
University of Central Florida University of Central Florida

STARS STARS

Retrospective Theses and Dissertations

1983

Incremental Analysis of Programs Incremental Analysis of Programs

Vida Ghodssi
University of Central Florida

 Part of the Computer Sciences Commons

Find similar works at: https://stars.library.ucf.edu/rtd

University of Central Florida Libraries http://library.ucf.edu

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted

for inclusion in Retrospective Theses and Dissertations by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

STARS Citation STARS Citation
Ghodssi, Vida, "Incremental Analysis of Programs" (1983). Retrospective Theses and Dissertations. 682.
https://stars.library.ucf.edu/rtd/682

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/rtd
https://network.bepress.com/hgg/discipline/142?utm_source=stars.library.ucf.edu%2Frtd%2F682&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/rtd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/rtd/682?utm_source=stars.library.ucf.edu%2Frtd%2F682&utm_medium=PDF&utm_campaign=PDFCoverPages

Incremental Analysis of Programs

by

Vida Ghodssi

A dissertation submitted in partial fulfillment of the
requirements for the degree of Doctor of Philosophy

in the Department of Computer Science at
the University of Central Florida

Orlando, Florida

December 1903

Major Professor: Dr. Charles E. Hughes

ABSTRACT

Algorithms used to determine the control and data flow properties

of computer programs are generally designed for one-time analysis of

an entire new input. Application of such algorithms when the input is

only slightly modified results in an inefficient system.

In this thesis a set of incremental update algorithms are

presented for data flow analysis . These algorithms update the solution

from a previous analysis to reflect changes in the program. Thus,

extensive reanalysis of programs after each program modification can

be avoided .

The incremental update algorithms presented for global flow

analysis are based on Hecht/Ullman iterative algorithms . Banning's

interprocedura] data flow analysis algorithms form the basis for the

incremental interprocedural algorithms .

ACKNOWLEDGEMENTS

I would like to thank Dr. Charles Hughes, my advisor, for his gui

dance, technical advice and his patience which made completion of

this work possible .

I would also like to thank the members of my committee, Drs .

David Workman, Ratan Guha, Ronald Dutton and Christian Bauer for

their reading and helpful suggestions.

iii

TABLE OF CONTENTS

LIST OF FIGURES
Chapter

1. INTRODUCTION

1.1 Motivation • • • • • •
1.2 Thesis Overview • • • • • • . .
1.3 Basic Concepts and Applications • • • • • • • •

1.3. 1 Global Flow Analysis • • •
1.3.2 Interprocedural Analysis • • • • • • • • •

2. SURVEY • • • • • • • • •

vi

1

2
7
0

10
13

15

2.1 Data Flow Analysis • • • • • • • • • • • 15
2.1.1 Global Flow Analysis • • • • • • • • • • • 15
2.1. 2 lnlerprocedural Analysis • • • • • • • • • 18

2.2 Incremental Algorithms • • • • • • • 22
2.3 Metrics • • • • • • . • • • • • • • • • • 24
2.4 Testing • • • • • • • • • • • • • • • • • 27
2.5 Static Analysers • • • • • • • • • • • • • • 29

3. INCREMENTAL DATA FLOW ANALYSIS •
3.1 Global Flow Analysis • • • • • • • • • • • • •
3.2 Exhaustive I Incremental

Reaching Definition • • •
3.3 Exhaustive I Incremental Live

.
Variable Algorithms • • • • • • • • • • • •

3.4 Analysis Of The Update Algorithms • • • • •
3 .4.1 Time Complexity • • • • • • • • • • • •
3.4. 2 Space Complexity • • • • • • • • • • •

3.5 Validity of the Incremental
Algorithms • • • • • • • • • • • • • • •

4 . INTERPROCEDURAL ANALYSIS

32

33

33

38
40
43
52

59

7U

4.1 Aliases • • • • • • • • • • • • • • • • • 70
4.2 Exhaustive Alias Calculation • • • • • • • • • • 71

4. 2.1 Basic Terminology • • • • • • • • • • • 72

iv

4.2.2 Alias Algorithm • • • • • • • • • • • • •
4. 2. 3 Analysis of AlJAS • • • • • • • • • • • •

4.3 Incremental Alias Computation • • • • • • • • •
4.3.1 Candidates for Possible

Aliases • • • . • • . . • • . . .
4. 3. 2 Incremental Alias

Addition • • • • • • • . • • • • • • •
4. 3. 3 Time Analysis of

ADD-ALIAS • • • . • • . • • •
4.3.4 Validity of ADD-ALIAS • • • . • • • • • • •
4.3.5 Incremental Alias

Deletion • • • . • . . • • • • • •
4. ~. 8 Time Analysis of

REMOVE-ALlAS • • . •
4.3.7 Validity of REMOVE-ALIAS

. . .
Algoritlrrn • • • • • • • • • • . • • •

4.3.8 Space Complexity for Incremental
Alias Computation • • • • •

4.4 Necessary Aliases • • • • • • • • • • • • • •

5. SIDE EFFECT CALCULATJON
5.1 Flow Insensitive side-effects . . .

5. 1. 1 Exhaustive Algorithm • • • • • •
5.1.2 Incremental Algorithm
5.1. 3 Time Complexity • • • • • • • • • • • •
5.1.4 Space Complexity • • • • • • • • • • •
5.1.5 Validity of the Side-Effect

Algorithm • • • • •
5.2 Flow Sensitive side Effects

5.2. 1 Exhaustive Algorithm • • • • • • • •
5.2.2 Incremental Algorithm

6. CONCLUSIONS
6 .1 Summary • • • •
6.2 Future Directions

APPENDIX: APPLICATION TO SOFTWARE DEVELOPMENT
~'TE~ • • • • • • • • • • • • • • • • •

GLOSSARY • • • • • • • •

UST OF REFERENCES • • • • • • • • • • • • • • • •

v

?b
79
81

81

82

83
06

87

97

98

102
105

107

110
110
112
114
120

122
124
124
127

129

129
1~~

135

148

155

IJST OFF1GURES

1. Phases of the life cycle
2. Cost, error sources and error discovery

per phase of the life cycle • . • • • • . . .
3. Reaching definition algorithm
4. Incremental update algorithm for

reaching definitions • • • • • . . . '
b. Live variable analysis algorithm
6. Incremental live variable analysis

algorithm . • • • • • • •
7. Example of a flow graph
·a. Solution of the example in Figure 7

usin,g Hecht's algorithm • • •
9. Solution of the example in Figure 7 using

incremental reaching definition algorithm

10. Occurrence of a local change in the example of
F~ure 7. and the updated solution • . •

. . . .

. . . .
11. Control flow change in the example of

Figure 7, and the updated solution • • • • • • •

12. Reformulation of the incremental reaching
definition algorithm of Figure 4 • • •

13. Banning's algorithm to compute alias
inf ormalion • . • • • • • • • • • •

14. A function to test for aliases
15. A procedure to record aliases
16. Incremental update algorithm lo compute alias

information after addition of a new call site

Vi

• • • •

3

4

35

39

41

42

48

49

50

51

53

60

76

77

70

84

l?. Incremental update algorithm to compute alias
information after deletion of a call site . . .

18. Function lo check the impossibility of alias
19. Example for case (a)
20. An example for case (b)
21. An example for cases (c) and (d)
22. A procedure for calculation of incremental flow

insensitive side effects . • • • • . • • • • . . .
23. A procedure for converting DMOD(s)

into MOD(s) • • • • • • • •

Vii

89

90

93

94

96

115

116

CHAPTER 1

INTRODUCTION

Program flow analysis is a technique that gathers information

about properties of computer programs without the actual execution

of them. These properties include the determination of all possible

sequences of control and data flow, and other such information which

is impossible to find by individual runs of the programs. The algo

rithms used for program flow analysis are of the exhaustive type . Thal

is, they are designed for the one time analysis of an entire new input.

Determination of flow properties of computer programs is a costly and

time consuming process . This overhead is even more noticeable when

the program is only slightly modified. In such cases, there is a need

for algorithms that update the results of a previous analysis, rather

than exhaustively analysing the entire program.

Incremental flow analysis is a technique that avoids extensive

reanalysis of programs after each modification. Incremental algo

rithms update the solution from a previous analysis to reflect changes

in the program. That is, they propagate the program changes without

application of the exhaustive algorithms. The development of incre

mental update algorithms for data flow analysis is the topic of this

thesis.

2

1.1. Motivation

Information obtained from flow analysis of computer programs

has traditionally been used by the optimization phase of compilers

and as an aid in the de bugging process. More recent applications

involve the use of flow analysis in the development of new techniques

for software reliability.

The most obvious use of incremental flow analysis algorithms is in

interactive program construction environments as an aid in the

debugging process . In such environments immediate response is

essential and thus analysis has to be done incrementally.

A more important application of incremental flow analysis is in the

software development process in order to enhance the reliability of

produced software . In such an environment, extensive reanalysis of

programs after each modification is unreasonable due to the cost and

eff orl involved.

The most pressing problem facing software developers is the

escalating cost of software which is in complete contrast to the trend

in hardware cosl. To determine the source of software costs, several

studies have been conducted on the actual cost of the various phases

of a program's life cycle (Glass 1979, Boehm 1970). A brief overview of

these phases of the life cycle is given in Figure 1 and some of the more

interesting results of the studies mentioned above are displayed in

Figure 2. These studies have shown that the majority of errors are

generated in the design phase. Yet these errors are not detected until

very late in the life cycle. This results in a high maintenance cost,

3

(1) Functional Specification
This is the problem analysis phase . In general it results in a par

tial problem solution in document form.

(2) Design .
The Functional specification document is analysed and a plan for

the complete solution that meets the requirement is given in the
software design document.

(3) Implementation
The software design document is translated into a program. The

result of this phase is a software system that has yet to be de
bugged.

(4) Testing
This stage involves the examination of the software system to en

sure that it meets the standards, requirements and design. It
seeks to find as many programming and design errors as possible.

(5) Maintenance
The purpose of this phase is lo keep the working software opera

tional. It is the process of being responsive to user needs - fixing
errors, making user specified modifications and in general making
the program more useful.

Figure 1. Phases of the life cycle.

PHASE

Specification

Design

Implementation

Testing

Maintenance

COST ERRORS
GENERATED

10%

10% 61-64%

10% 36-39%

20%

50%

ERRORS
DETECTED

46%

54%

Figure 2. Cost, error sources and error discovery per phase of
the life cycle.

4

since the cost of fixing such errors rises rapidly during the late phases

of the life eye le.

To overcome these problems, there is a need for continuous

analysis and comparisons of both the design and source codes. Such

analysis permits the collection of essential flow informations which

can be subsequently used to analyse the status of the software pro-

jects. Obviously, incremental program analysis algorithms are essen

tial in performing the desired continuous analysis in a reasonable time

frame, with minimum cost.

Incremental flow analysis algorithms can be used to analyse the

design if it is coded in a suitable design specification language. The

5

results of such analysis combined with metrics during the design

phase can help in detecting problem spots at this early stage. Bad

module design, poorly designed data structures, and inadequate

refinements are examples of errors which can be detected at the

design level. Such analysis may result in redesign or modification of

the original design.

The second major source of errors is the implementation phase of

the life cycle. Incremental data flow analysis can aid in detection of

the majority of errors generated during program construction. The

algorithms used for such analysis can detect data ft.ow anomalies

which are generally the source of deeper errors. When such analysis is

done incrementally, it is possible to alert the programmers of

anomalies early in the program construction process while the inten

tion is still fresh in their minds.

Other problems in software development include the complexity

and general unreliability of software. These can be remedied to acer

tain extent by the an~lysis at the design phase. The quantitative

measurements at the design level result in a better design which is a

prerequisite for reliable software. Information flow measurements at

the implementation phase can help in evaluating the complexity of the

software. Correction of problem spots during the program construc

tion period results in less complex and easier to test and maintain

software. Obviously in the implementation phase, where programs are

constantly modified, incremental algorithms are essential.

6

Incremental ft.ow analysis can also assist programmers during the

testing and maintenance phases of the life cycle . More reliable test

data can be selected, if information about a program's data and con

trol flow is available. Moreover, incremental ft.ow analysis facilitates

software testing throughout the program construction period . During

the maintenance phase, incremental ft.ow analysis can be used to

assist programmers in determining the global effects of a localized

modification . Such information can be obtained by a demand driven

flow analyser which must clearly be based on incremental update algo

rithms .

We believe another problem that is receiving very little attention

in present software development environments is supervision of the

program development process. Presently, management control is

based upon close interaction between project leaders and program

mers. This is clearly impractical in a large scale program develop

ment environment where a project leader is possibly in charge of

several projects and many programmers at the same time. Incremen

tal program flow analysis can alleviate this problem, by being the basis

for a set of automated tools to assist the managers. That is, the

results of analysis of the source program provide the means of con

struction of such tools. A few examples of such tools can be found in

the Appendix where we overview how our research can lead to the

development of a new software development environment based on

incremental program analysis.

7

1.2. Thesis Overview

Beyond this introductory chapter, the thesis is organized as fol

lows. In Chapter 2, a survey of the literature pertinent to this

research is presented. The major contribution of our research is

described in Chapters 3-5. In Chapter 3, the exhaustive and incremen

tal algorithms for global flow analysis are presented. The problems

considered are reaching definitions and live variable analysis. The

incremental update algorithms are based on Hecht/Ullman iterative

algorithms.

The algorithms for computing aliases are described in Chapter 4.

The exhaustive algorithm for computing aliases designed by Banning is

described. Two incremental update algorithms for computing possible

aliases are presented to deal with insertion and deletion changes

separately. The incremental computation of necessary aliases is also

discussed in this Chapter.

In Chapter 5, the possible side-effects of a procedure call are

described and exhaustive and incremental algorithms for computing

them are presented. Banning's algorithms for computing side-effects

form the basis for our incremental algorithms .

Chapter 6 discusses the conclusions drawn from this research and

indicates possible extensions of our work.

The rest of this current Chapter is devoted to explanation of the

basic terminology and a discussion of various applications of program

B

flow analysis. The Glossary at the end of this report summarizes all

notational conventions that we have adopted .

1.3. Basic Concepts and Applications

The term flow analysis refers to pre-execution analysis of com

puter programs . This process involves control flow analysis and data

flow analysis, where control flow analysis is in general, but not neces

sarily, a prerequisite for data flow analysis.

Control ft.ow analysis involves the construction and representation

of the program's control flow structure. The calling relationships

among the procedures of a program are generally represented by a

directed graph named a call graph. Each node of a call graph

corresponds to a procedure and each arc(p, q) represents a call from

procedure p to procedure q. In contrast a reverse call graph is a

directed graph in which each node corresponds to a procedure and

each arc(p, q) represents a call from procedure q to p.

The possible flow of control within each procedure is usually

represented by a directed graph called a control flow graph or simply

a flow graph. The statements in a procedure are partitioned into max

imal groups such that no transfer occurs into a group except to the

first statement in the group and once the first statement is executed,

all statements in the group are executed sequentially . Each of these

groups is ref erred to as a basic block or simply a block. Each node of

a flow graph corresponds to a block of the procedure and each

9

arc(x, y) represents a potential tr an sf er of control from block x to

blocky.

A reducible flow graph is one that can be decomposed uniquely

into a graph with no cycles and backward arcs.

The nodes of the flow graph are usually numbered according to

some order on them. One such ordering technique is called the depth

first ordering. The depth first ordering of the nodes of the flow graph

is created by starting at the initial node and searching the entire

graph, trying to visit nodes as far away from the initial node as f asl as

possible (depth first). The reverse of the order in which we visit the

nodes by this search results in their depth first ordering.

Data flow analysis is the process of gathering information about

the modification, preservation and uses of variables in a program.

This information gathering process can be performed on any of the

high, intermediate or low-level representations of a program.

For some applications such as source level optimization, anomaly

detection and automatic documentation, data flow analysis is per

formed at the source level. For other applications such as code

improvement, data flow analysis is typically performed on an inter

mediate representation of programs such as quadruples. This pro

cess, which is machine independent, is incorporated into optimizing

compilers. Machine dependent optimization is perf armed on the low

level representation of programs.

lO

Data flow analysis consists of two problems global flow analysis

and inlerpr.ocedural analysis which will be described in the next two

sections after a discussion of some general applications for flow

analysis .

The information obtained from flow analysis can provide the pro

grammer with knowledge about unreachable code, unused variables

and variables that are used before being defined . Information con

cerning all uses of each definition and all definitions affecting each use

can be used in interactive debuggers. For each procedure, informa

tion about variables that are used or modified can be described. The

information concerning the transitive effects of each procedure can

facilitate program modifications and maintenance.

Another application of flow analysis is in program improvement.

The information obtained from flow analysis of programs is used to

improve the efficiency of program execution. Data flow analysis is per

formed as a preliminary step in the determination of useless code,

common subexpression analysis for elimination of redundant compu

tations, constant propagation to replace run-time computations, code

motion for removal of invariant computations from loops and provi.d

ing register allocation information.

1.3.1. Global Flow Analysis

In 811alysing programs a class of problems can be distinguished,

each of which can be solved in essentially the same manner . These

1 1

problems are generally referred to as global flow analysis problems .

We describe two problems in this category and indicate some of the

applications of such information .

The two problems are called reaching definitions and live variable

analysis. To give a preliminary definition of these problems, we

assume al] relevant information is available for a particular procedure

and we have a control flow graph for this procedure.

In the reaching definitions pro bl em, we wish to determine the set

of definitions that can reach the lop of each node x, (IN[x]) and the

set of definitions that can reach the bottom of node x, (OUT[x]). The

equations used to compute the reaching definitions are

IN[x] = U OUT[y]

y E predecessors of x

OUT[x] = (IN[x] - KILL[x]) U GEN[x]

By GEN[x], we mean the set of definitions that are generated in

each node x and can reach the end of node x. KILL[x] is the set of

definitions outside of x thal define variables which also have

definitions within x .

For live variable analysis, we wish to determine the set of vari

ables thal are live at the top of each node x, (IN[x]), and the set of

variables that are live at the bottom of each node x, (OUT[x]). The

equations used to compute live variables are

12

OUT[x] = U IN[s]
s E successors of x

IN[x] = (OUT[x] - DEF[x]) U USE[x]

The set DEF[x] refers to a set of variables that are defined in node

x. The set USE[x] represents the sel of variables that are used in x,

prior to any definitions of that variable in x.

From the solutions of reaching definitions and live variables, the

solutions of two other problems called ''live definitions" and

"definitions-use chaining" can be obtained.

A definition is live at the top of a node x if it reaches and defines a

variable that is live at the top of that node. The set of live definitions

can be used when assigning registers: registers holding dead

definitions can be reused immediately.

Definition-use chaining refers to a linking process between the set

of definitions that reach the lop of node x and the set of variables that

are used in x and between the set of variables live at the bottom of

node x and the set of definitions that are generated in x. This double

linking combined with other local data flow information can be used to

determine for a given definition, what uses can be affected by it and

for each use, what definitions can affect it. Such information is useful

for dead code elimination, constant propagation and anomaly detec

tion. For example, if a given definition affects no uses, that definition

can be removed. If all definitions reaching a particular use are the

same constant, we can use this fact to perform constant propagation.

13

For a particular use, we can detect the anomalous situation where the

variable used is undefined al that point.

1.3.2. Inlerprocedural Analysis

Global flow analysis presupposes that local information is immedi

ately available. Unfortunately this is not true in the presence of pro

cedures and procedure calls. The aim of interprocedural analysis is to

determine the effects of a procedure call on the variables of a pro

gram and to associate this information with the call statement. The

effects which we will consider fall into two categories: variable side

e:ffect and aliases. ·

Variable side-effects can be classified according to various pat

terns of referencing and modifying variables. For each call site s, we

determine the set of variables whose value may be modified by an exe

cution of s, (MOD(s)), the set of variables whose value may be refer

enced by an execution of s, (REF(s)), the set of variables whose value

may be referenced by an execution of s before being defined by an

execution of s, (USE(s)) and the set of variables whose value must be

defined by every execution of s, (DEF(s)) .

MOD is the most useful variable side-effect and can be employed

in many of the optimization processes. The process involved in com

puting REF is easier than that for USE. Moreover, With the exception

of live variable analysis, REF and USE are interchangeable in most

14

contexts . DEF and USE side-effects are mainly used for live variable

analysis.

All methods for computing side-effects of a procedure call finds

approximations lo the solution due to the fact that the perfect deter

mination of side-eff ecls is an undecidable problem. An approximation

to a side-effect for a call site is said to be precise up to symbolic exe

cution under the assumption that any path through a procedure can

be taken when the procedure is called and that the path taken is

independent of the call which invoked the procedure.

The other problem in interprocedural analysis is the determina

tion of aliases of variables. It is possible for two variables to refer to

the same memory locations at the same time. When this occurs the

two variables are aliases of one another and accesses to one variable

have the same effect as accesses to the other.

