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CARDIAC COMPUTED TOMOGRAPHY 
METHODS AND SYSTEMS USING FAST 
EXACT/QUASI-EXACT FILTERED BACK 

PROJECTION ALGORITHMS 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

This application claims priority to and the benefit of the 
filing date of U.S. Provisional Application No. 61/225,708, 
filed Oct. 28, 2009, which is incorporated by reference herein 
in its entirety. 

STATEMENT OF GOVERNMENT INTEREST 

This invention was made made with govermnent support 
under contracts EB002667, EB004287 and EB007288 
awarded by National Institutes of Health. The government 
has certain rights in the invention. 

BACKGROUND OF THE INVENTION 

1. Field of the Invention 
The present invention provides systems, methods, and 

devices for improved computed tomography (CT). More spe
cifically, the present invention includes methods for improved 
cone-beam computed tomography (CBCT) resolution using 
improved filtered back projection (FBP) algorithms, which 
can be used for cardiac tomography and across other tomo
graphic modalities. 

2. Description of Related Art 
Cardiovascular diseases (CVDs) are pervasive (American 

Heart Association 2004). CVD is the number one killer in the 
western world. The cost of the health care for CVD is sky
rocketing. In 2004, the estimated direct and indirect cost of 
CVD was $368.4 billion. 

Coronary artery disease is a leading cause of death as a 
result of a myocardial infarct (heart attack) without any symp
tom. Tomographic equipment with high temporal resolution 
is needed in order to successfully perform a cardiac scan and 
understand the etiology and pathogenesis of CVD, such as 
high blood pressure, coronary artery diseases, congestive 
heart failure, stroke and congenital cardiovascular defects, as 
well as to develop effective prevention and treatment strate
gies. CT scanners are now considered instrumental for detect
ing early heart diseases and are a centerpiece of preventive 
cardiology programs. 

2 
Over the last thirty years, computer tomography (CT) has 

gone from image reconstruction based on scanning in a slice
by-slice process to spiral scanning. From the mid-1980s to 
present day, spiral type scanning has become the preferred 
process for data collection in CT. Under spiral scanning, a 
table with the patient continuously moves through the gantry 
while the source in the gantry is continuously rotating about 
the table. At first, spiral scanning used a one-dimensional 
detector array, which received data in one dimension (a single 

10 row of detectors). Later, two-dimensional detectors, where 
multiple rows (two or more rows) of detectors sit next to one 
another, were introduced. In CT there have been significant 
problems for image reconstruction especially for two-dimen-

15 sional detectors. 
For three/four-dimensional (also known as volumetric/dy

namic) image reconstruction from the data provided by a 
spiral scan with two-dimensional detectors, known groups of 
algorithms include: exact algorithms, quasi-exact algorithms, 

20 approximate algorithms, and iterative algorithms. While the 
best approximate algorithms are of Feldkamp-type, the state 
of the art of the exact algorithms is the recently developed 
Katsevich algorithm. 

Under ideal circumstances, exact algorithms can provide a 
25 replication of a true object from data acquired from a spiral 

scan. However, exact algorithms can require a larger detector 
array, more memory, are more sensitive to noise, and run 
slower than approximate algorithms. Approximate algo
rithms can produce an image very efficiently using less com-

30 puting power than exact algorithms. However, even under 
typical circumstances they produce an approximate image 
that may be similar to but still different from the exact image. 
In particular, approximate algorithms can create artifacts, 
which are false features, in an image. Under certain circum-

35 stances these artifacts can be quite severe. 
To perform the long object reconstruction with longitudi

nally truncated data, the spiral cone-beam scanning mode and 
a generalized Feldkamp-type algorithm were proposed by 
Wang and others in 1991. However, the earlier image recon-

40 struction algorithms for that purpose are either approximate 
or exact only using data from multiple spiral turns. 

In 2002, an exact and efficient method was developed by 
Katsevich, which is a significant breakthrough in the area of 
spiral cone-beam CT. The Katsevich algorithm is in a filtered-

45 backprojection (FBP) format using data from a PI-arc (scan
ning arc corresponding to the PI-line and less than one turn) 
based on the so-called PI-line and the Tam-Danielsson win
dow. The principle is that any point inside the standard spiral 
or helical belongs to one and only one PI-line. Any point on 

Although there has been an explosive growth in the devel
opment of CT scanners for cardiac CT studies, the efforts are 
generally limited to regular heartbeats. When applying tradi
tional CT algorithms for cardiac CT reconstruction, the car
diac images may be inaccurate or useless based on substantial 
motion blurring, especially seen in patients who have high 
and irregular heartbeats due to the fact that each projection 
sector covers a projection angular range of a substantial 55 

length. Within such an angular range, the heart moves appre
ciably, especially when it is not in a relative stationary phase. 

50 the PI-line can be reconstructed from filtered data on the 
detector plane with the angular parameter from the PI-arc. In 
2003, a slow FBP and a backprojected-filtration algorithm 
(BPF) were developed for helical cone-beam CT based on the 
Katsevich algorithm by exchanging the orderofintegrals. For 
important biomedical applications including application with 
movement present such as cardiac CT, generalization of the 
exact cone-beam reconstruction algorithms from the case of 
standard spirals to the case of nonstandard spirals and other 
scanning loci is desirable and useful. Although the current 
Katsevich-type algorithms are known for a standard spiral 
scan, there are no known fast algorithms, systems, devices 
and methods that can reconstruct an image exactly or quasi
exactly from data acquired in a CT scan with good temporal 
resolution. 

As a benchmark, a -o.3 mm spatial resolution is routinely 
achieved in spiral CT of the temporal bone where the motion 
magnitude is much less than that of the heart (see M. Vannier 60 

and G. Wang, Spiral C T refines imaging of temporal bone 
disorders, Diagnostic imaging, vol. 15, p. 116-121, 1993 and 
G. Wang, et al., Design, analysis and simulation for develop
ment of the first clinical micro-CT scanner!, Academic Radi
ology, vol. 12, pp. 511-525, 2005, which is incorporated by 65 

reference herein in its entirety). Spatial resolution with car
diac CT is at best in the millimeter domain. 

Therefore, despite the impressive advancement of the CT 
technology, there are still unmet, critical and immediate 
needs such as those mentioned above for better image quality 
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in many cardiac and other CT investigations wherein the 
motion magnitude is increased. 

SUMMARY OF THE INVENTION 

4 
reported in (A. Katsevich, "Theoretically exact filtered back
projection-type inversion algorithm for spiral CT," SIAM 
Journal on Applied Mathematics, vol. 62, p. 2012, 2002), 
which is herein incorporated by reference in its entirety. Fur
ther, by "theoretically exact", we mean that the reconstructed 
image would be exact if both the sampling interval and the 
measurement error approach zero. 

The numerous limitations inherent in the scanning systems 
described above provide great incentive for new, better sys
tems and methods capable of accounting for one or more of 
these issues. If CTs are to be seen as an accurate, reliable 
therapeutic answer, then improved methods for reconstruct
ing an image should be developed that can more accurately 
predict the image with improved temporal resolution and less 
artifacts. 

The primary limitation to the above-mentioned system is 
its need to provide good temporal resolution and image recon
struction when movement is involved. However, as more 
complex applications for scanning are encountered, recon
struction of key subject areas such as the heart, lung, head and 
neck is cumbersome at best and may be inadequate to develop 
reliable diagnosis and therapies. Therefore, a more-advanced 
system that allows for the production of better object recon
struction would be ideal. This allows for the adaptation of 
exact and quasi-exact algorithms to provide better images. 

Embodiments of the invention further include a computed 
tomography (CT) imaging system comprising: a multi-source 

10 helical cone-beam computed tomography (CBCT) scanner 
operably configured for scanning an object to acquire projec
tion data relating to the object; a processing module operably 
configured for reconstructing the scanned portion of the 

15 
object into an image by performing a filtered backprojection 
(FBP) with a fast exact or quasi-exact FBP algorithm to 
generate image data; and a processor for executing the pro
cessing module. Such systems can include software and hard
ware operably configured for performing the functions of the 

20 
processing module. 

Embodiments of the present invention provide for recon
structing the image using a fast exact or quasi-exact algorithm 
developed by defining the weight function, determining fil
tering directions, calculating the backprojection coefficients, 

25 
and reconstructing the object with, for example: 

Accordingly, embodiments of the invention provide meth
ods, systems, and devices for reconstructing an image from 
projection data provided by a computed tomography scanner 
comprising: scanning an object in a cone-beam imaging 
geometry following a general triple helix path wherein pro
jection data is generated; reconstructing the image, wherein 
the reconstructing comprises performing a filtered back- 30 

projection; using a fast exact or quasi-exact filtered back 
projection algorithm to generate the backprojected data; and 
using the backprojected data to generate an image with 
improved temporal resolution. Preferably, embodiments of 
the invention provide images with less than about 500 ms, 35 

e.g., about 100 ms temporal resolution or less, such as about 
80 ms or less, or about 60 ms or less, or about 50 ms or less, 
or about 30 ms or less, or even about 10 ms or less, and so 
forth. 

f(x) = _ __'._f,."I\' cm(s, x) X 

4rr2 
1U Ix- y(s)I 

l 2rr a I d/y 
-
8 

D1(y(q), cosyf3(s, x) + sinya:~(s, x, Bm)) --,--dis. 
o q q=s smy 

Such methods, systems, and devices can further be char
acterized in having the fast exact or quasi-exact algorithm 
implemented by differentiating each projection with respect 
to variable s; for each y 1(s), i={l, 2, 3}, performing the 
Hilbert transform of derivative data along the given filtering 
directions on the corresponding detector plane; and back-

In the context of this disclosure, exact or quasi-exact means 
that the algorithm is theoretically exact for a good portion of 
voxels in the object or theoretically exact if a practically 
insignificant portion of data could be handled in a more com
plicated fashion. Said another way, quasi-exact means that the 
algorithm is derived from an exact three-dimensional recon
struction approach, in which deviations from exactness are 
introduced which are sufficiently small and lead to minor 
artifacts, but result in a numerically efficient algorithm. By 
way of example, these deviations may lead to inexact weight
ing of a small percentage of Radon planes at every voxel. 

40 projecting the filtered data on the inter-PI segments to recon
struct the object. 

The features and advantages of the present invention will 
be apparent to those skilled in the art. While numerous 
changes may be made by those skilled in the art, such changes 

45 are within the spirit of the invention. 

BRIEF DESCRIPTION OF THE DRAWINGS 

In preferred embodiments, the temporal resolution may be 
in the range of about 100 ms to less than about 10 ms. 

