graph of MPS, and adjacency of those edges (whether or not they

share a node) in MPS can be determined by the adjacency of the edges in the graph of MIS; i.e.

each edge in MIS corresponds to a node in MPS, refer to Figure 3.6 for details. Figure 3.6(a)

shows a DAG of four processor assignments with potential power savings for merging each pair

of the processors, while Figure 3.6(b) shows its equivalent expression with vertices representing

all edges in (a), and edges representing the mutual exclusive constraints. Since this polynomial

(linear)-time mapping maintains the adjacency relationship of weighted nodes (in MIS) or edges

(in MPS), a solution of MIS (a subset of nm non-adjacent nodes with maximum total weight) will

correspond to a solution of MPS (nm non-adjacent edges with maximum total weight), and vice

32

Figure 3.6: The equivalence of the MPS problem and the MIS problem

versa.

Example 6. In Figure 3.6, four processors are assigned to a DAG task. The weight Pi,j for each

edge represents the potential power saving when merging processors i and j, calculated from

(3.14). The edge {2, 4} is missing since merging these two processors will lead to higher power

consumption (i.e., P2,4 < 0). For each vertex in Figure 3.6 (b), there is a corresponding edge with

the same weight in Figure 3.6 (a), and vice versa. A feasible subset of edges in Figure 3.6 (a) (e.g.,

{1, 4} and {2, 3}) corresponds to a subset of vertices in Figure 3.6 (b) (e.g., E1,4 and E2,3) that

none of the two are directly connected by an edge.

For this example, we could choose to merge Processors 1&2 and 3&4 (with a gain of 1.1 Watts),

1&4 and 2&3 (with a gain of 1.7 Watts), or 1&3 (with a gain of 0.1 Watts). Although obviously

the second option is leading to the optimal solution, we need to explore all combinations to find

that out (Theorem 5 already shows the intractability). As a result, instead of seeking for the global

optimal solution for merging, here we choose to greedily select (see Step 2 below) the pair with the

maximum gain in each step.

Now we describe the key steps of our proposed processor merging method:

1. For each pair of processors {j, j′} of the (same) DAG, calculate the potential power savings

33

Pj,j′ for merging them together according to (3.14).

2. Greedily choose the pair {j, j′} of processors with the maximum power saving Pj,j′ , and

merge them together by updating P ′ value(s) of the nodes on j′ to j. The merged nodes

will be executed on processor j under EDF, with given per-segment (fixed) speed settings.

Note that EDF is an optimal uni-processor scheduler for sporadic task systems, and thus will

guarantee temporal correctness as far as cumulative capacity remains the same.

3. Remove the two processors (and also the new one) from the candidate pool, by updating

elements in the jth row, the j′-th row, the jth column, and the j′-th column of the power

saving matrix P into 0.

4. If there are no positive elements in P , return the updated mapping P ′, else go to Step 2 (i.e.,

merging two un-touched processors may lead to further energy savings).

Although the MIS problem in general cannot be approximated to any constant factor in polynomial

time (unless P = NP) [22], fortunately, each edge in the original figure can be joint with at most

2(Mi − 2) other edges, which indicates that the degree of each vertex in the graph after problem

transformation is upper bounded by 2(Mi−2), leading to the following approximation ratio bound.

Theorem 6. The greedy approach has an approximation ratio no greater than (2Mi−2)/3, where

Mi ≥ 3 is the total number of processors before merging of DAG task τi; i.e., the degree of

parallelism of the task.

Proof. Since we only allow a processor to be considered in one pair in each round, the graph

resulted from the reduction in Theorem 5 is a (2Mi − 4)-regular graph; i.e., the degree of each

vertex cannot exceed 2Mi − 4. According to Theorem 5 in [69], the greedy algorithm achieves an

approximation ratio of (2Mi − 2)/3.

34

Remark 4. When Mi = 2, there are only two processors in the candidate pool, and the decision

is straightforward – based on whether merging them can lead to lower power consumption.

Remark 5. As mentioned in Section 2, we consider a continuous frequency scaling and, at any

segment, the computed frequency can be rounded up to the next discrete mode. Initially, it may

seem that increasing the speed (by stepping up to the next level) give more room to perform inter-

core merging. However, the speed at any segment depends on the workload at this segment and

its sub-optimal length which is calculated through a gradient-based method. So rounding up the

frequency to its next level may break the sub-optimality and may not yield better energy efficiency.

3.5 Simulation Study

In this section, we use experiments to evaluate the power efficiency of the proposed mechanisms,

and compare them with existing algorithms for DAG task systems.

Generation of workloads. Our DAG generator follows the Erdos-Renyi method [42] with a given

number of nodes. For the harmonic period case, the periods are multiples of each other [109] by

enforcing them to be powers of 2. Specifically, we find the smallest value χ such that Li ≤ 2χ and

set Ti to be 2χ. Regarding the arbitrary period case, we use Gamma distribution [58] to generate

a random parameter, and set the period as Ti = Li + 2(ci/m)(1 + Γ(2, 1)/4) (according to [109]).

Power consumption is calculated using Equation (2.1) and the value of α, β and γ are set to 1.76,

0.5 and 3 respectively.

3.5.1 Experiment Under Single Merging of Processors

Here compare the power consumption by varying two parameters: (i) task periods (densities) (Sub-

subsection 3.5.1.1) and (ii) number of nodes in each DAG task (Subsubsection 3.5.1.2). Under each

35

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

8

10

12

14

16

18

20

22

24

26

28

30

 Average Task Utilization, k

 P
o

w
e

r
C

o
n

s
u

m
p

ti
o

n
 [

W
a

tt
]

Without segment Extension

 With Segment Extension

D−Saifullah

UniExt_D−Saifullah

Intra−Merge Among DAG

(a) Comparison of power consumption with different ap-
proaches for DAGs with a fixed number of nodes as 30.

10 15 20 25 30 35 40 45 50 55

6

8

10

12

14

16

Number of Nodes

 P
o

w
e

r
C

o
n

s
u

m
p

ti
o

n
 [

W
a

tt
]

Without segment Extension

 With Segment Extension

D−Saifullah

UniExt_D−Saifullah

Intra−Merge Among DAG

(b) Power consumption comparison with different ap-
proaches for tasks with harmonic periods.

10 15 20 25 30 35 40 45 50 55

8

10

12

14

16

18

20

22

24

Number of Nodes

 P
o

w
e

r
C

o
n

s
u

m
p

ti
o

n
 [

W
a

tt
]

Without segment Extension

 With Segment Extension

D−Saifullah

UniExt_D−Saifullah

Intra−Merge Among DAG

(c) Power consumption comparison with different ap-
proaches for tasks with arbitrary periods.

Figure 3.7: Power consumption comparisons for task sets for various settings under single merging.

parameter setting, we randomly generate 100 different DAG task sets, each consisting of 5 DAG

tasks. Note that, we could report the energy consumption over a hyper-period for each task set.

However, reporting energy consumption over a hyper-period for each task set will not be a fair

comparison as tasks are randomly generated and their periods and hyper-periods vary a lot. To

ensure a fair comparison, we have divided such energy consumption (in Joule) over a hyper-period

36

by the length of the hyper-period (in seconds), such that the reported data represents average power

consumption (in Watt) on the y-axis. We compare the average power consumption of the following

scheduling algorithms:

• Federated scheduling with task decomposition, where each node is executed as soon as pos-

sible under full speed [109], denoted by D-Saifullah;

• Federated scheduling with task decomposition (length of each segment is further extended

uniformly according to their loads) [109], denoted by UniExt D-Saifullah ;

• Federated scheduling with task decomposition, where lengths of segments are determined

by the proposed convex optimization (Subsection 3.3.3);

• Energy-sub-optimal federated scheduling with task decomposition, where lengths of seg-

ments are determined by convex optimization (Subsection 3.3.3) after performing segment

extension (Subsection 3.3.2);

• Federated scheduling with intra-DAG processor merging (Subsection 3.4.1);

3.5.1.1 Varying Task Periods

Here we vary the minimum inter-arrival separation for each task, such that the average utilization

of a set is controlled. We vary the period in an allowable range (Li ≤ Ti ≤ Ci) by assigning Ti

as Li + (1− k)(Ci − Li), where k ∈ [0, 1] is named as the utilization of the task — note that this

is different from the normal utilization definition for sequential tasks. We fix the number of nodes

within each DAG task as 30, and show the average power consumption in Figure 3.7(a).

The first thing we notice from Figure 3.7(a) is that the average energy consumption increases as the

average utilization of the set increases (due to decreasing of the period). This phenomenon makes

37

sense as higher utilization would lead to tighter real-time restrictions, which lead to less room for

our segment length optimization.

As shown in Figure 3.7(a), stretching each segment would lead to significant power savings com-

pared to finishing them at full speed and leaving the processor idle for some portion of time (match-

ing Theorem 2). Comparing to the existing uniform stretching for all segments of each DAG task,

our convex optimization based methods would find a better execution pattern in terms of power

efficiency. We also found that segment extension is helpful in removing unnecessary constraints

for finding better execution patterns.

It is easy to tell that the improvements to the average power consumption are huge when applying

the processor merging techniques (see Section 3.4). The improvement is larger when utilization of

the task is high. On average, our proposed methods (including segment extension and intra-DAG

merging) are leading to a reduction of the power consumption ranging from 29.2% to 40.5%.

3.5.1.2 Varying Numbers of Nodes in a DAG Task

Now we vary the number of nodes within each DAG without changing the period. In this set of

comparisons, we consider both harmonic (reported in Figure 3.7(b)) and arbitrary periods (reported

in Figure 3.7(c)) for a set. For each setting of parameters, we randomly generate 100 task sets with

various number of nodes (10 to 55, with an increment of 5) and report the average performances

of the power consumption over the 100 sets.

First of all, we observe similar improvements in energy efficiency with the proposed techniques

when the number of nodes vary, comparing to the previous set of experiments (with fixed number

of nodes and varying task utilization). Specifically, the intra-DAG merging technique (refer to

Subsection 3.4.1) leads to a reduction in the power consumption for at least 27.29% (34.27%)

38

for harmonic (arbitrary) periods, (compared to the result of convex optimization with segment

extension discussed in Subsection 3.3.3), while the average power savings are 28.23% and 37.80%.

Secondly, when comparing curves in Figures 3.7(b) and 3.7(c), we observe that task sets with har-

monic periods typically result in lower energy consumption compared to arbitrary periods (under

same task utilization and number of nodes per task).

Finally, from the reported performances, we did not observe significant dependencies between the

power consumption and the number of nodes for the DAG tasks. This indicates that the proposed

methods are robust to various settings of parameters and combination of DAG tasks.

3.6 Conclusion

This chapter studies the scheduling of a set of sporadic DAGs with implicit deadlines. Upon guar-

anteeing real-time correctness, we try to minimize the overall power consumption of the platform.

A power-sub-optimal scheduler is proposed under the condition of federated scheduling and task

decomposition. Achieving the optimal solution for the more general (non-federated) case is shown

to be NP-Complete. Based on the solution under federated scheduling, a greedy heuristic is pro-

posed to further improve the power efficiency, with proved upper bound of the approximation ratio.

The effectiveness of the proposed approach is also evaluated through simulation study. Experimen-

tal results on randomly generated workloads show that our algorithms achieve an energy saving of

60% to 68% compared to existing DAG task schedulers.

39

CHAPTER 4: ENERGY-EFFICIENT FEDERATED SCHEDULING OF

REAL-TIME DAG TASKS WITH INTER-TASK PROCESSOR MERGING

In the previous chapter, we have described the technique of merging processors assigned to the

same DAG. Such an intra-task processor merging (i.e., merging two lightly loaded processors onto

one) reduces the total number of processors and reduces power consumption. So far, we have

assumed that each processor can be merged only once. However, allowing multiple merging to any

specific processor can further increase energy saving. In this chapter, we will relax the assumption

of a single merge per processor. We also discuss the inter-task processor merging. We further select

the lightest loaded unmerged processors of each DAG (after intra-task merging) as candidates and

merge them with lightly loaded processors from a different DAG.

4.1 Multiple Merging Among the Processors Assigned to the Same DAG

In this section, we will describe the technique of multiple merging. Here are the key steps of our

proposed intra-DAG processor merging (multiple times) method:

1. For each pair of processors {j, j′} of the (same) DAG, calculate the potential power savings

Pj,j′ for merging them together according to Equation (3.14).

2. If there is no positive element in P , return with no power saving, else go to Step 3.

3. Greedily choose the pair {j, j′} of processors with the maximum power saving Pj,j′ , and

merge them together by updating P ′ value(s) of the nodes on j′ to j. The merged nodes

This chapter has been previously published at ACM Transactions on Embedded Computing Systems and available
at Bhuiyan, A., Guo, Z., Saifullah, A., Guan, N., & Xiong, H. (2018). Energy-efficient real-time scheduling of DAG
tasks. ACM Transactions on Embedded Computing Systems (TECS), 17(5), 1-25.

40

will be executed on processor j under EDF, with given per-segment (fixed) speed settings.

Note that EDF is an optimal uni-processor scheduler for sporadic task systems, and thus will

guarantee temporal correctness as far as cumulative capacity remains the same.

4. Remove the two processors (and also the new one, see Remark 3) from the candidate pool

by updating elements in the jth row, the j′-th row, the jth column, and the j′-th column of

the power saving matrix P into 0.

5. If there is no positive elements in P , go to Step 6, else go to Step 3 (i.e., merging two

un-touched processors may lead to further energy savings).

6. Let M ′ be the total number of merges conducted in Steps 1 to 4, where M ′ ≤ Mi/2 (Mi =

the total number of processor allocated to τi). Update Mi as Mi ←Mi −M ′.

7. Repeat Steps 1 to 4.

4.2 Calculating Optimal Segment Length After the Intra-DAG Processor Merging

In Chapter 3, we have discussed the technique to optimally determine the segment length for a

DAG task τi (Subsection 3.3.3). We also have described the processor merging technique among

the same DAG task (Subsection 3.4.1). We already know from Theorem 4 that any gradient based

method would lead to sub-optimal power consumption under federated scheduling scheme with

task decomposition. Now we will show that if we re-apply any gradient based method to calculate

segment length after applying the intra-DAG processor merging it will further reduce the power

consumption. Once we solve the optimization problem mentioned in Subsection 3.3.3, for each

node N l
i we have the information regarding its execution speed within its scheduling window. As

all the processors assigned to the same DAG share the same period and segment information, after

merging the new execution speed for each segment will simply be the sum of the two old ones.

41

Figure 4.1: The modified DAG task τi (from Figure 2.1) after applying the intra-task processors
merging technique.

We consider that the DAG τi is reduced to τ ′i after a merge. The consecutive time windows where

the speed remains same will be considered under the same node (according to Theorem 2). As we

have the updated information regarding the execution speed of τ ′i within its scheduling window it

is easy to calculate the execution time for each node as well.

Example 7. Figure 4.1 shows how the DAG τi from Figure 2.1 is modified after intra-task processor

sharing. For this specific task τi (see Figure 3.5) node N 3
i and N 5

i share processor 2 within time

window [4.81, 7.59) at a higher execution speed. In this case, we will consider that the node

N 3
i and the node N 5

i jointly form a new node N 35
i . Note that, we must respect the predecessor

constraint, i.e., N 2
i → N 3

i and N 1
i → N 5

i . Hence, we consider both the nodes N 1
i and N 2

i as the

parent of the newly formed node N 35
i . The remaining part of node N 3

i (which is executing within

the time window [7.59,12)) will be considered as another node.

Now we have a changed DAG τ ′i where each node N l
i has some execution requirements and pre-

decessor constraints. After merging we did not change the segment length. As we are merging

two different processors into one, the execution requirement at specific segment changes. So it is

worth calculating the segment length of the DAG τ ′i . In order to determine the sub-optimal segment

length tki , we will use any gradient based (e.g., fmincon [56] in Matlab) method because:

42

Figure 4.2: The sub-optimal segment length assignment (after merging Processors) for power effi-
ciency of the sample task τi.

• The objective function still remains convex as it is the sum of multiple convex functions of

the variables tki ; and

• The linear equality constraints are necessary and sufficient (Lemma 1) for real-time schedu-

lability and predecessor conditions from the modified DAG task.

Figure 4.2 shows the sub-optimal segment length assignment for the modified DAG (which is

achieved by merging the lightly loaded processors) τ ′i .

4.3 Merging Processors Assigned to Different DAGs

The merging process described in the previous subsections may significantly reduce the total num-

ber of lightly loaded (energy-inefficient) processors. However, due to the federated scheduling

limitation, one (or more) lightly loaded processor(s) for each DAG may still not get paired with

just because it (they) cannot find a good “partner” that was assigned the same DAG task. In this

subsection, we further select the lightest loaded unmerged processors of each DAG (after intra-

DAG merging) as a candidate, and perform inter-DAG merging under a similar approach; i.e.,

calculate all pairwise energy savings and greedily merge the pairs with maximum possible power

saving.

43

Note that different tasks may have different periods, sporadic release patterns, and execution pat-

terns (segment lengths after decomposition), such that we cannot simply cumulate the execution

speeds with Equation (3.13) when calculating the new speed pattern for power consumption upon

inter-DAG merging. In this section, we propose a fast algorithm to estimate the average energy

consumption of the two processors from two different DAG tasks after merging them into one

processor, with (potential) non-synchronized release.

With respect to the unknown phase difference between the two DAGs, we assume that all phases

are equally likely to occur, and model the speed patterns of them as two random processes Si(t)

and Sj(t), where t ∈ [0,+∞). Power consumption of the merged processor at time instant t is:

ei,j(t) = β + α · (Si(t) + Sj(t))γ. (4.1)

The expectation of ei,j(t) over t ∈ [0,+∞) is:

E (ei,j(t)) = β + α · E ((Si(t) + Sj(t))γ)

{The values of S1(t) and S2(t) are finite}

= β + α
∑
s∈S1,2

s · p(s),

(4.2)

where S1,2 is the (finite) set of values that (S1(t) + S2(t))γ can possibly take, which can be calcu-

lated as:

S1,2 =
{

(sl1 + sl
′

2)γ|1 ≤ l ≤M1, 1 ≤ l′ ≤M2

}
,

44

and p(s) refers to the probability of the value s ∈ S1,2; i.e.,

p(s) =
∑

1≤l≤M1

∑
1≤l′≤M2

1

M1M2

· δ(s, (sl1 + sl
′

2)γ).1

The key to calculating average power consumption is to identify all the possible execution speeds

(sum of a pair of speeds, each of which is selected from the set of possible execution speeds of

the two processors being merged), and the likelihood (or joint distribution) of this speed to occur

according to the original execution patterns. We calculate the average power consumption because

in a real-time system energy saving scheme for the average behavior (while guaranteeing the worst

case requirements) seems more beneficial in terms of energy saving.

4.4 Experiment Under Multiple Merging of Processors

In this section, we show the improvement in power consumption using our proposed technique of

multiple merging among the processors. We generate the DAGs using the Erdos-Renyi method [42]

(refer to Section 3.5 for details). We compare our results with a simple baseline that was studied

in [130]. This baseline approach studied a greedy slack stealing scheduling (GSS) approach for

energy minimization for an application consisting of inter-dependent sequential tasks. While those

dependencies among the tasks were represented by a DAG, the model consists of a single DAG

and does not consider recurrent tasks. We can consider that approach for scheduling one DAG. As

the work in [130] did not consider parallel task and we consider this work as a baseline to compare

with our work, in order to provide a fair comparison it is required to modify the power and system

models and the graph model used in [130].

Regarding the power model, first, [130] did not consider the processor static power dissipation.

1δ(s, (sl1 + sl
′

2)
γ) = 1 if s = (sl1 + sl

′

2)
γ , and = 0 else-wise.

45

Second, [130] considered two real processor models, (a) the Transmeta model and the (b) Intel

XScale model (refer to Subsection 2.3 in [130]). Both of them provide a set of voltage/speed

levels. But in our model, we have considered continuous frequency scheme. So while executing

the GSS algorithm proposed in [130], we use the energy model used in Equation (2.1). We will

assume that whenever a processor is introduced in the system it always remains on. We will also

consider minimum inter arrival separation (i.e. period) for a DAG. We make these assumptions in

order to incorporate the static power consumption according to Equation (3.8).

Regarding the graph model, [130] considered three different kinds of vertices: computation nodes,

AND nodes, and OR nodes (refer to Subsection 2.1 in [130]). Here the computation nodes are

labeled by two attributes, ci and ai, which denotes the maximum and average computation require-

ment for the corresponding node. AND nodes and OR nodes do not have any such attributes. An

AND node can be executed after all of its predecessors finish execution. Similarly, all of its suc-

cessors can start execution after it finishes execution. But for the OR nodes, it depends on only

one of its predecessors. Similarly only one of its successors depends on this node. However, in

our work, we have considered only the computation nodes with only one attribute, their worst-case

execution time. In order to provide a fair comparison, we change the graph model used in [130]

according to ours. So we will consider the DAG where each node will be considered as a computa-

tion node. Instead of two, there will be only one attribute cji which denotes maximum computation

requirement for the nodeN j
i . We also consider the precedence constraints among the computation

nodes. These evaluation are conducted considering the homogeneous platform.

In this subsection, we will evaluate the performance of the technique proposed by us and the

technique proposed in [130] based on power consumption. We vary two parameters (i) task periods

(utilization) (Subsubsection 3.5.1.1) and (ii) number of nodes in each DAG task (Subsubsection

3.5.1.2) and will use the same set of DAGs. In this subsection, we compare the average power

consumption considering the following schemes:

46

• No Power Management (where every task executes at full speed)

• Greedy Slack Stealing (GSS) algorithm, denoted by GSS-Zhu;

• Federated scheduling with intra-DAG processor merging (each processor to be merged only

once) (Subsection 3.4.1)

• Federated scheduling with intra-DAG processor merging (each processor can be merged

multiple times) (Section 4.1)

• Recalculation of the segment lengths later to the intra-DAG processor merging, where lengths

of segments are determined by the proposed convex optimization (Section 4.2)

• Shared scheduling with inter-DAG processor merging (Section 4.3);

4.4.1 The Effect of Varying Task Periods or Utilization

Here we have compared the performance of intra-DAG processor merging with single and multiple

merging, inter-DAG processor merging, and the recalculation of the segment lengths after applying

the intra-DAG processor merging by varying the minimum inter-arrival separation for each task as

described in Section 3.4. We use the same settings, the number of nodes within each DAG task is

30. We show the average power consumption in Figure 4.3(a).

Similar to the phenomenon we have noticed in the previous chapter (Figure 3.7(a)) the average

energy consumption is directly proportional to the average task utilization. The results in Figure

4.3(a) indicate that our scheduling algorithm is superior to the GSS. Total energy consumption

by the intra-DAG processor merging (only one merge) is significantly less than the GSS, which

is further reduced by allowing multiple merging and recalculating the optimal segment length

after merging. In particular, the energy consumption by the intra-DAG processor merging (only

47

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

6

8

10

12

14

16

18

20

22

24

26

 Average Task Utilization, k

 P
o

w
e

r
C

o
n

s
u

m
p

ti
o

n
 [

W
a

tt
]

No Power Management

 GSS−Zhu

Intra−Merge Among DAG (Once)

 Sub optimal Segment length

 Intra−Merge Among DAG (Multiple)

Inter−Merge among DAGs

(a) Comparison of power consumption with different ap-
proaches for DAGs with a fixed number of nodes as 30.

10 15 20 25 30 35 40 45 50 55
4

6

8

10

12

14

16

18

Number of Nodes

 P
o

w
e

r
C

o
n

s
u

m
p

ti
o

n
 [

W
a

tt
]

No Power Management

 GSS−Zhu

Intra−Merge Among DAG (Once)

 Sub optimal Segment length

 Intra−Merge Among DAG (Multiple)

Inter−Merge among DAGs

(b) Power consumption comparison with different ap-
proaches for tasks with harmonic periods.

10 15 20 25 30 35 40 45 50 55

6

8

10

12

14

16

18

20

22

24

Number of Nodes

 P
o

w
e

r
C

o
n

s
u

m
p

ti
o

n
 [

W
a

tt
]

No Power Management

 GSS−Zhu

Intra−Merge Among DAG (Once)

 Sub optimal Segment length

 Intra−Merge Among DAG (Multiple)

Inter−Merge among DAGs

(c) Power consumption comparison with different ap-
proaches for tasks with arbitrary periods.

Figure 4.3: Power consumption comparisons for task sets for various settings under multiple merg-
ing.

one merge) is at least 44.85% less than the GSS. It is easily observable that the improvements

to the average power consumption are huge when our convex optimization based methods find a

better execution pattern after intra-DAG processor merging (only one merge) and the improvement

is larger when the utilization of the task is high. This phenomenon makes sense as the objective

function described in Equation (3.8) does not lose its convexity after intra-DAG processor merging.

48

So, re-applying a gradient-based method for determining sub-optimal segment length assignment

(after merging Processors) yields a better result in further reducing the power consumption. On

average, it leads to a reduction of the power consumption ranging from 59.41% 63.09%.

4.4.2 Varying Numbers of Nodes in a DAG Task

Now we will show the comparison of the above-mentioned algorithms by varying the number of

nodes (from 10 to 55, with an increment of 5). We randomly generate 100 task sets and report the

average power consumption over the 100 sets. Again we will consider both harmonic (reported in

Figure 4.3(b)) and arbitrary periods (reported in Figure 4.3(c)).

The improvements observed in energy efficiency with our proposed techniques under varying num-

ber of nodes are similar to that in the previous set of experiments (varying task utilization with a

fixed number of nodes). Figures 4.3(b) and 4.3(c) suggest that both versions (single and multiple)

of intra-DAG processor merging performs significantly better than the GSS algorithm. Intra-DAG

processor merging results in at least 23.3% (single merge) and 25.05% (multiple merges) lower

energy consumption compared to the GSS for the harmonic periods. When considering the arbi-

trary periods, this reduction becomes 42.22% (single merge) and 45.83% (multiple merges). If the

gradient based methods is considered to find a better execution pattern after intra-DAG processor

merging (single merge), it brings further improvements in energy consumption. On average, for

the harmonic task periods, it leads to a reduction of the power consumption ranging from 27.8% to

52.94% and for the arbitrary task periods the range is 53.55% to 68.22%. All these results indicate

that our proposed techniques outperform the GSS algorithm in terms of energy efficiency.

Finally, Figures 4.3(b) and 4.3(c) report that the task sets with harmonic periods result in lower

energy consumption compared to the task sets with arbitrary periods. Also, for the DAG task sets,

we have observed that there are no significant dependencies between the energy consumption and

49

the number of nodes.

4.5 Conclusion

In Chapter 3, we have proposed a power-sub-optimal scheduler under the condition of federated

scheduling and task decomposition. Based on the solution under federated scheduling, we have

also presented a greedy heuristic to improve power efficiency further. In this chapter, we improve

the performance (w.r.t. energy saving) of the greedy algorithm by allowing multiple merging to any

specific processor. Finally, we have discussed the inter-task processor merging, where we select

the lightest loaded unmerged processors of each DAG as candidates. These candidates are merged

with lightly loaded processors from a different DAG.

50

CHAPTER 5: ENERGY-EFFICIENT PARALLEL REAL-TIME

SCHEDULING ON CLUSTERED MULTI-CORE

Energy-efficiency is a critical requirement for computation-intensive real-time applications on

multi-core embedded systems. Multi-core processors enable intra-task parallelism, and in this

chapter, we study energy-efficient real-time scheduling of constrained deadline sporadic parallel

tasks, where each task is represented as a directed acyclic graph (DAG). We consider a clustered

multi-core platform where processors within the same cluster run at the same speed at any given

time. A new concept named speed-profile is proposed to model per-task and per-cluster energy-

consumption variations during run-time to minimize the expected long-term energy consumption.

The proposed energy-aware real-time scheduler is implemented upon an ODROID XU-3 board to

evaluate and demonstrate its feasibility and practicality. To complement our system experiments

in large-scale, we have also conducted simulations that demonstrate a CPU energy saving of up to

67% through our proposed approach compared to existing methods.

5.1 Introduction

Multi-core processors appear as an enabling platform for embedded systems applications that

require real-time guarantees, energy efficiency, and high performance. Intra-task parallelism (a

task can be executed on multiple cores simultaneously) enables us to exploit the capability of

the multi-core platform, and facilitates a balanced distribution of the tasks among the processors.

Such a balanced distribution leads to energy efficiency [100]. Directed Acyclic Graph (DAG) task

model [109] is one of the most generalized workload model for representing deterministic intra-

This chapter has been previously published at IEEE Transactions on Parallel and Distributed Systems and available
at Bhuiyan, A., Liu, D., Khan, A., Saifullah, A., Guan, N., & Guo, Z. (2020). Energy-efficient parallel real-time
scheduling on clustered multi-core. IEEE Transactions on Parallel and Distributed Systems, 31(9), 2097-2111.

51

task parallelism. Recently, quite some effort has been spent on developing real-time scheduling

strategies and schedulability analysis of DAG tasks, few to mention [102, 17, 81, 30, 109, 82, 16].

There are several real-world application that uses the DAG model. For example, the work in [102]

studies problems related to scheduling parallel real-time tasks, modeled as DAG, on multipro-

cessor architectures. In a homogeneous computing environment, a low-complexity compile-time

algorithm for scheduling DAG tasks is proposed in [68]. Another example would be systems that

control asynchronous devices, such as the local-area network adapters that implement real-time

communication protocols.

Since many of those applications are battery-powered, considering energy-efficient approaches for

designing such a platform is crucial. Thanks to the fact that modern generation processors support

dynamic voltage and frequency scaling (DVFS), where each processor can adjust the voltage and

frequency at runtime to minimize power consumption, per-core energy minimization becomes

possible during run-time. Despite the hardness of the problem [7], a significant amount of work

has considered power minimization for non-parallel tasks on a multi-core platform (refer to [9]

for a survey). Regarding parallel tasks, Guo et al. studied energy-efficient real-time scheduling

for DAG tasks as an early research effort [67]. They adopted the federated scheduling and task

decomposition framework [109] for minimizing system energy consumption via per-core speed

modulation. As the only step (that we are aware of) towards energy-aware scheduling of real-

time DAG tasks, they targeted an exciting problem and laid some of the foundations of this work.

However, the attention of [67] is restricted to implicit deadline tasks with a system model of per-

core DVFS.

Unfortunately, per-core DVFS becomes inefficient as it increases the hardware cost [70]. For

balancing the energy efficiency and the hardware cost, there is an ongoing trend to group proces-

sors into islands, where processors in the same island execute at the same speed. For example,

52

a big.LITTLE platform (e.g., ODROID XU-3 [94]) consists of high performance (but power-

hungry) cores integrated into ‘big’ clusters and low-power cores into ‘LITTLE’ clusters. Such

a platform executes several real-life applications with heavy computational demands (e.g., video

streaming [86]) in an energy-efficient manner. Apart from the energy consumption issue, a multi-

core platform enables task execution with high-performance demand and tight deadlines, essential

for computation-intensive real-time systems, e.g., autonomous vehicles [77]. Such kind of system

balances the energy efficiency and hardware cost compared to the traditional (with individual fre-

quency scaling feature) multi-core models. The scheduling problem becomes highly challenging

on such platforms because:

(i) The relationship between the execution time, frequency, and the energy consumption is nonlin-

ear, making it highly challenging to minimize energy consumption while guaranteeing real-time

correctness, i.e., none of the tasks miss their deadline.

(ii) Existing solution (e.g., [67]) relies on the assumption that each processor can freely adjust its

speed. That solution performs poorly as the assumption is no longer valid under a more realistic

platform model considered in this paper.

(iii) The speed of a cluster becomes unpredictable when shared by multiple tasks with sporadic

release patterns.

In this chapter, we propose a novel technique for energy-efficient scheduling of constrained dead-

line DAG tasks in a clustered multi-core system. Specifically, we make the following contributions:

• We consider a more practical cluster-based system model where the cores must execute at the

same speed at any time instant within each cluster.

• To better handle constrained deadlines, one need to capture the gaps between deadlines and

upcoming releases, as well as handling sporadic releases. Considering a continuous frequency

53

scheme, we first propose a novel concept of speed-profile to present the energy-consumption be-

havior for each task as well as each cluster, such that they could guide task partitioning in an

energy-efficient manner. An efficient greedy algorithm is proposed to partition DAG tasks accord-

ing to the constructed speed-profiles.

• To evaluate the effectiveness of our proposed technique, we implement it on the ODROID XU-3

board, a representative multi-core platform for embedded systems [94]. The experiments report

that our approach can save energy consumption by 18% compared to a reference approach. For

larger-scale evaluation, we perform simulations using synthetic workloads and compare our tech-

nique with two existing baselines [67, 130]. The simulation results demonstrate that our method

can reduce energy consumption by up to 66% compared to the existing ones under the cluster-based

platform setting.

The rest of the chapter is organized as follows. Section 5.2 discusses related work including a de-

tailed comparison with the approaches presented in Chapter 3 and Chapter 4 Section 5.3 describes

the background. Section 5.4, describes the importance of creating a speed-profile for an individ-

ual task and the whole cluster. Section 5.5 discusses the approaches to create the speed-profile

(considering both the continuous and discrete frequency mode) for each task. In this section, we

also propose a greedy algorithm to allocate multiple tasks in the same cluster. Section 5.6 and 5.7

presents the experimental and simulation results. Section 5.9 concludes this chapter.

5.2 Related Work

Much work has been done aimed at energy-efficient scheduling of sequential tasks in a homoge-

neous multi-core platform (see [9] for a survey). Considering the mixed-criticality task model and

varying-speed processors, the works on [92, 20, 21, 65, 26] proposed an approach to handle the

54

energy minimization problem. The work in [41, 39, 85, 6, 40, 91] presented an energy-efficient ap-

proach for the heterogeneous platform. Considering the real-time tasks in clustered heterogeneous

platforms, the work in [41] studied the partitioned EDF scheduling policy, while [40] proposed

an optimal task-core mapping technique that is fully-migrative. Considering the heterogeneous

multi-core platform, a two-phase algorithm was proposed by [6]. In the first phase, they proposed

a tasks-core allocation approach with the aim of reducing the dynamic energy consumption, while

the second phase seeks for a better sleep state to reduce the leakage power consumption. A low

overhead, DVFS-cum-DPM enabled energy-aware approach, HEALERS, was proposed by [91].