Information obtained from interprocedural analysis can aid in

automatic documentation of the source code and facilitate program

modifications and maintenance. In addition, any application for global

flow analysis is also an application for interprocedural analysis.

CHAP'l'ER 2

SURVEY

In this Chapter we Will survey the more important literature

related to this research. The background presented here includes

some material that is essential to this study and other that is relevant

to the potential applications of our research. In particular, this

dissertation does not directly address the topics of metrics, testing

and static program analysis . Rather, these are areas that can directly

benefit from the application of the algorithms developed here.

2.1. Data Flow Analysis

The literature in this area falls into two general categories: the

global flow analysis techniques and the interprocedural analysis

methods.

2.1.1. Global Flow Analysis

Several forms of algorithms for solving global flow problems can

be found in the literature.

One approach is the interval analysis method which was

developed by Allen and Cocke (Allen 1976, Hecht 1977, Kennedy 1981) .

Interval analysis collects the relevant information by partitioning the

15

16

flow graph of the program into subgraphs called intervals. Given a

node h, an interval I(h) is the maximal, single entry subgraph in which

h is the only entry node and in which all closed paths contain h. This

method replaces each interval by a single node containing the local

information within that interval. It continues to find such interval par

titions until the graph becomes a single node. At this time global

information is propagated locally by reversing the partitioning pro

cess . The interval analysis approach works only on reducible flow

graphs .

In a similar technique, Hecht and Ullman (1972, 1974) introduced

two transformations on program graphs. Transformation Tl is used

for removal of loops and transformation T2 is used for merging a node

having a unique predecessor with that predecessor. It is demon

strated that when Tl and T2 are repeatedly applied to a graph, the

graph is often reduced to a single node. This is in turn used to show

that interval analysis is a special case of this more general reduction

method. Also the result of this analysis has lead to a number of char

acterizations for reducible flow graphs. A similar algorithm which is

based on three trapsformations is presented in (Graham 1976). This

algorithm requires time at worst proportional to (e log e) for a flow

graph wit~ e edges. Both the transformation algorithms work only on

reducible flow graphs .

Another approach and perhaps the simplest one is the ilerative

method which works on all types of graphs. This technique propagates

information in an iterative manner until all required inf ormalion is

1?

collected ; that is until the process converges. The worst case time

bound of iterative algorithms is O(n2), for a program having n nodes.

Several variations of lhe iterative algorithms can be found in the

literature.

The worklist approach to iterative algorithms due to Kildall

(Hee ht 1977) maintains a worklist of nodes to be visited . The worklist

is initialized, updated as the algorithm executes and is eventually

exhausted . In this version nodes are visited in an arbitrary order. The

worklist approach has been further studied by Kam and Ullman (1976,

1977), who present a generalization of Kildall's algorithm.

The node listing version (Kennedy 1975) first obtains a list of

nodes whose visitation suffices to propagate information. It then pro

pagates information by visiting nodes in the order in which they occur

on the list. The node listing, in which nodes are possibly repeated, is

calculated such that every simple path in the graph is a subsequence

of the list. Aho and Ullman in (1975) show that for reducible flow

graphs an O(n log n) length node listing can be found in O(n log n)

time.

The round-robin version of the iterative algoritluns (Hecht 1977,

Hecht 1975, Aho 1977) propagates information by starting with an ini

tial estimate of the desired information. It then propagates inf orma

tion by repeatedly visiting the nodes in a round-robin fashion until a

fixed point is reached. Nodes are visited in the depth first order in

this version. Kennedy (1976) has done some detailed comparison of

this algorithm and the interval analysis method. This study shows that

1A

interval analysis requires fewer bit vector operations. but is still O(n2)

in the worst case. His study also shows lhal in practice the simple and

easier to implement iterative method may prove faster.

The method of attributes developed by Babich (1978a, 1978b) is a

high level technique which operates on a parse tree representation of

the program. The general approach of the method of attributes is

this : at the lime the source language is being defined, a set of attri

bute rules is written for each control structure. These rules summar

ize the runtime flow of control induced by the structure . The set of

rules associated with the grammar production is applied whenever the

production appears in the parse tree of a program. High level data

flow analysis techniques have also been studied by Rosen (19?7) .

2.1.2. Interprocedura1 Analysis

There are several approaches to interprocedural analysis. Hecht

(1977) presents a number of traditional methods for such analysis. In

general these methods can be characterized as pessimistic and

inefficient. Worst case, complete expansion and one pass methods are

examples of more traditional approaches to interprocedura1 analysis.

A more rec~nt approach developed by Barth (1977. 1978) takes

composition and transitive closure of relations which can be directly

constructed from the source program. These relations are found in

terms of relationships among procedures and variables excluding any

19

consideration of subcalls. Such properties are ref erred to as dire cl

relations .

Two methods for determining MOD, USE and DEF' (see Glossary for

a definition of these and other notations used here) information, con

sidering aliasing effects and no aliasing effects are presented. MOD

and USE are derived precisely up to symbolic execution in the absence

of reference parameters. The computation of DEF' is not precise up to

symbolic execution due to the fact that only one pass is made over the

source text and this is not enough to find all the effects associated

with procedure calls and the interprocedural flow. The formulas given

for calculating MOD and USE in the presence of reference parameters

(with aliasing considered) compute this summary information less

precisely than the farmer method. The imprecision arises from the

fact that different calls on the same procedure are not handled

separately and that aliases are not determined precisely.

For DEF, no new formula is given. Barth assumes that aliasing

effects are limited in real programs and there is no obvious way to cal

culate them for DEF because of the "MUST" characteristic of this rela

tion. He also states that, for achieving a correct formula for DEF, it is

unnecessary to consider aliasing effects and that this formula is

correct, even though slightly less precise than possible.

Aho and Ullman (1977) present a similar method for computing

aliases of variables and calculation of MOD. Aliases are computed by

taking the transitive closure of actual-formal correspondences. MOD

is computed by taking the union of the set of global and formal param-

20

eters of a procedure with that of the procedures it calls. Their

method does nol deal with the nesting of procedures.

Banning (1978, 1980) presents two completely separate algorithms

for computing aliases and side effects of procedure calls. His algo

rithm for computing aliases is presented in Chapter 4 of this paper

and will not be dealt with here. Banning characterizes the side effects

of concern, MOD, REF, USE and DEF, by considering how the side effect

of a collection of statements is derived from the elements of the col

lection.

MOD and REF are characterized as flow insensitive and are com

puted precisely up to symbolic execution by making one pass over the

source text. The basic method for finding the flow insensitive side

effects uses the standard data flow techniques. This method involves

solving a flow problem on a program's reverse calls graph (Graham

76). A generalized side effect is assigned to each node as follows .

First, an initial approximation to the generalized side effect, GMOD, is

assigned to each node. For example, to find GMOD, the initial approxi

mation is IMOD which is the set of variables immediately modified by

that procedure. Secondly, a function is assigned to each edge, which

describes how the calling procedure's side effect depends on the

called procedure's side effect. Then the meet over all paths solution is

found which is the Generalized side effect for that procedure. The side

effect of a call is then derived from the procedure's side effect.

This method is slightly extended to find DEF and USE which are

flow sensitive. However, since flow sensitive side effects depend on lhe

21

flow through a procedure as we11 as the statements in the procedure,

this method cannot find them precisely. The imprecision arises from

the fact that not enough information about the statements within a

procedure is considered in the calculation and that, in the presence of

aliases, DEF information can not be calculated precisely. Banning's

method for computing side effects is further described in Chapter 5 of

this paper.

Rosen (1979) provides the only method to compute both may and

must information precise up to symbolic execution . Although an algo

rithm for finding aliasing iniormation is not given, the effect of aliasing

is considered in the calculation of side effects. His method for finding

MOD, USE and DEF is complicated, but is precise in the presence of

recursion and reference parameters . Like Banning's algorithm, the

algorithm provided by Rosen derives information specific to each call .

The source of precision is due to the fact that this algorithm considers

the local control flow graph of each procedure . The local information

is associated with each arc of the graph and is represented as a for

mula . An initial guess to the values of MOD, USE and DEF is taken to

be zero. These initial guesses are then improved by an iterative tech

nique, which uses the direct local flow and parameter passing informa

tion. He proves that this guess eventually stabilizes and that the fixed

point is the desired information.

Lomet (1977) presents a method for calculating MOD, USE, and

DEF which is very similar to the method given by Rosen. His method is

less precise, because he computes the side effects for procedures

22

assuming no aliases . The side effect for the calls are then computed

from this information and the aliases created by the call. Lomet does

not provide an algorithm for computing aliases .

Myers (1981) presents an algorithm to compute must and flow

sensitive summary interp·rocedural information . He states that the

interprocedural live problem is NP-Complete and that avail and must

summary problems are intractable due to the presence of aliasing .

But the degree of exponentiality is small . The program model used is

a super graph in which the flow graph for each procedure is linked by

calls. All alias sets are found by initially taking a local variable which

is the alias of itself as an alias set and then repeatedly applying an

incarnation propagation function to this basis and all its offsprings

until no new sets can be generated. In this way, he is able to find the

alias sets for each separate incarnation of a procedure. An iterative

technique is used lo find the LIVE, AVAIL and MUST summary informa

tions . To determine this inf ormalion, his technique involves the pro

pagation of alias sets rather than variables. The process of iteration

converges when the meet over all paths solution of the super graph is

found .

2.2. Incremental Algorithms

There has been remarkably little research on the development of

incremental algorithms other than for use in language based program

development systems.

23

Incremental attribute evaluation algorithms are used in the Cor

nell Program Synthesizer (Demers 1981, Reps 1982; 1983). The syntax

directed editor of this system is based on an attributed tree represen

tation of the source code. The task of the incremental attribute

evaluator is to update the attribute values in the tree after each pro

gram modification. The incremental attribute evaluator finds and

reevaluates inconsistent attribute instances and then propagates the

changes by following attribute dependencies .

Another incremental system is the IPE component of the Gandalf

project (Habermann 1980, Medina-Mora 1901). IPE is composed of a

syntax directed editor, an incremental program translator and a

language oriented de bugger. The program is internally presented in

two forms : syntax tree and machine representations. The syntax tree

is built by the editor and is the common program representation for

all the tools in IPE. As the programmer is incrementally changing the

tree representation of the program, the IPE system incrementally

updates and maintains an executable version by automatically apply

ing the translation phase to program pieces and incorporating them

on the target machine. The debugging facility of IPE is implemented

using the incremental modification mechanism, i.e., incremental

update, translate and load. The code generator provides the mapping

from the tree representation to the machine representation.

Incremental algorithms for global flow analysis have been

designed by Ryder (1982). The original algorithms considered are

based on reduction methods and the only program modifications

24

allowed are those which result in local changes within a node. Changes

in the control flow structure are not considered.

The only other incremental program analysis algorithm that we

know of is that for parsing of deterministic context free languages

(Ghezzi 1979) .

2.3. Metrics

Several recent studies in software engineering have focused atten

tion on the development and validation of a set of quantitative metrics

to measure the complexity of software structures. These metrics are

useful management aids and important design tools.

One type of metric is based on the lexical content of a program.

Studies here include Halstead's work (1977), which counts the number

of operators and operands, the McCabe 1 s cyclomatic complexity meas

ure (McCabe 1976), which counts the number of predicates in the

code, and the logical complexity measure reported by Gilb (1977),

which counts the number of if statements in the program.

Another type of metric is based on the flow of information or con

trol among system components . The work of Oviedo (1980) determines

the program complexity in terms of the control flow and data flow

complexities. The control flow complexity is the number of edges in

the flow graph. The data flow complexity of the program is the sum of

the data flow complexities of each node. To determine the data flow

complexity of each node, two sets are computed : the set of definitions

25

which can reach the node and the set of locally exposed variables

within the node . The data flow complexity of node n is then the

number of prior definitions of locally exposed variables in n that can

reach n. The total program complexity is then defined as the sum of

the control flow and data flow complexities of the program .

The research of Henry (1979, 1981) is another example of metrics

based on information flow techniques. In this work the procedure,

module and interface complexities are computed. To compute the

procedure complexity, the complexity of procedure code and the com

plexity of the procedure's connections to its environment are deter

mined. The code complexity is defined as the number of lines of code.

The complexity of the procedure's connection to its environment is

calculated as

(fan-in • fan-out) 2

where fan-in of a procedure is the number of local flows into that pro

cedure and fan-out of a procedure is the number of local flows from

that procedure. The formula defining the procedure complexity meas

ure is

length • (fan-in • fan-out) 2.

The procedure complexities are used in turn, to establish module

complexities. A module is defined with respect to a data structure D

to consist of those procedures which either directly update D or

directly retrieve information from D. The module complexity is then

26

calculated as the sum of the complexities of the procedures within the

module . The interface measurements focus on the interfaces which

connect system components . The formula given to measure the

strength of the connections from module A to module Bis

(the number of procedures exporting information
from module A + the number of procedures
importing into module B) • the number of
information paths .

The coupling measurements show the strength of the connections

between two modules and are derived by applying the above formula

to the following factors :

(1) The direct flow of information from module A

to module B,

(2) The flow of information from module A to the

transfer procedures (these procedures are

not in any module and their only purpose is

to transfer information from A to B), and

(3) The flow of information from the transfer

procedures lo module A.

27

2.4. Testing

The technical literature on software testing falls into two main

categories : those that deal with the study of theoretical foundation of

program testing and those that deal with development of new tech

niques for producing reliable lest data.

The theory of reliable testing addresses the conditions under

which a test can be considered equivalent to a program's formal proof

of correctness. Goodenough and Gerhart (1977) define an ideal or a

reliable test as one that satisfies a valid and reliable test data selec

tion criteria. The successful execution of a reliable test would then

demonstrates program correctness. In other words, a successfully

executed reliable test is said to be equivalent to a direct proof of

correctness. These ideas are further studied by Weyuker (1980).

Howden (1976) states that an effective testing strategy which is reli

able for all programs can not be constructed.

The techniques for test case design are of two kinds : "black-box"

or functional testing and "white-box" or structural analysis techniques

(Myers 1976, Miller 1981, Adrion 1982). In black-box testing, test data

is derived completely from the external specification of the software,

whereas i.n the while box testing, it is derived completely from the

internal specification of the program. In the following we will deal with

the literature on white-box testing which is of more importance to this

research.

Myers (1976) states that the ultimate testing technique is one that

facilitates the execution of every path in the program. Due to the

28

inf easibilily of such a test, he proposes another criterion called mu]li

ple condition coverage . This criterion requires one to write sufficienl

test cases such that all possible combinations of condition outcomes

in each decision are produced, and all points of entry are invoked al

least once .

Another criterion, introduced by Huang (1977), is known as

branch coverage. This criterion states that one must write enough

test cases such that each decision has a true and false outcome al

least once.

Howden {1976) presents the path testing method. Path testing

involves the grouping of the set of all paths through a program into a

finite set of classes . It then requires the testing of one path from each

class.

Rapps (1982) suggests the use of data flow analysis techniques as a

means for path selection criteria. The analysis focuses on the

occurrences of variables within the program . The actual functions and

predicates play no role. Each variable occurrence is classified as

being a definitional occurrence (def), computational-use occurrence

(c-use), or predicate-use occurrence (p-use). Def and c-use

occurrences are associated with the nodes in a data flow graph,

whereas p-use occurrences are associated with the edges. The cri

terion suggested is called all-du-paths. A path P satisfies this criterion

if for every node i and every x E def(i), P includes every loop-free

definition-clear path with respect to x from i to all elements of

dpu(x.i) and lo all elements of dcu(x,i). Where P is the set of com-

29

plele paths of the graph, dcu(x,i) is the set ~fall nodes j such that

x € c-use(j) and for which there is a definition-clear path with

respect to x from i to j, and dpu(x,i) is the set of all edges (j,k) such

that x E: p-use(j,k) and for which there is a definition-clear path with

respect to x from i to (j,k) .

DeMillo (DeMillo 1970, Budd 1970) presents a method for deter

mining the test data adequacy known as program mutation. In this

method, a program P whlch is correct on a test data T is subjected lo

a series of mutant operators to produce mutant programs which differ

from P in very simple ways. The mutants are then executed on T. If

all mutants give incorrect results then it is very likely that P is

correct. On the other hand, if some mutants are correct on T then

either these mutants are equivalent to P or the test data is inade

quate.

Symbolic execution is another testing strategy, (Osterweil 1981,

Howden 1977, Clarke 1976), which computes the values of a program's

variables as functions. These functions represent the sequence of

operations carried out as execution is traced along a specific path

through the program.

2. 5. Static Analysers

Static analysis techniques involve the examination of the software

design and source code for consistency, completeness and structural

well-formation (Ramamoorthy 1975). The underlying objective of such

30

analysis is the detection of various structural and semantic anomalies

and the identification of questionable features which should be the

target of further dynamic analysis . The main characteristic of a static

analysis method is that it does not necessitate the actual execution of

the software .

The FACES system (Ramamoorthy 1975) is an example of a static

analysis tool. This system is designed for assisting the developmenl 1

testing, modification and maintenance of Fortran programs . FACES

consists of two parts : the Fortran Front End and the Automatic Inter

rogation Routine (AIR) . The Fortran Front End is essentially a

language processor to transform the program source code to the

appropriate tabular representation which is stored in a data base. The

generated data base then consists of three main tables : symbol tablel

use table and the node table.

The AIR interprets queries and automatically searches the data

base for specified language constructs. Identification of syntactically

correct but logically suspicious constructs and identification of redun

dant and unreachable code are some examples of facilities provided

by AIR.

DAVE (Osterweil 1976, Fosdick 1976) is a more sophisticated static

analysis tool. This system uses data flow analysis techniques to detect

suspicious or erroneous use of data in Fortran programs. The data

flow anomalies detected by DAVE are : references to uninitialized vari

ables and dead variable definitions . The system examines all paths

from the program start node and is capable of determining that no

31

path, when executed, will cause a reference to . an uninitialized vari

able . It also examines al] paths from a variable definition and is capa

ble of determining whether or not there is a subsequent reference lo

the variable .

DAVE carries out its analysis by performing a flow graph search

for each variable in a given unit. It analyses subprograms in a leafs-up

order and assumes that no subprogram invocation will be considered

until the invoked subprogram has been completely analyzed. The use

of data flow analysis for anomaly detection in concurrent software is

further investigated by Taylor (1900).

CHA.PT~ 3

INCREMENTAL DATA Jn.ow ANALYSJS

An incremental data flow analysis algorithm is one which, by

determining and propagating program changes, avoids complete

reanalysis after each modification . The complexity of such algorithms

depends on the program changes made and the size of the affected

area. The possible program modifications are insertion and deletion of

one or more source-level statements. Source code replacement is

considered to be deletion followed by insertion.

The changes made in the source code may be minor and result in

changes in local data flow information within a node. In such cases,

changes in the local data flow information can easily be propagated

and usually affect only a small portion of the solution from the previ

ous analysis. On the other hand, some program modifications may

result in changes in the control flow structure. Such changes in gen

eral add to the amount of work of the incremental algorithms.

We have designed incremental analysis versions of the iterative

global flow analysis algorithms due to Hecht (Aho 1977), and the inter

procedural algorithms due to Banning (1979). These algorithms and

their incremental versions are described in the following sections.

32

5. 1. Global F1ow Analysis

Global flow analysis involves two types of problems :

(1) The forward flow problems are those which, given a point in the

program, ask what can happen before control reaches that point.

(2) The backward flow problems are those which, given a point in the

program, ask what can happen after control leaves that point.

The problem type is of importance to our incremental algorithms,

since it helps isolate the area of the digraph which is affected by a

modification . In the follo-wing sections, the reaching definition and live

variable analysis algorithms are presented as examples of forward and

backward flow problems, respectively. Both these algorithms work on

the digraph representation of code, where each node is indexed by its

depth first number (DFN).

5. 2. Exhaustive I Incremental Reaching Definition

A definition d of a variable V reaches a point P, if there is a path in

the flow graph from d to P, such that no other definition of V appears

on the path.

Hecht's algorithm begins by computing two sets for each node B

in the digraph. These sets are actually represented as bit vectors and

are:

34

GEN [BJ - The set of generated defirulions,

those definitions within B that

reach the end of block B.

KILL [BJ - The set of defin]lions outside of B

that define identifiers which also

have definitions within B.

The next step is to apply the algorithm shown in Figure 3 in order

to calculate the sets IN[B] and OUT[B]. IN[BJ consists of all defirutions

reaching the point just before the first statement of block B. OUT[BJ

is the set of definitions reaching the point just after the last statement

of block B.

The algorithm in effect solves the following set of 2N simultaneous

equations for a flow graph of N nodes.

