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ABSTRACT 
 

This dissertation aims mainly at obtaining robust variants of Gaussian processes (GPs) that do 

not require using non-Gaussian likelihoods to compensate for outliers in the training data. 

Bayesian kernel methods, and in particular GPs, have been used to solve a variety of machine 

learning problems, equating or exceeding the performance of other successful techniques. That is 

the case of a recently proposed approach to GP-based novelty detection that uses standard GPs 

(i.e. GPs employing Gaussian likelihoods). However, standard GPs are sensitive to outliers in 

training data, and this limitation carries over to GP-based novelty detection. This limitation has 

been typically addressed by using robust non-Gaussian likelihoods. However, non-Gaussian 

likelihoods lead to analytically intractable inferences, which require using approximation 

techniques that are typically complex and computationally expensive. Inspired by the use of 

weights in quasi-robust statistics, this work introduces a particular type of weight functions, 

called here data weighers, in order to obtain robust GPs that do not require approximation 

techniques and retain the simplicity of standard GPs. This work proposes implicit weighted 

variants of batch GP, online GP, and sparse online GP (SOGP) that employ weighted Gaussian 

likelihoods. Mathematical expressions for calculating the posterior implicit weighted GPs are 

derived in this work.  In our experiments, novelty detection based on our weighted batch GPs 

consistently and significantly outperformed standard batch GP-based novelty detection whenever 

data was contaminated with outliers. Additionally, our experiments show that novelty detection 

based on online GPs can perform similarly to batch GP-based novelty detection. Membership 

scores previously introduced by other authors are also compared in our experiments.  
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CHAPTER 1: INTRODUCTION AND BACKGROUND 
 

This dissertation investigates the development of robust novelty detection algorithms that use 

weighted variants of Gaussian processes (GPs) as their theoretical foundation, which are also 

proposed in this work. Note that the term “novelty detection” covers the same types of problems 

and algorithms considered by the area of “outlier detection”. Both terms differ mainly in the 

interpretation given to anomalous observations.  Note also that the term anomaly detection is 

commonly used as a synonymous to outlier detection. Consequently, the three terms are used 

indistinctly in this work. However, the term “novelty detection” is favored in this dissertation for 

reasons exposed in the following subsection. 

The objective of Chapter 1 is to introduce the various terms used in this dissertation. The 

research efforts made by others in the field of novelty detection are also discussed. We begin by 

providing a historical perspective on outlier detection (arguably the first term used to denote this 

research area). Afterwards, a review of modern outlier detection methods is offered. A particular 

emphasis is given to kernel methods, given that GPs rely on kernel functions to define 

covariance matrices. The advantages and limitations of modern techniques are also mentioned in 

this chapter. 

1.1 Background 

Prices for data storage have been falling at a rapid pace recently. This has enabled the recording 

and management of a variety of every-day activities, thereby resulting in storing increasingly 
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larger amounts of data for various purposes. Consequently, retrieving knowledge from data sets 

has become a very important practical problem, typically covered by statistics and –more 

recently– data mining. The primary goal of data mining is to find useful hidden patterns in large 

data sets. However, problems in data mining have become much more difficult recently, not only 

because of the larger size of data sets, but also because the increasing variety and complexity of 

the data.  

From a very general point of view, the search for knowledge in large amounts of data can be 

done by employing two very different approaches. The first approach assumes that the initial 

data set contains all the information required to find the type of patterns we are interested in. 

Consequently, one or more learning algorithms are applied once to the available data, and any 

patterns obtained are considered valid for a relatively long time. This scenario is known as batch 

learning. The second scenario assumes that observations come on a serial fashion and possibly 

generated by a slowly changing distribution. These assumptions imply that knowledge needs to 

be constantly updated based on new input data. Algorithms designed to work under this setting 

are said to follow an online learning approach. The research described in this dissertation 

addresses both batch and online outlier detection.  

Currently, many databases contain a mixture of data types: numerical and categorical variables, 

graphs, maps, images, video and sound, among others. Data mining researchers and practitioners 

employ several techniques, mainly from statistics and machine learning, in order to find 

interesting and actionable patterns within those large and potentially complex data sets (Tan, 

Steinbach, & Kumar, 2005). The wide applicability of data mining and the increasing complexity 
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of the problems it tackles have led to the creation of standards for describing data mining 

models. An example worthy of mention here is the Predictive Model Markup Language (PMML) 

(Guazzelli, Zeller, Lin, & Williams, 2009). PMML allows several mainstream data analysis 

software to exchange data mining models, e.g., IBM DB2 Data Warehouse, Microsoft SQL 

Server Analysis Services, Rattle/R, Statistica, SPSS, SAS Enterprise Miner, KNIME, and 

RapidMiner.  

The problems traditionally considered in data mining are clustering, classification, 

dimensionality reduction, association mining, and outlier detection. Outlier detection is a 

growing field within data mining.  It focuses on detecting unusual observations in data sets and 

processes. Hawkins defined an outlier as “an observation that deviates so much from other 

observations as to arouse suspicion that it was generated by a different mechanism” (Hawkins 

D. M., 1980). This general definition is broadly accepted nowadays. Detection of credit card 

fraud, computer network attacks, anomalous clinical results, suspicious activity in electronic 

commerce and faulty sensor readings are some of the most important applications of outlier 

detection.  

The term novelty detection is another synonymous to outlier detection. The difference between 

the two terms is based on the interpretation given to the suspiciously abnormal data points.  An 

outlier (or anomaly) is an observation that does not belong to the population or process being 

modeled, while novelty detection refers to “the identification of new or unknown data or signals 

that a machine learning system is not aware of during training” (Markou & Singh, 2003). 

Nevertheless, the terms outlier detection, anomaly detection and novelty detection denote the 
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same set of techniques and encompass the same theoretical and practical concerns. Because of 

that, they will be used indistinctly in this dissertation. However, novelty detection is the term 

used in the title because it better reflects the learning approach investigated in this research. 

While outliers and anomalies are observations that should not belong to the concept previously 

learned, novelty detection provides a more general interpretation because it opens the door to the 

realization that some of the abnormal observations actually belong to under-represented or 

emerging areas that could increasingly be considered normal. In those cases, the model should be 

adjusted accordingly over time, in order to include the novel observations as part of the normal 

class; even if initially they are not given much importance in the model. This idea is explored in 

this dissertation through the use of weights that embody the importance of observations. Weights 

would allow learning new regions of the normal class in a way that is robust to the presence of 

actual outliers in the training data. 

1.2 Historical Origins of Outlier Detection 

Outlier detection has been done for centuries. For instance, it was common practice among 

astronomers on the eighteenth century to reject observations with particularly large deviations 

from the sample mean. However, detection of “doubtful observations” was not based on any 

mathematical foundation at that time. Scientists dealing with series of observations used their 

experience and intuition to decide, arbitrarily, whether to keep or reject those observations that 

seemed to be erroneous measures, or possibly coming from another source. This practice, as 

might be expected, was highly controversial.  
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One of the first references to outlier detection was based on large residuals. It came from the 

head of the German School of Astronomers in 1838 (Anscombe & Guttman, 1960). This 

approach assumes that outliers are observations lying in low-probability regions of a stochastic 

model that describes a normal class. The underlying distribution of each normal class is 

estimated from the training data set. Outliers are determined by calculating the probabilities of 

obtaining a new observation from each normal class using the corresponding estimated class 

distributions. 

In 1852, Benjamin Peirce, the father of Charles Sanders Peirce, published the first effort to 

establish a formal test for outlier detection (Peirce, 1852). Given a series of N observations, 

Peirce proposed to obtain a threshold T for the errors (which he called “limit of error”) such that 

observations with residuals from the mean greater than T would be considered outliers. In 

Peirce’s words, the principle behind his criterion is that “the proposed observations should be 

rejected when the probability of the system of errors obtained by retaining them is less than that 

of the system of errors obtained by their rejection multiplied by the probability of making so 

many, and no more, abnormal observations”. When his work was published, one of the main 

difficulties practitioners were facing was to decide whether “doubtful observations” were 

actually outliers. The small amounts of data managed at that time allowed practitioners to 

determine those doubtful observations by visual inspection. Consequently, Peirce assumed that 

the number of observations proposed to be rejected, n, was known in advance. Peirce’s paper is 

not straightforward to read because the notation is very different from modern notation. A paper 

published in 1855 by Benjamin Apthorp Gould, the founder of the American Astronomical 

Journal, provides a description of Peirce’s criterion that is somewhat easier to understand despite 
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the old-fashioned notation (Gould, 1855). A brief description of Peirce’s criterion is given below 

using modern notation.   

Let 𝑋 = {x1, x2, … , x𝑁} be a series of N observations, and n the number of doubtful observations 

that we are intending to reject. Peirce denoted by m the number of unknown variables contained 

in the observations, which is a quantity that the practitioner must fix in advance. Let us denote by 

𝜎1 the standard deviation of the original sample. The standard deviation of the remaining 

observations after removing the n doubtful observations is denoted by 𝜎2. Let us define 𝜆 ≡
𝜎1

𝜎2
, 

and assume that the threshold 𝑇 = 𝑐𝜎1. The main goal of Peirce’s criterion is to obtain a value 

for c such that any observation x𝑖 with |x𝑖 − 𝜇𝑋| > 𝑇 has a high probability of being an outlier.  

To decide on rejecting n doubtful observations following Peirce’s criterion, the following 

inequality must be satisfied:  

                                                  𝜆𝑁−𝑛𝑒
1

2
𝑛(𝑐2−1)(2Φ(−𝑐))

𝑛
< 𝑄𝑁 ,  ( 1.1 ) 

where 𝑄𝑁 =
𝑛𝑛(𝑁−𝑛)𝑁−𝑛

𝑁𝑁   and Φ denotes the cumulative distribution function of the standard 

normal distribution. Clearly, 2Φ(−𝑐) denotes the probability of having residuals greater than c in 

absolute value, provided the residuals follow a standard normal distribution. 

Peirce assumed that “the excess of the sum of squares of the residual errors above the 

corresponding sum in the series remaining after the n observations have been excluded is only 

equal to the sum of the squares of the rejected residuals”. Under that assumption, which seems 

general enough, the following equations are obtained: 
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                                                                𝜆2 =
𝑁−𝑚−𝑛𝑐2

𝑁−𝑚−𝑛
 ,   ( 1.2 ) 

𝑐2 = 1 +
𝑁−𝑚−𝑛

𝑛
(1 − 𝜆2) .  ( 1.3 ) 

Given Peirce’s assumption on the sum of squared residuals, inequality (1.1)  becomes  

                                                                𝜆𝑁−𝑛𝑅𝑛 = 𝑄𝑁 ,  ( 1.4 ) 

where 𝑅 = 𝑒
1

2
(𝑐2−1)2Φ(−𝑐).   

The application of the criterion consists of the following steps using the last three equations: 1) 

an approximate value for R is assumed; 2) the corresponding value for 𝜆 is estimated using R and 

Q; 3) an estimate for c is obtained using the estimate for 𝜆. The process could be repeated 

iteratively to increase precision. After one or more iterations to estimate c, the threshold T is 

calculated as 𝑇 = 𝑐𝜎1. To apply Peirce’s criterion, the threshold must first be determined for the 

hypothesis of n = 1. If the test supported rejecting one observation, the hypothesis of n = 2 is 

tested, and so on. 

Peirce’s criterion was highly controversial. Several scientists had harsh criticism, particularly Sir 

George Biddell Airy, the director of the Royal Greenwich Observatory. Airy wrote “the whole 

theory is defective in its foundations, and illusory in its results” (Airy, 1856). Despite the critics, 

Peirce’s criterion was in use very soon after its publication. Among the first applications were 

analysis of astronomical data and the rejection of doubtful observations from the United States 

Coast Survey. The astronomer Joseph Winlock strongly criticized Airy’s statements (Winlock, 

1856). He stated that some of Airy’s arguments, like the inapplicability of probability laws to 

observations that were already recorded, were not sound from a statistical point of view. Airy 

had asserted that it was as probable for the retention of doubtful observation to be beneficial as to 
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be harmful for data analysis. Regarding this assertion, Winlock’s argument was that rejecting a 

valid observation does not necessarily introduce an error, while keeping an abnormal observation 

as valid definitely affects any statistics obtained from the data. In Winlock’s words: “we must 

reject whenever an observation is so doubtful, that retaining it makes our conclusions less 

reliable than they would be if its evidence had not been used” (Winlock, 1856). Interestingly 

enough, this sentence reflects Peirce’s own approach to the outlier rejection problem. 

The second important work on outlier detection from the nineteen century was the approximation 

method proposed by Chauvenet (Chauvenet, 1868). That work was the appendix to Chauvenet’s 

book "Manual of spherical and practical astronomy". The last section of the treatise, starting on 

page 558, offers a description of Peirce's criterion. After that review, Chauvenet proposed an 

approximate criterion for rejecting a single doubtful observation, based on the foundation of least 

squares. He mentioned that such approximations were also possible for the general case, but they 

were more cumbersome than Peirce’s criterion, so he preferred not to develop it further.   

Assuming that the residuals of the observations distributes N(0, σ2), the actual number of 

residuals n to be expected greater than a threshold T in absolute value, where 𝑇 = 𝑐σ, is given by 

 𝑛 = 2𝑁Φ(−c). Again, Φ denotes the cumulative distribution function of the standard normal 

distribution. The main idea behind Chauvenet’s criterion is to find T such that, regardless of the 

number of observations N, on average, half an observation of valid data is rejected.  Accordingly, 

if c satisfied 2𝑁Φ(−c) = 0.5 then any residual greater than 𝑇 = cσ in absolute value should be 

rejected.  



9 

 

An important aspect to note from Chauvenet’s criterion is that the threshold c decreases when the 

number of observations decreases, causing a variable proportion of observations to be rejected. 

The criterion is devised to test for a single outlier because N changes once an outlier is rejected, 

and consequently, the threshold must be updated. Chauvenet suggested a successive application 

of his criterion for the rejection of two or more outliers. It is also important to note that 

Chauvenet was supportive of Peirce’s criterion, and he recommended it for those situations 

where his approximation was not applicable. 

 The third important work from the nineteenth century, in chronological order, is the outlier 

rejection method from Stone (Stone, 1868). His article offered an alternative to Peirce's criterion 

and Chauvenet's outlier rejection method. The main idea was to determine a threshold T for the 

residuals based on the proportion of outliers within a data set, which is assumed to be known in 

advance. Stone defined the term “modulus of carelessness” as the average number of 

observations containing exactly one outlier for the sample at hand. He denoted by n the modulus 

of carelessness. If the value c satisfying the following equation is found: 

                                                                 2Φ(−𝑐) =
1

𝑛
 ,  ( 1.5 ) 

we would have a threshold 𝑇 = 𝑐𝜎 that fits the expected proportion of outliers in the sample. 

Contrary to Chauvenet’s method, by using this rule the value of c does not depend on the number 

of observations. Therefore, the number of outliers increases for larger number of observations. 

This approach seems to be the seed for the current rule of thumb that rules out normal 

observations which are farther than three standard deviations from the mean. It is trivial to 

realize that such rule of thumb actually corresponds to a modulus of carelessness approximately 
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equal to 370; i.e. a probability of encountering an outlier is assumed to be around 0.0027. 

Apparently, this was not the first rule of thumb to be used. The work of (Wright, 1884) proposed 

to reject observations with residuals above 3.37 times the standard deviation in absolute value 

(using old notation: five times the probable error).  

The methods from the nineteenth century were always concerned with the probabilities of 

observations lying far enough from the sample mean assuming a normal distribution. A method 

described in (Irwin, 1925a) introduced the idea of taking into account the difference between 

neighboring observations. If observations taken at random from a normal population were 

arranged in descending order of magnitude, the frequency distribution of the differences between 

the p
th

 and (p + 1)
th

 observations can be obtained (Irwin, 1925b). In particular, Irwin noted that 

for p = 1 and p = 2, those frequency distributions could be approximated by functions from the 

following family (using Irwin’s notation): 

                                                         y = y0𝑒
−

1

2
{

(x+ℎ)2−ℎ2

Σ2 }
 ,   ( 1.6 ) 

where x ϵ [0, ∞), and the parameters y0, h and Σ depend on the size of the sample at hand. Let us 

denote by σ the standard deviation of the sample population. If the probability of any of these 

two differences being greater than 𝑐𝜎 is small enough, then the corresponding observations (the 

first, or the first and second observations) should be rejected. The constant c, denoted by λ in 

Irwin’s paper, is to be determined by the person using the method, based on which value for 

P(difference > cσ) is sufficiently small. Irwin commented on how to use his method for 

establishing the “outlierness” of differences when p > 2, but he noted that for typical data sets (at 

that time) “it does not often happen that there are more than three or four outlying 
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observations”. As a curiosity, Irwin had strong words in his paper against Peirce’s criterion, 

which was one of the outlier detection methods to which he compared his own method. 

Another interesting point of view appeared in (Jeffreys, 1932). According to that paper, “the 

probability that a given observation has been affected by an abnormal cause of error is a 

continuous function of the deviation”. Consequently, it might be better to take those probabilities 

into account than to completely reject some of the observations.  Apparently, Jeffreys was the 

first one to propose a distribution for the data that is actually a sum of a normal distribution and a 

“contaminating” distribution: 

                                        𝑓(x) = (1 − 𝑝) 
𝑒

−
(x−μ)2

2σ2

√2πσ2
 +  𝑝 

𝑒
−

(x−μ−y)2

2σc
2

√2πσc
2

 ,  ( 1.7 ) 

where µ is the population mean, x denotes an observation, σ denotes the standard deviation for 

normal observations, σc denotes the standard deviation of the contaminating distribution, and y 

denotes a systematic error. It is important to note that this formula was written here using 

modern notation, but Jeffreys wrote it slightly differently by using the concept “modulus of 

precision” instead of standard deviation. The problem that Jeffreys tackled in his paper was to 

estimate μ and y, given a series of N observations X = {x1, x2, … , x𝑁}. He proposed a solution to 

this problem under two different scenarios: 

 The parameters p, σ and σc were known in advance. 

 The parameters p, σ and σc are unknown, so they have to be estimated from the sample. 



12 

 

In the first case, by carrying out the maximum likelihood method, Jeffreys arrived at expressions 

to calculate µ and (µ + y) as weighted averages of the observations.  Clearly, if p was assumed 

equal to zero, then we have that µ is equal to the arithmetic mean of the observations and y is 

indeterminate. Interestingly, under this derivation, large deviations have smaller weights than 

small deviations in the estimation of µ. On the contrary, large deviations have greater weights in 

estimating (µ + y). The solution requires successive approximations to the values of µ and y. The 

second case was also solved using successive approximations on a set of equations which 

included p, σ and σc as unknown variables. 

Another work worth mentioning from the early twentieth century is that of William Thompson  

(Thompson, 1935).  It seems to be the first publication where the Student’s t-distribution was 

used in an outlier detection method to deal with the fact that most of the time practitioners do not 

have access to the mean and standard deviation of the population. In that case, those values are 

approximated by the sample mean x̅ and the sample standard deviation s. Unless there are a large 

number of observations, those approximations do not justify using the normal distribution. To 

account for the possible error incurred in estimating the population parameters, Thompson 

defined a new random variable 𝜏 ≡
𝑋−x̅

𝑠
. He showed that  𝜏 = 𝑡√

𝑛+1

𝑛+𝑡2 ,  where t follows a Student 

t-distribution with n = N – 2 degrees of freedom. Thompson followed the same approach as 

Stone, fixing a priori the expected number of observations to be rejected, denoted by 𝜙, for a 

sample of size N. Given 𝜙 and N, a probability p is calculated as 𝑝 =
𝜙

𝑁
. A threshold value 𝜏0 is 

obtained such that 𝑃(|𝜏| > 𝜏0) = 𝑝. Consequently, any observation x𝑖 such that |x𝑖 − x̅| > 𝜏0𝑠  
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is considered an outlier. On average, this method will reject one valid observation (i.e. a non-

outlier) in every  
1

𝜙
  observations. 

The work of (Pearson & Sekar, 1936) argued that Thompson’s method was essentially a test for 

the hypothesis 𝐻0 that “a sample of N observations has been drawn from a single normal 

population”. They praised Thompson’s method because it provides control over the error of type 

I when rejecting the null hypothesis 𝐻0. However, Thompson did not establish what the 

alternative hypotheses were. Pearson and Sekar stated as the alternative hypothesis that k 

observations, k > 0, come from normal populations having different means or standard deviations 

from the population from which the valid N – k observations were drawn.  By imposing outer 

limits in the extreme values for the studentized residuals τ, Pearson and Sekar showed that for 

samples with two or more outliers which are close together, any attempt to remove them one at a 

time using Thompson’s method is worthless. This fact was subsequently named in literature as 

the “masking effect”.  

Another statistic from the beginnings of the twentieth century was based on the range of the 

sample. Having the observations sorted as x1 ≤ x2 ≤ ⋯ ≤ x𝑁 the statistic 𝑤 =
x𝑁−x1

𝜎
 can be 

used to establish abnormal observations. However, this statistic was limited to very small 

samples, since for the more than 12 values the probability law of w “becomes very sensitive to 

relatively slight departures from normality in the tails of the population distribution” (Pearson & 

Hartely, 1942). Consequently, “the use of range for control purposes in larger samples is of 

doubtful value”. The 𝑤 statistic was subsequently used in the Bliss-Cochran-Tukey rule (Bliss, 
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Cochran, & Tukey, 1956) in order to determine the presence of outliers from several small 

samples, each one with N observations.  

Another interesting outlier rejection method was proposed in (Grubbs F. E., 1950). Again, the 

observations are assumed to be sorted as x1 ≤ x2 ≤ ⋯ ≤ x𝑁. This method tests the significance 

of the largest observation in the sample from a normal population using the following statistic: 

                                                   
𝑆1,𝑁−1

2

𝑆2 =
∑ (x𝑖−x̅1,𝑁−1)𝑁−1

𝑖=1

∑ (x𝑖−x̅)𝑁
𝑖=1

 ,  ( 1.8 ) 

where x̅𝑗,𝑘 =
∑ x𝑖

𝑘
𝑖=𝑗

𝑘−𝑗+1
; k > j, and x̅ is the mean of the whole sample. If the significance of the 

smallest observation in the sample was the one to be tested, then a similar statistic 
𝑆2,𝑁

2

𝑆2 =

∑ (x𝑖−x̅2,𝑁)𝑁
𝑖=2

∑ (x𝑖−x̅)𝑁
𝑖=1

  can be employed. Grubbs found out that 
𝑆1,𝑁−1

2

𝑆2 = 1 −
1

𝑁−1
(

x𝑁−x̅

𝑠
)

2

= 1 −
1

𝑁−1
𝑇𝑁

2. 

Here, 𝑇𝑁 is the sudentized extreme deviation that Pearson and Sekar used for expanding 

Thompson’s work. Grubbs obtained the exact distribution of 
𝑆1,𝑁−1

2

𝑆2  (and similarly of 
𝑆2,𝑁

2

𝑆2 ) in order 

to test the corresponding significance. He defined similar statistics to test the significance of 

either the two largest or the two smallest values in a small sample. It is important to note that 

Grubbs derived a general recursive expression for the cumulative probability function of  
x𝑁−x̅

𝜎
. 

That same result was previously published in (McKay, 1935). Grubbs pointed out that his 

derivation was obtained independently from McKay’s work and it was much simpler. Grubbs’ 

statistics are limited to a very small number of observations, given that the distribution on which 

they are based depends on N. Grubbs published tables with four significance values for values of 

N ranging from 2 to 25.  
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1.3 Main Aspects of a Novelty Detection Problem 

Continuous advances in disk storage, memory speed and capacity, computational power, added 

to the decreasing cost of hardware and the surge of distributed systems running on “commodity 

hardware”, have allowed data mining techniques to expand out of the realm of powerful 

companies and large institutions to become common place in a variety of application domains. 

The same computational advances have allowed the implementation of more complex and 

accurate algorithms. The multiple domains to which data mining techniques are currently applied 

have characteristics that determine the specific formulation of the problems to be solved. This 

section describes the main aspects of a novelty detection problem, particularly those that are 

determined by the corresponding application domain.  