These drawings illustrate certain aspects of some of the 
50 embodiments of the present invention, and should not be used 

to limit or define the invention. 

The present invention includes a computed tomography 
(CT) imaging method comprising: scanning an object using 
multi-source helical cone-beam computed tomography 55 

(CBCT) to acquire projection data relating to the object; and 
reconstructing the scanned portion of the object into an image 
by performing a computationally efficient filtered back
projection (FBP) and theoretically exact/quasi-exact algo
rithm to generate image data. Such methods, for example, are 60 

included within the scope of the invention which are capable 
of achieving a temporal resolution in the image in the range of 
<500ms. 

In the context of this disclosure, what is meant by "com
putationally efficient", we mean that the computational effi- 65 

ciency ofa cone-beam reconstruction algorithm is in the same 
order of magnitude of that developed by Katsevich as 

FIGS. lA-B are schematic diagrams showing geometry of 
triple-source helical CBCT. Three x-ray sources are rotated 
around the x3 -axis along the helices y1 (s), y2 (s) and y3 (s), 
respectively. The y1 (s), y2 (s) and y3 (s) are on a cylinder of 
radius R. An object to be reconstructed is confined within a 
cylinder of radius r, where r<R. Parameter h denotes the pitch 
of each helix. The inter-helix distance along the x3 -axis is h/3. 

FIG. 2 is an illustration of the Zhao window bounded by 
solid lines r±1 and the Tam-Danielsson window bounded by 
dashed lines r±2

. The detector plane is represented by the 
Cartesian coordinate system (u, v). 

FIG. 3 is a schematic diagram of inter-PI arcs (thick solid 
curve-arcs). 

FIG. 4 is a schematic diagram of the decomposition of the 
Zhao window into the regions G 1 , G 2 and G 3 . L,, and L,6 are 
the inflection lines at §u and §d, respectively. 
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FIG. SA is a graphic representation allowing for the visu
alization of the domains delimited by the A-curves and 
T-curves on the surface of the unit sphere in spherical coor
dinates forx=(0.1, 0, 0). 

FIGS. SB, C, and D are graphic representations of the 5 

zoom-in versions of the areas bounded by the bottom left, 
bottom right, and top circles shown in FIG. SA, respectively. 

FIG. 6 is an illustration of the osculating plane Jtc, 

FIGS. 7 A and Bare graphical representations of the close-
up views of the diagram forx=(O, -0.15, 0) for7A and x=(O, 10 

-0.3, 0) for 7B. 
FIG. 8 is a graphical illustration ofL-curves in the spheri

cal coordinates 81 , 82 ). 

FIG. 9A is a graphic representation of the full diagram 
showing different regions split by A-, T- and L-curves for 15 

L-curves in x=(0.2, -0.3, 0). 
FIGS. 9B, C, and D are graphic representations of the 

zoom-in versions of the regions bounded by the upper, bottom 
right, and bottom left circles shown in FIG. 9A. 

FIG. 10 is a graphic representation of domains on the 20 

detector plane. 
FIG. llA is a graphical representation of the Bs-curve 

being tangent to a T-curve in D11 for the source on y 1 (s ). 

6 
FIG. 22B is a graphical representation of the relationship 

among the inter-PI line La, L-line, L1 and inflection line L,, 
(L,6 ) for x in G2 and above §d. 

FIG. 23 is a schematic representation of the angular trans
formation from a spherical coordinate system to a detector. 

DETAILED DESCRIPTION OF VARIOUS 
EMBODIMENTS OF THE INVENTION 

In accordance with embodiments of the present invention, 
a method of the present invention may comprise introducing 
two fast FBP algorithms for use with conventional cardiac CT 
technologies in order to obtain better reconstruction images. 
One of the many potential advantages of the methods of the 
present invention, only some of which are discussed herein, is 
that images with less blurring and improved temporal reso-
lution may be obtained even when there is movement in the 
object being scanned. The current invention may provide 
benefits to various types of interior tomography including, 
but not limited to, cardiac, lung, head and neck tomography. 
In the medical field and in biomedical science, the methods 
disclosed herein may greatly reduce the production of unus
able images and thereby potentially allow increased early 
detection of diseases, reduced amount of radioactive contrast FIG. llB is a graphical representation of the Bs-curve 

being tangent to a T-curve in D5 for the source on y 1(s). 
FIG. llC is a graphical representation of the Bs-curve 

passing across the second T-curve for the source on y 1(s). 
FIG.12A is a graphical representation of the determination 

of c0 . 

25 used on the patients, and/or reduced costs associated with 
CTs. Better temporal resolution in the images may provide a 
cost savings by reducing the number of images needed to 
conclude a finding. This type of scanning may likewise pro-

FIG. 12B is a graphical representation of the determination 30 

ofc1 . 

FIGS. 13A-B are respectively graphical representations of 
filtering lines in the case of xEG 1 UG3 and xEG 2 for the first 
fast FBP algorithm. 

FIG. 14 is a graphical representation showing that the 35 

required detector area is bounded by r,, I'z, Lmax and Lmin for 
the first algorithm, and by r,, I'z, L'max andL'min forthe second 
algorithm. 

FIG. lS is a graphical representation of filtering lines for 
two fast FBP algorithms when x is above where L,,, Lt2, and 40 

L,1 are for the first and second algorithms, respectively. 
FIGS.16A and 16B are graphical representations illustrat

ing the second fast FBP algorithm. 
FIG. 17A is a reconstructed image of the Clock phantom 

with r=375 mm using the first fast FBP algorithm. 
FIG. 17B is a reconstructed image of the Clock phantom 

with r=375 mm using the second fast FBP algorithm. 

45 

FIGS. 17C and D are images representing the differences 
between the reconstructed images in FIGS. 17Aand17B and 
the ground truth respectively in the display window [-0.5, 50 

0.5]. 
FIG. 18 is a graphical representation showing projected 

inter-PI lines on the detector plane, where the thick curve 
segments denote the inter-PI arcs. 

FIG. 19A is a graphical representation of a plot ofEQUA- 55 

TION 20 with r0=0.495 R. 
FIG. 19B is a graphical representation of a plot of <I>s over 

a range of sE( 0, 2it). 
FIG. 19C is a graphical representation of a plot of 1.jJ(s/) 

over a range ofO~s/-s0~4.1773. 
FIG. 20 is a graphical representation for possible locations 

of the "critical event" for Case 4. 
FIG. 21 is a graphical representation illustrating regions 

G21 andG22 . 

60 

FIG. 22A is a graphical representations of the relationship 65 

among the inter-PI line La, L-line, L1 and inflection line L,, 
(L,6 ) for x in G 2 and above §u· 

vide more flexibility in designing experiments in small ani
mals in order to better study these diseases and develop effec
tive treatments. 

Another potential advantage is that the two fast FBP pro-
posed algorithms utilize the inter-PI line and inter-PI arcs, and 
have a shift-invariant filtering structure. Unlike our slow-FBP 
algorithm performing filtration spatial-variantly line by line, 
the proposed fast-FBP algorithms filter projection data spa-
tial-invariantly view by view, representing a significant com
putational benefit. Since triple-source helical CBCT may 
triple temporal resolution, it seems a promising mode for 
cardiac CT and other CT applications, and our proposed 
algorithms may find applications in this context. The methods 
of the present invention allow for temporal resolution in the 
range of about 100 ms to less than about 10 ms. 

Geometry of Triple-Source Helical CBCT. 
In particular embodiments, the geometry of the triple-

source helical. CBCT may be measured by allowing f( x) be an 
object function to be reconstructed. In embodiments where 
this function is smooth and vanishes outside the object cylin
der EQUATION 1 may be applied as described below: 

Q={ x=(x l,X2,X3) Ix l 2+X2 2~r2,x3min~X3 ~x3max}' 
O<r<R, (EQUATION 1) 

where r is the radius of the object cylinder and R the radius 
of the scanning cylinder on which a scanning trajectory 
resides. In embodiments with the Cartesian coordinate sys
tem (xu x2 , x3 ), the triple-helix trajectories can be expressed 
as shown in EQUATION 2 below: 

YI (s) = ( Rcoss, Rsins, ~s) 

Y2(s) = ( Rcos(s + ~" ). Rs;n(s + ~" ). ~s) 

y3(s) = ( Rcos(s + ;n ). Rs++ ;n ). ~s) 

(EQUATION 2) 
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where h>O is the pitch of each helix, and sEIR is the rota
tion angle. FIG. 1 illustrates the triple-source helical CBCT 
geometry. 

8 
vector perpendicular to ~(s, x), em a point where cp(s, x, 8) is 
discontinuous, n(s, x, a) a weight function, Ca finite union of 
c= curves in JR 3

, -oo<a1<b1<00, and y(s):=dy/ds. 
The aforementioned general inversion formula can be 

applied to any trajectory that satisfies Tuy's condition, but 
only when the weight function n(s, x, a) is well designed can 
the inversion formula have a shift-invariant filtering structure. 
To derive fast exact FBP algorithms for triple-source helical 

Previously, the inter-helix PI-lines-were defined and 
extended the traditional Tam-Danielsson window to the Zhao 
window in the case of triple helices. The terms inter-helix 
PI-lines and inter-PI lines are the same and are used inter
changeably throughout. Specifically, for each source position 
yis), jE {1, 2, 3}, the corresponding Zhao window is the 
region on the surface of the scanning cylinder bounded by the 
nearest helix tum of YJmod3 + 1 ( s) and the nearest helix tum of 
y Ci+l)mod3+1 (s), jE {1, 2, 3 }. In FIG. 2, r±1 and I'±2 denote the 
boundaries of the Zhao window and the Tam-Danielsson 

10 CBCT, our general approach involves the following key con
cepts of and analyses on the inflection line, A-, T-, L-, and 
Bs-curves. 

window on the detector plane, respectively. In certain 
embodiments, the algorithms described herein are designed 
for flat-panel detectors. However, in embodiments with 
detectors of other shapes, the arbitrary-shaped detector may 

Inflection line. On the detector plane, the boundaries of the 

15 Zhao window may be expressed as EQUATION 9 below: 

Dsins Dh (s + Ll.s) 
u(s) = -- v(s) = - ---

1 - COSS, 2nR (1 - coss) 

(EQUATION 9) 

where D is the distance between the detector and the 

be rebinned to a virtual flat-panel detector in a preprocessing 20 

step so that the algorithms of the current disclosure may be 
used. source, sis the angular parameter relative to the correspond

ing source position, li.s=-2/3it and li.s=-4/3it are for the top 

25 and bottom boundaries respectively. Then, EQUATIONS 
10-14 can be used. 