However, none of them considered the intra-task parallelism. Considering a clustered heteroge-

neous MPSoC platform, a migrative cluster scheduling approach was proposed by [86]. In this

approach, run-time migration (within different cores in the same cluster) for a task is allowed to

improve resource utilization. The work in [113] studied the technique to utilize the parallelism in

a hard real-time streaming application (represented as a Synchronous Data Flow (SDF) graph) in

a clustered heterogeneous platform. Till date, considering both the intra-task parallelization and

power minimization has received less attention. A greedy slack stealing algorithm is proposed

in [130] that deals with task represented by graphs but did not consider the periodic DAGs. As-

suming per-core DVFS, [37] provided the technique to combine DVFS and DPM. Considering

the real-time jobs (represented as a DAG) in cloud computing systems and in a heterogeneous

multi-core platform, the work in [117, 118] studied a QoS-aware and energy-efficient schedul-

ing strategy. They proposed a scheduling policy that utilizes per-core DVFS. With the aim of

improving energy-efficiency in a heterogeneous real-time platform, [115] proposed a combined

approach considering the approximate computation and bin packing strategy. [103] investigated

the energy awareness for cores that are grouped into blocks, and each block shares the same power

supply scaled by DVFS. Benefits of (in terms of power saving) intra-task parallelism is proven

theoretically in [100]. Considering the fork-join model, [101] reported an empirical evaluation of

the power savings in a real test-bed. Based on level-packing, [124] proposed an energy efficient

55

algorithm for implicit deadline tasks with same arrival time and deadline.

None of these works allows intra-task processor sharing considering the sporadic DAG task model,

which is discussed in Chapter 3 and Chapter 4. Compared to the last two chapters, we consider

significantly different settings (w.r.t. task model, platform, real-time constraints (deadlines), solu-

tion techniques, and the evaluation approach). First, in Chapter 3, we have considered a simplified

model where only one DAG task executes at a time. In Chapter 4, we improve the energy sav-

ings by allowing inter-task processor sharing. However, both of these works assumed that the

number of cores are unlimited. Second, both of these approaches in Chapter 3 and Chapter 4 as-

sumed per-core speed scaling. However, many of the existing platforms (e.g., ODROID XU-3)

do not support such speed scaling—speeds of processors under the same cluster must execute at

the same speed. As the number of cores fabricated on a chip increases, per-core speed scaling

design is less likely to be supported due to the inefficiency on hardware levels [70]. Third, both of

these approaches have studied only the implicit deadline tasks and did not consider the constrained

deadline tasks. Hence, the non-negligible idle gaps between the task deadline and its next release

remain un-utilized. Finally, the evaluations in these approaches were done based on simulations

without any implementation on a real platform.

5.3 Background and Existing Concepts

In this section, we describe some existing concepts and techniques for handling real-time parallel

task scheduling, and that constitute an initial step for our proposed work.

Task Decomposition. The well-known task decomposition technique [109] transforms a parallel

task τi into a set of sequential tasks as demonstrated in Figure 5.1(b). Upon task decomposition,

each nodeN l
i ∈ τi is converted into an individual sub-task with its scheduling window (defined by

56

its own release time and deadline) and execution requirement (cli). The allocation of release time

and deadline respect all the dependencies (represented by edges in the DAG). Considering that a

task is allowed to execute on an unlimited number of cores, starting from the beginning, a vertical

line is drawn at every time instant where a node N l
i starts or ends. So the DAG is partitioned

into several segments which may contain single/multiple thread(s). Threads assigned to the same

segment share equal amount of execution length; e.g., N 3
i , N 4

i , and N 5
i all have 2-time units

assigned to the 3rd segment, as demonstrated in Figure 5.1(b).

Segment Extension. Task decomposition may put unnecessary restriction to a node’s deadline,

e.g., the decomposition of the DAG in Figure 5.1(a) restricts N 3
i within the 2nd and 3rd segment.

To eliminate such unnecessary restriction and allow N 3
i to execute in the 4th segment, segment

extension should be applied, e.g., the green rectangle for N 3
i in the 4th segment in Figure 5.1(b).

Ni1=4

Ni2=3 Ni3=3

Ni4=2 Ni6=4

Ni5=2

(a)

Ni1

Ni2

Ni1

Ni
3 Ni

3

Ni4 Ni
6

Ti = 12
ti1= 3 ti2= 1 ti4= 4ti3= 2

Ni5

(b)

Ni
3

Figure 5.1: (a) A DAG task, τi (b) transformed DAG τi after applying task decomposition. Both of
them are adopted from [67].

Intra-Task Processor Merging. After applying task decomposition and segment extension upon

a DAG task τi, some of these cores (where τi is allocated) can be very lightly loaded. Those core

cause massive leakage power consumption in the long run and should be avoided when necessary.

Intra-task merging [67] seeks to merge those cores to gain overall energy efficiency by reducing

the total number of active cores. For example, in Figure 5.1(b), the third core (executing N 5
i) is

lightly loaded, and thus it is better to merge all the execution into the second core and shut it off

57

completely. Such a reduction on the number of active cores minimizes leakage power consumption

as well as the total number of clusters.

5.4 Speed-Profile for Task and Cluster

This section discusses how different tasks share a cluster where all processors in a cluster execute

at the same speed. When multiple tasks share a cluster, they may not align well due to sporadic

releases and different periods. In a cluster-based platform, the processor having the maximum

speed dominates the others in the same cluster. Hence, existing energy-saving techniques may per-

form poorly in a cluster-based platform. To tackle this problem, we propose a new concept called

speed-profile. We provide the definition of speed-profile and its motivation in Subsection 5.4.1. In

Subsection 5.4.2, we describe how speed-profiles are handled when two tasks are partitioned into

the same cluster.

5.4.1 Speed-Profile for Each DAG

Interesting energy-saving techniques (e.g., segment extension) have been proposed in [67] for the

implicit deadline tasks. For the constrained deadline tasks, this technique becomes incompetent

because of the non-negligible idle gaps between the task deadline and its next release. For example,

consider the task τi in Figure 5.1(b) with Di = 10 and Ti = 12. Segment extension can stretch

N 3
i to the end of the 4th segment but cannot utilize the idle time of 2 units. Besides, the sub-

optimal solution provided in [67] becomes non-convex (in a convex function, we can find the global

maximum or minimum, for some variables of this function, which does not hold for a non-convex

function) in a cluster-based platform (see Lemma 7).

Lemma 7. In a cluster-based platform, the convex optimization problem constructed in Lemma 3

58

(in Chapter 3) becomes non-convex.

Proof. The following set of constraints ensure the real-time correctness for each node N l
i ∈ τi,

i.e., N l
i receives enough time to finish execution within its scheduling window.

∀l : N l
i ∈ τi ::

dli∑
j=bli

tcjsi,j ≥ c
N l

i
i . (5.1)

We introduce the following inequalities to bound the total length for all segments in task τi:

Z∑
j=1

tcj ≤ Ti. (5.2)

Any value of execution speed and segment length ensures real-time correctness if Equation (5.1)

and (5.2) are respected. However, the in Lemma 3, we have considered that the execution speed of

a node, N l
i , is constant within its scheduling window (from bli to dli), and can be represented by a

function of nodes execution requirement and its scheduling window. Besides, we have considered

that a single DAG executes at a time, and, hence the execution speed of a node is not affected by

the execution speed of other nodes (of other tasks). In this work, we consider the cluster-based

platform, and the execution speed of a node depends on the execution speed of other nodes (of

other tasks) in the same cluster. As a result, we cannot express the execution speed of a node as a

function of its execution requirement, resulting in quadratic inequality constraints (Equation (5.1)).

This makes the optimization problem non-convex.

Due to the characteristics of a clustered platform, at each instant, all cores in a cluster must execute

at the speed of the fastest one. If these tasks are not well aligned (concerning their execution

speed), the cluster as a whole will perform poorly (w.r.t. energy efficiency). Assigning tasks with

similar speed shape on the same cluster may not be an energy efficient option (due to their sporadic

59

releases pattern). Figure 5.2 and Example 8 demonstrates one such scenario.

Example 8. In this example, we describe how the sporadic arrival pattern of a task influences the

energy efficiency of the whole cluster. Consider two tasks τ1 and τ2 with the predefined necessary

speed of execution on two processors each, to be partitioned on to the same cluster (of four pro-

cessors). In such a case, the resultant speed pattern (τ12) of the cluster may vary for their (τ1 and

τ2) different release offsets. This is because, the processors (of the same cluster) must run at the

maximum/larger of the two individual speeds at each instant (to satisfy platform model restrictions

while guaranteeing the correctness). Figure 5.2(a) shows the synchronous release case, where the

whole cluster could run at 0 speed between [3,4) and [7,8). While Figure 5.2(b) shows the scenario

when τ1’s initial release is delayed by one-time unit, where the whole cluster will need to run at a

higher speed (of 0.8) most (75%) of the time and thus consumes more energy.

3

8

7

(a) (b)

τ1

τ2

τ12

4 8

8

8

4

4

62

2 6

1 4 5

743

τ1

τ12

0.8

0.3

0.8

0.3

0.3

0.8

0.8

0.3

0.8

0.3

3 7

3 7

8

τ2

4 62

0.8

0.3

3 7

0

0

0

0

0 0
t t

t

t t

t

s

s

ss

s

s

Figure 5.2: Impact of different release offset when multiple tasks share the same cluster.

In this example, from τ2’s perspective, direct energy reduction with existing per-task WCET based

techniques may not help much, as it may be another task dominating the speed of the whole cluster

most of the time. The critical observation is that, due to the extra restriction of the more realistic

platform model, the speed of a cluster is determined by the heavier DAG running on it, as well as

how synchronous are the releases, which could be entirely random. Moreover, even a task finishes

60

its execution early (say, τ2 requires no execution over [5,7)), we may not be able to reduce the

cluster speed at all.

To address this issue, we propose a novel concept of speed-profile to capture the energy consump-

tion behavior of all possible alignment scenarios.

Definition 1. The Speed-profile of a task describes the percentage/likelihood of all possible speeds

that the task may execute at over a period. It is a random variable S with an associated probability

function (PF) fS(s) = P(S = s), where s is a speed from the finite set of possible speeds, and

fS(s) represents the portions of the time (likelihoods) when it is running at speed s.

Example 9. Let us consider a task τi with Ti = 15 executing at a speed of 0.6 for 5 time units (not

necessarily to be continual), and at a speed of 0.5 for the rest of the time. The speed-profile of the

task is thus Si =

 0.6 0.5

5/15 10/15

 =

 0.6 0.5

0.33 0.67

. At any specific time, t, there is about 33%

probability that the cores are running at the speed of 0.6 unit and about 67% probability that the

cores are running at the speed of 0.5 unit.

It is evident that from another task’s point of view, the speed-profile provides probabilistic infor-

mation on how the task of interest would restrict the lower bound to the speed of the cluster over

time. As the alignment of releases between any two tasks is unknown, we assume in the future

analysis that any phase difference is of equal chance over the long run.

Remark 6. The speed-profile Si of a given task τi remains the same for an initial phase (release

offset) φi ≥ 0. Regarding inter-task combinations, we assume uniform distribution for the phase

of any task; i.e., φi ∼ U [0, Ti).

Subsection 5.5.1 details the calculation for task speed-profile. Here, we describe the calculation of

the cluster speed-profile when two tasks are combined on to the same cluster.

61

5.4.2 Speed-Profile for the Cluster Containing Multiple DAGs

As stated earlier, the property of the clustered platform and sporadic arrival pattern of a task makes

the exact speed of the cluster unpredictable at a specific time instant (see Figure 5.2 and Example

8). As a result, when two tasks τi and τj (with speed-profiles) are being considered allocating to the

same cluster, we need to construct the merged speed-profile of the cluster (executing them both).

To perform such calculation, we introduce a special � operator that takes the maximum of the two

profiles on a probability basis1.

Definition 2. The special operator � operates on two (or more) random variables X and Y .

During this operation, each entry Xi ∈ X is compared with each entry Yj ∈ Y and the value Zij

is calculated as Zij = max(Xi,Yj), with a combined (multiplied) probability. If there are multiple

occurrences of an entry, all of them are merged into a single entry, and their associated probability

are summed together.

Example 10. Let Si =

 6 5

0.4 0.6

, Sj =

 6 2

0.4 0.6

. Then Si�Sj =

 6 6 6 5

0.16 0.24 0.24 0.36

 =

 6 5

0.64 0.36

 .

Note that we allocate two different DAGs (with same/different periods) to the same cluster. The

speed-profile indicates how long a DAG executes at different speeds within its deadline, i.e., the

probability that a DAG executes at a specific speed. The task’s period becomes irrelevant as speed-

profile is a probability-based measurement. Once τi and τj are allocated to the same cluster, we

use Sij to denote the speed-profile of the cluster (see Example 10).

In summary, energy minimization in a cluster-based platform is challenging because of sporadic

1Although the appearance of the proposed operator is identical to [89], the calculation is quite different. This is
due to the “larger value dominating” nature of the platform model considered in this paper.

62

release pattern and the idle gaps between a task deadline and its period. To tackle these problems,

we have introduced the concept of speed-profile for both an individual task and a cluster where

multiple tasks can be allocated.

5.5 Task Partitioning Algorithm

The ultimate goal of the paper is to partition all DAGs into clusters, such that overall platform

energy consumption is minimized. Recall that on a clustered multiprocessor platform, at a given

instant, all processors in the same cluster must execute at the same speed. Due to this property of

a cluster-based platform, if two tasks that are not well-aligned (in terms of execution speed) are

allocated to the same cluster, it will result in reduced energy efficiency. So, we have proposed the

concept of speed-profiles (refer to Section 5.4) which is a tool to measure the potential long-term

energy saving of a cluster when partitioning any pair of DAGs into this cluster. So far we have

discussed the importance of the concept of speed-profile but did not mention how to create them

given a DAG task, which is the focus on Subsection 5.5.1. In Subsection 5.5.2, we describe the

task-to-cluster partitioning algorithm.

5.5.1 Creating the Speed-Profile of a Task

Given a DAG task τi, we provide two approaches to create the speed-profile Si.

Approach A: Considering the Maximum Speed from all the Cores. Upon applying the task de-

composition, segment extension, and intra-task processor merging techniques (Section 5.3), some

vital information (e.g., the speed of a core at a specific time and number of cores required) becomes

available. This information plays a role to calculating the speed-profile Si of task τi. At any time

instant t, we consider the maximum speed from all the cores available. It ensures the sufficient

63

speed so that even the heaviest node can finish execution within its scheduling window (defined

after task decomposition). We consider constrained deadline (i.e., Di ≤ Ti), so the task must have

to finish by Di and rest of the time is an idle slot. For each segment j ∈ τi, (summation of the

length of these segments is equal to Di), we create a pair (si,j, pi,j). For the jth segment, si,j and

pi,j respectively denote the maximum execution speed and the probability that the cluster will run

at this speed. Let, M cores are allocated to τi. At jth segment, we calculate si,j and pi,j as follows:

si,j = max
k≤M
{si,j,k}, pi,j =

tcj
Ti
.

Here, si,j,k denotes the speed of kth core at jth segment and tcj is the length of jth segment. The

speed-profile Si will be:

Si =

si,1 si,2 · · · si,z 0

pi,1 pi,2 · · · pi,z (Ti −Di)/Ti

 .

The last pair reflects the fact that the core remains idle for the (Ti − Di) time units at the end of

each period.

Example 11. Consider a task τi with Ti = 15, Di = 12 and Ci = 6.5. Let, the task is partitioned

into three segments of length 5, 7 and 3 time units respectively, where the processor is executing at

a (maximum) speed of 0.6 in the first segment, speed of 0.5 in the second segment, and remain idle

in the third segment. The speed-profile is:

Si =

 0.6 0.5 0

0.33 0.47 0.2

Note that, if a cluster contains a single task τi, then Si also represents the cluster speed-profile.

If τi and τj (or more tasks) are executing on the same cluster, then the technique described in

64

Subsection 5.4.2 needs to be applied before making any choices. The greedy choosing approach

for task partition is detailed in Subsection 5.5.2.

Approach B: A Single Speed Throughout. Theorem 2 of Chapter 3 shares a valuable insight:

The total energy consumption (assuming processor remains on) is minimized in any scheduling

window when execution speed remains uniform (the same) throughout the interval. Motivated by

it2, we propose another approach of selecting a single speed for a DAG task (job) during the whole

duration from its release until its deadline.

In this approach, we consider the maximum workload (or the execution requirement) from all the

cores available and determine the aggregated workload. Upon dividing the aggregated workload by

the deadline, we get the desired single speed. Let M cores be allocated to task τi. At jth segment,

the execution requirement of the kth core is denoted by wi,j,k, which is calculated as follows:

wi,j,k = si,j,k × tcj.

We determine the maximum execution requirement as follows:

wi,j = max
k≤M
{wi,j,k}.

Let Z denotes the total number of segments in τi. The maximum total workload wi and the desired

single speed si is calculated using the following equations:

wi =
Z∑
j=1

wi,j, si =
wi
Di

. (5.3)

2Theorem 2 considered that the speed remains constant within a scheduling slot for each processor. Also, they
assumed per core speed scaling and calculated the speed within each scheduling slot through a convex optimization
method. This paper considers the clustered platform where the objective function becomes non-convex (see Lemma
7) and thus the existing approach is inefficient.

65

Other than the idle pair (0, (Ti − Di)/Ti), we consider a single speed throughout the deadline so

only a single pair (si, pi) is required, where si = wi/Di and pi = Di/Ti.

Example 12. Consider the task described in Example 11 (Ti = 15, Di = 12 and Ci = 6.5). It

must finish 6.5 unit of workloads within 12-time units. Using this approach its speed-profile is:

Si =

0.54 0

0.8 0.2

 .

Lemma 8. If a task τi executes according to the speed-profile Si, it guarantees real-time correct-

ness.

Proof. We have shown in Chapter 3 that the following constraint guarantees the real-time correct-

ness:

∀l : N l
i ∈ τi ::

dli∑
k=bli

tckS
Ml

i
k ≥ c

N l
i

i . (5.4)

Here, bli and dli denotes the release time and deadline of N l
i , Ml

i denotes the node-to-processor

mapping and SM
l
i

k is the speed of the processor (where N l
i is allocated) at kth segment. Here, at

any time instant t, we choose either the maximum speed from all the cores running on the same

cluster (Approach A) or a single speed that can guarantee the maximum execution requirement for

the whole duration up to τi’s deadline (Approach B). So, at any time instant, the cluster speed is

larger or equals to the speed of any individual core. Considering Equation (5.1) and (5.4) we can

deduce that:

∀l : N l
i ∈ τi ::

dli∑
k=bli

tcksi,k ≥
dli∑
k=bli

tckS
Ml

i
k ≥ c

N l
i

i .

So, we conclude that Executing a task with speed according to the speed-profile Si guarantees

real-time correctness.

66

An Efficient Approach for Implicit Deadline System. By adopting simple modification in Equa-

tion (5.3), it is possible to apply the process mentioned above for the implicit deadline tasks also.

The workload wi should be divided by the period instead of the deadline. We consider the same

speed through the task period, so only a single pair (si, pi) is required, where si = wi/Ti and

pi = 1.

Example 13. Now we create the speed-profile for the task described in Example 11 and 12 con-

sidering implicit deadline. So it has Ti = Di = 15 and Ci = 6.5. Let’s assume that it is executed

at a speed of 0.6 for 5-time units, at a speed of 0.35 for 10-time units. According to Approach A,

the speed-profile is:

Si =

 0.6 0.35

0.33 0.67

 ,

and according to Approach B, the speed-profile is:

Si =

0.43

1

 .

5.5.2 Task Partition: Greedy Merging with Speed-Profiles

We are now equipped with tools (speed-profiles) to measure the potential long-term energy saving

of a cluster when partitioning any pair of DAG tasks into it. This subsection describes the scheme

for selecting pair by pair so that the total number of clusters can be significantly smaller than the

total number of tasks.

To select a (task) pair that will share the same cluster, we greedily choose the pair that provides

67

maximum power saving, as depicted in Algorithm 2. Note that we allow the pairing of two DAGs

that are not merged previously. Also, if any task uses more cores than what is available in a cluster,

that task cannot be merged with that cluster. Algorithm 2 creates two empty lists S̄ and S̃ that will

Algorithm 2: Greedy Merging
1: Input: Task-set τ , with speed-profile Si (computed using approach A or approach B) for

each task
2: Output: Speed-profile S̃ (with processor power saving).
3: S̄, S̃ ← ∅ . All the possible/selected speed-profiles;
4: for i = 1 to n do
5: for j = i+ 1 to n do
6: Sij ← Si � Sj; S̄ ← S̄ ∪ Sij;
7: end for
8: end for
9: while ∃Sxy ∈ S̄ and Sxy provides non-zero power saving do

10: Sxy ← the pair from S̄ with maximum power saving;
11: S̃ ← S̃ ∪ Sxy
12: for k = 1 to n do
13: S̄ ← S̄ − Skx − Sxk − Sky − Syk;
14: end for
15: end while
16: return S̃.

contain all the possible and selected speed-profiles (Line 3). Lines 4–8, calculate all the possible

speed-profiles and insert them into S̄ . We greedily select a pair of DAGs that provide the maximum

power saving (calculated using Equation (6.1) and Equation (10) from [67]) and update the list S̄

by removing the pair from any further merging (Lines 9–15). The list S̃ is also updated by adding

the selected pair (Line 11). We conclude by returning the updated list S̃ (Line 16).

Theorem 9. Executing a task with a speed according to the cluster speed-profile guarantees real-

time correctness.

Proof. We have shown in Lemma 8 that a task τi will not miss the deadline if executed according to

its speed-profile Si. If τi share a cluster with another task τj and executes according to the merged

68

(i.e., cluster) speed-profile Sij , then it still guarantees the real-time correctness, because Sij ≥ Si

holds at any time instant.

Remark 7. For n tasks, the time complexity to generate all possible speed-profiles, S̄, is O(n2Z),

where Z is the maximum number of segments of all DAGs in the set after decomposition (related

to the structure and size of the DAGs). Algorithm 2 greedily choose a speed-profile by iterating

through S and then update, which takes O(n2) time as well. Thus the total complexity of the

proposed method is O(n2).

In summary, we have proposed two methods (Subsection 5.5.1) to create the speed-profile for a

constrained-deadline DAG. We also show that if a task executes according to the speed-profile,

it ensures real-time correctness. According to the techniques provided in Section 5.4, we could

evaluate and compare all potential pairs of the combination by calculating the cluster speed-profile

after merging. Finally, Subsection 5.5.2 discussed how to use these speed-profiles to find suitable

partners to share a cluster greedily.

5.6 System Experiments

In this section, we present experimental results conducted on an ODROID XU-3 board. The

platform runs on Ubuntu 16.04 LTS with Linux kernel 3.10.105. It is fabricated with Samsung

Exynos5422 Octa-core SoC, consisting of two quad-core clusters, one ‘LITTLE’ cluster with

four energy-efficient ARM Cortex-A7 and one ‘big’ cluster with four performance-efficient ARM

Cortex-A15. Four TI INA231 power sensors are integrated onto the board to provide real-time

power monitoring for the A-7 and A-15 clusters, GPU, and DRAM. An energy monitoring script,

emoxu3 [50], is used to log energy consumption of the workloads.

DAG Generation. In this experiment, we generate two task sets each with 300 DAGs, and use the

69

widely used Erdos-Renyi [42] method to generate a DAG. We tune a parameter p, that denotes the

probability of having an edge between two nodes. In this experiment, we set p to 0.25 generate

DAGs with an uncomplicated structure. If a disconnected DAG is generated, we add the fewest

number of edges to make it connected. For experimentation, we have considered arbitrary task

periods, and it is determined using Gamma distribution [58]. We set the periods with Ti = Li +

2(Ci/m)(1 + Γ(2, 1)/4) [109]. Here, Li is the critical path length of τi, calculated according to the

definition of Li (refer to Section 2.1.1).

After generating the topology of each DAG of a set, we partition them into two subsets according

to the proposed approach, one to the ”big” and the other one to the ”LITTLE” cluster, and measure

the energy consumption over the hyper-period of all DAGs. We use rt-app [107] to emulate the

workload for each node. rt-app simulates a real-time periodic load and utilizes the POSIX threads

model to call and execute threads. For each thread, an execution time needs to be assigned. In this

experiment, for each node, we randomly select an execution time ranged between [300ms, 700ms].

rt-app itself has a latency that varies randomly between 13− 150ms per thread. Therefore, we add

the maximum latency of rt-app, i.e., 150ms, to the execution time of each thread from an analytical

point of view.

DAG Scheduling. We use the Linux built-in real-time scheduler sched FIFO to schedule the

DAGs. Compared to the other system tasks, DAGs are assigned with higher priorities so that they

can execute without interference. Our approach is also applicable to other preemptive schedulers

which feature the work-conserving property.

Frequency Scaling. According to the frequency/speed-profile (Section 5.5), we use cpufreq-set

program (from cpufrequtils package) to change the system’s frequency online. We use the

ODROID XU-3 board, where scaling-down (up) the frequency of the big cluster takes at most

60 (40)ms, respectively. On the LITTLE cluster, both the operation takes at most 15ms. Due to

70

0 50000 100000 150000 200000 250000
time (ms)

0

50

100

150

200

250

300

350

400

En
er

gy
 C

on
su

m
pt

io
n

(J)

big cluster LITTLE cluster total

600

800

1000

1200

1400

1600

1800

2000

Fr
eq

ue
nc

y
(M

H
z)

big cluster frequency LITTLE cluster frequency

Figure 5.3: The energy consumption and the frequency variation of our proposed approach on
ODROID XU-3.

this delay, the hyper-period of all DAGs becomes large (230s, in this experiment). We detail the

reasons behind this delay in Section 5.8.2.

The Reference Approach. Since no work has studied the same problem considered in this paper,

we do not have a direct baseline for comparison. So, we propose a reference approach based on

the studies for energy-efficient scheduling of sequential tasks [38]. They assigned an operational

frequency to each task, and at run-time, schedule them according to their frequency. In this refer-

ence approach, we compute an operational frequency for each DAG. This frequency stretches out

execution length of these DAGs as much as possible without violating their deadlines. As stated

earlier, the reference approach executes the DAGs with the same partition, but without the merging

techniques proposed in Section 5.5.

Results. The experimental results are plotted in Figure 5.3 and 5.4. In these figures, we show

(i) the energy consumption over the hyper-period (230s), where the three lines show the energy

consumption of the big and LITTLE cluster, and the total system; and (ii) frequency variation

during the run-time, where the diamond and star marks denote the operational frequency of the big

71

0 50000 100000 150000 200000 250000
time (ms)

0

100

200

300

400

500

En
er

gy
 C

on
su

m
pt

io
n

(J)

big cluster LITTLE cluster total

600

800

1000

1200

1400

1600

1800

2000

Fr
eq

ue
nc

y
(M

H
z)

big cluster frequency LITTLE cluster frequency

Figure 5.4: The energy consumption and the frequency variation of the reference approach on
ODROID XU-3.

Table 5.1: Summary of experimental results.

Ours (J) Ref (J) Energy Saving (%)
big cluster 312 389 20
LITTLE cluster 32 38 16
Total 387 472 18

and the LITTLE cluster at a specific time instant, respectively. Note that the GPU and DRAM also

contribute the energy consumption of the total system. Hence, the total energy consumption is a bit

higher than the summation of the contribution of the big and the LITTLE cluster, but it is observed

that there is a negligible difference for the energy consumption of GPU and DRAM between the

two approaches. Besides, it is worth noticing that this energy consumption also accounts for energy

consumption of the operating system.

Table 5.1 summarizes the comparison of the experimental results, where the energy consumption

of the two clusters and the total system is presented, and the energy saving from our approach is

given. As can be seen, our approach consumes 312J and 32J on the big and the LITTLE cluster,

respectively. Comparing to the reference approach, we save energy consumption by 20% and 16%.

72

600 700 800 900 1000 1100 1200 1300 1400
Frequency (MHz)

0.00

0.05

0.10

0.15

0.20
O

cc
u
re

n
ce

 p
ro

b
a
b
ili

ty

LITTLE cluster

Ours
Ref

800 1000 1200 1400 1600 1800 2000
Frequency (MHz)

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18

O
cc

u
re

n
ce

 p
ro

b
a
b
ili

ty

big cluster

Ours
Ref

Figure 5.5: Frequency occurrence probabilities.

In total, our approach saves energy consumption by 18%.

The result can be justified as the reference approach changes the frequency for each DAG, while

ours have a fine-grained frequency adjustment at each segment (Section 5.5.1), and could scale

down the frequency if required. Figure 5.5 presents the frequency occurrence probability of two

clusters which is recorded per second by emoxu3. We observe that within the same time interval the

reference approach has a higher probability to execute at a higher frequency, while our approach is

more likely to execute at the lower frequencies, thus reducing the energy consumption.

Remark 8. Each heavy DAG (Ci > Ti) needs two or more cores while executing and the ODROID

XU-3 board contains four cores per cluster. So, in this experimental setup, we can not execute more

than four heavy DAGs at a time. Such a restriction is not applicable to the light DAGs (Ci ≤ Ti).

We also consider that a heavy DAG cannot be allocated in multiple clusters.

73

5.7 Simulations

For large-scale evaluation, we perform simulations and compare the results with existing baselines.

We generate DAGs using the Erdos-Renyi method (Section 5.6). We consider two types of task

periods; (a) harmonic periods, where the task period Ti is enforced to be an integral power of 2.

We define Ti as Ti = 2α, where α is the minimum value such that 2α ≥ Li, where Li is the critical

path length of τi (b) arbitrary periods, Ti is determined using Gamma distribution (Section 5.6).

We compare our approaches with some existing baselines studied in [67, 130, 37]. Total power

consumption by our approach and by these baselines are calculated using Equation (6.1). As

mentioned earlier, [67] considered per-core DVFS, i.e., each core individually is an island of the

cluster-based platform. For a fair comparison, according to the scheduling policy of [67], when a

task is allocated on some cores at any time instant t, we choose the maximum speed among all these

cores. We consider [67] as a baseline because that work is closely related to ours. Although they

have considered per-core DVFS and restrict their attention only to implicit deadline tasks, the task

and the power model are same. Besides, although this work and [67] propose different approaches

to power saving, the initial (preparation) steps of both approaches are based on commonly known

techniques like task decomposition, task merging, etc.

The work in [130] studied a greedy slack stealing (GSS) scheduling approach considering inter-

dependent sequential tasks. It considered the DAG model to represent dependencies among the

tasks. In GSS, the slack (unused time in actual computation requirement of a task) is reclaimed

by one task by shifting others towards the deadline. They did not consider repetitive tasks; hence

it can be regarded as scheduling a single task. Besides this, the power and graph model used in

[130] is different from ours. To ensure a fair comparison, we execute the GSS algorithm using the

power model in Equation (2.1) and assume that once introduced in the system; a processor remains

active. We also consider a minimum inter-arrival separation for a DAG. That work considered

74

three different kinds of nodes: AND, OR, and Computation nodes (Subsection 2.1 in [130]). A

computation node has both the maximum and average computation requirement. To comply with

our work where the focus in energy reduction while guaranteeing worst-case temporal correctness,

we execute the GSS algorithm considering only the computation nodes with their maximum com-

putation requirement. We made all the changes in order to provide a fair comparison. Despite

these differences, we chose [130] as a baseline because they studied a GSS approach for energy

minimization. They considered the inter-dependent sequential tasks and their dependencies was

represented by a DAG, which is similar to our task model. We compare power consumption by

varying two parameters for each task: task periods (utilization) and the number of nodes. We ran-

domly generate 25 sets of DAG tasks and compare the average power consumption.

Notations of Referenced Approaches. For the task partitioning step, either we randomly choose

any two and allocate them to the same cluster, or greedily choose the ones with lowest speed as

proposed. Regarding speed-profile calculation, there are also two options (Approaches A and B in

Section 5.5.1). Combining these options in two steps lead to four baselines: MaxSpeed Greedy,

SingleSpeed Greedy, MaxSpeed Random, SingleSpeed Random. Also, three baselines mentioned

above are included for comparison:

• Federated scheduling with intra-task processor merging [67], denoted by Fed Guo;

• GSS algorithm [130], denoted by GSS Zhu.

5.7.1 Identical Heterogeneous Platform with a Continuous Frequency Scheme

In this section, we report the power consumption comparison considering the identical hetero-

geneous platform and a continuous frequency scheme. In this platform, both the ”big” and the

”LITTLE” clusters share the same power model as described in Equation (2.1).

75

5.7.1.1 Constrained Deadline Task

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

6

8

10

12

14

16

 Average Task Utilization, k

 P
o
w

e
r

C
o
n
s
u
m

p
ti
o
n
 [
W

a
tt
]

MaxSpeed_Greedy

MaxSpeed_Random

SingleSpeed_Greedy

 SingleSpeed _Random

Fed_Guo

GSS_Zhu

(a) Comparison of power consumption with different ap-
proaches for DAGs with a fixed number of nodes as 30.

10 15 20 25 30 35 40 45 50 55
4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

Number of Nodes

 P
o
w

e
r

C
o
n
s
u
m

p
ti
o
n
 [
W

a
tt
]

MaxSpeed_Greedy

MaxSpeed_Random

SingleSpeed_Greedy

 SingleSpeed _Random

Fed_Guo

GSS_Zhu

(b) Average power consumption comparison with differ-
ent approaches for tasks with harmonic periods.

10 15 20 25 30 35 40 45 50 55
5

6

7

8

9

10

11

12

13

14

Number of Nodes

 P
o
w

e
r

C
o
n
s
u
m

p
ti
o
n
 [
W

a
tt
]

MaxSpeed_Greedy

MaxSpeed_Random

SingleSpeed_Greedy

 SingleSpeed _Random

Fed_Guo

GSS_Zhu

(c) Average power consumption comparison with differ-
ent approaches for tasks with arbitrary periods.

Figure 5.6: Power consumption comparison between different approaches for the constrained
deadline tasks considering a continuous frequency scheme on the identical heterogeneous plat-
form

In this Section, we consider the constrained deadline tasks and report their average power con-

sumption under varying task period (or utilization) and the number of nodes.

76

Effect of Varying Task Periods (utilization). Here, the number of nodes is fixed to 30. We vary

the period in a range (Li ≤ Ti ≤ Ci). The parameter Li and Ci are measured once the DAG is

generated according to the technique described in Section 5.6. We also use the following equation

(similar to Chapter 3) to ensure that the value of Ti satisfies the range (Li ≤ Ti ≤ Ci).

Ti = Li + (1− k)(Ci − Li) (5.5)

Here, k ∈ [0, 1] is task utilization. As we are considering the constrained deadline tasks, Di is

randomly picked from the range (Li ≤ Di ≤ Ti). We observe that the average energy consumption

is directly proportional to the average task utilization. Figure 5.6(a) shows that SingleSpeed Greedy

approach outperforms the others and leads to a power savings of at least 16.67% and 56.24%

compared to the Fed Guo and GSS Zhu approaches.