According to (Chandola, Banerjee, & Kumar, 2009), the most important factors determining the 

formulation of an anomaly detection problem are the following: the nature of data, the type of 

output, the type of anomaly, and the availability or unavailability of data labels. This section 

extends the categorization given in (Chandola, Banerjee, & Kumar, 2009) by adding two other 

factors that are also important when defining a novelty detection problem: computational 

requirements and the learning framework. These aspects are shown in Figure 1.1 below, inspired 

on a similar diagram from (Chandola, Banerjee, & Kumar, 2009). They are described in the 

subsections that follow. If some characteristics of these aspects were particularly relevant for the 

research described in this dissertation then they will be noted in the corresponding subsections. 
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Figure 1.1: Main aspects of a novelty detection problem. 

 

1.3.1 Nature of Data 

Input data can be defined as a collection of data instances that represent fundamental 

characteristics of objects from the application domain. In this dissertation, data instances are also 

called observations. Observations are typically stored as univariate or multivariate vectors. Each 

component of an observation is denoted in this dissertation by the term attribute (feature and 

characteristic are also used here sporadically). Attributes might be numerical, categorical, 

unstructured text, images, videos, or sound, among other types. In the case of multivariate 

observations, whether attributes are of the same type or not makes an important difference 

regarding the algorithms that can be applied. Most of the current approaches have been focused 

on detecting outliers exclusively on a particular type of data. However, data sets with a mixture 

of data types (also called mixed-attribute data sets) appear in many real-world applications. A 
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very common case is the mixture of numerical and categorical data (Otey, Ghoting, & 

Parthasarathy, 2006), (Koufakou & Georgiopoulos, 2010). 

This dissertation focuses on a particular type of kernel method for novelty detection. Kernel 

methods effectively decouple the underlying data types of the observations from the particular 

algorithm employed. Consequently, novelty detection techniques proposed here are not sensitive 

to changes in data types, as far as an appropriate kernel can be found. 

Another useful classification for the nature of data is based on relationships among the 

observations (Tan, Steinbach, & Kumar, 2005). Most novelty detection algorithms assume no 

relationship among data instances. In that case, observations are also denoted by the terms data 

points and data records. Some possible relationships in related data are: sequential, spatial, and 

spatio-temporal. Sequence data contains linearly ordered data; for instance, time-series (also 

called temporal data), and genome sequences. Spatial data contain one or more attributes 

describing the spatial location of observations. Main examples are geological and ecological 

data. Spatial data with a temporal attribute is referred to as spatio-temporal data. Finally, the 

term graph data typically denotes data that contain more general relationships (social data is a 

prime example of this category). A good review of current outlier detection methods for 

temporal data, including spatio-temporal data and sequences of graphs, is given in (Gupta, Gao, 

Aggarwal, & Han, 2014). Although data relationships are a fundamental component of some 

novelty detection techniques, this dissertation is not concerned with modeling data relationships. 

However, it is important to note that the methods employed in this work could benefit from such 

relationships through the use of kernel functions that are designed to leverage them.  
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1.3.2 Type of Output 

Typically, the output from novelty detection methods are of two types: labels and scores 

(Chandola, Banerjee, & Kumar, 2009). Techniques that use labels classify each observation as 

either outlier or normal. Scoring techniques assign to each observation a score value (typically a 

real number) that states either its degree of “outlierness” or its degree of membership to the 

normal class. Score values are denoted by the term novelty scores or membership scores, 

respectively. Novelty scores allow analysts and researchers to maintain a ranked list of 

observations that were classified as outliers. Consequently, they can focus on the most relevant 

anomalies. Furthermore, novelty scores might be an important feature in some application 

domains to determine whether an outlier or a group of outliers should be added to the normal 

model or not. Finally, if the need appeared, then scores can be converted into labels by defining a 

threshold value. Because of the advantages of novelty scores over labels, this dissertation focuses 

on scoring algorithms.  

The work of (Breunig, Kriegel, Ng, & Sander, 2000) was the first one to use scores to describe 

outliers.  It was an important step towards establishing novelty scores through rankings.  The 

work in (Hawkins, He, Williams, & Baxter, 2002) used the reconstruction error of replicator 

neural networks as the anomaly score for each observation. A rule-based approach was employed 

in (Fan, Miller, Stolfo, Lee, & Chan, 2001), defining novelty scores as the inverse of confidence 

factors. In (He, Xu, Huang, & Deng, 2004), novelty scores of categorical observations were 

defined based on the number of frequent itemsets in which they appeared. The work of (Byers & 

Raftery, 1998) calculated the novelty score of a data point as the distance to its k
th

 nearest 

neighbor. 
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1.3.3 Type of Anomaly 

Anomalies can be classified into three different categories: point anomalies, contextual 

anomalies, and collective anomalies. Point anomaly is the simplest type of ‘outlierness’. An 

observation is a point anomaly when it is considered an outlier with respect to data that is 

considered normal. For instance, a particularly high or low credit card transaction compared to 

the typical expenditure pattern of the card holder could be considered an anomaly. Another 

example is a very unusual sensor reading, far beyond the range of previous observations. Most 

novelty detection techniques focus on this type of anomaly.  

Contextual anomaly (also called conditional anomaly) establishes that an observation can be 

considered an outlier only within a particular context (Song, Wu, Jermaine, & Ranka, 2007). The 

notion of a context is induced by the structure in the data set. Typically, attributes are classified 

as either contextual attributes (those defining the particular context on which the observation 

lies) or behavioral attributes (those containing non-contextual characteristics of the 

observations). Contextual information might be very useful when available (for instance, to deal 

with segmented data). However, deciding on which contextual attributes are appropriate is not 

always a straight-forward process. Contextual novelty detection has been explored mainly in the 

presence of related data, e.g. (Salvador & Chan, 2005), (Kou, Lu, & Chen, 2006). 

A set of observations is called a collective anomaly if the occurrence of all the observations 

together is suspiciously abnormal, but the individual observations might not be anomalies by 

themselves. The following are examples of recent work on collective anomalies: (Shekhar, Lu, & 

Zhang, 2002), (Noble & Cook, 2003), (Sun, Chawla, & Arunasalam, 2006), and (Kou, Lu, & 
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Dos Santos, 2007). Collective anomalies cannot occur in data containing unrelated observations. 

Consequently, this dissertation does not consider algorithms that look for collective anomalies. 

Furthermore, this work is specifically interested in the problem of detecting point anomalies. 

1.3.4 Data Labels 

A training data set is labeled when each training observation has an attribute denoting the correct 

response that should be given by a machine learning algorithm that learnt a model from that data 

set. In the case of novelty detection, that label is the correct output for reporting an anomaly, i.e. 

a binary label or a score value. The existence or absence of labels in a data set defines the type of 

learning task to be undertaken. Essentially, there are three different types of learning tasks based 

on data labeling: supervised, semi-supervised and unsupervised novelty detection. 

Techniques following a supervised learning approach assume that both normal and abnormal 

observations are correctly labeled. In those cases, a classification algorithm might be employed. 

However, most classification techniques need to be adapted because a major difficulty typically 

not present in traditional classification theory:  imbalanced class distribution. It is common to 

have in a data set many more observations coming from normal data than from the class of 

outliers. Several authors have addressed this imbalance issue in different ways; e.g. (Joshi, 

Agarwal, & Kumar, 2001), (Joshi, Agarwal, & Kumar, 2002), (Phua, Alahakoon, & Lee, 2004) 

and (Vilalta & Ma, 2002).  

For some domains it is very difficult to obtain a representative set of labeled outliers. There are 

two main reasons for this difficulty. First, outliers are typically rare observations in comparison 

to what is considered normal, and sometimes their rare occurrences are attached to high cost 
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effects (such as airplane engine failures or ecological catastrophes). Second, it is almost 

impossible to predict in advance every possibly type of anomaly that might appear in most 

systems. Consequently, supervised novelty detection has very limited applicability in practice.  

Semi-supervised novelty detection methods are designed to be trained on a data set containing 

labels only for normal observations. The basic learning approach in this case is to find a model 

for the normal class. New observations not fitting well into that model are labeled as anomalies. 

Although semi-supervised techniques are more broadly applicable than supervised novelty 

detection techniques, sometimes it is difficult or even impossible to gather a representative 

training data set encompassing the normal class. Among the most important reasons behind that 

limitation we have:  (1) it might be very difficult to define a region encompassing every possible 

normal observation; (2) the boundaries between normal and anomalous observations are not 

always well-defined; (3) the concept of normality might be changing with time, potentially 

turning previous labels as incorrect. The final section of this chapter explains how these 

limitations can be overcome with the use of online learning methods and robust techniques. 

The third type of learning task, unsupervised novelty detection, deals with data sets without label 

information at all. Methods following an unsupervised approach are the most widely applicable. 

However, the lack of labels forces these techniques to implicitly assume that normal observations 

are much more frequent than outliers; which is not necessarily the case because outliers can be 

members of an undefined but large class. Additionally, outliers are assumed to be qualitatively 

different from normal observations. These assumptions become requirements on the application 

domains to which unsupervised novelty detection is applied. This dissertation focuses on 
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learning models of the normal class employing semi-supervised learning algorithms, which are 

not restricted by the assumptions of the unsupervised approach.  

1.3.5 Computational Requirements 

There are some application domains with very specific requirements or limitations. In those 

cases, traditional novelty detection techniques might not be directly applicable, and techniques 

specifically tailored to those constraints need to be devised. Sensor networks are a good example 

of an application domain with very particular characteristics which requires specialized novelty 

detection techniques; e.g. (Sheng, Li, Mao, & Jin, 2007)  (Zhang, Meratnia, & Havinga, 2010).  

There are other scenarios where data are distributed across several nodes and novelty detection 

needs to be performed on the data as a whole without revealing sensitive information between 

nodes. That scenario is commonly called privacy-preserving outlier detection. Recent works on 

this specific domain are: (Vaidya & Clifton, 2004), (Aggarwal & Yu, 2008) and (Dai, Huang, 

Zhu, & Yang, 2010). This dissertation is not aimed at specifically constrained application 

domains.  

1.3.6 Learning Framework 

Outlier detection algorithms are typically trained off-line using a fixed training data set. The 

model obtained after the training phase is subsequently evaluated on new observations, which are 

taken from either a previously stored testing data set or data not available when the algorithm 

was trained. This approach is called batch learning or off-line learning. On the other hand, 

algorithms that can update their model incrementally while learning from a sequence of 

observations are called online learning algorithms.  
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Designing and implementing efficient batch learning algorithms becomes particularly hard when 

the amount of training data is very large. Even with an efficient implementation, expensive 

hardware might be required. Alternatively, online learning algorithms are well suited for large 

data sets. Furthermore, online learning can be particularly useful to keep models up-to-date when 

training data become available as a stream of data. This dissertation focuses on both batch and 

online learning algorithms. 

1.4 Modern Approaches to Novelty Detection 

Two recent surveys of the different approaches to outlier/novelty detection can be found in 

(Chandola, Banerjee, & Kumar, 2009) and (Pimentel, Clifton, Clifton, & Tarassenko, 2014). 

According to (Chandola, Banerjee, & Kumar, 2009), the different approaches to outlier detection 

methods can be classified into six broad groups:  (1) statistical methods, (2) classification-based 

methods, (3) clustering-based methods, (4) nearest neighbor-based methods, (5) information 

theoretic methods, and (6) the spectral approach. Statistical methods typically estimate the 

probability distribution of the data and use statistical tests to determine whether new 

observations are potential outliers. Methods relying on other statistical techniques, such as linear 

and nonlinear regression and Gaussian processes, are also members of this category. The 

classification-based category refers to methods that were originally developed to solve binary or 

multi-class classification problems, but were subsequently modified to work as one-class 

classifiers. The clustering approach includes mostly methods that rely on unsupervised learning 

to determine one or more clusters of observations that belong to the normal class. Nearest 

neighbor-based methods take into account the distances to neighboring observations when 
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determining whether an observation is an outlier. Information theoretic methods assume that 

outliers have the highest impact on the information content of the data set, as estimated by an 

information theoretic measure. Finally, the spectral approach refers to methods that project the 

input data into a subspace.  

The categorization given in (Pimentel, Clifton, Clifton, & Tarassenko, 2014) differs in various 

ways from the one described above. It lists the following categories: (1) probabilistic methods, 

(2) distance-based methods, (3) reconstruction-based methods, (4) domain-based methods, and 

(5) information-theoretic methods. Similar to (Chandola, Banerjee, & Kumar, 2009), the 

category of probabilistic methods include methods that estimate the generative density functions 

of the normal data and use hypothesis testing. Methods in this category can be classified into 

parametric and non-parametric. In the first subcategory there are methods leveraging parametric 

techniques, like Gaussian mixture models (GMMs), time-series techniques like ARIMA and 

ARMA, and state-space models like hidden Markov models (HMMs), Kalman filters and 

dynamic Bayesian networks. The non-parametric subcategory includes methods leveraging non-

parametric techniques, like histograms and kernel density estimators (such as the Parzen 

windows estimator and Gaussian processes).  Contrary to (Chandola, Banerjee, & Kumar, 2009), 

in (Pimentel, Clifton, Clifton, & Tarassenko, 2014) regression models are not fully included in 

the category of probabilistic methods: some methods using auto-regressive models are listed as 

probabilistic methods, while other methods using regression models are mentioned also in the 

“reconstruction-based” category. Distance-based methods consider mainly the subcategories of 

nearest neighbor-based methods and clustering-based approaches. The reconstruction-based 

approach to novelty detection consider methods that model the underlying data and determine 
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whether a new observation is an outlier based on its distance to the model’s output (the 

reconstruction error). The main subcategories of the reconstruction-based approach are the neural 

network-based approach and the subspace-based approach (called the spectral approach in 

(Chandola, Banerjee, & Kumar, 2009)). Domain-based novelty detection refers to methods that 

construct boundaries around the normal class, without considering the actual class density or any 

approximation to it. Finally, the information-theoretic approach denotes exactly the same type of 

methods listed under that name in (Chandola, Banerjee, & Kumar, 2009).  

The introduction to current methods in novelty detection given in this section follows mainly the 

classification proposed in (Chandola, Banerjee, & Kumar, 2009), with three modifications, two 

of them inspired by the review of Pimentel et al.: First, the nearest neighbor-based approach is 

considered a subcategory of the more general distance-based approach. This is based on the fact 

that all nearest-neighbor techniques require a distance, but distance-based techniques are not 

restricted to dealing exclusively with local information (as explained in a subsection below, there 

are distance-based methods that aim at finding global outliers). However, contrary to the 

categorization of Pimentel et al., we maintain the clustering-based approach as a separate 

category. A reason for that is that some clustering techniques do not exclusively rely on 

distances, but they also employ subspaces and density estimation, among other techniques. 

Furthermore, although most clustering algorithms explicitly rely on a distance, it is possible to 

find clusters by employing a distribution-based approach; for instance, using the expectation-

maximization (EM) algorithm to estimate the parameters of Gaussian mixture models that better 

fit the data. Consequently, it is considered more important here to set aside the clustering 

approach (which does not have novelty detection as its original goal but as a sub-product of it), 
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than to limit it to a subcategory of distance-based novelty detection or to split it as various 

subcategories within the other categories. Second, the category of spectral methods is renamed 

here as subspace-based methods, which better describes the intention of methods included in that 

category. Finally, we have added a new category that was not considered in neither of the two 

reviews mentioned above: angle-based methods. Those methods benefit from the fact that angles 

are more stable than distances when working with high-dimensional data. In summary, this 

dissertation proposes the following categorization of modern novelty detection approaches: (1) 

statistical, (2) classification-based, (3) clustering-based, (4) distance-based, (5) information 

theoretic, (6) subspace-based, and (7) angle-based. 

The following subsections briefly introduce modern approaches to novelty detection. It is 

important to note a few things before delving into these subsections. First, the area of 

novelty/outlier detection is so broad and dynamic that there could exist one or more methods not 

included in our literature review for which none of the categories described here is a good fit. 

Furthermore, the following subsections do not attempt to describe all possible techniques that fit 

into these categories, but to offer a representative set of examples of modern methods in each 

category. Second, there are methods that leverage a combination of approaches, and sometimes 

they can be considered members of multiple categories. Just to name a few examples: (Filev & 

Tseng, 2006) leverages fuzzy k-nearest neighbors clustering and the statistical technique 

Gaussian mixture models (GMMs) to model machine health status and predict anomalous 

conditions; the work in (Galeano, Peña, & Tsay, 2006) uses projection pursuit (a subspace 

technique) and an autoregressive moving average (ARMA) model (a statistical technique) in 

order to find outliers in multivariate time series; and the novelty detection method proposed in 
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(Kit, Sullivan, & Ballard, 2011) uses a growing neural gas (Fritzke, 1995) to detect changes in 

videos taken by a robot. Growing neural gas is a type of neural network, and in our review neural 

networks belong to the classification-based category. However, that particular type of neural 

network is essentially an incremental clustering algorithm, so that method could be categorized 

as clustering-based as well. 

1.4.1 Statistical Novelty Detection 

As noted in section 1.2, the statistical approach is the oldest. In general terms, statistical methods 

can be classified as parametric versus nonparametric, and numeric versus categorical. 

Parametric methods assume that the distribution of the normal class, denoted by  𝐹(𝐱, Θ), is 

known or can be effectively estimated from training data. The argument x denotes an observation 

and Θ denotes a vector of parameters. Typically, there are two ways of dealing with possible 

outliers. A hypothesis test can be applied with the null hypothesis that an observation x was 

generated from the distribution underlying normal data (Barnett & Lewis, 1994), (Eskin, 2000). 

This type of test is typically known as outlier discordancy test. The observation x can be 

considered an outlier if the null hypothesis was rejected. In that case, the corresponding test 

statistic can be used to provide a novelty score value for x. Alternatively, a novelty score for an 

observation x can be defined based on a previously defined criteria.  For instance, the novelty 

score of an observation x can be equal to 
1

𝑓(𝐱,Θ)
, where f is the probability density function of the 

normal data. This example is an instance of density-based novelty detection, which is closely 

related to the local distance-based approach described in one of the following subsections. 
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Another example of a statistical novelty score is the distance of the observation to the estimated 

mean of the data from the normal class assuming a Gaussian distribution. 

Whenever a novelty score is used without applying an outlier discordancy test, thresholds are 

needed to discriminate between normal and novel observations. The most widely-known 

statistical novelty threshold, employed for Gaussian models, is to declare as outliers those 

observations lying outside the 𝜇 ± 3𝜎 region, where 𝜇 denotes the distribution mean and 𝜎 

denotes the standard deviation of the distribution. The box plot rule is another commonly 

employed technique. Any observation outside of the interval [𝑄1 − 1.5𝐼𝑄𝑅, 𝑄3 + 1.5𝐼𝑄𝑅] is 

declared an outlier, where 𝑄1 is the lower quartile, 𝑄3 is the upper quartile, and IQR denotes the 

inter quartile range (Horn, Feng, Li, & Pesce, 2001). The Grubb’s test, which also assumes a 

Gaussian distribution but uses mean and standard deviation of a data sample, is another 

parametric technique worth of mentioning. Grubb’s test was originally proposed for univariate 

data (Grubbs F. , 1969). However, it has been expanded to multivariate data (Aggarwal & Yu, 

2001), (Aggarwal & Yu, 2008) and graph structured data (Shekhar, Lu, & Zhang, 2002).   

Sometimes data from the normal class cannot be properly fitted by a Gaussian distribution but it 

can be modeled as a mixture of parametric distributions. The most common mixture is the 

combination of two or more Gaussian distributions, which is called a Gaussian mixture model 

(GMM). A brief introduction to GMMs is given in (Reynolds, 2009). Examples of novelty 

detection algorithms using GMMs can be found in (Song, Wu, Jermaine, & Ranka, 2007), 

(Agarwal, 2007), (Ilonen, Paalanen, & Kamarainen, 2006) and (Roberts, 2000). Mixtures of non-

Gaussian distributions have been used for novelty detection as well. For instance, a mixture of 
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Poisson distributions was used in (Byers & Raftery, 1998). Note that the work of (Roberts, 2000) 

is also an example of another statistical technique applied to novelty detection: extreme value 

theory (EVT). A description of recent methods that apply EVT to novelty detection using 

multivariate and multimodal distributions is given in (Clifton, Hugueny, & Tarassenko, 2011). 

Time series analysis is another area where parametric outlier detection has been widely used. 

The most common approach is to fit an autoregressive model to the training data and to use the 

magnitude of the residual corresponding to a new observation as its novelty score. Robust 

regression (Rousseeuw & Leroy, 1987) is typically used to minimize the effect of outliers that 

might be present in the training data. The work of (Hoares, Asbridge, & Beatty, 2002) proposed 

a method called the Automatic Dynamic Data Mapper (ADDaM), which outperformed other 

time-series methods when employed to detect artefacts in heart rate data.  Several regression-

based novelty detection techniques have been devised to handle multivariate time-series data; 

e.g., (Tsay, Peña, & Pankratz, 2000), (Chen, Chao, Hu, & Su, 2005), (Galeano, Peña, & Tsay, 

2006). 

Parametric methods using state-space models are typically used to detect outliers in time-series 

data, but they are listed separately here given that the approaches employed in those cases are not 

related to autoregressive modeling. State-space models typically contain a set of observed 

variables and a set of hidden states, both evolving through time. They assume that the 

distribution of the observed variables depend on the values of the hidden states at each particular 

point in time. These models include conditional probability distributions describing the 

likelihood of moving from state to state and also the likelihood of each possible observation 
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given each state. Hidden Markov models (HMMs) and Kalman filters are the most commonly 

used state-space models in novelty detection. Examples of recent works leveraging HMMs can 

be found in (Yeung & Ding, 2003), (Ariu, Giacinto, & Perdisci, 2007), and (Ntalampiras, 

Potamitis, & Fakotakis, 2011). Examples of recent methods using Kalman filters include (Quinn 

& Williams, 2007), (Lee & Roberts, 2008), and (Quinn, Williams, & McIntosh, 2009). Finally, 

more general probabilistic graphical models, such as dynamic Bayesian networks (DBNs), have 

also been employed for novelty detection; e.g. (Janakiram, Adi Mallikarjuna Reddy, & Phani 

Kumar, 2006) and (Pinto, Pronobis, & Reis, 2011). 

In many real-world scenarios, it is not possible to define a priori the underlying distribution of 

the training data; which greatly limits the practical importance of parametric models. 

Nonparametric methods are more useful in those cases. They assume only some degree of 

smoothness from the underlying density in order to maintain a profile of the normal class. 

Among the most common profile-keeping techniques there are histogram-based and density-

based profiling methods. The first approach typically involves constructing and maintaining an 

attribute-wise histogram for the data from the normal class. The novelty score assigned to a new 

observation is directly proportional to the heights of the bins of the histogram containing each 

attribute. Histogram-based novelty detection has been particularly useful for intrusion detection 

(Eskin, 2000), (Mahoney & Chan, 2002); structural damage detection (Manson, 2002); fraud 

detection (Yamanishi, Takeuchi, Williams, & Milne, 2004); and Web attacks detection (Kruegel 

& Vigna, 2003); among other domains.  
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The density-based approach involves using kernel functions to estimate the probability density 

function of the normal class. Parzen windows estimation (Parzen, 1962) is a commonly used 

density estimation technique for novelty detection; e.g. (Desforges, Jacob, & Cooper, 1998), 

(Yeung & Chow, 2002), (Vincent & Bengio, 2002), (Bengio, Larochelle, & Vincent, 2005), and 

(Fairley, Georgoulas, Stylios, & Rye, 2010).  Recently, Gaussian processes (GPs) originally 

intended for regression have been leveraged to accomplish outlier detection, showing very good 

results on various data sets when compared to other state of the art kernel methods (Kemmler, 

Rodner, & Denzler, 2010), (Kemmler M. , Rodner, Wacker, & Denzler, 2013). Four GP-based 

score functions were proposed (and compared to each other) to translate the output of GP-based 

regression to membership scores. The core proposition of this dissertation lies in further 

improving this particular method by making different variants of GPs more robust to outliers 

present in the training data. Consequently, GP-based novelty detection will be reviewed in detail 

in a subsequent chapter, among other state-of-the-art kernel methods. 