OUTf n] = (INf n] - KILLf n l) U GEN[n l

IN[n] = U OUT[p]
pa pred
ecessor of n

The solution lo this set of equations is not unique in the presence of

back-edges in the flow graph. We actually look for the smallest possi

ble solution. Hence, the algorithm starts with the assumption that

IN[n] for all nodes is empty (i.e. nothing reaches n) and OUT[n] for all

nodes is GEN[n]. The algorithm then repeatedly gets better approxi-

BEGIN
FOR I:= 1 TON DO

BEGIN (• initialization •)
IN[l] := ¢
OUT[l] : = GEN[I]

END
CHANGE : = TRUE
WHILE CHANGE DO

BEGIN
CHANGE := FALSE
FOR I := 1 TON DO

BEGIN
NEWIN := U OUT[p]

pa prede
cessor of node I

IF IN[I] <> NEWIN THEN
BEGIN

IN[I] : = NEWIN
OUT[I] : = (IN[I] - KILL[IJ) U GEN[I]
CHANGE :=TRUE

END
END

END
END

Figure 3. Reaching definition algorithm.

35

mations by recomputing IN[n] and OUT[n] for all n, using the above

relations .

Our incremental update algorithm for reaching definitions is actu

ally a two step process. When a modification occurs, the first step is to

calculate or update the data flow information for the affected node .

This involves updating the GEN and KILL sets first, followed by one of

the following actions.

The following cases exist.

(a) Insertion of a new node P.

•Recompute the depth firsl order.

•Compute the GEN and KILL sets

This may affect the KILL sets of other

nodes; if so, recompute the KILL set

for each affected node.

• Compute first approximations of IN and

OUT for the new node.

•Place all immediate successors of P in a

worklist called W.

• Determine the source nodes for all

definitions killed by P. Remove all

references to the killed definitions

from IN and OUT of all nodes.

Compute the IN and OUT of the source

nodes and place all their immediate

successors in W.

(b) Delelio.n of an existing node.

•Recompute the depth first order.

•Remove any references in the KILL, IN, OUT

sets of all nodes to the generated defin

itions within this node.

36

•Place all immediate successors of P in the

worklisl W.

(c) Insertion of an arc.

•Place the node directed towards into the

worklist W.

(d) Removal of an arc.

•Determine the source nodes for all definitions

which were previously propagated and are now

blocked by removal of the arc .

•Remove every reference to these definitions

from IN and OUT of all nodes .

• Compute the IN and OUT of the source nodes

and place all their immediate successors in

the worklist W.

37

If the algorithm is applied to a new procedure, the initial approxi

mations to the sets IN and OUT are :

IN(n] = ¢ for all n.

OUT[n] = GEN[n] for all n.

The worklist, W, in this case consists of the immediate successors of

each node, n, such that GEN[n] # ¢ .

38

In all cases, a worklisl W is determined, which consists of all the

immediate successors of the affecled node. The worklist is con

structed in this manner because in a forward flow problem we are con

cerned with the portion of the digraph below the affected node.

The second step in our updating algorithm is to propagate the

changes using the algorithm given in Figure 4. The procedure PROP

actually propagates the changes. It calculates a new IN value for the

node; the old value and the new value are compared; if they differ,

then the node is considered an affected node. When it is determined

that a node is affected, its IN value is updated to reflect the changes; a

new OUT value is calculated; the old and new OUT values are com

pared; if they differ then OUT value is updated and W is expanded to

cover the successors of this node.

3.3. Exhaustive I Incremental Live Variable Algorithms

In live variable analysis, we wish to know for name V and point P

whether the value of V at P could be used along some path in the flow

graph starting at P. If so, we say Vis live at P; otherwise Vis dead at

P.

The exhaustive bit propagation algorithm is shown in Figure 5.

This algorithm uses the following sets :

IN[n] - Set of names live at the point immediately

before block n.

PROCEDURE INC-REACH-DEF;

PROCEDURE PROP(n,P);
BEGIN

NEWIN := U OUT[p]
pEP

IF IN[n] <> NEWIN THEN
BEGIN

IN[n] := NEWI N
NEWOUT := (IN[n] - KILL[n]) U GEN[n]
IF OUT[n] <> NEWOUT THEN
BEGIN
OUT[n] := NEWOUT
W :=WU fx Ix E: successors of n ~

END
END

(•else no more updating is required •)
(• for this path. •)

END (•PROP •)

BEGIN
WHILE W <> ¢DO

BEGIN

(•select and remove node n from W •)
(•let n be the node with least •)
(•index contained in W. •)

W := W - [n]
P : = f x I x E: predecessors of n ~
PROP(n, P)

END
END

Figure 4. Incremental update algorithm
for reaching definitions.

39

OUT[n] - Set of names live at the point imme~ialely

after block n.

DEF[n] - Set of names assigned values in n, prior

to any use of that name in n.

USEf n1 - Set of names used inn, prior to any defin

ition of that name in n.

40

Our incremental update algorithm for live variable analysis is

similar to that for reaching definitions . The only difference is the

determination of the members of the worklist W. Here, W contains all

the immediate predecessors of the affected node. The reason being

that in a backward flow problem, one is concerned with the portion of

the digraph just above the affected node. The data flow solution below

the affected node will not change .

The first step in our incremental algorithm is to determine the

new values for the affected node and the members of W, the worklist.

The second step is to propagate the changes using the algorithm in

Figure 6.

3.4. Analysis Of The Update Algorithms

In this section, we discuss the time and space complexities of the

incremental update algorithms for global flow analysis . The complex

ity analyses for these algorithms are very much data structure depen

dent. Therefore, we first discuss our implementation for an incremen

tal PASCAL source level analyser.

BEGIN
FOR I:= 1 TON DO IN[I] := ¢
WHILE changes occur DO

FOR I : = N TO 1 BY -1 DO

(• in reverse depth first order •)

BEGIN
OUT[I] := U IN[s]

s a succ
essor of node I

IN[I] : = (OUT[I] - DEF[I]) U USE[I]
END

END

Figure 5. Llve variable analysis algorithm.

41

PROCEDURE INC-LIV-VAR;

PROCEDURE PROP(n,S);
BEGIN

NEWOUT := U IN[s]
s E: s

IF OUT[n] <> NEWOUT THEN
BEGIN

OUT[n] := NEWOUT
NEWIN := (OUT[n] - DEF[n]) U USE[n]
IF IN[n] <> NEWIN THEN
BEGIN .

IN[nl := NEWIN
W :=WU ~ x Ix E: predecessors of n ~

END
END

(• else no more updating is required •)
(• for this path. •)

END (•PROP*)

BEGIN
WHILE W <> ¢ DO
BEGIN

(•select and remove node n from W •)
(•let n be a_ node with the highest •)
(•index in W. •)

W :=W- [n]
S := l x I x E: successors of n ~
PROP(n, S)

END
END.

Figure 6. Incremental live variable analysis
algorithm.

42

43

When the analysis is done at the source level each procedure is

decomposed into the language primitives which then make up the

nodes of the directed graph. The sets GEN, USE and DEF are com

puted by scanning the procedure and are assigned to each node.

These sets are implemented as bil vectors . That is, using the SET con

struct of the programming language PASCAL. GEN is defined in terms

of the number of statements contained in a procedure . The sets DEF

and USE are defined in lerms of the average number of exposed vari

ables for a given procedure . That is, USE and DEF are bit vectors hav

ing one bit per exposed variable.

We associate with each variable exposed to the procedure, a set of

statements that define the variable. After the procedure has been

completely scanned, the KILL set for each node is computed using GEN

and definition sets associated with each variable. The set KILL is

implemented as a bil vector and is defined in terms of the number of

statements contained in a procedure.

3.4.1. Time Complexity

To establish the time complexity of the incremental update algo

rithms, we will briefly discuss the complexity of the Hecht/Ullman's

algorithms and define the parameters used in their analysis.

Definition: A reducible flow graph (RFG) is one that can be decom

posed uniquely into a DAG (Directed Acyclic Graph) and backward

arcs.

44

Definition: The loop-connectedness of . an RFG G, which we shall denote

by d, is the largest number of backward (or back) arcs found in any

cycle-free path in G.

An important restriction on flow graphs follows from the nature of

branches in programs.

Definition: A flow graph in which r = O(n) is called a sparse flow graph,

where

• n is the total number of nodes, and

• r is the total number of arcs in a flow graph.

In practice, all flow graphs resulting from programs are sparse

because binary branching is generally used for control flow. Also, pro

grammers use disciplined and sparse control flow structures for con

ceptual simplicity. When no branching more complex than binary is

used, r ~ 2n. Even flow graphs of programs containing case state

ments are (almost always) sparse . If an algorithm is O(r), then it is

O(n2) in the worst case, since r is O(n2) in the worst case. If sparse

ness is assumed then r is O(n) . Thus the algorithm would be O(n).

In the worst case, Hecht's algorithms are bounded by O(n2) bit

vector operations for both reducible and non-reducible graphs. We

will discuss this briefly for the reaching definition algorithm of Figure

3. The next theorem and a complete analysis of the iterative algo

rithms can be found in (Hecht 1975).

45

Theorem 1: If the numbering of nodes in G (where G is an RFG) is

chosen suitably (depth first order), the body of the while-loop in the

algorithm will be executed at most d+2 times .

The for-loop in the algorithm will be executed n times . Thus,

ignoring initialization the algorithm requires al most (d +2) • (n) steps .

In the worst case, d is of O(r). If we assume sparseness r = O(n), then

the algorithm requires O(n2) ~it vector steps in the worst case .

The complexity of the incremental update algorithm displayed in

Figure 4 is similarly bounded by O(n2) in the worst case. This is due to

the fact that for each back arc in the flow graph, n nodes may ulti

mately be introduced in the worklist W. By definition, there are d

back arcs in an RFG. Thus, the incremental algorithm requires O(dn)

steps .

Computation of NEWIN for each node with p predecessors requires

(p-1) bit vector steps. Then for n nodes with a total of r predecessors

(r-n) bit vector steps are required. Computation of NEWOUT for each

node requires two bit vector steps . Then for n nodes 2n bit vector

steps are required. Thus the algorithm requires 0 (d • (r + n)) bit vec

tor steps . In the worst case dis of O(r) and assuming sparseness

r = O(n) :

If the total number of statements in a procedure is reasonably

small so that a bit vector fits in one word, then each of the bit vector

steps mentioned above can be performed by a single logical operation.

In this case, the update algorithm displayed in Figure 4 is of O(n2
)

46

complexity in the worst case . Otherwise, the bit vector steps can be

performed in time proportional to the number of statements in the

procedure which is ~ (for an average procedure size n and a word size

of B bits) . In this case, the incremental reaching definitions algorithm

is of O(n3) complexity in the worst case .

By the same arguments, the incremental live variables algorithm

of Figure 6 requires O(dn) steps for a fl.ow graph with n nodes . The

computation of NEW OUT for each node with s successors requires (s-1)

bit vector steps. Then for n nodes with a total of r successors (r-n) bit

vector steps are required . Computation of NEWJN for n nodes require

2n bit vector steps. Then the complexity of the incremental live vari

ables algorithm is exactly the same as that for incremental reaching

definitions . That is, both algorithms require O(n2) bit vector opera

tions.

The only difference arises due to the fact that the bit vectors used

in the live variables problem are defined in terms of the number of

exposed variables of a procedure. If the total number of exposed vari

ables for a procedure is reasonably small so that the a bit vector fits

in one word, then each of the bit vector steps can be perf orrned by a

single logical operation and thus the algorithm of Figure 6 is of O(n2
)

complexity in the worst case. Otherwise, each bit vector step require

time proportional to its size which is I~ I (where lvl denoles the tolal

4?

number of exposed variables and B is the word size) . In this case, the

incremental live variables algorithm is of O(lvl • n2) in the worst case .

Empirical surveys (Knuth 1971), show that in programs written

with a disciplined control flow structure d is rarely more than 3, (d is

essentially the maximum nesting of while-loops). In practice then,

both the exhaustive and the incr~mental algorithms require O(n) bit

vector operations .

We should point out that in the incremental update algorithms all

nodes are visited only in extreme cases, whereas in the exhaustive

algorithm all the nodes must be visited for each iteration of the while

loop . This situation can be seen in the examples shown in Figures 7 to

9.

A problem flow graph is shown in Figure 7. In Figure 9, the solu

tion to the example is found using the incremental reaching definition

algorithm. This is an extreme case, since no previous solution exists.

But even in this case the update algorithm has a better performance.

It visits only 6 nodes, whereas the exhaustive algorithm applied in Fig

ure 8 visits 18 nodes .

Moreover, a minor modification in local information within a node

in general would affect only a small number of nodes . An example of

this situation is shown in Figure 10. The local change in node 6 affects

the data flow solution of node 4 only. One node is visited for conver

gence. The exhaustive algorithm must visit 18 nodes to find the solu

tion.

dl : def J

node n GEN[n] bit vector KILL[n] bit vector

1 t d 1 ~ 10000 ~d3,d5~ 00101
2 H 00000 H 00000
3 ~d2,d3~ 01100 ~d 1,d4,d5~ 10011
4 f d4~ 00010 f d2~ 01000
5 H 00000 H 00000
6 ~d5~ 00001 ~d 1.d3~ 10100

Figure 7. Example of a flow graph . All nodes are numbered in
reverse post order.

48

initial pass 1

node n IN[n] OUT[n] IN[nl OUT[n]

1 00000 10000 00000 10000
2 00000 00000 10000 10000
3 00000 01100 10000 01100
4 00000 00010 10001 10011
5 00000 00000 11111 11111
6 00000 00001 10011 00011

"initial pass 1

node n IN[n] OUT[n] IN[n] OUT[n]

1 00000 10000 00000 10000
2 10000 10000 10000 10000
3 10000 01100 10000 01100
4 10011 10011 10011 10011
5 11111 11111 11111 11111
6 10011 00011 10011 00011

Figure 8. Solution of the example in Figure 7 using Hecht's al
gorithm. If we ignore initialization, a total of 18 nodes are visit
ed before convergence.

49

The initial approximation is

INfnl = ¢ for all n

OUT[n] = GEN[n] for all n

The work list W = f 2, 4, 5, 6~

visit n IN[n] OUT[n] w

2 10000 10000 ~3,4,5,6~
3 10000 01100 ~4,5,6~
4 10001 10011 (5,6~
b 11111 11111 ~6 ~
6 10011 00011 (4 ~
4 10011 10011 H

Figure 9. Solution of the example in Figure 7, using incremen
tal reaching definition algorithm. A total of 6 nodes are visited
before convergence.

50

node n GEN[n]
I

1 fdq
2 H
3 (d2,d3~
4 ~d4~
5 H
6 ~d5.d6~

d 1: def J

d2: def I
d3: def J

local change in node 6.

bit vector KILL[n] bit vector

100000 fd3,d5~ 001010
000000 B 000000
011000 fdl,d4,d5,d6~ 100111
000100 fd2,d6~ 010001
000000 H 000000
000011 ~d 1.d2.d3.d4 ~ 111100

1st phase: OUT[6]=(100110-111100)+000011
=000011 w = ~4~

2nd phase:

visit n IN[n] OUT[n l W

4 100011 100110 H

Figure 10. Occurrence of a local change in the example of Fig
ure 7, and the updated solution. Only one node is visited for
convergence. Application of the exhaustive algorithm, requires
the visitation of 18 nodes.

51

52

Even with control flow changes the incremental algorithms are

usually better since they visit fewer nodes . An example is shown in

Figure 11, where the example of Figure 7 is changed by removal of

node 6. This change in control flow structure affects the data flow

solution of node 4 . One node is visited before convergence. The

exhaustive algorithm must visit 5 nodes .

3.4.2. Space Complexity

To analyse the space complexity for the incremental update algo

rithm, we need to consider both the storage space to save information

from one analysis to the next and the actual storage required by the

algorithm. In our discussion m is the average number of statements

in a procedure, lvl denotes the total number of variables exposed to a

procedure and B is the word size.

We first deal with the storage space required to save information

from one analysis to the next for incremental reaching definitions .

The following information needs to be saved for every procedure.

node n

1
2
3
4
5

0 dl: def J

d2: def I
d3 : def J

Control flow change .
Node 6 is removed.

GEN[n] bit vector KILL[n] bit vector

~dq 1000 fd3~ 0010
H 0000 H 0000
~d2,d3~ 0110 fd1,d4~ 1001
~d4~ 0001 ~d2~ 0100
H 0000 H 0000

1st phase : W = ~4~

2nd phase :

visit n IN[n] OUT[n] W

4 1000 1001 H

Figure 11. Control flow change in the example of Figure 7, and
the updated solution .

53

54

Information Storage

name 1 word

number 1 word

start (line#) 1 word

end (line#) 1 word

For each variable exposed to this procedure:

variable name 1 word

variable number 1 word

definitions m
B

For each node, k in this procedure:

Information Storage

Position of k 1 word

DFN[k] 1 word

KILL[k]-bit vector m -
B

GEN[k]-bit vector m
B

IN[k]-bit vector m
B

OUT[k]-bit vector m -
B

SUCC[k]-bit vector m.
B

PRED[k]-bit vector m
B

55

Thus for incremental reaching definition algorithm, for each pro

cedure we need a total of

4 + lvl • (2 + ~) + m • (2 + Bm) =
B B

4 + 2 • (ivl + m) + ';; • (lvl + 6m)

words of storage space to save information. Then for a program con

sisting of N statements, the external storage space requirement is

NP • (4 + 2 • (lvl + m) + ';; • (lvl + 6m))

words, where N'P is the total number of procedures in a program. NP is

equivalent to N . Hence, the storage needs are
m

::i • (4 + 2 • (lvl + m) + '; • (lvl + Sm)) =

4N + 2N + (lvl •N)*(~ l__) + BNm = 0 (N • (m+lvl))
m m B B

In practice the average procedure size is very small in comparison

to the actual program size. In a survey of 89 PASCAL programs, Carter

(1982) reports N to be on average 1749 and m to be approximately 53.

The other parameter, namely lvl the number of exposed variables,

needs to be discussed . Although, lvl is large in older languages such as

FORTRAN, in newer languages this tend to be much smaller in com

parison to the total size of the program. In a language such as PAS

CAL, due to the scope rules, lvl is small . lvl tends to be very small in

56

languages such as ADA or Path PASCAL due to the package and object

constructs . Hence, we can assume the external storage complexity to

be of O(N). That is, the external storage complexity increases in the

number of statements in the program.

The actual update algorithm of Figure 4 require three bit vectors

for the worklist Wand the sets NEWIN, NEWOUT. Each of these bit vec-

tors requires ';; space . Also, the previous data flow information for

the procedure under analysis must be made available. This requires

4 + 2 • (lvl + m) + ';; • (lvt + 6m) = 0 (m2
)

Thus the space complexity for the incremental update algorithm

for r~aching definitions increases in the number of s:tatements in a

procedure and is as follows

The space complexity for the incremental live variables algorithm

follows the same arguments. The following information needs to be

saved for every procedure from one analysis to the next.

57

InfQrmatiQn Storage

name 1 word

number 1 word

start (line#) 1 word

end (line#) 1 word

For each variable exposed to this procedure :

variable name 1 word

variable number 1 word

For each node, kin this procedure:

Information Storage

Posi lion of k 1 word

DFN[k] 1 word

USE[k]-bit vector hl
B

DEF[k]-bit vector hl
B

IN[k]-bit vector hl
B

OUT[k]-bit vector hl
B

SUCC[k]-bit vector m -
B

PREDfk]-bit vector
m
B

58

Thus, for incremental live variables algorithm, for each procedure

we need a total of

4 + (2 • lvl) + 2m + '; • (2m + (4 • Iv!))

words of storage space lo save information. Then for a program con

sisting of N statements, the external storage space requirement is

::. .. (4 + (2 .. I v I) + 2m + '; .. (2m + (4 .. Iv I)))

which results in the external space complexity of

O(N • (m + lvl))

By the same arguments discussed for reaching definitions, the size of

m and lvl are small and the external storage complexity can be

represented by O(N) .

The actual update algorithm of Figure 6 require 3 bit vectors and

the solutions of a previous analysis of the procedure under considera

tion. This re quires

(3 • lvl) + 4 + (2 • lvl) + 2m + ';; • (2m + (4 • lvl))

That is, · the space complexity for the incremental live variable algo

rithm is O(m2).

The results of our analysis depicts that for both algorithms the

exte.rnal storage complexity increases with the number of statements

59

in the program and the space complexity for· the actual update algo

rithms increases with the number of statements in the procedure.

3.5. Validity of the Incremental Update Algorithms

In this section, we discuss the validity of the incremental reaching

definition algorithm. Similar arguments apply for the incremental live

variable analysis .

For purposes of analysis, we define the terms IN and OUT for a

procedure, R, and redefine the algorithm shown in Figure 4.