The properties of the inter-PI lines and inter-PI arcs may be 
determined by recalling that an inter-PI line for yis) and 
YJmod3 +1(s), jE{l, 2, 3}, is the line that (1) intersects yis) at 
one point and YJmod3 + 1 ( s) at another point; and (2) the absolute 
difference between the angular parameter values at the two 
intersection points is less than 2it. The existence and unique-
ness of the inter-PI line is shown in Theorem 1 below. 30 

Theorem 1 states that through any fixed xEQ, there exists 
one and only one inter-PI line for any pair of the three helices 
defined by EQUATION 2. In the triple-helix case, there are 
three inter-PI lines for a fixed xEQ and corresponding inter
helix PI-arcs whose end points may be along the correspond- 35 

ing helices and share the intersection points of the inter-PI 
lines. In some embodiments, the three inter-PI arcs represent 
the source trajectory arcs along which the sources illuminate 
the point x as shown in FIG. 3. 40 

In 2003, Katsevich proposed a general scheme for con
structing inversion algorithms for CBCT. It can be stated as 
follows in EQUATIONS 3-8: 

f(x)= (EQUATION 3) 

1 r C (S X) (2H a 
- 4rr2 J1~ lxm-;(s)I X Jo aqDf(y(q), cosyf3(s, x) + 

sinya:~(s. x. em)) I .:!.!_ds 
smy 

q=s 

x - y(s) (EQUATION 4) 
f3(s, x) := Ix - y(s)I' 

45 

50 

a:~(s, x, e) := f3(s, x)xa:(s, x, e), (EQUATION 5) 55 

Cm(s, x) := lim (¢(s, x, em+ to) - !fi(s, x, em - to)), (EQUATION 6) 
£--70+ 

!fi(s, x, e) := sgn(a:· y(s))n(s, x, a:), 

L, 

I:= u [a;, b;]--+ l& 3
, I 3 s--+ y(s) EI& 

3
, 

l=l 

(EQUATION 7) 

(EQUATION 8) 
60 

D 
it(s)=---, 

COSS - 1 

Dsim 
ii(s) = (coss-1)2' 

Dh [l - COSS - (s + Ll.s)s1ns] 
v(s) = 2nR (1 - cossJ2 

(coss - l)(s + Ll.s)coss + 

Dh 2s1ns( coss + ss1ns + Ll.ss1ns - 1) 
v(s) = 2nR ((1 - coss)3) 

&2 v v(s)it(s) - ii(s)v(s) h . 
- = = -(s+Ll.s-s1ns). 
du2 [it(s)]3 2nD 

The inflection point exists when 

d2 v 
du2 = 0. 

(EQUATION 10) 

(EQUATION 11) 

(EQUATION 12) 

(EQUATION 13) 

(EQUATION 14) 

Thus, we obtain su=2.6053 and sd=3.6779 when li.s=-2/3it 
and-4/3it. The slope of the tangent line at scan be computed 
as shown in EQUATION 15 below: 

dv v(s) 

du it(s) 

h[l - coss - (s + Ll.s)sins] 

2nR(coss - 1) 

h 
=-COSS. 

2nR 

(EQUATION 15) 

1.Y(sJI * o. 

where Diy, ~)is the cone-beam transform off, 8 the polar 
angle in the plane perpendicular to ~(s, x), a(s, x, 8) a unit 

Because cos su =cos sd=-0.8596, the slope is the same 

65 (-0.1368 h/R) at both inflection points. For practical medical 
applications, it is common that rF0 F'0.5 R, and a boundary 
limitation x1 2+x22 ~r2 (r=0.495 R) may be included, which is 
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shown as the vertical lines r 1 and rr in FIG. 4. Now, the 
inflection lines (the tangent lines at §d and §u, where §d and §u 

are the projection ofy Cf+l)mod3 +1 (sd) andyJmod3 +1 (sJ,jE{l, 2, 
3} on the detector plane) and the boundary lines split the Zhao 
window into the following three regions: Gu G 2 and G 3 . Only 
the points in G 1 and G 3 can have tangent lines with r±1

. 

A-Curve and T-Curve. 
To construct an appropriate weight function, the under

standing ofhow Radon planes intersect with the trajectories is 10 
important. The number of intersection points only changes 
when a Radon plane is tangent to the trajectory or contains 
one PI line/inter-PI line. Hence, if we find all such Radon 
planes, we can determine the distribution of the intersection 
points. Since each plane is uniquely determined by its normal 15 

vector, in the following sections we use unit vectors instead of 
the Radon planes. An A-curve consists of all unit vectors 
orthogonal to an inter-PI line. AT-curve consists of all unit 
vectors in EQUATION 16 as shown below: 20 

(x- y(s)) x y(s) 
a:(s) = ± , 

l(x- y(s)) x y(s)I 

(EQUATION 16) 

10 
TABLE I 

Distribution of!Ps on Each of the Domains Delimited by the A-curves 
and T-curves on the Surface of the Unit Sphere. The dash indicates 

no IP on the corresponding inter-Pl arc. 

D1 
D1 
D3 
D4 
Ds 2 
D6 2 
D1 2 

Ds 2 
Dg 2 
D10 2 
D11 
D12 
D13 

By construction, a T-curve always starts from an A-curve 
and ends on another A-curve. It can be seen from FIG. 5 that 
a T-curve is may not be smooth at some point ac, but the limits 
of unit tangent vectors at ac - and ac +are equal Such a point ac 

where s belongs to an inter-PI arc. Actually, the A-curve 
represents all Radon planes containing one inter-PI line, and 
the T-curve represents all Radon planes tangent to the trajec
tory. Since there are three inter-PI lines and three inter-PI arcs 
for a fixed x, there are accordingly three A-curves and three 
T-curves. The use of spherical coordinates (8 u 82 ) to describe 
these curves on the unit sphere is shown in EQUATION 17: 

25 is defined herein as a "cusp". The term cusp indicates that the 
two vectors determine the same plane, and ac is the normal 
vector to that plane. It has been proved in that the cusp is 
equivalent to the osculating plane IIc(x) which goes through 
y 1(s/(x)) iE{l, 2, 3}, is parallel to y1(s/(x)), y1 (s 1c(x)) and 

a=( cos 8 1 sin82' sin 8 1 sin82' cos 8 1),-Jt~8 1 ~Jt, 
0:"'82:"'n. (EQUATION 17) 

With the identification (8 u 82 ),.,((8 1 +it)mod2,,, Jt-8 2 ), each 
a corresponds to a unique plane through x with the normal 
vector a. 

30 contains x (see FIG. 6). On the detector plane, this corre
sponds to a point where the projected boundary has a point of 
zero curvature, i.e., the point of inflection. 

The diagram plotted in spherical coordinates deforms 
smoothly as a function of x. The new diagram is equivalent to 

35 the old one in the embodiments where the distribution ofIPs 
remain the same. An essential change could happen when 
three boundaries intersect each other at one point, which is 
defined herein as a "critical event". The term "critical event" 

As an example, the A-curves and T-curves of point x=(0.1, 40 

0, 0) are illustrated in FIG. 5, where R=l, h=2it. T 1 , T 2 and T3 

may happen in the following seven cases: 
1. Three A-curves intersect at one point; 
2. Three T-curves intersect at one point. 
3. Two A-curves and one T-curve intersect at one point; 
4. One A-curve and two T-curves intersect at one point; 

stand forthe T-curves corresponding to the inter-PI arcs SfS;, 
S}:, and~ respectively. Similarly,A1 , A2 andA3 are forthe 
A-curves corresponding to the inter-PI lines s1

5s/, s2
5 s3e and 

s1"s3" respectively. 

5. AT-curve becomes tangent to an A-curve at a point of 
45 non-smoothness (i.e., cusp); 

6. When the order of tangency (i.e., the zero derivatives of 
this order) at the beginning of the T-curve is increased, the 
T-curve re-emerges on the other side of the A-curve; 

The A-curves and T-curves may divide the surface of the 
unit sphere into several connected domains, in each of which 

7. T-curve develops a smooth dent and becomes-tangent to 
50 anA-curve. 

all the planes through x have the same number of intersection 
points (IPs) with the inter-PI arcs ofx. Given an object point 
and one trajectory, the number of IPs only changes when a 
Radon plane is tangent to the trajectory or contains the end
points of the trajectory. The A-curve represents all planes 
containing the endpoints of the trajectory, and the T-curve 55 

represents all planes tangent to the trajectory. If any Radon 

From Lemmas 2-3 described below in the Examples sec
tion, it is shown that Cases 1, 2, 4, 6, 7 do not occur for 
r<0.495 Rand Case 5 does not occur for r<0.265 R. In some 
embodiments, Case 3 is possible. In embodiments where 
Case 3 takes place, the tangency ofT-curve and A-curve will 
move across another A-curve, then one domain disappears. 
For example, when x=(0.1, 0, 0) gradually changes to x=(O, 
-0.15, 0), in FIG. SD the tangency ofT3 andA2 will move 
acrossA3 , and domain D10 disappears (see FIG. 7A). In other 

plane is chosen and rotated around one direction, the normal 
vector of this plane forms a curve on the unit sphere. Clearly, 
only when this curve intersects with the A-curve or T-curve 
does thenumberofIPs change. Thus, the A-curve and T-curve 
define the boundaries of different domains in which the num
ber ofIPs is constant. The distribution ofIPs over the inter-PI 

60 embodiments, Case 5 is possible for r~0.265 R. In these 
embodiments, a T-curve will only intersect A-curves at the 
endpoints. That is, the cusp of that T-curve and one domain 
disappear (see FIG. 7B). 

arcs is listed in Table I. To determine the distribution ofIPs, 
we first pick a vector a(8 u 82 ) in each domain, and then 65 
generate the plane through x and perpendicular to a(8 1 , 82 ), 

and compute numerically the number ofIPs. 