Note that the statistical techniques described above are most suitable for numerical data. 

However, some of them may be applied to categorical data as well. For instance, histograms 

have been used to estimate the probability mass functions of categorical data (Yamanishi, 

Takeuchi, Williams, & Milne, 2004). As another example, informal box plots have been 

employed for novelty detection on ordinal and categorical data (Laurikkala, Juhola, & Kentala, 

2000). Finally, the GP-based method proposed in (Kemmler, Rodner, & Denzler, 2010) can be 

applied to any type of data, as far as there is a kernel function defined for it.  
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1.4.2 Classification-based Novelty Detection 

The classification-based approach involves training a classifier to discriminate between normal 

and anomalous data. Traditionally, classifiers are trained on a data set containing labeled 

examples for all the classes involved in the domain to be learned. A testing phase involves 

assigning labels to new observations. In the case of novelty detection, a classifier must learn a 

model from positive instances that are considered normal. The testing phase proceeds by 

recognizing whether new observations correspond to one of the normal classes or they should be 

declared outliers.  In a broad sense, classification-based novelty detection can be split in two 

groups: one-class and multi-class anomaly detection. One-class algorithms assume that normal 

training examples belong to a single class. One-class Support Vector Machines (Schölkopf, Platt, 

Shawe-Taylor, Smola, & Williamson, 2001) and the Support Vector Data Description (SVDD) 

method (Tax & Duin, 2004) constitute two of the most representative examples of state of the art 

one-class kernel methods. For that reason, they will be described in more detail in a future 

chapter. In the case of multi-class novelty detection, a classifier must learn from a training data 

set containing normal examples from two or more classes. Among the most commonly used 

multi-class classifiers are neural networks (NNs), Bayesian networks, rule-based classifiers, and 

some kernel-based classifiers.  

Neural networks have been applied both in one-class and multi-class scenarios; e.g. (Odin & 

Addison, 2000), (Stefano, Sansone, & Vento, 2000), (Augusteijn & Folkert, 2002), (Hawkins, 

He, Williams, & Baxter, 2002). A good review of applications of different types of NNs to 

novelty detection until around 2003 can be found in (Markou & Singh, 2003). Examples of more 

recent applications are given below. 
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In (Marsland, Nehmzow, & Shapiro, 2005), a “grows when required” neural network (GWR 

network) (Marsland, Shapiro, & Nehmzow, 2002) was employed to make a mobile robot ignore 

observations that were very similar to previous input, while highlighting novel parts of its 

environment. Similarly focused on robotic sensing, (Kit, Sullivan, & Ballard, 2011) proposes the 

use of a growing neural gas (Fritzke, 1995) to detect environmental changes using a camera. The 

work of (Haggett, Chu, & Marshall, 2008) employed a dynamic predictive coding neural 

network as a novelty detector. It compared three evolutionary algorithms to optimize the network 

structures: a simple genetic algorithm, NEAT (Stanley, 2004), and FS-NEAT (Whiteson, Stone, 

Stanley, Miikkulainen, & Kohl, 2005); with NEAT-optimized networks outperforming other 

networks. In (Wu, Wang, & Lee, 2010), an online fault detection method based on a self-

organized map (SOM) was used as part of a maintenance system. The use of SOMs to detect 

anomalies in time series is explored in (Barreto & Aguayo, 2009). As a final example, the work 

of (García-Rodríguez, Angelopoulou, García-Chamiz, Orts-Escolano, & Morell-Giménez, 2012) 

uses a modified learning algorithm for a growing neural gas network to satisfy certain real-time 

constraints. 

Bayesian networks are probabilistic classifiers, thus novelty detection methods that leverage 

them can be also considered examples of the statistical approach. As classifiers, they are 

typically used in multi-class scenarios where there are some examples from the abnormal class as 

well (i.e. in supervised learning). Given a new observation, they estimate the posterior 

probabilities of the class labels based on the prior probability of that observation conditioned on 

each label and the prior probabilities of the normal and abnormal classes. Novelty detection 

techniques using Bayesian networks can be classified in two broad disjoint groups: those 
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assuming independence between the data attributes, e.g. (Barbara, Couto, Jajodia, & Wu, 2001), 

(Sebyala, Olukemi, & Sacks, 2002), (Bronstein, et al., 2001), (Diehl & Hampshire, 2002) and 

(Wong, Moore, Cooper, & Wagner, 2003); and those assuming conditional dependencies 

between some attributes, e.g. (Janakiram, Adi Mallikarjuna Reddy, & Phani Kumar, 2006) and 

(Das & Schneider, 2007).  

Rule-based classifiers are based on a set of rules that together model the response of the system 

to each observation. They have been applied in single-class and multi-class discrimination 

problems.  In the case of novelty detection, rule-based classifiers label a new observation as an 

outlier if no rule labeling it as part of the normal class was found. Typically, rule-based 

techniques consist of two phases: a training step, in which a rule-learning algorithm learn 

‘normality rules’ from the training data set; and a testing step, in which the algorithm must 

identify whether or not there are rules covering new observations as normal. In rare occasions in 

which a representative sample of the outliers’ class is available, there could be rules covering it 

as well.  

A few examples of rule-based novelty detectors are the following: The well-known C4.5 

algorithm to generate decision trees (Quinlan, 1993) has been used to detect outliers in 

categorical data (John, 1995).  A learning rule algorithm known as RIPPER has been employed 

to describe temporal states constituting the normal operation of devices, which in turn can be 

used to detect anomalies (Salvador & Chan, 2005). Association rule mining (Agrawal & Srikant, 

1995) has been employed for unsupervised one-class novelty detection on categorical data sets; 

e.g.  (Mahoney & Chan, 2003), (He, Xu, Huang, & Deng, 2004), (Tandon & Chan, 2007).  
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Kernel-based classifiers have been particularly successful in recent years. Among them, support 

vector machines (SVMs) are likely the most widely used. They were originally defined as binary 

classifiers that find the maximum-margin separating hyperplane between instances of two 

classes. SVMs manage to obtain non-linear separating surfaces in the input space by applying 

linear techniques on a higher-dimensional feature space to where observations are mapped 

(Vapnik, 1995), (Abe, 2010).  SVMs rely on kernel functions to accomplish the feature mapping 

(Shawe-Taylor & Cristianini, 2004). They have been employed in novelty detection through the 

one-class SVM approach, in which a SVM learns a boundary of a region containing the normal 

observations (Schölkopf, Platt, Shawe-Taylor, Smola, & Williamson, 2001). New observations 

are declared outliers if they resided outside of the region encompassing data from the normal 

class. The defining boundary is found by separating the training data from the origin in the 

feature space using the maximum-margin hyperplane approach.  

An interesting application of the one-class SVM approach is detecting seizures in human EEG 

(Gardner, Krieger, Vachtsevanos, & Litt, 2006). In that work, intracranial normal EEG time 

series were partitioned into one-second segments that were used for the SVM to learn a model 

for normal EEG. Another application of one-class SVM to temporal data can be found in (Ma & 

Perkins, 2003). Other examples of recent works using one-class SVM are (Hardoon & Manevitz, 

2005), (Zhuang & Dai, 2006), (Rabaoui, Kadri, & Ellouze, 2008), (Clifton, Clifton, Watkinson, 

& Tarassenko, 2011), (Zhu, Ye, Yu, Xu, & Li, 2014), (Metzler & Kalinina, 2014). Additionally, 

robust SVMs have been employed to better adjust to the likely presence of outliers within the 

training data (Song, Hu, & Xie, 2002), (Hu, Liao, & Vemuri, 2003). 
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One-class SVM relies on a parameter that denotes the expected percentage of outliers in the 

training data, which are allowed to remain outside of the region defining the normal class. It has 

been noted that the effectiveness of this method is highly affected by setting the value of this 

parameter (Manevitz & Yousef, 2002). The one-class Kernel Fisher Discriminant (KFD) 

classifier (Roth, 2006) was proposed to overcome this limitation. It relates one-class kernel-

based classification to Gaussian density estimation in the feature space. A cross-validated 

likelihood criterion is used to estimate all the parameters of the model. Abnormal observations 

are those considered highly unlikely according to the Gaussian model.  

The Support Vector Domain Description (SVDD) method (Tax & Duin, 1999) finds the 

hypersphere with minimum volume that contains all or most of the training data in the feature 

space. Although this method was designed to be a one-class classifier from its inception, it is 

included here because it is inspired by SVM. Furthermore, its mathematical derivation follows 

the same approach as SVM: it uses Lagrange multipliers to optimize a regularized expression 

(consisting of the squared radius of the hypersphere and the sum of slack variables denoting how 

much each point can outspread beyond the hypersphere). As in SVM, a subset of the training 

data is obtained as support vectors, and the rest of the training data can be safely discarded. After 

training the model, a new observation is considered an outlier if its distance to the center of the 

hypersphere is greater than the optimized radius. This method was subsequently expanded in 

(Tax & Duin, 2004) to learn also from negative examples if they were present in the training 

data. The expanded method was named Support Vector Data Description, although the acronym 

remained as SVDD. From here on, the term SVDD refers to the expanded method unless it is 

clearly stated otherwise. Note also that the expanded SVDD behaves exactly like the original 
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SVDD if no negative examples were labeled as such in the training data. Some extensions to 

SVDD have been proposed recently. Some of them have focused on improving the efficacy of 

the boundaries of the hypershere, e.g. (Wu & Ye, 2009) and (Le, Tran, Ma, & Sharma, 2010). 

Other extensions have focused in solving an optimization problem that includes various 

hyperspheres with different centers and radii (Le, Tran, Ma, & Sharma, 2011). Finally, some 

extensions have been proposed to improve the time complexity of SVDD, e.g. (Liu, Liu, & 

Chen, 2010) and (Peng & Xu, 2012). 

Single-class Minimax Probability Machine (MPM) (Lanckriet, Ghaoui, Bhattacharyya, & 

Jordan, 2002) is another example of a kernel-based classifier that has been used for novelty 

detection. The reader can refer to (Lanckriet, El Ghaoui, & Jordan, 2003) and (Kwok, Tsang, & 

Zurada, 2007) for details on the MPM classifier.     

1.4.3 Clustering-based Novelty Detection 

Clustering is the action of grouping similar observations into classes. Each class must contain 

very similar observations while, at the same time, observations from different classes should be 

as dissimilar as possible (Tan, Steinbach, & Kumar, 2005). Clustering techniques have been 

traditionally linked to unsupervised learning. However, clustering has been applied in a semi-

supervised scenario as well (Basu, Bilenko, & Mooney, 2004).  

Novelty detection techniques based on clustering can be classified in two broad categories: 

clustering techniques that force every observation to belong to one of the clusters found in the 

data, and those that do not enforce cluster membership for all observations. In both cases, the 

basic approach consists of two steps: First, a clustering algorithm is applied to the training data 
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set. Second, some criteria are applied in order to determine which observations should be 

classified as outliers.  When the clustering algorithm does not force all observations to belong to 

a cluster, the simplest criterion is to label as outliers those observations without a cluster 

membership; e.g. DBSCAN (Ester, Kriegel, Sander, & Xu, 1996), ROCK (Guha, Rastogi, & 

Shim, 2000), The FindOut algorithm (Yu, Sheikholeslami, & Zhang, 2002), and SNN (Ertöz, 

Steinbach, & Kumar, 2003). If the clustering technique assigned cluster memberships to all 

training observations, like the widely used k-means clustering, choosing what observations 

should be outliers is not straightforward. The most common criterion is to classify as outliers 

those observations lying far away from their closest cluster centroid (Smith, Bivens, Embrechts, 

Palagiri, & Szymanski, 2002), (Clifton, Bannister, & Tarassenko, 2007).  

Note that the k-means clustering algorithm, although widely used, is very sensitive to outliers in 

the training data. To alleviate this limitation, a recent work has proposed to combine clustering 

and outlier detection within the same unified approach, extensible to all distance measures that 

can be expressed as a Bregman divergence (Chawla & Gionis, 2013). Another limitation of the 

k-means algorithm is that it requires the number of clusters k as an input parameter. The work in 

(Lei, Zhu, Chen, Lin, & Yang, 2012) has attempted to automate k-means clustering by estimating 

the number of clusters in the data through a method called subtractive clustering. Finally, it is 

well known that k-means clustering is very sensitive to the initial assignment of cluster centers 

(Peña, Lozano, & Larrañaga, 1999), which can lead the algorithm to local minima. Recent works 

have addressed this limitation as well; e.g. (Khan & Ahmad, 2004) and (Ahmed & Ashour, 

2011). Some research has been devoted to novelty detection using fuzzy variants of k-means 

clustering. Within that area, it is relevant to note the works in (Wang, 2009) and (Filippone, 
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Masulli, & Rovetta, 2010), that applied a kernel-based approach in combination with fuzzy 

clustering. 

After clusters are obtained by using a technique from either of the two broad categories 

mentioned above, a new test observation is typically labeled as an outlier based on how distant it 

is from the nearest cluster (or the centroid of the nearest cluster). Regardless of the cluster 

membership policy employed, sometimes several outliers were close enough to each other as to 

constitute a cluster by themselves. For that reason, some clustering methods also label as outliers 

the members of clusters whose size and/or density lies below certain threshold (Eskin, Arnold, 

Prerau, Portnoy, & Stolfo, 2002), (Pires & Santos-Pereira, 2005), (He, Xu, & Deng, 2003). Some 

clustering-based techniques are particularly designed to deal with very large data sets; for 

instance, see (Zhang, Ramakrishnan, & Livny, 1997), (Chiu, Fang, Chen, Wang, & Jeris, 2001) 

and (Yu, Sheikholeslami, & Zhang, 2002). Other clustering-based methods attempt to detect the 

appearance of new normal classes within an online learning framework (Spinosa, de Leon F. de 

Carvalho, & Gama, 2009). As a final example, (Zhou, Fu, Sun, & Fang, 2011) proposes a 

distributed novelty detection method, for scenarios where data are distributed across multiple 

computers and cannot be merged. 

Most clustering-based methods require a distance defined on the input space. Consequently they 

appear to be very similar to distance-based novelty detectors. However, clustering-based novelty 

detectors cannot be classified into global or local techniques, because distance calculations are 

determined by cluster memberships. Another important difference is that the clustering-based 
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approach detects outliers as a by-product of the underlying clustering methods, which do not 

have finding outliers as a primary goal.  

1.4.4 Distance-based Novelty Detection 

Distance-based methods require the formulation of a distance (or, equivalently, a similarity 

function) defined on pairs of observations from the input space. Outliers can be determined 

based on the distance from an observation to other observations in the data set. In contrast to 

statistical methods, distance-based methods do not require an underlying distribution. 

Additionally, they are particularly well-suited to unsupervised learning scenarios. Some 

definitions of outliers use a global approach, where the distance of an observation to all other 

observations in the training data set is considered. Alternatively, a local approach can be 

employed, focusing on a neighborhood around each data point. The local approach is typically 

called nearest neighbor-based novelty detection. 

The work of (Knorr & Ng, 1997) is a good example of a global approach to outlier detection. It 

defines an object O to be an outlier if “at least a fraction p of the objects in the data set lies 

greater than distance D from O”. Alternatively, nearest neighbor-based methods assume that 

outliers occur in very low density neighborhoods. They can be divided in two broad 

subcategories: k-NN methods, based on the distances of observations to their k
th

 nearest 

neighbors, where k is a fixed integer; and methods focusing on the relative density around an 

observation by employing neighborhoods of a fixed measure. The later subcategory is known as 

the density-based approach. 
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One of the first papers proposing the nearest neighbor approach for outlier detection was 

(Hellman, 1970). Hellman’s method looks at the k-nearest neighbors of the testing observation. 

A rejection rule based on the quantity of neighbors belonging to the same class was employed. 

Other novelty detection algorithms using the k-nearest neighbors approach show variations in the 

way novelty scores are calculated. For instance, the novelty score of a testing observation can be 

calculated as the distance to its k
th

 nearest neighbor (Byers & Raftery, 1998). Alternatively, the 

novelty score can be calculated as the sum of distances to the k nearest neighbors; e.g. (Eskin, 

Arnold, Prerau, Portnoy, & Stolfo, 2002), (Zhang & Wang, 2006). The work of Zhang and Wang 

tackles a problem that goes beyond deciding whether observations are outliers or not: to find the 

subspaces (subsets of features) in which observations are outliers. Their outlying subspace 

detection method is called High-Dimension Outlying Subspace Detection (HighDOD). It is 

important to note that despite k-NN being a simple and relatively old approach to novelty 

detection, it is still widely used. In a recent study (Ding, Li, Belatreche, & Maguire, 2014), k-NN 

outperformed three novelty detection techniques, including the state of the art SVDD, on various 

real-life data sets. 

When a density-based approach is used, novelty scores are proportional to the inverse of the 

relative densities. Typically, novelty scores have been calculated as the number of nearest 

neighbors within a neighborhood of the testing observations (Knorr & Ng, 1997), (Knorr, Ng, & 

Tucakov, 2000). Another density-based procedure to calculate the novelty score using kernels 

was introduced recently: the summation kernel similarity score (SKSS) (Ramirez-Padron, 

Foregger, Manuel, Georgiopoulos, & Mederos, 2010). Essentially, the SKSS value of a testing 

observation x is the sum of the similarities between x and all its neighbors within a ball of fixed 
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radius p. SKSS was proposed within the geometric framework for kernel novelty detection 

introduced in (Eskin, Arnold, Prerau, Portnoy, & Stolfo, 2002). That geometric framework 

involves the use of kernel functions to map input data to very high-dimensional feature spaces 

where current distance-based novelty detectors could be applied. The main assumption behind 

the introduction of kernel methods in this case is that outliers might be better detected in the 

high-dimensional feature space associated with the kernel function. 

We wrap up this section by listing other representative nearest neighbor-based methods: Local 

Outlier Factor (LOF) (Breunig, Kriegel, Ng, & Sander, 2000); Connectivity-based Outlier Factor 

(COF) (Tang, Chen, Fu, & Cheung, 2002);  LOCI (Papadimitriou, Kitagawa, Gibbons, & 

Faloutsos, 2002), which can find anomalous micro-clusters besides individual outliers; and the 

Local Distance-based Outlier Factor (LDOF) method (Zhang, Hutter, & Jin, 2009), which was 

devised to work on scattered data sets.  

1.4.5 Information Theoretic Novelty Detection 

Information theoretic methods define as outliers those observations having the highest impact on 

the information content of the data set. The main assumption behind these methods is that 

outliers have a much higher impact on the information content of a data set than observations 

from the normal class. The basic technique of theoretic novelty detection is to find Pareto-

optimal solutions (Deb, 2005) to a dual-objective optimization problem. Given a data set D, the 

problem consists in finding the minimal subset of instances I, such that C(D) – C(D – I) is 

maximum, where C denotes an information theoretic measure. The observations in the subset I 

are considered outliers.  
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Among the most commonly used measures are Kolmogorov complexity, entropy, relative 

entropy, conditional entropy, and relative conditional entropy; e.g. (Arning, Agrawal, & 

Raghavan, 1996), (Lee & Xiang, 2001), (Keogh, Lonardi, & Ratanamahatana, 2004), (Lakhina, 

Crovella, & Diot, 2005), (Gu, Fogla, Dagon, Lee, & Škorić, 2006), (Ando, 2007), (Afgani, 

Sinanovic, & Haas, 2010). The information theoretic approach has been applied to data sets with 

related observations; for instance, sequential data (Arning, Agrawal, & Raghavan, 1996), (Lin, 

Keogh, Fu, & Van Herle, 2005); spatial data (Lin & Brown, 2006); and graph data (Noble & 

Cook, 2003).  

1.4.6 Subspace-based Novelty Detection 

Subspace-based novelty detection methods look for outliers in low-dimensional projections of 

the observations; under the assumption that outliers are easier to detect on low dimensional 

projections that encompass most of the variability in the data. This approach can be valuable 

when using high-dimensional data. In that case, all observations are typically distant from each 

other; to a point that differences between distances become irrelevant and the concept of 

neighborhood might not be useful anymore.  

Principal Component Analysis (PCA) (Joliffe, 2002) has been commonly employed by outlier 

detection methods to obtain lower dimensional projections of the input data. Outliers can be 

found by looking for projections with high values along low-variance principal components 

(Parra, Deco, & Miesbach, 1996), (Dutta, Giannella, Borne, & Kargupta, 2007). Robust PCA 

(Huber & Ronchetti, 2009) has been employed as well; e.g. (Shyu, Chen, Sarinnapakorn, & 

Chang, 2003).  
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Kernel methods have been mentioned in this chapter as part of various approaches to novelty 

detection. Similarly, kernel methods have been devised within the subspace-based approach. The 

most notable example is the application of kernel PCA (KPCA) to novelty detection (Hoffmann, 

2007). Essentially, training data are mapped through a kernel function into a very high-

dimensional feature space, in which KPCA extracts the principal components. The novelty 

scores of data instances are calculated as the squared distances to the principal subspace (also 

called squared reconstruction errors). As an interesting follow-up, the work in (Li, 

Georgiopoulos, & Anagnostopoulos, 2011) computes the reconstruction error by projecting any 

test observation onto the orthogonal complement of the KPCA-generated principal subspace and 

subsequently calculating the Mahalanobis distance of that projection from the mean of all 

transformed training observations. This variant, called MD-based KPCA, showed about the same 

or better performance than one-class SVM and KPCA novelty detection on various real-life data 

sets. 

It has been claimed that novelty detection techniques that use PCA display a degrading 

performance on high-dimensional input spaces containing low-relevance or noisy attributes. An 

alternative to PCA when prior class information is available has been offered in (Sofman, 

Bagnell, & Stentz, 2010). It uses Multiple Discriminant Analysis (MDA) to obtain the low-

dimensional subspace. Interestingly, that work employs an online detection algorithm that can be 

seen as a particular case of a kernel online learning technique called NORMA (Kivinen, Smola, 

& Williamson, 2004). The NORMA algorithm will be described in a following chapter, among 

other kernel-based online learning techniques.  
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1.4.7 Angle-based Novelty Detection 

As mentioned above, the concepts of distance and neighborhood become irrelevant when 

working with data in high dimensions. Assuming outliers are located at the borders of the 

distribution generating the normal class, the angle-based approach relies on a property that 

remains consistent even for high-dimensional data: if an observation is an outlier then most other 

objects in the data set will be located in similar directions from it (that is clearly not the case for 

most normal observations). A prime example of this approach is the work of (Kriegel, Schubert, 

& Zimek, 2008), where, for each observation, the spectrum of the angles to all other observations 

is obtained. Subsequently, an “outlierness” score is obtained for each data point based on how 

broad its spectrum is.  

1.5 Advantages and Limitations of Modern Approaches 

Statistical techniques for novelty detection have a variable computational complexity, 

depending on the type of statistical model employed. Typically, they are either linear or 

quadratic with respect to the number of observations. An advantage of these techniques is that 

novelty scores are usually related to confidence intervals, offering a statistical support to decision 

making based on the scores.  Additionally, the use of robust statistics allows the application of 

this approach to data sets containing incorrect labels, as far as the training data is not extremely 

contaminated with outliers. Except in some well-known domains, the non-parametric approach 

should be preferred over the parametric approach. There are two main reasons behind this 

statement: First, for some data sets it might be very difficult to find a suitable known distribution. 
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Second: implementing hypothesis tests for complex distributions might be very difficult, 

computationally expensive, or both.  

In general, statistical methods have some limitations that need to be considered as well. For 

instance, many methods consider attributes independently, preventing the detection of outliers 

that have common individual values for their attributes but a rare combination of values for two 

or more attributes. Additionally, virtually all statistical techniques become computationally 

expensive and inefficient when used on high-dimensional data sets. 