For a procedure, R with n blocks, the ith approximation to IN is

defined as

where INi[j]R is the ith appruximalion for block j. Similarly the ith

approximation to OUT is defined as

In each of the above, R is omitted whenever this omission leads to no

confusion . We define inclusion of sets of the above form by

INJRJ c: INj[R] iff
INi[k] c: INj[k] for all k = 1..n

In Figure 12, we present a reformulation of the incremental reach

ing definition algorithm of Figure 4. This reformulation better enables

us to show convergence of the algorithm. The main difference is that

1 PROCEDURE INC-REACH-DEF;

2 PROCEDURE PROP(n,P);
3 BEGIN
4 NEWIN := U OUTJp 1

p E: p
5 IF INJnJ <> NEWIN THEN
6 BEGIN
7 INJnJ := NEWIN
8 NEWOUT := (INJnJ - KJLL[n]) U GEN[n]
9 IF OUTJnJ <> NEWOUT 'fHEN
10 BEGIN
11 OUT1fn] := NEWOUT
12 wi+i := wi+l u Ox Ix E: successors or n~ n wi)
13 END
14 END

(•else no more updating is required •)
(•for this path. •)

15 END (•PROP •)

16 BEGIN
17 i := 1
18 W1 :=W
19 WHILE W1 <>¢DO
20 BEGIN
21 IN

1
[k] := IN1_

1
[k] for all k = 1. .n

22 OUTJkl := OUTi-lf k] for all k = 1 .. n
23 w1+1 := ¢
24 WHILE W1 <> ¢DO
25 BEGIN

26
2'7
27
28

(•select and remove node n from W •)
(• let n be the node with least •)
(•index contained in W. •)
W. := W. - [n]

l l

P := f x I x E: predecessors of n ~
P~OP(n, P)

END
29 i := i + 1
30 END
31 END

Figure 12. Reformulation of the incremental reaching
definition algorithm of Figure 4.

60

61

now there is an order on processing the elements of W, the worklist.

We will first process all the elements of a current worklisl. If during

this process the IN value of a node is affected, we will record its

immediate successors in a separate worklisl only if they are not

members of the current worklist . The elements of this new worklisl

will be dealt with in the next approximation .

For implementation purposes,' the algorithm of Figure 4 should be

used, since the processing of nodes in depth first order will ensure fas

ter convergence.

Theorem 2: The incremental update algorithm for reaching definitions

(shown in Figure 12) terminates and is correct.

Proof: We deal with termination and correctness separately.

Termination: We prove termination by a series of Lemmas . For the

next two Lemmas, assume the algorithm of Figure 12 is applied to a

new procedure . That is, no previous solution exists. Under this cir

cumstance,

IN
0
[k] := ¢ for all k=l .. n

OUT
0
[k] := GEN[k] for all k=l .. n

and, therefore,

IN
0
[R] = [¢, , ¢]

62

OUT0[R] = [GEN[1], , GEN[n]] .

Lemma 1: For each i ~ 1, INi_ 1[k] c INi[k] for all k=l .. n. Similarly for

OUT.

Proof: We prove Lemma 1, by inducUon on i, the number of an approxi

mation .

Basis: (i = 1)

Since IN0[k] = ¢ for all k then IN0[k] c IN
1
[k] , no matter what we

set IN 1[k] to be . OUT1[k] will contain GEN[k] no matter what, since it

can change only by execution of statement 8.

Thus OUT0[k] c OUT1[k].

Inductive step: (i = t+l)

Assume INt_ 1[k] C INt[k] and OUTt_ 1[k] c OUTt[k] on the tth approx

imation to the solution for node k and note that the sets GEN and KILL

remain unchanged from one approximation to the next.

On the (t+l)st approxirna~ion, OUTt+i[p] starts as OUTt[p] due to

statement 22. Thus OUTt+I[p] (in statement 4) can not have

decreased. Hence, NEWIN would be at least as large as it was during

the t th stage and the ref ore,

INt[k] c INt+l [k]

Since INt+
1
[k] can only grow at each stage, the same property holds

for NEWOUT and thus,

63

Proof: The proof of this Lemma is a trivial consequence of Lemma 1

and the definition of INJRJ in terms of the INJk]R's and OUTJRJ in

terms of the OUTJk]R's .

Lemma 3: There exists a j _such that INj[R] = INj+ 1[R], OUTj[R] =
OUTj+ 1[R] and such that the worklisl Wj+1=¢. that is, the algorithm

t~rminates .

Proof: Each INJRJ and OUTJRJ is an approximation to a finite set. By

Lemma 2, INJRJ's and OUTJRJ's form a non-decreasing sequence of

approximations . But since each IN.[R] and OUT.[R] is a subset of a
l l

finite set, then they can not increase in size indefinitely. Thus, there

must be an approximation j, such that INj[R] = INj+ 1[R], OUTj[R] =

OUTj+ 1[R].

Moreover, if INj[R] = INj+ 1[R], OUTj[R] = OUTj+1[R] then the block

of code from 10-13 is never executed and thus the worklisl Wj+l = ¢, at

all times.

wj+l ~ ¢ results in the termination of the algorithm, since, for the

previous worklist Wj, the main control removes an element from Wj

during each iteration. When Wj = ¢, since Wj+l is also empty, the

while-loop of line 19 is not executed. Thus, the algorithm terminates.

64

Correctness: We must show that at termination, the algorithm results

in the final values of INJRJ and OUTJRJ that equal the smallest correct

values for IN[R] and OUT[R], respectively .

Recall from section 3.2 that in solving a reaching definition prob

lem, we look for the smallest possible solution to a set of simultaneous

equations . That is, the smallest possible solution to IN contains the

correct set of definitions which reach any node k, for all k.

Let IN'[R] and OUT
0

[R] be the final solutions to the reaching

definitions problem that is produced by the algorithm of Figure 12.

In the following discussions, consider first that the incremental

algorithm is being applied to a new procedure. Then the first phase

records in W the set of immediate successors of any node k such that

GEN[k] ~ ¢.

Before presenting the next Lemma, we will state some basic facts.

Fact : Both the exhaustive and the incremental algorithms require all

nodes to be reachable from the initial node . This requirement is easily

met by the depth first search algorithm (DFS). That is, the set of

nodes that are not reachable from the root are identified by the DFS

algorithm and can be removed.

Fact: In a forward flow problem, OUT is a transfer function for IN. That

is, if OUT' is incorrect, then IN' is also incorrect, but not necessarily

vice versa. Thus, we need to consider only the case where IN' is

incorrect .

65

Fact : A definition d reaches a point P if and on~y if there is a path from

d to P along which d is not killed . Obviously if there is such a path,

then there is a cycle free one.

Fact: The proper ordering of nodes rn the flow graph insures faster

convergence for the algorithms.

Definition: We refer to the shortest cycle-free path from d to P as the

minimal path for a definition. It should be noted lhat for fast conver

gence, we visit nodes along this minimal path. This phenomenon,

ref erred to as the minimality property of visitation, is achieved when

we process nodes in depth first order.

Fact: Prior to the first step of the ith approximation, if INJk] is

incorrect, then at least one of the immediate predecessors of node k

must have an incorrect IN.

Fact: If INi[k] is incorrect, then there must be some definition d such

that d E IN[k] and a definition clear path exists from the point at

which d is generated to k. We refer to the node in which the definition

dis generated as the source node k' and note that k' may be k.

Definition: The set Kd(k) consists of all nodes in a minimal length, d

definition clear path of nodes from k', the source of definition d, to

some node k.

66

where k0 = k', ks+l = k and ki is an immediat~ predecessor of ki+l' for

i= 0 to s.

Lemma 4: If IN0[k] is incorrect and missing definition d then, letting

Kd(k)= fk0 , k 1, , k
9

, k
8
+1L there is some node j '"3kj E: Kd(k),

d E OUT0[kj] and kJ+l E W 1.

Proof: In our incremental analysis' d may be missing from IN
0
[k] if

either

(a) d is a new definition resulting from an insertion, or

(b) d can reach k along some new path that was c1 eated by a

deletion or a control flow change.

In case (a), the immediate successors of the source of definition d

are placed in the worklist. Thus the Lemma is satisfied by letting j=O.

In case (b), there will be a node m that has d in its OUT set from

the previous approximation and at least one successor of m that

should, but does not have d in its IN set. The set up for our incremen

tal algorithm places all successors of m in the worklist W 1. Thus, m

will be one of the kj's and one of its successors will be the element kj+l

that belongs to W
1

.

6?

Lemma 5: If IN0[k] is incorrect and missing definition d then, if

Kik)= fk0 , k 1, , k
9

, k
9
+1L INt[k] contains d, for some ts s+1.

Proof: By Lemma 4, there is a j 3 k. E: Kd(k), d E: OUT
0
[k.] and k. E: W

J J)+ l 1.

Let m be the largest such j . Then d ~ OUT
0
[kj+l] and hence d f:_

IN0[kj+ll The algorithm of Figure 12 insures us that d E.: IN
1
[kj+ll If d

is not in KILL[kj+l] then d E: OUT 1[kj+l] and kj+2 E: W 2 . But d cannot be

in KlLL[kj+l] if j+ 1 ~ s . Hence in one iteration of our algorithm d

passes one node farther in the IN sets of the sequence of nodes

~k0 , k 1, , k
9

, k8+ 1 ~ . We need carry this process out at most s+1

times to insure that d has been propagated to each of the elements of

kd(k). Hence d E: INt[k], for some t < s+ 1.

If we treat each program modification as a replacement, then the

correctness of the algorithm when applied to an existing procedure

follows directly from the above discussion.

Program modifications can be treated as replacements in the fol

lowing way. If a new node is added, it will replace an empty node . This

may then block the path for a definition, in which case a new definition

must have been introduced and must be propagated forward.

When an existing node is removed, it will be replaced by an empty

node. This may then unblock the path for a definition which must be

propagated forward.

By Lemma 5, these changes are propagated correctly by the algo

rithm.

68

Lemma 6: IN[R] and OUT[R] are minimal and correct solutions .

Proof: If the algorithm of Figure 12 is applied to a new procedure, then

the initial values are set to IN0[k] = ¢ , OUT
0
[k] = GEN[k] for all k . If

the algorithm is applied to an existing procedure for update purposes,

then the initial values are IN0[k] = IN[k] and OUT
0
[k] = OUT[k] for all

k, where IN[k] and OUT[k] are the smallest possible solutions found in

the previous analysis, adjusted to reflect the worst case posed by the

program modification being considered.

These initial values and the fact that INi[R]'s and OUTi[R]'s form a

non-decreasing sequence of approximations (by Lemma 2) and the fact

that new values are added to IN and OUT only when absolutely neces

sary insures us that we will arrive at a minimal solution upon conver

gence. By Lemma 5, any definition that belongs in IN or OUT will be

propagated correctly. Thus the solution is both minimal and correct.

The termination and correctness of the incremental live variable

analysis can be argued in a similar manner. Since this is a backward

flow problem, ·1N is a transfer function for OUT. Hence, in Lemmas 4

and 5 IN and OUT must be interchanged. In proving correctness for

backward ft.ow problem, it should be noted that if IN is incorrect then

OUT is also incorrect but not necessarily vice versa. More.over, since

the flow is in the opposite direction then we need to talk about a

sequence of backwards flowing nodes (predecessors) in the definition

69

Kd(k) used in Lemmas 4 and 5 . Wjlh these focls in mind, the proof fol

lows directly from the proof for the forward flow problem.

CHAPTER 4

INT.lili.PROC.lillURAL ANAL YSl~

The aim of in lerproced ura1 analysis is to determine the side

effects of procedure calls . This determination involves the calculation

of aliases and the side effects due to the execution of a procedure on

variables at the point from which the procedure is called .

In this Chapter, we present the incremental and exhaustive algo

rithms for the alias computation. The discussion here and in Chapter

5 is limited to a language with PASCAL-like scope rules, simple vari

ables, reference parameters and recursion .

4.1. Aliases

Two variables are aliases when both refer to the same location at

the same time. The ·mechanism which maps variables to storage loca

tions during the execution of a program has a strong effect on crea

tion of aliases. This mapping depends on the language in which the

program is written and results in different forms of aliasing .

Static aliasing occurs by using a programming language in which

mappings are mainly slatic . FORTRAN is an example of such a

language. In FORTRAN, with the exception of parameters, all variables

are mapped to locations when the execution of the program begins.

70

71

This mapping remains in existence until the execution of the program

terminates .

In many languages, particularly block structured languages,

pieces of code may execule in different environments at different

limes during a program's execution. The programs written in such

languages resull in a dynamic form of aliasing .

In a block structured language, a new environment is created

whenever a procedure is called . This environment disappears when

the procedure returns . The mappings of variables to locations are

made in accordance with the scope rules of such languages.

Local variables are mapped to new locations and global variables

are mapped to the same locations as in the calling procedure's

environment.

In PASCAL, which is the main language considered in this thesis,

aliases are created due lo the following features of the language:

(1) The parameter passing mechanism of procedure calls,

(2) The free variant mechanism. and

(3) The use of pointer variables.

We will only deal with the first source of aliasing in this paper .

4.2. Exhaustive Alias Calculation

In this seclion, we describe Banning 's approach to computation of

aliases (Banning 1979) . The term alias has been traditionally defined

72

with respect lo the older languages such as FORTRAN where the pro-

gram executes in one environment. Banning gives the only definition

of the term alias for block-structured languages. Two variables are

said lo be aliases of one another, if they both map to the same loca

tion in the same environment. He also distinguishes between may and

must aliases .

Two variables are called necessary aliases if they are aliases in
\

every environment in which they are both mapped. This is strictly a

must information. The term possible aliases refers to may informa-

tion . Two variables are possible aliases if they are aliases in some

environment which could occur during the execution of the program

containing them.

In the remainder of this section, after pres en ling the nota lion

used in the algorithms, we will discuss Banning's method for finding

possible aliases .

4.2.1. Basic Terminology

In thi.s section, we present the basic definitions of the terms used

in the rest of this Chapter and Chapter 5. These definitions are

adopted ·from Banning (1978).

A program is a tuple PG = {P, V, IMOD, IREF, Vr, S, FROM, TO, BIND) .

The elements of PG are as fallows.

p is a set of procedures. The elements of P are the pro

cedures and functions of a block-structured progrrun . p is

v

78

an e lemenl of P, called the main procedure . p is the most

globa1 procedure in P .

is a set of variables . These are the variab]es and parame

ters in a block-struclured program. We insist thal vari

able and procedure names be unique , a condition which

any program can easily meet by means of straightforward

renaming or by means of qualifying a simple name by the

name of its containing blocks (that is , using path names) .

Before defining IMOD and IREF, lhe definition of the next two

terms are needed.

Definition: GLOBAL(p) is the set of objects global to procedure p

according to the rules of the block-structured language.

Definition: VISIBLE(p) is the set of objects accessible to procedure p .

IMOD(p)

IREF(p)

This is a mapping from Pinto subsets of V. That is, IMOD :

P -> zv. We have the requirement that IMOD(p) c:

V1SIBLE(p) n V for all p in P. This mapping specifies the

variables which may be assigned by the execution of state

ments in procedure p. Il excludes consideration of the

effect of procedures called by p.

the definition of IREF(p) is analogous as that for IMOD(p) .

However, this mapping specifies the variables which may

be referenced by the execution of slatements in pro-

cedure p.

s

FROM(s)

74

is a subset of V. ll is the set of reference parameters of

the program PG.

is a set of call sites with distinguished element s . We can

think of each element of S - f s ~ as corresponding to a call

statement in some procedure withs being a call top from

outside the program. The mappings FROM, TO and BIND

define lhe attributes of each call site .

This is a mapping from elements of S - f s J into P. That is

FROM: S - f s ~ -> P. FROM(s) is the procedure from which

the call associated with s will be made. We assume that

call site s lies on some execution path through procedure

FROM(s).

TO(s) TO: S -> P. TO(s) is the procedure which is called by call

BIND(s.X)

site s. i.e. the target of s.

BIND is a partial mapping. (S - f s D x Vr -> V. BIND(s, X)

gives the actual parameter which is bound to formal

parameter X by call s . For BIND(s, X) to be defined, X

must be a reference parameter of the procedure called by

s.

BINDLJST(Y) is a set associated with each actual parameter, Y. We

associate with Ya set of pairs of variables and call sites (s,

X) for which BIND(s, X) = Y. Thus Xis a formal parameter

to which Y is bound by call s . This set can be built as a

linked list which is built as call sites are scanned .

AS(X)

NUM(X)

?5

A set AS(X) js associated with every reference parameter

X in Vr. Let ALS(X) be the set of all aliases associated with

any variable X. The set ALS(X) is not necessarily a subset

of some VISIELE(p). The set AS(X) contain every variable

in ALS(X) • GLOBAL(p), where P is the procedure in which

X is declared. We use AS(X) and not ALS(X) since in this

way every non-trivial alias pair is recorded in exactly one

place and each qf the sets holding inlormation is a subset

of VlSIBLE(p).

denotes the number associated with variable X. We

number the variables by keeping the dictionary of vari

ables in a stack which is kept as an array. As a

procedure's local variables are scanned (before scanning

local procedures), they are put on the stack . After the

scanning of a procedure is finished, the variables are

removed from the stack. The index of the array element

into whlch the variable is put is the number associated

with that variable .

4.2.2. Alias Algorithm

Banning's algorithm for finding pairs of possible aliases is shown in

Figures 13 to 15. This algorithm deals with aliases created by parame

ter passing mechanisms of procedure calls. It is important lo note

that if two variables X and Y (X <> Y) are aliases, then each must be

PROCEDURE ALIAS

PROCEDURE VISIT(X, Y E V)
BEGIN

IF (X = Y) or (nol TEST(X, Y))
THEN BEGIN

SET(X, Y)

FOR every (X', S) E BINDLIST(X) DO
FOR every Y' J(Y', S) E BINDLIST(Y) DO
IF (X' <> Y') THEN VJSIT (X', Y')

FOR every (X' , S) E: BINDLIST(X) DO
IF Y E GLOBAL(TO(S)) THEN
VISIT (X' I Y)

IF (X <> Y) THEN (+avoids duplicate calls •)
FOR every (Y', S) E BINDLIST(Y) DO
IF X € GLOBAL(TO(S)) THEN
VJSIT(X, Y')

END
END

BEGIN
FOR every x € vr DO AS(X) := H

FOR every X E V ~BIND(S, Y) = X for
some S and Y DO VJSIT(X, X)

END.

Figure 13. Banning's algorithm to compute
alias information.

FUNCTION TEST(X, Y E VISIBLE(p), p E P) : BOOLEAN
BEG JN
IF X = Y
TIIEN TEST:= true
ELSE IF NUM(X) > NUM(Y)

THEN IF X E V
T

THEN TEST:= YE AS(X)
ELSE TEST:= false

ELSE IF Y E V r
THEN TEST:= X E AS(Y)
ELSE TEST:= false

END

Figure 14. A function to test for aliases (Banning 1978) .

Procedure SET(X, Y E VISIBLE(p), p E P)
BEGIN
IFX <> Y
THEN IF NUM(X) > NUM(Y)

TifEN BEGIN

END

IF X E Vr THEN
AS(X) : = AS(X) + fY~

END
ELSE BEGIN

IF Y E Vr THEN
AS(Y) := AS(Y) + lX~

END

Figure 15. A procedure lo record aliases (Banning 1978) .

Tl

78

either a global variable or a local reference parameter . The

algorithm's construction takes advantage "Of the fact that pairs of

aliases are either trivial (i.e. X is an alias of X) or they derive from

another pair of aliases through the actions of a call.

At the heart of the algorithm is a recursive routine which, given a

pair of variables that are possible aliases, finds all the other pairs of

possible aliases which are created by the original pair (and calls itself

with these new pairs) . The routin'e is started by calling it with all the

trivial pairs of aliases.

The three loops in VISIT are designed to take care of the three

possible cases for the relationship between (X, Y) and (X' ,Y') and the

call site s . The three possible cases are :

(1) X is bound as an actual to X' by s and Y is

bound as an actual to Y' by s.

(2) Y and Y' are a single variable which is

global to the procedure called bys and s

binds X as an actual to reference parameter

x·.

(3) X and X' are a single variable which is global

to the procedure called by s and s binds Y as

an · actual lo reference parameter Y'.

79

4.2.3. Analysis of AUAS

To establish the worst case time complexity of alias computation,

we consider the algorithm in Figure 13.

The first loop in ALIAS, initializes the alias set associated with

each reference parameter of the program. This then is O(Nr), where

Nr is the total number of reference parameters in a program. The

second loop in ALIAS calls VISIT for every actual parameter in the pro

gram. But this can be better dealt with by considering VISIT.