Effect of Varying the Numbers of Nodes. Here we vary the number of nodes (Ti remains fixed)

and report the average power consumption. We consider both harmonic and arbitrary periods

(reported in Figures 5.6(b) and 5.6(c)). For both of these settings, we randomly generate 100

tasks; and vary the number of nodes in each task between 10 and 55. Compared to the previous

set of experiments (varying task utilization with a fixed number of nodes), we observe similar

improvements in power consumption, i.e., choosing a single speed over the whole deadline leads to

more power savings. Especially, when considering harmonic task periods the SingleSpeed Greedy

approach uses on average 22.25% and 43.56% less power compared to Fed Guo and GSS Zhu

approaches, respectively. If we consider arbitrary task periods, the savings become 12.39% and

54.57%, respectively.

77

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

5

6

7

8

9

10

11

12

13

14

15

 Average Task Utilization, k

 P
o
w

e
r

C
o
n
s
u
m

p
ti
o
n
 [
W

a
tt
]

MaxSpeed_Greedy

MaxSpeed_Random

SingleSpeed_Greedy

 SingleSpeed _Random

Fed_Guo

GSS_Zhu

(a) Comparison of power consumption with different ap-
proaches for DAGs with a fixed number of nodes as 30.

10 15 20 25 30 35 40 45 50 55
3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

Number of Nodes

 P
o
w

e
r

C
o
n
s
u
m

p
ti
o
n
 [
W

a
tt
]

MaxSpeed_Greedy

MaxSpeed_Random

SingleSpeed_Greedy

 SingleSpeed _Random

Fed_Guo

GSS_Zhu

(b) Average power consumption comparison with differ-
ent approaches for tasks with harmonic periods.

10 15 20 25 30 35 40 45 50 55

5

6

7

8

9

10

11

12

13

Number of Nodes

 P
o

w
e

r
C

o
n

s
u

m
p

ti
o

n
 [

W
a

tt
]

MaxSpeed_Greedy

MaxSpeed_Random

SingleSpeed_Greedy

 SingleSpeed _Random

Fed_Guo

GSS_Zhu

(c) Average power consumption comparison with differ-
ent approaches for tasks with arbitrary periods.

Figure 5.7: Power consumption comparison between different approaches for the implicit deadline
tasks considering a continuous frequency scheme on the identical heterogeneous platform

5.7.1.2 Implicit Deadline Task.

Now we consider the Implicit deadline tasks and show their average power consumption by chang-

ing two parameters: task period (or utilization) and the number of nodes.

Effect of Varying Task Periods (Utilization). In this experiment, we fix the number of nodes

78

to 30. We report the average power consumption in Figure 5.7(a). Similar to the phenomenon

we observed in the last experiment, average energy consumption for implicit deadline tasks is

directly proportional to the average task utilization. Figure 5.7(a) also shows that adopting the

SingleSpeed Greedy approach results in reduced power consumption. On average, the Single-

Speed Greedy approach leads to a power saving of at least 18.44% and 57.3% compared to Fed Guo

and GSS Zhu approaches, respectively.

Effect of Varying the Numbers of Nodes. Now we measure the average power consumption by

varying the number of nodes with fixed Ti. We randomly generate 100 tasks with harmonic and

arbitrary deadline. We report the average power consumption in Figure 5.7(b) (or Figure 5.7(c))

for harmonic (or arbitrary) deadline tasks. Again, we observe similar improvements in power

consumption, i.e., choosing a single speed over the whole deadline outperforms other approaches.

Instead of period, we use the term deadline because we are considering constrained deadline tasks.

Specifically, under harmonic task periods, the SingleSpeed Greedy incurs 14.05% and 40% less

power on average compared to Fed Guo and GSS Zhu; under arbitrary task periods, the savings

potential are 18.39% and 57.27%, respectively.

5.8 Discussions: Assumptions and Applicability

In this section we discuss the assumptions adopted in this paper. Subsection 5.8.1 discusses the va-

lidity of these assumptions, their impacts and potential solutions to overcome these impacts. Then,

in Subsection 5.8.2 we detail the reasons behind the measurement overheads and the applicability

of our proposed approaches.

79

5.8.1 Assumptions Behind the Power Model

Components Behind the Overall Power Consumption. While some other factors such as cache

miss, bus accesses, context-switches, and I/O usage also affect the power consumption, CPU power

consumption is one of the major contributors to the overall power consumption. Power consump-

tion may largely be dominated by any of these factors depending on the application/benchmark

(e.g., power consumption is dominated by the radio/network in some communication-oriented ap-

plications [47]). In this work, we target to minimize the CPU power consumption only. While

minimizing the CPU power consumption, our approach does not increase the power consumption

that is influenced by other factors, as our technique does not introduce additional existing DAG

schedulers (DAG decomposition based). It would build the foundation for more complicated anal-

ysis that considers all other factors of overall power consumption in the future.

Dynamic Power Management. DPM explores idle slot of a processor and puts the processor to

a low power mode to reduce the static power consumption. Switching to low power mode (and

backward) incurs additional energy consumption and is beneficial only when the idle slot is longer

than a threshold, known as the break-even time (BET) 3[37]. In this paper, the available idle slot

may not be longer than the BET for two reasons. First, we focus on clustered multiprocessor plat-

form, where processors within each cluster must execute at the same speed, i.e., the maximum

speed necessary for the demand on each processor at a given instant. As a result, unless all pro-

cessors within a cluster are idle, the cluster cannot be switched into any sleep mode. For sporadic

releases, idle slots of each processor are unlikely to be synchronized. Moreover, cluster-wide idle

slots tend to be relatively short. Second, while executing a task, a uniform execution speed sig-

nificantly reduces the overall energy consumption (Theorem 2), which is the goal of our proposed

approaches—this leads to further reduction of idle slots. For example, a study using Intel Strong

ARM SA-1100 processor has shown a transition time of 160ms to switch from sleep mode back

3BET is the minimum duration for the processor to stay at the sleep mode.

80

to run mode [128], which can be larger than many task periods in avionics. As triggering mode

switches becomes more energy consuming in general and may overwhelm the gain in energy sav-

ings, DPM is considered out of the scope of this work. DPM could be a valid option under certain

scenario, and we leave the further exploration along this direction as future work.

5.8.2 A Note on the Overhead Delay

We have mentioned that the scaling-down (up) the frequency of the big cluster takes at most

60 (40)ms, while both these operations take at most 15ms on the LITTLE cluster (see Section

5.6). we use cpufreq-set module to change the system’s frequency, and this module accounts for

microsecond-scale transition delay (usually 100-200µs), which is typically incorporated into the

WCET. In our case, the delay is much higher because (i) we used a Python script to measure the

delay; and (ii) there is some user-level delay caused by I/O operations and file logging, e.g., time-

stamp storage before and after each run. Time-stamp storage detects the arrival and completion

of nodes which could be avoided when one does not need to track system behavior in a precise

manner (which is the normal scenario). Considering the potential overhead issue, in Subsection

5.5.1, we proposed Approach-B, where a task executes at a single speed (so, there is no frequency

changing overhead) for the whole duration from its release to the deadline. Experimental study

(Section 5.7) also shows excellent performance of such approach when WCETs of sub-jobs are

short. Note that, we can not entirely avoid the speed changing overhead for Approach-A in Sub-

section 5.5.1. However, we can reduce the number of frequency changes by partitioning the tasks

(into a cluster) according to Algorithm 2. Thus, an efficient partitioning can reduce the frequency

changing overhead.

81

5.9 Conclusion

In this chapter, we have studied real-time scheduling of a set of implicit and constrained deadline

sporadic DAG tasks. We schedule these tasks on the cluster-based multi-core platforms with the

goal of minimizing the CPU power consumption. In a clustered multi-core platform, the cores

within the same cluster run at the same speed at any given time. Such design better balances

energy efficiency and hardware cost and appears in many systems. However, from the resource

management point of view, this additional restriction leads to new challenges. By leveraging a

new concept, i.e., speed-profile, which models energy consumption variations during run-time,

we can conduct scheduling and task-to-cluster partitioning while minimizing the expected overall

long-term CPU energy consumption.

We have presented the experimental result performed on an ODROID XU-3 board to demonstrate

its feasibility and practicality. We have also presented our system experiments on a larger scale

through realistic simulations that demonstrate an energy saving of up to 57% through our proposed

approach compared to existing methods.

82

CHAPTER 6: ENERGY-EFFICIENT PARALLEL REAL-TIME

SCHEDULING ON CLUSTERED MULTI-CORE: ADAPTING THE

FREQUENCY DISCRETIZATION AND PLATFORM HETEROGENEITY

Chapter 5 has studied real-time scheduling of a set of implicit and constrained deadline sporadic

DAG tasks on an identical multiprocessor platform. Assuming a continuous frequency scheme,

we schedule these tasks on the cluster-based multi-core platforms to minimize the CPU power

consumption. This chapter modifies our energy-efficient algorithm to adopt the more realistic

discrete frequency scheme on a uniform multiprocessor platform. In section 6.1, we discuss the

approach to discretize the speed profile. In section 6.2, we discuss the platform heterogeneity, and

in Section 6.3 we demonstrate the efficiency of our approach via experimental results. Section 6.4

concludes the chapter.

6.1 Discretization of the Speed-Profile

In Section 5.5.1, we have described two approaches to create the speed-profile for an individual

task. While creating the speed-profiles, those approaches assume a continuous frequency scheme.

However, the discrete frequency mode is more practical, because a real platform supports only a

set of frequencies. Now, we describe the technique to discretize all the speeds available in a speed-

profile (assuming that the speed-profile is already created).

Suppose, we execute a task τi (and its speed-profile is Si) in a real-platform, and this platform

supports only those speeds available on a speed-set Z . Note that the content of Z is dependent

This chapter has been previously published at IEEE Transactions on Parallel and Distributed Systems and available
at Bhuiyan, A., Liu, D., Khan, A., Saifullah, A., Guan, N., & Guo, Z. (2020). Energy-efficient parallel real-time
scheduling on clustered multi-core. IEEE Transactions on Parallel and Distributed Systems, 31(9), 2097-2111.

83

on the platform. For example, ODROID XU-3 supports a frequency range of 200-1400 MHz

(LITTLE cluster) and 200-2000 MHz (big cluster) with scale steps of 100 MHz). Now, for each

entry si,j ∈ Si, we find the minimum speedZk ∈ Z , whereZk ≥ si,j . Once, we find an appropriate

Zk; we set the value of si,j as si,j = Zk.

Example 14. Consider a task τi with the same speed-profile from Example 11. Let us assume

that we will execute τi in a platform where Z = {0, 0.2, 0.4, 0.55, 0.75, and 1}, i.e., this platform

supports only six discrete speeds, and all the speeds are normalized w.r.t. the maximum speed

supported by this platform. Considering the speed-profile Si (from Example 11) and the speed-set

Z , we find that:

(a) si,1 ≤ {Z5 and Z6}

(b) si,2 ≤ {Z4,Z5 and Z6}, and

(c) si,3 ≤ {Z1,Z2,Z3,Z4,Z5 and Z6}.

Now, we choose the minimumZk ∈ Z such thatZk ≥ si,j . So, we assignZ5 to si,1, Z4 to si,2, and Z1 to si,3.

Now, the updated (i.e., discretized) speed-profile becomes

Si =

0.75 0.55 0

0.33 0.47 0.2

 .

Theorem 10. When a task executes with its discretized speed-profile, it guarantees that the task

will not miss the deadline.

Proof. We have shown in Lemma 8 that a task τi will not miss the deadline if executed according

to its speed-profile Si. If we discretize τi’s speed-profile and execute τi according to this speed-

profile, then the task still guarantees the real-time correctness. This is because any speed si,j of the

discretized speed-profile is greater than or equal to si,j when it was continuous.

84

6.2 Handling Platform Heterogeneity

In this section, we discuss a specific type of multi-core platform with diverse computing abilities:

heterogeneous multi-core platform. We first discuss different types of heterogeneous platforms,

and then explain how our proposed techniques can be extended to handle heterogeneity. In a het-

erogeneous platform, different cores have different computational capabilities. In terms of speed,

Funk defined a widely-accepted classification of the heterogeneous platform [57] as follows, where

the speed of the processor denotes the work completed (while executing a task) in a single-time

unit by this processor.

(i) Identical multiprocessors: On Identical multiprocessors, all tasks are executed at the same speed

on any processor;

(ii) Uniform multiprocessors: On Uniform multiprocessors, all the tasks execute at the same speed

if allocated on the same processor, but at a different speed on different processors. So, the execution

speed of a task depends on the processor where the task is allocated.

(iii) Unrelated multiprocessors: On Unrelated multiprocessors, execution speeds of different tasks

may vary on the same processor, i.e., a task’s execution speed depends on both the task itself and

the processor where it is allocated.

In a heterogeneous platform, each core is designed with a different computational capability, and

an efficient task-to-core mapping improves the system resource efficiency. In the context of energy

efficiency, two major directions have been mentioned in [6] for any heterogeneous platform:

(i) Find an appropriate core/cluster for task mapping to reduce the overall power consumption of

the whole platform.

(ii) Deploy energy-aware scheduling techniques on each core/cluster to reduce power consumption.

Our proposed approach covers both directions. First, we use speed profile to identify efficient

85

core/cluster to task mapping and then try to reduce the overall cluster speed as much as possible.

It works for an identical heterogeneous platform (a.k.a., homogeneous multiprocessor) as task-to-

core mapping does not impact energy consumption much.

Table 6.1: Estimated parameters for different cluster of an ODROID XU-3 board.

Cluster Type β(W) α(W/MHzγ) γ
big 0.155 3.03×10−9 2.621

LITTLE 0.028 2.62×10−9 2.12

Now, we extend our approach to apply to the uniform heterogeneous platform by modifying the

parameters in the power model in Equation (2.1), i.e., setting different α, β, and γ values for the

‘big’ and ‘LITTLE’ cluster. Under such consideration, different clusters no longer share the same

power model, and the same task may have different execution requirements on different clusters.

We report the estimated values of α, β, and γ in Table 6.1. These parameters in Table 6.1 are

adopted from [86]. The work in [86] estimated these parameters for the ODROID XU-3 board

using the real power measurements along with a curve fitting method. They have also assumed

that there is another contributor to the total power consumption of a cluster, i.e., the ”uncore”

power consumption (reported in Table 6.2 which is also adopted from [86]). The ”uncore” power

consumption introduced in the system from some components other than a processor, e.g., a shared

cache. Similar to the dynamic power consumption, the ”uncore” power consumption also depends

on the processor frequency. However, unlike the dynamic power consumption, there is always

some ”uncore” power consumption as long as the cluster remains on (even if there is no workload

on a processor).

Considering all the parameters from Table 6.1 and Table 6.2, we bring the following modification

86

Table 6.2: The ”uncore” power consumption for different cluster of an ODROID XU-3 board.

Freq(GHz) 2 1.8 1.6 1.4 1.2 1.0
big cluster(W) 0.8 0.528 0.39 0.309 0.244 0.182

Freq(GHz) 1.4 1.2 1.0 0.8 0.6 0.4
LITTLE cluster(W) 0.04 0.04 0.04 0.04 0.04 0.04

in Equation (2.1):

P (s) = Npβ + αsγ + Ps(f), (6.1)

Np denotes the number of cores per cluster, and Ps(f) denotes the ”uncore” power consumption.

We have a different power model for the ”big” and the ”LITTLE” cluster, but we still don’t know

what the basis of assigning a task to a cluster is. Recall that, while creating the speed-profile, some

vital information (e.g., the speed of a core at a specific time) were known to us (Subsection 5.5.1).

If the execution speed of a task is greater than a certain threshold at any point from its release to

its deadline, then we assign this task to the big cluster. Else, we assign this task to the LITTLE

cluster. For the platform we consider (ODROID XU-3), we set the threshold to 0.7. It is the ratio

of the maximum speed supported by the big cluster and the LITTLE cluster (see Table 6.2).

6.3 Simulation Study

In this section, we perform simulations and compare the results with existing baselines. We follow

the same DAG task generation method that uses the Erdos-Renyi method (Section 5.6). Likewise

the previous chapters, we compare power consumption by varying the following two parameters for

each task: task periods (utilization) and the number of nodes. Recall that, for the task partitioning

step, we have two options. We randomly choose any two tasks and allocate them to the same clus-

ter, or greedily choose the ones with the lowest speed as proposed. Besides, there are two options

87

for speed-profile calculation (Approaches A and B in Section 5.5.1). We combine these options

in two steps lead to four baselines: MaxSpeed Greedy, SingleSpeed Greedy, MaxSpeed Random,

SingleSpeed Random. In addition, we consider the following three baselines for comparison:

• Federated scheduling with intra-task processor merging [67], denoted by Fed Guo;

• GSS algorithm [130], denoted by GSS Zhu.

• DVFS and DPM combination [37], denoted by com Chen.

6.3.1 Uniform Heterogeneous Platform with a Continuous Frequency Scheme

In this section, considering the uniform heterogeneous platform and a continuous frequency scheme,

we report the power consumption comparison for different approaches mentioned earlier. Under

such a platform, different clusters no longer share the same power model and we use the power

model described in Equation (6.1).

6.3.1.1 Constrained Deadline Task

Here, we report the power consumption under the scheme for constrained deadline tasks. We eval-

uate the efficiency of our proposed method by changing two parameters; task period (utilization)

and the number of nodes in the task.

Effect of Varying Task Periods (Utilization). Here we control the average task utilization through

varying the task period. In order to make the task schedulable, the critical path length Li of task

τi should not exceed its deadline Di. We calculate the task deadline Di using Equation (5.5).

The results are presented in Figure 6.1(a). The results indicate a proportional relationship be-

tween the average power consumption and average task utilization. It happens because a higher

88

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

4

6

8

10

12

14

16

 Average Task Utilization, k

 P
o
w

e
r

C
o
n
s
u
m

p
ti
o
n
 [
W

a
tt
]

SingleSpeed _Random

SingleSpeed_Greedy

MaxSpeed_Random

 MaxSpeed_Greedy

Fed_Guo

GSS_Zhu

com_Chen

(a) Comparison of power consumption with different ap-
proaches for DAGs with a fixed number of nodes as 30.

10 15 20 25 30 35 40 45 50 55
3

4

5

6

7

8

9

10

11

12

13

Number of Nodes

 P
o
w

e
r

C
o
n
s
u
m

p
ti
o
n
 [
W

a
tt
]

SingleSpeed _Random

SingleSpeed_Greedy

MaxSpeed_Random

 MaxSpeed_Greedy

Fed_Guo

GSS_Zhu

com_Chen

(b) Average power consumption comparison with differ-
ent approaches for tasks with harmonic periods.

10 15 20 25 30 35 40 45 50 55

4

5

6

7

8

9

10

11

12

13

Number of Nodes

 P
o
w

e
r

C
o
n
s
u
m

p
ti
o
n
 [
W

a
tt
]

SingleSpeed _Random

SingleSpeed_Greedy

MaxSpeed_Random

 MaxSpeed_Greedy

Fed_Guo

GSS_Zhu

com_Chen

(c) Average power consumption comparison with differ-
ent approaches for tasks with arbitrary periods.

Figure 6.1: Power consumption comparison between different approaches for the constrained
deadline tasks considering a continuous frequency scheme on the uniform heterogeneous plat-
form

task utilization imposes tighter real-time restrictions. It restricts (refer to Figure 5.1(b)) the space

for the segment length optimization. Figure 6.1(a) shows that SingleSpeed Greedy approach per-

forms better for a higher utilization value. On average, the SingleSpeed Greedy approach leads

to a power saving of at least 30.23% and 60.2% compared to Fed Guo and GSS Zhu approaches,

respectively. In SingleSpeed Greedy approach, a task executes with a single speed throughout the

89

deadline. During the task partitioning step, a suitable partner (with similar speed-profile) leads to

energy efficiency. However, for the other approaches task speed may vary throughout the deadline.

In that case, evil alignment and a significant variation in the speed may reduce energy efficiency

(see Figure 5.2 and Example 8).

Effect of Varying the Numbers of Nodes. Now we vary the number of nodes (10 to 55) (Ti is

fixed) and report the average power consumption. We report the average power consumption for

harmonic deadline tasks in Figure 6.1(b) and arbitrary deadline tasks in Figure 6.1(c). We observe

that the power consumption pattern does not change that much, i.e., SingleSpeed Greedy approach

outperforms other approaches especially when the number of nodes (in each DAG) are high, 35

or higher. Specifically, under harmonic task periods, the SingleSpeed Greedy incurs 40.19% and

65.9% less power on average compared to Fed Guo and GSS Zhu; under arbitrary task periods,

the savings potential are 33.43% and 61.96%, respectively.

6.3.1.2 Implicit Deadline Task

Effect of Varying Task Periods (Utilization). Using previous setup (Section 6.3.1.1), We observe

that the average energy consumption is directly proportional to the average task utilization. Figure

6.2(a) shows that SingleSpeed Greedy approach performs better for a higher utilization value and

on average, saves at least 35.21% and 62.52% compared to Fed Guo and GSS Zhu approaches,

respectively.

Effect of Varying the Numbers of Nodes. Figure 6.2(b) and 6.2(c) report the average power con-

sumption for the harmonic and arbitrary deadline tasks, respectively. We observe that the Single-

Speed Greedy approach outperforms other approaches when the number of nodes (in each DAG)

are high. Under harmonic task periods, the SingleSpeed Greedy incurs 44.84% and 67.55% less

power on average compared to Fed Guo and GSS Zhu; under arbitrary task periods, the savings

potential are 42.33% and 67.19%, respectively.

90

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

4

6

8

10

12

14

16

18

 Average Task Utilization, k

 P
o
w

e
r

C
o
n
s
u
m

p
ti
o
n
 [
W

a
tt
]

SingleSpeed _Random

SingleSpeed_Greedy

MaxSpeed_Random

 MaxSpeed_Greedy

Fed_Guo

GSS_Zhu

com_Chen

(a) Comparison of power consumption with different ap-
proaches for DAGs with a fixed number of nodes as 30.

10 15 20 25 30 35 40 45 50 55

4

6

8

10

12

14

16

Number of Nodes

 P
o
w

e
r

C
o
n
s
u
m

p
ti
o
n
 [
W

a
tt
]

SingleSpeed _Random

SingleSpeed_Greedy

MaxSpeed_Random

 MaxSpeed_Greedy

Fed_Guo

GSS_Zhu

com_Chen

(b) Average power consumption comparison with differ-
ent approaches for tasks with harmonic periods.

10 15 20 25 30 35 40 45 50 55

4

5

6

7

8

9

10

11

12

13

14

Number of Nodes

 P
o
w

e
r

C
o
n
s
u
m

p
ti
o
n
 [
W

a
tt
]

SingleSpeed _Random

SingleSpeed_Greedy

MaxSpeed_Random

 MaxSpeed_Greedy

Fed_Guo

GSS_Zhu

com_Chen

(c) Average power consumption comparison with differ-
ent approaches for tasks with arbitrary periods.

Figure 6.2: Power consumption comparison between different approaches for the implicit deadline
tasks considering a continuous frequency scheme on the uniform heterogeneous platform

6.3.2 Uniform Heterogeneous Platform With a Discrete Frequency Scheme

In this section, we report the power consumption comparison for the (previously mentioned) ap-

proaches considering the uniform heterogeneous platform and a discrete frequency scheme. Under

such a platform, we discretize the frequency using the technique described in Section 6.1.

91

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

4

6

8

10

12

14

16

 Average Task Utilization, k

 P
o
w

e
r

C
o
n
s
u
m

p
ti
o
n
 [
W

a
tt
]

SingleSpeed _Random

SingleSpeed_Greedy

MaxSpeed_Random

 MaxSpeed_Greedy

Fed_Guo

GSS_Zhu

com_Chen

(a) Comparison of power consumption with different ap-
proaches for DAGs with a fixed number of nodes as 30.

10 15 20 25 30 35 40 45 50 55
3

4

5

6

7

8

9

10

11

12

13

Number of Nodes

 P
o
w

e
r

C
o
n
s
u
m

p
ti
o
n
 [
W

a
tt
]

SingleSpeed _Random

SingleSpeed_Greedy

MaxSpeed_Random

 MaxSpeed_Greedy

Fed_Guo

GSS_Zhu

com_Chen

(b) Average power consumption comparison with differ-
ent approaches for tasks with harmonic periods.

10 15 20 25 30 35 40 45 50 55

4

5

6

7

8

9

10

11

12

13

Number of Nodes

 P
o
w

e
r

C
o
n
s
u
m

p
ti
o
n
 [
W

a
tt
]

SingleSpeed _Random

SingleSpeed_Greedy

MaxSpeed_Random

 MaxSpeed_Greedy

Fed_Guo

GSS_Zhu

com_Chen

(c) Average power consumption comparison with differ-
ent approaches for tasks with arbitrary periods.

Figure 6.3: Power consumption comparison between different approaches for the constrained
deadline tasks considering a discrete frequency scheme on the uniform heterogeneous platform

6.3.2.1 Constrained Deadline Task

Here, we consider the constrained deadline tasks and report their average power consumption by

changing two parameters: task period (or utilization) and the number of nodes.

Effect of Varying Task Periods (Utilization). Similar to the Figure 6.1(a), and 6.2(a), we observe

that the (i) average energy consumption is directly proportional to the average task utilization. (ii)

92

SingleSpeed Greedy approach consumes less power than other approaches (see Figure 6.3(a)).

Effect of Varying the Numbers of Nodes. We vary the number of nodes (10 to 55) and report the

average power consumption for harmonic (arbitrary) deadline tasks in Figure 6.3(b) (Figure 6.3(c)).

Similar to the Figure 6.1(b), 6.1(c), 6.2(b) and 6.2(c), we observe that the (i) Performance of

SingleSpeed Random, SingleSpeed Greedy, MaxSpeed Greedy, and MaxSpeed Random does not

vary that much for a small number of nodes (typically 10 to 25) per DAG. (ii) SingleSpeed Greedy

approach performs better (i.e., consume less power) than other approaches when the number of

nodes per DAG is high.

6.3.2.2 Implicit Deadline Task

Now, we report the average power consumption using the same setup as described in Section

6.3.2.1, i.e., (a) for a fixed number of nodes (30) per task, change their utilization value, and (b)

vary the number of nodes (10 to 55) per task, while keeping Ti fixed. We report the average power

consumption in Figure 6.4(a), 6.4(b), and 6.4(c). From this figure, we observe that the (i) Perfor-

mance of SingleSpeed Random, SingleSpeed Greedy, MaxSpeed Greedy, and MaxSpeed Random

does not vary that much for a smaller task utilization or when the number of nodes per DAG is

small (typically 10 to 35). (ii) SingleSpeed Greedy approach performs better (i.e., consume less

power) compared to the other approaches when the number of nodes per DAG is high.

6.4 Conclusion

In this chapter, we extend our approach (proposed in Chapter 5) to adopt the more realistic discrete

frequency scheme on a uniform multiprocessor platform. We present the steps to discretize the

speed profile. Besides, we present a detailed discussion on how we can adapt to the platform

93

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

4

6

8

10

12

14

16

18

 Average Task Utilization, k

 P
o
w

e
r

C
o
n
s
u
m

p
ti
o
n
 [
W

a
tt
]

SingleSpeed _Random

SingleSpeed_Greedy

MaxSpeed_Random

 MaxSpeed_Greedy

Fed_Guo

GSS_Zhu

com_Chen

(a) Comparison of power consumption with different ap-
proaches for DAGs with a fixed number of nodes as 30.

10 15 20 25 30 35 40 45 50 55

4

6

8

10

12

14

16

Number of Nodes

 P
o
w

e
r

C
o
n
s
u
m

p
ti
o
n
 [
W

a
tt
]

SingleSpeed _Random

SingleSpeed_Greedy

MaxSpeed_Random

 MaxSpeed_Greedy

Fed_Guo

GSS_Zhu

com_Chen

(b) Average power consumption comparison with differ-
ent approaches for tasks with harmonic periods.

10 15 20 25 30 35 40 45 50 55

4

5

6

7

8

9

10

11

12

13

14

Number of Nodes

 P
o
w

e
r

C
o
n
s
u
m

p
ti
o
n
 [
W

a
tt
]

SingleSpeed _Random

SingleSpeed_Greedy

MaxSpeed_Random

 MaxSpeed_Greedy

Fed_Guo

GSS_Zhu

com_Chen

(c) Average power consumption comparison with differ-
ent approaches for tasks with arbitrary periods.

Figure 6.4: Power consumption comparison between different approaches for the implicit deadline
tasks considering a discrete frequency scheme on the uniform heterogeneous platform.

heterogeneity. Finally, we report the efficiency of our approach via extensive experimental results.

94

CHAPTER 7: MIXED-CRITICALITY REAL-TIME SCHEDULING OF

GANG TASK SYSTEMS

In the previous chapters, we have proposed energy-efficient scheduling approaches that assume

each task will execute up to their WCET. This assumption is pessimistic as the task execution

pattern may show significant variability (w.r.t. time). Designing a system with such an assumption

may lead to system over-provisioning and excessive power/energy consumption. Mixed-Criticality

(MC) framework was proposed to efficiently utilize the non-negligible gap between the WCET and

the actual execution time, leading to a minimized resource over-provisioning. Different software

components with varying levels of criticality are integrated into a common platform in an MC

setup.

Mixed-criticality (MC) scheduling of sequential tasks (with no intra-task parallelism) has been

well-explored by the real-time systems community. MC scheduling of parallel tasks is highly

challenging due to the requirement of various assurances under different criticality levels. How-

ever, till date, there has been little progress on MC scheduling of parallel tasks, and these works

have restricted their attention mostly on the DAG task model. However, other well-known repre-

sentatives of the parallel task model, i.e., the gang task model, represent an efficient mode-based

parallel processing scheme with many potential applications. This model suits various applica-

tions that use parallelism, some of which are implemented using the message-passing approach

and tools like MPI. This chapter addresses the MC scheduling of parallel tasks of gang model that

allows workloads to execute on multiple cores simultaneously and the change to the degree of par-

allelism of a task upon a mode switch. To schedule such task sets, we propose a new technique

This chapter has been previously published at Springer Real-Time Systems and available at Bhuiyan, A., Yang,
K., Arefin, S., Saifullah, A., Guan, N., & Guo, Z. (2021). Mixed-criticality real-time scheduling of gang task systems.
Real-Time Systems, 1-34.

95

GEDF-VD, which integrates Global Earliest Deadline First (GEDF) and Earliest Deadline First

with Virtual Deadline (EDF-VD). We prove the correctness of GEDF-VD and provide a detailed

quantitative evaluation in terms of speedup bound in both the MC and the non-MC cases. Experi-

ments on randomly generated gang task sets are conducted to validate our theoretical findings and

to demonstrate the effectiveness of the proposed approach.

7.1 Introduction

Due to size, weight, and power considerations, there is a trend that multiple tasks with different

criticality levels (that are subject to varying degrees of assurance/verification) share a computing

platform [122]. This type of system is commonly known as a mixed-criticality (MC) system,

where each task can be associated with various execution budgets. During normal operation, all

tasks are scheduled according to their typical execution budget. However, some critical tasks may

exceed their typical budget and need more resources to finish their execution. Suppose the available

resources are not sufficient in these scenarios. In that case, the less critical task will be sacrificed

to free up the resources for accommodating the additional computational requirements requested

by the more critical ones.

Take an avionics software standard as an example, where the ground control subsystems are more

safety-critical than ground communication and light controls. During the incident of emergency

(e.g., an accident), it is more important to execute the safety-critical components rather than the

other components. On the other hand, in normal condition, all these components are required to

perform smoothly (for more details, refer to the Table 1.1 of [79], which demonstrates the RTCA

DO-178B avionics software standard). MC scheduling has received considerable attention (refer to

[32] for a thorough and updated survey) as it brings significant improvements in resource efficiency.

96

Note that safety-critical MC systems have tight correctness requirements. These requirements can

be verified by two related but orthogonal perspectives: a priori verification and run-time robust-

ness [12]. Before run-time, a priori verification determines whether a system will behave correctly

(or not) during execution, while run-time robustness deals with unexpected system behavior at

run-time. There are some debates regarding MC’s applicability to run-time robustness [52, 53].

Although an MC system has imitation from the perspective of a priori verification (which is our

work scope), these criticisms usually do not hinder the applicability of an MC system for its de-

signed scope of a priori verification [12].

Parallel Computing Workloads. Recent advances in parallel computing allow executing a single

piece of code simultaneously on multiple computing units or a set of threads to execute on multiple

processors concurrently. Such design provides a much better capability of exploiting the benefits

provided by modern platforms. As a result, there is an urgent need in handling workload models

that allow intra-task parallelism (i.e., parallel tasks). Parallel computing systems perform a large

number of computations and often need to interact with their surroundings under real-time con-

straints, e.g., arms system (RADAR). In these types of applications, a lot of processors co-operate

with each other, and these communications are timing critical. It is necessary for a system to

have both high performance and predictability; i.e., efficient control that minimizes the introduced

overhead, while responding to external events (coming through sensors) in real-time. In this work,

we consider the gang scheduling, where all threads of a task are grouped into a gang, and during

execution, the whole group is concurrently scheduled on distinct cores. The gang task model is a

practical, widely used, and representative workload model for intra-task parallelism [3, 46, 61, 76].

Also, the gang task model is supported by some widely used parallel computing programming stan-

dards (e.g., OpenACC [95]), which is commonly used in graphics processing unit (GPU).

Existing Work. The real-time systems and parallel computing communities have given consid-

erable attention towards these two directions: MC scheduling and scheduling of parallel tasks.

97

These two emerging trends bring in some critical and exciting problems, and there is an emerging

need in integrating those two trends. There has been extensive research on the (a) MC scheduling

of sequential (i.e., non-parallel) tasks (refer to the recent survey in [33, 32]) and (b) scheduling

of parallel tasks with a single-criticality level [76, 61, 46, 4, 30, 82]. Till date, very few efforts

[87, 11, 83] have been made towards the combined problem of MC scheduling of parallel tasks.

To our knowledge, none of these efforts has considered mixed-criticality gang task scheduling on

multi-core platforms.

Motivation Behind This Work. Multi-core platform enables applications that require better en-

ergy efficiency, higher performance, and real-time guarantees. The notion of MC systems with the

intra-task parallelism stems from many current trends. For example, the number of cores fabricated

on a chip is increasing rapidly. Besides, the computational demand for an individual task (with

stringent timing requirements) is rising, which makes it essential to consider the intra-task paral-

lelism. Furthermore, when safety-critical and non-safety-critical tasks share a common computa-

tional platform, there is an increasing demand to integrate functionality with different criticality

levels. Such demand promotes the idea of MC scheduling, i.e., combining various functionalities

of varying criticality levels onto the same computing platform.