L-Curve. 
The L-curve may be used to split the domain D4 into sub

domains, making the weight function n continuous across all 
the A-curves. This is the key requirement, which may allow 
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for the development of efficient reconstruction algorithms. 
Thus, the L-curve should not go across an A-curve. In 
embodiments where x is fixed and s is run over the three 
inter-PI arcs, x forms a trajectory on the detector plane. 
Because at the endpoint of the inter-PI arc the line connecting 
y,(s) andx happens to be an inter-PI line, x always starts from 
one endpoint of the inter-PI arc on the boundary of the Zhao 
window, and ends at the other one. Hence, whatever the 
trajectory ofx is, part of the trajectory is in G2 . In other words, 
x will run across one inflection line, then move in G2 , and 10 

finally cross the other inflection line. Note that x on the 
inflection line indicates a plane containing the inflection line, 
i.e., a cusp in one T-curve. From Lemma 3 described in the 
Example section below, the cusps always belong to the 
boundary of domain D4 . Thus, they can be used as the end- 15 

points of the L curve. A family of L-curves is formed as 
follows. Runs over the three inter-PI arcs ofx. Ifx is in G2 and 
above §u where r+1 intersects L,, (FIG. 4), find the plane 
through x and §u· Ifx is in G2 and below §d where r- 1 inter
sects L,6 , find the plane through x and § d· If x is in G 2 and 20 

between §d and §u, find the plane through x and parallel to the 
u-axis. A plot of all the normal unit vectors of these planes in 
the spherical coordinates (8 u 82 ) may then be constructed. 
This gives us three L-curves. The corresponding lines on the 
detector plane are called L-lines. FIG. 8 shows the L-curves 25 

on the diagram in spherical coordinates (Bu 82 ), where L1 , L2 

and L3 denote the L-curves corresponding to the inter-PI arcs 

12 
intersects §3

5 §{ and another pair ofIPs is born. On the unit 
sphere, this is seen as an intersection ofBs andA3 , after which 
Bs enters Du. Third, a swap of two IPs takes place. On DP(s) 
this happens when 8=80 , L(80 ) is parallel to the helical tan
gent. On the unit sphere, this means that Bs is tangent to T 1 at 
a 0=a(s, x, 80 ). Fourth, Bs exits Du by intersecting T1 . On 
DP(s), this takes place when L(8) is tangent to r+2

. Finally, 
II(x, a(s, x, 8)) intersects the L-line. This will not change the 
number of IPs but it will be useful for construction of the 
weight function. On the unit sphere, this is seen as an inter
section of Bs and L1 . 

The jumps across an A-curve can only be of two types: 
from a 1-IP domain to a 3-IP domain and from a 3-IP domain 
to a 5-IP domain. Note that the Bs-curve is tangent from the 
inside to T 1 , which means a swap of two intersection points at 
a=a0 where sgn(a0 ·y(s))=O (see [15]). For a fixed s, ifx is 
allowed to change slightly inside the Zhao window, the tan
gency point will move from Du to D5 acrossA3 (or from Du 
to D6 acrossA1) (FIGS.12-13). Ifx projects into G1 orG3 , the 
Bs-curve will pass not only through D5 (or D6 ) and Du but 
also through D7 and D12 (FIG. 14). The similar results can be 
obtained ifthe source is on y2 (s) or y3 (s). 

Two filtered-backprojection algorithms for triple-source 
helical cone-beam CT can be used to obtain images having 
higher temporal resolution. The first exemplary algorithm 
uses two families of filtering lines, which are parallel to the 
tangent of the scarming trajectory and the so-called L lines. S7S;, S,S, and S:S, respectively. As is seen from the above 

construction, the L-curve always starts and ends on the cusps, 
and not defined for those parameter values when x is not in 
G2. 

For r~0.265 R, one or more cusps will disappear if"critical 
event Case 5" occurs, then the L-curve may start from the 
intersection ofT-curve and A-curve, and end at one A-curve. 
Also, the L-curve may start from one cusp and end at one 
A-curve or start from the intersection ofT-curve and A-curve, 
and end at one A-curve. For example, see FIG. 9, L1 starts 
from the intersection ofT 3 andA2 , and ends at the intersection 
ofT 2 andA2 ; L2 starts from one point onA2 , and ends at the 
cusp ofT 1 ; L3 starts from the cusp ofT u and ends at one point 
onA2 . 

30 The second algorithm uses two families of filtering lines 
tangent to the boundaries of the Zhao window and L lines, 
respectively, but it eliminates the filtering paths along the 
tangent of the scarming trajectory, thus reducing the detector 
size greatly. Additional information concerning these algo-

35 rithms can be found in Lu, Yang, et al., "Fast Exact/Quasi
Exact FBP Algorithms for Triple-Source Helical Cone-Beam 
CT," IEEE Transactions on Medical Imaging, Vol. 29, No. 3, 
March 2010, which is incorporated by references herein in its 

40 
entirety. 

Whatever the endpoints ofL-curves are, the L-curves inter
sects at one point, for example, in some embodiments, 82 =Jt 
or 0 in the spherical coordinates (which corresponds to the 45 

plane containing x and parallel to the x1 -x2 plane). Then D4 is 
split into several sub-domains. If the endpoints of L-curves 
are cusps, by Lemma 5, each sub-domain contains only one 
A-curve. If not, small "line segments" on A-curves may 
appear and the sub-domains may contain more than one 50 

A-curve (see FIG. 9B). 
Bs-curve. A Bs-curve may consist of all unit vectors per

pendicular to x-y,(s), iE{O, 2, 3 }. Each intersection ofBs- and 
A-curves corresponds to a plane containing an inter-PI line 
and y,(s ). Each intersection ofB, and T-curves corresponds to 55 

a plane tangent to an inter-PI arc and containing y,(s). For 
example, in certain embodiments, one may choose xEQ with 
xEG2 , xis above L0 , where L0 is the projection of the helical 
tangent at the current position. If L(8):=DP(s)nII(x, a(s, x, 

First Fast FBP Algorithm. 

In order to design an algorithm for triple-source helical 
CBCT useful in cardiac CTs and other CTs where movement 
exists, the weight function n(s, x, a) must be specified. The 
filtering directions by the discontinuities of cp(s, x, 8):=sgn 
(a·y(s))n(s, x, a) must also be determined. Following the 
determination of the filtering directions, the backprojection 
coefficients can be calculated according to EQUATION 6. 
Once the filtering lines and the backprojection coefficients are 
determined, EQUATION 3 may be used to reconstruct the 
object. 

In order to construct the weight function n(s, x, a) one 
should know the following. In certain embodiments, in order 
to have an efficient FBP structure, the weight function n(s, x, 
a) should be continuous across all A-curves. Thus, the weight 
function can be defined as shown in Table II. The values in 
Table II are the weights assigned to IPs. For example, in the 
D1 domain the Radon plane has only one IP on the inter-PI 

8)) is denoted, where DP(s) is the detector plane correspond
ing to the source positions, and L(8) is the projection of the 
plane through x with the normal vector a(s, x, 8) (FIG. 10), 
then as 8 increases, a(s, x, 8)E~L(s, x) rotates clockwise on 
DP(s ), and the following sequence of events takes place. First, 
II(x, a(s, x, 8)) intersects s1

5s/, and a pair ofIPs is born. On 
the unit sphere, this is seen as an intersection ofBs andA1 , 

after which Bs enters D5 (FIG. lla). Second, II(x, a(s, x, 8)) 

60 
segment S7S; . Accordingly, a weight of 1 may be assigned to 
this IP and a dash used to indicate that there is no IP on the 

inter-PI segments S,S, and S:S,. In the D11 domain the Radon 

plane has three IPs on S7S; , one IP on S,S, and one IP on S:S, . 
65 

Thus, a weight of -1 may be assigned to two IPs on S7S; and 
a weight of 1 to all other IPs. 
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TABLE II 

Weight Function for the First Fast FBP Algorithm 

s:s,' s;s; s;s; 

D1 +1 
D1 +1 
D3 +1 
Ds +1, 0 0 
D6 +1, 0 0 
D1 0 +1, 0 
Ds +1, 0 0 
Dg 0 +1,0 
D10 0 +1,0 
D11 +1, 0, 0 0 0 

D12 0 +1, 0, 0 0 
D13 0 0 +1,0,0 
D41 +1 0 0 
D42 0 +1 0 

D43 0 0 +1 

14 
Second Fast FBP Algorithm. 
Again, the design of the second fast FBP algorithm starts 

with specifying new weights (Table III). By construction, n(s, 
x, a) is continuous across all inter-PI lines. More importantly, 

5 a swap of two IPs takes place when a Bs-curve becomes 
tangent to a T-curve, andn(s, x, a) changes from +1 to -1. The 
discontinuity of sgn( a·Y(s )) appears only when a Bs-curve is 
tangent to a T-curve from inside. Since both n(s, x, a) and 
sgn( a ·y( s)) are discontinuous at that point, the function cp(s, x, 

10 8):=sgn(a·y(s))n(s, x, a) is continuous. Thus, the filtering 
operation along the tangent of the scanning trajectory is 
eliminated. 

TABLE III 
15 

Weight Function for the Second Fast FBP Algorithm 

s,·s: s;s; s;s; 

To find the backprojection coefficients, a representative 20 
point in each area is selected in order to determine the dis
continuities ofcp(s, x, 8):=sgn(a·y(s))n(s, x, a) and extend the 
results by continuity to the entire area. A discontinuity of sgn 
occurs only when a Bs-curve is tangent to a T-curve from the 
inside. In other words, the Bs-curve does not go across the 25 

T-curve, but stays on one side in a neighborhood of the point 

D1 
D1 
D3 
Ds 
D6 
D1 
Ds 
Dg 
D10 
D11 

+1 
+1 

+1 
+1, -1 +1 
+1, -1 +1 
+1 +1,-1 

+1,-1 +1 
+1 +1, -1 

+1 +1, -1 
-1, +1, -1 +1 +1 

of tangency. On the detector plane, L(8) is parallel to the 
helical tangent for all xEG1 nG2 nG3 . Hence, this gives a 
family of filtering lines parallel to L0 , where L0 is the projec
tion of the helical tangent at y( s ). The swap of two IPs changes 30 

the weight from n=O ton= 1. The backprojection coefficient is 
computed as c0 =cp+ -cp-=( +1)(0)-(-1)(1)=1 (FIG. 12A). 

D12 +1 -1, +1, -1 +1 
D13 +1 +1 -1, +1, -1 
D41 +1 0 0 
D42 0 +1 0 
D43 0 0 +1 

A discontinuity of n can occur only when a B s -curve inter
sects a T-curve or an L-curve. Follow the discussion in Sec
tion IV, jumps of n may occur when (1) a Bs-curve passes 
through a T-curve, i.e., from Du to D4 or from D4 to D12 in 

In certain-embodiments, by construction, the weight func
tion n is continuous across all inter-PI lines. A discontinuity 

35 
of n occurs only when a B s -curve intersects a T-curve or an 
L-curve. Without loss of generality or wishing to be limited FIGS. llA and llC, and (2) a Bs-curve passes through an 

L-curve, i.e., fromD42 toD41 orfromD43 toD41 in FIG. 8. On 
the detector plane, this gives two families of filtering lines: the 

by theory, choosing y 1 (s0 ) on SfS;. For xEG2 , after the swap 
mentioned in the above paragraph the weight at the current 
position is zero. Hence, when the Bs-curve passes through a 
T-curve, i.e., from Du to D4 , n is continuous. Possible jumps 
of n may only occur when a Bs-curve passes through an 
L-curve, i.e., fromD43 toD41 orfromD42 to D41 in FIG. 8. On 
the detector plane, this occurs when L(8) overlaps the L-line 
ofx. Then, the backprojection coefficients may be computed 
as c1=cp+-cp-=(+l)(l)-(+l)(O)=l (FIG. 16.). For xEG1 nG3 , 

the B s -curve will not enter D 41 . Instead, it passes through a 
second T-curve twice, i.e., from D43 to D12 and from D7 to D1 . 