The body of VISIT is executed at most once for each pair of possi

ble ·aliases . The first loop in VJSIT is executed at most the maximum

number of times any variable is bound plus the number of elements

with identical call sites in the two BINDLISTs .

The comparison of the two lists for elements with identical call

sites can be done in linear time, if the BINDLISTs are built according

to some order on the call sites which caused the bindings. Recall that

BINDLIST is kept as a linked list and is built as call sites are scanned .

If the ordering on the call sites is the same as the order in which they

appeared in the program, then this is the order in which elements are

added to every BINDLIST. Thus the comparison can be done in linear

time .

In our implementation of the PASCAL source level analyser,

BINDLISTs are implemented as described above. The data structure

used to represent the call graph is a linked list. Each call record

80

contains the bindings and TO and FROM inf ormalions . TO and FROM

are each a procedure number (to and from which the call is made) .

The second and third loop in VISIT are each executed at most the

maximum number of times any variable is bound. Then for each pos

sible alias pair VISIT (ignoring the time requirement for FUNCTION

TEST and PROCEDURE SET of Figures 14 and 15) has a time require-

menl proportional lo

3 • !bindings! + !elements with identical call sites!

This is O(lbindings l) for each possible alias pair. Procedure VISIT is

O(lpossible aliases! • !bindings!)

Then the time requirement for ALIAS is

O(N + !possible aliases ! • lbindingsl)
r

The total number of reference parameters, Nr is smaller in size com-

pared to !possible aliases !. Therefore, the time complexity for ALIAS is

O(jpossible aliases! • !bindings!)

In the worst case, there are an exponential number of possible aliases

0(2Nv) (where Nv is the total number of variables in a program). Thus

the alias algorithm in the worst case is exponential and increases in

the number of bindings .

Banning reports on a survey of 20 PASCAL programs in (Banning

1978). In the 20 programs, a total of 3523 pairs of possible aliases

BJ

were ere a led . This was approximately 2 . 9 possible alias pairs for each

of the 1196 reference parameters found .

The first loop in VISIT had an average of 2. 7 iterations for each of

the 3523 alias pairs . The second loop was executed an average of 2. 3

times for each alias pair and the third loop was executed an average of

3 times.

Thus, in practice it appears that the ALIAS algorithm is linear in

the number of reference parameters in the program.

4.3. Incremental Alias Computation

The program modifications which result in recomputalion of

aliases are addition of a new call site and deletion of an existing call

site. In this section, we present two incremental update alias algo

rithms to deal with addition and deletion changes separately.

4-.3.1. Candidates for Possible Aliases

For two variables X and Y to be possible aliases, one of the fallow

ing conditions must hold :

(1) x = y

(2) X and Y are distinct elements of the set of reference

parameters declared in the same procedure and for which

there is a call that binds two aliases to X and Y.

82

(3) X is a reference parameter for procedure p and Y is global

top.

(4) Y is a reference parameter for procedure p and X is global

top.

4.3.2. Incremental Alias Addition

When a new call site is added, it binds a set of actual parameters

of the calling procedures lo some formal parameters of the called pro

cedure. The actual, formal pairs may be candidates for possible_

aliases (that is if one of the conditions in section 4.3 .1 holds). If none

of the conditions hold and the actual parameter is itself a formal

parameter, then aliases for the actual parameter must be considered.

The incremental algorithm to deal with addition changes consists of

two steps.

The first step in incremental alias addition is to find and record

the possible alias pairs (generated by the new call site) in the worklist,

W. The worklist is created as follows.

(1) Examine each actual, formal pair; if it satisfies either of the

conditions 3 or 4 of section 4.3.1 then add the pair to W. If

the pair is not a candidate for possible alias, then examine

the actual parameter passed by the call site. The only pos

sible case is that the actual parameter is a formal parame

ter of the calling procedure. Then for each element ~ of

the alias list for the actual parameter, X, add the pair

83

(81, Y) to W. It should be noted that ai must be an element

of VISIBLE(TO(s)), where s is the new call site.

(2) Update the BINDLIST information associated with the actual

parameter referenced in the new call site.

At this stage the worklist, W, consists of all the pairs of possible

aliases directly generated by the new call site. The second step is to

calculate alias information for the elements of W and all variables

related to them, using the algorithm given in Figure 16. The pro

cedure VISIT in the incremental algorithm is exactly like its exhaus

tive counterpart. The only difference is that it is called from ADD-

ALIAS with the elements of W. The procedure ADD-ALIAS assumes the

existence of alias information from the previous analysis.

4.3.3. Time Analysis of ADD-ALIAS

The worst case time complexity of ADD-ALIAS fallows the same

argument for its exhaustive counterpart. Recall from section 4.2.3

that procedure VISIT is

O(lpossible aliases! • lbindingsl) .

In the worst case, there is an exponential number of possible alias

pairs. VISIT is called from ADD-ALIAS at most once for each member

of W, the worklisL The size of W is bounded by sr • !VISIBLE(TO(s)) I.

where s denotes the number of reference parameters associated with
r

a call site s. The members of W are pairs of variables that are flagged

PROCEDURE ADD-ALlAS

PROCEDURE VISIT(X, Y t: possible aliases)
BEG JN

IF (X = Y) or (not TEST(X, Y))
THEN BEGIN

SET(X, Y)

FOR every (X', S) E: BINDLIST(X) DO
FOR every Y' 3 (Y', S) E BINDLIST(Y) DO
IF (X' < > Y') THEN V1SIT (X', Y')

FOR every (X' ,S) E: BINDLIST(X) DO
IF Y E: GLOBAL(TO(S)) THEN
VISIT (X' I Y)

IF (X <> Y) THEN (• avoids duplicate calls •)
FOR every (Y', S) E: BINDLIST(Y) DO
IF X E GLOBAL(TO(S)) THEN
VISIT(X, Y')

END
END

BEGIN
WHILE W <>¢DO
BEGIN
W : = W - [(X, Y) J
VISJT(X, Y)
END

END.

Figure 16. Incremental update algorithm to
compute alias information after addjlion of
a new call site.

84

85

as possible aliases . Then Visil is called with sr. • IVISIBLE(TO(s)) I pairs

of possible aliases whlch may in the :worst case leads to generation of

all pairs of possible aliases of a program. The time complexity for

ADD-ALIAS is then

O(jpossible aliases! • lbindings l) .

In the worst case, there is an exponential number of possible aliases .

Thus the ADD-ALIAS algorithm is of exponential time complexity in the

worst case .

F?r each of the reference parameters in a program, empirical evi

dence shows there are generally about 2. 9 pairs of possible aliases.

The total number of possible aliases generated by addition of a new

call site is sr • 2. 9. ln practice, the number of reference parameters

associated with each call site is small.

Thus, the body of V1SIT is executed only a small number of times

(at most once for each pair of possible aliases generated by addition of

the new call site) . The survey made by Banning indicate that the first

loop in VlSIT is executed at most 2. 7 times; the second loop is exe

cuted at most 2.3 times and the third loop is executed at most 3 times

for each pair of possible aliases. Furthermore , some of the possible

aliases related to the elements of W may have already been esta

blished as possible aliases in a previous analysis which will shortcircuit

the execution of the body of procedure VISIT.

Thus, in reality the incremental ADD-ALIAS algorithm is linear in

the !WI which is bounded by sr • IVISIBLE(TO(s))I .

4.3.4. Validity of ADD-ALIAS

ADD-ALIAS assumes the validity of Banning's ALIAS algorithm .

Theorem 3: ADD-ALIAS is correct and it terminates.

Proof:

86

Termination : The body of VISIT is executed a finite number of times.

In fact at most once for each pair of possible aliases . Each For-loop in

V1SIT is executed and consequently invokes VISIT a finite number of

times . Thus, any invocation of VISIT must terminate in a finite amount

of lime.

The body of ADD-ALIAS calls VISIT a finite number of times . It

calls VISIT for each member of W. Moreover, it removes the element

from W each time it invokes VISIT. Then W eventually becomes empty.

This result combined with the fact that the body of VISIT is not exe

cuted if a pair of variables have already been established as possible

aliases leads to the termination of the ADD-ALIAS algorithm.

Correctness : Correctness of ADD-ALIAS follows that of Banning's ALIAS

algorithm. We refer the reader to pages 93 to 97 in (Banning 1978) for

a complete proof .

VISIT is exactly the same and is invoked with pairs of possible

aliases in both algorithms. The only difference between the two algo

rilhms is in the body of the main control. ALIAS initializes all the AS

sets to empty and invokes VISIT for each trivial possible alias pair.

ADD-ALIAS assumes the correctness of the previous solution and

invokes VISIT by exactly those pairs of variables which were

87

established as candidates for possible aliases . Thus both algorithm

invoke visit wilh pairs of possible aliases .

4.3.~. IncremenlaJ Alias Deletion

When an existing call site is removed, the possible aliases induced

by the call site may have lo be removed . The call site binds a set of

actual parameters of the calling procedure to some formal parame

ters of the called procedure.

In the rest of tills discussion, we will use the fallowing additional

notations:

A = ~A 1 , Az, ... ~ is the set of actual parameters.

F = ~F 1, F2 , ... ~ is the set of formal parameters .

(x, y) is a possible alias pair.

(x, y) is <x, y> if NUM(x) <= NUM(y)

<y, x> otherwise.

To update alias information after deletion of a call site, we use a

two step process. In the first step, the worklist, Wis constructed using

the fallowing set of rules .

(1) The removal of a call sile, s, has no effect on the alias sets,

if there is anolher call site which is exactly the same or

which contains s . If this situation occurs then we need to

update only the BINDLIST information associated with s.

88

(2) Examine the actual, formal pair (Ai'. F)

(a) If the pair satisfies one of the conditions for possible

aliases, add the pair lo W.

(b) If the pair does not satisfy any of the conditions for

possible aliases, then Ai must be a formal parameter

of the calling procedure . If this is the case , for each

a' e=.: AS(Ai) if a' e=.: VlSIBLE(TO(s)), add the pair

(a', Fi) to W.

(3) lf more than one parameter is passed by the call site, then

examine the actual parameters. If the actual parameters

are the same or aliases of each other, then their

corresponding formals are possible aliases. Thus add the

pair (F1, F2) to W.

(4) Remove the BINDLIST information associated with the call

site .

The second step of the algorithm is to propagate the effect of the

removal by applying the REMOVE-ALIAS algorithm to the elements of

W. This algorithm is shown in Figures 17 and 18.

The REMOVE-ALIAS algorithm is constructed in this manner since

it needs to determine the impossibility of alias before any removal can

be made . Recall that a pair of possible aliases (x, y) can result in one

or both of the following cases.

PROCEDURE REMOVE-ALIAS

PROCEDURE VISIT(X, Y E possible abases)
BEGIN

mark (X, Y) visited

IF (X E AS(Y)) and (CHECK(X, Y)) 1BEN
AS(Y) : = AS(Y) - ~X~

FOR every (X', S) E BINDLIST(X) DO
FOR every Y'3(Y', S) E BINDLIST(Y) DO
IF (X' <> Y') and ((X', Y') is not visited)
THEN VISIT (X', Y')

FOR every (X' ,S) E BINDLIST(X) DO
IF (Y E GLOBAL(TO(S))) and ((X' Y) not visited)
THEN VISIT (X' I Y)

IF (X <> Y) THEN (•avoids duplicate calls •)
FOR every (Y', S) E BINDLIST(Y) DO
IF (X E GLOBAL(TO(S))) and ((X, Y') not visited)
THEN VISIT(X, Y')

END

BEGIN
WHILE W <> ¢ DO
BEGIN
w : = w - [(XI Y) J
VISIT(X, Y)
END

END.

Figure 17. Incremental update algorithm lo
compute alias information after deletion of
a call site.

89

FUNCTION CHECK(X,Y E possible aliases) : Boolean
BEGIN
CHECK:= true

IF BINDLIST(X) <> ~ ~ (•Xis an actual parameter •)
THEN BEGIN
IF (X, Y) E Vr for some procedure P THEN BEGIN

FOR every s E: S 3 TO(s) = P DO
IF BIND(s, X) € Vr THEN
IF BIND(s, Y) E AS(BIND(s, X)) THEN CHECK:= false

ELSE IF BIND(s, Y) E: Vr THEN
IF BIND(s, X) E: AS(BIND(s, Y)) THEN CHECK:= false

END

ELSE IF (X E: V for some procedure P) and
r

(Y E GLOBAL(P)) THEN BEGIN

- FOR every s E: S 3TO(s) = P DO
IF BIND(s, X) E V THEN

r
IF Y E: AS(BIND(s, X)) THEN CHECK:= false

ELSE IF BIND(s, X) = Y THEN CHECK:= false
END

ELSE IF (Y E: V for some procedure P) and . r

END
END

(X E: GLOBAL(P)) THEN BEGIN

FOR every s E: S~TO(s) = P DO
IF BIND(s, Y) E: Vr THEN
IF X E: AS(BIND(s, Y)) THEN
CHECK : = false

ELSE IF BIND(s, Y) = X THEN
CHECK : = f a1se

END

Figure 18. Function to check the
impossibility of alias.

90

9J

(1) appearance of x in AS(y) if NUM(y) > NUM(x), and/or

(2) Establishment of a chain of pairs (x
1

, y
1
) (xn, yn) where

x = x1 , y = y 1 which leads the variab]es x
1

, y
1

lo the vari

ables xn, Yn and makes (xn, y n) possible aliases.

The members of W are pairs of variables that have been flagged for

nol being possible aliases. While processing elements of W. if case 1

holds then REMOVE-ALIAS must establish that there is no other call

site which binds x to y or results in x, y becoming aliases. This is

exactly the purpose of FUNCTION CHECK. If CHECK establishes the

impossibility of alias then REMOVE-ALIAS removes x from the alias set

for y.

When the impossibility of an alias has been established or when

case 2 holds, REMOVE-ALIAS must find all the chain of pairs related to

alias pair (x, y) and establish the impossibility of each of them. This is

the function of the three loops in VISIT.

To better demonstrate the working of our incremental remove

alias algorithm, we present the reader with a few simple examples .

Assume we have computed the aliases for a given program using

Banning's algorithm. A call site is removed and we use lhe REMOVE

ALIAS algorithm to update the original solution. Given a pair of possi

ble aliases (X. Y) marked for examination after removal of call site s,

the following cases can occur :

92

(a) Thal (X, Y) may have been directly created by another call

site s' . The call site s' can be exactly the same as s or it

can contain s .

(b) Thal (X, Y) may have been indirectly created by another

call sile.

(c) That (X, Y) may have been created only bys .

(d) That alias pairs created by s result in formal parameters of

a procedure as being aliases .

In dealing with case (a), we need to show that the algorithm can

identify a call site s ' = s. An example of case (a) is shown in Figure 19.

The possible alias pair (Y, Yl) is created by the two call sites S2 and S3

and results in addition of Y lo the alias set associated with Yl. Assume

S2 is removed . The first slep in the preprocessing phase of the algo

rithm identifies call site S3 which has the exact same property as S2.

Hence, (Yl, S2) is removed from the BINDLIST(Y) and AS(Yl) remains

unchanged .

To show that the algorithm works correctly given case (b), we

need to show that alias sets remain unchanged as in (a) above. An

example of case b) is shown in Figure 20. The possible alias pair (Y,

X2) is created directly by call site S2 and indirectly through call sites

St and S3 . Assume call site S2 is removed . The worklist, W, consists of

the pair (Y, X2). The procedure VISIT is called with this pair and

establishes the fact that Y E AS(X2). Function CHECK is then invoked

to establish the impossibility of (Y, X2) as an alias pair. The last por

tion of CHECK (ii Y E Vr) applies to this case. Call site S3 is the only

program P;
var X, Y : integer;

procedure p1(var Y1: integer);
begin

pl(Y); S3

end;

begin (•p•)

p 1 (X); S 1
p 1 (Y); S2

end .

actuals

x
y

BIND LIST

(Y1, S 1)
(Yl) S2) --> (Yl I S3)

AS(Y1) = fX, Y~

Figure 1 Y. Example for case (a).

93

program P;
var Y : integer;
procedure Pl (var Yl : integer);

procedure P2 (var X2 : integer);
begin end;

begin(• Pl •)

P2(Y); S2
P2(Yl); S3

end;

begin (• P •)

Pl(Y); S 1

end.

actuals

y
Yl

BINDLIST

(Y 1 , S 1)--> (X2, S 2)
(X2, S3)

AS(Yl) = fY~
AS(X2) = fY, yq

Figure 20. An example for case (b).

94

call to P2. BIND(S3, X2) = Yl which is a reference parameter. There

fore the alias set for Yl is examined and it is concluded that Y E

AS(Yl). The function CHECK then returns false and Y is not removed

from AS(X2). The algorithm then terminates with no change in alias

information.

95

In showing correctness of our algorithm for:- case (c), we need to

show that alias sets will be updated to reflect the impossibility of alias

pair (X, Y) . An example of case (c) is shown in Figure 21. Assume Sl is

removed. BINDLIST(X) becomes empty by the first phase and

W = HX. Yl)~. (note: (X, Yl) is created by Sl). Visit is invoked with

(X, Yl) and establishes that X f: AS(Yl) . Function CHECK returns the

value true since BINDLIST~X~ = H. Hence, Xis removed from AS(Yl).

The third loop in VISIT creates alias pairs (X, X2) and (X, X3). By the

same argument X will be removed from AS(X2) and AS(X3).

To show correctness in case (d), we need to show that the result

ing alias pair is added to W and that CHECK can identify other cases

for this formal pair as aliases. This case is also shown in Figure 21,

where (X3, Y3) are aliases . (X3, Y3) are created by call site S3 and S5.

Assume call site S3 is removed. By steps 2(a) and 3 of the first phase,

W =HZ, X3), (Z, Y3), (X3, Y3)~. By step 4, the pairs (X3, S3) and

(Y3, S3) are removed from BINDLIST(Z). Z is removed from AS(X3)

and AS(Y3), through similar reasoning given in case (c). In dealing

wilh the pair (X3, Y3), VISIT recognizes that X3 E AS(Y3). The first

part of CHECK applies to this case and results in examination of S5

since TO(S5) = P3. BIND(S5, X3) = Yl which is an element of V r;

BIND(S5, Y3) = Y and Y E AS(Yl). Hence, CHECK returns false and

AS(Y3) remains unchanged.

program P; ·
var X, Y, Z : integer;
procedure P3 (var X3, Y3: integer);
begin end;

procedure Pl (var Yl : integer);

procedure P2(var X2 : integer);
var K: integer;
begin
P1(K) S6
end;

begin (•Pt*)
P2(Yl); S4
P3(Yl, Y) S5

end;

begin (• P •)
Pl(X); S 1
Pl(Y) ; S2
P3(Z, Z) S3

end.

actuals

x
y
z
Yl
K

BIND LIST

(Yl, S 1)
(Yl, S2) --> (Y3, S5)
(X3, S3) --> (Y3, S3)
(X2, S4) --> (XJ, Sb)
(Yl, S6)

AS(Yl) = fX, Y~
AS(X2) = fX, Y, Yl ~
AS(X3) = 1X, Y, Z ~
AS(Y3) = fY, X3, Z ~

Figure 21. An example for cases (c) and (d).

96

97

4.3.6. Time Analysis of REMOVE-ALIAS

To establish the time complexity of REMOVE-ALIAS, we consider

each loop structure separately.

The WHILE-loop in REMOVE-ALIAS is executed !WI times . As dis

cussed in section 4.3 .3, !WI is at most bounded by sr * jVISIBLE(TO(s)) l.

This is the number of times that V1SIT is called from REMOVE-ALIAS.

The three loops of VISIT are exactly the same as those in Figure

13. Thus the lime complexity for VISIT follow the arguments given in

section 4 . 2.3 and is O(lbindings l) for each possible alias pair.

Each of the three FOR-loops in FUNCTION CHECK is executed at

most the ma.ximum number of calls to a procedure. For each possible

alias pair at most one of the FOR-loops will be executed. Then, CHECK

is O(N) for each possible alias pair .
8

The time requirement for REMOVE-ALIAS is

O(sr • IVISIBLE(TO(s)) I) • O(jbindingsl + N
9

)

The size of N
8

is small in comparison to the !bindings!. Thus, the

REMOVE-ALIAS algorithm is

O((s • IVISIBLE(TO(s))I) •!bindings!)
r

The members of Ware pairs of variables that are flagged as possi

ble non-aliases. In the worst case, every possible alias pair in a pro

gram can be related to the members of W. The number of possible

alias pairs for a given program is_ exponential in the worst case.

98

The ref ore, the REMOVE-ALIAS algorithm is exponential in the worsl

case .

The expected complexily of REMOVE-ALIAS follows the same argu

ments given in section 4.3.3 for ADD-ALIAS and is linear in !WI.

4.3.7. Validity of REMOVE-ALIAS Algorithm

\

The condition for two variables not to be possible aliases is the

exact opposite of that for possible aliases.