In this work, we study the mixed-criticality gang task scheduling. The gang task model has

many promising applications, e.g., fault-tolerant systems. A fault-tolerant system often follows

the mixed-criticality model [32]. If a fault is identified in such a system, it is recovered via various

recovery techniques, e.g., exception handling, recovery blocks, and task replication. Some extra

work has to be undertaken upon identifying a fault, which leads to the abandonment or delay of

some less critical works. The impact of a fault in such a system ranges from no visible effect to an

entire system crash. To overcome these faults, the ASTEROID project is proposed (a cross-layer

fault-tolerance solution for the mixed-criticality platform) that detects errors and recovers the sys-

tem in different software and hardware layers [45, 51]. Considering such a cross-layer platform, a

98

recent work in [104] proposed a replica-aware co-scheduling (with strict priority preemptive pro-

tocols) for a mixed-criticality system that improves the system performance. They have considered

the replicas as a gang that is activated concurrently on multiple cores.

Challenges. In gang task model, a task cannot start execution until the number of available cores

is no less than what is required by it (i.e., a task’s degree of parallelism). This simple constraint

adds a huge restriction on real-time schedulability and makes the problem highly challenging. We

are aware of only one known correct schedulability analysis [46] under Global Earliest Deadline

First (GEDF) for gang tasks. Besides, integrating MC in gang scheduling scheme adds additional

challenges due to the dual notion of correctness. In the normal mode, a task may have a utilization

less than 1, while in the critical mode, the utilization could be much higher than one [46]. Such a

change in the utilization adds significant complexity in speedup bound analysis [13] . For example,

in the speedup bound analysis for MC scheduling of ordinary sporadic tasks, an individual task’s

utilization is at most the processor’s speed is a straight forward and necessary feasibility condition.

At the same time, it no longer holds for the gang tasks. Besides, the scheduler does not know the

exact behavior of each task before run-time (non-clairvoyant). Hence, the scheduler must be able

to detect the critical condition early enough to allocate more resources to the more critical tasks to

handle this drastic change and still be able to meet the deadlines.

This research. In this chapter, we study the real-time scheduling of MC gang tasks on identical

multi-core platforms 1. We propose the first scheduling algorithm GEDF-VD (GEDF with Virtual

Deadline) for MC gang tasks. Our approach leverages the synthesis of uniprocessor scheduling

techniques such as EDF-VD [14] as well as GEDF [46] that was designed for non-MC gang tasks.

Specifically, we make the following contributions:

1On an identical multi-core platform, all tasks are executed at the same speed on any processor. Refer to Section
6.2 for details.

99

• We generalize the gang task model to the MC context by incorporating extensions on both

the execution time and the degree of parallelism dimensions.

• We propose a scheduling algorithm called GEDF-VD for the generalized model.

• We formally prove its correctness of GEDF-VD (in LO and HI-criticality mode) through a

utilization based schedulability test.

• Extensive simulations under randomly generated task sets are conducted to demonstrate the

real-time performance and effectiveness of the proposed algorithm in terms of acceptance

ratio, which is defined as the ratio of the number of schedulable task sets over the total

number of task sets.

Organization. The remainder of this paper is organized as follows. Section 7.2 discusses related

prior work. Section 7.3 describes the task model, notations, and preliminaries. Section 7.4 provides

a detailed description of our scheduling algorithm and prove its correctness. Section 7.5 derives

the speedup bounds for the non-MC and MC platform, under GEDF and GEDF-VD scheduling

algorithms, respectively. Simulation results are presented in Section 7.6. Section 7.7 concludes

this paper and points out future research directions.

7.2 Related Work

Since Vestal’s proposal [122] of MC workload model, much work has focused on scheduling MC

tasks (refer to Burns et al. [32] for a survey). For uniprocessor platforms, many algorithms were

proposed based on both fixed priority (e.g., Li et al. [80], Baruah et al. [15]) and dynamic priority

scheduling(e.g., Easwaran et al. [48]). The work in [26, 25] proposed the precise scheduling

policy, where all LO-criticality tasks receive a full-service guarantee even after a mode switch.

Numerous MC scheduling algorithms were proposed for multiprocessor platforms [78, 19, 120, 5,

100

121]. Considering the multiprocessor platforms, Lee et al. [78] and Baruah et al. [19] proposed

fluid-based MC models, and a semi-partitioned based scheme is proposed by Awan et al. [5].

Considering different parallel tasks models (e.g., synchronous task model [4], DAG model [30,

82, 67, 24, 23, 66] and gang models [76, 61, 46]) there have been a number of works that have

provided the energy efficiency technique, schedulability analysis, and the speedup bound (i.e., re-

source augmentation bound) for various scheduling strategies. For synchronous tasks under GEDF

scheduling, Andersson et al. [4] proved a resource augmentation bound of 2 with constrained

deadlines tasks. Considering DAG tasks (with arbitrary deadlines) under GEDF, Li et al. [81] and

Bonifaci et al. [30] simultaneously proved a resource augmentation bound of 2. Bonifaci et al. [30]

also showed the bound to be 3 under global rate-monotonic scheduling. For implicit deadline DAG

tasks under federated scheduling, a resource augmentation bound of 2 is showed by Li et al. [82].

Gang scheduling and Coscheduling was initially introduced to perform parallel processing with

fine-grained interactions efficiently [54, 97, 59]. Both of these approaches allocate resources to the

threads of the same task concurrently. However, gang scheduling imposes a strict requirement of

executing all threads of the same task simultaneously. In contrast, in coscheduling, some threads

may not execute concurrently with the rest of the threads in the same task. Some recent work used

this concept to execute the parallel workload in cloud computing [116] and extended to incorporate

hard real-time tasks [61]. The work in [61] also has proposed a DP-Fair based scheduling of

periodic gang tasks and proved a speedup bound which is no larger than (2− 1/m).

A recent work by Alahmad et al. [3] proposed the isochronous scheduling, which has some similar-

ity to the traditional gang scheduling. Unlike the gang scheduling, the isochronous model assumed

that the job versions might not be compatible with all the processors available. Although the work

in [3] has some connections to the MC task model, they did not explicitly concern different critical-

ity levels of a task. It aims to achieve higher design assurance levels by using adequate monitoring

101

and improving mechanisms. In contrast, the MC scheduling that we propose focuses on providing

service guarantee only to the high criticality jobs where computational resources are not adequate.

Kato et al. [76] introduced gang task scheduling based on global EDF. Dong et al. [46] proposed a

schedulability analysis based on lag-based reasoning. Few other works, e.g., Goossens et al. [60],

provided schedulability tests for fixed task-priority scheduling of real-time periodic gang tasks.

Although a good number of works studied MC scheduling and parallel tasks scheduling individ-

ually, very few works studied the scheduling of MC parallel tasks [87, 11, 83, 104]. Rambo et

al. [104] proposed a replica-aware co-scheduling approach (that is a combination of strict priority

preemptive (SPP) policy and gang scheduling policy) for mixed-critical systems. Baruah et al. [11]

and Li et al. [83] proposed the MC scheduling of DAG models, while Liu et al. [87] proposed the

MC scheduling of the synchronous task model. Unlike these works, we consider the gang task

model, where a task cannot execute if the number of available cores is less than its degree of

parallelism. This constraint makes the scheduling problem highly challenging.

7.3 Dual-Criticality Gang Task Model

In this chapter, we discuss the scheduling of a sporadic MC implicit deadline (i.e., the period of a

task is equal to its deadline) gang task set τ = {τ1, . . . , τn} on M identical cores. In this model,

each task generates an infinite number of MC gang jobs (the jth job of task τi is denoted as τi,j).

For details regarding the traditional gang task model, refer to Section 2.1.2. To describe the dual-

criticality gang task model, first, we provide details on MC sporadic sequential task model. Then,

by leveraging these two models,i.e., traditional non-MC gang task model and the MC sporadic

sequential task model, we generalize the gang task model to the MC context. In this work, we

restrict our attention to dual-criticality model.

MC sporadic task model. In a dual-criticality systems, the criticality level of τi is represented by

102

χi = {LO, HI}. The worst case execution time (WCET) estimations of each task is also represented

by a tuple (cLO
i , c

HI
i) where cLO

i and cHI
i represent the LO and HI-criticality WCETs respectively. cHI

i is

measured by a more pessimistic tool by considering all possible scenarios, while cLO
i is calculated

using a less pessimistic yet realistic tool. Collection of all LO- and HI-criticality tasks in τ are

denoted by τLO and τHI respectively. uLO
i and uHI

i denotes the utilization of τi in LO- and HI-criticality

mode respectively, where uLO
i = cLO

i /Ti and uHI
i = cHI

i /Ti.

P4

P3

P2

P1
0 4 8 12 16 202 6 10 14 18

C3LO C3HI

C1LO

C2LO C1HI

E NE E NE E

τ1's Ex/
Non-Ex
Interval

τ2 τ3τ1

Mode Switch
τ1 is released here
but cannot execute

Job
Release

Figure 7.1: A GEDF scheduling of the MC gang task-set from Table 7.1 and the executing (E)/non-
executing (NE) intervals of τ1.

MC gang task model. By leveraging the above two models, we consider a workload model of MC

gang tasks, where each task τi is represented by a 7-tuple (mLO
i ,m

HI
i , χi, c

LO
i , c

HI
i , Ti, Di), where

103

mLO
i = degree of parallelism of task τi in LO-criticality mode.

mHI
i = degree of parallelism of task τi in HI-criticality mode, and mLO

i ≤ mHI
i .

χi = criticality level of each task τi and χi ∈ {LO, HI}.

cLO
i = WCET of τi in LO-criticality mode.

cHI
i = WCET of τi in HI-criticality mode, and cLO

i ≤ cHI
i .

Ti = minimum inter-arrival time between jobs.

Di = relative deadline.

In this model, a task τi occupiesmLO
i (mHI

i) processors for cLO
i (cHI

i) time quantum at LO(HI)-criticality

mode. Note that, if ∀τi,mLO
i = mHI

i = 1, i.e., degree of parallelism for each gang task is 1, our

analysis will reduce to the existing MC scheduling method designed for the sporadic task model.

We believe this is common for a restricted special case of a more complex and expressive model.

For example, the directed acyclic graph (DAG) task model [30, 82] is popular to represent intra-

task parallelism. Many of the existing schedulability analysis considering the DAG model would

also reduce to prior study for ordinary sporadic tasks if the number of nodes of each DAG task is

equal to 1.

Now, we generalize the utilization concepts to suit the MC gang task model, which are analogous

to the above-mentioned concepts. Refer to the Example 15 for details.

U LO
LO

def
=
∑
τi∈τLO

mLO
i × cLO

i /Ti,

U LO
HI

def
=
∑
τi∈τHI

mLO
i × cLO

i /Ti,

U HI
HI

def
=
∑
τi∈τHI

mHI
i × cHI

i /Ti

Example 15. Consider the task-set τ = (τ1, τ2, τ3) in Table 7.1. For this task-set we derive the

104

Table 7.1: An MC gang task set with GEDF schedule shown in Figure 7.1.

Task ID cLO
i cHI

i Ti χi mLO
i mHI

i

τ1 3 4 5 HI 3 4
τ2 3 3 10 LO 2 2
τ3 1 2 10 HI 2 2

utilization as follows:

U LO
LO = cLO

2 ×mLO
2 /T2 = 0.6, U LO

HI = cLO
1 ×mLO

1 /T1 +cLO
3 ×mLO

3 /T3 = 2, and U HI
HI = cHI

1 ×mHI
1 /T1 +

cHI
3 ×mHI

3 /T3 = 3.6.

Example 16. Consider the MC gang task set in Table 7.1 to be scheduled in four cores. A GEDF

schedule for this task set is shown in Figure 7.1. The system starts at LO-criticality mode, and all

the tasks (τ1, τ2, τ3) will execute up-to CLO
i . Recall that, mLO

i is the degree of parallelism of τi in

LO-criticality mode. Hence, τ1 cannot execute at t = 5 as it needs three cores to execute while

only two cores (P3 and P4) are idle. At a mode switch (t = 9), all LO-criticality tasks (τ2) are

dropped, and all HI-criticality tasks (τ1, τ3) will execute up-to CHI
i (at mHI

i cores). After a mode

switch, all HI-criticality jobs (including the ones which are currently executing) will execute up-to

their HI-criticality WCET.

Motivations behind this model. Some commonly used parallel computing programming stan-

dards (e.g., OpenACC [95]) support the gang task model. OpenACC is one of the parallel com-

puting programming standards used for GPU architecture. Recently, there has been extensive

research on GPU architecture (few to mention [35, 49, 123, 127]). GPU architecture is popular

because of the features like (1) highly threaded but low context switch latency architecture, (2)

high parallelism and (3) minimal dependency between data elements, etc. Previous work on GPU

scheduling considered limited or no preemption policy [49, 123]. However, this work is motivated

by some recent attempts to incorporate the preemptive support in GPUs. For example, a prototype

105

has been implemented and tested with preemptive support (at the pixel level and the thread level)

in a virtualized environment in a recent work [35]. Its prototype is EDF based, and enhanced with a

bandwidth isolation mechanism (e.g., constant/total bandwidth servers [114]) for the graphics and

computing workloads. Also, the prototype is tested on a recent NVIDIA Tegra-based system on a

chip (SoCs) [93]. Since some recent work study the preemptive support in the GPU architecture,

there is a need for a comprehensive study of gang task scheduling using GEDF.

Now, we introduce some definitions and preliminaries which will be frequently used in later sec-

tions of this paper.

Definition 1. (MC-correct schedule): Scheduling strategy must ensure an MC-correct schedule,

as defined below [83].

• If the system stays in normal condition (i.e., each task in the system finishes execution within its

LO-criticality WCET), all tasks must meet their deadlines.

• If the system transits into a critical condition (i.e., there exists a HI-criticality task executing

beyond its LO-criticality WCET), all HI-criticality tasks must meet their deadlines, while LO-

criticality tasks need not so.

Definition 2. (Executing/Non-Executing interval) An interval [t1, t2) (where t1 < t2) is an exe-

cuting interval for a task τi if mi out of M cores are executing the current active job released by

τi throughout this interval. Otherwise, [t1, t2) is a non-executing interval for τi. An illustrative

example is shown in Figure 7.1 by pointing the executing and non-executing intervals for task τ1.

Definition 3. (Active/pending task) If there exists a task τi ∈ τ , such that it has a job τi,j where

ri,j ≤ t < di,j . Here, ri,j and di,j respectively denotes the release time and deadline of τi,j , then τi

is considered as an active task at time t. A job is pending if it is released but not finished [46].

Definition 4. Maximum possible number of idle cores ∆LO
i (∆HI

i) for a task τi refers to the maximum

106

number of available cores (that are not executing any job) at any time in LO (HI-criticality mode)

during τi’s non-executing intervals in which it has a pending job [46].

Example 17. Let us consider a 4-core platform and task set τ = {τ1, τ2, τ3} from Table 7.1. At LO-

criticality mode, the degree of parallelism for these tasks are given as: mLO
1 = 3, mLO

2 = mLO
3 = 2.

For this task set, the maximum possible number of idle cores at LO-criticality mode is: ∆LO
1 =

2, ∆LO
2 = ∆LO

3 = 1. This is because τ1 cannot execute at time t (even when it has a pending job)

if τ2 or τ3 is executing at t. The degree of parallelism for τ2 (or τ3) is 2. So, the maximum number

of idle cores for τ1 is ∆1, where ∆1 = 4 − 2 = 2. We can calculate the value of ∆2 and ∆3 in

the same approach (refer to Algorithm 1 in [46]). At HI-criticality mode, degree of parallelism for

these tasks becomes: mHI
1 = 4, mHI

2 = mHI
3 = 2, and the maximum possible number of idle cores

will be: ∆HI
1 = 2, ∆HI

2 = ∆HI
3 = 0.

System behavior and scope of this work. It is expected that an MC system starts execution in

normal mode. The system-wide mode transition is triggered if a HI-criticality task τi has received

cumulative execution length beyond its LO-criticality WCET and did not signal its finishing. Like

the Vestal model [122], after a mode switch, no LO-criticality tasks get any service guarantee. After

mode transition (from LO-criticality to HI-criticality), at the first idle instant, the system switches

back to the LO-criticality mode again. All other scenarios (e.g., a HI-criticality task runs for more

than its HI-criticality WCET) are considered as erroneous, where no guarantees will be made and

hence is not considered.

7.4 GEDF-VD for Dual-Criticality System

Now we describe our algorithm for the MC task systems considering the GEDF-VD algorithm.

In this work, we consider implicit deadline (So, we use the terms deadline and period inter-

changeably) sporadic task systems on identical multi-core platforms. We integrate an uniprocessor

107

MC scheduling technique (EDF-VD [14]) with a multiprocessor gang task scheduling technique

(GEDF [46]) and derive a new algorithm named GEDF-VD (Subsections 7.4.1 and 7.4.2). In our

approach, we determine a scaling factor, which scales the deadline of all HI-criticality tasks at

LO-criticality mode. This factor will be calculated in such a way that the correctness of the system

can be guaranteed at both LO- and HI-criticality modes (Subsections 7.4.3 and 7.4.4).

7.4.1 EDF-VD and GEDF-VD: An Overview

EDF-VD. In case of a mode switch (LO to HI), to generate an MC-correct schedule (Definition 1),

a scheduler must ensure that all HI-criticality tasks meet their deadlines (while LO-criticality tasks

can be sacrificed). To guarantee this criterion, a specific amount of CPU time must be reserved for

those HI-criticality tasks even if the system is running at LO-criticality mode. This reservation of

time can be achieved by shortening the deadlines of HI-criticality tasks under normal mode—those

are virtual deadlines.

In EDF-VD, deadlines of all HI-criticality tasks are shortened by multiplying them with a scaling

factor, and this updated deadline is called the virtual deadline. During run-time (at LO-criticality

mode), all HI-criticality (LO-criticality) tasks are executed according to their virtual (actual) dead-

line, according to the EDF order. Upon a mode switch, only the HI-criticality tasks are executed in

the EDF order w.r.t their actual/original deadlines.

In the case of a LO- to HI-criticality mode-switch, a HI-criticality task demands additional com-

putational requirements. Setting a virtual deadline for the HI-criticality tasks leaves enough time

to finish the extra workload within their actual deadlines. If the virtual deadline is too short, it in-

creases the system density at normal (i.e., LO-criticality) mode. In contrast, a large virtual deadline

threatens the schedulability of the system after a LO- to HI-criticality mode switch. The trick is to

determine a balanced scaling factor x, such that the correctness under both execution modes can be

108

guaranteed. [14] showed the steps to calculate the minimum x that guarantees the schedulability

of all tasks in the system. They also proved the improvement in system schedulability by reducing

the deadline for HI-criticality tasks at LO-criticality mode.

Remark 9. In this work, we consider a completely different gang task workload model in a multi-

core platform. As a result, the approach proposed by Baruah et al. [14] to calculate the scaling

factor x, as well as the schedulability test, are no longer applicable for our case. We propose a

novel approach to calculate a feasible scaling factor x in this section.

GEDF-VD. Now, we provide an overview of our algorithm (GEDF-VD) considering an implicit-

deadline sporadic MC gang task system τ to be scheduled on M identical cores. The GEDF-VD

algorithm starts by checking whether GEDF can successfully schedule the regular task system.

A regular task system denotes that, all LO-criticality tasks will execute up-to their LO-criticality

WCET and all HI-criticality tasks will execute up-to their HI-criticality WCET. It returns SUCCESS

immediately if the regular task system is schedulable. Otherwise, all HI-criticality tasks can execute

up-to their LO-criticality WCETs and their deadline is shortened (i.e., virtual deadline) and set to

T̂i = xTi, while all LO-criticality tasks execute up-to their LO-criticality WCETs with their original

deadline. If any of the currently executing job (of a HI-criticality task) executed beyond its LO-

criticality WCET and did not signal its completion by T̂i, the scheduler immediately discards all

currently active LO-criticality jobs. Also, the deadline for all HI-criticality jobs is changed to their

release time plus their actual deadline. Subsection 7.4.2 provides a detailed description of GEDF-

VD algorithm.

7.4.2 GEDF-VD: A Detailed Description

In this subsection, we describe the GEDF-VD scheduling approach in a two-phase process. First,

we describe what happens prior to run-time (denoted as a pre-processing phase). In this phase,

109

Algorithm 3: GEDF-VD (online part)
Input: A dual-criticality task-set τ = {τ1, τ2, . . . , τn} and a feasible x.
/* Handling tasks at run-time */
Whenever a job is released by tasks τi at time instant t
if τi ∈ τHI then

di,j = t+ xTi;
end
if τi ∈ τLO then

di,j = t+ Ti;
end
Schedule all active jobs by GEDF according to dij’s.
if ∃τi,j ∈ τHI that is not finished by di,j at time t’ then

/* Mode Switch */
for ∀τi ∈ τHI do

di,j = di,j + (1− x)Ti
end
Discard all τi ∈ τLO

Schedule τ ′ = {τHI} by GEDF.
end

GEDF-VD determines whether (or not) it is required to set a virtual deadline for the HI-criticality

tasks. A lower and an upper bound of the virtual deadline is also calculated in this phase. Then,

we discuss how the jobs are scheduled at run-time (denoted as handling the dispatched jobs at

run-time). We present the pseudo-code for (the run-time part of) GEDF-VD in Algorithm 3.

Pre-processing phase. In this phase, we perform a schedulability test for ordinary (non-MC)

GEDF to determine whether (or not) it can successfully schedule: (i) all τi ∈ τLO up-to their LO-

criticality WCET (cLO
i), and (ii) all τi ∈ τHI up-to their HI-criticality WCET (cHI

i). If the GEDF test

fails, then, for each HI-criticality task τi ∈ τHI, a virtual deadline T̂i is computed (Step-2), and they

execute up-to their LO-criticality WCET (cLO
i).

Step 1. We start by checking whether the task-set can be successfully scheduled by GEDF. If so,

then GEDF directly schedules the system. Else, we modify the task deadlines (Step 2).

Step 2: An additional virtual deadline parameter T̂i is calculated for each HI-criticality task τi,

where T̂i = xTi. A schedulability test for GEDF-VD is provided next. Furthermore, when the

110

schedulability test is passed, x can be arbitrarily chosen from the range [A,B] while GEDF-VD

is guaranteed to generate an MC-correct schedule, where A and B are defined and can be easily

calculated for any given system by the following equations:

A = max{A1, A2}; (7.1)

A1 = max
i:τi∈τLO

{
U LO

HI

M −∆LO
i − U LO

LO

}
; (7.2)

A2 = max
i:τi∈τ

{
mLO
i U

LO
HI + uLO

i (M −∆LO
i −mLO

i)

mLO
i (M −∆LO

i − U LO
LO)

}
; (7.3)

B = min
i:τi∈τHI

{
1− mHI

i U
HI
HI + uHI

i (M −∆HI
i −mHI

i)

mHI
i × (M −∆HI

i)

}
. (7.4)

A schedulability test for GEDF-VD. The following theorem provides a sufficient schedulability

test for GEDF-VD.

Theorem 11. An MC gang task system is schedulable under GEDF-VD upon M identical unit-

speed processors if both conditions hold:

U LO
LO < M −max

i
{∆LO

i }, (7.5)

A ≤ B. (7.6)

We will prove this theorem later by proving Lemmas 12 and 13 in Subsections 7.4.3 and 7.4.4.

Recall that, ∆LO
i < M and ∆HI

i < M for all i. Therefore, miU
LO
HI + uLO

i (M − ∆LO
i − mLO

i) =

111

mLO
i (U LO

HI − uLO
i) + uLO

i (M − ∆LO
i) > 0, which with (7.5) together implies A > 0; and also

mHI
i U

HI
HI + uHI

i (M − ∆HI
i −mHI

i) = mHI
i (U HI

HI − uHI
i) + uHI

i (M − ∆HI
i) > 0, which implies B < 1.

Thus, both (7.5) and (7.6) being true implies that 0 < A ≤ B < 1, which guarantees that any x

chosen from [A,B] must be a valid scaling factor such that 0 < x < 1.

Run-time dispatch. Similar to GEDF, at any specific time instant, a task with the earliest deadline

gets the highest priority. In case of ties, task with a smaller index is favored. Let a binary variable

ξ indicate the system-criticality level, then consider the following two possible cases:

Case 1. System is in the LO-criticality mode (ξ = 0), jth job of task τi arrives at time t:

(i) If τi is a LO-criticality task, set the deadline as di,j = t + Ti. Else, set di,j = t + T̂i, where

T̂i = xTi.

(ii) If any of the currently executing jobs executes for more than cLO
i and does not signal completion,

then the system switches to the HI-criticality mode (Case 2).

Case 2. While the system is in the HI-criticality mode (ξ = 1):

(i) Discard all LO-criticality tasks (or use background scheduling).

(ii) Update the deadline for the currently active HI-criticality jobs into release time (of these jobs)

plus their actual relative deadline.

(iii) For any future HI-criticality task τi that releases a job at time t, the deadline is set to t+ Ti.

(iv) When there is an idle instant, switch to the LO-criticality mode (Case 1)2.

2Note that HI-criticality mode exists for certification purposes. Such both directions of mode switch should be
unlikely events during run time. Please also refer to the discussions about apriori verification and run-time robustness
in Section 7.1.

112

7.4.3 Proof of Correctness in the LO-Criticality Mode

In this subsection, we show that GEDF-VD and its schedulability test given by Theorem 11 are

able to guarantee MC correctness at LO-criticality mode.

Lemma 12. If both (7.5) and (7.6) are true, GEDF-VD guarantees that all LO-criticality tasks

meet their deadlines and all HI-criticality tasks meet their virtual deadlines during LO-criticality

mode.

Proof. Dong et al. [46] have proved that, given any real-time implicit deadline sporadic gang task

system τ , GEDF can schedule it successfully if

Usum ≤ (M −∆i)× (1− ui
mi

) + ui

⇐⇒ Usum ≤M −∆i + ui(1−
M −∆i

mi

)

(7.7)

holds for all τi ∈ τ (refer to Theorem 2). The virtual deadline increases the utilization of these

HI-criticality tasks (and hence the whole system). Note that, in the LO-criticality mode, each HI-

criticality task is scheduled by its virtual relative deadline xTi while each LO-criticality task is

scheduled by its actual deadline Ti. Therefore, it is sufficient to view each LO-criticality task as a

sporadic task with utilization uLO
i and view each HI-criticality task as a sporadic task with utilization

uLO
i /x, in order to meet every LO-criticality deadline and every HI-criticality virtual deadline in LO-

criticality mode. Then, for every i such that τi ∈ τ , we discuss the two cases for M −∆LO
i −mLO

i .

Therefore, it suffice to evaluate (7.7) under such utilizations for every task τi. We show this by two

cases: 1) τi ∈ τHI, and 2) τi ∈ τLO.

Case 1: τi ∈ τHI. In this case, using (7.7) as a result from [46], we just need the following

113

inequality to hold for any τi ∈ τHI.

U LO
LO +

U LO
HI

x
≤M −∆LO

i +
uLO
i

x
(1− M −∆LO

i

mLO
i

)

⇐⇒ U LO
HI

x
+
uLO
i

x
(
M −∆LO

i

mLO
i

− 1) ≤M −∆LO
i − U LO

LO

⇐⇒ mLO
i U

LO
HI + uLO

i (M −∆LO
i −mLO

i)

mLO
i · x

≤M −∆LO
i − U LO

LO

(7.8)

Notice that (7.5) implies

M −∆LO
i − U LO

LO > 0 for all i such that τi ∈ τ , (7.9)

and (7.6) allows x ∈ [A,B] can be chosen so that x ≥ A, which, by (7.1) and (7.3), implies

x ≥ mLO
i U

LO
HI + uLO

i (M −∆LO
i −mLO

i)

mLO
i (M −∆LO

i − U LO
LO)

for all i such that τi ∈ τ . (7.10)

It is clear that (7.9) and (7.10) imply (7.8).

Case 2: τi ∈ τLO. In this case, using (7.7) as a result from [46], we just need the following condition

to hold for any τi ∈ τLO.

U LO
LO +

U LO
HI

x
≤M −∆LO

i + uLO
i (1− M −∆LO

i

mLO
i

) (7.11)

Subcase 2.1: M − ∆LO
i − mLO

i ≤ 0. In this case, M − ∆LO
i ≤ mLO

i =⇒ 1 − M−∆LO
i

mLO
i

≥ 0.

Therefore, the following inequality implies (7.11):

U LO
LO +

U LO
HI

x
≤M −∆LO

i . (7.12)

114

Notice that (7.5) implies

M −∆LO
i − U LO

LO > 0 for all i such that τi ∈ τ , (7.13)

and (7.6) allows x ∈ [A,B] can be chosen so that x ≥ A, which, by (7.1) and (7.2), implies

x ≥ U LO
HI

M −∆LO
i − U LO

LO

for all i such that τi ∈ τLO. (7.14)

It is clear that (7.13) and (7.14) imply (7.12)

Subcase 2.2: M − ∆LO
i −mLO

i > 0. In this case, M − ∆LO
i > mLO

i =⇒ 1 − M−∆LO
i

mLO
i

< 0. So,
uLO
i

x
(1 − M−∆LO

i

mLO
i

) < uLO
i (1 − M−∆LO

i

mLO
i

), as 0 < x < 1. Therefore, the following inequality implies

(7.11).

U LO
LO +

U LO
HI

x
≤M −∆LO

i +
uLO
i

x
(1− M −∆LO

i

mLO
i

) (7.15)

By the same reasoning as that for Case 1, (7.15) always holds because (7.9) and (7.10) are “for any

τi ∈ τ” and both HI- and LO-criticality tasks are included in the set τ . That is, (7.11) is also true in

Case 2.2 here.

Combining Cases 1 and 2 (the latter includes Sub-cases 2.1 and 2.2), the lemma follows.

7.4.4 Proof of Correctness in the HI-Criticality Mode

In this subsection, we show that GEDF-VD and its schedulability test given by Theorem 11 are

able to guarantee MC correctness at HI-criticality mode.

Lemma 13. If both (7.5) and (7.6) are true, GEDF-VD guarantees that all HI-criticality tasks meet

their deadlines during HI-criticality mode.

115

0 1B

System schedulable at
LO-criticality mode

A

System schedulable at HI-criticality mode

System schedulable at both
LO- and HI-criticality mode

Figure 7.2: Any value of the scaling factor x, where A ≤ x ≤ B, guarantees an MC-correct
schedule.

Proof. At the mode switch point from the lo- to HI-criticality mode, a job from any task τi ∈ τHI

must be either completed or has a deadline at least (1−x)Ti after this mode-switch point; otherwise,

an earlier time instant would have been the mode switch point.

Afterwards, any job from any task τi ∈ τHI has at least Ti time units (which is more than (1 −

x)Ti as 0 < x < 1) from their releases in the HI-criticality mode to their corresponding deadlines.

Therefore, viewing each task τi ∈ τHI in the HI-criticality mode as a sporadic task with utilization
uHI
i

(1−x)
and using (7.7) as a result from [46], the following inequality is sufficient to ensure that

all HI-criticality tasks meet their actual deadlines during HI-criticality mode. For all i such that

τi ∈ τHI,

mHI
i ×

U HI
HI

(1− x)
≤ mHI

i × (M −∆HI
i)− uHI

i

1− x
× (M −∆HI

i −mHI
i) (7.16)

Notice that (7.6) allows x ∈ [A,B] can be chosen so that x ≤ B, which, by (7.4), implies the

following equation holds for all i such that τi ∈ τHI:

x ≤ 1− mHI
i U

HI
HI + uHI

i (M −∆HI
i −mHI

i)

mHI
i × (M −∆HI

i)
(7.17)

Furthermore, Equation (7.17) is equivalent to Equation (7.16), as 0 < x < 1 and ∆HI
i < M . Thus,

the lemma follows.

Finishing up. We establish Theorem 11 by combining Lemma 12 and 13, and it serves as a suffi-

116

cient schedulability test for GEDF-VD to schedule MC gang task sets on M identical processors.

In addition, Figure 7.2 gives a high-level intuition for validating Theorem 11, given that Lemma

12 and 13 have been proven. Note that we did leverage some insights (in our analysis) from prior

works on MC scheduling and gang scheduling. However, considering both of these directions

brought increased complexity in our system model. The existing analysis of MC scheduling or

gang scheduling is not directly applicable to our work. For example, in the speedup bound anal-

ysis for MC scheduling of ordinary sporadic tasks, an individual task’s utilization is at most the

speed of a processor is a straightforward and necessary feasibility condition, while it no longer

holds for the gang tasks.

Remark 10. If we consider that the degree of parallelism of a task τi remains unchanged even

after a mode-switch, i.e., mLO
i = mHI

i = mi, then the correctness proofs become identical to the

correctness proofs established in [27].

7.5 Speed-up Bound Analysis

In this section, we evaluate the effectiveness of our algorithm GEDF-VD based on speedup bound

metric, which is a widely accepted tool for evaluating the effectiveness of multiprocessor schedul-

ing algorithms [13]. We will first provide the related definition and some existing results, and then

(in Subsection 7.5.1) will derive the speedup bound for gang tasks under GEDF algorithm consid-

ering the non-MC systems. The speedup bound for (non-MC) gang tasks under GEDF scheduling

policy, lays the foundation for deriving a speedup bound for MC gang tasks. Finally, in Subsec-

tion 7.5.2, considering the MC sporadic gang tasks, we prove a speedup bound for our proposed

algorithm GEDF-VD. We derive the speedup bound for non-MC gang tasks (Subsection 7.5.1) and

the MC gang tasks (Subsection 7.5.2) assuming that the degree of parallelism of a task τi does not

change after a mode-switch, i.e., mLO
i = mHI

i = mi. In this section, Specifically, we present the

117

following findings:

• We prove that the speedup bound [13] for GEDF to gang tasks in a non-MC platform is at

most
(
2 − 1/(M + 1 − mini{mi})

)
, where M denotes the total number of processor cores

and mi denotes the degree of parallelism of task τi.

• With the result from the previous step, we then derive a speedup bound of
√

5+1 for GEDF-

VD considering MC gang tasks.

Now we provide some definitions and required background.

Definition 5. (Speedup factor and speedup bound) For a scheduler S, a speedup factor V (V ≥

1) (also known as resource augmentation factor) means that any task set that is schedulable by

an optimal scheduler on a platform of speed-1 cores will be schedulable by S on a platform of

speed−V cores.

For a scheduler S, a speedup bound refers to the lower bound of the speedup factor V achievable

by it. A speedup bound for a scheduler S provides an estimation of how far the performance of S

is from an optimal scheduler, and the lower the better.