From Table II, the jumps of n may only occur in the latter 
intersection. On the detector plane, this happens when L(8) 
overlaps the line tangent to r±1

. Then, the backprojection 
coefficients may be computed as c,=cp+ -cp-=( + 1 )(1)-(+1 )(O)= 
1 (FIG. 15). 

FIG. 13A and FIG. 13B summarize the filtering lines and 
the backprojection coefficients discussed above. In these fig
ures, L0 ' is the line parallel to L0 and L1 denotes the L-line. To 
implement the proposed algorithm, the filtering lines cannot 
be truncated. Thus, the detector size should be large enough to 
cover the area bounded by r" r ,, Lmax and Lm,m where Lmax 
and Lmin are the lines across the intersections of (1) r 1 and 
r +2 and (2) r, and r-2 respectively, and parallel to L0 (FIG. 
14 ). In certain embodiments, the required detector area can be 
determined by two factors: (1) the ratio of the pitch hand the 
scanning radius Rand (2) the ratio of the object support radius 
rand the scanning radius R. IfR is fixed, the required detector 
area grows ash or r increases. 

40 lines tangent to r±2 or r±1 and the L-lines. Note that the 
filtering lines tangent to y±1 are different from those for our 
first fast FBP algorithm (FIG. 15), because the discontinuity 
of n(s, x, a) occurs on the different side of the cusp. Then, the 
backprojection coefficients can be calculated a c,=cp+ -cp-= 

45 ( + 1)(0)-(+1 )(-1 )=1 and C1 =cp+ -cp-=( + 1 )(1)-(+1 )(0)=1. 
The reconstruction formula for the second algorithm is the 

same as that for the first algorithm. The only difference lies in 
the selection of the filtering lines. For clarity, our second fast 
FBP algorithm is illustrated in FIGS. 16A-B. Because the 

50 filtering paths along the tangent of the scanning trajectory are 
eliminated, the required detector area is reduced by at least 
30% (FIG. 14). 

By Lemma 3 described below in the Examples section, 
there are two types of"line segments" according to different 

55 critical events. First, let us consider the "line segment" related 
to a critical event in Case 3. Recall that before entering D 4 the 
Bs-curve will be tangent to a T-curve. For the first algorithm, 
at the tangency the weight n changes from 1 to 0, then it does 
not change whether the Bs-curve enters D4 across an A-curve 

60 or a T-curve. For the second algorithm, iftheweightn changes 
from 1 to -1 at the tangency, then it will jump from -1 to 0 
when the Bs-curve enters D4 . If the Bs-curve enters D4 across 
an A-curve (i.e., the "line segment"; see FIG. 7), the FBP 
structure is ruined. Thus, the critical event in Case 3 will only 

65 affect the second algorithm, without damaging the FBP struc
ture of the first algorithm. Then, let us consider the "line 
segment" related to a critical event in Case 5, which only 
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occurs whenr~0.265 R. From the discussion in Section III.D 
such "a line segment" is the boundary of the one-IP and 
three-IP domains. Hence, for both the algorithms the weight 
n will jump from 1to0 ifthe Bs-curve enters D4 across the 
"line segment'', and the FBP structure is ruined. Conse
quently, the first algorithm is theoretically exact for r<0.265 R 
and not exact for 0.495 R~r~0.265 R, and the second algo
rithm is not exact for r~0.495 R. 

Since the algorithms are not always exact, it may be impor
tant to estimate what percentage of the Radon planes is incor
rectly calculated. If the Radon planes with approximate 
weighting only have a small percentage, the algorithms can be 
considered quasi-exact, and we can still reconstruct with high 
image quality. 

First, one must consider the incorrectly weighting planes 
caused by the critical event in Case 3. It appears in the area 
r<0.495 R. Let us fix x for r<0.495 R, denote the intersection 
of the Radon plane and the detector plane as L(8), 8E[0, 2it], 
run s over the three inter-PI arcs, and see what happens with 
x and L(8). Based on the discussion in Section III. E, for x in 
G2 , ifthe critical event occurs, the Bs-curve will first intersect 
a T-curve, and then go cross an A-curve. For example, in FIG. 
12 the B s -curve will first intersect T v then enter D 4 across Ay 
On the detector plane, this corresponds to that L(8) intersects 
the tangent ofr+2 before the inter-PI line §1c§3s while L(8) is 
rotated clockwise. Therefore, the Radon planes between the 
tangent ofr+2 and§ {§3 s are not exactly weighted. Because the 
slope of§1c§3s is positive and the slope of the tangent ofr+2 is 
less than h/2itR, the percentage of the incorrectly weighted 
Radon planes is less than 

/3 ""( 2 °') h p = -;; , where a < f3 < 2arct~\ {3 tan 2: , a = arctan 2Jr R 

16 
than p=2.57% for h/R=0.2. On the other hand, based on the 
discussion on Lemma 3, one or more cusps may possibly 
remain even when r~0.265 R, which means that less "line 
segments" related to critical events will appear in Case 5, and 
in fact more Radon planes may be correctly weighted. 

The implementation of these algorithms consists of one or 
more, and preferably all, of the following steps: Step 1) Dif
ferentiate each projection with respect to variable s; Step 2) 
For each y,(s), i={l, 2, 3 }, perform the Hilbert transform of 

10 derivative data along the given filtering directions on the 
corresponding detector plane; Step 3) Backproj ect the filtered 
data on the inter-PI segments to reconstruct the object point. 
Differences between the algorithms described herein and 

15 
some of the ones previously described include, but are not 
limited to, differences in triple-helices geometry the filtered 
data are backprojected on inter-PI segments and that there are 
two families of filtering lines for each algorithm so that each 
point on the detector plane will be filtered twice. Also, since 

20 the algorithms described herein allow shift-invariant filtra
tion, all results are in Cartesian coordinates directly, and there 
is no coordinate transform necessary similar to what was used 
in the slow-FBP algorithm or BPF algorithm. 

Previously published BPF algorithms for triple-source 
25 helical CBCT can indeed produce excellent image quality, 

FBP algorithms (either "slow" or "fast'') are computationally 
desirable for several reasons, such as being amendable for 
parallel processing. In particular, while the computational 
structures of our BPF algorithm and FBP algorithms are quite 

30 similar, the FBP algorithms avoid densely sampled interme
diate reconstruction in the PI-line-based coordinate system, 
and more importantly they can reconstruct a region of interest 
(ROI) or volume ofinterest (VOI) much more efficiently than 

35 
the BPF counterpart. Note that ROI/VOI reconstruction is 
very common in medical imaging. A related technology 
called "interior tomography" is being actively developed to 
target this type of problems. Then, an interesting possibility 
would be to develop tripe-source interior CBCT. 

(See Appendix). It is common that h/R <0.2 in practical appli
cations, hence p<l.17%. Forx in G1 (G3 ), ifthe critical event 
occurs, the Bs-curve will first go across an A-curve, and then 
over a T-curve. On the detector plane, this corresponds to the 40 

case when L(8) intersects the tangent to r+1cr- 1
) before the 

inter-PI line s 3es2s while L(8) is rotated clockwise. Hence, 
the Radon planes between the tangent ofr+1 (r-1

) and s 3es2s 

are not exactly weighted. Because the slope of§3e§2s is nega
tive and the slope of the tangent of r+l cr- 1

) is more than 
-0.35 h/R, the percentage of the incorrectly weighted Radon 
planes is less than p=2.57% for h/R=0.2. 

The inventive two fast exact/quasi-exact FBP algorithms 
for triple-source helical CBCT have their advantages and 
disadvantages. From the perspective of exact reconstruction, 
the first algorithm is more desirable than the second algorithm 
because it is not affected by critical events in Case 3. How-

45 ever, in terms of efficient data acquisition, it may require a 
larger detector area than the second algorithm. In the medical 
CT field, the rectangular detector shape is most popular, and 
the helical pitch may be varied case by case. Therefore, it is 
practically possible to have projection data for reconstruction Then, one must further consider the incorrectly weighting 

planes caused by the critical event in Case 5. Recall that the 
L-curves are used to split the domain D4 into sub-domains, 
making the weight function n continuous across all the 
A-curves, and the cusps are the starting and ending points of 
the L-curves. If the endpoints of the L-curves are not the 
cusps, there will be small fractions (or "line segments") on the 
A-curves, making the weight function n discontinuous across 
them and ruining the FBP structure of our algorithms. It 
possibly occurs for r~0.265 R. As discussed above, the Bs
curve will first enter a 1-IP domain from a 3-IP domain across 
the "line segment", and then pass through an L-curve. On the 
detector plane, this corresponds to that L(8) intersects the 
inter-PI line §3e§2s before the L-line while LJ8) is rotated 
clockwise. Recall that ifthe cusp is not in D4 , S/ is possibly 
to the left of Su or S3 e is to the right of Sd. Thus, the slope of 
s 3es2s is always more than -0.35 h/R. 

Because the slope of the L-curve is never positive, the 
percentage of the incorrectly weighted Radon planes is less 

50 using either or both of the two fast FBP algorithms. 
The methods disclosed herein can be practiced on any CT 

system. An example of a CT system and apparatus capable of 
implementing the methods is provided is an electron beam 
CT. In that framework, a curvilinear tungsten material or 

55 target can be arranged along a non-standard curve to be traced 
by an electro-magnetically driven electron-beam for forma
tion of an X-ray source and collection of cone-beam data. 

An exemplary electron beam CT comprises a vacuum 
chamber having an exterior surface, an underlying interior 

60 surface, and defines an enclosed space. At least a portion of 
the exterior surface can define or surround a subject cavity. 
The subject cavity is adapted to receive a subject. The subject 
cavity can be adapted to receive a human, a mouse or a rat, e.g. 

The apparatus can further comprise a charged particle 
65 beam generator having a proximal and a spaced distal end. 

The electron beam generator can generate a flat or curved 
electron sheet. The electron beam generator can have a scan-
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ning speed from about 25 Hz to about 50 Hz. The apparatus 
can comprise a single electron beam generator or a plurality 
of electron beam generators. 