Classification-based techniques benefit from powerful and thoroughly studied algorithms, 

sometimes with guaranteed convergence properties. Additionally, they typically have a fast 

response when evaluating new observations. Multi-class techniques are limited to supervised 

learning scenarios because labels are needed for the different normal classes. However, one-class 

classification algorithms can be employed in most practical situations when labels are available 

for a single normal class or even not present at all, e.g. (Schölkopf, Platt, Shawe-Taylor, Smola, 

& Williamson, 2001), (Roth, 2006). Classification-based techniques tend to be most effective 

when labels are available. However, it is important to keep in mind that the distribution of 

normal and abnormal labels are typically imbalanced, making the learning task more difficult 

compared to standard classification problems. 

Although several classifiers only provide a binary novelty score, there are classification-based 

methods that provide novelty scores in a wide range of values, e.g. (Platt J. , 2000). Regarding 

computational complexity, the training algorithms of classifiers involving quadratic 

optimization, like SVM, can be slow on large data sets. However, efforts have been made in 
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order to improve their computational complexity. For instance, SVM training algorithms have 

achieved significant improvements on their time complexity, like Sequential Minimal 

Optimization (Platt J. C., 1999), (Keerthi, Shevade, Bhattacharyya, & Murthy, 2001), and linear 

time SVM (Joachims, 2006). These relatively advantageous characteristics of the classification-

based approach to novelty detection make them particularly attractive for many real-life 

applications.  

Clustering-based algorithms can have a quadratic or subquadratic training time complexity. 

However, their test phase is typically fast because new observations are compared only to 

representatives of a small quantity of clusters. Similarly to distance-based methods, clustering-

based methods can work in unsupervised learning scenarios, and adapting them to different data 

types is relatively straightforward: by employing a clustering algorithm that can handle the new 

data type.   

The main limitations of clustering-based methods are the following: Some clustering methods 

are not necessarily robust to the presence of outliers in the training data. Consequently, a 

relatively high quantity of outliers might not be detected. Furthermore, this limitation can be 

stated as follows: clustering-based methods typically detect outliers as a byproduct of the 

clustering process, and hence some might be unfit for novelty detection. A second limitation of 

clustering techniques is that many of them are not effective when the data contain small clusters 

of anomalies. As mentioned in section 1.4.3, this drawback can be alleviated by setting a 

size/density threshold constraint on the clusters obtained in the training phase. Finally, similarly 
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to distance-based novelty detection methods, clustering-based techniques are very sensitive to 

the curse of dimensionality. 

Straightforward implementations of distance-based methods have at least a quadratic 

complexity, because of the computation of pairwise distances. However, some approaches have 

been proposed to obtain subquadratic time complexities. One of those approaches obtains a 

representative subset of the data set, called outlier detection solving set, which can be used to 

detect outliers faster while maintaining a prediction quality comparable to quadratic techniques 

(Angiulli, Basta, & Pizzuti, 2006). In the case of nearest neighbor-based methods, efficient data 

structures like k-d trees (Bentley J. , 1980) and R-trees (Sellis, Roussopoulos, & Faloutsos, 1987) 

have been used to efficiently locate nearest neighbors; e.g., (Roussopoulos, Kelley, & Vincent, 

1995), (Yershova & LaValle, 2007), (Yen, Shih, Chang, & Li, 2010). Alternatively, observations 

can be grouped into regular (congruent and non-overlapping) regions of the attribute space to 

make nearest neighbor searching more efficient for large data sets, e.g. Elias methods (Rivest, 

1974), (Cleary, 1979). Although both approaches are computationally efficient in the number of 

observations, unfortunately they do not scale well when the number of attributes are relatively 

high. In order to deal with the curse of dimensionality, further refinements have been proposed 

(Katayama & Satoh, 1997), (Hinneburg, Aggarwal, & Keim, 2000), (Tao, Yi, Sheng, & Kalnis, 

2009). In general however, the ability of distance-based methods to differentiate between normal 

and anomalous data is strongly affected by high dimensionality.  

Despite the limitations of distance-based algorithms, they have some advantages that make them 

attractive for novelty detection: These methods are unsupervised in nature, thereby fitting a wide 
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range of problem domains. Adapting a distance-based method to a particular data type is as 

straightforward as to define a distance function for that data type, whenever that is feasible. In 

contrast to many statistical methods, they do not require modeling the underlying distributions of 

the data. Finally, nearest neighbor methods can be more effective on semi-supervised learning 

scenarios (when labels for the normal data are available) than other more complex approaches. 

Information theoretic-based methods have an exponential computational complexity when 

implemented to solve exactly the combinatorial dual-optimization problem from its definition. 

However, some approaches have offered scalable approximate solutions to that optimization 

problem (He, Deng, Xu, & Huang, 2006), (Ando, 2007). Similarly to clustering and distance-

based methods, this approach is unsupervised in nature and no assumptions about underlying 

statistical distributions are needed. One of the major limitations of this approach is that defining 

novelty scores is not an easy task in the majority of cases. Additionally, information measures 

should be sensitive enough to detect a small percentage of outliers for the corresponding problem 

domain. 

The computational complexity of the subspace-based approach to novelty detection varies with 

the type of projection technique employed. The most commonly used technique, PCA, is 

typically linear in the number of data instances and quadratic in the number of dimensions. 

However, some efforts have been made to improve on that complexity; e.g. a fast 

implementation of kernel PCA (Günter, Schraudolph, & Vishwanathan, 2007). Subspace-based 

methods can be applied in unsupervised learning scenarios, do not require prior knowledge of 

statistical distributions, and they are particularly devised to tackle the curse of dimensionality. 
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However, they assume that outliers can be distinguished from normal observations when data is 

projected into lower dimensional spaces. In many domains it is not easy or even possible to 

guarantee the veracity of that assumption.  

The angle-based approach will work only if outliers are located at the borders of the data 

distribution and members of the normal class are grouped around some center area. Still, it can 

be a valuable alternative (or a complement) to subspace-based methods when working with high-

dimensional data.   
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CHAPTER 2: STATE OF THE ART IN KERNEL NOVELTY DETECTION 
 

This chapter reviews methods that are currently considered the state of the art in kernel-based 

novelty detection. Both batch and online approaches are considered. Kernel methods for pattern 

analysis have several advantages over other methods described in the previous chapter. These 

advantageous properties were the reason to select kernel methods as the theoretical framework 

for this dissertation. As an introduction to this chapter, some relevant advantages of kernel 

methods are summarized below.   

The majority of novelty detection algorithms are limited to numerical data. They leverage 

multiple well-established techniques and theories. However, there is an increasing interest in 

working on data that have non-numerical attributes. As a result of that interest, several novelty 

detection algorithms have been proposed to build models from non-numerical data (Pimentel, 

Clifton, Clifton, & Tarassenko, 2014), (Chandola, Banerjee, & Kumar, 2009). Kernels methods 

have given researchers the capability to deal with multiple data types within a single framework, 

including complex data such as images, videos, DNA sequences and graphs (Shawe-Taylor & 

Cristianini, 2004). Consequently, kernel methods have blurred the classic distinction between 

statistical and syntactical pattern analysis.   

Classic linear techniques for pattern analysis are computationally efficient and rely on well-

studied mathematical properties. However, they do not generalize as well as non-linear 

techniques, like neural networks. On the other hand, most non-linear techniques don’t rely on 

theoretical foundations as strong as those from linear models. Thanks to the “kernel trick”, kernel 

methods offer the best from both worlds: the generalization capacity of non-linear techniques 
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and the theoretical advantages of well-established linear techniques (which are applied in the 

feature space). Several works have proposed   the   “kernelization”   of   different   classic outlier   

detection   algorithms (Eskin, Arnold, Prerau, Portnoy, & Stolfo, 2002), (Roth, 2006), (Latecki, 

Lazarevic, & Pokrajac, 2007), (Shen, 2007), (Oh & Gao, 2009).  

Most kernel methods for novelty detection follow a classification-based approach.  

Consequently, classification-based kernel methods for novelty detection constitute a baseline to 

which new novelty detection algorithms should compare to; as done, for example, by the authors 

of GP-based novelty detection (Kemmler M. , Rodner, Wacker, & Denzler, 2013). Despite their 

successful applications, most kernel methods for novelty detection have some limitations. Two 

of the most relevant limitations are: (1) there is no straightforward way of introducing prior 

information into the models; and (2) classification is provided only as point estimates of the 

unknown variables, without estimating the corresponding uncertainty. It is well-known that 

Bayesian learning techniques provide a practical approach to introducing prior information into 

models, through the use of prior distributions. Additionally, Bayesian modeling offers not only 

point estimates of unknown variables and parameters, but they also estimate the uncertainty 

associated to predictions. Recently, kernel methods have been used into the Bayesian 

nonparametric framework with great success (Rasmussen & Williams, 2006). The main idea 

behind this approach is to build a data-driven model employing Gaussian processes (GPs), using 

kernels as prior covariance functions. GPs have been applied almost exclusively for regression 

and classification problems. However, a few recent papers describe the use of GPs for novelty 

detection as well. Experimental comparisons described in (Kemmler M. , Rodner, Wacker, & 
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Denzler, 2013) have shown the performance advantages of batch GPs over state-of-the-art 

classification-based kernel methods, including the successful SVDD method.  

This rest of this chapter is structured as follows: Section 2.1 offers an introduction to pattern 

analysis and kernel functions, including mathematical properties underlying the different kernel 

methods considered in subsequent sections.  Section 2.2 describes some representative 

classification-based kernel methods for novelty detection. Both batch learning and online 

learning state-of-the-art methods are considered. Section 2.3 introduces GPs and describes their 

typical usage in machine learning, with emphasis in novelty detection as presented in (Kemmler 

M. , Rodner, Wacker, & Denzler, 2013). 

2.1 Statistical Patterns and Kernel Methods 

This section introduces several fundamental concepts underlying kernel methods. Kernel-based 

learning methods were introduced in machine learning to obtain non-linear patterns while relying 

essentially on well-established linear techniques. This section summarizes several advantages 

associated to this approach. To set the stage, let us assume that we have a training data set 

𝐗 = {𝐱𝑖|𝐱𝑖𝜖𝒳, 𝑖 = 1, … , 𝑁}, where 𝒳 denotes a finite-dimensional domain. Additionally, we 

might have a corresponding set of labels 𝐘 = {y𝑖|y𝑖𝜖ℝ, 𝑖 = 1, . . , 𝑁}. When labels are available 

for all observations in 𝐗, it is said that the learning problem is supervised, and we learn from a 

set of data points (𝐱𝑖, y𝑖). If labels were not present then we have an unsupervised learning 

problem. Typically for supervised learning, if the y𝑖 labels took values in a finite subset of ℝ 

then they denote the class of the corresponding observation 𝐱𝑖. The case of labels taking values 

in an infinite set corresponds to a regression problem. In this dissertation, we denote the training 
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data by the symbol 𝐷. Generally, we specify whether the training data contain labels or not, writing 

𝐷 = {𝐗, 𝐲} = {(𝐱𝑖, y𝑖): 𝐱𝑖 ∈ 𝒳, y𝑖 ∈ ℝ} and 𝐷 = 𝐗 = {𝐱𝑖: 𝐱𝑖 ∈ 𝒳}, respectively. When a statement that 

involves the training data is applicable to both cases, as done in the following subsection, the training data 

is specified here as  𝐷 = {𝐳𝑖:  𝐳𝑖 ∈ 𝒵, 𝑖 = 1, … , 𝑁}, where 𝒵 could be either 𝒳 or  𝒳 ∪ ℝ.  

2.1.1 Statistical Patterns 

The training data are assumed here to be independently and identically distributed (i.i.d.) 

according to some unknown probability measure. Under this assumption, the main goal of any 

pattern analysis method is to extract general statistical patterns from the training data, which can 

be defined as follows (Shawe-Taylor & Cristianini, 2004): 

Definition: A general statistical pattern for a data set 𝐷 = {𝐳𝑖:  𝐳𝑖 ∈ 𝒵, 𝑖 = 1, … , 𝑁} with 

independently and identically distributed (i.i.d.) observations that are generated according to a 

probability distribution P, is a non-trivial non-negative function l  that satisfies: 

                                                              𝐸𝒵[𝑙(𝐳)] ≈ 0,   ( 2.1 ) 

where 𝐸𝒵[𝑙] denotes the expectation of the function l under the distribution of the training data.  

As an example of a statistical pattern, consider the classic regression problem on a training data 

set 𝐷 = {𝐗, 𝐲} = {(𝐱𝑖, y𝑖): 𝐱𝑖 ∈ 𝒳, y𝑖 ∈ ℝ}. In this case, a statistical pattern is defined as a loss 

function 𝑙(𝐱, y) = ℒ(𝑔(𝐱), y), where g denotes the linear prediction function. The loss function 

𝑙(𝐱, y) measures the discrepancy between 𝑔(𝐱) and the correct label y; and consequently 𝑙(𝐱, y) 

will be close to zero when evaluated in training observations that fit the pattern. As a second 

example consider the novelty detection problem. The training data in this case consist of 

observations from a space 𝒳 that are labeled as members of the normal class, i.e. 𝐷 = {𝑿, 𝐲} =
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{(𝐱𝑖, y𝑖) | 𝐱𝑖𝜖𝒳, y𝑖 = 1, 𝑖 = 1, … , 𝑁}. An appropriate pattern in this case would be a non-negative 

function 𝑙: 𝒳 → ℝ such that 𝑙(𝐱) ≈ 0 for observations generated from the (generally unknown) 

distribution of the normal class. On the other hand, 𝑙(𝐱) should noticeably deviate from zero 

when evaluated on observations that are very different to the majority of observations in the 

training data. This statistical pattern 𝑙(𝐱) can be leveraged to define membership scores (or 

novelty scores) that help us to estimate whether a new observation belongs to the normal class or 

can be considered an outlier. 

Based on the above definition of a statistical pattern, a pattern analysis algorithm is defined in 

(Shawe-Taylor & Cristianini, 2004) as an algorithm that, given a finite training data set 𝐷, its 

output is either a statistical pattern or an indication that no patterns were detected in 𝐷. One of 

the most important properties of a pattern analysis algorithm is to be statistically stable. 

Informally, this property denotes the fact that any pattern found actually resembles a 

characteristic of the data source instead of being obtained by chance. When a pattern is 

statistically stable, it should be obtained from different samples of the same data source. Of 

course, no algorithm can absolutely guarantee the stability of a pattern. For that reason, some 

probabilistic results have been derived that allow researchers to state their confidence in the 

output of a pattern analysis algorithm. The Rademacher complexity theory plays an important 

role in that sense (Bartlett & Mendelson, 2002), (Koltchinskii & Panchenko, 2000). 

2.1.2 Kernel Functions for Pattern Analysis 

Kernel functions were introduced in machine learning as a way of finding complex non-linear 

patterns in data sets of arbitrary data types through the application of linear methods to a 
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representation of the data in a high-dimensional inner product space, which is commonly called 

the feature space and it is denoted here by ℱ. Kernels allow mapping input data points to a 

feature space ℱ without explicitly using the mapped feature vectors. The feature space must be a 

vector space, and it usually has a much higher dimension than the input space 𝒳 (including 

infinite dimensions). This approach allows building complex non-linear discrimination surfaces 

in the original input space. The following definition establishes what a kernel function is 

(Shawe-Taylor & Cristianini, 2004): 

Definition: Given a Hilbert space ℱ, and an arbitrary space 𝒳, a function 𝑘: 𝒳 × 𝒳 → ℝ is a 

kernel function if ∀ 𝐱, 𝐱′ ∈ 𝒳, 𝑘(𝐱, 𝐱′) = 〈𝜙(𝐱), 𝜙(𝐱′)〉, for some mapping function 𝜙: 𝒳 → ℱ. 

The kernel approach to pattern analysis entails using a kernel function k to map training 

observations 𝐱𝑖 to ℱ using the mapping function 𝜙: 𝒳 → ℱ. Subsequently, a linear model is 

learned on the transformed data in ℱ. The linear model thus obtained is re-interpreted as a likely 

non-linear pattern in the original input space. This is a common process in several areas of 

mathematics, where data from a given space where a problem is difficult to solve are 

transformed into another space where a feasible well-known technique can be applied. The 

corresponding solution is then interpreted back into the original space. What makes kernel 

methods particularly special is that this process can be applied efficiently because of two very 

important characteristics. First, the algorithms to be “kernelized” rely exclusively on inner 

products in ℱ. Second, those inner products can be calculated directly from the observations in 

the input space by using the corresponding kernel function. Consequently, typically there is no 

need to obtain an explicit expression for the mapping function 𝜙 or the coordinates of the 

mapped observations in ℱ.  
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It is useful to think of kernel functions as similarity measures between any two observations. 

This interpretation is justified by considering the well-known geometric interpretation of an inner 

product. Another important aspect of kernel methods is that the particular algorithm to be applied 

becomes independent of the data type of the input space. Training data can be mapped to a 

feature space as far as an appropriate kernel function is defined for the corresponding data type. 

Consequently, another benefit of kernel methods is that non-linear patterns can be found for 

training data containing non-numerical attributes. Table 2.1 shows commonly used kernels that 

apply to numerical data. More specialized kernels are described in (Shawe-Taylor & Cristianini, 

2004).  

 

Table 2.1: Commonly used kernel functions. In this case data points 𝐱, 𝐱′ ∈ ℝ𝑑 , where d is a 

positive integer.  

Kernel Kernel name  

(Equivalent model) 

𝑘(𝐱, 𝐱′) = 〈𝐱, 𝐱′〉 Linear kernel  

(Linear classifier) 

𝑘(𝐱, 𝐱′) = (〈𝐱, 𝐱′〉 + 1)𝑞  Polynomial kernel  

(Polynomial of degree q) 

𝑘(𝐱, 𝐱′) = 𝑒𝑥𝑝 (−
‖𝐱 − 𝐱′‖2

2𝜎2
) 

Gaussian kernel  

(Gaussian radial basis function network) 

𝑘(𝐱, 𝐱′) = 𝑒𝑥𝑝 (−
1

2
∑ 𝑎𝑖(𝐱𝒊 − 𝐱𝒊

′)2

𝑑

𝑖=1

) 

Simple exponential kernel 

𝑘(𝐱, 𝐱′) = 𝑡𝑎𝑛ℎ(〈𝐱, 𝐱′〉 − 𝜃) Sigmoid kernel 

(Multi-Layer Perceptron with one hidden layer) 
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Considering that training data are always finite, the kernel function has a matrix expression 

associated to the data. The following definition relates the concepts of kernel function and kernel 

matrix: 

Definition: Given a kernel function 𝑘: 𝒳 × 𝒳 → ℝ and a set 𝐗 = {𝐱1, 𝐱2, … , 𝐱𝑁| 𝐱𝑖 ∈ 𝒳}, the 

corresponding kernel matrix K is defined as the 𝑁 × 𝑁 real matrix such that 𝑲𝑖,𝑗 = 𝑘(𝐱𝑖, 𝐱𝑗). 

A natural question at this point is what functions k are feasible kernels for using in a kernel 

method. It turns out that a kernel function 𝑘: 𝒳 × 𝒳 → ℝ should fulfill the characterization that 

appears below. Note that it implies that 𝑘(𝐱, 𝐱) ≥ 0, ∀𝐱 ∈ 𝒳.  

Characterization: A symmetric function 𝑘: 𝒳 × 𝒳 → ℝ is called a positive semi-definite kernel 

function if and only if for any positive integer N, any choice of objects 𝐱1, 𝐱2, … , 𝐱𝑁 ∈ 𝒳 and 

any choice of real numbers 𝑐1, 𝑐2, … , 𝑐𝑁, the resulting N x N kernel matrix K is symmetric and 

satisfies that ∑ ∑ 𝑐𝑖𝑐𝑗𝑲𝑖,𝑗
𝑛
𝑗=1

𝑛
𝑖=1 ≥ 0 (i.e. K is positive semi-definite

1
). 

2.1.3 Kernel transformations 

Choosing a kernel for a particular problem reflects most of our prior knowledge about the data 

source and the problem (actually, the only knowledge about the data that is not included in the 

kernel is the set of labels in supervised and semi-supervised problems). Consequently, operations 

on kernel matrices might represent important changes regarding our understanding of the data. 

The following results allow the creation and combination of kernel functions, providing the 

means to integrate prior knowledge into the kernel matrices (Shawe-Taylor & Cristianini, 2004): 

                                                 
1
 The expression “positive semi-definite” is used here as defined in Matrix Theory, i.e. 0xx KT for all 

mRx . 

Please, note that in (Scholkpof and Smola, 2002) the term “positive definite” is used instead with the same meaning. 
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Let 𝑘1 and 𝑘2 be kernel functions defined over 𝒳 × 𝒳, where 𝒳 ⊆ ℝ𝑛. Additionally, 𝑓: 𝒳 → ℝ, 

𝜙: 𝒳 → ℝ𝑚, and 𝑘3 is a kernel function defined over ℝ𝑚 × ℝ𝑚. The following functions are 

kernels: 

(i) 𝑘(𝐱, 𝐳) = 𝑘1(𝐱, 𝐳) + 𝑘2(𝐱, 𝐳) 

(ii) 𝑘(𝐱, 𝐳) = 𝑎𝑘1(𝐱, 𝐳); where 𝑎 ∈ ℝ+ 

(iii)𝑘(𝐱, 𝐳) = 𝑘1(𝐱, 𝐳)𝑘2(𝐱, 𝐳) 

(iv) 𝑘(𝐱, 𝐳) = 𝑓(𝐱)𝑓(𝐳) 

(v) 𝑘(𝐱, 𝐳) = 𝑘3(𝜙(𝐱), 𝜙(𝐳)) 

(vi)  𝑘(𝐱, 𝐳) = 𝐱𝑇𝐵𝐳;   where B is a symmetric positive semi-definite matrix. 

It is important to consider how feature spaces are transformed by some of these operations. For 

instance, the new feature vectors 𝜙(𝐱) obtained through construct (i) satisfies 𝜙(𝐱) =

[𝜙1(𝐱), 𝜙2(𝐱)], where 𝜙𝑖(𝐱) denotes a feature vector from kernel 𝑘𝑖; construct (ii) re-scales the 

vectors in the feature space by √𝑎; and construct (iv) defines a one-dimensional feature space 

through function f.  

Besides creating new kernels using the previous constructs, we can also benefit from some 

operations on current kernel matrices to achieve certain transformations on the feature space. 

Some simple transformations are listed below, assuming that 𝑘1 is a kernel function: 

 The function 𝑘(𝐱, 𝐳) = 𝑘1(𝐱, 𝐳) + 𝑎, with 𝑎 ∈ ℝ+, is a kernel function having a feature 

space equal to the feature space of k with a constant-valued dimension added to it.  

 The function  
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                                            𝑘(𝐱, 𝐳) = {
𝑘1(𝐱, 𝐳) + 𝑎         𝑖𝑓 𝐱 = 𝐳

𝑘1(𝐱, 𝐳)             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  ,   ( 2.2 ) 

where 𝑎 ∈ ℝ+, corresponds to adding a new feature with different values to the feature 

space associated to the kernel function 𝑘1. 

 The kernel 

                                                              𝑘(𝐱, 𝐳) =
𝑘1(𝐱,𝐳)

√𝑘1(𝐱,𝐱)𝑘1(𝐳,𝐳)
    ( 2.3 ) 

corresponds to a normalization of all vectors in the feature space of 𝑘1, effectively 

mapping all observations to a hyper-sphere. 

As a final note, it is possible to assess how different two kernel matrices are by defining a 

similarity measure. A simple similarity measure is the alignment between two kernels: 

Definition: Let 𝑲1 and 𝑲2 be two kernel matrices of dimension 𝑁 × 𝑁. The alignment 

𝐴(𝑲1, 𝑲2) is defined as 

                                                   𝐴(𝑲1, 𝑲2) =
〈𝑲1,𝑲2〉

√〈𝑲1,𝑲1〉〈𝑲2,𝑲2〉
 ,  ( 2.4 ) 

where 〈𝑲𝑖, 𝑲𝑗〉 = 𝑡𝑟𝑎𝑐𝑒(𝑲𝑖
𝑇𝑲𝑗) is the Frobenius inner product between the two matrices. 