Limitations. Our speedup factors result in this section rely on the following assumption that

mi ≤
M + 1

2
for all τi ∈ τ, (7.18)

The speedup factors results in this section apply only to systems that satisfy the condition (7.18).

Nonetheless, condition (7.18) was not required for the schedulability test and analysis in the last

section. Therefore those schedulability results apply to a broader range of MC gang task systems.

In practice, condition (7.18) is often satisfied because of the number of cores in modern platforms

increases.

118

Note that gang tasks cannot be scheduled on uniprocessor platforms due to their natures of the

mandatory parallel processor access request. Therefore, in order to compare with a potential opti-

mal scheduler on a uniprocessor, we propose a De-ganging transformation between a multiproces-

sor gang task set and a corresponding Liu-and-Layland (LL) task set:

• De-ganging: Given a gang task set τ = {τ1, ..., τn}, for each task τi = {mi, ci, Ti}, construct

mi LL tasks {τ
′(1)
i , ..., τ

′(mi)
i }, each with the same execution length and period, i.e., τ

′(j)
i =

{ci, Ti} for any j = 1, ...,mi. For mapping of the other way around, any deganged LL task

set can be clustered into n groups, where there are mi tasks from the ith group sharing the

same execution time ci and the same period Ti, resulting in a gang task τi = {mi, ci, Ti} of

the same “total” utilization. The extension to MC task set is trivial—treat ci as a vector and

maintain the values during the transfer.

A moment thought should convince the reader that it suffices to restrict our attention to the de-

ganged LL task set when deriving the speedup bound, as the de-ganged LL task set being schedu-

lable is necessary for the corresponding gang task set to be schedulable. This transformation does

not change the overall set utilization and thus does not change the utilization-based necessary

schedulability conditions (i.e., basis of the speedup proofs). Throughout the proofs in this section,

the following Greek letters will be used frequently:

ψ = M/(2− 1

M
);

φ =

√
5 + 1

2
(i.e., golden ratio);

Φ =

√
5− 1

2

(7.19)

119

7.5.1 Speedup Bound for Gang Tasks under GEDF

In this subsection, we derive the speedup bound (shown in Theorem 14) for the algorithm GEDF,

considering the non-MC gang task set τ , executing on V-speed cores. This is the first speedup

bound result for gang task under GEDF scheduling. This analysis lays the basis for deriving the

speedup bound for the proposed MC gang task scheduler.

Theorem 14. Given any de-ganged task set that is schedulable on a speed-M uni-processor, the

corresponding gang task set will pass the schedulabililty test of GEDF upon a M -core system,

each of speed V = 2− 1/(M + 1−mini{mi}).

Proof. Because 1 ≤ mi ≤M for any i, we know that for all τi ∈ τ ,

V = 2− 1

M + 1−mini{mi}

≥ 2− 1

M + 1−mi

=
2M + 1− 2mi

M + 1−mi

;

(7.20)

From feasibility of the LL task set on a speed-M uniprocessor, we have Usum ≤M . So,

(7.20) =⇒ V ≥ Usum +M + 1− 2mi

M + 1−mi

⇐⇒ Usum
V
≤M − (mi − 1) +

(2mi −M − 1)

V

⇐⇒ mi
Usum
V
≤ miM −mi(mi − 1) +

mi

V
(2mi −M − 1)

=⇒ mi
Usum
V
≤ miM −mi(mi − 1) +

ui
V

(2mi −M − 1)

[ui ≤ mi, 2mi −M − 1 ≤ 0]

(7.21)

The condition 2mi −M − 1 ≤ 0 is equivalent to (7.18); while ui ≤ mi is true for any gang task

120

because the utilization of each gang task τi is ui = mi(ci/Ti), where ci ≤ Ti. Note that ui can also

be viewed as the total utilization of the mi de-ganged LL tasks that correspond to the gang task τi.

Again, de-ganging preserves the utilization of the set. From Equation (7.21):

mi
Usum
V
≤ miM − (mi − 1)mi + (mi − 1)

ui
V

+
ui
V

(mi −M)

=⇒ mi
Usum
V
≤ miM − (mi − 1)(mi −

ui
V

)− ui
V

(M −mi)

=⇒ mi
Usum
V
≤ miM −∆i(mi −

ui
V

)− ui
V

(M −mi)

[From Definition 4: 0 ≤ ∆i ≤ mi − 1]

= mi(M −∆i)− (M −∆i −mi)
ui
V

[re-arrange]

= (M −∆i)(mi −
ui
V

) +mi
ui
V

[re-arrange]

=⇒ Usum
V
≤ (M −∆i)(1−

ui
miV

) +
ui
V

[divide mi on both sides, re-arrange], for all i

(7.22)

The equation above implies that the corresponding gang set is GEDF schedulable on M speed-

V processors (Theorem 2 in [46]). Note that the last step is true because under speed of V , all

utilizations in the test should be treated as the ones under speed 1 divided by V , in order to apply

the original schedulability test under a speed-1 platform.

Theorem 14 indicates that the speedup factor of the GEDF schedulability test in Theorem 2 of [46]

(for gang task set) is no greater than V = 2− 1/(M + 1−mini{mi}). Because 1 ≤ mi ≤M for

any i, V ≤ 2− 1
M

. Therefore, the following corollary follows directly from Theorem 14.

Corollary 1. Given any de-ganged task set that is schedulable on a speed-M uni-processor, the

corresponding gang task set will pass the schedulability test of GEDF upon aM -core system, each

of speed (2− 1
M

).

121

Furthermore, scaling all speeds by a factor of 1/(2− 1
M

) lead to the following corollary.

Corollary 2. Given any de-ganged task set that is schedulable on a speed-ψ uni-processor, the cor-

responding gang task set will pass the schedulability test of GEDF upon M unit-speed processors,

where ψ = M/(2− 1
M

).

7.5.2 Speedup Bound for Gang Tasks under GEDF-VD

The previous subsection proved the speedup bound for non-MC task under GEDF. We now brings

MC and virtual deadlines into the picture, and derive the speedup bound for MC gang task set τ

under GEDF-VD. From the definitions of φ and Φ in Equation (7.19), the following properties

hold:

1 + Φ = φ =
1

Φ
(7.23)

Φ + Φ2 = 1 (7.24)

Theorem 15. Given any de-ganged MC task set that is schedulable on a speed-(ψ·Φ) uniprocessor,

the corresponding MC gang task set will be schedulable under GEDF-VD upon M unit-speed

processors, where ψ = M/(2− 1
M

) and Φ =
√

5−1
2

.

Proof. The de-ganged MC task set being schedulable on a speed-(ψ · Φ) uni-processor implies

max{U LO
LO + U LO

HI , U
HI
HI } ≤ ψ · Φ. (7.25)

We proceed the rest of this proof in two cases.

122

Case 1: U LO
HI ≥ Φ · U LO

LO . By (7.25) and the condition of Case 1,

ψ · Φ ≥ U LO
LO + U LO

HI ≥ (1 + Φ)U LO
LO

=⇒ U LO
LO ≤

Φ

1 + Φ
· ψ = Φ2 · ψ. [by (7.23)]

Then, by the above and (7.25),

U LO
LO + U HI

HI ≤ Φ2 · ψ + Φ · ψ = ψ. [by (7.24)]

Thus, no virtual deadline needs to be set at all. Both HI- and LO-criticality tasks are scheduled by

GEDF according to their actual deadlines onM unit-speed processors. By Corollary 2, no deadline

will be missed.

Case 2: U LO
HI < Φ · U LO

LO . By (7.25) and the condition of Case 2,

ψ · Φ ≥ U LO
LO + U LO

HI > (
1

Φ
+ 1)U LO

HI

=
1 + Φ

Φ
· U LO

HI =
1

Φ2
· U LO

HI . [by (7.23)]

That is,

U LO
HI < Φ3 · ψ. (7.26)

123

Then, we have

U LO
LO +

U LO
HI

1− U HI
HI /ψ

= U LO
LO + U LO

HI + U LO
HI ·

U HI
HI /ψ

1− U HI
HI /ψ

≤ U LO
LO + U LO

HI + U LO
HI ·

Φ

1− Φ

[U HI
HI ≤ ψ · Φ by (7.25)]

= U LO
LO + U LO

HI + U LO
HI ·

Φ

Φ2
[by (7.24)]

< ψ · Φ + Φ3 · ψ · Φ

Φ2
[by (7.25) and (7.26)]

= (Φ + Φ2)ψ [rearrange] = ψ, [by (7.24)]

which is concluded as

U LO
LO +

U LO
HI

1− U HI
HI /ψ

< ψ. (7.27)

In this case, one could take x =
ULO

HI
ψ−ULO

LO
as the scaling factor to set the virtual deadlines for HI-

criticality tasks. Because the de-ganged task set is schedulable on a speed-(ψ · Φ) uniprocessor,

U LO
LO ≤ ψ · Φ, which implies x > 0, as Φ < 1, ψ > 0, and U LO

HI > 0. On the other hand,

U LO
HI < Φ · U LO

LO in Case 2, so

x =
U LO

HI

ψ − U LO
LO

<
Φ · U LO

LO

ψ − U LO
LO

≤ Φ · ψ · Φ
ψ − ψ · Φ

=
Φ2

1− Φ
= 1. [by (7.24)]

Thus, in this case, 0 < x < 1 is guaranteed under this particular setting and therefore this x can

always be used as the scaling factor to set the virtual deadlines for GEDF-VD. Then, we first show

that all LO-criticality tasks meet their actual deadlines and all HI-criticality tasks meet their virtual

124

deadlines during the LO-criticality mode.

U LO
LO +

U LO
HI

x
= U LO

LO + ψ − U LO
LO = ψ.

By Corollary 2, the above equation implies that using GEDF-VD to schedule the gang task set on

M unit-speed processors, all LO-tasks meet their actual deadlines and all HI-tasks meet their virtual

deadlines during the LO-mode. Next, we show that all HI-criticality tasks, including any carryover

(HI-) jobs across the mode-switch point, meet their actual deadlines during the HI-criticality mode.

Because the virtual deadlines are set as x · Ti for each HI-criticality task τi, every HI-criticality job

including the one triggering the mode switch will have at least (1 − x)Ti time units to finish its

at most CHI
i execution and to release its next job. It suffices to consider the schedulability when

replacing each HI-criticality task in the HI-criticality mode by a implicit-deadline sporadic task

with period (1− x)Ti and execution CHI
i . It can be done by checking their total utilization

∑
τi∈τHI

CHI
i

(1− x)Ti
=

U HI
HI

1− x
.

On the other hand, by (7.27), we have

U LO
HI

ψ − U LO
LO

< 1− U HI
HI /ψ,

and 1− x > U HI
HI /ψ holds since we set x =

ULO
HI

ψ−ULO
LO

. Thus,

U HI
HI

1− x
<

U HI
HI

U HI
HI /ψ

= ψ.

By Corollary 2, the above equation implies that using GEDF-VD to schedule the gang task-set

on M unit-speed processors, all HI-criticality tasks, including any carryover (HI-) jobs across the

125

mode-switch point, meet their actual deadlines during the HI-criticality mode.

Finally, we can easily use Theorem 15 to derive a speedup bound for GEDF-VD to schedule MC

gang task sets on identical processors, as stated in the following theorem.

Theorem 16. If any potentially optimal algorithm can schedule an MC gang task set on M unit-

speed processors, GEDF-VD can schedule the same task set on M speed-(
√

5 + 1) processors.

Proof. Theorem 15 directly implies that: If any potentially optimal algorithm can schedule an MC

gang task set on M speed-(ψ ·Φ/M) processors, GEDF-VD is able to schedule the same MC gang

task set on M unit-speed processors. This is because for a MC gang task set to be schedulable

on M speed-(ψ · Φ/M) processors, it is necessary for its corresponding de-ganged MC task set to

schedulable on a speed-(ψ · Φ) uniprocessor. Note that, by definitions: ψ = M
2− 1

M

and Φ =
√

5−1
2

,

the following statement is true:

If any potentially optimal algorithm can schedule a MC gang task set on M speed-

(1
2− 1

M

·
√

5−1
2

) processors, GEDF-VD is able to schedule the same MC gang task set on

M unit-speed processors.

Scaling the speed unit up by (2− 1
M

)
√

5+1
2

(please note that
√

5−1
2
·
√

5+1
2

= 1), the above statement

can be re-written as:

If any potentially optimal algorithm can schedule a MC gang task set on M unit-speed

processors, GEDF-VD is able to schedule the same MC gang task set on M speed-

(2− 1
M

)
√

5+1
2

processors.

Since (2− 1
M

)
√

5+1
2

<
√

5 + 1, the theorem follows.

126

7.6 Evaluation

In this section, we evaluate the performance of GEDF-VD through simulation results. While the

simulation results provide some representation of the proposed scheduling’s performance, they

may not represent the exact behavior of our proposed approach in real systems for several rea-

sons. For example, memory plays a vital role from an implementation point of view and needs

to be available and allocated to parallel threads. Although a recent work [35] has implemented a

preemptive EDF scheduler for GPU tasks providing bandwidth isolation, MC scheduling on the

GPU platform (with preemptive EDF) and the memory partitioning technique to the gang tasks

are yet to be explored. In the future, we plant to explore implementation and experimentation on

a real hardware platform. As our work is the first to propose MC gang task scheduling, there is

no perfect baseline for comparison. We have performed many experiments by varying different

factors to observe the efficiency of our algorithm.

7.6.1 Experimental Setup

Workload generation. We generate MC gang tasks based on the following parameters.

•M : The number of processor cores.

• mmin,mmax,mavg : The minimum, maximum, and average value for m (i.e., degree of paral-

lelism), respectively. We generate the task set by varying these three parameters, wheremmin,mmax ∈

[1,M] and mmin ≤ mavg ≤ mmax.

• Uavg : The average utilization for the task set. We have varied Uavg value from 0.05 × M to

0.95×M with 0.05×M difference at each step.

• PHI = 0.5: The probability of a task τi ∈ τHI.

• R: Denotes the maximum ratio of uHI
i to uLO

i , where R ∈ [4, 8]. We generate uHI
i uniformly from

[uLO
i , R× uLO

i].

127

At first, for a specific value of n (number of tasks per task set), we generate the m values for each

task. m is uniformly generated from [mmin,mmax] range in a way so that the average m for all

tasks remains equal to mavg. Next, for a specific value of average utilization Uavg, we calculate

the average utilization uai for each task by following the log-normal distribution. Note that, for

n number of gang tasks, there are total
∑n

i=1mi = mavg × n amount of single task instances in

each task set. For the sake of a proper distribution, we extend the UUniFast algorithm [29] for

Gang task. We use log-normal distribution over
∑n

i=1mi task instances similarly as UUnifast, but

for a single task, we take the average of all of its instances as the task’s average utilization. The

values of uLO
i is uniformly generated from [

2×uai
R+1

, uai] so that the value of uHI
i is always in the range

[uLO
i , R× uLO

i].

Simulation setup. We performed the simulation for average utilization ranging from 0.05M to

0.95M with a step size of 0.05M . For each average, 100 task sets (each with 10 tasks) are

generated.

7.6.2 Evaluation Results

We execute a set of gang tasks under our proposed algorithm by varying different parameters, and

present the simulation results in Figure 7.3, 7.4, 7.5, 7.6, 7.7, 7.8, 7.9, and in Table 7.2. Note that,

in Table 7.2, and in Figure 7.4-7.9, we consider that the degree of parallelism (of the HI-criticality

tasks) does not change after a mode-switch.

Effect of changing the degree of parallelism after a mode switch. In this experiment, we set the

value for M to 8, and vary (i.e., increase or unchanged) the degree of parallelism of a HI-criticality

task after a mode-switch. To incorporate the change in the task model, i.e., the degree of parallelism

of a HI-criticality task can change after a mode-switch, we slightly modify the simulation setup

128

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

10

20

30

40

50

60

70

80

90

100

Normalized (by M) Average Utilization

A
cc

ep
ta

nc
e

R
at

io
(%

)

m_lo=2.5, m_hi=3

m_lo=2.5, m_hi=3.4

m_lo=3, m_hi=3.8

m_lo=3.5, m_hi=4

Figure 7.3: Acceptance ratio for GEDF-VD with a different (after a mode-switch) average degrees
of parallelism.

Table 7.2: Acceptance ratio for different amount of tasks generated under various average utiliza-
tion and R value.

Uavg →
of tasks↓ R 2 2.5 3 3.5 4 4.5 5

8 4 100 100 97 59 5 5 4
12 4 100 99 94 65 2 2 2
16 4 100 100 98 50 0 0 0
8 8 97 75 67 31 23 19 11
12 8 100 100 74 58 40 17 6
16 8 100 98 91 77 48 34 11

described in Subsection 7.6.1. We report the acceptance ratio (in Figure 7.3) with a different

average of mLO
i (i.e., from 2.5 to 3.5) and mHI

i (i.e., from 3 to 4) values. This figure reports that

the acceptance ratio (i.e., the ratio of the number of schedulable task sets over the total number of

task sets) decreases when the degree of parallelism increases, which can be explained by Equations

(7.8) and (7.16). That is, a higher value of mLO
i or mHI

i inversely affects the acceptance ratio.

129

Effect of changing the degree of parallelism in a range with lower difference. In this set of

experiments, for M = 8, we vary a task’s degree of parallelism (m) in a different range, while

the difference between the upper and lower bound in each range is fixed. The acceptance ratio

under varying degree of parallelism (and different R values) is reported in Figure 7.4 and Figure

7.5. These figures indicate that in boundary cases (where the degree of parallelism is very low

or very high) acceptance ratio changes proportionally with respect to the degree of parallelism.

This behavior can be explained with the help of Equations (7.8) and (7.16). When m increases

or decreases by a large amount, acceptance ratio will increase or decrease respectively. However,

for a small change of m, acceptance ratio may not change proportionally. This is because the

schedulability conditions provided by Equations (7.8) and (7.16) are also effected by the maximum

number of idle cores (∆i), which is dependent on m.

0 2 4 6 8
0

20

40

60

80

100

Average utilization

A
cc

ep
ta

nc
e

R
at

io
 %

m = [1,2]

m = [3,4]

m = [5,6]

m = [7,8]

Figure 7.4: Acceptance ratio for GEDF-VD in an 8-core platform with R = 4, and under same
ranges of degrees of parallelism.

Effect of changing the total number of cores. In Figure 7.6 and Figure 7.7, we report the ac-

ceptance ratio of the task set by varying the number of cores in the system, M . In this set of

130

0 2 4 6 8
0

20

40

60

80

100

Average utilization

A
cc

ep
ta

nc
e

R
at

io
 %

m = [1,2]

m = [3,4]

m = [5,6]

m = [7,8]

Figure 7.5: Acceptance ratio for GEDF-VD in an 8-core platform with R = 8, and under same
ranges of degrees of parallelism.

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

Normalized(by M) average utilization

A
cc

ep
ta

nc
e

R
at

io
 %

M=4

M=8

M=16

M=32

Figure 7.6: Acceptance ratio for GEDF-VD in an M -core platform (with R = 4).

experiments, we set a value for mavg, which is uniformly generated from a range of [M
2
, 3M

4
].

Simulations are conducted for M = 4, 8, 16, and 32 and the average utilization is weighted with

131

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

Normalized(by M) average utilization

A
cc

ep
ta

nc
e

R
at

io
 %

M=4
M=8
M=16
M=32

Figure 7.7: Acceptance ratio for GEDF-VD in an M -core platform (with R = 8).

0 2 4 6 8
0

20

40

60

80

100

Average utilization

A
cc

ep
ta

nc
e

R
at

io
 %

m=2.5

m=3.5

m=4.5

m=5.5

Figure 7.8: Acceptance ratio for GEDF-VD in an 8-core platform with R = 4 and a varying range
of mavg.

respect to the value of M . Figure 7.6 and Figure 7.7 shows that the acceptance ratio is not affected

by different values of M and remains almost unchanged.

132

0 2 4 6 8
0

20

40

60

80

100

Average utilization

A
cc

ep
ta

nc
e

R
at

io
 %

m=2.5
m=3.5
m=4.5
m=5.5

Figure 7.9: Acceptance ratio for GEDF-VD in an 8-core platform with R = 8 and a varying range
of mavg.

Effect of changing number of tasks per task set. In this set of experiments, we have randomly

generated 100 task sets with different R values and 8, 12, and 16 tasks per task set (with Uavg

changing from 2 to 5 with a step size of 0.5) and report the acceptance ratio in Table 7.2. From

the reported data, it is clear that the acceptance ratio of the task set is not affected by the number

of tasks per set. This result indicates the effectiveness of our proposed algorithm under a varying

number of tasks in a task set.

Effect of changing mavg value. In Figure 7.8 and Figure 7.9, we show the acceptance ratio by

varying mavg in an 8-core platform. The result does not demonstrate a direct relationship between

mavg and the acceptance ratio.

133

7.7 Conclusion

WCET measurements are pessimistic due to increased uncertainty. So, there is an emerging need

to introduce MC into parallel computation models and system designs. This chapter discusses an

initial step of more substantial efforts in bringing richer system modeling and analysis into the

emerging need in many applications for parallel computing and MC. In this chapter, we leverage

two existing algorithms (EDF-VD and GEDF) to schedule MC gang tasks efficiently and discuss

the correctness criteria of our approach. We derive the first speedup bound for GEDF schedulability

of (non-MC) gang tasks and further derived the bound for GEDF-VD of MC gang tasks.

134

CHAPTER 8: ENERGY EFFICIENT PRECISE SCHEDULING OF

MIXED-CRITICALITY TASKS

Many embedded systems have hard real-time constraints that must be satisfied to guarantee the

correctness of the system behavior. Missing a time deadline is, in fact, typically considered as a

system failure. To ensure the timing correctness of a system, a schedulability test is performed to

verify that no task misses any deadline under any condition. The task models are usually character-

ized by the arrival pattern, (periodic, sporadic, or aperiodic, etc.,) the deadline, and the execution

time. In particular, most of the state of the art schedulability analysis considered that a task can

execute up to its Worst-Case Execution Time (WCET). During the real execution, however, a task

rarely needs to execute up to its WCET [111]. For a large class of real-life applications, WCET

based schedulability analysis is often proved to be very pessimistic [84], as the task execution pat-

tern may show great variability (w.r.t. time). Consequently, designing a system with the assumption

that a task will execute up to its WCET, may lead to system over-provisioning, low utilization, high

costs, and excessive power/energy consumption [88]. This is in contrast with the requirement of

improving performance while maintaining the non-functional property at an acceptable level.

To efficiently utilize the non-negligible gap between the WCET and the actual execution time, and

to minimize energy consumption, resource over-provisioning, and cost, the Mixed-Criticality (MC)

framework [122] received attention from a wide community. In an MC setup, different software

The contents of this chapter have been previously published and available at
1. Bhuiyan, A., Sruti, S., Guo, Z., & Yang, K. (2019, November). Precise scheduling of mixed-criticality tasks by
varying processor speed. In Proceedings of the 27th International Conference on Real-Time Networks and Systems
(pp. 123-132)
2. Yang, K., Bhuiyan, A., & Guo, Z. (2020, November). F2VD: Fluid rates to virtual deadlines for precise mixed-
criticality scheduling on a varying-speed processor. In 2020 IEEE/ACM International Conference On Computer Aided
Design (ICCAD) (pp. 1-9). IEEE.
3. Bhuiyan, A., Reghenzani, F., Fornaciari, W., & Guo, Z. (2020). Optimizing energy in non-preemptive mixed-
criticality scheduling by exploiting probabilistic information. IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, 39(11), 3906-3917.

135

components with different criticality levels are integrated into a common platform. To each task,

a criticality level is assigned together with multiple execution time thresholds (at different certi-

fication/pessimism levels), as described by Vestal’s seminal paper [122]. This value is inspired

by the industry standards for safety-critical systems: for instance, the DO-178C avionic software

standard [1] sets 5 levels of criticality: {A,B,C,D,E}, where A is the criticality level referring

to functions that may cause catastrophic failures, while at level E, to functions that do not affect

safety. In real-time computing, this value is interpreted as the level of assurance of the WCET.

To illustrate this concept, let us consider a dual-criticality system, where the tasks are classified

in LO-criticality and HI-criticality. The tasks belonging to the latter category have two values for

the WCET: where one value is pessimistic, but safe, while the other value is computed with an

analysis that provides a lower level of assurance, and hence less pessimistic. In this case, the less

pessimistic value may not correctly (over-)estimate the real WCET. Consequently, the execution

time of a task may overrun this value. When this condition happens, i.e., the overrun, we say that

a mode switch occurs.

Existing MC task-set scheduling strategies aimed at: (i) correctly scheduling all the tasks when the

system exhibits less pessimistic behaviors (in this case, the system is said to be in LO-criticality

mode), and, (ii) correctly scheduling the more important (HI-criticality) tasks under more pes-

simistic behaviors, while no scheduling guarantee is given to the less important (LO-criticality)

tasks (in this case, the system is said to be in HI-criticality mode). The system starts running in

LO-criticality mode by scheduling the tasks under optimistic assumptions. When a HI-criticality

task violates its assigned execution time threshold, the system switches to the HI-criticality mode,

i.e., mode switch, and it drops all the LO-criticality tasks to guarantee the deadlines of HI-criticality

tasks. However, discarding (or providing degraded services) to the LO-criticality tasks may result

in severe performance loss and it violates the task independence requirements for safety-critical

systems [52].

136

Some recent work in [126, 26] handled the precise scheduling of MC systems, where full service is

provided to all tasks under both the pessimistic and optimistic assumptions. They incorporated the

dynamic voltage frequency scaling (DVFS) scheme to the precise scheduling strategy and derived

the energy-aware CPU speed to execute in normal mode. However, the optimized energy consump-

tion is in accordance to the worst-case behaviors under the normal mode. The energy consumption

should be optimized for the average/expected scenarios instead, and the existing MC task model

(with multiple WCETs) does not provide sufficient information to perform such optimization.

Probabilistic Approaches. Probabilistic real-time approaches have been proposed in the last two

decades to overcome the problem of the WCET estimation for modern platforms [43, 110]. Most of

these approaches are based on the estimation of the distribution tail by exploiting the Extreme Value

Theory, a statistical theory to model the probability of extreme events, that in the real-time case it is

used for the WCET of the tasks. Unfortunately, the theory is still immature and several challenges

yet to be addressed before considering its results reliable [106]. Hence, in this work, we propose

to exploit the probabilistic information not to directly estimate the WCET for scheduling analysis

purposes, but to use them for the optimization of the system energy consumption. Differently from

previous probabilistic energy approaches [105], the focus of this work is the satisfaction of real-

time requirements with a deterministic approach and on top of that, exploiting the probabilistic

information to minimize the expected energy consumption of the system.

Existing works aimed at minimizing energy consumption at LO-criticality mode, but considered a

pessimistic assumption that all the tasks execute up to their WCET, at their respective criticality

levels [26, 126]. Since a task rarely needs to execute up to its WCET, we integrate the probabilistic

based prediction strategy and the DVFS scheme to the precise scheduling of MC tasks. In this

chapter we present the following key contributions:

• We present the experimental studies based on randomly generated synthetic tasks (scheduled

137

using the EDF-VD and MCF algorithm, proposed in [26]). The experimental result supports

the theoretical findings as well as the effectiveness of the proposed algorithms.

• Then, we present the experimental studies based on randomly generated task sets scheduled

using the F2VD algorithm proposed in [126].

• We present an energy-aware scheduling strategy that selects the optimistic WCETs for tasks

and the processor speeds under both (LO- and HI-criticality) modes to minimize the overall

average energy consumption. This optimization is performed via a novel probabilistic analy-

sis of the execution time, coupled with a dedicated response time analysis which guarantees

the timing correctness of all tasks under both the pessimistic and optimistic assumptions.

• Based on a randomly generated task sets, we conduct extensive simulation studies which

supports the effectiveness of our algorithm (w.r.t. energy consumption).

The rest of the paper is organized as follows. Section 8.1 describes the task model, existing

scheduling policies for the precise MC task model, and a comparison among these schedulers.

Section 8.2 describes the probabilistic MC task model, provides a detailed response time analysis

for such a task model, and reported the experimental results.

8.1 Traditional MC Task Model

In this section, we describe the traditional MC task model and provided some required definitions

(Subsection 8.1.1). Then we present some existing scheduling policies, e.g., EDF-VD, F2VD, and

MC-Fluid, proposed to handle the precise MC task model (Subsection 8.1.2). Finally, we report a

detailed comparison among these schedulers (Subsection 8.1.3).

138

8.1.1 System Model

We consider a set of n implicit-deadline sporadic MC tasks τ = {τ1, τ2, · · · , τn}, where each task is

specified by a 3-tuple as τi = (CLO
i , C

HI
i , Ti). Each task τi releases a (potentially infinite) sequence

of jobs with a minimum release separation of Ti time units and every job has an absolute deadline Ti

time units after its release. The worst-case execution requirement, which is defined by the worst-

case execution time on a unit-speed processor, of task τi is estimated at two criticality levels: a

LO-criticality estimate CLO
i and HI-criticality estimate CHI

i , where it is assumed that ∀i, CLO
i ≤ CHI

i .

Besides, CLO
i (CHI

i , respectively) is also the execution requirement budgets of task τi in the LO(HI,

respectively)-mode, which is to be described later. In particular, CLO
i < CHI

i indicates that task

τi is a HI-criticality task (HI-task) that may trigger a system mode switch, whereas CLO
i = CHI

i

indicates that task τi is a LO-criticality task (LO-task) that cannot trigger any system mode switch.

Furthermore, the j th job of task τi is denoted by Ji,j , whose release time and absolute deadline are

denoted by ri,j and di,j , respectively.

The per-mode utilization of each task τi are determined as follows:

∀τi, uLO
i =

CLO
i

Ti
;

∀τi, uHI
i =

CHI
i

Ti
.

The total utilization for each mode of operation is represented as follows:

• Since we do not degrade services for LO-criticality tasks in HI-criticality mode, their utiliza-

tion in both modes of operation remains the same, i.e.,

U LO
LO = U HI

LO =
∑
τi∈τLO

uLO
i =

∑
τi∈τLO

uHI
i .

139

• The total utilization for all HI-criticality tasks in LO- and HI-criticality modes can be repre-

sented as:

U LO
HI =

∑
τi∈τHI

uLO
i and U HI

HI =
∑
τi∈τHI

uHI
i .

We consider the problem of scheduling the set of tasks τ on a single processor whose executing

speed may vary. The processor begins with a degraded speed ρ < 1.0, which indicates that any

workload being executed under this speed for t time units is equivalent to that under a unit-speed

processor for ρ × t time units. During runtime, the amount of workload completed for each job

is being monitored. If any job Ji,j has done CLO
i workload under the degraded processing speed ρ

(thus receiving a cumulative actual execution time of CLO
i /ρ units) but still requires further execu-

tion, the system is immediately notified, and the processor starts to perform its full speed 1.0 right

from that moment. We also call this moment as the time instant of mode switch, from the LO-mode

(where the processor speed is ρ) to the HI-mode (where the processor speed becomes 1.0). The

system can recover to the LO-mode once the processor becomes idle.

Note that, in contrast to a majority of existing work on MC scheduling, no task is entirely or

partially dropped upon a mode switch, and every job meets its absolute deadline at any system

mode. The difference between the two execution requirement budgets upon the mode switch, i.e.,

CHI
i − CLO

i , is compensated by the speed upgrade. Furthermore, any job Ji,j that has done CHI
i

workload but still not completed yet, is considered as erroneous and would be terminated then.

That is, only HI-tasks, for which CLO
i < CHI

i , could trigger a mode switch.

140

8.1.2 Scheduling Policies for the Precise MC Task Model

8.1.2.1 EDF-VD

We have already discussed the details of EDF-VD In Subsection 7.4.1. In this section, we describe

in detail the enhanced EDF-VD algorithm to compromise our precise energy-conserving model.

Figure 8.1 represents a modified EDF-VD algorithm which determines if the task-set τ is schedu-

lable. Then, the modified EDF-VD assigns virtual deadline T̂i for all HI-criticality tasks of the

schedulable task-set.

For a dual-criticality task-set τ = {τ1, τ2,, τn} to be scheduled by energy conserving preemptive
processor with normal speed ρ and max speed 1:

• Scaling factor x is computed to determine virtual deadline of HI-criticality tasks:

x← UL
HI

ρ− UL
LO

• If UL
LO +

UH
HI

(1−x)
≤ 1

then virtual-deadline T̂i ← xTi for every HI task τi;

Else return failure.

Figure 8.1: Modified EDF-VD schedulability condition and scaling factor x

According to the algorithm in Figure 8.1, the scaling factor x is computed and T̂i values are as-

signed to all HI-criticality tasks as T̂i ← xTi. Note that U LO
LO +U LO

HI ≤ ρ is a necessary condition for

schedulability under LO-criticality mode, x ≤ 1 always holds for the proposed assignment. Con-

tradictory to the traditional MC model, instead of discarding all LO-criticality tasks in HI-criticality

behaviors, our model schedules both LO- and HI-criticality tasks with their given WCETs at proces-

141

sor speed s← 1. Note that, we did not consider any additional overhead (that may be introduced)

for changing the speed from ρ to the maximum speed (i.e., s← 1). This assumption does not have

a profound effect for two reasons. First, mode-switching is a rare event, and hence the changing of

the speed. Second, we change the speed only once per mode switch.

8.1.2.2 Fluid Scheduling

We now present another approach to tackle the same problem (energy-aware precise scheduling

of MC tasks), which is based on fluid scheduling framework. In fluid scheduling, all the tasks

receive a fraction of the processor and have a constant execution rate from their release to the

deadline. To be a feasible schedule, the summation of the assigned executing speeds of all tasks

should not exceed the capacity (or the speed) of the processor. For each LO-criticality task, a

minimum necessary execution speed of θi = ui would be sufficient under both modes. While for a

HI-criticality task, it would need a relatively larger speed under the normal mode (to create enough

gap after the mode switch to handle the additional execution requirement), and even a larger speed

after the mode switch. Such a relationship is demonstrated in Figure 8.2, where the blue character

indicates LO-criticality task setting and the red character represents HI-criticality task settings.

In this section, we use some simplified notations for the per-mode utilization of the whole task set

τ :

U LO =
∑
i

uLO
i ; U HI =

∑
i

uHI
i .

Each task τi is assigned a execution speed θi in the HI-criticality mode and is assigned λ · θi in the

LO-criticality mode where 0 < λ ≤ 1. Defining λ and θi in the following manner can result in

a schedule where all deadlines are guaranteed to meet in both the HI-criticality mode and the LO-

criticality mode, provided a minimum speed λ is granted in the LO-criticality mode (and the full

142

Figure 8.2: Relation between fluid execution speed and cumulative execution over time of a task
under MCF framework.

speed, i.e., the unit-speed 1.0, of the processor that would be enabled in the HI-criticality mode).