By definition, two variables are possible aliases if they are aliases

in some environment. Two variables X, Y being aliases implies a

sequence of pairs of variables (x
1

, y) (xn, yn) such that X=x 1 ,

Y=y
1

, x =y , and for every i, 1 ~ i ~ n there is a call site s. for whlch n n i

1. BIND(s1, x)=xi+ 1 and BIND(s1, y)=y1+1

Y. is in GLOBAL(TO(s.)), or
l l

X; is in GLOBAL(TO(s)) .

In contrast, for two variables X. Y lo not be possible aliases, X, Y

must not become aliases in any environment. The condition for vari-

ables not to be possible aliases is that there does not exist any

sequence of pairs of variables as described above.

99

Assume we have the correct AS sets found in a previous analysis

(using Banning's ALIAS algorithm) . A call site is removed and we use

the REMOVE-ALIAS algorithm to update the AS sets .

Theorem 4 : REMOVE-ALIAS terminates and is correct.

Termination: The body of V1SIT and subsequently CHECK is executed

at most once for each pair of possible non-aliases related to members

of W.

Each FOR-loop in CHECK is executed at most N times, where N is
8 s

the total number of call sites in the program. Thus, each invocation of

CHECK must terminate in a finite amount of time. CHECK is invoked

by VISIT a finite number of times. Each FOR-loop in VISIT is executed

and consequently calls V1SIT a fini le number of times . Then any invo

cation of VISIT terminates in a finite amount of time.

The body of REMOVE-ALIAS calls VISIT a finite number of times.

That is for each member of W. Each time VISIT is called at this point,

an element is removed from W. The worklisl, W, eventually becomes

empty and REMOVE-ALIAS terminates .

Correctness: To prove correctness of the REMOVE-ALIAS algorithm, we

need to show that it deals with the following cases correctly .

(a) AS sets are correctly updated. That is, the impossibility or

possibility of aliases can be determined by the algorithm

given a pair of possible non-aliases.

100

(b) The sequence of pairs of variables related to a possible

non-alias pair can be determined by the algorithm.

To show (a), we note that after deletion of a call site, all pairs of

variables marked as possible non-aliases are recorded in the worklist,

W. Thus, a pair (X_, Y) E W might map to different locations in the

environment under consideration.

To determine the impossibility of alias pair (X, Y), REMOVE-ALIAS

must establish that (X, Y) are not aliases in any environment. This can

be done by showing that no call site s1 with the properties stated at

the start of this section (in the definition for possible aliases) exists

for (X, Y).

VISIT is called with (X, Y) which subsequently calls CHECK with

this pair of variables . For each pair (X, Y), one of the FOR-loops in

CHECK is executed. The first loop in CHECK determines whether there

is a call site s . with the property that
l

BIND(si, x)=xi+l and BIND(si, y)=Yi+t

The second loop in CHECK deals with the second condition for a call

sile which is

BIND(si, >s)=xi+t' y1=yi+l' and

y
1

is in GLOBAL(TO(s)) .

The third loop _in visit determines the existence or non-existence of a

call site with the fallowing property

BIND(s ., y.)=y .+l' x.=x.+J, and
l l l l l .

xi is in GLOBAL(TO(s)) .

In each case if no such call site exists then CHECK returns true

and AS(Y) is updated. If a call site which satisfies one of the above

properties exists then check returns false . This implies that another

sequence of pairs of variables exists which results in (X, Y) becoming

possible aliases . Thus alias sets are not updated.

Since, alias sets are not updated until the impossibility of possible

alias is established, REMOVE-ALIAS updates the AS sets correctly.

Proof of (b) follows directly from correctness proof for the ALIAS

algorithm. The three loops in VISIT determine the sequence of pairs of

variables related to members of the worklist. These correspond

directly to procedure VISIT in ALIAS algorithm.

The correctness of the solution from a previous analysis and the

correctness of the algorithm in dealing with cases (a) and (b) result in

the correctness of the REMOVE-ALIAS algorithm.

4.3.8. Space Complexity for Incremental Alias Computation

In this section, the space requirement for both alias addition and

deletion is considered .

The storage space required to save inf or ma ti on from one analysis

to the next:

1) For each procedure, p:

•name

• GLOBAL(p)

• reference parameters.

One word is required for the name and

I VISIBLE(p) I words for each of lhe two
B

bit vectors .

2) For each call site, s:

• call number

• TO(s)

• FROM(s)

• bindings (actual, formal)

One word is required for each of the

three first elements. 2 • lbindings l

words are required.for bindings.

3) For each reference parameter, F:

• AS(F)

This. is a bit vector of size VISIBLE(p)

which requires I VISIBLE(p) I space.
B

4) For each actual parameter, A:

• BINDLIST(A)

102

J 0(3

This is a linked list of pairs of variab]e

and call sile. Three words are required

for each pair plus the pointer . An extra

word is required lo store the header.

5) Dictionary of variables :

•name

• number

Two words for each variable .

The space requirement for 2 and 4 increases by ADD-ALIAS and

decreases by REMOVE-ALIAS algorithms. Both algorithms require a

worklist, W. This worklist is implemented as a linked list where each

element contains a pair of variables and a pointer. Thus, each ele

ment requires 3 words and the wor klist requires 3 • !WI words . !WI is

s • IVISIBLE(TO(s)) I. The space requirement for incremental alias is r

Np+2N.,+3•(sr -1 VISIBLE(TO(s)) I)+ I VISJB::(p) I •(2Np+Nr)+

N8 (3+2b~)+Na(1 +3ba)

where,

NP total number of procedures,

NT total number of reference parameters,

N total number of variables,
v

N total number of call sites,
8

N,,. total number of actual parameters,

E word size,

b~ total number of bindings for a calL

b
6

total number of bindings for each
actual parameter,

sr total number of reference parameters
associated with call site s.

104

In any reasonably structured program, the terms Nr, sr, N
0

and

VISIBLE(p) are all smaller than Nv (VISIBLE(p) and VISJBLE(TO(s)) are

equal). That is, Nv is an upper bound on each of these terms. More-

over, the terms b
9

and ba tend to be small in most programs. Then,

the space requirement formula can be reduced to N + N + N .
v p s

For any correct program, NP is smaller than N
8

(since otherwise,

there may exist a procedure which is never called). In addition, an

upperbound on N can be N1 where N is the total number of statements
!'I

in a program. Then, the 'incremental alias computation require Nv + N

words of storage which is in reality the program size. Thus, the space

complexity of the incremental alias computation increases in the size

of the program.

4.4. Necessary Aliases

In this section, we briefly discuss the exhaustive and incremental

necessary alias computation. Two variables are necessary aliases, if

105

they are aliases in every environment in which they are both mapped .

This is stricUy a must information and is essential in determination of

must side-effects of call statements .

Banning's method for computing the necessary alias (IDENT)

informations involves the following steps:

(1) The algorithm begins by initializing the IDENT set for each

reference parameter to its AS set. That is, possible aliases

' are the first approximation to the necessary aliases.

(2) It then finds every pair of non-aliases and all the pairs of

aliases which are directly related to each of them.

(3) For each such alias pair, the algorithm updates the

appropriate IDENT sel to reflect the fact that this pair of

possible aliases is not a necessary alias pair. The IDENT

sets for the pairs of variables related to this non-necessary

alias pair are then updated by means of a longer chain.

To incrementally update the necessary alias solutions of a

previous analysis, we make use of the solutions found by incre

mental possible alias computation.

Suppose a call site is removed and it has been established

(by the REMOVE-ALIAS algorithm) that the pair of variables (x,

y) are no longer possible aliases. That is, x is removed from

AS(y). Thus, there is now at least one environment in which

both :x and y map and the pair(x, y) are non-aliases. If x is a

member of IDENT(y), then it must be removed from IDENT(y)

106

and all pairs of variables related to pair (x, y) should be exam

ined and the ir IDENT sels must be accordingly updated . On th e

other hand, if x is not a member of IDENT(y), then the informa

tion obtained from incremental possible alias computation has

no effect on the necessary aliases .

In contrast, suppose a new call site is added and it has been

established (by the ADD-ALIAS algorithm) that the. pair (x, y) are

possible aliases . Addition of x to AS(y), can introduce new

necessary aliases . If x was not previously a member of IDENT(y),

then il may now belong in the set. To be able to add x to

IDENT(y), we must ensure that pair (x, y) are aliases in every

environment in which they are both mapped. If this is the case,

after updating IDENT(y), every pair of variables related lo (x, y)

must be examined and their IDENT sets should be accordingly

updated .

CHAPTKR 5

SID~ EI''ff'ECI' CALCULA110N

Another aspect of interprocedural analysis is the determi

nation of the side effects of procedure calls . To find the sum

mary informaUon of a call statement, we must find the effects of

the called procedure and its descendants on the environment of

the calling procedure .

The side effects of concern for a call statement s are:

MOD(s) - The set of variables whose values may

be modified by an execution of s.

REF(s) - The set of variables whose values may

be inspected or referenced by an

execution of s.

USE(s) - The set of variables whose values may

be inspected by an execution of s

before being defined.

DEF(s) - The set of variables whose values must

be defined by every execution of s.

There are a number of characteristics of these side effects

which influence the method for finding them . We will discuss

some of the more important characteristics.

10'7

J 08

May side effects - The side effects MOD, REF and USE are in tltis

category. Each of these side effects consists of variables

about which a weak claim is made. The weakness is that

these variables are affected by some, but not necessarily

all calls .

Must side effects - DEF is an example of a must side effect. It

consists of variables about which a strong claim is made .
\

That is, those variables which are defined on every execu

tion of a call statement. Must side effects are considerably

harder to determine than may side effects.

Flow sensitive side effects - DEF and USE fall in this category.

The determination of these values depends on the flow

through a piece of code as well as upon its constituents .

Flow insensitive side eff ecls - The side effects MOD and REF are

flow insensitive . Thal is, their calculation depend only on

the contents of the code. Flow insensitive side effects are

easier to calculate in comparison to flow sensitive ones .

A perfectly accurate determination of the side effect of a

procedure call is an undecidable problem. The accurate calcu

lation depends on the possible stales of program variables at

the point of each call. For example to accurately determine the

effect of a procedure call, we must be able lo at least determine

whether or not a certain statement that modifies or uses a vari-

able will even be executed. Since a precise solution to flow sen

sitive side effects can not be calculated, heuristics are used to

109

compute the closest approximation lo the most precise solution.

The may /must distinction is of importance in determining

what constitutes a valid approximation to a side effect. Any

underestimate or subset of the most precise information is a

safe approximation to a must side effect and any overestimate

or superset is safe for may side effects.

The basic method for calculating side effects considered in

this Chapter is due to Banning (1978). The method involves solv

ing a flow problem on a graph. The graph's nodes correspond lo

procedures and the edges correspond to calls between pro

cedures. Associated with each edge is a function that describes

how the calling procedure's side eff ecls depend on the side

effects of the called procedure. By solving this problem, the

algorithm assigns to each procedure generalized side effects for

the procedure. The side effects of a call on a procedure can

easily be derived from the called procedure's generalized side

effects.

In the remainder of this Chapter, we deal with flow sensitive

and insensitive side effects separately . In each case, we will first

describe Banning's approach for finding the side effects and

then present our incremental update algorithm.

110

ti 1. Flow Insensitive Side Effects

In the discussions in this section we will deal with only MOD

side eff ecls . The determination of REF side effects follows

directly.

5.1.1. Exhaustive Algorithm

To find the MOD side effects, Banning performs global ftow

analysis on the reverse calls graph of a program.

ties :

A program's reverse calls graph has the following proper-

(1) A node corresponding to each procedure in

the program.

(2) A directed edge from node p to node q for

every call in procedure q to p.

The reverse calls graph is used to help in finding for each

procedure a generalized modification side effect (GMOD) . The

method for finding the GMOD side effect involves the construc

tion of a flow problem for the reverse calls graph. The construc

tion is as fallows:

j 11

(1) Assign to each procedure node the set of variables

immediately modified by the procedure IMOD(P) .

IMOD can be thought of as an initial approximation to

the generalized side effect.

(2) Assign to each edge for a call site s a function for

that call site which maps sets of variables into sets of

variables as follows :

f
9
(X) = ~ PASS(s, x) Ix EX* GLOPARM(s) ~

PASS(s, x) is the variables passed to x by call
site s.

GLOPARM(s) is the set of variables global to the
procedure called by s plus the set of
reference parameters of that procedure .

(3) A path function f E is defined for any path

E=e 1, · · · , en as fallows:

J E = I• 1 0 . . . 0 J ""

Then the meet over all paths solution to this problem is

found . This solution assigns to each node p the union of

f (IMOD(q)) for every path E to node p from any node q. This sel e

is called GMOD(p) and it contains two kinds of variables:

(1) Variables which are global to that procedure and are

modified by calling it. These will be visible at any site

which calls this procedure and then will be in the

112

MOD side effect of any such call site .

(2) Reference parameters declared in the called pro

cedure which are modified by executing the pro

cedure . The side effect of any ca1J on this procedure

will include the actual parameters which are bound

lo these formal parameters.

The direct modification side effect for any call s (DMOD(s)),

such that TO(s) = p, can easily be calculated from GMOD(p).

DMOD(s) = f (GMOD(p)), where f is the edge function for caJ1 s. . s s

DMOD(s) contains two kinds of variables: modified variables glo

bal to p and the actual parameters which are bound by ca1l s to

modified formal parameters of p .

5.1.2. Incremental Algorithm

The program changes that may affect the side effect solu

tion of a previous analysis are as ·follows :

(1) Addi lion of a new call site, s

(2) Deletion of an existing call site, s

(3) Changes in the IMOD side effect of a
given procedure

(4) Changes in the GLOPARM set of a given
procedure.

113

The first step of our incremental update algorithm is to con

struct the worklisl W and update the side effect of the updated

procedure where applicable . The second step is to propagate

the changes lo other affected procedures .

In describing the first phase of the algorithm, we deal with

each type of program change (stated above) separately .

The first type of program change involves addition of a new

call site . Assume call site s has been added. The site s calls

procedure q from procedure p, i.e., TO(s) = q and FROM(s) = p.

To deal with this modification, the following information must be

found :

(1) DMOD(s) = GMOD(q) • GLOBAL(q) +
f BIND(s, Y) I YE GMOD(q) ~

If DMOD(s) is changed then perf arm the
following steps:

(2) Find MOD(s) using DMOD(s) and aliases

(3) GMOD(p) ·= EIMOD(p) • GLOPARM(p)
where EIM OD (p) is extended IM OD(p),
EIMOD(p) = IMOD(p) + fMOD(s') I FROM(s')=p~

(4) If GMOD(p) is changed, then
W = f s' I TO(s') = p~

The second type of program change results in removal of

DMOD(s) and MOD(s). GMOD(p) is then updated using step 3

above (procedure p contains the removed call site) . The work

list W is constructed using step 4 above.

] 14

The other two types of program changes can be dealt with

by steps 3 and 4 above .

The second phase of the incremental algorithm is to pro

pagate lhe changes to all affected procedures or nodes of the

reverse calls graph . The algorithm for perf arming this propaga

tion is presented in Figure 22.

5.1.3. Time Complexity

The complexity analysis for incremental side-effect calcula

tion is data structure dependent. In our implementation, MOD

and DMOD are implemented as PASCAL sets . These are bit vec

tors of size IVJSIBLE(p) I which are associated with each call

record.

The sets IMOD, GMOD, GLOBAL and GLOPARM are all bit vec

tors of size IVISIBLE(p)I which are associated with each node of

the flow graph, that is with each procedure. The sets NEWDMOD,

NEWGMOD and EIMOD are also bit vectors of size IVISIBLE(p) I.

The worklisl, W, is a bit vector of size N
9

. The body of update is

executed once for each member of W, the worklist. This how

ever, may be more than N
1

times since a call site can be added

several times due to recursion (cycles in the call graph).

The FOR-loop in procedure expand which is called from

update is executed at most once for each ref ere nee parameter

of the given procedure. The body of the loop requires at most

PROCEDURE side-effect;

PROCEDURE update (s E call-sites; p E procedures);
BEGIN
expand (DMOD(s) ,MOD(s))
EIMOD(p) := IMOD(p) + fMOD(s') I FROM(s')=p~
NEWGMOD := EIMOD(p) * GLOPARM(p)
IF GMOD(p) <> NEWGMOD THEN
BEGIN
GMOD(p) := NEWGMOD
W : = W u f s1 I TO(si) = p ~

END
END

BEGIN (• side-effect •)
·wHILE W <>¢DO
BEGIN
(•lets be some member of W •)
W := W - [s]
NEWDMOD := GMOD(TO(s)) • GLOBAL(TO(s)) +

f BIND(s, Y) I YE GMOD(TO(s)) ~
IF DMOD(s) <> NE¥lDMOD THEN
BEGIN
DMOD(s) := NEWDMOD
update (s, FROM(s))

END
END

END

Figure 22. A procedure for calculation of incremental
flow insensitive side effects.

115

PROCEDURE expand (p E procedur.es;
DMOD : subset of VISIBLE(p);

BEGIN
VAR MOD : subset of VISIBLE(p));

MOD:= DMOD;
FOR every v in V1SIBLE(p) * V DO

r
IF vis in DMOD
THEN MOD:= MOD+ AS(v)
ELSE IF DMOD • AS(v) <> ~ ~

THEN MOD :=MOD+ ~v~
END

Figure 23 . A procedure for converting DMOD(s)
in to M 0 D (s) (Banning 1970).

1 J 6

two bit vector steps . Then expand requires 2 • lr l bit vector

steps where lrl is the maximum number of reference parame

ters for each procedure.

In update , the computation of EIMOD requires lf l bit vector

steps where lfl represents the maximum number of calls con-

tained in a procedure . One bit vector step is required to calcu-

late NEWGMOD. To determine what is added to W, ltl bit vector

steps are required where !ti represents the maximum number of

calls made lo a procedure .

Thus, procedure u.pdal.e requires a total of

2 • lrl + If I + !ti + 1

bit vector steps.

11?

The computation of NEWDMOD in sj,de-effec l requires 1 + b
8

bil vector steps where b represents the maximum number of s

bindings for each call . The set NEWDMOD is found for each

member of W, the worklisl. Procedure update is called from

sidE-effect al most once for each member of W. Then the lime

requirement for each member of Wis

2 .+b +2*lrl+lfl +ltl s

bit vector operations . The total number of elements introduced

in W is different in the presence and absence of recursion. To

determine the worst case time complexity of side-effect algo

rithm, we deal with each of these situations separately.

In the absence of recursion, assuming procedures are in

reverse invocation order and the order on call site is the order

in which they appear in the program, W in the worst case is of

O(N
9
). This is due lo the fact that there are no cycles in the call

graph. Once a bit is set in the side effect of a procedure, it

needs to be propagated along every path starting from the

modified procedure. Since no such path can cycle, its length in

the worst case is N
11

• The time requirement of side-effect propa-

gation, in the absence of recursion, is

N
8

• (2 + b
8

+ 2 • lrl + lfl + ltl) bit vector steps .

The parameters b
8

and lrl are negligible in size lo lfl and ltl. The

upperbound on lfl and ltl is N
1

. Thus, the side-effect algorithm in

J 18

the absence of recursion is O(Ns 2) bit vector steps in the worsl

case.

In the presence of recursion, a call site can be added to W

several times due to cycles in the call graph. Suppose a variable

is introduced in the side-effect of a procedure by a program

modification. To propagate this information, we need to con

sider the eff ecls of aliases.

If there is no change in the previous alias solution, then the

new side-effect information needs to be propagated through

every non-cyclic path. The existence of cycles have no effect

due to the fact that no new variables will be introduced by pro

pagating through the non-cyclic path. Then, the lime complex-

ity of side-effect propagation with recursion and no changes in

aliases in the program is the same as that in the absence of

recursion.

If there are changes in the previous alias solution, then by

propagating the new variable side effect through every non

cyclic path, new variables may be introduced which need to be

propagated through the back arcs in the call graph. For each

variable introduced along the propagation path, it is possible to

introduce all the arcs of the call graph in the worklist. That is,

N call sites can be introduced in the worklist. In lhe worst
II

case, In lhe worst case, for each new variable side effect, Nv

variables may be introduced along the propagation path. In

addition, there is the possibility of Nv new variable side effect.

J 19

Then, in the worst case, N • (N • N) sftes may be introduced in v v s

the worklisl. The time requiremenl for side-effect propagation

is then

(N.,/ • Ns) - (2 bs + 2 ~ Ir I + If I + It I)

bit vector steps . Then in the worst case, side-effect propagation

in the presence of recursion and changes in the previous alias

solutions is of

bit vector operalions.