From this definition, it follows that the alignment between two kernel matrices corresponds to 

the cosine of the angle between the two matrices taken as 𝑁2-dimensional vectors. 

2.1.4 Classification of Kernels 

Kernels functions have been categorized based on various characteristics, such as whether they 

are local kernels or not, separable or non-separable, stationary or non-stationary, among other 
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characteristics (Genton, 2001).  The following class of kernels is of particular importance to 

leveraging kernels in a nearest-neighbor method: 

Definition: A kernel function 𝑘: 𝒳 × 𝒳 → ℝ is isotropic stationary if there is a function 

𝑔𝑘: ℝ → ℝ such that 𝑘(𝐱, 𝐳) = 𝑔𝑘(‖𝐱 − 𝐳‖). 

Isotropic stationary kernels are invariant to rotations and translations. The well-known Gaussian 

RBF kernel is an example of an isotropic stationary kernel. On the other hand, the polynomial 

kernel of degree d and the linear kernel are examples of non-isotropic stationary kernels. The 

previous definition is limited to input spaces where a norm is defined. A generalization to the 

class of isotropic stationary kernels that considers input spaces with arbitrary data types, called 

similarity kernel, was introduced in (Ramirez-Padron, Foregger, Manuel, Georgiopoulos, & 

Mederos, 2010): 

Definition: A positive semi-definite kernel function 𝑘: 𝒳 × 𝒳 → ℝ is a similarity kernel if and 

only if there exist 𝑐 ∈ ℝ+ such that ∀𝐱 ∈ 𝒳, 𝑘(𝐱, 𝐱) = 𝑐. 

As noted in (Ramirez-Padron, Foregger, Manuel, Georgiopoulos, & Mederos, 2010), a similarity 

kernel k can be interpreted as a similarity measure in 𝒳 that fulfills the following properties: 

 Symmetry (by definition of kernel function). 

 ∀𝐱 ∈ 𝒳,  𝑘(𝐱, 𝐱) = 𝑐   (by definition of similarity kernel).  

 ∀𝐱, 𝐳 ∈ 𝒳,  𝑘(𝐱, 𝐳) ≤ 𝑐.  

 ∃𝑑 ∈ ℝ such that ∀𝐱, 𝐳 ∈ 𝒳,  𝑘(𝐱, 𝐳) ≥ 𝑑. 
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The previous properties are particularly important for nearest neighbor-based outlier detection 

methods that use kernels. 

2.1.5 Properties of Data in Feature Spaces 

Despite the absence of an explicit representation for the projection 𝜙(𝐱), a kernel function grants 

us access to several properties of data projected into a kernel-defined feature space. The 

following well-known properties are described in this subsection: the norm of a feature vector, 

the distance between feature vectors, characteristics of the center of mass of a set of feature 

vectors, and the variance of the norm of projections in the feature space (Shawe-Taylor & 

Cristianini, 2004). 

The norm of a feature vector is obtained directly from the properties of inner products: 

                                              ‖𝜙(𝐱)‖2 = √〈𝜙(𝐱), 𝜙(𝐱)〉 = √𝑘(𝐱, 𝐱) .  ( 2.5 ) 

Similarly, the distance between two feature vectors can be easily calculated as: 

                                   ‖𝜙(𝐱) − 𝜙(𝒛)‖ = √〈𝜙(𝐱) − 𝜙(𝐳), 𝜙(𝐱) − 𝜙(𝐳)〉 

                                                              = √𝑘(𝐱, 𝐱) − 2𝑘(𝐱, 𝐳) + 𝑘(𝐳, 𝐳) .  ( 2.6 ) 

As before, let 𝐗 = {𝐱1, 𝐱2, … , 𝐱𝑁} be a random sample from a domain space 𝒳. Let us denote by 

𝜙(𝐗) the image of X under 𝜙 (i.e. 𝜙(𝐗) = { 𝜙(𝐱1), 𝜙(𝐱2), … , 𝜙(𝐱𝑁)}). The center of mass of 

𝜙(𝐗) is defined as the sample mean of the feature vectors in 𝜙(𝐗): 

                                                           𝜙̅𝑠 =
1

𝑁
∑ 𝜙(𝐱𝑖)

𝑁
𝑖=1  .  ( 2.7 ) 
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Given that the feature vectors in 𝜙(𝐗) are typically infinite-dimensional, it is not possible in 

general to have an explicit representation for the vector 𝜙̅𝑠. However, the norm of 𝜙̅𝑠 and its 

distance from other feature vectors are measurable quantities: 

                                            ‖𝜙̅𝑠‖
2

= 〈𝜙̅𝑠, 𝜙̅𝑠〉 =
1

𝑁2
∑ 𝑘(𝐱𝑖, 𝐱𝑗)𝑁

𝑖,𝑗=1  ,  ( 2.8 ) 

                        ‖𝜙(𝐱) − 𝜙̅𝑠‖
2

= 𝑘(𝐱, 𝐱) +
1

𝑁2
∑ 𝑘(𝐱𝑖, 𝐱𝑗)𝑁

𝑖,𝑗=1 −
2

𝑁
∑ 𝑘(𝐱𝑖, 𝐱)𝑁

𝑖=1  .  ( 2.9 ) 

Translating the origin of the feature space to the center of mass 𝜙̅𝑠 corresponds to minimizing the 

sum of the squared norms of the feature vectors, which in turn implies a minimization of the 

trace of the kernel matrix (Shawe-Taylor & Cristianini, 2004). Consequently, centering the 

feature data can be expressed through the following kernel transformation, where 𝑘𝑐 denotes the 

kernel function corresponding to the centered data and 𝑘 denotes the original kernel function: 

      𝑘𝑐(𝐱, 𝐳) = 𝑘(𝐱, 𝐳) +
1

𝑁2
∑ 𝑘(𝐱𝑖, 𝐱𝑗)𝑁

𝑖,𝑗=1 −
1

𝑁
∑ 𝑘(𝐱𝑖, 𝐱)𝑁

𝑖=1 −
1

𝑁
∑ 𝑘(𝐱𝑖, 𝐳)𝑁

𝑖=1  .  ( 2.10 ) 

The last property considered here is the variance of the norm of projections within the feature 

space. For that matter, let us assume that the feature data has zero mean (this can be achieved 

through the centering procedure formulated above). Let us denote by 𝚽 the matrix containing the 

feature vectors:  

                                                 𝚽 = [ϕ(𝐱1), ϕ(𝐱2), … , ϕ(𝐱N)]𝑇 .  ( 2.11 ) 

From classic statistics, the covariance matrix C of feature data can be written as 𝑪 =
1

𝑁
𝚽𝑇𝚽. Let 

us denote by v a unit vector in the feature space. The projection 𝑃𝑣(𝜙(𝐱)) of a vector 𝜙(𝐱) onto 

v is expressed as: 

                                               𝑃𝐯(𝜙(𝐱)) =
〈𝐯,𝜙(𝐱)〉

‖𝐯‖2 𝐯 = 〈𝐯, 𝜙(𝐱)〉𝐯 . ( 2.12 )  
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Consequently, ‖𝑃𝐯(𝜙(𝐱))‖ = 〈𝐯, 𝜙(𝐱)〉. Given that the feature data have zero mean, it is 

obtained that the expected value of the norm of the projections 𝜇𝐯 = 𝐸̂[‖𝑃𝐯(𝜙(𝐱))‖] = 0. The 

variance of the norms of the projections onto v is expressed as follows (Shawe-Taylor & 

Cristianini, 2004): 

                                        𝜎𝐯
2 = 𝑣𝑎𝑟(‖𝑃𝐯(𝜙(𝐱))‖) =

1

𝑁
𝐯𝑇𝚽𝑇𝚽𝐯 = 𝐯𝑇𝑪𝐯 .   ( 2.13 ) 

There is no explicit expression for 𝜎𝑣
2 for a general vector v. However, if we assume 𝐯 = 𝚽𝑇𝜶, 

an expression for it can be obtained as  𝜎𝐯
2 =

1

𝑁
𝛂𝑇𝑲2𝛂. 

2.2 Classification-based Kernel Methods for Novelty Detection 

Classification-based kernel methods for novelty detection take advantage of good generalization 

properties from statistical learning theory and the possibility of dealing with infinite dimensional 

feature spaces. Recently, they have been applied successfully in a variety of domains and their 

performance compares favorably to other methods currently used for novelty detection (Gardner, 

Krieger, Vachtsevanos, & Litt, 2006) (Liu, Liu, & Chen, 2010) (Blanchard, Lee, & Scott, 2010), 

(Kemmler M. , Rodner, Wacker, & Denzler, 2013). Consequently, they can be considered state-

of-the-art methods for novelty detection. New approaches or algorithms aiming at improving the 

effectiveness of novelty detection methods should be compared to one or more of these 

classification-based kernel methods. This section describes some of the most successful kernel-

based methods. One subsection is devoted to batch methods and a second subsection describes 

current online methods. 
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2.2.1 Batch methods 

One-class SVM (Schölkopf, Platt, Shawe-Taylor, Smola, & Williamson, 2001) 

The goal of one-class SVM is to rely on the training sample to estimate the support of the 

corresponding distribution (i.e. the set of data points for which the density function is not zero-

valued). Consequently, the model from one-class SVM is essentially a binary function f that 

specifies regions containing most of the data from the normal class. The function f should return 

1 in a relatively small region that contains most of the observations, and -1 elsewhere. One-class 

SVM is formulated in the feature space ℱ associated to a kernel function k. It looks for the 

hyperplane that better separates the feature vectors from the origin with maximum margin. A test 

observation 𝒛𝜖𝒳 will be declared a member of the normal class if the projection of z lies on the 

side of the optimal hyperplane facing most of the mapped training data; i.e. if 𝑓(𝒛) = 1.  

Given an unsupervised training data set 𝐗 = {𝐱𝑖|𝐱𝑖𝜖𝒳, 𝑖 = 1, … , 𝑁}, where 𝒳 denotes a finite-

dimensional domain, finding the separating hyperplane with optimal margin is stated as a 

quadratic optimization problem: 

                                     min𝐰∈ℱ,𝝃∈ℝ𝑁,𝜌 ∈ℝ    
1

2
‖𝐰‖2 +

1

𝜐𝑁
∑ 𝜉𝑖𝑖 − 𝜌 ,  ( 2.14 )  

                            subject to: 〈𝐰, 𝜙(𝐱𝑖)〉 ≥ 𝜌 − 𝜉𝑖,       𝜉𝑖 ≥ 0 , 

where 𝜐 denotes the expected rate of outliers in the data. The decision function f has the 

following expression: 

                                                𝑓(𝐱) = 𝑠𝑔𝑛(〈𝐰, 𝜙(𝐱𝑖)〉 − 𝜌) .  ( 2.15 ) 
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The function f will be positive for most of the observations in the training data set, since the 

slack variables 𝜉𝑖 are penalized in the quadratic problem. Introducing Lagrange multipliers 

𝛼𝑖, 𝛽𝑖 ≥ 0 the following Lagrangian is obtained: 

𝐿(𝐰, 𝝃, 𝜌, 𝜶, 𝜷) =
1

2
‖𝒘‖2 +

1

𝜐𝑁
∑ 𝜉𝑖𝑖 − 𝜌 − ∑ 𝛼𝑖[〈𝐰, 𝜙(𝐱𝑖)〉 − 𝜌 + 𝜉𝑖]𝑖 − ∑ 𝛽𝑖𝜉𝑖𝑖  .  ( 2.16 ) 

Equating to zero the derivatives of L with respect to the primal variables 𝐰, 𝝃, and 𝜌,  the 

following conditions are found: 

                                                     𝐰 = ∑ 𝛼𝑖𝜙(𝐱𝑖)𝑖  ,    ( 2.17 ) 

                                                    𝛼𝑖 =
1

𝜐𝑁
− 𝛽𝑖 ≤

1

𝜐𝑁
 ,  ( 2.18 ) 

                                                              ∑ 𝛼𝑖𝑖 = 1 .  ( 2.19 ) 

Substituting these conditions into L, a dual optimization problem is obtained:  

                                                 min𝜶      
1

2
∑ 𝛼𝑖𝛼𝑗𝑘(𝐱𝑖, 𝐱𝑗)𝑖,𝑗  ,  ( 2.20 ) 

subject to:   ∑ 𝛼𝑖𝑖 = 1;   0 ≤ 𝛼𝑖 ≤
1

𝜐𝑁
      

The values for the 𝛼𝑖 Lagrange parameters are obtained by solving the above dual optimization 

problem. As in the standard SVM method, those observations for which 𝛼𝑖 > 0 are called 

support vectors. Given that 𝐰 = ∑ 𝛼𝑖𝜙(𝐱𝑖)𝑖 , the decision function is re-written as: 

                                                    𝑓(𝐱) = 𝑠𝑔𝑛(∑ 𝛼𝑖𝑘(𝐱𝑖, 𝐱)𝑖 − 𝜌) .  ( 2.21 ) 

The only parameter pending for estimation is ρ, which is calculated using the following 

expression: 

                                                              𝜌 = ∑ 𝛼𝑖𝑘(𝐱𝑖, 𝐱𝑘)𝑖  ,  ( 2.22 ) 
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where xk is any support vector such that 0 < 𝛼𝑘 <
1

𝜐𝑁
. Having any test observation 𝒛𝜖𝒳, it can 

be declared an outlier if 𝑓(𝒛) = −1, i.e. if z lies outside of the region containing most of the 

training data. 

One-class SVM has been successfully applied to detecting epochs containing seizure activity 

from one-second windows of intracranial EEG (Gardner, Krieger, Vachtsevanos, & Litt, 2006). 

In (Clifton, Yin, Clifton, & Zhang, 2007), one-class SVM is leveraged to predict combustion 

instability from time-series data. The work of (Rabaoui, Kadri, & Ellouze, 2008) applies one-

class SVM to detect events in continuous audio streams, reporting substantial improvements in 

performance compared to other popular approaches. One-class SVM has been also employed 

successfully to recognize physiological deterioration in patients under continuous monitoring 

(Clifton, Clifton, Watkinson, & Tarassenko, 2011). Other examples of applications of one-class 

SVM are listed in section 1.4.2. 

Recently, an extension to one-class SVM, called one class-SVM with minimum within-class 

scatter (OC-WCSSVM) has been proposed; aimed at finding a more effective hyperplane using 

information of the scatter within the training data (An, Liang, & Liu, 2014). The corresponding 

experimental results showed improvements when compared to other modern algorithms on 

multiple real-world data sets. Another very recent extension is presented in (Khan, Ksantini, 

Ahmad, & Guan, 2014), where the low-variance directions of the data are taken into account to 

detect outliers. This method employs the estimated covariance matrix of the training data to 

control the direction of the separating hyperplane.   
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Support Vector Domain Description (SVDD) (Tax & Duin, 1999) 

The approach employed by SVDD is to find a hypersphere in the feature space ℱ that contains 

most of the observations in the training data set. This hypersphere would serve as the data 

domain description for the normal class represented by the training data set. It translates into a 

region covering most of the training points when mapped back into the input space 𝒳. 

Observations lying outside of that region are considered outliers.  

Given the training data set 𝐗 = {𝐱𝑖|𝐱𝑖𝜖𝒳, 𝑖 = 1, … , 𝑁}, the SVDD problem consists of finding 

the smallest hypersphere in the feature space that contains most of the feature vectors 

{𝜙1, 𝜙2, … , 𝜙𝑁} , where 𝜙𝑖 = 𝜙(𝐱𝑖). Essentially, the hypersphere should not contain data points 

lying far away from its center. Remote observations should be considered outliers and should not 

be included in the model. To accomplish this goal, non-negative slack variables 𝝃 =

{𝜉1, 𝜉2, … , 𝜉𝑁} are introduced, to allow for some training observations to be outside of the 

hypersphere. The corresponding optimization problem, called soft minimal hyper-sphere, is 

stated as follows: 

                                                𝑚𝑖𝑛𝒄,𝑟,𝝃       𝑟2 + 𝐶‖𝝃‖1 ,  ( 2.23 ) 

  subject to:  

‖𝜙𝑖 − 𝒄‖2 = (𝜙𝑖 − 𝒄)𝑇(𝜙𝑖 − 𝒄) ≤ 𝑟2 + 𝜉𝑖,      𝑖 = 1,2, … , 𝑁; 

𝜉𝑖 ≥ 0,      𝑖 = 1,2, … , 𝑁; 
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where 𝐶 is a regularization parameter, and c and r denote the center and the radius of the 

hypersphere, respectively. Introducing Lagrange multipliers 𝛼𝑖 ≥ 0 and 𝛽𝑖 ≥ 0 the following 

Lagrangian is obtained: 

     𝐿(𝒄, 𝑟, 𝜶, 𝝃) = 𝑟2 + 𝐶‖𝝃‖1 + ∑ 𝛼𝑖[‖𝜙𝑖 − 𝒄‖2 − 𝑟2 − 𝜉𝑖]
𝑁
𝑖=1 − ∑ 𝛽𝑖𝜉𝑖

𝑁
𝑖=1  .  ( 2.24 ) 

By differentiating L with respect to the primal variables 𝒄, 𝑟, 𝝃 the following equations are 

obtained: 

                                              
𝜕𝐿

𝜕𝒄
= 2 ∑ 𝛼𝑖(𝜙𝑖 − 𝒄)𝑁

𝑖=1 = 0 ,  ( 2.25 ) 

                                              
𝜕𝐿

𝜕𝑟
= 2𝑟(1 − ∑ 𝛼𝑖

𝑁
𝑖=1 ) = 0 ,  ( 2.26 ) 

                                             
𝜕𝐿

𝜕𝜉𝑖
= 𝐶 − 𝛼𝑖 − 𝛽𝑖 = 0 ,  ( 2.27 ) 

Finally, the following constraints are obtained:  

                                                 ∑ 𝛼𝑖 = 1𝑁
𝑖=1  ,  ( 2.28 ) 

                                                 𝒄 = ∑ 𝛼𝑖𝜙𝑖
𝑁
𝑖=1  ,  ( 2.29 ) 

                                                 0 ≤ 𝛼𝑖 ≤ 𝐶 .  ( 2.30 ) 

Substituting these constraints into the Lagrangian leads the following dual optimization problem: 

                        𝑚𝑎𝑥𝜶   ∑ 𝛼𝑖𝑘(𝐱𝑖, 𝐱𝑖)
𝑁
𝑖=1 − ∑ 𝛼𝑖𝛼𝑗𝑘(𝐱𝑖, 𝐱𝑗)𝑁

𝑖,𝑗=1  ,  ( 2.31 ) 

subject to:   

                       ∑ 𝛼𝑖
𝑁
𝑖=1 = 1 , 

                       0 ≤ 𝛼𝑖 ≤ 𝐶, 𝑖 = 1, 2, … , 𝑁 . 

Feature vectors on the hypersphere’s boundary have 𝛼𝑖 coefficients such that 0 < 𝛼𝑖 < 𝐶. The 

radius r of the hypersphere is calculated as the distance from its center to one of those vectors. 
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Feature vectors with 𝛼𝑖 = 𝐶 are located outside the hypersphere. Consequently, they are 

considered outliers. All feature vectors with positive 𝛼𝑖 values influence the domain description, 

and they are called the support vectors (SVs) of the description. A test point 𝒛𝜖𝒳 is declared an 

outlier if its distance to the center of the hypersphere is greater than r; i.e. if: 

           𝑑(𝜙(𝐳), 𝒄) = √𝑘(𝐳, 𝒛) − 2 ∑ 𝛼𝑖𝑘(𝐳, 𝐱𝑖)
𝑁
𝑖=1 + ∑ 𝛼𝑖𝛼𝑗𝑘(𝐱𝑖, 𝐱𝑗)𝑁

𝑖,𝑗=1 > 𝑟 .  ( 2.32 ) 

Given that ∑ 𝛼𝑖
𝑁
𝑖=1 = 1, the value of C must be in the interval [

1

𝑁
, 1]. Consequently, for 𝐶 <

1

𝑁
  

no solution can be found. On the other hand, for C > 1 a solution covering all feature vectors can 

always be found.  

The SVDD novelty detector has two important advantages. First, similar to one-class SVM, it 

relies on modeling the boundary of the density distribution of the normal data instead of the 

actual distribution, so that it is robust to variations of the distribution within the region defined as 

normal. Only variations of the distribution beyond that boundary will affect SVDD’s 

performance. The second advantage is related to the estimation of the expected target error rate 

(error of type I). A target error occurs when an observation drawn from the target distribution is 

incorrectly classified as an outlier. Assuming that all observations in the training data set are 

actually drawn from the target distribution, support vectors with 𝛼𝑖 = 𝐶 are considered target 

errors. If a support vector xi with 𝛼𝑖 < 𝐶 was removed from the training data before training, 

then the resulting boundary might shrink. In that case, evaluating the novelty detector on xi will 

trigger a target error. On the other hand, training SVDD on the data set with one or more non-

support vectors (𝛼𝑖 = 0) left out renders the same solution that is obtained with the original 

training data. Because non-support vectors lies within the target boundary they won’t be detected 
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as outliers. In summary, a leave-one-out estimation (Bishop, 1995) of the target error rate is 

given by the expression 
#𝑆𝑉𝑠

𝑁
, where #SVs denotes the number of support vectors. 

Support Vector Data Description (SVDD) (Tax & Duin, 2004). The Support Vector Domain 

Description method was subsequently expanded to accept negative examples (examples of 

outliers) as part of the learning process. The method was renamed as Support Vector Data 

Description. The optimization problem of the original SVDD was modified to consider negative 

examples as well. When there are no negative examples, the new SVDD remains the same as the 

Support Vector Domain Description. Following the notation in (Tax & Duin, 2004), the target 

objects (normal observations) are enumerated by indices i, j, and the negative examples are 

enumerated by indices l, m. The normal (target) objects are labeled as y𝑖 = 1 and the negative 

examples are labeled as y𝑙 = −1. Introducing slack variables 𝜉𝑖 and 𝜉𝑙 for both the target and the 

outlier examples, the modified primal optimization problem is as follows: 

                                            𝑚𝑖𝑛𝒄,𝑟,𝜉𝑖,𝜉𝑙
       𝑟2 + 𝐶1 ∑ 𝜉𝑖𝑖 + 𝐶2 ∑ 𝜉𝑙𝑙  ,  ( 2.33 ) 

  subject to:  

‖𝜙𝑖 − 𝒄‖2 = (𝜙𝑖 − 𝒄)𝑇(𝜙𝑖 − 𝒄) ≤ 𝑟2 + 𝜉𝑖;       𝜉𝑖 ≥ 0;     ∀𝑖 

‖𝜙𝑙 − 𝒄‖2 = (𝜙𝑙 − 𝒄)𝑇(𝜙𝑙 − 𝒄) ≥ 𝑟2 − 𝜉𝑙;       𝜉𝑙 ≥ 0;  ∀𝑙   

Introducing Lagrange multipliers  𝛼𝑖 ,  𝛽𝑖 ≥ 0 and 𝛼𝑙 ,  𝛽𝑙 ≥ 0 and applying a derivation process 

similar as the one used for Support Vector Domain Description, the following constraints are 

obtained: 

                                                       ∑ 𝛼𝑖𝑖 − ∑ 𝛼𝑙 = 1𝑙  ,    ( 2.34 )    
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                                                     𝒄 = ∑ 𝛼𝑖𝜙𝑖𝑖 − ∑ 𝛼𝑙𝜙𝑙𝑙  ,    ( 2.35 )     

                                            0 ≤ 𝛼𝑖 ≤ 𝐶1 ,     0 ≤ 𝛼𝑙 ≤ 𝐶2;     ∀𝑖, 𝑙   ( 2.36 ) 

The dual optimization problem is expressed as: 

𝑚𝑎𝑥{𝛼𝑖},{𝛼𝑙}   
    ∑ 𝛼𝑖𝑘(𝐱𝑖, 𝐱𝑖)𝑖 − ∑ 𝛼𝑙𝑘(𝐱𝑙, 𝐱𝑙)𝑙 − ∑ 𝛼𝑖𝛼𝑗𝑘(𝐱𝑖, 𝐱𝑗)𝑖,𝑗 − ∑ 𝛼𝑙𝛼𝑚𝑘(𝐱𝑙, 𝐱𝑚)𝑙,𝑚 +

2 ∑ 𝛼𝑙𝛼𝑗𝑘(𝐱𝑙, 𝐱𝑗)𝑙,𝑗  ,  ( 2.37 ) 

subject to:   

                                                         ∑ 𝛼𝑖𝑖 − ∑ 𝛼𝑙 = 1𝑙  ,       ( 2.38 ) 

                                         0 ≤ 𝛼𝑖 ≤ 𝐶1;      0 ≤ 𝛼𝑙 ≤ 𝐶2;    ∀𝑖, 𝑙   ( 2.39 ) 

Let us assume there N observations in the training data (including both target and negative 

examples), and let us enumerate variables corresponding to all training observations by using 

index i. Defining new variables 𝛼𝑖
′ = y𝑖𝛼𝑖, constraints (2.38) and (2.39) change into  

                                                  ∑ 𝛼𝑖
′𝑁

𝑖=1 = 1 and  𝒄 = ∑ 𝛼𝑖
′𝜙𝑖

𝑁
𝑖=1 .  ( 2.40 ) 

Consequently, by doing this transformation, the SVDD with negative examples is expressed 

mathematically in the same terms as the unsupervised version of SVDD. Similarly, the function 

to detect whether a test observation 𝒛𝜖𝒳 is an outlier has the same expression for both versions 

of SVDD. 