Note that, we have 0 < λ ≤ 1 (see Equation (8.1)) because U LO > 0 and U HI ≤ 1.

8.1.2.3 A Generalized Fluid Scheduling Approach

In this section, we focus on the dual-rate fluid scheduling, 1 where each task τi is assigned two

constant executing rates in LO- and HI-modes, denoted by θLO
i and θHI

i , respectively. A set of rates

assignment pairs {(θLO
i , θ

HI
i)}ni=1 is feasible if and only if

∑
i

θLO
i ≤ ρ, (8.3)

1The conventional fluid scheduling assumes a single constant rate for each task, whereas two rates, i.e., one rate
change for each task, have been proposed and considered in the context of MC scheduling [78, 19]. Note that fluid
scheduling with no restriction on the number of rate changes can be too general and pointless. For example, any actual
schedule can be viewed as a fluid schedule where the rate for each task is switching between 0 and 1.0.

143

For a dual-criticality task-set τ = {τ1, τ2,, τn} to be scheduled by energy conserving preemptive
processor:

• A system-wide parameter λ and per-task parameters θi are computed as:

λ =
UL

1 + UL − UH
. (8.1)

∀i, θi =
uLi
λ

+ uHi − uLi (8.2)

• If the energy-conserving speed ρ ≥ λ

then each task τi is to be executed at speed λ · θi in the LO-criticality mode and at
speed θi in the HI-criticality mode;

Else return failure.

Figure 8.3: Modified MCF speed assignments and schedulability condition

∑
i

θHI
i ≤ 1.0, (8.4)

where all deadline are guaranteed to meet in both LO- and HI-modes.

Note that, the algorithm proposed in Figure 8.3 is also based on fluid scheduling, and focused on

rates assignments such that ∀i, θLO
i /θ

HI
i are identical. However, the set of task systems that are

schedulable under dual-rate fluid scheduling with some rates assignment—is more general and is

a super set of the set of task systems that are schedulable by the algorithm in [26].

Now, we discuss how to form up the constraints on rates assignment set {(θLO
i , θ

HI
i)}ni=1 in order to

guarantee all deadlines to be met in both HI- and LO-modes. First, for each task τi, all its jobs that

144

both are released and have a deadline in LO-mode must meet their deadlines if and only if

CLO
i

θLO
i

≤ Ti, ∀i : 1 ≤ i ≤ n. (8.5)

Second, for each task τi, all its jobs that both are released and have a deadline in HI-mode must

meet their deadlines if and only if

CHI
i

θHI
i

≤ Ti, ∀i : 1 ≤ i ≤ n. (8.6)

Furthermore, the general idea of dual-rate fluid scheduling does not necessarily dictate the rela-

tionship between θLO
i and θHI

i . Nonetheless, Theorem 17 shows that we can restrict out attention to

non-decreasing dual-rate fluid scheduling only, where it is required that

θLO
i ≤ θHI

i , ∀i : 1 ≤ i ≤ n. (8.7)

Theorem 17. Any task system that is schedulable under dual-rate fluid scheduling must also be

schedulable under non-decreasing dual-rate fluid scheduling.

Proof. To see this theorem is true, we need to notice that if a task system is schedulable under

some dual-rate fluid scheduling where θLO
i > θHI

i for some i, then this system must still be schedu-

lable when we assign θLO
i ← θHI

i . This is because the total rate constraints (8.3) and (8.4) cannot

be violated by this assignment that reduces θLO
i , and Constraint (8.6) implies that a single constant

execution rate of θHI
i in both LO- and HI-modes for task τi (which is the scenario for τi after the re-

ducing) guarantees all its deadlines met regardless whether and where the mode switches, because

CLO
i ≤ CHI

i .

Therefore, under the non-decreasing dual-rate assumption, for each task τi, its job (if any) that is

145

released in LO-mode but also executes in HI-mode must meet its deadline (which is in HI-mode) if

and only if
CLO
i

θLO
i

+
CHI
i − CLO

i

θHI
i

≤ Ti, ∀i : 1 ≤ i ≤ n. (8.8)

This is sufficient because CLO
i /θ

LO
i time units after its release is the latest time for the mode switch

to be triggered and the mode switch is triggered earlier by any other job, the deadline must also be

met by (8.7). This is necessary because any HI-task can be the one that triggers the mode switch

and executes up to exact CHI
i budget. We can generally claim ∀i in (8.8) because if τi is a LO-task

(i.e., CLO
i = CHI

i), then (8.8) reduces to (8.5).

Note that, each of the above equations is “if an only if” and all three possible situations of a

job (entirely in LO or HI-mode, and across the mode switch time instant) have been exhausted.

Therefore, Constraints (8.3)—(8.8) are a necessary and sufficient condition for the MC task system

on the varying-speed processor to be schedulable by any two-rate fluid scheduling.

With Constraints (8.3)—(8.8) and the additional set of non-negative rate assignment constraints

(θLO
i ≥ 0,∀i), we have an optimization problem with linear and linear fractional inequality con-

straints, where θLO
i and θHI

i are variables and all others are problem input constants. Thus, in total,

there are O(n) variables, O(n) linear constraints, and O(n) linear fractional constraints, where n

is the number of tasks. Efficient numerical solvers (such as fmincon [56] or CVX [62] in Matlab)

can be used to find a feasible solution.

Objective function. We have shown that the MC task system on the varying-speed processor to be

schedulable under two-rate fluid scheduling if and only if a feasible solution exists for Constraints

(8.3)—(8.8). Therefore, an objective function is not necessary for determining schedulability for

a given degraded speed ρ. Thus, we can simply choose a trivial objective function “minimize 1”

when applying the solver. On the other hand, if the degraded speed is not given as part of the

146

system setting, then we can replace Constraint (8.3) by the following optimization objective:

min
∑
i

θLO
i . (8.9)

8.1.3 Evaluation

In this section, we report the performance of F2VD through experimental results, conducted on a

randomly generated task-set. We also compare our algorithm with the approaches studied in [26].

To generate a random task-set, we use the workload generation model proposed by Guan et al. [63].

We describe the input specifications to generate the workload (used in this experiment) as follows:

• Ubound: the upper bound of the system utilization.

• [Tdown, Tup]: the range of the minimum inter-arrival period of a task ,i.e., 0 ≤ Tdown ≤ Ti ≤

Tup.

• [Udown, Uup]: the range of the utilization of a task. This value (let us denote it by ui) is used

to to obtain execution time of a task in the LO-mode, i.e., ∀τi ∈ τ : ci = ui × Ti,where, 0 ≤

Udown ≤ ui ≤ Uup ≤ 1.

• [Zdown, Zup]: the range of the ratio of HI and LO-criticality WCET, here 1 ≤ Zdown ≤ Zup.

• P : the probability that a task is a HI-task. Here, 0 ≤ P ≤ 1

Finally, we compare our algorithm with the following baselines:

• EDF-VD [26] and MCF [26], respectively denoted by ρ = X(EDF − V D) and ρ =

X(MCF), where X = ρ values.

147

0.7 0.75 0.8 0.85 0.9 0.95 1
0

10

20

30

40

50

60

70

80

90

100

System Utilization

S
ch

ed
ul

ab
ili

ty
 R

at
io

(%
)

ρ=0.5(F2VD)

ρ=0.5(MCF)

ρ=0.5(EDF−VD)

ρ=0.6(F2VD)

ρ=0.6(MCF)

ρ=0.6(EDF−VD)

Figure 8.4: Comparison of schedulability ratio between F2VD, EDF-VD and the MCF.

In our experiment, we change the value of ρ (ranging from [0.5,0.6]) and the system utilization

Ubound (ranging from [0.7,1.0]), and report the schedulability ratio, which is defined as the ra-

tio of scheduled task-sets over the total number of task-sets. In Fig. 8.4, we show the com-

parison (w.r.t schedulability ratio) between our algorithm, EDF-VD, and the MCF for different

utilization and ρ values. In this experimental settings, we consider the parameters as follow:

[Udown, Uup] = [0.02, 0.2]; [Tdown, Tup] = [5, 50]; [Zdown, Zup] = [1, 4];P = 0.5. Fig. 8.4 re-

ports that our approach outperforms both the EDF-VD and MCF approaches by large margin. All

these approaches follow the same trend, i.e., for any ρ values, schedulability ratio decreases when

system utilization increases. While, for the same system utilization and ρ value, the schedulability

ratio of our approach is almost twice as large compared to the other approaches. Similar to the

Fig. 8.4, we report the performance comparison (w.r.t. schedulability ratio) for these three ap-

proaches in Fig. 8.5 with a different [Zdown, Zup] value. In this experiment[Zdown, Zup] = [1, 8],

while other parameters are the same as Fig. 8.4. Compared to the previous evaluation setup (i.e.,

[Zdown, Zup] = 4), we observe a similar improvement in the schedulability ratio for our approach,

148

0.7 0.75 0.8 0.85 0.9 0.95 1
0

10

20

30

40

50

60

70

80

90

100

System Utilization

S
ch

ed
ul

ab
ili

ty
 R

at
io

(%
)

ρ=0.5(F2VD)

ρ=0.5(MCF)

ρ=0.5(EDF−VD)

ρ=0.6(F2VD)

ρ=0.6(MCF)

ρ=0.6(EDF−VD)

Figure 8.5: Comparison of schedulability ratio between F2VD, EDF-VD and the MCF.

i.e., our approach outperforms the other two approaches.

In Fig. 8.6, we report the time needed (with and without an objective function, refer to Sec. 8.1.2.3

for details) by F2VD to return the solution for a different size of task-set. We We set the value of ρ

to 0.5 with other fixed parameters as in Fig. 8.4 and use the Matlab’s CVX solver [62] to achieve

a feasible solution. As expected, we observe a proportional relationship between the task-set size

and the time needed (to return a feasible solution, if any) by the CVX solver. For a small task-set,

we also see an improvement in the time when we use the solver without an objective function.

Finally, these results do not demonstrate a significant variation in the time required to return a

solution (with and without the objective function) with the changes in system utilization.

In Fig. 8.7, we report the percentage of the feasible solution, i.e., (the ratio of the number of

the task sets for which F2VD returns a feasible solution over the total number of task sets), under

different utilization and ρ values. From this figure, we observe that our algorithm finds a solution on

average 70% cases. Also, we observe that the success percentage drops when the system utilization

149

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
10

20

30

40

50

60

70

80

90

System Utilization

T
im

e
to

 R
et

ur
n

S
ol

ut
io

n
(S

ec
on

ds
)

25 Tasks(With Obj. Function)

75 Tasks(With Obj. Function)

125 Tasks(With Obj. Function)

25 Tasks(Without Obj. Function)

75 Tasks(Without Obj. Function)

125 Tasks(Without Obj. Function)

Figure 8.6: Time needed by F2VD to return the solution for a different size of task-set.

increases. This is because higher system utilization often leads to a system that is more difficult to

schedule, which results in the optimization problem becoming harder or even infeasible to solve.

8.2 Probabilistic MC Task Model

We utilize the probabilistic execution profile of a task to find the optimistic WCETs for tasks. This

optimization is performed via a novel probabilistic analysis (shown in [25]) of the execution time,

coupled with a dedicated response time analysis (presented in this section). The response time

analysis (RTA) guarantees the timing correctness of all tasks under both the pessimistic and opti-

mistic assumptions. In Subsection 8.2.1, We present the modified MC task model to accommodate

the probabilistic execution pattern of a task. Subsection 8.2.2 presents the RTA, and Subsection

8.2.3 presents the experimental results.

150

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
40

50

60

70

80

90

100

System Utilization

(%
)

of
 F

ea
si

bl
e

S
ol

ut
io

n

ρ=0.5(F2VD)

ρ=0.6(F2VD)

ρ=0.7(F2VD)

Figure 8.7: Percentage of solution returned by the F2VD algorithm under different utilization and
ρ values.

8.2.1 System Model and Correctness Criteria

Now, we consider the probabilistic MC task model, where we represent τi by a 5-tuple parameter

{Ti, CLO
i , C

HI
i , pETi, Li}. Here, pETi the probabilistic profile, for details refer to [25]. Li is the

criticality level, where Li ∈ {LO, HI}, and all other notations carry the same meaning as described

earlier in this section. Note that most traditional MC works assumed that the value of WCET

in LO-criticality mode, i.e., CLO
i , is considered to be provided as an input or empirically picked

according to a defined percentage of the HI-criticality WCET. In this model, we compute the CLO
i

so that it minimizes the energy consumption 2. There is a correlation between the probability

system mode-switch and the minimum achievable speed in LO-criticality mode. Large CLO
i would

delay the activation of the HI-criticality mode, thus reducing the probability of this event to happen.

2Although the calculation under such a purpose would technically lead to execution thresholds that have nothing
to do with ’worst-case’, we nevertheless still follow the traditional MC work in the real-time and embedded systems
community by calling them WCET under the LO-criticality mode [25]

151

However, it requires increasing the minimum speed in LO-criticality mode (which leads to more

energy consumption during normal events) to guarantee the schedulability. Meanwhile, a small

CLO
i would decrease the minimum speed in LO-criticality mode, and hence more desired from the

energy-saving perspective. However, a small CLO
i increases the mode-switch probability and, if it

happens too frequently, it may produce the opposite effect of increasing the energy consumption.

In this work, we selectCLO
i considering a task’s probabilistic profile, and in particular, by exploiting

the inverse cumulative distribution function (ICDF): a value pLO→HI that represents the probability

per job to switch from LO-criticality to HI-criticality is selected according to the optimization

problem and used to compute the WCET with the ICDF:

CLO
i = F−1

i (pLO→HI)

Mode Switch Mechanism and Correctness Requirements. Most of the existing papers on MC

systems adopt the system mode switch effect (refer to Section 8.1). In such a model, all the LO-

criticality tasks are dropped when the mode-switch happens, i.e., a HI-criticality task overruns its

CLO
i . In this work, we adopted the precise scheduling policy where each task τi (including LO-

criticality ones) is guaranteed execute under any condition. Similar to the previous sections, we

the speed-change mechanism, where the systems start running at a reduced/degraded speed, which

helps to achieve resource/Energy efficiency at LO-criticality mode. The system mode switch (i.e.,

LO to HI-criticality) causes an increase of the processor frequency to guarantee that all jobs are

correctly scheduled. Let sLO and sHI denote the processor speed when the system stays in LO-

criticality and HI-criticality mode, respectively 3. Similar to the traditional MC setting, a system

mode-switch takes place when a HI-criticality task overruns its CLO
i . At the end of each hyper-

3The values of sLO, sHI, and CLO
i depend on the schedulability of the task set and they impact the system energy

consumption. Hence, we select these parameters in such a way so that the energy consumption is minimized. We
utilize the probabilistic information, while guaranteeing the schedulability of the whole task-set according to the
deterministic WCET.

152

period, or when the system is idle, whichever comes earlier, the system reverts to LO-criticality

mode.

8.2.2 Response Time Analysis

In this section, we discuss the existing response time analysis (RTA) for a non-preemptive FP

scheduler for both the non-MC and the MC tasks (Subsection 8.2.2.1). Then, in Subsection 8.2.2.2,

we propose the RTA for our algorithm.

8.2.2.1 Existing RTA for Non-MC and MC Tasks

Two state-of-the-art works [8, 90] proposed an RTA of non-preemptive FP scheduling, but under

settings that are different from this paper’s focus. We will report the main results in the form of

equations to make it easier to follow the subsequent RTA for our problem.

First, we describe some commonly used notations in most FP scheduling analysis work: Let

hep(i) (or hp(i)) denotes the set of tasks with higher or equal (or higher only) priority than τi.

Similarly, lep(i) (or lp(i)) denotes the set of tasks with lower or equal (or lower only) priority than

τi.

Considering the non-preemptive FP scheduling for the non-MC tasks, Mohan et al. [90] calculated

the Worst-Case Response Time (WCRT) Ri of task τi as follows:

Ri = Bi + Ci +
∑

τj∈hep(i)

Nj × Cj

Here, Bi is the maximum duration that τi can be blocked by lower priority tasks and Nj is the total

153

number of interfering jobs of τj ∈ hep(i), defined as:

Bi = max
τk∈lp(i)

Ck − 1, and Nj =

⌊
Ri − Ci
Tj

+ 1

⌋
(8.10)

Before moving further into the details, let us introduce the same notations but for the MC case:

lpχ(i) (or hpχ(i), lepχ(i), hepχ(i), respectively) denote the set of χ-criticality tasks with lower

(or higher only, lower or equal, lower or equal) priority than τi, where χ ∈ {LO, HI} and other

notations carry their usual meaning. We also use Bχ
i , Cχ

i and Nχ
j to denote the maximum blocking

time, execution time, and the total number of interfering jobs (τj ∈ hep(i)) of task τi at χ-criticality

mode, respectively.

Baek et al. [8] extended the analysis above to MC task model by considering the adaptive MC

(AMC) scheme [18], and derived WCRTs for the following three cases separately:

Case 1. WCRT at LO-criticality mode for any task τi is calculated as:

RLO
i = BLO

i + CLO
i +

∑
τj∈hep(i)

N LO
j × CLO

j , where (8.11)

BLO
i = max

τk∈lp(i)
CLO
k − 1, N LO

j =

⌊
RLO
i − CLO

i

Tj
+ 1

⌋
Case 2. WCRT at HI-criticality mode for any HI-criticality task τi is calculated as:

RHI
i = BHI

i + CHI
i +

∑
τj∈hepHI(i)

N HI
j × CHI

j , where (8.12)

BHI
i = max

τk∈lpHI(i)
CHI
k − 1, N HI

j =

⌊
RHI
i − CHI

i

Tj
+ 1

⌋
Case 3. WCRT during mode switch of a job released by task τi (at LO-criticality mode but finished

154

at HI-criticality mode) is calculated as:

RTR
i = BTR

i + CHI
i +

∑
τj∈hepLO(i)

N LO
j × CLO

j +
∑

τj∈hepHI(i)

N HI
j × CHI

j , where (8.13)

BTR
i = max

(
max

τk∈lpLO(i)
CLO
k , max

τk∈lpHI(i)
CHI
k

)
− 1

N LO
j =

⌊
RLO
i − CLO

i

Tj
+ 1

⌋
N HI
j =

⌊
RTR
i − CHI

i

Tj
+ 1

⌋
For any HI-criticality task τi ∈ τHI, regardless of a mode-switch, WCRT is upper bounded byRTR

i .

Hence, under the AMC scheme, the following conditions determine the schedulability of a task-set

τ : (i) ∀τi∈τLO , R
LO
i ≤ Di, and (ii) ∀τi∈τHI , R

TR
i ≤ Di.

8.2.2.2 RTA of Our Algorithm

In this subsection, we describe the RTA for our scheduling algorithm, which considers the follow-

ing assumption:

Assumption: We assume that the WCET and the processor speed has a linear relationship [26], i.e.,

if τi starts executing on a processor (with CLO
i) with a degraded speed sLO, it will take CLO

i /sLO time

units to finish execution. Recall that under the LO-criticality mode, all the LO- and HI-criticality

tasks execute at an energy-conserving speed, i.e., sLO. After a LO- to HI-criticality mode switch,

all the LO- and HI-criticality tasks execute at the maximum processor speed sHI.

Deriving RLO
i . Based on such assumption and the RTA analysis in Equation (8.11), we calculate

155

RLO
i for all the LO- and HI-criticality tasks as follows:

RLO
i = BLO

i +
CLO
i

sLO

+
∑

τj∈hep(i)

N LO
j ×

CLO
j

sLO

(8.14)

with BLO
i and N LO

j computed as:

BLO
i = max

τk∈lp(i)

(
CLO
k

sLO

)
− 1

N LO
j =

RLO
i −

CLO
i

sLO

Tj
+ 1

 (8.15)

Deriving RHI
i . Now, we derive RHI

i thanks to Equation (8.12). Recall that, we do not drop any

LO-criticality tasks after a mode switch. Hence, hepHI(i) in Equation (8.12) needs to be replaced

by hep(i):

RHI
i = BHI

i +
CHI
i

sHI

+
∑

τj∈hep(i)

N HI
j ×

CHI
j

sHI

, (8.16)

We derive the blocking time, BHI
i , considering two cases.

Case 1. The blocking task, τk, initiates the mode-switch. Clearly, τk ∈ τ HI, and the blocking time

becomes:

B
(1)
i = max

τk∈lpHI(i)

(
cLO
k

sLO

+
cHI
k − cLO

k

sHI

)
− 1

Case 2. Task τk releases and completes execution at HI-criticality mode, and the blocking time

becomes:

B
(2)
i = max

τk∈lp(i)

(
CHI
k

sHI

)
− 1

156

We calculate BHI
i and N HI

j as:

BHI
i = max(B

(1)
i , B

(2)
i)

N HI
j =

RHI
i −

CHI
i

sHI

Tj
+ 1

 (8.17)

Deriving RTR
i . Now, we calculate RTR

i , i.e. the WCRT of a HI-criticality task τi that faces the

mode-switch. Note that, RTR
i cannot be deduced from the calculation of WCRT during the stable

(LO- or HI-criticality) modes [119]. We instead calculate the WCRT of a HI-criticality task, τi, by

summing the blocking time, WCET of τi and the worst-case interference from other tasks with a

higher priority than τi. Unlike [8], we do not drop the LO-criticality tasks after a mode-switch.

Hence, the LO-criticality tasks can contribute to the interference (even after a mode-switch). We

derive the WCRT of a HI-criticality task τi that faces mode-switch considering two cases, (1) τi

initiates the mode-switch, and (2) any other (HI-criticality) task initiates the mode-switch. For both

these cases, we assume that the mode-switch happens at time t∗.

Case 1. In this case, τi initiates the mode-switch and once τi starts execution, it can execute till cHI
i ,

thanks to the non-preemptivity. According to the assumption, τi starts execution at LO-criticality

mode. So, a task τk ∈ lp(i) that blocks τi must start and finish execution at LO-criticality mode.

We calculate the maximum blocking time B(1)
i as follows:

B
(1)
i = max

τk∈lp(i)

(
CLO
k

sLO

)
− 1

Before the mode-switch, τi will execute up to cLO
i at speed sLO, and after that it will execute at sHI.

157

Considering this scenario, we calculate the task execution time C(1)
i :

C
(1)
i =

CLO
i

sLO

+
CHI
i − CLO

i

sHI

(8.18)

Recall that, τi initiates the mode-switch. Hence, τi can be interfered by τj (where τj ∈ hep(i)) at

LO-criticality mode only. We calculate the maximum interference I(1)
i as follows:

I
(1)
i =

∑
τj∈hep(i)

RLO
i −

CLO
i

sLO

Tj
+ 1

× CLO
j

sLO

Finally, we calculate the response time R(1)
i :

R
(1)
i = B

(1)
i + C

(1)
i + I

(1)
i (8.19)

Case 2. In this case, any HI-criticality task (other than τi) initiates the mode-switch. We calculate

the maximum blocking time considering the following three sub-cases:

Sub-case 2.1. The blocking task τk is released at LO-criticality mode and does not initiate a mode-

switch. Recall that:

(i) τi is also released at LO-criticality mode, and

(ii) a HI-criticality task τj initiates the mode-switch, where τj ∈ τ \ {τi, τk}.

From the first assumption and the non-preemptive scheduling policy, it is not possible for τk to start

execution at LO-criticality mode, while finish at at HI-criticality mode. So, τk must start and finish

execution at LO-criticality mode, Finally, we calculate the maximum blocking time as follows:

B
(2)
i = max

τk∈lp(i)

(
cLO
k

sLO

)
− 1

Sub-case 2.2. The blocking task τk is released at LO-criticality mode and initiates a mode-switch.

158

Clearly, τk ∈ τ HI. By the same reasoning as that for Case 1 (Equation (8.18)), we calculate the

maximum blocking time as follows:

B
(3)
i = max

τk∈lpHI(i)

(
cLO
k

sLO

+
cHI
k − cLO

k

sHI

)
− 1

Sub-case 2.3. The blocking task τk is released at HI-criticality mode. This case can be discarded,

as τk will never block τi. This is because, τi is released at LO-criticality mode, and will start

execution before τk ∈ lp(i).

To calculate the task execution time, recall that, τi is released at LO-criticality mode and does not

initiate the mode-switch. Hence, τi can start execution only at the HI-criticality mode. Otherwise,

τi itself invokes a mode-switch or must finish execution before the mode-switch (due to the non-

preemptivity), which contradicts our assumption. Hence, the task execution time is:

c
(2)
i = cHI

i

As τi starts execution only at the HI-criticality mode, τi can be interfered by τj ∈ hep(i) at both

LO and HI-criticality modes (Sub-case 2.1) or only at HI-criticality mode (Sub-case 2.2). Let, the

mode-switch takes place at time t∗. The upper bound of the interference is then:

I
(2)
i =

∑
τj∈hep(i)

[(⌊
t∗

Tj
+ 1

⌋
×
CLO
j

sLO

)

+

RTR
i − t∗ −

CHI
i

sHI

Tj
+ 1

× CHI
j

sHI

and the response time R(2)

i :

R
(2)
i = max(B

(2)
i , B

(3)
i) + C

(2)
i + I

(2)
i (8.20)

159

0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

100

System Utilization

S
ch

ed
ul

ab
ili

ty
 R

at
io

(%
)

s_lo=0.5

s_lo=0.6

s_lo=0.7

s_lo=0.8

s_lo=0.9

Figure 8.8: Schedulability ratio based on the RTA with a different sLO values. In this experiment,
[Zd, Zu] = [1, 4].

Considering all the scenarios (i.e., Case 1, Sub-case 2.1, 2.2 and 2.3) described above, we calculate

RTR
i as:

RTR
i = max(R

(1)
i , R

(2)
i) (8.21)

Finally, we conclude that, a task-set τ is schedulable by our algorithm if it satisfies the following

condition:

• For each LO-criticality task τi ∈ τ , max(RLO
i , R

HI
i) ≤ Di, and

• For each HI-criticality task τi ∈ τHI, max(RLO
i , R

HI
i , R

TR
i) ≤ Di; where, RLO

i , R
HI
i and RTR

i

are calculated using Equation (8.14), Equation (8.16) and Equation (8.21)

160

0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

100

System Utilization

S
ch

ed
ul

ab
ili

ty
 R

at
io

(%
)

s_lo=0.5

s_lo=0.6

s_lo=0.7

s_lo=0.8

s_lo=0.9

Figure 8.9: Schedulability ratio based on the RTA with a different sLO values. In this experiment,
[Zd, Zu] = [1, 8].

8.2.3 Evaluation

In this section, we report the evaluation result of our algorithm. We report the schedulability ratio,

i.e., the ratio of scheduled task-sets over the total number of task-sets, of our algorithm for fixed

values of sLO. To simplify the experimental evaluation, without loosing generality, we considered

sHI = 1, i.e. the maximum achievable speed in HI-criticality mode is set at the maximum processor

speed. We conduct the experiments on a randomly generated task-set, and use the workload gener-

ation model proposed in [63]. We use the following input specifications to generate the workload:

• Ubound: the upper bound of the system utilization.

• [Td, Tu]: the range of the minimum inter-arrival period of a task ,i.e., 0 < Td ≤ Ti ≤ Tu.

• [Ud, Uu]: the range of the utilization ui (of τi). We use ui to obtain execution time of τi in

the LO-criticality mode, i.e., ∀τi∈τ : CLO
i = ui × Ti,where, 0 < Ud ≤ ui ≤ Uu ≤ 1.

161

• [Zd, Zu]: the range of the ratio of HI and LO-criticality WCET, here 1 ≤ Zd ≤ Zu.

• P : the probability of being a HI-criticality task.

In these experiments, we computed the schedulability ratio of our scheduling algorithm for differ-

ent values of sLO (ranging from [0.5,0.9]) and Ubound (ranging from [0.4,1.0]). Figure 8.8 reports

that the schedulability ratio (for any sLO value) with the following fixed parameters: [Ud, Uu] =

[0.02, 0.2];[Td, Tu] = [5, 50];[Zd, Zu] = [1, 4];P = 0.5. It shows that the schedulability ratio de-

creases with the increase in system utilization, which matches with our RTA. Most of all task-sets

are schedulable when Ubound is lower than 0.5, while most of the task-sets become not schedulable

when utilization approaches 1. In this experiment, the selection of sLO does not depend on the

task-set itself but it has been fixed at different levels. This reduces the schedulability ratio, but it is

implicitly solved by the inner optimization problem. We follow the experimental settings in Figure

8.9, except we use [Zd, Zu] = [1, 8], and report the schedulability ratio. We observe the similar

trend as shown in Figure 8.9.

8.3 Conclusion

The traditional MC task model provides no service guarantee to the LO-criticality tasks in HI-

criticality mode. Some recent efforts proposed the precise MC task scheduling policy, where

the scheduler offers a full or partial-service guarantee to the LO-criticality tasks after a system

mode-switch. However, these studies rely on the pessimistic assumption that all the tasks execute

up to their WCET at their respective criticality levels. A recent work studied the integration of

probabilistic-based prediction strategy (of the task execution time) and the DVFS scheme to the

precise scheduling of MC tasks. The probabilistic-based prediction strategy aims to minimize the

energy consumption in an MC platform, while the requirement for the string timing guarantee is

162

still in place. Hence, we propose the response time analysis of our algorithm under a fixed priority

non-preemptive scheduler. The response time analysis is dedicated to guaranteeing the worst-case

timing correctness for all tasks under any execution condition. We also evaluate our algorithm via

simulation on randomly generated workloads and report energy-saving up to 46% with respect to

the pessimistic choice of LO-criticality WCET commonly made by previous works.

163

CHAPTER 9: CONCLUSION

9.1 Summary of Results

Today’s society observes the rapid growth of computation-intensive real-time embedded system

applications with stringent timing requirements. The use of embedded system applications are

sparked by billions of devices in all aspects of human life. Energy consumed by these billions

of devices (i.e., mobile, laptop, tablet, cars, robot) is significant [108]. These embedded system

applications often rely on unreliable energy sources/harvesters, such as batteries. Recharging the

source/harvesters may not be possible during a mission, and hence it is crucial to consider the

energy-aware design of the embedded system applications. Energy efficiency is also a prime re-

quirement as it could reduce the power bills and increase battery life.

Embedded systems applications that demand strict timing guarantees, energy efficiency, and high

performance, are moving towards multi-core platforms. The parallel task model, i.e., a task that can

be executed on multiple cores simultaneously, can exploit the computational capability offered by

the multi-core platform. Such a task model promotes a fair workload-processor distribution which

leads to energy efficiency. Motivated by these above discussions, this thesis focuses on developing

the theoretical foundation of an energy-aware scheduling algorithm for real-time parallel tasks.

First, considering the sporadic DAG task model (a widely accepted real-time task model to repre-

sent the intra-task parallelism), we propose an energy-efficient task scheduling approach in a mul-

tiprocessor platform. We propose an energy sub-optimal federated scheduling algorithm for the

DAG task. We also present a greedy intra-task processor merging technique to reduce the leakage

power consumption further. We propose a method to improve the energy-saving of the processor

intra-merge technique by allowing multiple processors to merge at a single one. Finally, we also

164

present the inter-task processor technique. We evaluate the effectiveness of the proposed approach

both theoretically via approximation ratio bounds and experimentally through a simulation study.

Second, our analysis as mentioned above assumes the per-core DVFS technique (i.e., each core

can tune its speed independently). We extend our solution to adapt the cluster-based homogeneous

multi-core platform (processors in the same island execute at the same speed), which seems a

promising platform to balance energy efficiency and hardware cost. We introduce a new concept

of speed-profile that models per-task and per-cluster energy-consumption variations during run-

time to minimize the expected long-term energy consumption. We have shown the effectiveness

of our approach while handling the difficulties introduced by the cluster-based platform. We also

have extended our approach to adapt the discrete processor frequency scheme and the platform

heterogeneity.

Third, integrating the notion of MC with the parallel task models stems from many current trends.

For example, nowadays, several safety-critical and non-safety-critical (i.e., mission-critical) tasks

are embedded into a common computational platform. Hence, the demand for integrating func-

tionality with different criticality levels (into the same platform) is increasing. Towards this goal,

we combine the MC context into the gang task model, another well-known parallel task model. We

propose a new technique GEDF-VD, which integrates the GEDF and EDF-VD scheduling policy.

We also show the correctness of GEDF-VD at different systems criticality levels. Finally, we de-

rive the first speedup bound for GEDF schedulability of non-MC gang tasks and use this analysis

as a foundation to derive the bound for GEDF-VD of MC gang tasks.

Finally, a common non-functional requirement of embedded systems is to improve the average-

case energy consumption while ensuring temporal correctness. Motivated by this requirement, we

present the response time analysis of the MC task so that the probabilistic technique (proposed in

[25]) minimizes the average energy consumption, will guarantee the worst-case timing correctness

165

for all tasks under any execution condition.

9.2 Future Direction

Energy-aware scheduling (for both the MC and non-MC task model) will remain attractive in

the embedded system research because of its vast applicability. This thesis has fulfilled several

fundamental requirements in energy-aware real-time scheduling; still, several directions are yet to

be explored. In this section, we point out some related and relevant future research areas.

In this work, we have restricted our attention mainly to the CPU power consumption. Although the

CPU power consumption is one of the major contributors to the overall system power consumption,

several other factors, e.g., cache misses, context switches, I/O usage, impact the overall power

consumption [66, 24]. In the future, we plan to consider other components that may affect the total

power consumption.

Despite the popularity of the DAG task model in the real-time community, it is not free of short-

comings [2]. one of them, the internal structure of the code, could be very complex. A recent

effort [2] has been made to propose an alternative model that does not require comprehensive in-

formation regarding the internal structure (each node and their dependencies) of the DAG task and

can be represented using only two parameters; work and span. It will be a promising direction to

extend our analysis for the work-span DAG task model.

166

APPENDIX : PERMISSION TO REUSE PUBLISHED MATERIAL

167

Home > Author Resources > Author Rights & Responsibilities

ACM Author Gateway

Author Resources

ACM Author Rights
ACM exists to support the needs of the computing community. For over sixty
years ACM has developed publications and publication policies to maximize the
visibility, impact, and reach of the research it publishes to a global community of
researchers, educators, students, and practitioners. ACM has achieved its high
impact, high quality, widely-read portfolio of publications with:

Affordably priced publications

Liberal Author rights policies

Wide-spread, perpetual access to ACM publications via a leading-edge
technology platform

Sustainability of the good work of ACM that benefits the profession

Choose

Authors have the option to choose the level of rights management they prefer.
ACM offers three different options for authors to manage the publication rights to
their work.