The bit vector steps in this algor1thm are union and inter-

section . These operations can be performed by a single opera-

tion if the size of each bit vector is no bigger than the word size.

Otherwise) union and intersection can be performed in time pro-

portional to the size of the bit vector (which is at most

I VISIBLE(p) I for most bit vectors used except W which is at
B

N.) most B.

However, updal,e is nol usually cal1ed for each member of W.

That is, if there is no change in DMOD then update is not called.

In practice, this is usually the case since changes in the side

effect of one procedure affects only a sma11 number of pro

cedures. The report by Banning indicates that 1.54 passes

through the call graph was required for convergence of the side

effects solutions using an iterative technjque. In addition, the

120

call graph of mosl programs is nol very complex and the pres

ence of mutual recursion (which is lhe main source of the high

worst case complexity bound for this algorithm) is rare. Thus,

the side-effect algorithm is expected lo be of D(N:i) complexity

in practical cases .

t>. 1.4. Space Complexi ly

The storage space required lo save information from one

analysis to the nexl is as fallows :

(1) For each procedure, p :

•name

• GMOD(p)

• IMOD(p)

• GLOBAL(p)

• reference parameters.

0 d · · d t t the name and I l'ISIBLE(p) I IS ne wor Is reqw.re o s ore B

required for each of the 4 sets .

(2) For each call site, s:

• call number

• TO(s)

• FROM(s)

• DMOD(s)

• MOD(s)

12J

• bindings (actual, formal)

One word is required for each of the 3 first elements . DMOD and

MOD are bit vectors and require I VISIBLE(p) I . !bindings! • 2
B

words are required to store lhe bindin.g information .

(3) Dictionary of variables:

•name

• number

Two words are required for each variable .

The actual side-effect algoritlun requires extra storage

space for the following :

• NEWDMOD

• NEWGMOD

• EIMOD

• w

The first 3 sets are bit vectors of size V1SIBLE(p) . Thus, each

. f . I VISIBLE (p) I W · b · t t · d reqUlre space o size B . is a i vec or an

. f . N. requires space o size B.

Then, the space requirement for the incremental side-effect

algorithm is

122

N +3N +2N +I VJSJBLE(p) I · N8 p $., v B _.(4Np +2N6 +3)+2Ns '!JM+ B

where,

NP total number of procedures,

N
9

total number of call sites,

b
9

total number of bindings for a call,

B word size.

By the arguments presented in section 4.4.8, the space

requirements for incremental side-effect calculation can be

staled as Nv + N which is the program size. Then, it can be con

cluded that the space complexity of the incremental side-effect

calculation increases in the size of the program.

5.1.5. Validity of the Side-Effect Algorithm

The incremental side-effect algorithm assumes the correcl-

ness of the exhaustive algorithm and consequently the previous

solution. In proving correctness of the update side-effect algo-

rilhm, we need lo show that

(1) The affected area of the reverse calls graph is

correctly determined for propagation purposes.

(2) The program changes are correctly reflected in the

side effect information of the affected area.

128

To show correctness for case (1), we note that side eff ecls

propagate from called to the calling procedures . Hence, to find

the affected area of the call graph, it is sufficient to determine a

calJ chain C = s 1, , sn where sn calls the procedure whose sjd e

effects has changed . The change can be then propagated

through the chain sn to s
1

.

The construction of the worklist in the update side-effect

algorithm insures the determination of the correct call chain. W

initially contains all calls sn to the procedure whose side effect

has been updated. In procedure update, whenever there is

change in GMOD of a procedure, all calls to that procedure are

added lo W. So, in effect a change is propagated by following the

sequence sn, , s 1.

In proving (2), assume a program change occurs in pro

cedure p. The first phase of the algorithm recalculates the

side-effect information for procedure p. In the second phase,

when necessary the side effect of other procedures and calls to

those procedures are recalculated. This complete recalculation

at each stage insures that all side-effect information is correctly

updated after a program change.

The correctness of the update side-effect algorithm follows

directly from the correctness of (1) and (2).

124

b.2. now Sensitive Side Effects

The side effects DEF and USE are determined by consider

ing both the flow through a piece of code as well as ils elements.

5.2. l. Exhaustive Algorithm

The melhod begins by finding summary information about

flow through each of the procedures in the program. For DEF,

the following quantities of information are collected.

lDEF(p}

Set of variables defined by statements directly contained in

p along every path through p. The effecls of procedures

called by p are excluded .

MCALL(p)

Set of procedures which must be called during every execu

tion of p.

MBJND(p,v)

Those variables which will be bound to v (reference parame

ters called by p) by some call from p during every execu

tion of p.

A slightly different reverse calls graph is then constructed

and a set of different functions are assigned lo edges. This

graph has a single edge from procedure p to procedure q iff pis

125

in MCALL(q) . Thus, the reverse musl call graph is used to find

the DEF side effect.

Initially IDEF(p) is assigned to each procedure node p . The

function assigned to an edge from p to q is

fpq(X) = fMPASS(q, p, x) I x E X * GLOPARM(p)~

where

MPASS(q, p, x) is f x~ if x E GLOBAL(p)

if x E V/p) is MBIND(q, x)

The meet over all paths solution of this flow problem is

GDEF(p) - the generalized DEF side effect. For any call site s

which calls procedure p, we can find the direct definition side

effect (DDEF(s)) by applying the edge function for call s to

GDEF(p). Then

DDEF(s) = f
9
(GDEF(p))

DDEF(s) is the set of all variables X for which there exists a must

call chain

C = s 1, , sn

and variable Y such that s1 = s, C must pass X to Y and Y must

be in DDEF(TO(s)) . Thus , due to the must characterislics of n

DEF, we look at only what is defined, called, or bound during

every execution of a procedure and propagate side effects

according to these restrictions .

126

The side effect USE is dependent . on the DEF side effect .

The ref ore, the summary information for use is coUected in two

steps and is more complex to determine . In the first step, infor

mation aboul variable usage is collected, without any knowledge

of the DEF side effects of calls . The second step is applied once

the DEF side effect is known. This step combines the inf orma

tion obtained in the first step with the DEF information to obtain
\

the following information:

IUSE(p)

Set of variables which may be referenced by statements

directly contained in procedure p without first being

defined by statements in p.

PU~F(s)

Set of variables always defined by statements in the pro

cedure containing call site s, before the call site is exe

cuted . This includes definitions due to other call sites in

the procedure .

The initial assignmenl to each procedure pis JUSE(p) . The

function associated with the edge for call s is

The meet over all paths solution to this flow problem is the gen

eralized USE side effect (GUSE (p)) . The direct usage side effect

DUSE(s) can then be calculated from the GUSE side effect.

DUSE(s) = f
1
(GUSE(p)) .

J 2?

5.2.2. Incremental Algohthm

The arguments given in this section for incremental flow

sensitive calculation are similar to those for flow insensitive side

effects . ln f acl, the calculation for the side effect USE is exactly

the same as lhat for MOD .

In addition to program changes stated for flow insensitive

side effects, the USE side effect must also be updated when

PDEF of a call site is changed . The first phase of the algorillun

computes the USE side effect for the directly affected pro

cedure and call site, it also initializes the worklist (as described

for MOD). The algorithm used in the second phase is the same

as that for MOD.

The only difference is in the equations used, which are the

following :

• DUSE(s) = (GUSE(s) • GLOBAL(q) +
~BIND(s, Y) I Y E: GUSE(q) D - PDEF(s)

• Compute USE(s) irom DUSE(s) and aliases .

• GUSE(p) = EIUSE(p) • GLOPARM(p)
where,

EIUSE(p) = IUSE(p) + fUSE(s') I FROM(s')=p~

The incremental calculation for the DEF side effect is

slightly different due to the dependence of DEF on must call

chains and necessary aliases. The DEF side eff ecl must be

updated in the following cases:

128

(1} Addition of a new cal] site, which results in addition of

a new procedure lo MCALL(p) .

(2} Deletion of a cal] site which results in delet1on of a

procedure from MCALL(p).

(3) Changes in IDEF(p) .

(4) Changes in global or reference parameters of P .

With the exception of the way W, the worklist, is con

structed, the incremental update DEF algorithm is the same as

that for MOD side effect. Since DEF is a must side effect, the

worklist is defined as :

W = ~s I TO(s) E MCALL(FROM(s))~

The equations used are:

• DDEF(s) = GDEF(q) * GLOBAL(q) +
fMPASS(q, p, x) Ix E GDEF(q)~

• Find DEF(s) using DDEF(s) and necessary aliases

• GDEF(p) = EIDEF(P) • GLOPARM(p)
where,

EIDEF(p) = IDEF(P) • fDEF(S) I TO(s) E MCALL(p)~

CHAP'J'Jill 6 ·

CO.NCLU510NS

This Chapler summarizes our work in the development of

incremental update algorithms for data flow analysis and sug

gests areas for future research .

6.1. Summary

The major contribution of this thesis is a set of incremental

update algorithms for global and interprocedural data flow

analysis .

All algorithms are designed as a two-step process and use a

worklist which contains work to be done. In each algorithm, the

first phase deals with the data flow solutions of the immediately

affected area, removes suspect values from old solution and ini

tializes the worklist. The second phase propagates the immedi

ate changes resulting from a program modification to all

affected areas of the graph. The major difference between these

algorithms is the way in which the worklist is constructed .

Our incremental global flow analysis algorithms are based

on Hecht/Ullman's iterative algorithms . We presented incre

mental reaching definitions and incremental live variable

analysis as examples of forward and backward flow problems,

129

130

respectively . With the exception of the worklisl, the two algo

rithms are alike due lo the similarities of their exhaustive coun

terparts . In a forward flow problem, the worklist contains the

set of immediate successors of the affected node. The immedi

ate predecessors of the aff ecled node are the members of the

worklisl in a backward ft.owing problem.

The incremental interprocedural analysis algorithms

presented in this thesis are based on the exhaustive ones

designed by Banning. These algorithms are designed to deal

with a language with PASCAL like scope rules, pass by reference

parameters and recursion.

Interprocedural data flow analysis consists of two problems

which have been dealt with separately in this thesis . The first

problem considered is the method of updating the possible alias

solutions of a previous analysis after a program modification has

occurred. We presented two algorithms to deal with insertion

and deletion of cal.I sites separately. In these algorithms the

worklist consists of pairs of variables associated with the

affected call sites. Each pair is either flagged as a candidate for

possible aliases or non-aliases depending on the modification

type.

Updating the side effects of a procedure call afler a pro

gram modification is the second problem in incremental inter

procedural analysis. We dealt with flow insensitive and flow sen

sitive side effects separately. With the exception of the data

131

flow equations, the algorithms for lhe two types of side effects

are similar . The worklist consists of the set of call sites to the

affected procedure .

The analysis of these algori lhms were found to be very

much data structure and machine dependent. The worst case

time bound of each of the incremental algorithms were found lo

be equal to their exhaustive counterparts. The average time

bound of all algorithms were also computed using available

empirical evidence .

The conclusion that can be drawn from these analyses is

that the usual analysis techniques are not suitable for determin

ing the complexities of the incremental algorithms. In many

cases the effect of a small program change can not be general

ized with the available analysis tools. To precisely analyse the

incremental algorithms, empirical evidence is needed for the

following :

(1) Expected types of program modifications .

(2) The effects of program modification in various pro

gramming languages.

(3) Analysis of different data structures for iipplementa

tion of these algorithms .

The implementation of our PASCAL source level analyser

helped us in determining the complexity results for the incre

mental algorithms. This incremental system is based on an

existing analyser, called SOAP, that was designed for the one

132

time analysis of PASCAL programs for the purposes of source

level optimization and anomaly detection (Hughes 1981). In

order to perform its funcllons, SOAP scans a program creating

for each procedure its internal control and data :flow represen

tation. After processing for each procedure is completed, the

storage for its internal representation is freed to make room for

subsequent procedures . To this base, we added code to incre-,

mentally compute reaching definitions, live variables, possible

aliases and flow insensitive side effects. The main objective of

this implementation was to show the practicality of our algo

rithms. However, its most important contribution was the

insight that it provided for analysing the algorithms . The alga-

rithms were found to be straightforward to implement and easy

to maintain.

The analyser as implemented uses bit vectors to represent

sets of variables and statements. Use of bit vectors leads to

clean and easy lo maintain code. However, the lack of support

for bit vectors in PASCAL lead to some unexpected liming prob

lems. The other speed limitation was due to the sequential

nature of standard PASCAL files. To take care of one line of

source change, the entire data file containing the result of a

previous analysis had lo be read in main memory and evenlually

written back lo the secondary memory. This process is rather

t..ime consuming. However, assuming the existence of a good

programming environment, the routines for random access use

133

can be written in another language and incorporated in the sys

tem.

6.2. Future Directions

There are a number of ways in which this research can be

extended and we conclude with the discussion of some of them.

(1) The first obvious extension of our work is to imple

ment the algorithms using a more suitable program

ming language and then to gather statistics and find

average complexities based on empirical evidence.

(2) A suitable next step is to extend our incremental

interprocedural analysis algorithms to deal with all

aspects of the PASCAL language.

(3) After analysis of PASCAL is completely understood, il

would be appropriate to design incremental algo

rithms that deal with constructs available in some of

the newer languages such as ADA.

(4) Since the creation of an analyser for each and every

new programming language is a formidable task,

there is a need for the design and implementation of

an automated incremental data and control ftow ana

lyser generator that is independent of any prograin

ming language.

134

(b) An excellent application of the techniques devised

here can be found in the ·design of incremental

update algorithms for metrics and testing purposes

based on data flow analysis . However, it should be

noted that research into the application of data flow

analysis to these areas is still rather new and suitable

exhaustive algorithms need to be found first.

(6) A final extension is to implement these tools within a

comprehensive programming environment in the

manner described in the Appendix .

APPENDIX

APPUCATION TO SOFTWARE DEVELOPMENT SYSTEMS

An overview of how the research reported in this disserta

tion may be used in the design of a new software development

environment based on incremental program analysis is

presented here. This environment is discussed primarily to vali

date the use of our incremental algorithms and to show how

these can be clearly integrated into a complete programming

environment.

The main goal of any software development environment is

the design and development of highly reliable software on

schedule and with the minimum life cycle cost. As explained in

Chapter 1, the proper achievement of this goal involves con

sideration of the following two factors:

(1) Design and development of software which is easier to

modify, test and maintain .

(2) Detection of errors in the early stages of the life

cycle.

It is our belief that a software development environment

which facilitates tight supervision based on continuous analysis

of source programs and the design code can achieve such goals.

135

J 36

Continuous analysis permits the collection of essential data :flow,

control ft.ow and metrics informations at both the design and

implementation phases of the life eye le . The analysis process

should start after the functional specification phase and con

tinue throughout the life cycle . The results of such analysis can

be inspected by project leaders in order to find design and

implementation flaws, and be used as the basis of various tools

by the system .

The proposed environment consists of four major com

ponents which together provide an integrated sel of develop

ment tools. The four components are

•the design analyser,

•the source code analyser,

•the programmer's tool kit, and

•the manager's tool kit.

Both analysers, depend on the incremental data flow

analysis and incremental metrics algorithms which have been

proposed in this paper. Incremental program analysis is impor

tant in · carrying out the desired continuous analysis in a reason

able lime frame, with minimum cost.

The analysis at the implementation phase reveals data flow

anomalies, possible deviations from design and methodology and

13?

errors not detected at the design phase . Tight supervision and

continuous comparisons between melrks calculated here and

those evaluated in the design phase are essential in detection of

all errors al this stage .

The underlying principle in the design of the tool kits is to

provide as much assistance as possible to both the program

mers and their managers . All the tools will be in some way

dependent on the output from one or both of the analysers.

Hence, all constituents of the tool kits provide a unified view of

the who]e system to their user community.

A 1. The Design Analyser

The activities in the design phase begin with the study of

the requirement/specification document. A design methodology

is then chosen and a software design document is prepared .

The software design document is then coded in a design

specification language . Here, we assume the existence of an

appropriate design specification language . This language should

provide assistance in the clear specification of the following

de~ired characleris lies :

• The data structures,

• The breakdown of the procedures/modules,

• The interfaces between procedures /modules, and

1 ~B

• The control flow inf ormalion.

The purpose of the design analyser is to incrementally parse

the design code and collect all the necessary control and data

flow information for metric evaluation and graphical representa

tion of the control structure .

The quantitative evaluation of the design document is essen

tial in finding errors generated at this stage. This analysis can

result in either some modification to the design document or

complete redesign in extreme cases. As explained in Chapter 1,

the detection and correction of design errors early in the cycle

is beneficial in reducing the total cost of the system. The design

analyser is invoked automatically by the system, when the sys

tem version of the design code is updated. The output from this

component is saved for further interrogation by other tools and

by the analyser itself.

A.2. The Source Code Analyser

The source code analyser is automatically invoked by the

system when the system version of the source code is updated .

Its main function is to incrementally collect the necessary

intraprocedural and interprocedural summary data flow infor

mation. The analyser also gathers control flow and possibly

other information for metric calculation.

139

The output from lhe source code analyser is saved for possi

ble modification by itself and for use by other tools .

.A.3. The Programmer's Tool Kit

This tool kit consists of a collection of integrated tools that

prov1de assistance to the programmer in the implementation,

testing and maintenance phases of the life cycle .

A.3.1. Anomaly Detector

The anomaly detector examines the output produced by the

source code analyser and reports on the detected data ft.ow

anomalies . Anomalies reported include the following :

• DefiniUons of variables with no subsequent use .

•Use of variables with no prior definitions .

•Global declarations of loop indices .

•Global variables that are only used locally.

•Loops governed by a condition that is invariant

across the loop body because none of the control

variables in the loop body are changed.

j40

A. 3 . 2. Optimizer

This is essentially a source level optimizer. It examines lhe

output produced by the source code analyser and reports on

code segments which are dead and can be removed .

A.3.3. Documentation Generator

The documentation generator is partly automated and is

designed to assist the programmer. By examining the source

code analyser's output, it makes a list of all the local and global

variab~es, calling procedures and called procedures for each

procedure . The programmer is then prompted for the possible

semantic explanation of the procedure. This information is then

inserted just before the first statement of the procedure , as

comments in the source code .

A.3.4. Test Case Generator

The technique used here is that of data flow path testing .

The methodology is that testing should be done incrementally

throughout program implementation. Data flow paths are

tested symbolically and clearly recorded in a data base. These

records consists of the paths tested and symbolic test results

for each path.

141

When this tool is invoked, it examines the source code

ana1yser's output and identifies the data flow paths . A com

parison is then made between these paths and those in the lest

data base . A report is generated both graphkally and textually

which id enlifies

•the new paths which should be tested, and

•the extensions to the previously tested paths, and
the symbolic output of these paths.

The underlying philosophy behind the design of this tool is lo

provide assistance to the programmer in designing new test

cases.

A. 3. 5. Maintenance Tool

The purpose of this loo] is to provide assistance to the pro-

grammer in making a valid and reasonable modification during

the maintenance phase. It tracks and reports the data flow

relationships of an intended change.

Upon invocation, the maintenance tool takes the following

steps:

(1) Prompts the user for the intended modification.

(2) Calls on the source code analyser lo do a simulated analysis

of the modification request. This will be a simulated

analysis in the sense that the actual analyser's output is

not updated .

142

(3) Reporls the results of lhe source co~e analysis . This reporl

consist of the global affects of the intended modification,

the use /def history of each of the variables used in the

specified change and all the aliasing relationships of them .

The programmer can then make a decision based on this report,

rather than on some ad hoc approach.

A.4. The Manager's Tool Kit

The manager's tool kit consists of a collection of integrated

tools to aid the project leaders. These tools are designed in

accordance with our basic philosophy of providing a user

friendly environment as well as tight supervision.

In a large-scale programming environment, a project leader

is possibly in charge of several projects and each project

involves the collaboration of several programmers . To facilitate

automatic supervision in such an environment, a specific project

structure is required.

A project directory is created by the project leader, at the

lime of initiation of each project. Associated with each direc

tory are

• an access list,

•a collection of source programs,

• a collection of modification histories

for each program, and

• a set of reporls on the progress of

each program.

143

The access list is created and can only be modified by the

project leader and it includes programmer identification and

their access rights .

The modification histories and the progress reports are only

accessible by the project leader. These will be automatically

updated by the system. Their sole purpose is to provide a

mechanism for the project leaders to evaluate the progress of

each project and that of each programmer in their group. The

source program is accessible by both the project leader and the

programmer assigned to it.

A.4. 1. Modification History

A modification history is kept for each source program and

is automatically updated by the system. To provide a friendly

environment, the programmers, depending on their access

rights, can make a copy o:f their program . They can work on

their copy, but at least once a day they need to update the sys

tem version of the source program. When the system version is

updated, lhe following sequence of events takes place:

•The source code analyser is invoked to incrementally

analyse the program.