The work in (Wu & Ye, 2009) aims at improving the margins of SVDD’s hypersphere, so that its 

distance from outliers in the training data is maximized. That work is extended in (Le, Tran, Ma, 

& Sharma, 2010), where the margin between the hypersphere and normal observations is also 

maximized. Modeling multiple hyperspheres has also been proposed recently (Le, Tran, Ma, & 

Sharma, 2011), outperforming the original SVDD method in multiple data sets. Some efforts 
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have also been made to improve the speed of the SVDD method, such as fast SVDD (Liu, Liu, & 

Chen, 2010) and efficient SVDD (Peng & Xu, 2012). 

2.2.2 Online Methods 

Online SVDD (Tax & Laskov, 2003) 

This method is based on a generalization of incremental SVM (Cauwenberghs & Poggio, 2001), 

which is an exact solution to supervised online SVM learning. Consequently, in order to 

understand online SVDD it is necessary to briefly introduce first the standard SVM binary 

classifier and incremental SVM.  

The model of the standard soft-margin SVM binary classifier represents a separating hyperplane 

𝑓(𝐱) in the feature space, which has maximum margin and allows for some mislabeled training 

examples (Cortes & Vapnik, 1995): 

                                                           𝑓(𝐱) = 〈𝐰, 𝜙(𝐱)〉 + 𝑏 ,  ( 2.41 ) 

such that y𝑖(𝐰, 𝜙(𝐱𝒊) + 𝑏) ≥ 1 − 𝜉𝑖 for i = 1,2,…,N; where 𝐱𝑖 denote the training vectors, the 

labels y𝑖 take value in {-1, 1}, and  𝜉𝑖 are non-negative slack variables that are as small as 

possible (how small is defined by a regularization parameter C introduced below).  

To obtain the trained SVM model, a primal optimization problem is written as: 

                                                   𝑚𝑖𝑛𝐰,𝑏,𝜉𝑖
  

1

2
‖𝐰‖2 + 𝐶 ∑ 𝜉𝑖

𝑁
𝑖=1  ,  ( 2.42 ) 

subject to: 

   y𝑖(𝐰, 𝜙(𝐱𝒊) + 𝑏) ≥ 1 − 𝜉𝑖  and   𝜉𝑖 ≥ 0,   for 𝑖 = 1, 2, … , 𝑁. 
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Using the technique of Lagrange multipliers, this primal problem is converted into the following 

convex quadratic dual problem: 

            max𝑏 min𝛼𝑖
 𝑊 = 

1

2
 ∑ 𝛼𝑖𝛼𝑗y𝑖y𝑗𝑘(𝐱𝑖, 𝐱𝑗)𝑁

𝑖,𝑗=1 − ∑ 𝛼𝑖
𝑁
𝑖=1 + 𝑏 ∑ y𝑖𝛼𝑖

𝑁
𝑖=1  ,  ( 2.43 ) 

  subject to:  

0 ≤ 𝛼𝑖 ≤ 𝐶,  for 𝑖 = 1,2, … , 𝑁. 

Deriving 𝑊 w.r.t. variables 𝛼𝑖 and b, the following conditions, called Karush–Kuhn–Tucker 

(KKT) conditions, are obtained: 

     𝑔𝑖 =
𝜕𝑊

𝜕𝛼𝑖
= ∑ 𝛼𝑗y𝑖y𝑗𝑘(𝐱𝑖, 𝐱𝑗)𝑁

𝑗=1 + 𝑏y𝑖 − 1      {

𝑔𝑖 ≥ 0,            𝑖𝑓 𝛼𝑖 = 0
𝑔𝑖 = 0,    𝑖𝑓 0 < 𝛼𝑖 < 𝐶
𝑔𝑖 ≤ 0,            𝑖𝑓 𝛼𝑖 = 𝐶

 ,  ( 2.44 ) 

                                          
𝜕𝑊

𝜕𝑏
= ∑ y𝑖𝛼𝑖

𝑁
𝑖=1 = 0 .  ( 2.45 ) 

Finally, the function for the optimal separating hyperplane can be written as a linear combination 

of values of the kernel function: 

                                                 𝑓(𝐱) = ∑ 𝛼𝑖y𝑖𝑘(𝐱𝑖, 𝐱)𝑁
𝑖=1 + 𝑏,  ( 2.46 ) 

for which coefficients 𝛼𝑖 and b are calculated by solving the dual problem stated above. 

The incremental SVM method allows the addition of training observations, one at a time, to an 

SVM model. It also allows removing a single observation from an SVM model. Training 

observations are explicitly classified into three categories: the set S of margin support vectors 

(i.e. those for which 0 < 𝛼𝑖 < 𝐶), the set E of error support vectors (those exceeding the margin 

but not necessarily misclassified, for which 𝛼𝑖 = 𝐶), and the set R containing the rest of the 

vectors.  
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Let us assume that an optimal solution to the SVM optimization problem is already available, 

which could have been obtained through batch training. Let us assume also that a new vector 𝐱𝑐, 

with label y𝑐, needs to be added to the corresponding SVM model. As a first step, 𝐱𝑐 is added 

with coefficient 𝛼𝑐 = 0, which does not affect the model nor the KKT conditions. If 𝑔𝑐 > 0 then 

the algorithm terminates; otherwise, the value 𝛼𝑐 is incremented as much as possible, until either 

(1) 𝑔𝑐 = 0, (2) 𝛼𝑐 = 𝐶, or (3) previously learned vectors migrate across sets S, E, and R. In the 

first two cases some model updates are executed and the algorithm terminates. In the third case, 

updates are applied to maintain the KKT conditions, and the previous step to increment 𝛼𝑐 is 

repeated. A similar procedure is applied to remove an observation from the SVM model, in this 

case iteratively decrementing the corresponding 𝛼𝑐 coefficient until it reaches zero, while 

keeping the KKT conditions fulfilled, which implies having an optimal model. Incremental SVM 

relies on equations that allow calculating, given  a change in 𝛼𝑐 denoted by Δ𝛼𝑐, the 

corresponding changes in b, 𝛼𝑖, and the derivatives 𝑔𝑖 (denoted by Δb, Δ𝛼𝑖, and Δ𝑔𝑖, 

respectively). According to its authors, the algorithm converges to a solution identical to the 

SVM model obtained through standard approaches based on quadratic optimization of the dual 

problem. 

Online SVDD is based on a generalization of the dual problem of SVM and the formulation of 

the incremental SVM algorithm. A general abstract form of the SVM optimization problem is 

considered in (Tax & Laskov, 2003), which is stated below (with some changes in notation to 

better match the notation used above): 

                                      max𝑏 min𝜶  𝑊 = 
1

2
 𝜶𝑇𝑀𝜶 − 𝒄𝑇𝜶 + 𝑏(𝒂𝑇𝜶 + 𝑑) ,  ( 2.47 ) 
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subject to 

0 ≤ 𝜶 ≤ 𝐶
𝒂𝑇𝜶 + 𝑑 = 0

 

where c and 𝒂 are vectors of size N, M is a 𝑁 × 𝑁 matrix, and d is a real value. Note that this 

problem becomes the standard SVM dual problem when using 𝒄 = 𝟏, 𝒂 = 𝐲, and 𝑑 = 0. 

Alternatively, the above expression denotes the dual problem from the SVDD method if 

𝒄 = 𝑑𝑖𝑎𝑔(𝑀), 𝒂 = 𝐲, and 𝑑 = −1. An online version of SVDD is obtained by applying the 

mathematical derivation of incremental SVM to the general problem (2.47), and subsequently 

substituting the values of 𝒄, 𝒂 and d corresponding to the SVDD method. The only major 

difference between incremental SVM and online SVDD arises at the moment of defining an 

initial optimal model: when using incremental SVM for a classification problem, an initial 

solution can always be found for even a single observation. However, for online SVDD at least 

⌈
1

𝐶
⌉ examples are needed to define an initial solution, where 𝐶 ∈ [

1

𝑁
, 1]. This is required in order 

to satisfy conditions 0 ≤ 𝜶 ≤ 𝐶 and 𝐲𝑇𝜶 = 1 at the same time. The following procedure was 

proposed in (Tax & Laskov, 2003) to obtain the initial solution for online SVDD:  

1. Take the first ⌊
1

𝐶
⌋ training observations into the set E and assign them weight C. 

2.  Take another observation xk, assign it a weight 𝛼𝑘 = 1 − ⌊
1

𝐶
⌋ 𝐶, and put it into set S. 

3. Compute gradients gi of all objects in the solution. 

4. Compute b such that for all observations in E the gradient is non-positive. 

5. Enter the online learning phase of the algorithm. 
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A detailed analysis of the convergence properties and the algorithmic complexity of incremental 

SVM (and consequently online SVDD) is given in (Laskov, Gehl, Krüger, & Müller, 2006). The 

work of Laskov et al. also demonstrated the applicability of incremental SVM to real-life 

problems. Examples of more recent applications of online SVDD can be found in (Yin, Zhang, 

Li, Ren, & Fan, 2014) and (Kolev, Suvorov, Morozov, Markarian, & Angelov, 2015). 

NORMA (Kivinen, Smola, & Williamson, 2004)  

The term NORMA stands for Naive Online Rreg Minimization Algorithm. Actually, it denotes a 

collection of online algorithms that perform stochastic gradient descent with respect to a risk 

functional defined on the Hilbert (feature) space ℱ. NORMA is described here first in general 

terms (applicable to different types of learning problems). Subsequently, a variant of NORMA 

suited to online novelty detection is then briefly described.  

The general approach used to develop NORMA considers a function estimation problem: to 

learn a mapping 𝑓: 𝒳 → ℝ from a training data set 𝐷 = {𝐗, 𝐲} = {(𝐱𝑖, y𝑖)|𝐱𝑖𝜖𝒳, y𝑖𝜖𝒴, 𝑖 =

1, … , 𝑁}. A loss function 𝑙: ℝ × 𝒴 → ℝ, given by 𝑙(𝑓(𝐱), y), penalizes the deviation of estimates 

𝑓(𝐱) from the observed label y. Although the authors of NORMA didn’t state a particular 

relationship between 𝒴 and ℝ, it is apparent from their formulation that 𝒴 ⊆ ℝ.  Any estimate 𝑓 

obtained by the learning algorithm is called a hypothesis.  It is assumed that the feature space ℱ 

is a reproducing kernel Hilbert space (Aronszajn, 1950), (Schölkopf & Smola, 2001), which 

contains all possible hypotheses. The main implication of this assumption is that the associated 

kernel function k has the following reproducing property: 

                                                     〈𝑓, 𝑘(𝐱, . )〉 = 𝑓(𝐱),    ∀𝐱 ∈ 𝒳.  ( 2.48 ) 
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The concept of risk functional is very important in NORMA. Typically, all examples from the 

training data set 𝐷 are assumed to be drawn independently from some distribution P defined 

over 𝒳 × 𝒴.  Given an estimate 𝑓 of the function to be learned, the following expected risk 

offers a natural measure of the quality of the estimation 𝑓: 

                                                      𝑅[𝑓, 𝑃] ≡ 𝐸𝑃 [ 𝑙(𝑓(𝐱), y)] .  ( 2.49 ) 

Since P is unknown, the expected risk can be approximated by the empirical risk Remp: 

                                                 𝑅𝑒𝑚𝑝[𝑓, 𝐷] ≡
1

𝑁
∑ 𝑙(𝑓(𝐱𝒊), y𝑖)𝑁

𝑖=1  .  ( 2.50 ) 

However, to avoid overfitting, a regularized risk should be used instead of Remp: 

                            𝑅𝑟𝑒𝑔[𝑓, 𝐷] ≡
1

𝑁
∑ 𝑙(𝑓(𝐱𝒊), y𝑖)𝑁

𝑖=1 +
𝜆

2
‖𝑓‖

2
;    𝜆 > 0.  ( 2.51 ) 

 

The previous risk functionals are the ones typically used in batch learning. A definition of a risk 

functional dealing with one example at a time is needed for online learning. For NORMA, the 

instantaneous regularized risk on a single example (x, y) is defined as follows: 

                                                    𝑅𝑖𝑛𝑠𝑡[𝑓, 𝐱, y] ≡ 𝑅𝑟𝑒𝑔[𝑓, {(𝐱, y)}] .  ( 2.52 ) 

NORMA assumes the existence of an arbitrary initial hypothesis 𝑓1. After NORMA examines the 

t
th

 example (𝐱𝑡, y𝑡), it generates an updated hypothesis  𝑓𝑡+1. Consequently, the goal for 

NORMA is to reduce the loss 𝑙(𝑓𝑡(𝐱𝑡), y𝑡) made by the learning algorithm when it predicts y𝑡 

based on 𝐱𝑡 and previous examples {(𝐱𝑖, y𝑖)}𝑖=1,2,…,𝑡−1. The main idea is to carry out the classic 

stochastic gradient descent with respect to the instantaneous risk 𝑅𝑖𝑛𝑠𝑡.  The general form of the 

update rule is the following: 
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                                                 𝑓𝑡+1 = 𝑓𝑡 − 𝜂𝑡
𝜕

𝜕𝑓
𝑅𝑖𝑛𝑠𝑡[𝑓, 𝐱𝑡, y𝑡] |

𝑓=𝑓̂𝑡

 ,  ( 2.53 ) 

where 𝜂𝑡 > 0 is the learning rate, similar to the learning rate employed in multilayer neural 

networks.  Employing properties of reproducing kernel Hilbert spaces, the update rule becomes:  

                                    𝑓𝑡+1(𝐱) ≡ (1 − 𝜂𝑡𝜆)𝑓𝑡(𝐱) − 𝜂𝑡𝑙′(𝑓𝑡(𝐱𝑡), y𝑡) 𝑘(𝐱𝑡, 𝐱) .  ( 2.54 ) 

Consequently, the function 𝑓𝑡, at any step t, can be written as a kernel expansion (Schölkopf, 

Herbrich, & Smola, 2001): 

                                                           𝑓𝑡(𝐱) = ∑ 𝛼𝑖𝑘(𝐱𝑖, 𝐱)𝑡−1
𝑖=1  .  ( 2.55 ) 

Considering loss functions that are convex in the first argument, the general NORMA algorithm 

is summarized in the following two steps: 

STEP 1. Choose as initial function estimate 𝑓1 = 0.  

STEP 2. The coefficients 𝛼1, 𝛼2, … , 𝛼𝑡 are updated at step t using the following expressions: 

                                           𝛼𝑡 ←  −𝜂𝑡𝑙′(𝑓𝑡(𝐱𝑡), y𝑡) ,  ( 2.56 ) 

                                           𝛼𝑖 ← (1 − 𝜂𝑡𝜆)𝛼𝑖;        𝑖 = 1, 2, … , 𝑡 − 1 ,  ( 2.57 ) 

where the symbol ← denotes a value assignment. To avoid a continuously increasing number of 

coefficients, the authors of NORMA suggested removing observations having very small 

coefficient values. This truncation procedure also allows NORMA to forget old instances that 

become irrelevant. This is particularly beneficial in the case of a changing distribution 𝑃(𝑥, 𝑦).  

A variant of NORMA for novelty detection was derived in (Kivinen, Smola, & Williamson, 

2004). It assumes an unsupervised learning scenario in which the following loss function is used: 
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                                         𝑙(𝑓(𝐱), 𝐱) = 𝑚𝑎𝑥 (0, 𝜌 − 𝑓(𝐱)) − 𝜐𝜌 ,  ( 2.58 ) 

where parameter 𝜌 denotes the width of the margin, and 0 < 𝜐 < 1 allows to set an upper limit 

in the frequency of outlier alerts (𝑓(𝐱) < 𝜌). The update rule in this case, for 𝑖 = 1,2, … , 𝑡 − 1, 

is: 

                 (𝛼𝑖, 𝛼𝑡 , 𝜌) = {
((1 − 𝜂𝑡)𝛼𝑖,   𝜂,   𝜌 + 𝜂(1 − 𝜐)) ,           𝑖𝑓 𝑓(𝐱) < 𝜌

((1 − 𝜂𝑡)𝛼𝑖, 0, 𝜌 − 𝜂𝜐) ,                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 .  ( 2.59 ) 

Note that whenever 𝑓(𝐱) ≥ 𝜌 we have that 𝛼𝑡 = 0. This means that there is no need to keep the 

corresponding 𝐱𝑡 vector in memory, which provides some sparseness to the underlying model. 

As an example of a recent and interesting application of the NORMA algorithm to novelty 

detection, note that it has been used with great success to learn the normal postures of elderly 

persons, using short video clips as training data (Yu, Yu, Rhuma, Naqvi, Wang, & Chambers, 

2013). Using video monitoring, the algorithm identified abnormal postures that were likely 

corresponding to falls; achieving in some cases 100% fall detection rate and only 3% false 

detection rate.  

2.3 Gaussian Processes for Novelty Detection 

A Gaussian process (GP) is a stochastic process used to specify a probability distribution over a 

space of functions without constraining the corresponding functional model to a particular form. 

Essentially, GPs are a flexible nonparametric function estimation technique. GP models can be 

obtained from a training data set using a batch learning algorithm. Additionally, there are 

algorithms to learn GP models incrementally, such as Online GP and the Sparse Online GP 

(SOGP) (Csató & Opper, 2002). SOGP can be used in applications that impose relatively strong 
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memory constraints; for instance, in some embedded systems. Batch GP and Online GP might 

not be appropriate in those cases, given that their models do not include an approach to 

compensate for the potential absence of available memory. SOGP achieves this capability by 

adding a parameter m that specifies the capacity of the model, with the goal of building a sparse 

but efficient knowledge representation. 

Gaussian processes have been used successfully in many areas as a powerful Bayesian regression 

tool, given its flexible modeling capabilities, and the fact that posterior GPs can be obtained 

analytically when using Gaussian likelihoods. Their use in machine learning has been mainly 

limited to solving regression and classification problems (Rasmussen & Williams, 2006), and to 

estimate the probability density functions underlying a set of observations (Csató, 2002) (Adams, 

Murray, & MacKay, 2009). In most cases, GPs have showed a great performance compared to 

other highly successful techniques (Rasmussen & Williams, 2006).  

It was reported in (Kemmler, Rodner, & Denzler, 2010) and (Kemmler M. , Rodner, Wacker, & 

Denzler, 2013) that GPs can be effectively used for novelty detection as well. Their experimental 

results show that GP-based novelty detection can outperform on average the state-of-the-art 

SVDD algorithm. However, despite the general acceptance of GPs for the domains mentioned 

above, applications of GPs to novelty detection seem to have been limited to the approach 

originally published in (Kemmler, Rodner, & Denzler, 2010). Furthermore, the work of 

(Kemmler, Rodner, & Denzler, 2010) and (Kemmler M. , Rodner, Wacker, & Denzler, 2013) 

was constrained to the use of batch GP. To the best of our knowledge, the only work that has 

considered the application of online GPs to novelty detection is described in (Ramirez-Padron, 



82 

 

Mederos, & Gonzalez, 2013). Its preliminary experimental results show that the performance of 

novelty detection methods based on online GPs can be similar to the performance of batch GP-

based novelty detection. Given the promising results presented in (Kemmler M. , Rodner, 

Wacker, & Denzler, 2013) and (Ramirez-Padron, Mederos, & Gonzalez, 2013), and the 

renowned flexibility of GPs as modeling tools, extending the application of GPs to particular 

types of novelty detection problems seems to be a promising research effort.  

This section introduces Bayesian modeling, which lies at the core of the GP approach to novelty 

detection, and subsequently offers a brief introduction to GPs and its applications to regression 

and classification problems. This introduction is needed because applications of GPs to density 

estimation and novelty detection are based on ideas that were developed for regression and 

classification within the Bayesian framework. Finally, this section describes the approach 

proposed in (Kemmler, Rodner, & Denzler, 2010) and (Kemmler M. , Rodner, Wacker, & 

Denzler, 2013) for applying GPs to novelty detection. 

2.3.1 Bayesian Modeling 

The simplest approaches to learning a model from a training data set involve using an expression 

𝑓(𝐱, 𝐰) that is linear in the unknown parameters 𝐰. Typically in the case of supervised learning, 

the model parameters are found by minimizing an error function that measures the misfit 

between the model and the training labels. A regularization approach is commonly employed to 

avoid over-fitting the training data. Regularization involves adding one or more penalty terms to 

the objective function of the optimization problem. Penalty terms are called regularization terms, 

because they measure how much the model deviates from some pre-defined desirable conditions. 
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The following regularized objective function is commonly used in various methods, including 

SVM: 

                                     𝐸(𝐰) =
1

2
∑ [𝑓(𝐱𝑖, 𝐰) − y𝑖]2 + 𝑁

𝑖=1
𝜆

2
‖𝐰‖𝟐 .  ( 2.60 ) 

The second term of 𝐸(𝐰) is the regularization term, which is inversely proportional to the 

smoothness of the model. The coefficient 𝜆 is a model parameter that allows fine-tuning the 

relative importance of the regularization term in comparison with the error term. Parameters 

modifying the complexity of the model, like 𝜆, are called complexity parameters. Other 

complexity parameters are typically considered as part of the expression for 𝑓(𝐱, 𝐰); for 

instance, if 𝑓(𝐱, 𝐰) = ∑ 𝐰𝑖
𝑚
𝑖=1 𝜙𝑖(𝐱), where {𝜙𝑖} is a set of m basis functions, then the number m 

is a complexity parameter. In the case of SVM, the parameters of the kernel function can be 

considered complexity parameters. In general, a model might have several complexity 

parameters that need to be estimated in addition to estimate the parameters 𝐰. The act of 

estimating the complexity parameters constitutes an example of a task known in statistics as 

model selection. One of the classic approaches to model selection is to employ a k-fold cross-

validation procedure over different combinations of values of the complexity parameters. As a 

result, complexity parameters are set to the combination of values for which the average of the 

function error 𝐸(𝐰) over the cross-validation runs is a minimum.  This approach to model 

selection is clearly cumbersome and computationally expensive, and it might be infeasible for 

models with various complexity parameters that take values in large domains. One of the main 

advantages of the Bayesian approach to statistical inference is that it allows estimating the 

probability distributions of all model parameters in a unified way. Additionally, the introduction 

of prior distributions that favor model smoothness removes the need for explicit regularization 
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terms. In other words, prior distributions play the role of regularization terms, preventing the 

posterior model from deviating too much from prior conditions that are typically smooth.  

The previous argument in favor of Bayesian learning methods is just one of their multiple 

advantages. When a system is modeled using a Bayesian framework, our knowledge is expressed 

by probability distributions defined on the parameters of the model. Initially, a model is built 

relying exclusively on our prior beliefs about the system. Subsequently, training data are used to 

adjust the probability distributions of the model, in a way that it provides a better explanation for 

the data. Another major advantage relies on the fact that predictions of Bayesian models are fully 

probabilistic; i.e. Bayesian models do not only produce point estimates of the dependent 

variables (as it is the case for regularized linear models), but they also provide posterior 

probability distributions for those variables. Consequently, they provide a measure of the 

uncertainty associated to predictions.  