Authors who want ACM to manage the rights and permissions associated with
their work, which includes defending against improper use by third parties,
can use ACM’s traditional copyright transfer agreement.

Authors who prefer to retain copyright of their work can sign an exclusive
licensing agreement, which gives ACM the right but not the obligation to
defend the work against improper use by third parties.

Authors who wish to retain all rights to their work can choose ACM's author-
pays option, which allows for perpetual open access through the ACM Digital
Library. Authors choosing the author-pays option can give ACM non-exclusive
permission to publish, sign ACM's exclusive licensing agreement or sign ACM's
traditional copyright transfer agreement. Those choosing to grant ACM a non-
exclusive permission to publish may also choose to display a Creative
Commons License on their works.

168

Post

Otherwise known as "Self-Archiving" or "Posting Rights", all ACM published
authors of magazine articles, journal articles, and conference papers retain the
right to post the pre-submitted (also known as "pre-prints"), submitted,
accepted, and peer-reviewed versions of their work in any and all of the
following sites:

Author's Homepage

Author's Institutional Repository

Any Repository legally mandated by the agency or funder funding the research
on which the work is based

Any Non-Commercial Repository or Aggregation that does not duplicate ACM
tables of contents. Non-Commercial Repositories are defined as Repositories
owned by non-profit organizations that do not charge a fee to access
deposited articles and that do not sell advertising or otherwise profit from
serving scholarly articles.

For the avoidance of doubt, an example of a site ACM authors may post all
versions of their work to, with the exception of the final published "Version of
Record", is ArXiv. ACM does request authors, who post to ArXiv or other
permitted sites, to also post the published version's Digital Object Identifier
(DOI) alongside the pre-published version on these sites, so that easy access
may be facilitated to the published "Version of Record" upon publication in the
ACM Digital Library.

Examples of sites ACM authors may not post their work to are ResearchGate,
Academia.edu, Mendeley, or Sci-Hub, as these sites are all either commercial or
in some instances utilize predatory practices that violate copyright, which
negatively impacts both ACM and ACM authors.

Distribute

Authors can post an Author-Izer link enabling free downloads of the Definitive
Version of the work permanently maintained in the ACM Digital Library.

On the Author's own Home Page or

In the Author's Institutional Repository.

Reuse

Authors can reuse any portion of their own work in a new work of their own (and
no fee is expected) as long as a citation and DOI pointer to the Version of Record
in the ACM Digital Library are included.

169

Copyright © 2021, ACM, Inc

Contributing complete papers to any edited collection of reprints for which the
author is notthe editor, requires permission and usually a republication fee.

Authors can include partial or complete papers of their own (and no fee is
expected) in a dissertation as long as citations and DOI pointers to the
Versions of Record in the ACM Digital Library are included. Authors can use
any portion of their own work in presentations and in the classroom (and no
fee is expected).

Commercially produced course-packs that are sold to students require
permission and possibly a fee.

Create

ACM's copyright and publishing license include the right to make Derivative
Works or new versions. For example, translations are "Derivative Works." By
copyright or license, ACM may have its publications translated. However, ACM
Authors continue to hold perpetual rights to revise their own works without
seeking permission from ACM.

Minor Revisions and Updates to works already published in the ACM Digital
Library are welcomed with the approval of the appropriate Editor-in-Chief or
Program Chair.

If the revision is minor, i.e., less than 25% of new substantive material, then
the work should still have ACM's publishing notice, DOI pointer to the
Definitive Version, and be labeled a "Minor Revision of"

If the revision is major, i.e., 25% or more of new substantive material, then
ACM considers this a new work in which the author retains full copyright
ownership (despite ACM's copyright or license in the original published article)
and the author need only cite the work from which this new one is derived.

Retain

Authors retain all perpetual rights laid out in the ACM Author Rights and
Publishing Policy, including, but not limited to:

Sole ownership and control of third-party permissions to use for artistic
images intended for exploitation in other contexts

All patent and moral rights

Ownership and control of third-party permissions to use of software published
by ACM

170

Home Help Email Support Sign in Create Account

RightsLink
Energy-E�cient Parallel Real-Time Scheduling on Clustered Multi-Core
Author: Ashikahmed Bhuiyan

Publication: IEEE Transactions on Parallel and Distributed Systems

Publisher: IEEE

Date: 1 Sept. 2020

Copyright © 2020, IEEE

Thesis / Dissertation Reuse

The IEEE does not require individuals working on a thesis to obtain a formal reuse license, however, you may
print out this statement to be used as a permission grant:

Requirements to be followed when using any portion (e.g., �gure, graph, table, or textual material) of an IEEE
copyrighted paper in a thesis:

1) In the case of textual material (e.g., using short quotes or referring to the work within these papers) users must
give full credit to the original source (author, paper, publication) followed by the IEEE copyright line © 2011 IEEE.
2) In the case of illustrations or tabular material, we require that the copyright line © [Year of original publication]
IEEE appear prominently with each reprinted �gure and/or table.
3) If a substantial portion of the original paper is to be used, and if you are not the senior author, also obtain the
senior author's approval.

Requirements to be followed when using an entire IEEE copyrighted paper in a thesis:

1) The following IEEE copyright/ credit notice should be placed prominently in the references: © [year of original
publication] IEEE. Reprinted, with permission, from [author names, paper title, IEEE publication title, and month/year
of publication]
2) Only the accepted version of an IEEE copyrighted paper can be used when posting the paper or your thesis on-line.
3) In placing the thesis on the author's university website, please display the following message in a prominent place
on the website: In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE does

171

© 2021 Copyright - All Rights Reserved | Copyright Clearance Center, Inc. | Privacy statement | Terms and Conditions

not endorse any of [university/educational entity's name goes here]'s products or services. Internal or personal use
of this material is permitted. If interested in reprinting/republishing IEEE copyrighted material for advertising or
promotional purposes or for creating new collective works for resale or redistribution, please go to
http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn how to obtain a License
from RightsLink.

If applicable, University Micro�lms and/or ProQuest Library, or the Archives of Canada may supply single copies of
the dissertation.

BACK CLOSE WINDOW

Comments? We would like to hear from you. E-mail us at customercare@copyright.com

172

Home Help Email Support Sign in Create Account

© 2021 Copyright - All Rights Reserved | Copyright Clearance Center, Inc. | Privacy statement | Terms and Conditions

RightsLink
Energy-E�cient Real-Time Scheduling of DAGs on Clustered Multi-Core Platforms
Conference Proceedings: 2019 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS)

Author: Zhishan Guo

Publisher: IEEE

Date: April 2019

Copyright © 2019, IEEE

Thesis / Dissertation Reuse

The IEEE does not require individuals working on a thesis to obtain a formal reuse license, however, you may print out this statement to be
used as a permission grant:

Requirements to be followed when using any portion (e.g., �gure, graph, table, or textual material) of an IEEE copyrighted paper in a thesis:

1) In the case of textual material (e.g., using short quotes or referring to the work within these papers) users must give full credit to the original
source (author, paper, publication) followed by the IEEE copyright line © 2011 IEEE.
2) In the case of illustrations or tabular material, we require that the copyright line © [Year of original publication] IEEE appear prominently with
each reprinted �gure and/or table.
3) If a substantial portion of the original paper is to be used, and if you are not the senior author, also obtain the senior author's approval.

Requirements to be followed when using an entire IEEE copyrighted paper in a thesis:

1) The following IEEE copyright/ credit notice should be placed prominently in the references: © [year of original publication] IEEE. Reprinted,
with permission, from [author names, paper title, IEEE publication title, and month/year of publication]
2) Only the accepted version of an IEEE copyrighted paper can be used when posting the paper or your thesis on-line.
3) In placing the thesis on the author's university website, please display the following message in a prominent place on the website: In reference
to IEEE copyrighted material which is used with permission in this thesis, the IEEE does not endorse any of [university/educational entity's name
goes here]'s products or services. Internal or personal use of this material is permitted. If interested in reprinting/republishing IEEE copyrighted
material for advertising or promotional purposes or for creating new collective works for resale or redistribution, please go to
http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn how to obtain a License from RightsLink.

If applicable, University Micro�lms and/or ProQuest Library, or the Archives of Canada may supply single copies of the dissertation.

BACK CLOSE WINDOW

Comments? We would like to hear from you. E-mail us at customercare@copyright.com

173

Licence to Publish

Journal Name: Real-Time Systems (the ‘Journal’)

Manuscript Number: TIME-D-20-00016R1

Proposed Title of Article: Mixed-criticality real-time scheduling of gang task
systems

Author(s) [Please list all
named Authors]:

Ashik Ahmed Bhuiyan, Kecheng Yang, Samsil Arefin,
Abusayeed Saifullah, Nan Guan, Zhishan Guo

(the ‘Author’)

Corresponding Author
Name:

Ashik Ahmed Bhuiyan

1 Publication
Springer Science+Business Media LLC (the ‘Licensee’) will consider publishing this article, including any
supplementary information and graphic elements therein (e.g. illustrations, charts, moving images) (the
'Article').
Headings are for convenience only.

2 Grant of Rights

In consideration of the Licensee evaluating the Article for publication, the Author grants the Licensee
the exclusive (except as set out in clauses 3, 4 and 5a) iv) and sub-licensable right, unlimited in time
and territory, to copy-edit, reproduce, publish, distribute, transmit, make available and store the Article,
including abstracts thereof, in all forms of media of expression now known or developed in the future,
including pre- and reprints, translations, photographic reproductions and extensions.

Furthermore, to enable additional publishing services, such as promotion of the Article, the Author
grants the Licensee the right to use the Article (including the use of any graphic elements on a stand-
alone basis) in whole or in part in electronic form, such as for display in databases or data networks
(e.g. the Internet), or for print or download to stationary or portable devices. This includes interactive
and multimedia use as well as posting the Article in full or in part or its abstract on social media, and
the right to alter the Article to the extent necessary for such use. The Licensee may also let third parties
share the Article in full or in part or its abstract on social media and may in this context sub-license the
Article and its abstract to social media users. Author grants to Licensee the right to re-license Article
metadata without restriction (including but not limited to author name, title, abstract, citation,
references, keywords and any additional information as determined by Licensee).

If the Article is rejected by the Licensee and not published, all rights under this agreement shall revert
to the Author.

3 Self Archiving

Author is permitted to self-archive a preprint and the accepted manuscript version of their Article.

a) A preprint is the version of the Article before peer-review has taken place ("Preprint”). Prior to
acceptance for publication, Author retains the right to make a Preprint of their Article available on
any of the following: their own personal, self-maintained website; a legally compliant Preprint
server such as but not limited to arXiv and bioRxiv. Once the Article has been published, the
Author should update the acknowledgement and provide a link to the definitive version on the
publisher’s website: “This is a preprint of an article published in [insert journal title]. The final
authenticated version is available online at: https://doi.org/[insert DOI]”

b) The accepted manuscript version, by industry standard called the “Author’s Accepted Manuscript”
(“AAM”) is the version accepted for publication in a journal following peer review but prior to
copyediting and typesetting that can be made available under the following conditions:
(i) Author retains the right to make an AAM of the Article available on their own personal, self-
maintained website immediately on acceptance, (ii) Author retains the right to make an AAM of
the Article available for public release on any of the following 12 months after first publication
("Embargo Period"): their employer’s internal website; their institutional and/or funder
repositories; AAMs may also be deposited in such repositories immediately on acceptance,
provided that they are not made publicly available until after the Embargo Period.

An acknowledgement in the following form should be included, together with a link to the published
version on the publisher’s website: “This is a post-peer-review, pre-copyedit version of an article
published in [insert journal title]. The final authenticated version is available online at:
http://dx.doi.org/[insert DOI]”.

Page 1 of 3174

4 Reuse Rights

Author retains the following non-exclusive rights for the published version provided that, when
reproducing the Article or extracts from it, the Author acknowledges and references first publication in
the Journal according to current citation standards. In any event the acknowledgement should contain
as a minimum, “First published in [Journal name, volume, page number, year] by Springer Nature”.

a) to reuse graphic elements created by the Author and contained in the Article, in presentations and
other works created by them;

b) the Author and any academic institution where they work at the time may reproduce the Article for
the purpose of course teaching (but not for inclusion in course pack material for onward sale by libraries
and institutions);

c) to reuse the published version of the Article or any part in a thesis written by the same Author , and
to make a copy of that thesis available in a repository of the Author(s)’ awarding academic institution,
or other repository required by the awarding academic institution. An acknowledgement should be
included in the citation: “Reproduced with permission from Springer Nature”; and

d) to reproduce, or to allow a third party to reproduce the Article, in whole or in part, in any other type
of work (other than thesis) written by the Author for distribution by a publisher after an embargo period
of 12 months.

5 Warranties & Representations

Author warrants and represents that:

a)
i. the Author is the sole copyright owner or has been authorised by any additional

copyright owner(s) to grant the rights defined in clause 2,
ii. the Article does not infringe any intellectual property rights (including without

limitation copyright, database rights or trade mark rights) or other third party rights
and no licence from or payments to a third party are required to publish the Article,

iii. the Article has not been previously published or licensed,
iv. if the Article contains materials from other sources (e.g. illustrations, tables, text

quotations), Author has obtained written permissions to the extent necessary from
the copyright holder(s), to license to the Licensee the same rights as set out in clause
2 and has cited any such materials correctly;

b) all of the facts contained in the Article are according to the current body of research true and
accurate;

c) nothing in the Article is obscene, defamatory, violates any right of privacy or publicity, infringes
any other human, personal or other rights of any person or entity or is otherwise unlawful and
that informed consent to publish has been obtained for all research participants;

d) nothing in the Article infringes any duty of confidentiality which Author might owe to anyone else
or violates any contract, express or implied, of Author. All of the institutions in which work
recorded in the Article was created or carried out have authorised and approved such research and
publication; and

e) the signatory who has signed this agreement has full right, power and authority to enter into this
agreement on behalf of all of the Authors.

6 Cooperation
a) Author shall cooperate fully with the Licensee in relation to any legal action that might arise from

the publication of the Article, and the Author shall give the Licensee access at reasonable times to
any relevant accounts, documents and records within the power or control of the Author. Author
agrees that the distributing entity is intended to have the benefit of and shall have the right to
enforce the terms of this agreement.

b) Author authorises the Licensee to take such steps as it considers necessary at its own expense in
the Author’s name(s) and on their behalf if the Licensee believes that a third party is infringing or
is likely to infringe copyright in the Article including but not limited to initiating legal proceedings.

7 Author List

Changes of authorship, including, but not limited to, changes in the corresponding author or the
sequence of authors, are not permitted after acceptance of a manuscript.

8 Corrections

Author agrees that the Licensee may retract the Article or publish a correction or other notice in relation
to the Article if the Licensee considers in its reasonable opinion that such actions are appropriate from a
legal, editorial or research integrity perspective.

9 Governing Law
This agreement shall be governed by, and shall be construed in accordance with, the laws of New York
State. The courts of competent jurisdiction in New York, N.Y. shall have the exclusive jurisdiction.

Page 2 of 3175

Springer Science+Business Media LLC, 1 New York Plaza, New York, NY 10004, U.S.A.
v.2.2.1 -(11_2020)-SSBM

Page 3 of 3176

Home Help Email Support Sign in Create Account

RightsLink
Mixed-Criticality Multicore Scheduling of Real-Time Gang Task Systems
Conference Proceedings: 2019 IEEE Real-Time Systems Symposium (RTSS)

Author: Ashik ahmed Bhuiyan

Publisher: IEEE

Date: Dec 2019

Copyright © 2019, IEEE

Thesis / Dissertation Reuse

The IEEE does not require individuals working on a thesis to obtain a formal reuse license, however, you may
print out this statement to be used as a permission grant:

Requirements to be followed when using any portion (e.g., �gure, graph, table, or textual material) of an IEEE
copyrighted paper in a thesis:

1) In the case of textual material (e.g., using short quotes or referring to the work within these papers) users must
give full credit to the original source (author, paper, publication) followed by the IEEE copyright line © 2011 IEEE.
2) In the case of illustrations or tabular material, we require that the copyright line © [Year of original publication]
IEEE appear prominently with each reprinted �gure and/or table.
3) If a substantial portion of the original paper is to be used, and if you are not the senior author, also obtain the
senior author's approval.

Requirements to be followed when using an entire IEEE copyrighted paper in a thesis:

1) The following IEEE copyright/ credit notice should be placed prominently in the references: © [year of original
publication] IEEE. Reprinted, with permission, from [author names, paper title, IEEE publication title, and month/year
of publication]
2) Only the accepted version of an IEEE copyrighted paper can be used when posting the paper or your thesis on-line.
3) In placing the thesis on the author's university website, please display the following message in a prominent place
on the website: In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE does

RIGHTSLINK® BY COPYRIGHT CLEARANCE CENTER HTTPS://S100.COPYRIGHT.COM/APPDISPATCHSERVLET#FORMTOP

1 OF 2 6/28/2021, 10:13 PM

177

© 2021 Copyright - All Rights Reserved | Copyright Clearance Center, Inc. | Privacy statement | Terms and Conditions

not endorse any of [university/educational entity's name goes here]'s products or services. Internal or personal use
of this material is permitted. If interested in reprinting/republishing IEEE copyrighted material for advertising or
promotional purposes or for creating new collective works for resale or redistribution, please go to
http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn how to obtain a License
from RightsLink.

If applicable, University Micro�lms and/or ProQuest Library, or the Archives of Canada may supply single copies of
the dissertation.

BACK CLOSE WINDOW

Comments? We would like to hear from you. E-mail us at customercare@copyright.com

RIGHTSLINK® BY COPYRIGHT CLEARANCE CENTER HTTPS://S100.COPYRIGHT.COM/APPDISPATCHSERVLET#FORMTOP

2 OF 2 6/28/2021, 10:13 PM

178

ACM Copyright and Audio/Video Release

Title of the Work: Precise Scheduling of Mixed-Criticality Tasks by Varying Processor Speed
Submission ID:33
Author/Presenter(s): Ashik Ahmed Bhuiyan:University of Central Florida;Zhishan Guo:University of Central Florida;Sai
Sruti:Missouri University of Science and Technology;Kecheng Yang:Texas State University
Type of material:Full Paper

Publication and/or Conference Name: 27th International Conference on Real-Time Networks and Systems
Proceedings

I. Copyright Transfer, Reserved Rights and Permitted Uses

* Your Copyright Transfer is conditional upon you agreeing to the terms set out below.

Copyright to the Work and to any supplemental files integral to the Work which are submitted with it for
review and publication such as an extended proof, a PowerPoint outline, or appendices that may exceed a
printed page limit, (including without limitation, the right to publish the Work in whole or in part in any
and all forms of media, now or hereafter known) is hereby transferred to the ACM (for Government work,
to the extent transferable) effective as of the date of this agreement, on the understanding that the Work
has been accepted for publication by ACM.

Reserved Rights and Permitted Uses

(a) All rights and permissions the author has not granted to ACM are reserved to the Owner, including all
other proprietary rights such as patent or trademark rights.

(b) Furthermore, notwithstanding the exclusive rights the Owner has granted to ACM, Owner shall have
the right to do the following:

(i) Reuse any portion of the Work, without fee, in any future works written or edited by the Author,
including books, lectures and presentations in any and all media.

(ii) Create a "Major Revision" which is wholly owned by the author

(iii) Post the Accepted Version of the Work on (1) the Author's home page, (2) the Owner's institutional
repository, (3) any repository legally mandated by an agency funding the research on which the Work is
based, and (4) any non-commercial repository or aggregation that does not duplicate ACM tables of
contents, i.e., whose patterns of links do not substantially duplicate an ACM-copyrighted volume or issue.
Non-commercial repositories are here understood as repositories owned by non-profit organizations that
do not charge a fee for accessing deposited articles and that do not sell advertising or otherwise profit from
serving articles.

(iv) Post an "Author-Izer" link enabling free downloads of the Version of Record in the ACM Digital
Library on (1) the Author's home page or (2) the Owner's institutional repository;

(v) Prior to commencement of the ACM peer review process, post the version of the Work as submitted to
ACM ("Submitted Version" or any earlier versions) to non-peer reviewed servers;

(vi) Make free distributions of the final published Version of Record internally to the Owner's employees,
if applicable;

(vii) Make free distributions of the published Version of Record for Classroom and Personal Use;

(viii) Bundle the Work in any of Owner's software distributions; and

(ix) Use any Auxiliary Material independent from the Work. (x) If your paper is withdrawn before it is
179

published in the ACM Digital Library, the rights revert back to the author(s).

When preparing your paper for submission using the ACM TeX templates, the rights and permissions
information and the bibliographic strip must appear on the lower left hand portion of the first page.

The new ACM Consolidated TeX template Version 1.3 and above automatically creates and positions these
text blocks for you based on the code snippet which is system-generated based on your rights management
choice and this particular conference.

NOTE: For authors using the ACM Microsoft Word Master Article Template and Publication Workflow,
The ACM Publishing System (TAPS) will add the rights statement to your papers for you. Please check
with your conference contact for information regarding submitting your source file(s) for processing.

Please copy and paste \setcopyright{acmcopyright} before \begin{document} and please copy and
paste the following code snippet into your TeX file between \begin{document} and \maketitle, either
after or before CCS codes.

\copyrightyear{2019}
\acmYear{2019}
\acmConference[RTNS 2019]{27th International Conference on Real-Time Networks and
Systems}{November 6--8, 2019}{Toulouse, France}
\acmBooktitle{27th International Conference on Real-Time Networks and Systems (RTNS 2019),
November 6--8, 2019, Toulouse, France}
\acmPrice{15.00}
\acmDOI{10.1145/3356401.3356410}
\acmISBN{978-1-4503-7223-7/19/11}

If you are using the ACM Microsoft Word template, or still using an older version of the ACM TeX
template, or the current versions of the ACM SIGCHI, SIGGRAPH, or SIGPLAN TeX templates, you
must copy and paste the following text block into your document as per the instructions provided with
the templates you are using:

Permission to make digital or hard copies of all or part of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from Permissions@acm.org.

RTNS 2019, November 6–8, 2019, Toulouse, France
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-7223-7/19/11…$15.00
https://doi.org/10.1145/3356401.3356410

NOTE: Make sure to include your article's DOI as part of the bibstrip data; DOIs will be registered and
become active shortly after publication in the ACM Digital Library. Once you have your camera ready copy
ready, please send your source files and PDF to your event contact for processing.

A. Assent to Assignment. I hereby represent and warrant that I am the sole owner (or authorized

agent of the copyright owner(s)), with the exception of third party materials detailed in section III below. I
have obtained permission for any third-party material included in the Work.

180

B. Declaration for Government Work. I am an employee of the National Government of my country

and my Government claims rights to this work, or it is not copyrightable (Government work is classified
as Public Domain in U.S. only)

 Are any of the co-authors, employees or contractors of a National Government? Yes No

II. Permission For Conference Recording and Distribution

* Your Audio/Video Release is conditional upon you agreeing to the terms set out below.

I hereby grant permission for ACM to include my name, likeness, presentation and comments in any and
all forms, for the Conference and/or Publication.

I further grant permission for ACM to record and/or transcribe and reproduce my presentation as part
of the ACM Digital Library, and to distribute the same for sale in complete or partial form as part of an
ACM product on CD-ROM, DVD, webcast, USB device, streaming video or any other media format now
or hereafter known.

I understand that my presentation will not be sold separately as a stand-alone product without my direct
consent. Accordingly, I give ACM the right to use my image, voice, pronouncements, likeness, and my
name, and any biographical material submitted by me, in connection with the Conference and/or
Publication, whether used in excerpts or in full, for distribution described above and for any associated
advertising or exhibition.

Do you agree to the above Audio/Video Release? Yes No

III. Auxiliary Material

Do you have any Auxiliary Materials? Yes No

IV. Third Party Materials
In the event that any materials used in my presentation or Auxiliary Materials contain the work of
third-party individuals or organizations (including copyrighted music or movie excerpts or anything not
owned by me), I understand that it is my responsibility to secure any necessary permissions and/or
licenses for print and/or digital publication, and cite or attach them below.

We/I have not used third-party material.
We/I have used third-party materials and have necessary permissions.

V. Artistic Images
If your paper includes images that were created for any purpose other than this paper and to which you or
your employer claim copyright, you must complete Part V and be sure to include a notice of copyright
with each such image in the paper.

We/I do not have any artistic images.
We/I have any artistic images.

VI. Representations, Warranties and Covenants

The undersigned hereby represents, warrants and covenants as follows:

181

(a) Owner is the sole owner or authorized agent of Owner(s) of the Work;

(b) The undersigned is authorized to enter into this Agreement and grant the rights included in this
license to ACM;

(c) The Work is original and does not infringe the rights of any third party; all permissions for use of
third-party materials consistent in scope and duration with the rights granted to ACM have been
obtained, copies of such permissions have been provided to ACM, and the Work as submitted to ACM
clearly and accurately indicates the credit to the proprietors of any such third-party materials
(including any applicable copyright notice), or will be revised to indicate such credit;

(d) The Work has not been published except for informal postings on non-peer reviewed servers, and
Owner covenants to use best efforts to place ACM DOI pointers on any such prior postings;

(e) The Auxiliary Materials, if any, contain no malicious code, virus, trojan horse or other software
routines or hardware components designed to permit unauthorized access or to disable, erase or
otherwise harm any computer systems or software; and

(f) The Artistic Images, if any, are clearly and accurately noted as such (including any applicable
copyright notice) in the Submitted Version.

I agree to the Representations, Warranties and Covenants

Funding Agents

1. National Science Foundation award number(s): CNS-1850851

DATE: 08/28/2019 sent to ashik@Knights.ucf.edu at 15:08:33

182

ACM Copyright and Audio/Video Release

T i t l e o f t h e W o r k : F 2 V D : F l u i d R a t e s t o V i r t u a l D e a d l i n e s f o r P r e c i s e M i x e d - C r i t i c a l i t y
Schedu l ing on a Vary ing-Speed Processor

Author /Presenter (s) : Kecheng Yang :Texas S ta te Un iv . ;Ash i kahmed Bhu iyan :Un iv . o f Cen t ra l
F l o r i d a ; Z h i s h a n G u o : U n i v . o f C e n t r a l F l o r i d a
T y p e o f m a t e r i a l :F u l l P a p e r

Publication and/or Conference Name: I C C A D ' 2 0 : I E E E / A C M I n t e r n a t i o n a l C o n f e r e n c e o n
C o m p u t e r - A i d e d D e s i g n P r o c e e d i n g s

I. Copyright Transfer , Reserved Rights and Permitted Uses

* Your Copyright Transfer is conditional upon you agreeing to the terms set out below.

Copyright to the Work and to any supplemental files integral to the Work which are
submitted with it for review and publication such as an extended proof, a PowerPoint outline,
or appendices that may exceed a printed page limit, (including without l imitation, the right
to publish the Work in whole or in part in any and all forms of media, now or hereafter
known) is hereby transferred to the ACM (for Government work, to the extent transferable)
effective as of the date of this agreement, on the understanding that the Work has been
accepted for publication by ACM.

Reserved Rights and Permitted Uses

(a) All rights and permissions the author has not granted to ACM are reserved to the Owner,
including all other proprietary rights such as patent or trademark rights.

(b) Furthermore, notwithstanding the exclusive rights the Owner has granted to ACM, Owner
shall have the right to do the following:

(i) Reuse any portion of the Work, without fee, in any future works written or edited by the
Author, including books, lectures and presentations in any and all media.

(ii) Create a "Major Revision" which is wholly owned by the author

(iii) Post the Accepted Version of the Work on (1) the Author's home page, (2) the Owner's
institutional repository, (3) any repository legally mandated by an agency funding the
research on which the Work is based, and (4) any non-commercial repository or aggregation
that does not duplicate ACM tables of contents, i .e. , whose patterns of l inks do not
substantially duplicate an ACM-copyrighted volume or issue. Non-commercial repositories
are here understood as reposi tor ies owned by non-profi t organizat ions that do not charge a
fee for accessing deposited articles and that do not sell advertising or otherwise profit from
serving articles.

(iv) Post an "Author-Izer" link enabling free downloads of the Version of Record in the ACM
Digital Library on (1) the Author's home page or (2) the Owner's institutional repository;

(v) Prior to commencement of the ACM peer review process, post the version of the Work as
submitted to ACM ("Submitted Version" or any earlier versions) to non-peer reviewed servers;

(vi) Make free distributions of the final published Version of Record internally to the Owner's
employees, if applicable;

(vii) Make free distributions of the published Version of Record for Classroom and Personal
Use;

183

(viii) Bundle the Work in any of Owner's software distributions; and

(ix) Use any Auxiliary Material independent from the Work. (x) If your paper is withdrawn
before it is published in the ACM Digital Library, the rights revert back to the author(s).

When preparing your paper for submission using the ACM TeX templates, the rights and
permissions information and the bibliographic str ip must appear on the lower left hand
portion of the first page.

The new ACM Consolidated TeX template Version 1.3 and above automatically creates and
posi t ions these text blocks for you based on the code snippet which is system-generated
based on your r ights management choice and this part icular conference.

NOTE: For authors using the ACM Microsoft Word Master Article Template and Publication
Workflow, The ACM Publishing System (TAPS) will add the rights statement to your papers for
you. Please check with your conference contact for information regarding submitting your
source file(s) for processing.

Please put the following LaTeX commands in the preamble of your document - i .e. ,
before \begin{document}:

\copyrightyear{2020}
\acmYear{2020}
\setcopyright{acmcopyright}\acmConference[ICCAD '20]{IEEE/ACM International
Conference on Computer-Aided Design}{November 2--5, 2020}{Virtual Event, USA}
\acmBooktitle{IEEE/ACM International Conference on Computer-Aided Design (ICCAD
'20), November 2--5, 2020, Virtual Event, USA}
\acmPrice{15.00}
\acmDOI{10.1145/3400302.3415716}
\acmISBN{978-1 -4503-8026-3 /20 /11}

NOTE: For authors using the ACM Microsoft Word Master Article Template and
Publication Workflow, The ACM Publishing System (TAPS) will add the rights
statement to your papers for you. Please check with your conference contact for
information regarding submitting your source file(s) for processing.

If you are using the ACM Interim Microsoft Word template, or still using or older
versions of the ACM SIGCHI template, you must copy and paste the following text
block into your document as per the instructions provided with the templates you are
using:

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distr ibuted
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to l ists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.

ICCAD '20, November 2–5, 2020, Virtual Event, USA
© 2020 Association for Computing Machinery.184

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8026-3 /20 /11…$15.00
h t t p s : / / d o i . o r g / 1 0 . 1 1 4 5 / 3 4 0 0 3 0 2 . 3 4 1 5 7 1 6

NOTE: Make sure to include your article's DOI as part of the bibstrip data; DOIs will be
registered and become active shortly after publication in the ACM Digital Library. Once you
have your camera ready copy ready, please send your source files and PDF to your event
contact for processing.

A. Assent to Assignment. I hereby represent and warrant that I am the sole owner (or

authorized agent of the copyright owner(s)), with the exception of third party materials
detailed in section III below. I have obtained permission for any third-party material included
in the Work.

B. Declaration for Government Work. I am an employee of the National Government of my

country and my Government claims rights to this work, or i t is not copyrightable
(Government work is classified as Public Domain in U.S. only)

 Are any of the co-authors, employees or contractors of a National Government? Yes N o

II . Permiss ion For Conference Recording and Distr ibution

* Y o u r A u d i o / V i d e o R e l e a s e i s c o n d i t i o n a l u p o n y o u a g r e e i n g t o t h e t e r m s s e t o u t b e l o w .

I hereby grant permission for ACM to include my name, l ikeness, presentation and
comments in any and all forms, for the Conference and/or Publication.

I further grant permission for ACM to record and/or transcribe and reproduce my
presentation as part of the ACM Digital Library, and to distribute the same for sale in
complete or partial form as part of an ACM product on CD-ROM, DVD, webcast, USB device,
streaming video or any other media format now or hereafter known.

I understand that my presentat ion wil l not be sold separately as a s tand-alone product
without my direct consent. Accordingly, I give ACM the right to use my image, voice,
pronouncements, l ikeness, and my name, and any biographical material submitted by me,
in connection with the Conference and/or Publication, whether used in excerpts or in full ,
for distribution described above and for any associated advertising or exhibition.

Do you agree to the above Audio/Video Release? Yes N o

III. Auxiliary Material

Do you have any Auxiliary Materials? Yes No

IV. Third Party Materials
In the event that any materials used in my presentation or Auxiliary Materials contain the
work of third-party individuals or organizations (including copyrighted music or movie
excerpts or anything not owned by me), I understand that i t is my responsibil i ty to secure
any necessary permissions and/or l icenses for print and/or digital publication, and cite or
at tach them below.

185

We/I have not used third-party material .
We/I have used third-party materials and have necessary permissions.

V. Artist ic Images
If your paper includes images that were created for any purpose other than this paper and to
which you or your employer claim copyright, you must complete Part V and be sure to
include a notice of copyright with each such image in the paper.

We/I do not have any artistic images.
We/I have any artistic images.

VI. Representat ions , Warranties and Covenants

The undersigned hereby represents, warrants and covenants as follows:

(a) Owner is the sole owner or authorized agent of Owner(s) of the Work;

(b) The undersigned is authorized to enter into this Agreement and grant the r ights
included in this license to ACM;

(c) The Work is original and does not infringe the rights of any third party; all permissions
for use of third-party materials consistent in scope and duration with the r ights granted
to ACM have been obtained, copies of such permissions have been provided to ACM, and
the Work as submitted to ACM clearly and accurately indicates the credit to the
proprietors of any such third-party materials (including any applicable copyright notice),
or will be revised to indicate such credit;

(d) The Work has not been published except for informal postings on non-peer reviewed
servers, and Owner covenants to use best efforts to place ACM DOI pointers on any such
prior post ings;

(e) The Auxiliary Materials, if any, contain no malicious code, virus, trojan horse or other
software rout ines or hardware components designed to permit unauthorized access or to
disable, erase or otherwise harm any computer systems or software; and

(f) The Artistic Images, if any, are clearly and accurately noted as such (including any
applicable copyright notice) in the Submitted Version.

