


44 

A comparison of the theoretical and test results are shown in Table 

1. As the feedback gain A is increased. the bandwidth of the acoustical 

output i'ncreased. Th,e rises at the edge of the passband predicted by 

the calculations do not appear . This could be the result of the 

assumption that H = 1 and would mean that the ca,culated gain in the 
0 

feedback loop could be in error .. According to the calculations. to 

obtain a 2. 55 improvement in bandwtdth would result in a 1. 5 dB peak at 

the edge of the passband. The gain of the test circuit would be on the 

conservative side meaning to match the calculated response requires a 

higher than cal,culated gain In the actual circuit . 
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Table 1 

AMPLIFIER COMPENSATION 

THEORETICAL AND ACTUAL RESULTS 

Feedback Gain CA VIV) Bandwidth Increase 

1--~--~--------------------1------------.----
Ac1ual Theory 

3.625 NIA 1. 50 

6.25 2 . 09 l. 85 

7. 14 2.27 1. 95 

8.33 2 . 32 2. 10 

10.00 2.41 2 . 30 

12. so 2 .. 48 2 . 60 

16.67 2. 55 3.05 



CONCLUSION 

It has been demonstrated that active electroacoustic feedback can 

be implemented to adjust the performance of the system in terms of 

expanding th,e bandwidth. 

An ins1ability problem in the ampHfier compensated system arose 

which was unexpected. By looking at the modes of vibration for a 

ceramic disk it is found that the solution to the set of boundary 

conditions that exist are in the form of Bessel functions. A few of these 

modes of vibration are shown in Figure 22. The axes that are shown 

are on the plane z=O. Taking a pie slice of the circle and looking at it 

on edge will reveal that part of the slice is positiv,e and part is negative 

with respect to z. The negative part can be related to negative voltage 

and vise-versa such that the total area under the curve. being pos;tive or 

negative. determines the sign of the feedback signal. This transition 

from negative to positive feedback is beleived to be the cause of the 

oscillation problems. With a properly sectioned dev!ice the feedback gain 

could be increased to well beyond what was attained in this testing. 
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I 

Figure 22. Shapes of vibrational modes for a circular plate 

clamped at edges. 



APPENDIX A 

REVIEW OF A-MATRIX ANALYSIS 

Considering the two port network shown in Figure 23 and writing 

two equations which characterize its behavior. one can derive all of the 

parameters needed to describe the system. These equations are well 

known in two port network theory and will be in,c Lded here for 

completeness. 

Vin = Al 1 V out + Al 2 1out 

1in = A21 V out + A2'2 1out 

(311 

[32] 

The matrix expression for thes,e two equations now follows and is 

shown in equation 33. 

A12] [vout] 

A22 , 1out 

To derive the variables A 
11 

. A
12

. A
21 

and A
22 

we go back to the 

network in Figure 20 and open circuit the output terminals. This forces 

the output current to equal zero so that equations 31 and 32 can be 

used to derive the voltage gain and the transfer admittance of the 

network. 

v 
out 

Voltage gain = = -v:-1n 
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All 
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Transfer admittance = 
1
1n 

V = Al2 
out 

[35] 

Next we short circuit the output terminals which forces the output 

voltage to be equal to zero. We can now solve for the transfer 

impedance and the current gain. 

Transfer impedance = 

Current gain = 

+ 

lout 
I. 
m 

V. 1n 
I 
out 

= 
1 

A22 

Figure 23. Two port network. 

[36] 

(37] 

+ 



APPENDIX B 

MAXIMALLY FLAT MAGNITUDE 

One if the characteristics which we would prefer t,o have is a 

maximally flat magnitude response [61 in the frequency domain. An 

analytical method is discussed her1e. 

By using the band-pass to low-pass transformation the center 

frequency is effectively relocated at de or .zero frequency. If we i.ntend 

for our response to be maximally flat. we would like for the slope of the 

frequency response to be zero until we reach the cutoff fr,equency. This 

can be equivalently stated as requiring all of the derivatives of the 

response to be equal to zero at de. Define the frequency response in 

general terms as 

H<n> = 

where H is H< O>. 
0 

to obta1in 

[38] 

Now take the magnitude of the frequency response 

1 

[ 11 

2 

4 r IHCo>I 
+ a

1
n + a2n4 ... 

[39] = 2 
+ b

1
n +b

2
n ... 

so 
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By dividing the denomi1nator into th ,e numerator yields 

[401 

From complex variable analysis [7]. a funcUon can be uniquely 

defined by an infinite series of derivatives of the function called a Taylor 

series. or for our case a Mclauren series because we are going to 

expand the function about the origin. i.e. zero frequency= The series is 

of the form 

FCm 

n=oo 
FCn>(n) 

= [ n! nn 

n=O 

[411 

where c n > is the nth derivative of F c O) with respect to w. If we evaluate 

the series at w=O and write out the first few terms of the series we can 

equate coefficients between F c n> and H C n> . 

F ( 1> F < 2 > 2 F ( 3 ) 
0

3 
FCn> = FCO> + ~,-,- n + _2_1_ n + ~3-,-

F<4> n4 
+ -- 46 

41 
[42] 

If we require that all of the derivatives of H C n> are equal to zero. 

then all of the coefficients of the powers of w should be equal to zero. 

This will be true if a
1 

equals b
1 

for the· first power of n. if this is true 

then 2 for n . a
2 

must equal b2 . Continuing further in the same manner 

we find that 

(431 

will meet the requirements for a maximally flat function. 
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