The core of Bayesian modeling is Bayes’ theorem, published originally in 1763 for the specific 

case of updating the parameters of a Binomial distribution based on observational data (Bayes, 

1763). The modern expression of Bayes’ theorem, extended to arbitrary distributions, was 

presented in (Laplace, 1812). The prevailing interpretation of probabilities based on frequencies 

during the 19
th

 century caused Bayes theorem to be overlooked for about 100 years (Cox, 1946).  

Currently, there is a great interest in setting most statistical methods into a Bayesian framework 

(Bolstad, 2007).  Similarly, many machine learning algorithms have been re-stated within a 

Bayesian framework (Bishop, 2006). Bayesian inference can be done on two levels. The first 

level is concerned with inferring the distribution of model parameters, while the second level 
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deals with selecting the most appropriate models. In the following subsections, the two levels of 

Bayesian inference are described in general terms, independently of any particular model.  

First level of Bayesian Inference 

Let us assume that a particular model M was chosen based on certain prior information, to fit a 

data set  𝐗 = {𝐱1, 𝐱2, … , 𝐱𝑁| 𝐱𝑖 ∈ 𝒳} , where 𝒳 denotes a finite-dimensional space. The model 

M is defined by some fixed algebraic structure, and a set of parameters 𝐰 for which we have a 

prior distribution 𝑝(𝐰|𝑀). The first level of Bayesian inference consists of inferring the posterior 

distribution of the parameters 𝐰 given training data coming from the system that is being 

modeled. That inference is done through Bayes’ theorem: 

                                 𝑝(𝐰|𝐗, 𝑀) =
𝑝(𝐗|𝐰,𝑀)𝑝(𝐰|𝑀)

𝑝(𝐗|𝑀)
=

𝑝(𝐗|𝐰,𝑀)𝑝(𝐰|𝑀)

∫ 𝑝(𝐗|𝐰,𝑀)𝑝(𝐰|𝑀)𝑑𝐰
 .  ( 2.61 ) 

The term 𝑝(𝐗|𝐰, 𝑀) is called the likelihood of the data, and the term 𝑝(𝐗|𝑀) is called the 

marginal likelihood (or evidence). Point estimates of the model parameters 𝐰 are typically 

obtained by calculating the mean or the mode (maximum a posteriori) of the posterior 

distribution 𝑝(𝐰|𝐗, 𝑀). Employing the terms introduced above, Bayes’ theorem can be stated as 

follows in general terms: 

                                                 𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 =
(𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑)(𝑃𝑟𝑖𝑜𝑟)

𝐸𝑣𝑖𝑑𝑒𝑛𝑐𝑒
 .  ( 2.62 ) 

Our beliefs about the parameters 𝐰 are conditioned on the structure of the model M. However, if 

the model M was fixed a priori, then the conditioning on M is usually omitted to simplify the 

notation of Bayes’ theorem: 

                                                𝑝(𝐰|𝐗) =
𝑝(𝐗|𝐰)𝑝(𝐰)

𝑝(𝐗)
=

𝑝(𝐗|𝐰)𝑝(𝐰)

∫ 𝑝(𝐗|𝐰)𝑝(𝐰)𝑑𝐰
 .  ( 2.63 ) 
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Researchers have defined families of likelihood functions. For each particular family of 

likelihoods there exists an associated family of prior distributions 𝑝(𝐰), called the conjugate 

prior family, such that if 𝑝(𝐰) is a conjugate prior then the posterior distribution 𝑝(𝐰|𝐗) 

remains a member of the same conjugate prior family. The main advantage of using conjugate 

priors is that typically the integral in the denominator of Bayes’ theorem can be calculated 

analytically, which is very convenient (Bolstad, 2007).    

One of the main motivations for obtaining the posterior distribution of the parameters 𝐰 is to 

estimate the conditional predictive distribution of a new observation 𝐱𝑁+1. The predictive 

distribution 𝑝(𝐱𝑁+1|𝐗) allows calculating point estimates of 𝐱𝑁+1, typically expressed as the 

mean of 𝑝(𝐱𝑁+1|𝐗). Additionally, the predictive distribution can be used to obtain a Bayesian 

credible interval for 𝐱𝑁+1. The predictive distribution 𝑝(𝐱𝑁+1|𝐗) can be obtained through a 

technique called marginalization over a random variable, which allows us to write 𝑝(𝐱𝑁+1|𝐗) 

employing known terms that involve another random variable. In this case, marginalizing 

𝑝(𝐱𝑁+1|𝐗) over 𝐰 consists of “injecting” the parameters 𝐰 in the following manner: 

                  𝑝(𝐱𝑁+1|𝐗) = ∫ 𝑝(𝐱𝑁+1, 𝐰|𝐗)𝑑𝐰 = ∫ 𝑝(𝐱𝑁+1|𝐰, 𝐗) 𝑝(𝐰|𝐗)𝑑𝐰.  ( 2.64 ) 

Assuming that the values 𝐱𝑖 are conditionally independent from each other given 𝐰, their 

distribution is fully determined by the likelihood term 𝑝(𝐱𝑁+1|𝐰) and the posterior term 

𝑝(𝐰|𝐗), which leads to the following equation: 

                                         𝑝(𝐱𝑁+1|𝐗) = ∫ 𝑝(𝐱𝑁+1|𝐰) 𝑝(𝐰|𝐗)𝑑𝐰.  ( 2.65 ) 

In the case of supervised learning (regression or classification problems), the training data are 

denoted by 𝐷 = {𝐗, 𝐲} = {(𝐱𝑖, y𝑖)|𝐱𝑖𝜖𝒳, y𝑖𝜖ℝ, 𝑖 = 1, … , 𝑁}, 𝒳 being a finite-dimensional 
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space. The motivation behind obtaining the posterior distribution of the parameters 𝐰 is to model 

the underlying mapping between the attributes 𝐱𝑖 and the responses y𝑖. Only the response 

variables y𝑖 are considered random in that case. Consequently, it is required to estimate the 

predictive distribution of the response y𝑁+1 given a new observation 𝐱𝑁+1 and 𝐷, which is 

typically obtained also through marginalization over 𝐰: 

𝑝(y𝑁+1|𝐷, 𝐱𝑁+1) = ∫ 𝑝(y𝑁+1, 𝐰|𝐷, 𝐱𝑁+1)𝑑𝐰 = ∫ 𝑝(y𝑁+1|𝐰, 𝐱𝑁+1) 𝑝(𝐰|𝐷, 𝐱𝑁+1)𝑑𝐰 . ( 2.66 ) 

 

Second Level of Bayesian Inference 

Besides the parameters 𝐰, for which we are obtaining the conditional distributions, some terms 

in the Bayesian model, like the likelihood or the prior distribution, might in turn be conditioned 

on one or more parameters 𝜽, typically called hyperparameters. By varying the values of those 

hyperparameters, it is possible to have prior distributions that better express our beliefs and 

previous domain knowledge. Let us assume that we can choose a model from a family of 

models ℳ = {𝑀𝑖|𝑖 ∈ 𝐼}, where 𝐼 is any index set. Each model 𝑀𝑖 has a set of 

hyperparameters 𝜽𝑖. A question that arises immediately is how to decide which model is a better 

fit to the training data 𝐷. The second level of Bayesian inference helps to provide an answer to 

this question. It consists of applying Bayes’ theorem with a prior distribution over the set of 

models, and calculating the posterior distribution of the models given the data: 

                                                  𝑝(𝑀𝑖|𝐷) =
𝑝(𝐷|𝑀𝑖)𝑝(𝑀𝑖)

𝑝(𝐷)
 .  ( 2.67 ) 
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The posterior distribution of the models allows us to establish which models are more likely 

given the data.  

A Note on Intractable Marginal Likelihoods 

A difficulty commonly associated with Bayesian modeling is that the integral corresponding to 

the marginal likelihood term could be analytically intractable. Typically, that happens when prior 

distributions are not from the corresponding conjugate prior family. Sometimes we need to use 

priors that are inconvenient from an analytical point of view, in order to have priors that truly 

reflect our beliefs. In those cases, there are several ways of approximating the intractable 

integral.  It is important to note however, that for some applications of the Bayes’ theorem it is 

not necessary to calculate the marginal likelihood. For instance, in the second level of inference 

we are interested in determining which models provide the highest probability, but we are not 

interested in knowing the actual values of the corresponding posterior. Given that 𝑝(𝐷) is a 

constant term, the following proportional form of Bayes’ theorem can be employed in that case 

to determine the most promising model: 

                                                         𝑝(𝑀𝑖|𝐷) ∝ 𝑝(𝐷|𝑀𝑖)𝑝(𝑀𝑖) .  ( 2.68 ) 

2.3.2 Gaussian Processes 

This subsection provides a comprehensive introduction to batch GP, online GP, and SOGP in the 

context of nonparametric Bayesian regression. Gaussian processes are nonparametric kernel-

based function estimation techniques that model a probability distribution over a space 𝔉 of 

functions 𝑓: 𝒳 → ℝ, where 𝒳 ⊆ ℝ𝑑 (d being a positive integer) is a continuous input space 

(Bishop, 2006), (MacKay, 1998), (Rasmussen & Williams, 2006), (Seeger M. , 2004). GPs 
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provide an assessment of the uncertainty associated to predicting 𝑓(𝐱) at any point 𝐱 ∈ 𝒳. Note 

that 𝑓𝐱 and 𝑓(𝐱) are used indistinctly in this work. Similarly, the random variable y(𝐱) is 

sometimes denoted by y𝐱. The following definition of GPs is commonly used (Rasmussen & 

Williams, 2006), (Lifshits, 2012): 

Definition: A Gaussian process is a collection of random variables {𝑓𝐱}𝐱∈𝒳, such that any 

finite subcollection 𝐟 = {𝑓𝐱1
, 𝑓𝐱2

, … , 𝑓𝐱𝑀
}, where M is any positive integer, has a joint Gaussian 

distribution. 

This definition implies that a GP is completely determined by its mean function 𝜇 and covariance 

(kernel) function 𝑘: 

                                                                    𝜇(𝑓𝐱) = 𝐸[𝑓𝐱] ,  ( 2.69 ) 

                                    𝑘 (𝑓𝐱𝒊
, 𝑓𝐱𝒋

) = 𝐸 [(𝑓𝐱𝒊
− 𝜇(𝑓𝐱𝒊

)) (𝑓𝐱𝒋
− 𝜇 (𝑓𝐱𝒋

))] ,  ( 2.70 ) 

where 𝑘 (𝑓𝐱𝒊
, 𝑓𝐱𝒋

) = 𝑐𝑜𝑣(𝑓𝐱𝑖
, 𝑓𝐱𝑗

) is a positive definite kernel function. In practice, the function 𝑘 

directly depends on the points 𝐱𝑖 and 𝐱𝑗; hence, it is typically denoted by 𝑘(𝐱𝑖, 𝐱𝑗). Usually 𝑘 

also depends on some parameters 𝜽𝑘, thus formally it should be denoted by 𝑘(𝐱𝑖, 𝐱𝑗; 𝜽𝑘). We 

generally write 𝑘(𝐱𝑖, 𝐱𝑗) for the sake of simplifying notation. However, the existence of kernel 

parameters 𝜽𝑘, which constitute hyperparameters for the GP, is implicitly assumed throughout 

this dissertation, unless stated otherwise.  

Sometimes a GP is denoted as 𝑓 ~ 𝒢𝒫(𝜇, 𝑘). This notation should be interpreted as follows: 

Given any arbitrary set of values {𝐱𝑖|𝐱𝑖𝜖𝒳;   𝑖 = 1, … , 𝑁}, the corresponding set of f variables 

{𝑓𝐱𝟏
, 𝑓𝐱𝟐

, … , 𝑓𝐱𝑵
} follows a joint normal distribution 𝒩 ((𝜇(𝐱1), … , 𝜇(𝐱𝑁))

𝑇
, 𝐾), where K 
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denotes the covariance matrix obtained by evaluating the kernel function k in all pairs (𝐱𝑖, 𝐱𝑗). A 

Bayesian approach to GP modeling focuses on establishing a prior distribution for the functions 

f, and subsequently estimating the posterior distribution 𝑝(𝑓|𝐷). The mean function of a prior 

GP is denoted here by 𝜇0(x) and the prior covariance function is denoted by 𝑘0(x, x′). 

Estimating the posterior GP implies obtaining expressions for its posterior mean function and its 

posterior covariance function, as described below. 

2.3.2.1 Batch GP Regression 

Let our training data 𝐷 = {𝐗, 𝐲} = {(𝐱𝑖, y𝑖): 𝐱𝑖 ∈ 𝒳, y𝑖 ∈ ℝ, 𝑖 = 1,2 … 𝑁} be a set of input-

output observations, where each y𝑖 is a noisy observation of a latent variable f that depends on 𝐱𝑖. 

A regression problem consists of constructing a model 𝑓(𝐱; 𝐰) that provides the best possible fit 

to the training data. In a non-Bayesian approach, the quality of the models is assessed through 

certain optimization criterion, like the least-squares method or a regularized version of it. 

Consequently, the non-Bayesian solution provides only a point estimate of 𝑓𝐱 given an 

observation 𝐱. In contrast, the goal of the Bayesian approach to regression is to estimate a model 

defined as the posterior distribution 𝑝(𝑓𝐱|𝐷, 𝐱); which in turn is used to obtain the predictive 

distribution  𝑝(y𝐱|𝐱, 𝐷). This involves (1) defining prior distributions 𝑝(𝐰) for the parameters of 

the underlying family of functions, (2) calculating the posterior distribution 𝑝(𝐰|𝐷) using the 

first level of Bayesian inference described above, and (3) calculating the distribution  𝑝(𝑓𝐱|𝐷, 𝐱). 

 

This subsection describes how GPs are used to solve regression problems using a Bayesian non-

parametric approach. Gaussian processes are plugged into the Bayesian regression framework to 

introduce a great deal of flexibility regarding the model: no need to enforce a fixed algebraic 
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structure on the function space; i.e. only basic properties like smoothness are required from f. 

This can be achieved because a GP model defines prior distributions 𝑝(𝑓) on a very flexible 

function space. We assume the classic approach that relates y(𝐱) and 𝑓(𝐱) as follows: 

                                                         y(𝐱) = 𝑓(𝐱; 𝐰) + 𝜀,  ( 2.71 ) 

where 𝐰 is a vector of function parameters, and the distribution of the observation error 𝜀 

determines the conditional distribution of y𝐱|𝑓𝐱 (i.e. the likelihood model). The term 𝜀 denotes 

additive noise that follows an independent and identically distributed (i.i.d.) Gaussian 

distribution 𝒩(0, 𝜎2).  We are ultimately concerned with estimating the probability density 

function 𝑝(y𝐱|𝐷, 𝐱) for any 𝐱 ∈ 𝒳. However, note that sometimes GP models are used only to 

predict the most likely value of 𝑓(𝐱) given a new observation 𝐱.  

The variables {𝑓𝐱} are used as latent random variables that are initially modeled using a prior GP 

(i.e. variables {𝑓𝐱} play the role of the vector of parameters 𝐰 in this case). Consequently, given 

an arbitrary finite set of indexes 𝑿′ = [𝐱1
′ , 𝐱2

′ , … , 𝐱𝑀
′ ]𝑇, the corresponding random vector 

f = [𝑓(𝐱1
′ ), 𝑓(𝐱2

′ ), … , 𝑓(𝐱𝑀
′ )]𝑇 has the following joint prior distribution: 

                               𝑝0(f) =
1

√(2𝜋)𝑀|𝑲0|
𝑒

−
1

2
(f − 𝝁0( 𝑿′))

𝑇
𝑲0

−1(f − 𝝁0( 𝑿′))
,   ( 2.72 ) 

where 𝝁0( 𝑿′) = [𝜇0(𝐱1
′ ), 𝜇0(𝐱2

′ ), … , 𝜇0(𝐱𝑀
′ )]𝑇 and 𝑲0 = 𝑲0(𝑿′) = (𝑘0(𝐱𝑖

′, 𝐱𝑗
′))

𝑖,𝑗
 is an M x M 

matrix. 

In the following, f𝐷 = [𝑓(𝐱1), 𝑓(𝐱2), … , 𝑓(𝐱𝑁)]𝑇 denotes a Gaussian random vector as modeled 

by the GP on the indexes [x1, x2, … , x𝑁].  As mentioned above, the goal behind the GP derivation 

is to estimate the posterior distribution of f given 𝐷: 

𝑝𝑝𝑜𝑠𝑡(f) = 𝑝(f|D) =
𝑝(𝐷|f)𝑝𝑜(f)

𝑝(𝐷)
=

𝑝(𝐷|f) ∫ 𝑝𝑜(f, f𝐷) 𝑑f𝐷

∫ 𝑝(𝐷, f𝐷)𝑑f𝐷
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                                             =
∫ 𝑝(𝐷|f) 𝑝𝑜(f, f𝐷)𝑑f𝐷

∫ 𝑝(𝐷|f𝐷)𝑝𝑜(f𝐷)𝑑f𝐷
=

∫ 𝑝(𝐲|f) 𝑝𝑜(f, f𝐷)𝑑f𝐷

𝐸0[𝑝(𝐲 | f𝐷)]
 ,  ( 2.73 ) 

where 𝐸0 denotes expected value w.r.t. the prior GP. Consequently, the predictive distribution 

𝑝(y𝐱|𝐷, 𝐱) given a single input 𝐱 is written as: 

𝑝(y𝐱|𝐱, D) = ∫ 𝑝(y𝐱|f
x
) 𝑝𝑝𝑜𝑠𝑡(f

x
)𝑑f

x
 

                                                                  =
∫ 𝑝(y𝐱|f

x
) 𝑝(𝐲|f

x
) 𝑝𝑜(f

x
, f𝐷)𝑑f𝐷𝑑f

x

𝐸0[𝑝(𝐲| f𝐷)]
 .  ( 2.74 ) 

The posterior 𝑝𝑝𝑜𝑠𝑡(f) can be derived analytically only if the likelihood 𝑝(𝐲| f𝐷) is Gaussian, 

which in the case of single input 𝐱 is written as y𝐱|𝑓𝐱 ~ 𝒩(𝑓𝐱, 𝜎2). When the likelihood 𝑝(𝐲|f𝐷) 

is not Gaussian, calculating the posterior GP implies computing an N-dimensional integral which 

might be analytically intractable. In that case, there are techniques that can be used to 

approximate the posterior 𝑝𝑝𝑜𝑠𝑡(f). In this work we are only employing Gaussian likelihoods. 

For that reason, approximation techniques are not considered here.  Still, the fact that f appears 

within an integral in the equation corresponding to 𝑝𝑝𝑜𝑠𝑡(f) requires evaluating that integral for 

doing predictions at arbitrary data points. To avoid computing high-dimensional integrals in that 

case, the parametrisation lemma (Csató & Opper, 2002) shows how predictions can rely only on 

linear and bilinear combinations of the kernel function evaluated in the training data 𝐷: 

Parametrisation Lemma (Csató & Opper, 2002): Given a training data set 𝐷 = {𝐗, 𝐲} =

{(𝐱𝑖, y𝑖): 𝐱𝑖 ∈ 𝒳, y𝑖 ∈ ℝ, 𝑖 = 1 … 𝑁}, an arbitrary likelihood p(𝐷|f𝐷), and a prior GP with mean 

𝜇0(x) and covariance function 𝑘0(x, x′), the resulting posterior GP has mean and covariance 

functions given by: 

                                𝜇𝑝𝑜𝑠𝑡(𝐱) = 𝜇0(𝐱) + ∑ 𝑘0(x, 𝐱𝑖)𝑞𝑖
𝑁
𝑖=1 =  𝜇0(𝐱) + 𝒌𝐱

𝑇𝒒 ,   ( 2.75 ) 

                       𝑘𝑝𝑜𝑠𝑡(x, x′) = 𝑘0(x, x′) + ∑ 𝑘0(x, 𝐱𝑖)𝑅𝑖𝑗𝑘0(𝐱𝑗, x′)𝑁
𝑖,𝑗=1   
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                                               = 𝑘0(x, x′) + 𝒌𝐱
𝑇𝑹 𝒌x′  .  ( 2.76 ) 

The parameters 𝑞𝑖 and 𝑅𝑖𝑗 are given by: 

                                             𝑞𝑖 =
𝜕

𝜕𝐸0[f
x𝑖

]
𝑙𝑛 ∫ 𝑝(𝐷| f𝐷)𝑝𝑜(f𝐷)𝑑f𝐷,  ( 2.77 ) 

                                            𝑅𝑖𝑗 =
𝜕2

𝜕𝐸0[f
x𝑖

]𝜕𝐸0[f
x𝑗

]
𝑙𝑛 ∫ 𝑝(𝐷| f𝐷)𝑝𝑜(f𝐷)𝑑f𝐷,  ( 2.78 ) 

where f𝐷 = [f
x1

, f
x2

, … , f
x𝑁

]
𝑇

, and the partial derivatives are calculated with respect to the prior 

mean of the GP at the x𝑖 points. In the case of a Gaussian likelihood 𝑝(𝐷| f𝐷), the predictive 

formulas from the posterior GP are written as follows:  

Given the set D as defined above and an arbitrary point 𝐱∗, we have that 𝑓𝐱∗
|𝐷, 𝐱∗ ~ 𝒩(𝜇∗,  𝜎∗

2), 

with the posterior moments calculated as: 

                                                𝜇∗ = 𝜇0(𝐱∗) + 𝒌∗
𝑇𝜶 ,  ( 2.79 )  

                                           𝜎∗
2 = 𝑘0(𝐱∗, 𝐱∗) + 𝒌∗

𝑇𝑪 𝒌∗ ,  ( 2.80 ) 

where 

                                    𝒌∗ = (𝑘0(𝐱∗, 𝐱1), … , 𝑘0(𝐱∗, 𝐱𝑁))
𝑇
,  ( 2.81 ) 

                                      𝜶 =  (𝑲 + 𝜎2 𝐼)−1(𝐲 − 𝜇0(𝑿))  ,  ( 2.82 ) 

                                                 𝑪 = −(𝑲 + 𝜎2 𝐼)−1 ,  ( 2.83 ) 

and 𝑲 = (𝑘0(x𝑖, x𝑗))
𝑖,𝑗

 is an N x N matrix. The posterior variance 𝜎∗
2 is smaller than the prior 

variance of 𝑓𝐱∗
, because the matrix 𝑪 is negative definite (Rasmussen & Williams, 2006). This 

reflects the reduction in uncertainty that is achieved by learning the training data. We can 

establish a similarity between the geometric approach of kernel methods (SVM-like algorithms) 

and GPs for regression as described here, by noting that the predictive mean 𝜇∗ becomes a linear 

combination of N kernel functions, each centered on a training data point, when 𝜇0(𝐱∗) = 0 (i.e. 
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when a prior GP with zero mean is used). Additionally, the predictive distribution of the target 

value y∗ can be obtained by just adding the noise variance 𝜎2 to the expression of 𝜎∗
2; i.e. 

y∗|𝐷, 𝐱∗~𝒩( 𝜇∗,  𝜎∗
2 + 𝜎2).   

Note that obtaining the posterior batch GP includes the inversion of a 𝑁 × 𝑁 covariance matrix 

in order to calculate the matrix 𝑪. That operation has a computational complexity of 𝑂(𝑁3) if we 

used a straightforward algorithm for matrix inversion. This complexity is a serious limitation 

when we have to work with large data sets. In that case, we can use matrix inversion algorithms 

that are slightly faster when used with large matrices. For instance, the popular Strassen 

algorithm has a computational complexity of approximately 𝑂(𝑁2.8074)  (Strassen, 1969). 