I agree to the Representations, Warranties and Covenants

Funding Agent s

1. Division of Computer and Network Systems award number(s): 1850851

DATE: 0 8 / 0 5 / 2 0 2 0 sent to ashik@knights.ucf.edu at 1 1 : 0 8 : 4 0

186

Home Help Email Support Sign in Create Account

© 2021 Copyright - All Rights Reserved | Copyright Clearance Center, Inc. | Privacy statement | Terms and Conditions

RightsLink
Optimizing Energy in Non-Preemptive Mixed-Criticality Scheduling by Exploiting Probabilistic
Information
Author: Ashikahmed Bhuiyan

Publication: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems

Publisher: IEEE

Date: Nov. 2020

Copyright © 2020, IEEE

Thesis / Dissertation Reuse

The IEEE does not require individuals working on a thesis to obtain a formal reuse license, however, you may print out this statement to be
used as a permission grant:

Requirements to be followed when using any portion (e.g., �gure, graph, table, or textual material) of an IEEE copyrighted paper in a thesis:

1) In the case of textual material (e.g., using short quotes or referring to the work within these papers) users must give full credit to the original
source (author, paper, publication) followed by the IEEE copyright line © 2011 IEEE.
2) In the case of illustrations or tabular material, we require that the copyright line © [Year of original publication] IEEE appear prominently with each
reprinted �gure and/or table.
3) If a substantial portion of the original paper is to be used, and if you are not the senior author, also obtain the senior author's approval.

Requirements to be followed when using an entire IEEE copyrighted paper in a thesis:

1) The following IEEE copyright/ credit notice should be placed prominently in the references: © [year of original publication] IEEE. Reprinted, with
permission, from [author names, paper title, IEEE publication title, and month/year of publication]
2) Only the accepted version of an IEEE copyrighted paper can be used when posting the paper or your thesis on-line.
3) In placing the thesis on the author's university website, please display the following message in a prominent place on the website: In reference to
IEEE copyrighted material which is used with permission in this thesis, the IEEE does not endorse any of [university/educational entity's name goes
here]'s products or services. Internal or personal use of this material is permitted. If interested in reprinting/republishing IEEE copyrighted material
for advertising or promotional purposes or for creating new collective works for resale or redistribution, please go to http://www.ieee.org
/publications_standards/publications/rights/rights_link.html to learn how to obtain a License from RightsLink.

If applicable, University Micro�lms and/or ProQuest Library, or the Archives of Canada may supply single copies of the dissertation.

BACK CLOSE WINDOW

Comments? We would like to hear from you. E-mail us at customercare@copyright.com

187

LIST OF REFERENCES

[1] DO-178C - software considerations in airborne systems and equipment certification, 2011.

[2] Kunal Agrawal and Sanjoy Baruah. A measurement-based model for parallel real-time

tasks. In 30th Euromicro Conference on Real-Time Systems (ECRTS 2018). Schloss

Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

[3] Bader Alahmad and Sathish Gopalakrishnan. Isochronous execution models for high-

assurance real-time systems. In HASE. IEEE, 2019.

[4] Björn Andersson and Dionisio de Niz. Analyzing global-EDF for multiprocessor scheduling

of parallel tasks. In OPODIS. Springer, 2012.

[5] Muhammad Awan, Konstantinos Bletsas, Pedro Souto, and Eduardo Tovar. Semi-partitioned

mixed-criticality scheduling. In ARCS. Springer, 2017.

[6] Muhammad Ali Awan, Damien Masson, and Eduardo Tovar. Energy efficient mapping of

mixed criticality applications on unrelated heterogeneous multicore platforms. In SIES.

IEEE, 2016.

[7] Hakan Aydin and Qi Yang. Energy-aware partitioning for multiprocessor real-time systems.

In Parallel and Distributed Processing Symposium. Proceedings. International, pages 9–pp.

IEEE, 2003.

[8] Hyeongboo Baek and Jinkyu Lee. Incorporating security constraints into mixed-criticality

real-time scheduling. IEICE TRANSACTIONS on Information and Systems, 100(9):2068–

2080, 2017.

188

[9] Mario Bambagini, Mauro Marinoni, Hakan Aydin, and Giorgio Buttazzo. Energy-aware

scheduling for real-time systems: A survey. ACM TECS, 15(1):7, 2016.

[10] Sanjoy Baruah. Improved multiprocessor global schedulability analysis of sporadic DAG

task systems. In 26th Euromicro Conference on Real-Time Systems, pages 97–105. IEEE,

2014.

[11] Sanjoy Baruah. The federated scheduling of systems of mixed-criticality sporadic DAG

tasks. In RTSS. IEEE, 2016.

[12] Sanjoy Baruah. Mixed-criticality scheduling theory: Scope, promise, and limitations. IEEE

DESIGN AND TEST, 35(2):31–37, 2018.

[13] Sanjoy Baruah, Marko Bertogna, and Giorgio Buttazzo. Multiprocessor Scheduling for

Real-Time Systems. Springer, 2015.

[14] Sanjoy Baruah, Vincenzo Bonifaci, Gianlorenzo DAngelo, Haohan Li, Alberto Marchetti-

Spaccamela, Suzanne Van Der Ster, and Leen Stougie. The preemptive uniprocessor

scheduling of mixed-criticality implicit-deadline sporadic task systems. In ECRTS. IEEE,

2012.

[15] Sanjoy Baruah, Vincenzo Bonifaci, Gianlorenzo D’angelo, Alberto Marchetti-Spaccamela,

Suzanne Van Der Ster, and Leen Stougie. Mixed-criticality scheduling of sporadic task

systems. In ESA. Springer, 2011.

[16] Sanjoy Baruah, Vincenzo Bonifaci, and Alberto Marchetti-Spaccamela. The global EDF

scheduling of systems of conditional sporadic DAG tasks. In 27th Euromicro Conference

on Real-Time Systems, pages 222–231. IEEE, 2015.

189

[17] Sanjoy Baruah, Vincenzo Bonifaci, Alberto Marchetti-Spaccamela, Leen Stougie, and An-

dreas Wiese. A generalized parallel task model for recurrent real-time processes. In Real-

Time Systems Symposium (RTSS), IEEE 33rd, pages 63–72. IEEE, 2012.

[18] Sanjoy Baruah, Alan Burns, and Robert Davis. Response-time analysis for mixed criticality

systems. In 2011 IEEE 32nd Real-Time Systems Symposium, pages 34–43. IEEE, 2011.

[19] Sanjoy Baruah, Arvind Easwaran, and Zhishan Guo. MC-Fluid: simplified and optimally

quantified. In 2015 IEEE Real-Time Systems Symposium, pages 327–337. IEEE, 2015.

[20] Sanjoy Baruah and Zhishan Guo. Mixed-criticality scheduling upon varying-speed proces-

sors. In 2013 IEEE 34th Real-Time Systems Symposium, pages 68–77. IEEE, 2013.

[21] Sanjoy Baruah and Zhishan Guo. Scheduling mixed-criticality implicit-deadline sporadic

task systems upon a varying-speed processor. In 2014 IEEE Real-Time Systems Symposium,

pages 31–40. IEEE, 2014.

[22] Cristina Bazgan, Bruno Escoffier, and Vangelis Th. Paschos. Completeness in standard and

differential approximation classes: Poly-apx- and ptas-completeness. Theoretical Computer

Science, 339(2-3):272–292, 2005.

[23] Ashikahmed Bhuiyan, Zhishan Guo, Abusayeed Saifullah, Nan Guan, and Haoyi Xiong.

Energy-efficient real-time scheduling of DAG tasks. ACM Transactions on Embedded Com-

puting Systems (TECS), 17(5):84, 2018.

[24] Ashikahmed Bhuiyan, Di Liu, Aamir Khan, Abusayeed Saifullah, Nan Guan, and Zhishan

Guo. Energy-efficient parallel real-time scheduling on clustered multi-core. IEEE Transac-

tions on Parallel and Distributed Systems, 31(9):2097–2111, 2020.

[25] Ashikahmed Bhuiyan, Federico Reghenzani, William Fornaciari, and Zhishan Guo. Op-

timizing energy in non-preemptive mixed-criticality scheduling by exploiting probabilistic

190

information. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-

tems, 39(11):3906–3917, 2020.

[26] Ashikahmed Bhuiyan, Sai Sruti, Zhishan Guo, and Kecheng Yang. Precise scheduling of

mixed-criticality tasks by varying processor speed. In Proceedings of the 27th International

Conference on Real-Time Networks and Systems, pages 123–132. ACM, 2019.

[27] Ashikahmed Bhuiyan, Kecheng Yang, Samsil Arefin, Abusayeed Saifullah, Nan Guan, and

Zhishan Guo. Mixed-criticality multicore scheduling of real-time gang task systems. In

2019 IEEE Real-Time Systems Symposium (RTSS), pages 469–480. IEEE, 2019.

[28] Enrico Bini, Giorgio Buttazzo, and Giuseppe Lipari. Minimizing CPU energy in real-time

systems with discrete speed management. ACM Transactions on Embedded Computing

Systems (TECS), 8(4):31, 2009.

[29] M Bolado, Hector Posadas, Javier Castillo, Pablo Huerta, Pablo Sanchez, C Sánchez,

H Fouren, and Francisco Blasco. Platform based on open-source cores for industrial ap-

plications. In Design, Automation and Test in Europe Conference and Exhibition, 2004.

Proceedings, volume 2, pages 1014–1019. IEEE, 2004.

[30] Vincenzo Bonifaci, Alberto Marchetti-Spaccamela, Sebastian Stiller, and Andreas Wiese.

Feasibility analysis in the sporadic DAG task model. In 25th Euromicro Conference on

Real-Time Systems, pages 225–233. IEEE, 2013.

[31] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press,

2004.

[32] Alan Burns and Robert Davis. Mixed criticality systems-a review. Department of Computer

Science, University of York, Tech. Rep, pages 1–69, 2013.

191

[33] Alan Burns and Robert Davis. A survey of research into mixed criticality systems. ACM

Computing Surveys (CSUR), 50(6):82, 2018.

[34] Giorgio C Buttazzo. Hard real-time computing systems: predictable scheduling algorithms

and applications, volume 24. Springer Science & Business Media, 2011.

[35] Nicola Capodieci, Roberto Cavicchioli, Marko Bertogna, and Aingara Paramakuru.

Deadline-based scheduling for GPU with preemption support. In 2018 IEEE Real-Time

Systems Symposium (RTSS), pages 119–130. IEEE, 2018.

[36] David Chandler. Introduction to modern statistical mechanics. pp. 288. Foreword by

David Chandler. Oxford University Press, Sep 1987. ISBN-10: 0195042778. ISBN-13:

9780195042771, page 288, 1987.

[37] Gang Chen, Kai Huang, and Alois Knoll. Energy optimization for real-time multiprocessor

system-on-chip with optimal DVFS and DPM combination. ACM Transactions on Embed-

ded Computing Systems (TECS), 13(3s):111, 2014.

[38] Jian-Jia Chen and Chin-Fu Kuo. Energy-efficient scheduling for real-time systems on dy-

namic voltage scaling (DVS) platforms. In RTCSA. IEEE, 2007.

[39] Jian-Jia Chen, Andreas Schranzhofer, and Lothar Thiele. Energy minimization for periodic

real-time tasks on heterogeneous processing units. In Parallel & Distributed Processing.

IPDPS 2009. IEEE International Symposium on, pages 1–12. IEEE, 2009.

[40] Hoon Sung Chwa, Jaebaek Seo, Jinkyu Lee, and Insik Shin. Optimal real-time scheduling

on two-type heterogeneous multicore platforms. In RTSS. IEEE, 2015.

[41] Alexei Colin, Arvind Kandhalu, and Ragunathan Rajkumar. Energy-efficient allocation of

real-time applications onto heterogeneous processors. In RTCSA, 2014.

192

[42] Daniel Cordeiro, Gregory Mouni, Swann Perarnau, Denis Trystram, Jean-Marc Vincent,

and Frederic Wagner. Random graph generation for scheduling simulations. In Proceed-

ings of the 3rd international ICST conference on simulation tools and techniques, page 60.

ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engi-

neering), 2010.

[43] Robert Davis and Liliana Cucu-Grosjean. A survey of probabilistic timing analysis tech-

niques for real-time systems. Leibniz Transactions on Embedded Systems, 6(1):03–1, 2019.

[44] Vinay Devadas and Hakan Aydin. Coordinated power management of periodic real-time

tasks on chip multiprocessors. In Green Computing Conference, 2010 International, pages

61–72. IEEE, 2010.

[45] Björn Döbel, Hermann Härtig, and Michael Engel. Operating system support for redundant

multithreading. In Proceedings of the tenth ACM international conference on Embedded

software, pages 83–92, 2012.

[46] Zheng Dong and Cong Liu. Analysis techniques for supporting hard real-time sporadic gang

task systems. In RTSS. IEEE, 2017.

[47] Adam Dunkels, Fredrik Osterlind, Nicolas Tsiftes, and Zhitao He. Software-based on-line

energy estimation for sensor nodes. In Proceedings of the 4th workshop on Embedded

networked sensors, pages 28–32. ACM, 2007.

[48] Arvind Easwaran. Demand-based scheduling of mixed-criticality sporadic tasks on one

processor. In RTSS. IEEE, 2013.

[49] Glenn A Elliott, Bryan C Ward, and James H Anderson. GPUSync: A framework for real-

time GPU management. In RTSS. IEEE, 2013.

[50] 2017. https://github.com/tuxamito/emoxu3.

193

[51] Michael Engel and Björn Döbel. The reliable computing base–a paradigm for software-

based reliability. INFORMATIK 2012, 2012.

[52] Rolf Ernst and Marco Di Natale. Mixed criticality systems—a history of misconceptions?

IEEE Design & Test, 33(5):65–74, 2016.

[53] Alexandre Esper, Geoffrey Nelissen, Vincent Nélis, and Eduardo Tovar. How realistic is the

mixed-criticality real-time system model? In RTNS. ACM, 2015.

[54] Dror G Feitelson and Larry Rudolph. Gang scheduling performance benefits for fine-grain

synchronization. Journal of Parallel and distributed Computing, 16(4):306–318, 1992.

[55] Nathan Fisher, Jian-Jia Chen, Shengquan Wang, and Lothar Thiele. Thermal-aware global

real-time scheduling on multicore systems. In Real-Time and Embedded Technology and

Applications Symposium, 2009. RTAS 2009. 15th IEEE, pages 131–140. IEEE, 2009.

[56] 2018. https://www.mathworks.com/help/optim/ug/fmincon.html.

[57] Shelby Hyatt Funk. EDF scheduling on heterogeneous multiprocessors. University of North

Carolina at Chapel Hill, 2004.

[58] 2018. https://en.wikipedia.org/wiki/Gamma distribution.

[59] Edward Gehringer, Daniel Siewiorek, and Zary Segall. Parallel processing: the Cm* expe-

rience. Digital Press, 1987.

[60] Joël Goossens and Vandy Berten. Gang FTP scheduling of periodic and parallel rigid real-

time tasks. arXiv preprint arXiv:1006.2617, 2010.

[61] Joël Goossens and Pascal Richard. Optimal scheduling of periodic gang tasks. Leibniz

transactions on embedded systems, 3(1):04–1, 2016.

194

[62] Michael Grant and Stephen Boyd. CVX: Matlab software for disciplined convex program-

ming, version 2.1. http://cvxr.com/cvx, March 2014.

[63] Nan Guan, Pontus Ekberg, Martin Stigge, and Wang Yi. Improving the scheduling of certi-

fiable mixed-criticality sporadic task systems. Technical Report 2013–008, 2013.

[64] Yifeng Guo, Dakai Zhu, and Hakan Aydin. Reliability-aware power management for parallel

real-time applications with precedence constraints. In Green Computing Conference and

Workshops (IGCC), 2011 International, pages 1–8. IEEE, 2011.

[65] Zhishan Guo and Sanjoy Baruah. The concurrent consideration of uncertainty in wcets and

processor speeds in mixed-criticality systems. In RTNS. ACM, 2015.

[66] Zhishan Guo, Ashikahmed Bhuiyan, Di Liu, Aamir Khan, Abusayeed Saifullah, and Nan

Guan. Energy-efficient real-time scheduling of DAGs on clustered multi-core platforms.

In 2019 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS),

pages 156–168. IEEE, 2019.

[67] Zhishan Guo, Ashikahmed Bhuiyan, Abusayeed Saifullah, Nan Guan, and Haoyi Xiong.

Energy-efficient multi-core scheduling for real-time DAG tasks. In LIPIcs-Leibniz Inter-

national Proceedings in Informatics, volume 76. Schloss Dagstuhl-Leibniz-Zentrum fuer

Informatik, 2017.

[68] Tarek Hagras and Jan Janecek. A high performance, low complexity algorithm for compile-

time job scheduling in homogeneous computing environments. In Parallel Processing Work-

shops. IEEE, 2003.

[69] Magnús Halldórssonz and Jaikumar Radhakrishnan. Greed is good: Approximating inde-

pendent sets in sparse and bounded-degree graphs. Algorithmica, 18(1):145–163, 1997.

195

http://cvxr.com/cvx

[70] Sebastian Herbert and Diana Marculescu. Analysis of dynamic voltage/frequency scaling

in chip-multiprocessors. In ISLPED. IEEE, 2007.

[71] Jason Howard, Saurabh Dighe, Sriram Vangal, Gregory Ruhl, Nitin Borkar, Shailendra Jain,

Vasantha Erraguntla, Michael Konow, Michael Riepen, Matthias Gries, et al. A 48-core ia-

32 processor in 45 nm cmos using on-die message-passing and DVFS for performance and

power scaling. IEEE Journal of Solid-State Circuits, 46(1):173–183, 2011.

[72] Pengcheng Huang, Pratyush Kumar, Georgia Giannopoulou, and Lothar Thiele. Energy

efficient DVFS scheduling for mixed-criticality systems. In EMSOFT. IEEE, 2014.

[73] Intel. Intel cilkplus v1.2, 2013.

[74] Kevin Jeffay, Donald Stone, and Donelson Smith. Kernel support for live digital audio and

video. Computer communications, 15(6):388–395, 1992.

[75] Ravindra Jejurikar. Energy aware non-preemptive scheduling for hard real-time systems. In

17th Euromicro Conference on Real-Time Systems (ECRTS’05), pages 21–30. IEEE, 2005.

[76] Shinpei Kato and Yutaka Ishikawa. Gang EDF scheduling of parallel task systems. In 30th

IEEE Real-Time Systems Symposium (RTSS), pages 459–468. IEEE, 2009.

[77] Junsung Kim, Hyoseung Kim, Karthik Lakshmanan, and Ragunathan Raj Rajkumar. Paral-

lel scheduling for cyber-physical systems: Analysis and case study on a self-driving car. In

ICCPS. ACM, 2013.

[78] Jaewoo Lee, Kieu Phan, Xiaozhe Gu, Jiyeon Lee, Arvind Easwaran, Insik Shin, and Insup

Lee. MC-Fluid: Fluid model-based mixed-criticality scheduling on multiprocessors. In

RTSS. IEEE, 2014.

[79] Haohan Li. Scheduling mixed-criticality real-time systems. PhD thesis, The University of

North Carolina at Chapel Hill, 2013.

196

[80] Haohan Li and Sanjoy Baruah. An algorithm for scheduling certifiable mixed-criticality

sporadic task systems. In RTSS. IEEE, 2010.

[81] Jing Li, Kunal Agrawal, Chenyang Lu, and Christopher Gill. Analysis of global EDF for

parallel tasks. In 25th Euromicro Conference on Real-Time Systems, pages 3–13. IEEE,

2013.

[82] Jing Li, Jian-Jia Chen, Kunal Agrawal, Chenyang Lu, Chris Gill, and Abusayeed Saifullah.

Analysis of federated and global scheduling for parallel real-time tasks. In 26th Euromicro

Conference on Real-Time Systems, pages 85–96. IEEE, 2014.

[83] Jing Li, David Ferry, Shaurya Ahuja, Kunal Agrawal, Christopher Gill, and Chenyang

Lu. Mixed-criticality federated scheduling for parallel real-time tasks. Real-Time Systems,

53(5):760–811, 2017.

[84] Yau-Tsun Steven Li and Sharad Malik. Performance analysis of embedded software using

implicit path enumeration. In Workshop on Languages, compilers, & tools for real-time

systems, pages 88–98, 1995.

[85] Cong Liu, Jian Li, Wei Huang, Juan Rubio, Evan Speight, and Xiaozhu Lin. Power-efficient

time-sensitive mapping in heterogeneous systems. In Proceedings of the 21st international

conference on Parallel architectures and compilation techniques, pages 23–32. ACM, 2012.

[86] Di Liu, Jelena Spasic, Gang Chen, and Todor Stefanov. Energy-efficient mapping of real-

time streaming applications on cluster heterogeneous mpsocs. In ESTIMedia. IEEE, 2015.

[87] Guangdong Liu, Ying Lu, Shige Wang, and Zonghua Gu. Partitioned multiprocessor

scheduling of mixed-criticality parallel jobs. In RTCSA. IEEE, 2014.

197

[88] Alexander Maxiaguine, Simon Kunzli, and Lothar Thiele. Workload characterization model

for tasks with variable execution demand. In Proceedings Design, Automation and Test in

Europe Conference and Exhibition, volume 2, pages 1040–1045. IEEE, 2004.

[89] Dorin Maxim and Liliana Cucu-Grosjean. Response time analysis for fixed-priority tasks

with multiple probabilistic parameters. In RTSS. IEEE, 2013.

[90] Sibin Mohan, Man Ki Yoon, Rodolfo Pellizzoni, and Rakesh Bobba. Real-time systems

security through scheduler constraints. In ECRTS. IEEE, 2014.

[91] Sanjay Moulik, Rajesh Devaraj, and Arnab Sarkar. Healers: a heterogeneous energy-aware

low-overhead real-time scheduler. IET Computers & Digital Techniques, 13(6):470–480,

2019.

[92] Sujay Narayana, Pengcheng Huang, Georgia Giannopoulou, Lothar Thiele, and R Venkate-

sha Prasad. Exploring energy saving for mixed-criticality systems on multi-cores. In IEEE

Real-Time and Embedded Technology and Applications Symposium (RTAS), pages 1–12.

IEEE, 2016.

[93] 2017. http://www.nvidia.com/page/home.html.

[94] 2013. http://www.hardkernel.com/main/main.php.

[95] 2017. https://www.openacc.org/.

[96] OpenMP. Openmp application program interface v4.0., 2013.

[97] John K Ousterhout et al. Scheduling techniques for concurrent systems. In ICDCS, vol-

ume 82, pages 22–30, 1982.

198

http://www.nvidia.com/page/home.html
https://www.openacc.org/

[98] Santiago Pagani and Jian-Jia Chen. Energy efficient task partitioning based on the single

frequency approximation scheme. In Real-Time Systems Symposium (RTSS), IEEE 34th,

pages 308–318. IEEE, 2013.

[99] Santiago Pagani and Jian-Jia Chen. Energy efficiency analysis for the single frequency ap-

proximation (SFA) scheme. ACM Transactions on Embedded Computing Systems (TECS),

13(5s):158, 2014.

[100] Antonio Paolillo, Joël Goossens, Pradeep M Hettiarachchi, and Nathan Fisher. Power min-

imization for parallel real-time systems with malleable jobs and homogeneous frequencies.

In IEEE 20th International Conference on Embedded and Real-Time Computing Systems

and Applications, pages 1–10. IEEE, 2014.

[101] Antonio Paolillo, Paul Rodriguez, Nikita Veshchikov, Joël Goossens, and Ben Rodriguez.

Quantifying energy consumption for practical fork-join parallelism on an embedded real-

time operating system. In Proceedings of the 24th International Conference on Real-Time

Networks and Systems, pages 329–338. ACM, 2016.

[102] Manar Qamhieh, Frédéric Fauberteau, Laurent George, and Serge Midonnet. Global EDF

scheduling of directed acyclic graphs on multiprocessor systems. In RTNS. ACM, 2013.

[103] Xuan Qi and Dakai Zhu. Energy efficient block-partitioned multicore processors for parallel

applications. Journal of Computer Science and Technology, 26(3):418–433, 2011.

[104] Eberle A Rambo and Rolf Ernst. Replica-aware co-scheduling for mixed-criticality. In

ECRTS 2017. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

[105] Federico Reghenzani, Giuseppe Massari, and William Fornaciari. A probabilistic approach

to energy-constrained Mixed-Criticality systems. In ISLPED. IEEE, 2019.

199

[106] Federico Reghenzani, Giuseppe Massari, and William Fornaciari. Probabilistic-WCET reli-

ability: Statistical testing of EVT hypotheses. Microprocessors and Microsystems, 77:103–

135, 2020.

[107] 2017. https://github.com/scheduler-tools/rt-app/.

[108] Abusayeed Saifullah, Sezana Fahmida, Venkata P Modekurthy, Nathan Fisher, and Zhishan

Guo. CPU energy-aware parallel real-time scheduling. In 32nd Euromicro Conference on

Real-Time Systems (ECRTS 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

[109] Abusayeed Saifullah, David Ferry, Jing Li, Kunal Agrawal, Chenyang Lu, and Christo-

pher D Gill. Parallel real-time scheduling of DAGs. IEEE Transactions on Parallel and

Distributed Systems, 25(12):3242–3252, 2014.

[110] Luca Santinelli, Zhishan Guo, and Laurent George. Fault-aware sensitivity analysis for

probabilistic real-time systems. In DFT. IEEE, 2016.

[111] Youngsoo Shin and Kiyoung Choi. Power conscious fixed priority scheduling for hard real-

time systems. In DAC. IEEE, 1999.

[112] Sebastian Siebert and Jochen Teizer. Mobile 3d mapping for surveying earthwork projects

using an unmanned aerial vehicle (uav) system. Automation in Construction, 41:1–14, 2014.

[113] Jelena Spasic, Di Liu, and Todor Stefanov. Energy-efficient mapping of real-time applica-

tions on heterogeneous mpsocs using task replication. In 2016 International Conference on

Hardware/Software Codesign and System Synthesis (CODES+ ISSS). IEEE, 2016.

[114] Marco Spuri and Giorgio Buttazzo. Efficient aperiodic service under earliest deadline

scheduling. In RTSS, pages 2–11, 1994.

200

[115] Georgios Stavrinides and Helen Karatza. Scheduling real-time DAGs in heterogeneous clus-

ters by combining imprecise computations and bin packing techniques for the exploitation

of schedule holes. Future Generation Computer Systems, 28(7):977–988, 2012.

[116] Georgios Stavrinides and Helen Karatza. Scheduling real-time parallel applications in saas

clouds in the presence of transient software failures. In SPECTS. IEEE, 2016.

[117] Georgios Stavrinides and Helen Karatza. Energy-aware scheduling of real-time workflow

applications in clouds utilizing DVFS and approximate computations. In FiCloud. IEEE,

2018.

[118] Georgios Stavrinides and Helen Karatza. An energy-efficient, QoS-aware and cost-effective

scheduling approach for real-time workflow applications in cloud computing systems utiliz-

ing DVFS and approximate computations. Future Generation Computer Systems, 96:216–

226, 2019.

[119] Ken Tindell, Alan Burns, and Andy Wellings. Mode changes in priority pre-emptively

scheduled systems. In RTSS. IEEE, 1992.

[120] Sebastian Tobuschat and Rolf Ernst. Efficient latency guarantees for mixed-criticality

networks-on-chip. In RTAS. IEEE, 2017.

[121] Roman Trüb, Georgia Giannopoulou, Andreas Tretter, and Lothar Thiele. Implementation

of partitioned mixed-criticality scheduling on a multi-core platform. ACM Transactions on

Embedded Computing Systems (TECS), 16(5s):122, 2017.

[122] Steve Vestal. Preemptive scheduling of multi-criticality systems with varying degrees of

execution time assurance. In RTSS. IEEE, 2007.

[123] Shucai Xiao and Wu-chun Feng. Inter-block GPU communication via fast barrier synchro-

nization. In IPDPS. IEEE, 2010.

201

[124] Huiting Xu, Fanxin Kong, and Qingxu Deng. Energy minimizing for parallel real-time tasks

based on level-packing. In IEEE International Conference on Embedded and Real-Time

Computing Systems and Applications, pages 98–103. IEEE, 2012.

[125] Ruibin Xu, Dakai Zhu, Cosmin Rusu, Rami Melhem, and Daniel Mossé. Energy-efficient

policies for embedded clusters. In ACM SIGPLAN Notices, volume 40, pages 1–10. ACM,

2005.

[126] Kecheng Yang, Ashikahmed Bhuiyan, and Zhishan Guo. F2VD: fluid rates to virtual

deadlines for precise mixed-criticality scheduling on a varying-speed processor. In 2020

IEEE/ACM International Conference On Computer Aided Design (ICCAD), pages 1–9.

IEEE, 2020.

[127] Ming Yang, Tanya Amert, Kecheng Yang, Nathan Otterness, James H Anderson, F Donelson

Smith, and Shige Wang. Making OpenVX really” real time”. In RTSS. IEEE, 2018.

[128] Hai-Ying Zhou, Dan-Yan Luo, Yan Gao, and De-Cheng Zuo. Modeling of node energy

consumption for wireless sensor networks. Wireless Sensor Network, 3(01):18, 2011.

[129] Dakai Zhu, Nevine AbouGhazaleh, Daniel Mossé, and Rami Melhem. Power aware

scheduling for and/or graphs in multiprocessor real-time systems. In Parallel Processing,

2002. Proceedings. International Conference on, pages 593–601. IEEE, 2002.

[130] Dakai Zhu, Daniel Mosse, and Rami Melhem. Power-aware scheduling for and/or graphs in

real-time systems. IEEE Transactions on Parallel and Distributed Systems, 15(9):849–864,

2004.

202

	Energy-Aware Real-Time Scheduling on Heterogeneous and Homogeneous Platforms in the Era of Parallel Computing
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1: INTRODUCTION
	1.1 Challenges in Energy-Aware Real-Time Scheduling
	1.2 Thesis Statement
	1.3 Thesis Contribution and Organization

	CHAPTER 2: PRELIMINARIES AND NOTATION
	2.1 Real-Time Parallel Task Model
	2.1.1 DAG Task Model
	2.1.2 Gang Task Model

	2.2 Power/Energy Model

	CHAPTER 3: ENERGY-EFFICIENT FEDERATED SCHEDULING OF REAL-TIME DAG TASKS WITH INTRA-TASK PROCESSOR MERGING
	3.1 Introduction
	3.2 Related Work
	3.3 Energy-Sub-Optimal Federated Scheduling for DAG Tasks
	3.3.1 Task Decomposition
	3.3.2 Segment Extension
	3.3.3 Problem Transformation

	3.4 Processor Sharing: Efficiency Improvement
	3.4.1 Merging Processors Assigned to the Same DAG

	3.5 Simulation Study
	3.5.1 Experiment Under Single Merging of Processors
	3.5.1.1 Varying Task Periods
	3.5.1.2 Varying Numbers of Nodes in a DAG Task

	3.6 Conclusion

	CHAPTER 4: ENERGY-EFFICIENT FEDERATED SCHEDULING OF REAL-TIME DAG TASKS WITH INTER-TASK PROCESSOR MERGING
	4.1 Multiple Merging Among the Processors Assigned to the Same DAG
	4.2 Calculating Optimal Segment Length After the Intra-DAG Processor Merging
	4.3 Merging Processors Assigned to Different DAGs
	4.4 Experiment Under Multiple Merging of Processors
	4.4.1 The Effect of Varying Task Periods or Utilization
	4.4.2 Varying Numbers of Nodes in a DAG Task

	4.5 Conclusion

	CHAPTER 5: ENERGY-EFFICIENT PARALLEL REAL-TIME SCHEDULING ON CLUSTERED MULTI-CORE
	5.1 Introduction
	5.2 Related Work
	5.3 Background and Existing Concepts
	5.4 Speed-Profile for Task and Cluster
	5.4.1 Speed-Profile for Each DAG
	5.4.2 Speed-Profile for the Cluster Containing Multiple DAGs

	5.5 Task Partitioning Algorithm
	5.5.1 Creating the Speed-Profile of a Task
	5.5.2 Task Partition: Greedy Merging with Speed-Profiles

	5.6 System Experiments
	5.7 Simulations
	5.7.1 Identical Heterogeneous Platform with a Continuous Frequency Scheme
	5.7.1.1 Constrained Deadline Task
	5.7.1.2 Implicit Deadline Task.

	5.8 Discussions: Assumptions and Applicability
	5.8.1 Assumptions Behind the Power Model
	5.8.2 A Note on the Overhead Delay

	5.9 Conclusion

	CHAPTER 6: ENERGY-EFFICIENT PARALLEL REAL-TIME SCHEDULING ON CLUSTERED MULTI-CORE: ADAPTING THE FREQUENCY DISCRETIZATION AND PLATFORM HETEROGENEITY
	6.1 Discretization of the Speed-Profile
	6.2 Handling Platform Heterogeneity
	6.3 Simulation Study
	6.3.1 Uniform Heterogeneous Platform with a Continuous Frequency Scheme
	6.3.1.1 Constrained Deadline Task
	6.3.1.2 Implicit Deadline Task

	6.3.2 Uniform Heterogeneous Platform With a Discrete Frequency Scheme
	6.3.2.1 Constrained Deadline Task
	6.3.2.2 Implicit Deadline Task

	6.4 Conclusion

	CHAPTER 7: MIXED-CRITICALITY REAL-TIME SCHEDULING OF GANG TASK SYSTEMS
	7.1 Introduction
	7.2 Related Work
	7.3 Dual-Criticality Gang Task Model
	7.4 GEDF-VD for Dual-Criticality System
	7.4.1 EDF-VD and GEDF-VD: An Overview
	7.4.2 GEDF-VD: A Detailed Description
	7.4.3 Proof of Correctness in the lo-Criticality Mode
	7.4.4 Proof of Correctness in the hi-Criticality Mode

	7.5 Speed-up Bound Analysis
	7.5.1 Speedup Bound for Gang Tasks under GEDF
	7.5.2 Speedup Bound for Gang Tasks under GEDF-VD

	7.6 Evaluation
	7.6.1 Experimental Setup
	7.6.2 Evaluation Results

	7.7 Conclusion

	CHAPTER 8: ENERGY EFFICIENT PRECISE SCHEDULING OF MIXED-CRITICALITY TASKS
	8.1 Traditional MC Task Model
	8.1.1 System Model
	8.1.2 Scheduling Policies for the Precise MC Task Model
	8.1.2.1 EDF-VD
	8.1.2.2 Fluid Scheduling
	8.1.2.3 A Generalized Fluid Scheduling Approach

	8.1.3 Evaluation

	8.2 Probabilistic MC Task Model
	8.2.1 System Model and Correctness Criteria
	8.2.2 Response Time Analysis
	8.2.2.1 Existing RTA for Non-MC and MC Tasks
	8.2.2.2 RTA of Our Algorithm

	8.2.3 Evaluation

	8.3 Conclusion

	CHAPTER 9: CONCLUSION
	9.1 Summary of Results
	9.2 Future Direction

	APPENDIX : PERMISSION TO REUSE PUBLISHED MATERIAL
	LIST OF REFERENCES