The apparatus can include a focusing mechanism adapted 
to selectively focus charged particles generated by the 
charged particle beam generator and a target adapted to gen
erate X-rays upon receipt of charged particles from the 
charged particle beam generator. If a plurality of electron 
beam generators are used, the apparatus may comprise a 10 
plurality of focusing mechanisms. 

The apparatus further comprises a detector or a series of 
detectors surrounding the target. There are a large variety of 
detectors that can be used in the disclosed apparatuses, sys
tems and methods. Two representative types are a) thin-film 15 

transistors (TFT, .alpha.-Si:H) and b) mono-crystalline sili
cone CCD/CMOS detectors. Although their quantum effi
ciency is high, the readout speed ofTFT detectors is generally 
less than 30 frames per second, rarely reaching 100 frames 

20 
per second. On the other hand, the readout speed of CCD/ 
CMOS detectors can be extremely high, such as 10,000-30, 
000 frames per second, and are coupled with fiber-optical 
tapers, resulting in low quantum efficiency. For example, the 
1000 Series camera from Spectral Instrunients (Tucson, 25 
Ariz.), can be used. This camera is compact, measuring 92 by 
92 by 168 mm. Two, three, and four-phase architecture CCDs 
from Fairchild Imaging (Milpitas, Calif.), E2V (Elmsford, 
N.Y.), Kodak (Rochester, N.Y.), and Atmel (San Jose, Calif.) 
can be placed in the selected camera. The readout and digiti- 30 

zation can use 16-bit digitizer. The pixel readout rate can be 
varied from 50 kHz to 1 MHz. The gain of the analog proces
sor can be modified under computer control to compensate 
for the gain change of the dual slope integrator at different 
readout speeds. The 1000 Series system offers fully program- 35 

mable readout of sub arrays and independent serial and par
allel register binning. In addition, specialized readout modes, 
such as time delay and integration (TDI) using an internal or 
external time base can be used. These capabilities allow the 
readout of only the area of the CCD of interest at variable 40 

resolution in order to optimize image signal to noise ratio. 

To facilitate a better understanding of the present inven
tion, the following examples of certain aspects of some 
embodiments are given. In no way should the following 

45 
examples be read to limit, or define, the scope of the inven-
ti on. 

EXAMPLES 

18 
TABLE IV 

Parameters of the Clock Phantom 

No. Xe Ye ze a b 8 p 

0 0 0 0 
2 0 0.8 0 0.1 0.1 0.1 0 

0.4 0.69 0.01 0.1 0.1 0.1 0 
4 0.69 0.4 0.02 0.1 0.1 0.1 0 

0.8 0 0.03 0.1 0.1 0.1 0 
0.69 -0.4 0.04 0.1 0.1 0.1 0 

7 0.4 -0.69 0.05 0.1 0.1 0.1 0 
0 -0.8 0.06 0.1 0.1 0.1 0 

9 -0.4 -0.69 0.07 0.1 0.1 0.1 0 
10 -0.69 -0.4 0.08 0.1 0.1 0.1 0 
11 -0.8 0 0.09 0.1 0.1 0.1 0 
12 -0.69 0.4 0.1 0.1 0.1 0.1 0 
13 -0.4 0.69 0.11 0.1 0.1 0.1 0 
14 0 0.5 0 0.05 0.05 0.05 0 
15 0.25 0.43 -0.01 0.05 0.05 0.05 0 
16 0.43 0.25 -0.02 0.05 0.05 0.05 0 
17 0.5 0 -0.03 0.05 0.05 0.05 0 
18 0.43 -0.25 -0.04 0.05 0.05 0.05 0 
19 0.25 -0.43 -0.05 0.05 0.05 0.05 0 
20 0 -0.5 -0.06 0.05 0.05 0.05 0 
21 -0.25 -0.43 -0.07 0.05 0.05 0.05 0 
22 -0.43 -0.25 -0.08 0.05 0.05 0.05 0 
23 -0.5 0 -0.09 0.05 0.05 0.05 0 
24 -0.43 0.25 -0.1 0.05 0.05 0.05 0 
25 -0.25 0.43 -0.11 0.05 0.05 0.05 0 

The algorithms were coded in MATLAB and executed on 
a regular PC (Intel Core2 Duo CPU 3.06 GHz, 4 GB RAM). 
Reconstructed images are shown in FIG. 22. Our numerical 
results show that in the case of r=0.495 R both two algorithms 
produced high quality images. 

Example 2 

Auxiliary Lemmas were used as described below. A point 
was fixed at xEQ and its three associated inter-PI lines were 
found as shown in FIG. 3. Then, a source position was 
selected as sE( s/, s/), jE { 1, 2, 3} and how the inter-PI lines 
project onto the corresponding detector plane was deter
mined. For simplicity, in this disclosure the projection of 
y,(s), jE{l, 2, 3} on a detector plane is denoted by SJ" 

Lemma 1. 

On a detector plane, the slopes of the projected inter-PI 
lines S/SJmod3+1e and SCJ+l)mod3+1sS{ are always positive, and 
that of the inter-PI line SJmod3+1

5
S(j+l)mod3+{, jE{l, 2, 3} is 

always negative. 

50 Proof of Lemma 1. 

Example 1 Without loss of generality or wishing to be limited by 
theory, the source position was selected to bey 1(s0 ), s0E(s/, 
s1 e). By construction, s/-s/<2it, s1 e-S3

5 <2it and s3e-s/>O. 
Hence, the projections of s1

5
, s3 e, ands/ were always to the To verify and showcase the fast FBP algorithms of the 

present invention, numerical tests were performed using the 
Clock phantom. This phantom consists of ellipses, as param
eterized in Table IV. In the simulations, the origin of the 
reconstruction coordinate system was set to the center of each 
phantom. The spherical phantom support was of375 mm for 
the experiment. Three sources were arranged uniformly along 

55 left of those of s/, s/, and s1 e respectively (FIG. 18). When 
sE(s/, s1 e) changed, the point x, i.e., the projection ofx onto 
the detector plane, was moved inside the region 
G:=G1 UG2 UGy Clearly, x could reach its highest (respec
tively, lowest) position in the vertical direction when x was at 

60 the intersection of r 1 and r+l (respectively, of r, and r- 1 
). 

a circle with their corresponding detectors on the opposite 
side. The source-detector distance was 1000 mm. Projections 
were generated from 1000 view angles while the sources and 
the detectors were constantly moved along three helixes in 
one turn. The helix was of 750 mm in radius and 100 mm in 65 

pitch. The detector plane consisted of 1300x200 detection 
elements of 1.0xl .0 mm2

. 

Also, the vertical coordinates at these points are 
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respectively. Moreover, the lowest point on r+2 and the high
est point on r-2 are 

Dh Dh 
V~;n = l.38012JZR and v~= = -l.38012JZR 

respectively. Evidently, v max~v min' and v max'~v min· Since §1 s 

and §3
5 were to the left of§/ and s1 e, the slopes of the inter-PI 

lines s1
5s/ and s3

5 s1e were positive for all x in G. 
The inter-PI line §2

5 §3e was satisfied by EQUATION 18 
below: 

10 

20 
where 

Dh s-4n:/3 Dh s-2n:/3 
v1(s) =----and v2(s) = ----. 

2JZR 1 - COSS 2JZR 1 - COSS 

FIG. 19B shows the function <I>(s=l-cos s-(s-4/3it) sins 
in the range sE(O, 2it), demonstrating that v 1 (s) was always 
positive. Hence v 1 (s3 e -s0) was monotonically increasing. 
s3e=s/+2.1062 was fixed and the function) 1P(s/)=v1(s3 e-
s0)-v2(s/-s0) was plotted in FIG. 19C. Clearly, this function 
was always positive in the range O~s/-s0~4.1773. Note that 
s=4.1773+s0 was the intersection ofr 1 and r+1 ands/ could 

x 1 = Rtcoss', + R( 1 - t)coss3 (EQUATION 18) 15 not be to the left of this point (otherwise, x is outside G). 
EQUATION 24 indicated that§/ was always lower than §3 e in 
the vertical direction. Since §/was to the right of §3 e, the 
slope of the inter-PI line §2

5 §3e was always negative. Due to 
symmetry, the other two cases sE( s/, s/) and sE( s/, s3 e) was 

x2 = Rtsin.s2 + R( 1 - t)sins3 

h { 2n:) h ( 4n:) X3=- s2-- +-(l-t)s3--
2JZ 3 2JZ 3' 

where tE[0,1] ands/, s3 eE(s0, s0+2it). 
By allowing 

where r0E[0,0.495 R] and µ0E[0,2it]. 
The following was left: 

s3 - s2 rosin(µo - s',) 
cos-

2
- = , and 

,/ R2 + r6 - 2Rrocos(µo - sl) 

(EQUATION 19) 

(EQUATION 20) 

then, EQUATION 20 was rewritten as EQUATION 21 
below: 

s3 - s2 sin(µo - s',) (EQUATION 21) 
cos-2- = ----;o=R=====2===== 

(;;;-cos(µo-s2l) +sin2 (µo -52) 

When ~-s/ was fixed and r0 was reduced, 

I 
s3 -521 cos-

2
-

decreased. Therefore, the right side of EQUATION 21 
reached its maximum or minimum when r0 is maximized, i.e. 

20 handled similarly. This finishes the proof. 
Lemma2. 
A T-curve cannot be tangent to an A-curve at an interior 

point ofT. 
Proof of Lemma 2. 