•The new version of the program is compared to lhaL

of the old system version and their source code

differences are determined .

144

•The programmer is prompted for some comments on each
\

piece of the difference.

• The differences and the programmer supplied comments

are recorded and attached lo the modification history

list for that program.

On those projects bounded by maximum security and time

constraints, the above process can be carried out continuously .

Under such circwnstances, programmers are not premitted to

make copies of their programs and consequently must work on

the system version of the source code al all times. The

modification history file can be reviewed by the project leaders

at their convenience.

A.4. 2. Interrogation Facility

The purpose of this tool is to assist the project leader in cal

culating metrics for the system. The functions provided are as

follows:

•Predefined design metric calculation.

•Predefined source code metric calculation.

•Open ended design I program metric calculation.

•Graphical display of the design I program's

control flow structure.

14!)

The interrogator is a simple interpretor, with calculating

capabilities. It interprets queries made and automatically

searches lhe output from one of the analysers (depending on

the request). Some metric formulas are predefined in the sys

tem and depending on the query made, the interpretor provides

the result of that metric calculation .

The interrogator also permits open ended metric calcula

tion, where the formula is provided by the user. Some com

mands are also available for graphical display of the control

structure .

A.4.3. Progress Report Generator

At different milestones in the implementation phase, the

system will automatically create a progress report for each

source program. This report is added to the progress report

list, for later exarrrination by the project leader. The following

steps are taken in generating such a report:

•The output from the source code analyser

is examined and data flow anomalies are

recorded .

•Some predefined metrics are evaluated and

recorded based on the output from the

analyser.

•These metrics are compared with those from

desjgn. Possible deviations from design

and melhodology are recorded.

J 46

Another function of the report generator is to automatically

compute some predefined design and source code metrics and

compare the computed metric values against some predeter

mined bounds. If any of these values exceeds the set bounds,

the report generator alerts the supervisors through electronic

mail or immediately signals them depending upon the impor

tance of that metric value to the success of the project.

A.5. Prototyping an Environment

The content of this Appendix is meant to suggest how our

research can lead to a new environment for software develop

ment. In such an environm.ent both programmers and project

managers are provided with tools that automatically aid them in

their jobs. Much work is left to be done before such an environ

ment can be a reality. Even so, existing environments such as

147

UNIX can be extended immedialely to include some of the tools

discussed here . This is one of the more immediate goals of our

future research/development effort . Through such a prototyp

ing activity we expect to learn more about the best directions to

extend this research .

GLOSSARY

AS(r), is the set of aliases associated with each reference parameter r.

B, is the total number of bits in a word.

b., is the total number of bindings for a call.

b8 , is the total number of bindings for each actual parameter .

BIND(s, X), is a partial mapping (S-f s D x Vr -> V. BIND(s, X) gives the

· actual parameter which is bound to formal parameter X by

call site s.

BINDLlST(a), is a set of pairs of reference parameters and call sites

associated with each actual parameter a.

d, is the loop-connectedness parameter of a reducible flow graph . It is

the largest number of back arcs on any cycle-free path.

DDEF(s), is the direct definition side-effect oi a call site s.

DEFlB]. pas a meaning lhal varies with the context of its use. In the

case of live variable analysi.s, DEF[B] is a set of variables

assigned values in B, prior to any use of that variable in B.

The DEF side-effect of a call site is the set of variables whose

values must be defined by every execution of the call site.

148

J49

DFN[B], is the depth first order number associated wilh each node B of

a ftow graph.

DMOD(s), is the direcl modification side-effecl of a call s .

DUSE(s), is the dire cl usage side-effect of a call site.

EIDEF(p), is the extended definition side-effect of procedure p . This

set includes the effects of the called procedures .

EIMOD(p), is the extended modification side-effect of a procedure p.

This set includes the effects of lhe called procedure.

EIUSE(p), is the extended usage side-effect of a procedure . This set

includes the effects of the called procedures.

FROM(s), is a mapping from elements of (S-f s D-> P. FROM(s) is the

procedure from which the call associated withs is made .

GDEF(p), is the sel of generalized definition side-effect of a procedure.

GEN[B], is the set oi definitions generated within B that reach the end

of block B.

GLOBAL(p), is the set of objects global to procedure p according to the

rules of block-structured programs .

GLOPARM(s), is the set of variables global to the procedure called bys

plus the set of reference parameters of that procedure.

GUOD(p), is the generalized modification side-effect of a procedure p.

150

GUSE(p), is the generalized usage side-effect of a procedure .

IN[B], has a meaning that varies with the context of its use . In the

case of reaching definitions problem, it is the set of

definitions reaching the point just before the first statement

of block B. IN[B], is the sel of variables live al the point

immediately before block B for live variable analysis prob

lem .

IDEF(p), is the set of variables defined by statements directly con

tained in p along every path through p. The effects of pro

cedures called by p are excluded .

IDENT(R), is the set of necessary aliases associated with the reference

parameter r .

IMOD(p) , is a mapping from P into subsets of V. IMOD(p) specifies the

variables which may be assigned by the execution of state

ments in procedure p .

IREF(p), is a mapping from P into subsets of V. IREF(p) specifies the

variables which may be referenced by the execution of state.

ments in procedure p.

IUSE(p), is the set of variables which may be referenced by state

ments directly contained in procedure p without fir~t being

defined by statements in p.

151

Kd(k), is the sel of all nodes in a minimal length, d definition clear

path of nodes from k' I the source of definition d, to some

node k .

KIIL[B], is the set of definitions outside of B that define identifiers

which also have definitions within B.

OUT[B], has a meaning that varies with the context of its use. In the

case of reaching definitions problem, it is the set of

definitions reaching the point just after the last statement of

block B. It is the set of variables live at the point immedi

ately after block B for live variable analysis problem.

m, is the average number of statements in a procedure.

n, is the total number of nodes in a flow graph.

N, is the total number of statements in a program.

N is the total number of" actual parameters in a program.
a'

N , is the total number of procedures. p

N is the total number of reference parameters in a program.
r'

N is the total number of call sites in a program. •'

N is the total number of variables in a program.
y'

152

NEWDMOD, is a temporary set of variables representing the direct

modification side-effect of a call sile .

NEWGMOD, is a temporary sel of variables representing the general

ized modification side-effect of a procedure .

NEWIN, is a temporary set of definitions in incremental reaching

definitions computation . It is a temporary set of variables in

incremental live variable analysis computation.

NEWOUT, is a temporary set of definitions in incremental reaching

definitions computation. It is a temporary set of variables in

incremental live variable analysis calculation.

NUM(X) , is the number associated with variable X.

MBIND(p. v), is the set of variables which will be bound to v by some

call from p during every execution of p .

llCAIJ..(p), is the set of procedures which must be called during every

execution of p .

llOD(s), is the set of variables whose values may be modified by an

execution of s .

P, is the set of procedures in the program.

p, is the main procedure, an element of P.

P~(s. x), is the variables passed lox by call site s.

158

PDEF(s), is lhe set of variables always defined by slalemenls in the

procedure containing call site s, before the call site is exe

cuted. This includes definitions due to other call sites in the

procedure .

PRED[K], is the set of predecessors of node K

r, is the total number of arcs in a flow graph.

REF(s), is the set of variables whose values may be inspected or ref er

enced by an execution of s.

RFG, is a reducible flow graph.

S, is a set of call sites in the program.

s, is the member of S that calls the main program.

sr, is the set of reference parameters associated with a call site s .

SUCC[K], is the set of f su~cessors of node K

TO(s), is a mapping from elements of S->P. TO(s) is the procedure

which is called by call site s .

USE[B], has a meaning that varies with the context of its use . In the

case of live variables analysis, it is a set of variables used in

block B, prior to any definition of that variable in B. Tbe USE

side-effect of a call site is the set of variables ~-hose values

may be inspected by an execution of that call before being

defined.

154

V, is the sel of variables in the program.

V is a subset of V. It is the set of ref ere nee parameters of the pro-r'

gram.

VISIBLE(p), is the set of objects accessib]e lo procedure p .

W, is the worklisl.

IJST OF REFERENCES

Adrion, W. R.; Branslad , M. A.; and Cherniavsky, J. C. ''Validation,
Varificalion, and Tesling of Compuler Software ." ACM Computing
Surveys 14 (June 1982): 159-192.

Allen, F. E., and Cocke, J. "A Program Data Flow Analysis Procedure."
Communications of the ACM 19 (March 1976) : 137-147.

Aho, A. V., and Ullman, J. D. "Node Listings for Reducible Flow
Graphs ." Proceedings of the Seventh Annual ACM Symposium
on Theory of Computing, Albuquerque, New Mexico, May 1975,
pp . 127-185. New York : ACM, 1975.

Aho, A. V., and Ullman, J. D. Principles of Compiler Design. Reading,
MA: Addison-Wesley, 1977.

Banning, J. P. "A Method for Determining the Side Effects of Pro
cedure Calls ." Ph.D. dissertation, Stanford University, 1978.

Banning, J. P. "An Efficient Way lo Find the Side Effects of Procedure
Calls and the Aliases of Variables." Conference Record of the
Sixth Annual ACM Symposium on Principles of Programming
Languages, San Antonio, TX, January 1979, pp. 29-41. New York:
ACM, 1979.

Barth, J. M. "A Practical Interprocedural Data Flow Analysis Algorithm
and ils Applications ." Ph.D. dissertation, University of California,
Berkeley, 1977.

Barth, J . M. "A Practical Interprocedural Dala Flow Analysis Algo
rithm.'' Communicalions of the ACM 21 (September 1970) : 724-
736.

Budd, T. A.; Lipton, R. J .; Sayward, F. G.; and DeMillo, R. A. "The Design
of a Prototype Mutation System for Program Testing." Proceed
ings of AFIPS National Computer Conference, Arlington, Va. :
AFIPS Press> 1978. Vol. 47, pp. 623-627.

Boehm, B. W. "The High Cost of Software ." In IEEE Tutorial: Software
Testing & Validation Techniques. Edited by Miller, and Howden,
New York : IEEE, 1978.

1f>5

156

Babich, W. A., and Jazayeri, M. "The Method of Attributes for Data Flow
Analysis : Part I: Exhaustive Analysis ." Acta Informatica 10
(March 1978) : 245-264 .

Babich, W. A., and Jazayeri, M. "The Method of Attributes for Data Flow
Analysis : Part II : Demand Analysis ." Acta Informatica 10 (March
1978) : 265-272.

Carter, L. R. .An lrnaJ,ysis of Pascal Programs . Ann Arbor, Michigan :
UMI Research Press, 1982.

Clarke, L. A. "A System to Generate Test Data and Symbolically Exe
cute Programs ." IEEE Transactions on Software Engineering 2
(September 1976) : 215-222. '

DeMillo, R. A .; Lipton, R. J.; and Sayward, F . G. "Hints on Test Data
Selection: Helf for the Practicing Programmer." IEEE Computer
11 (April 1978 : 34-43 .

Demers, A.; Reps, T.; and Teitelbaum, T. "Incremental Evaluation for
Attribute Grammars with Application to Syntax-Directed Edi
tors." Conference Record of the Eighl ACM Symposium on Prin
ciples of Programming Languages, 'Williamsburg, Va, January
1981, pp. 105-116. New York: ACM, 1981.

Fosdick, L. D., and Osterweil, L. J. ''Data Flow Analysis In Software Reli
ability ." ACM Computing Surveys 8 (September 1976): 305-330 .

Goodenough, J. B., and Gerhart, S. L. "Toward A Theory of Testing:
Data Selection Criteria." In Current Trends in Programming
Methodology, Vol . II, Program Validation. Edited by Yeh, Engle
wood Cliffs, N.J. : Prentice-Hall, 1977.

Gilb, T. Software Metrics . · Cambridge, MA : Winthrop, 1977.

Glass, R. L. Software Reliablity Guidebook . Englewood Cliffs, N. J. :
Prentice-Hall, 1979.

Ghezzi, C., and Mandrioli, D. "Incremental Parsing ." ACM Transactions
on Programming Languages a:nd Systems 1 (July 1979) : 58-70.

Graham, S .. L., and Wegman, M. "A F'ast and Usually Linear Algorithm
for Global Flow Analysis ." Journal of the ACM 23 (January 1976) :
172-202.

Habermann, A. N. "An Overview of the Gandalf Project." CMU Depart
Tnen/, of Computer Science Research Review, 1978-79.

1.5?

Halstead, M. H. Elements of Software Science . New York : Elsevier
North-Holland, 1977.

Hecht, M. S. Flow Analysis of Computer Programs. New York :
Elsevier North-Holland, 1977.

Hecht, M. S., and Ullman, J. D. "Flow Graph Reducibility ." SIAM Jour
nal of Computing 1 (June 1972) : 188-202.

Hecht, M. S., and Ullman, J. D. "Characlerization of Reducible Flow
Graphs ." Journal of ACM 21 (July 1974) : 367-375.

Hecht, M. S., and Ullman, J. D . ''A Simple Algorithm For Global Data
Flow Analysis Problems ." SIAM Journal of Computing 4
(December 1975) : 519-532.

Henry, S . M. "Information Flow Metrics for the Evaluation of Operating
Systems' Structure." Ph .D. dissertation, Iowa Stale University,
1979.

Henry, S. M .. and Kafura, D. "Software Structure Metrics Based on
Information Flow.'' IEEE Transactions on Software Engineering
? (September 1981): 510-518 .

Howden, W. E. "Reliability Of The Path Analysis Testing Strategy."
IEEE Transactions on Software Engineering 2 (September
1976) : 37-44.

Howden, W. E. "Symbolic Testing and the DISSECT Symbolic Evaluation
System." IEEE Transactions on Software Engineering 3 (July
1977) : 266-278 .

Huang, J. C. ''Error Detection Through Program Testing." In Current
Trends in Programming Methodology, Vol, II, Program Valida
tion . Edited by Yeh, Englewood Cliffs, N. J. : Prentice-Hall, 1977.

Hughes, C. E. "Automated Symbolic Optimization and Anomaly Detec
tion Within PASCAL Programs." Unpubllshed Report to National
Bureau of Standards, Gaithersburg, MD, 1981.

Kennedy, K. W. "Node Listings Applied To Data Flow Analysis ." Confer
ence Record of the second ACM Symposium on Principles of
Programming Languages, Palo Alto, Ca., January 1975, pp. 10-21.
New York : ACM, 1975.

Kennedy, K. W. "A Comparison of two Algorithms For Global Data Flow
Analysis." SIAM Jou:rnal of Compuling 5 (March 1976): 15&180.

1.58

Kennedy, K. W. "A Survey of Data Flow Analysis Techniques ." In Pro
gram F1ow Analysis : Theory and Applic.alions, Edited by
Muchnick and Jones, Englewood Cliffs, N. J . : Prentice-Hall, 1981.

Kam, J. B., and Ullman, J. D. "Globa] Data Flow Analysis and Iterative
Algorithms." Journal of the ACM 23 (January 1976) : 158-171 .

Kam, J. B., and lJllman, J. D. "Monotone Data Flow Analysis Frame
works ." Acta lnformal,ica 7 (March 1977) : 305-318 .

Knuth, D. E. "An emprical Stud>' of FORTRAN Programs ." Software
Practice and Experience 1 {April 1971): 105-134.

Lomet, D. B. "Flow Analysis in the Presence of Procedure Calls ." IBM
Journal of Research and Development 21 (November 1977) :
559-571.

McCabe, T. J. "A Complexity Measure ." IEEE Transactions on
Software Engineering 2 (December 1976) : 308-320.

Medina-Mora, R and Feiler, P. H. "An Incremental Programming
Environment." IEEE Tra:nsactions on Software Engineering 7
(September 1981) : 472-482.

Miller, E. In "Introduction to Software Testing Technology ." In
'PutoriaL Software Testing & Validation Techniques . Edited by
Miller, and Howden, New York : IEEE Computer Society Press,
1981.

Myers, G. J. The Art of Software Testing . New York : John Wiley &
Sons, 19?6.

Myers, E. W. "A Precise Interprocedural Data Flow Algorithm." Confer
ence Record of the Eighth Annual ACM Symposium on Princi
ples of Programming Languages, Williamsburg, Va., (January
1981), pp. 219-230. New York : ACM, 1981 .

Osterweil, L. J ., and Fosdick, L. D. "DAVE - A Validaion Error Detection
and DocurnentaUon System for Fortran Programs." Software
Practice and Experience 6 (December 1976) : 473-486.

Osterweil, L. . J. "Using Data Flow Tools in Software Engineering." In
Program FfA?w Analysis: Theory and applications. Edited by
Muchnick and Jones, Englewood Cliffs, N. J. : Prentice-Hall, 1981.

159

Oviedo, E. I. ''Control Flow, Data Flow, and Program Complexity ."
Proceedings of IEEE COMPS4C 80, Chicago, October 1980, pp .
146-152. New York : IEEE Press, 1980.

Reps, T. "Optimal-time Incremental Semantic Analysis for Syntax
directed Editors ." Conference Record of the Ninth _4nnual ACM
Symposium on Principles of Programming Languages. New
York: ACM, January 1982.

Reps, T. "Static-Semantic Analysis in Language-Based Editors ." Digest
of Papers of the Twenty-Sixth IEEE Compuler society Interna
tional Conference: Intellectual Leverage For The Information
Society Spring COMPCON 83, San Francisco, Ca . : COMPCON IEEE
Computer Society, 1983.

Ramamoorthy, C. V., and Ho, S. F . "Testing Large Software Wilh
Automated Evaluation Systems ." IEEE Transactions on Software
Engineering 1 (March 1975) : 46-58 .

Rosen, B. K. "High-Level Data Flow Analysis ." The Communicalions of
the ACM 20 (October 1977) : 712-724 . ·

Rosen, B. K "Data Flow Analysis for Procedural Languages." Journal
Of the ACM 26 (April 1979) : 322-344.

Rapps, S., and Weyuker, E. J. ''Data Flow Analysis Techniques for Test
Data Selection." Proceedings of the Sixth International Confer
ence on Software Engineering, Tokyo, Japan, September 1982,
pp. 272-278. Long Beach, Ca. : IEEE Computer Society Press,
1982.

Ryder, B. G. "Incremental Data Flow Analysis Based on a Unified Model
of Elimination Algorithms ." Ph.D. -dissertation, Rutgers Univer
sity, 1982.

Taylor, R. N., and Osterweil, L. J. "Anomaly Detection in Concurrent
Software by Static Data Flow Analysis ." IEEE Transactions on
Software Engineering 6 (May 1980) : 265-278.

Weyuker, E. J., and Oslrand, T. J. ''Theories of Program Testing and
the Application of Revealing Subdomains." IEEE Transactions on
Softwar~ Engineering 6 (May 1980) : 236-246.

	Incremental Analysis of Programs
	STARS Citation

	TITLE PAGE
	i

	ABSTRACT
	ii

	ACKNOWLEDGEMENTS
	iii

	TABLE OF CONTENTS
	iv
	v

	LIST OF FIGURES
	vi
	vii

	CHAPTER 1. INTRODUCTION
	001
	1.1 Motivation
	002
	003
	004
	005
	006

	1.2 Thesis Overview
	007

	1.3 Basic Concepts and Applications
	008
	009
	010
	011
	012
	013
	014

	CHAPTER 2. SURVEY
	2.1 Data Flow Analysis
	015
	016
	017
	018
	019
	020
	021

	2.2 Incremental Algorithms
	022
	023

	2.3 Metrics
	024
	025
	026

	2.4 Testing
	027
	028

	2.5 Static Analysers
	029
	030
	031

	CHAPTER 3. INCREMENTAL DATA FLOW ANALYSIS
	032
	3.1 Global Flow Analysis
	033

	3.2 Exhaustive/ Incremental Reaching Definition
	034
	035
	036
	037

	3.3 Exhaustive / Incremental Live Variable Algorithms
	038
	039

	3.4 Analysis of the Update Algorithms
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058

	3.5 Validity of the Incremental Algorithms
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069

	CHAPTER 4. INTERPROCEDURAL ANALYSIS
	4.1 Aliases
	070

	4.2 Exhaustive Alias Calculation
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080

	4.3 Incremental Alias Computation
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103

	4.4 Necessary Aliases
	104
	105
	106

	CHAPTER 5. SIDE EFFECT CALCULATION
	107
	108
	109
	5.1 Flow Insensitive Side Effects
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123

	5.2 Flow Sensitive Side Effects
	124
	125
	126
	127
	128

	CHAPTER 6. CONCLUSIONS
	6.1 Summary
	129
	130
	131
	132

	6.2 Future Directions
	133
	134

	APPENDIX: APPLICATION TO SOFTWARE DEVELOPMENT SYSTEMS
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147

	GLOSSARY
	148
	149
	150
	151
	152
	153
	154

	LIST OF REFERENCES
	155
	156
	157
	158
	159