25 The interior point ofT-curve can be any point of the T-curve 
except an endpoint. It has been proved previously that a 
T-curve is smooth everywhere, except possibly at a cusp. 
When sie' iE{ 1, 2, 3} is chosen to be the point where the cusp 
occurs. It was assumed that a T-curve was tangent to an 

30 A-curve at a(s ). If s=s,CE(s,5, sie), where s,5, sie were the 
endpoints of the T-curve, then the osculating plane IIe(x) 
intersected the helix yi(s) at only one point and it contained 
one inter-PI line. By construction, IIc(x) intersected the 
detector plane at the asymptote of the Tam-Danielson win-

35 dow boundary and x belonged to the asymptote. Connecting 
x and s,5, x and §ie we detected two inter-PI lines. Clearly, 
IIe(x) could not contain any of them. By Lemma 1, the third 
inter-PI line had a negative slope, thus it would not overlap the 
asymptote. Hence, IIe(x) could not contain it. Consequently, 

40 s"'sie and T-curve was smooth in a neighborhood of a(s). 
If 8 was chosen to be the polar angle for the great circle 
(x-yi(se))1

, saE{s,5, sie}, iE{l, 2, 3}, then the A-curve could 
consist ofall the unit vectors ai(8)E(x-yi(se))_j_. Clearly, al (8) 
could be perpendicular to a 1 (8) and (x-y 1(sa)). By construc-

45 tion, the T-curve was tangent to the A-curve at a(s). Hence, 
a(s) was be parallel to a 1 (8). That is, a(s) was perpendicular 
to a 1 (8) and (x-yi(sa)). Because a(s) was also perpendicular 
to (x-yi(s 1

)), s1E(s,5, sie), (x-yi(s1
)) was parallel to (x-yi(sa)) 

and s1=sa, which contradicted the assumption that si is an 

50 inner point of the T-curve. This finishes the proof. 
Lemma3. 
Case 1, 2, 4, 6, 7 do notoccurforr<0.495 Rand Case 5 does 

not occur for r<0.265 R. 

at r0=0.495 R. Those maximum and minimum values were 
numerically calculated (FIG. 19A), and shown below in 55 

EQUATIONS 22 and 23: 

Proof of Lemma 3. 
Cases 1 and 2 were impossible because they mean that 

there can be a plane containing three inter-PI lines or tangent 
to three inter-PI arcs. In Case 4, there can be one plane II 
containing one inter-PI line and tangent to two inter-PI arcs. If 
one assumes this inter-PI line is s1

5s/, chooses a point s=s/ s3 -s2 
-0.4949 s cos-

2
- s 0.4949 

(EQUATION 22) 

or 2.1062<s3e-s/<4.l 770 (EQUATION 23) 

Next, it was shown that O~s/s0~4.1773 implied 

(EQUATION 24) 

60 on yi(s) and denotes L=IInDP (s0), then by construction, on 
the detector plane xis on r+1 and it overlaps §2 e. Then, L may 
tangent to r+1 and r+4 or r- 1 and r- 1

, see FIG. 20. Because 
the points of tangency are on the inter-PI arcs, the endpoint §1 e 
is to the left of the tangency for case A and §3 e was to the right 

65 of the tangency for case B. Connecting s/ and x(or§/ and x) 
we find that the slope of the inter-PI line §3

5 §{ could be 
negative. By Lemma 1, these two cases were impossible. 
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In Case 5, there was one plane containing one inter-PI line 
and tangent to one inter-PI arc at the inflection point. Thus, the 
inter-PI line on the detectoroverlapped the inflection line, i.e., 
§2

5 §3 e overlapped L,, when s/=su and s3 e=2su, where su is 
difference between S2 

1 and S3 e. When looking at EQUATION 
21 and f.!o-s/ is fixed, the absolute value of 

was monotonically decreasing when r0 was reduced. Then, 
the range of s3 e -s2 e was narrowed. In other words, the differ
ence between see and s2 e became closer to Jt. Case 5 occurred 
when s3 e -s/=su. If order to exclude Case 5, the range of 
s3 e -s/ could not cover the value su =2.6053. Hence, the mini
mum range of s3 e -s/ is 2.6053<s3 e -s/2it-2.6053. That is, 

s3 -s2 s3 -s2 
-0.2649 < cos-

2
- < 0.2649 and cos-

2
-

reached its extremewhenr0 =0.265 R. From EQUATIONS 21 
and 22 we have s3e-s/=su only for r~0.265 R thereby con
tradicting our condition. Hence, Case 5 was impossible for 
r<0.265 R. 

22 
Lemma 5. 
An L-curve never intersects an A-curve, for r<0.265 R. 
Proof of Lemma 5. 
If an L- and A-curve intersect, an L-line through x can 

overlap the inter-PI line. One point on the inter-PI arc 

S:S, was chosen and the slope of the inter-PI line was con
sidered on the corresponding detector plane. By construction, 
an L-curve always started from a cusp of a T-curve and ended 

10 on a cusp of another T-curve. For the osculating plane Ile, its 
intersection with the detector plane was the line tangent to r+l 
(r- 1

) at §u(§d). By Lemma 4, the endpoints of the inter-PI arc 
onr+l cr- 1

) were on different sides of§u (sd), and one of them 
on the right (left) side was also an endpoint of the inter-PI line 

15 for helices y2 (s) andy3 (s), and was denoted as s/(§3 e) in FIG. 
22. 

If x was in G2 and above §u, the L-line was formed by 
connecting x, §u, and the inter-PI line was formed connecting 
x, s/. If z was in G2 and below §d, we formed the L-line by 

20 connecting x, §d, and the inter-PI line was formed by connect
ing x, §3 e. Clearly, in any case the slope ofL-line was between 
zero and the slope of the inter-PI line. That is, the L-line could 
not overlap the inter-PI line. For other x, the L-line was 
parallel to the u axis. By Lemma 1, it was always between two 

25 inter-PI lines and could not overlap with any of them. For the 
point on other inter-PI arcs, the situation was the same. This 
finishes the proof. 

In Case 6, a T-curve will intersect oneA-curvetwice before 
30 

The present invention has been described with reference to 
particular embodiments having various features. It will be 
apparent to those skilled in the art that various modifications 
and variations can be made in the practice of the present 
invention without departing from the scope or spirit of the 
invention. One skilled in the art will recognize that these 
features may be used singularly or in any combination based 

meeting a cusp. Suppose this took place at inter-PI arc ~ . A 
point s=s/ on y 1(s) was chosen and observations of what 
happens on the detector plane when s moves were taken. By 
construction, the plane II containing y 1 (s) and x intersected 
the detector plane at the line L which was parallel to the helix 
tangent across x. At s=s/, x was on r+1 and II contained 
inter-PI line s1

5s/. Ass moved along y1(s), x moved down
wards. Notice that L was parallel to the asymptote of the 
Tam-Dannielson window, so it would not intersect r-2 pro
vided that x moved across the asymptote, at where the cusp 
occurred. Hence, II would not contain the inter-PI line s1

5s/ 
and Case 6 was impossible. By Lemma 2, Case 7 was impos
sible. This finishes the proof. 

35 on the requirements and specifications of a given application 
or design. Other embodiments of the invention will be appar
ent to those skilled in the art from consideration of the speci
fication and practice of the invention. It is intended that the 
specification and examples be considered as exemplary in 

40 nature and that variations that do not depart from the essence 
of the invention are intended to be within the scope of the 
invention. 

Therefore, the present invention is well adapted to attain 
the ends and advantages mentioned as well as those that are 

Lemma4. 

The inflection point §u(§d) is inside the inter-PI arc when x 
is in G21 (G22). 

Proof of Lemma 4. 

45 inherent therein. The particular embodiments disclosed 
above are illustrative only, as the present invention may be 
modified and practiced in different but equivalent marmers 
apparent to those skilled in the art having the benefit of the 
teachings herein. Furthermore, no limitations are intended to 

50 the details of construction or design herein shown, other than 
as described in the claims below. It is therefore evident that 

By Lemma 3, any point in the area r<0.265 R had three 
cusps in the diagram. Note that there was one IP in each 
inter-PI arc within D4 . Since all three cusps were in D4 , an 
osculating plane of one inter-PI arc intersected two other 
inter-PI arcs exactly once at one point. Assuming that this 
osculating plane Ile contained x and considering Ile of the 55 

second inter-PI arc (i.e., ofy2 (s)). s1° was set to be the point 
where it intersected the first inter-PI arc (i.e., on y 1 (s )). s was 
moved along the first inter-PI arc and the results were 
observed with x on the detector when s=s/, x entered the 
Zhao windowthroughr+1

, and when s=s12 °, x belongs to Lu. 60 

As follows from the diagram, the point su must be inside the 
second inter-PI arc, i.e., betweens/ ands/. As the point s 
moved further, the difference s/-s became smaller, and the 
points/ moved to the right of §u along r+. The inter-PI line 
s1

5s/ had a positive slope. Thus, as long as x was inside G21 , 65 

the point s2 e was always to the left of§u· The case where x was 
in G22 can be similarly treated. This proves Lemma 4. 

the particular illustrative embodiments disclosed above may 
be altered or modified and all such variations are considered 
within the scope and spirit of the present invention. While 
compositions and methods are described in terms of "com
prising," "containing," or "including" various components or 
steps, the compositions and methods can also "consist essen
tially of' or "consist of' the various components and steps. 
All numbers and ranges disclosed above may vary by some 
amount. Whenever a numerical range with a lower limit and 
an upper limit is disclosed, any number and any included 
range falling within the range is specifically disclosed. In 
particular, every range of values (of the form, "from about a to 
about b," or, equivalently, "from approximately a to b," or, 
equivalently, "from approximately a-b") disclosed herein is 
to be understood to set forth every number and range encom
passed within the broader range of values. Also, the terms in 
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the claims have their plain, ordinary meaning unless other
wise explicitly and clearly defined by the patentee. Moreover, 
the indefinite articles "a" or "an," as used in the claims, are 
defined herein to mean one or more than one of the element 
that it introduces. If there is any conflict in the usages of a 
word or term in this specification and one or more patent or 
other documents that may be incorporated herein by refer
ence, the definitions that are consistent with this specification 
should be adopted. 

Tbroughout this application, various publications are ref- 10 

erenced. The disclosures of these publications in their entire
ties are hereby incorporated by reference into this application 
in order to more fully describe the features of the invention 
and/or the state of the art to which this pertains. The refer
ences disclosed are also individually and specifically incor- 15 

po rated by reference herein for the material contained in them 
that is discussed in the portion of this disclosure in which the 
reference is relied upon. 

G. Wang, C. R. Crawford, and W. A. Kalender, "Guest 
editorial-Multirow detector and cone-beam, spiral/helical 20 

CT," Medical Imaging, IEEE Transactions on, vol. 19, pp. 
817-821, 2000. 

T. G. Flohr, C. H. McCollough, H. Bruder, M. Petersilka, 
K. Gruber, C. Su~, M. Grasruck, K. Stierstorfer, B. Krauss, 
and R. Raupach, "First performance evaluation of a dual- 25 

source CT (DSCT) system," European Radiology, vol. 16, pp. 
256-268, 2006. 

24 
x-ray source of the CBCT is disposed opposite a detector 
and has a scamiing radius that is a distance R from a 
rotation axis, and where each detector covers a field of 
view less than 0.495 R; and 

reconstructing the scanned portion of the object into an 
image by performing a computationally efficient filtered 
backprojection (FBP) and theoretically exact/quasi-ex
act algorithm to generate image data. 

2. The method of claim 1, further comprising: 
supporting the object in a stationary position; and 
moving each source of the triple-source and its associated 

detector about the object at a constant speed to generate 
three spiral scans with source trajectories y 1 ( s ), y 2 ( s ), 
and y3 (s) defined as: 

YI (s) = ( Rcoss, Rsins, ~s) 

Y2(s) = ( Rcos(s + ~" ). Rs;n(s + ~" ). ~s) 

y3(s) = ( Rcos(s + ;n ). Rs;n(s + ;n ). ~s) 

where R is the distance from the x-ray source to the rotation 
axis, h is helical pitch, s is a scan path corresponding to 
source position. 

M. Vannier and G. Wang, "Spiral CT refines imaging of 
temporal bone disorders," Diagnostic imaging, vol. 15, p. 
116-121, 1993. 

G. Wang, S. Zhao, H. Yu, C. Miller, P. Abbas, B. Gantz, S. 

3. A method of computing images derived from triple
source spiral computed tomography scan with three detec-

30 tors, comprising the steps of: 

Lee, and J. Rubinstein, "Design, analysis and simulation for 
development of the first clinical micro-CT scanner!," Aca
demic Radiology, vol. 12, pp. 511-525, 2005. 

G. Wang, T.-H. Lin, P.-C. Cheng, and D. M. Shinozaki, "A 35 

general cone-beam reconstruction algorithm," IEEE Trans
actions on Medical Imaging, vol. 12, p. 486, 1993. 

A. Katsevich, "Theoretically exact filtered backprojection
type inversion algorithm for spiral CT," SIAM Journal on 
Applied Mathematics, vol. 62, p. 2012, 2002. 

S. S. Orlov, "Theory of three-dimensional reconstruction. 
1. Conditions of a complete set of projections," Sov. Phys. 
Crystallogr, vol. 20, pp. 312-314, 1975. 

40 

I. Gel'fand and M. Graev, "Crofton's function and inver
sion formulas in real integral geometry," Functional Analysis 45 

and Its Applications, vol. 25, pp. 1-5, 1991. 
H. Rullgard, "An explicit inversion formula for the expo

nential Radon transform using data from 180," Arkiv fcir 
Matematik, vol. 42, pp. 353-362, 2004. 

G. Wang, Y. Ye, and H. Yu, "Approximate and exact cone- 50 

beam reconstruction with standard and non-standard spiral 
scanning," Physics in Medicine and Biology; vol. 52, pp. 
1-13, 2007. 

J. Zhao, M. Jiang, T. Zhuang, and G. Wang, "An exact 
reconstruction algorithm for triple-source helical cone-beam 55 

CT," Journal of X-Ray Science and Technology, vol. 14, p. 
191, 2006. 

J. Zhao, Y. Jin, Y. Lu and G. Wang, "A Filtered Backprojec
tion Algorithm for Triple-Source Helical Cone-Beam CT," 
Medical Imaging, IEEE Transactions on, vol. 28, pp. 384- 60 

393, 2009. 
The invention claimed is: 
1. A computed tomography (CT) imaging method com

prising: 
scamiing an object using triple-source helical cone-beam 65 

computed tomography (CBCT) to acquire projection 
data relating to the object being imaged, where each 

(a) collecting cone beam data from three detectors during a 
scan of an object; 

(b) for each source position yis), jE{l, 2, 3}, identifying 
two families of lines on a detector plane DP(s) corre
sponding to a source position s and containing the cor
responding detector and intersecting the cone beam, and 
two families of lines include: 
i. a first family of lines parallel to L0 , where 

L0 is the projection of the helical tangent at current 
source position; 

ii. a second family of lines tangent to r+1 and r- 1
, or 

parallel to the horizontal axis of the plane DP(s), 
where 
r+1 is the projection of the helical tum YJmod3 + 1 (s) 

defined by s<q<s+2it onto the plane DP(s); 
r- 1 is the projection of the helical tum y (i+l)mod3+l (s) 

defined by s<q<s+2it onto the plane DP(s); 
q is the parameter along the scan path which describes 

the point being projected; 
( c) computing a derivative of the cone beam data with 

respect to the source position; 
( d) performing Hilbert transform of the derivative of the 

cone beam data along the two families oflines, where the 
Hilbert transform is a convolution between the deriva
tive of the cone beam data and a kernel function h(t)=l/ 
(itt); 

( e) back projecting said filtered data to form a precursor of 
said image; and 

(f) repeating steps a, b, c, d and e to obtain an image. 
4. The method of claim 3, wherein identifying the second 

family of lines includes: 
the lines tangent to r+1

, when theprojectionof pointx onto 
DP(s) is located in the area bounded by I'z, L,,, and r+1

; 

the lines tangent to r- 1
, when the projection of pointx onto 

DP(s) is located in the area bounded by r" L,6 and r- 1
; 
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the lines parallel to the horizontal axis of the plane DP( s ), 
when theprojectionofx onto DP(s) is located in the area 
bounded by I'z, r" L,,, L,6 , r+1 and r- 1

, where 
rl and r rare the projections of the object support limitation 

r=0.495 R onto DP(s); 
L,, is the inflection line of r+1

; 

L,6 is the inflection line ofr-1
; 

r is the radius of the object support, and 
R is the radius of the scanning trajectory. 
5. The method of claim 3, wherein the back projection 10 

step( e) includes: 
( ei) fixing a reconstruction point x, which represents a 

point inside the object being scanned where it is required 
to reconstruct the image; 

( eii) determining the three inter-PI arcs for x; 
( eiii) finding the projection x of x onto a detector plane 

DP(s); 
( eiv) identifying lines from the two families of lines and 

points on the said lines that are passing through the said 
projection x; 

(ev) computing contribution from filtered cone beam data 
to the image being reconstructed at the point x by mul
tiplying 

4rr2 1x - y(s)I' 

15 

20 

25 

26 
ii. a second family of lines tangent to r+1 and r- 1

, or 
parallel to the horizontal axis of the plane DP(s), 
where 
r+1 is the projection of the helical turn YJmod3 + 1 (s) 

defined by s<q<s+2it onto the plane DP(s); 
r- 1 is the projection of the helical turn y (i+l)mod3+l (s) 

defined by s<q<s+2it onto the plane DP(s); 
( c) computing the derivative of the cone beam data with 

respect to the source position; 
( d) performing the Hilbert transform of the derivative of the 

cone beam data along the two families oflines, where the 
Hilbert transform is a convolution between the deriva
tive of the cone beam data and a kernel function h(t)=l/ 
(itt); 

( e) back projecting said filtered data to form a precursor of 
said image; and 

(f) repeating steps a, b, c, d and e until an image of the 
object is completed. 

8. The method of claim 7, wherein identifying the first 
family of lines includes: 

the lines tangent to r+2
, when the projection of x onto 

DP(s) is located above L0 ; 

the lines tangent to r-2
, when the projection of x onto 

DP(s) is located below L0 ; 

where L0 is the projection of the helical tangent at current 
source position. 

9. The method of claim 7, wherein identifying the second 
family of lines includes: ( evi) adding the contribution from filtered cone beam data 

to the image being reconstructed at the point x according 
to the three inter-PI arcs; 

30 the lines tangent to r+1
, when the projection of x onto 

(evii) going to step (ei) and choose a different reconstruc
tion point x. 

6. The method of claim 5, wherein the three inter-PI arcs for 35 
x are determined according to the following rules: 

the endpoints of the inter-PI arc on a first helical turn y 1 (s) 
are s=s/ and s=s1 e, s1 e>s/; 

the endpoints of the inter-PI arc on a second helical turn 
y2 (s) are s=s/ and s=s/, s/>s/; 

the endpoints of the inter-PI arc on a third helical turn y3 (s) 
are s=s3

5 and s=s3 e, S3 e>S3
5

; 
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DP(s) is located in the area bounded by I'z, L,, and r+1
; 

the lines tangent to r- 1
, when the projection of x onto 

DP(s) is located in the area bounded by r" L,6 and r- 1
; 

the lines parallel to the horizontal axis of the plane DP(s), 
when the projection ofx onto DP(s) is located in the area 
bounded by I'z, r" L,,, L,6 , r+1 and r- 1

, where 
rl and rrarethe projections of the object support limitation 

r=0.495 R onto DP(s); 
L,, is the inflection line of r+1

; 

L,6 is the inflection line ofr-1
; 

r is the radius of the object support, and 
R is the radius of the scanning trajectory. 
10. The method of claim 7, wherein the back projection 

45 
step( e) includes: 

(ei) fixing a reconstruction point x, which represents a 
point inside the object being scanned where it is required 
to reconstruct the image; 

the line connecting y1 (s 1 e) and y3 (s3s) passes through x; 
the line connecting y2 (s/) and y1 (s/) passes through x; 
the line connecting y3 (s3e) and y2 (s/) passes through x. 
7. A method of computing images derived from triple-

source spiral computed tomography scan with three detec
tors, comprising the steps of: 

(a) collecting cone beam data from three detectors during a 
scan of an object; 
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(b) for each source position yis), jE{l, 2, 3}, identifying 
two families of lines on a detector plane DP(s) corre
sponding to a source position s and containing the cor- 60 

responding detector and intersecting the cone beam, and 
two families of lines include: 
i. a first family oflines tangent to r+2 and r-2

, where 
r+2 is the projection of the current helical turn defined 

by s<q<s+2it onto the plane DP(s); 
r-2 is the projection of the current helical turn defined 

by s-2it<q<s onto the plane DP(s); 

65 

( eii) determining the three inter-PI arcs for x; 
( eiii) finding the projection x of x onto a detector plane 

DP(s); 
(eiv) identifying lines from the two families of lines and 

points on the said lines that are passing through the said 
projection x; 

(ev) computing contribution from filtered cone beam data 
to the image being reconstructed at the point x by mul
tiplying 

4rr2 1x - y(s)I' 

( evi) adding the contribution from filtered cone beam data 
to the image being reconstructed at the point v according 
to the three inter-PI arcs; 

(evii) going to step (ei) and choose a different reconstruc
tion point x. 
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11. The method of claim 7, wherein the three inter-PI arcs 
for x are determined according to the following rules: 

the endpoints of the inter-PI arc on a first helical turn y 1 (s) 
are s=s/ and s=s1 e, s1 e>s/; 

the endpoints of the inter-PI arc on a second helical turn 
y2 (s) are s=s/ and s=s/, s/>s/; 

the endpoints of the inter-PI arc on a third helical turn y3 (s) 
are s=s3

5 and s=s3 e, S3 e>S3
5

; 

the line connecting y1 (s 1 e) and y3 (s3s) passes through x; 
the line connecting y2 (s/) and y1 (s/) passes through x; 
the line connecting y3 (s3e) and y2 (s/) passes through x. 

* * * * * 
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