However, all practical matrix inversion algorithms known to the author has computational 

complexities that are greater than 𝑂(𝑁2) and tend to significantly deviate from 𝑂(𝑁3) only for 

very large matrices, typically in the order of thousands. For the purposes of this dissertation, we 

consider that training a batch GP has a computational complexity of 𝑂(𝑁3). It can be easily seen 

that evaluating the GP model in a new data point 𝐱∗ has 𝑂(𝑁2) computational complexity. 

Finally, note that batch GP has a space complexity of 𝑂(𝑁2) as well, based on the need to keep 

the matrix 𝑪 in memory. 

The marginal likelihood 𝑝(𝐲|𝑿) is typically used for selecting appropriate values for kernel 

hyperparameters. The marginal likelihood is expressed as the integral of the likelihood times the 

prior distribution: 

                                              𝑝(𝐲|𝑿) = ∫ 𝑝(𝐲|f𝐷, 𝑿) 𝑝(f𝐷|𝑿)𝑑f𝐷 .  ( 2.84 ) 

Given that the marginal likelihood is typically used as an argument for optimization problems, 

any monotonic function of it is equally useful for hyperparameter selection. For operational 
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convenience, log 𝑝(𝐲|𝑿) is commonly used instead. The likelihood 𝐲|f𝐷~𝒩(f𝐷 , 𝜎2𝐼), and f𝐷|𝑿 

has a  𝒩(𝜇0(𝑿), 𝑲) distribution, where 𝑲 = 𝑘0(𝑿, 𝑿). By applying a classic result from 

multivariate statistics stating that the multiplication of two multivariate Gaussian distributions is 

also a Gaussian distribution, integrating with respect to f𝐷, and applying logarithm, the following 

expression is obtained for the log marginal likelihood (Rasmussen & Williams, 2006): 

          Log 𝑝(𝐲|𝑿) = −
1

2
(𝐲 − 𝝁0(𝑿))

𝑇
[𝑲 + 𝜎2𝐼]−1(𝐲 − 𝝁0(𝑿)) 

                                     −
1

2
𝑙𝑜𝑔|𝑲 + 𝜎2𝐼| −

𝑁

2
𝑙𝑜𝑔(2𝜋) .  ( 2.85 ) 

2.3.2.2 Online GP 

The parametrisation lemma allows us to avoid integration for doing predictions. However, to 

calculate the coefficients 𝑞𝑖 and 𝑅𝑖𝑗 using a batch learning approach we still have to deal with N-

dimensional integrals. Additionally, if not all training data were known in advance then 

incremental learning becomes the ideal approach. A solution is to employ an online learning 

approach to obtain a sequence of approximated posterior processes, learning from one 

observation (𝐱𝑡, y𝑡) at a time (Opper M. , 1998). Online GP (Csató & Opper, 2002) uses this 

approach. It assumes that the data are conditionally independent, and thus the likelihood can be 

expressed as: 

                                                       𝑝(𝐷| f𝐷) = ∏ 𝑝(y𝑖|𝑓𝐱𝒊
)𝑁

𝑖=1  .  ( 2.86 ) 

At any step t, the Gaussian approximation obtained after learning observation (𝐱𝑡, y𝑡) is denoted 

by 𝑝̂𝑡(𝐟); where the hat denotes approximation of the posterior to the closest GP when the 

likelihood is not Gaussian (no approximation is needed when the likelihood is Gaussian). The 
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posterior GP at step 𝑡 + 1, denoted by 𝑝̂𝑡+1(𝐟), is estimated as the Gaussian distribution closest 

to the following Bayesian update: 

                                             𝑝𝑡+1(𝐟) =
𝑝(y𝑡+1|𝐟) 𝑝̂𝑡(𝐟)

∫ 𝑝(y𝑡+1|𝐟) 𝑝̂𝑡(𝐟)𝑑𝐟
=

𝑝(y𝑡+1|𝐟) 𝑝̂𝑡(𝐟)

𝐸𝑡[𝑝(y𝑡+1|𝐟)]
 .   ( 2.87 ) 

It can be assumed without loss of generality that 𝐟 contains 𝑓𝑡+1, so that the 

likelihood 𝑝(y𝑡+1|𝐟) = 𝑝(y𝑡+1|𝑓𝑡+1). Applying the parametrisation lemma sequentially, using at 

each step 𝑡 + 1 the prior GP  𝑝̂𝑡(𝐟) and the likelihood 𝑝(y𝑡+1|𝑓𝑡+1), the following recursive 

expressions are obtained for the moments of the posterior GP at step 𝑡 + 1: 

                                         𝜇𝑡+1(x) = 𝜇𝑡(x) + 𝑘𝑡(x, 𝐱𝑡+1)𝑞𝑡+1 ,  ( 2.88 ) 

                             𝑘𝑡+1(x, x′) = 𝑘𝑡(x, x′) + 𝑘𝑡(x, 𝐱𝑡+1)𝑟𝑡+1𝑘𝑡(𝐱𝑡+1, x′) .  ( 2.89 ) 

The parameters 𝑞𝑡+1 and 𝑟𝑡+1, which depend on the likelihood, are given by: 

                                       𝑞𝑡+1 =
𝜕

𝜕𝐸𝑡[𝑓𝑡+1]
 𝑙𝑛 𝐸𝑡[𝑝(y𝑡+1|𝑓𝑡+1)] ,  ( 2.90 ) 

                                        𝑟𝑡+1 =
𝜕2

𝜕𝐸𝑡[𝑓𝑡+1]
 𝑙𝑛 𝐸𝑡[𝑝(y𝑡+1|𝑓𝑡+1)] .  ( 2.91 ) 

By unfolding the previous recursive equations, the iterative formulations for estimating the 

moments of the online GP at step 𝑡 are written as follows: 

                                                     𝜇𝑡(x) = 𝜇0(𝐱) + 𝒌𝐱
𝑇𝜶𝑡 ,  ( 2.92 ) 

                                               𝑘𝑡(𝐱, 𝐱′) = 𝑘0(𝐱, 𝐱′) + 𝒌𝐱
𝑇𝑪𝑡𝒌𝐱′ ,  ( 2.93 ) 

where 𝒌𝐱 = (𝑘0(𝐱, 𝐱1), … , 𝑘0(𝐱, 𝐱𝑡))
𝑇
, the vector 𝜶𝑡 is an approximation to the first 𝑡 

coefficients in 𝒒, and 𝑪𝑡 is an approximation to the first 𝑡 × 𝑡 coefficients in 𝑹. The expressions 

to calculate 𝜶 and 𝑪 at each step 𝑡 + 1 are listed in Figure 2.1, which contains Matlab-like 

pseudocode for the function that learns a new data point (𝐱𝑡+1, y𝑡+1). The online GP algorithm 
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starts with 𝜶 = 𝑪 = 0. At each step 𝑡 + 1, it recursively updates the vector 𝜶 and the matrix 𝑪. 

The Online GP adds each new observation to a set of learned vectors. The algorithm is fully 

described in (Csató & Opper, 2002).  

For the particular case of a GP with a Gaussian likelihood, the parameters 𝑞𝑡+1 and 𝑟𝑡+1 are 

expressed as:  

                                                          𝑞𝑡+1 =
y𝑡+1− 𝑚𝑡+1

 𝜎𝑡+1
2 + 𝜎2  ,  ( 2.94 ) 

                                                           𝑟𝑡+1 = −
1

 𝜎𝑡+1
2 + 𝜎2 ,  ( 2.95 ) 

where  

                                      𝑚𝑡+1 = 𝐸𝑡[𝑓𝑡+1] = 𝜇0(𝐱𝑡+1) + 𝒌𝐱𝑡+1
𝑇 𝜶𝑡 ,  ( 2.96 ) 

                                        𝜎𝑡+1
2 = 𝑘0(𝐱𝑡+1, 𝐱𝑡+1) + 𝒌𝐱𝑡+1

𝑇 𝑪𝑡𝒌𝐱𝑡+1
 .  ( 2.97 ) 

 

Similar to batch GP, online GP has a space complexity of 𝑂(𝑁2). Training an online GP model 

on N data points also has a computational complexity of 𝑂(𝑁3). This can be seen in Figure 2.1, 

where calculating the matrix 𝑪 at each particular step 𝑡 + 1 has a computational complexity of 

𝑂((𝑡 + 1)2). Summing these quadratic complexities for the N learning steps leads to 𝑂(𝑁3). 

Finally, given that the equations to calculate the posterior moments for a new observation 𝐱∗ 

remain the same as in batch GP, the predictive operation is 𝑂(𝑁2) as well. 
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% The obj parameter stands for an instance of our OnlineGP class. 
% Symbol 𝟎t stands for a zero column vector of length t. 
function trainOnline(obj, 𝐱𝑡+1, y𝑡+1)                              
            𝑡 ← obj. Size;      % t = Number of points learned so far. 
            obj.addObservationToLearnedVectors(𝐱𝑡+1, y𝑡+1);     
            Calculate qt+1 and rt+1 according to likelihood model. 
 
           if (𝑡 == 0)            
 %  First data point to learn.  
                𝛂 ← 𝑞𝑡+1 
                𝐂 ← 𝑟𝑡+1 
            else  

                 𝐤𝐱𝑡+1
← (𝑘0(𝐱𝑡+1, 𝐱1), … , k0(𝐱𝑡+1, 𝐱𝑡))

T
            

                 st+1 ← [
𝐂𝐤𝐱𝑡+1

1
] 

                 𝛂 ← [
𝛂
0

] + 𝑞𝑡+1s𝑡+1 

                 𝐂 ← [
𝐂 𝟎𝑡

𝟎𝑡
T 0

] + 𝑟𝑡+1s𝑡+1s𝑡+1
T  

            end                                     
 end 

Figure 2.1: Matlab-like pseudocode for the Online GP training algorithm. 

 

2.3.2.3 Sparse Online GP 

As noted in previous sections, training batch GP and online GP involve a computational 

complexity of 𝑂(𝑁3). This complexity is a serious limitation when we have to work with large 

data sets. Furthermore, given the quadratic space complexity of batch GP and online GP, we 

might find GPs infeasible for some relatively large data sets. Consequently, several 

approximation techniques for GP modeling have been devised in recent years. These 

approximation techniques are typically based on finding a small subset of the training data that is 

representative of the process to be learned, which leads to a sparse knowledge representation   

(Seeger, Williams, & Lawrence, 2003), (Tresp, 2001), (Williams & Seeger, 2001),  (Smola & 

Bartlett, 2001)  (Csató & Opper, 2002), (Gibbs, 1997). This subsection describes the sparse 
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online GP (SOGP) method (Csató & Opper, 2002), which is employed in the theoretical and 

experimental sections of our work.  

SOGP overcomes memory limitations by having a capacity parameter m that determines the 

maximum number of most relevant observations to keep in memory. The set of most relevant 

observations is called the BV set. SOGP has a much better space complexity than GP: 𝑂(𝑚2) 

instead of 𝑂(𝑁2). Additionally, SOGP modeling achieves a time complexity that is linear with 

respect to the data size: 𝑂(𝑁𝑚2) (Csató, 2002). 

The SOGP algorithm takes into account the representation of the input vectors x through a 

mapping 𝜙 into a feature space ℱ, which is typically of much higher dimension than the original 

space 𝒳. The mapping 𝜙: 𝒳 → ℱ is given implicitly through the kernel function, such that 

𝑘(x, x′) = 〈𝜙(x), 𝜙(x′)〉.  Let us assume that after learning the first t observations {(𝐱𝑖, y𝑖), 𝑖 =

1,2, … , 𝑡}, the BV set kept the vectors {(𝐱𝑖1
, y𝑖1

), (𝐱𝑖2
, y𝑖2

), … , (𝐱𝑖𝑟
, y𝑖𝑟

)}, where  {𝑖1, 𝑖2, … , 𝑖𝑟} ⊆

{1,2, … , 𝑡}. Given a new training observation (𝐱𝑡+1, y𝑡+1), the feature vector 𝜙𝑡+1 = 𝜙(𝐱𝑡+1) is 

decomposed as:  

                                𝜙𝑡+1 = 𝜙̂𝑡+1 + 𝑣𝑟𝑒𝑠 = 𝚽𝑡𝒆̂𝑡+1 + √𝛾𝑡+1𝜙𝑟𝑒𝑠 ,  ( 2.98 ) 

where 𝜙̂𝑡+1 denotes the orthogonal projection of 𝜙𝑡+1 onto the span of the BV set; 𝚽𝑡 =

[𝜙𝑖1
, 𝜙𝑖2

, … , 𝜙𝑖𝑟
];  𝜙𝑟𝑒𝑠 denotes the corresponding unit vector orthogonal to the space spanned 

by 𝚽𝑡; and 𝛾𝑡+1 = ‖𝜙𝑡+1 − 𝜙̂𝑡+1‖
2
. The coordinates 𝒆̂𝑡+1 = 𝑲𝑡

−1𝒌𝐱𝑡+1
, where 𝑲𝑡 denotes 

the 𝑟 × 𝑟 covariance matrix of the vectors in 𝚽𝑡, and  𝒌𝐱𝑡+1
= (𝑘(𝐱𝑡+1, 𝐱𝑖1

), … , 𝑘(𝐱𝑡+1, 𝐱𝑖𝑟
))

𝑇

. 

Given that the inversion of 𝑲𝑡 at each learning step is an expensive operation, the SOGP 
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algorithm maintains a variable 𝑸𝑡 = 𝑲𝑡
−1, which is updated recursively when a new vector is 

added to the BV set: 

                                    𝑸𝑡+1 = [
𝑸𝑡 𝟎𝑡

𝟎𝑡
𝑇 0

] + 𝛾𝑡+1
−1 [

𝒆̂𝑡+1

−1
] [

𝒆̂𝑡+1

−1
]

𝑇

 ,   ( 2.99 ) 

where 𝟎𝑡 stands for a zero column vector of length t.  Finally, 𝛾𝑡+1 = 𝑘(𝐱𝑡+1, 𝐱𝑡+1) −

𝒌𝐱𝑡+1
𝑇 𝑸𝑡𝒌𝐱𝑡+1

. The remainder of this section briefly describes the SOGP learning algorithm.  

SOGP learns the first observation (𝐱1, y1) by adding it to the BV set and initializing variables as 

follows: 𝜶 = 𝑞1, 𝑪 = 𝑟1, 𝑸 = 𝑘(𝐱1, 𝐱1)−1. At each subsequent step 𝑡 + 1, the procedure to 

learn observation (𝐱𝑡+1, y𝑡+1) depends on 𝛾𝑡+1. If 𝛾𝑡+1 ≥ 𝜖, where 𝜖 is some small tolerance, 

then (𝐱𝑡+1, y𝑡+1) is added to the BV set and a full online update is executed, as done in online 

GP. The matrix 𝑸 is also updated using equation (2.99). On the other hand, if 𝛾𝑡+1 < 𝜖 then 

SOGP learns from the projection 𝜙̂𝑡+1, disregarding the residual vector 𝑣𝑟𝑒𝑠. The BV set is not 

altered in that case and variables 𝜶 and 𝑪 are updated without increasing their sizes: 

                                            𝜂𝑡+1 ← (1 + 𝛾𝑡+1𝑟𝑡+1)−1 ,  ( 2.100 ) 

                                             s𝑡+1 ←  𝑪𝒌𝐱𝑡+1
+ 𝒆̂𝑡+1 ,  ( 2.101 ) 

                                                 𝜶 ← 𝜶 + 𝑞𝑡+1𝜂𝑡+1s𝑡+1 ,  ( 2.102 ) 

                                                 𝑪 ← 𝑪 + 𝑟𝑡+1𝜂𝑡+1s𝑡+1s𝑡+1
𝑇  .  ( 2.103 ) 

Let us assume that a full online update occurred at certain step 𝑡 + 1 and the size of the BV set 

went over its capacity m. In that case, the GP needs to be “pruned”. Let us denote the GP at that 

step by 𝐺𝑃𝑡+1. Pruning is done by removing from the BV set the basis vector that contributes the 

least to the GP representation, carrying out a recomputation (and the corresponding reduction in 

size) of 𝜶,  𝑪 and 𝑸. Following (Csató, 2002), the pruning formulas are written here such that the 



101 

 

basis vector occupying the 𝑚 + 1 position is the one to be removed. However, a vector at any 

position i can be removed from the BV set using the same formulas with index i instead. The 

removal of a basis vector is done in a way that the model retains as much information from it as 

possible.  

The problem of removing the 𝑚 + 1-th basis vector from the BV set is solved by approximating 

𝐺𝑃𝑡+1 by the Gaussian process 𝐺𝑃̂𝑡+1 that has the minimum Kullback-Leibler distance 

𝐾𝐿(𝐺𝑃|| 𝐺𝑃𝑡+1) to 𝐺𝑃𝑡+1, among all SOGPs containing the same BV set as 𝐺𝑃𝑡+1 and having the 

coefficients corresponding to the 𝑚 + 1-th basis vector equal to zero. This optimization problem 

leads to the following equations to obtain 𝐺𝑃̂𝑡+1: 

                                             𝜶̂𝑡+1 = 𝜶(𝑚) −
𝛼∗

𝑐∗+𝑞∗
(𝑸∗ + 𝑪∗) ,  ( 2.104 ) 

                                             𝑪̂𝑡+1 = 𝑪(𝑚) +
𝑸∗𝑸∗𝑇

𝑞∗
−

(𝑸∗+𝑪∗)(𝑸∗+𝑪∗)𝑇

𝑞∗+𝑐∗
 ,  ( 2.105 ) 

                                             𝑸̂𝑡+1 = 𝑸(𝑚) −
𝑸∗𝑸∗𝑇

𝑞∗  ,  ( 2.106 ) 

where the different terms are obtained from partitioning 𝜶𝑡+1, 𝑪𝑡+1,  and 𝑸𝑡+1 as follows:  

                                                          𝜶𝑡+1 = [𝜶(𝑚)

𝛼∗
] ,   ( 2.107 ) 

                                                      𝑪𝑡+1 = [𝑪(𝑚) 𝑪∗

𝑪∗𝑇 𝑐∗
]  ,  ( 2.108 ) 

                                                      𝑸𝑡+1 = [
𝑸(𝑚) 𝑸∗

𝑸∗𝑇 𝑞∗ ] .  ( 2.109 ) 

In order to decide which basis vector to remove, an “importance” score is computed for each i-th 

vector, equal to the error corresponding to using the approximation 𝐺𝑃̂𝑡+1:  
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                                         𝜀𝑡+1(𝑖) =
(𝜶𝑡+1(𝑖))

2

𝑞(𝑖)+𝑐(𝑖)
−

𝑠(𝑖)

𝑞(𝑖)
+ 𝑙𝑛 (1 +

𝑐(𝑖)

𝑞(𝑖)
) ,  ( 2.110 ) 

where 𝑞(𝑖), c(𝑖) and 𝑠(𝑖) are the i-th diagonal elements of the matrices Q, C and 𝑺𝑡+1 =

(𝑪𝑡+1
−1 + 𝑲𝑡+1)−1, respectively. It was shown in (Csató, 2002) that the error 𝜀𝑡+1(𝑖) can be 

effectively approximated by:   

                                                            𝜀𝑡̂+1(𝑖) =
(𝜶𝑡+1(𝑖))

2

𝑞(𝑖)+𝑐(𝑖)
,  ( 2.111 ) 

which is the expression employed in the experimental section of our work. The SOGP algorithm 

is summarized in the pseudo-code shown in Figure 2.2 below. 

2.3.3 Gaussian Processes for Binary Classification 

This section describes the use of GPs for solving binary classification problems. The goal in this 

case is to find a discriminative model for the posterior probability 𝑝(y𝑁+1 = +1|𝐷, 𝐱𝑁+1) given 

a data set 𝐷 = {𝑿, 𝐲} = {(𝐱𝑖, y𝑖)|𝐱𝑖𝜖𝒳, y𝑖𝜖{+1, −1}, 𝑖 = 1, … , 𝑁}, where 𝒳 denotes a finite-

dimensional space. Note that only the conditional probability of y = +1 needs to be modeled 

because  𝑝(y𝑁+1 = −1|𝐷, 𝐱𝑁+1) = 1 −  𝑝(y𝑁+1 = +1|𝐷, 𝐱𝑁+1).  

The main limitation to use a GP in this case is that the predictions of a GP are defined over the 

set of real values, whereas the response value for classification is limited to the interval [0, 1]. 

The easiest way to overcome this limitation is to apply a sigmoid function 𝜎(𝑎) to the outcome 

of a GP in order to get values in [0, 1].  First, a GP prior is defined over a space of latent 

functions 𝑓: 𝒳 → ℝ. In this case, a noise-free model is typically assumed, i.e. y𝑖 = 𝑓(𝐱𝑖). 

Consequently, the GP prior can be expressed as follows for the training data set: 

                                                                    𝐲~𝒩(𝟎, 𝐶) ,  ( 2.112 ) 
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where 𝐶(𝐱𝑖, 𝐱𝑗) = 𝑘(𝐱𝑖, 𝐱𝑗)  is the noise-free covariance matrix. However, it is common to 

define the covariance matrix 𝐶 as 𝐶(𝐱𝑖, 𝐱𝑗) = 𝑘(𝐱𝑖, 𝐱𝑗) + 𝜈𝛿𝑖𝑗, were 𝜈 is a noise-like parameter 

that ensures that 𝐶 is a positive definite matrix (i.e. 𝒛𝑻𝐶𝒛 > 0 for every non-zero vector 𝒛). 

 

% The obj parameter stands for an instance of SOGP class. 

% Variables 𝜶 and 𝑪 are properties of the OnlineGP, which are 
initially empty.   

function trainOnline(obj, 𝐱𝑡+1, y𝑡+1)                              

    𝑡 ← 𝑜𝑏𝑗. 𝑆𝑖𝑧𝑒;                         

    Calculate 𝑞𝑡+1 and 𝑟𝑡+1 according to likelihood model. 
 
     if (t == 0)            

         % First data point to learn.  

         sparseUpdateAllowed = false; 

         s𝑡+1 ← 1 

         𝒆̂𝑡+1 ← [ ]  
         𝛾𝑡+1 ← [ ]                
      else 

          𝒌𝐱𝑡+1
← (𝑘(𝐱𝑡+1, 𝐱𝑖1

), … , 𝑘(𝐱𝑡+1, 𝐱𝑖𝑟
))

𝑇

 

          𝒆̂𝑡+1 ← 𝑸𝒌𝐱𝑡+1
 

          𝛾𝑡+1 ← 𝑘(𝐱𝑡+1, 𝐱𝑡+1) − 𝒌𝐱𝑡+1

𝑇 𝒆̂𝑡+1 

 

          if (𝛾𝑡+1 < 𝜖) 

             sparseUpdateAllowed = true; 

             s𝑡+1 ←  𝑪𝒌𝐱𝑡+1
+ 𝒆̂𝑡+1 

          else 

             sparseUpdateAllowed = false; 

             s𝑡+1 ← [
𝑪𝒌𝐱𝑡+1

1
] 

          end 
     end 

 

      if (sparseUpdateAllowed == true) 

            obj.runSparseUpdate(s𝑡+1, 𝑞𝑡+1, 𝑟𝑡+1, 𝛾𝑡+1); 
      else 

            obj.runFullUpdate(𝐱𝑡+1, y𝑡+1, s𝑡+1, 𝑞𝑡+1, 𝑟𝑡+1, 𝛾𝑡+1, 𝒆̂𝑡+1);                                   
       end                                                   

 end 
 

function runSparseUpdate(obj,  s𝑡+1,  𝑞𝑡+1,  𝑟𝑡+1,  𝛾𝑡+1); 
    % Size didn't change. No need to modify Q and BV set. 

     𝜂𝑡+1 ← (1 + 𝛾𝑡+1𝑟𝑡+1)−1 
     𝜶 ← 𝜶 + 𝑞𝑡+1𝜂𝑡+1s𝑡+1 
     𝑪 ← 𝑪 + 𝑟𝑡+1𝜂𝑡+1s𝑡+1s𝑡+1

𝑇                   
end 
 

function runFullUpdate(obj, 𝐱𝑡+1, y𝑡+1, s𝑡+1, 𝑞𝑡+1, 𝑟𝑡+1, 𝛾𝑡+1, 𝒆̂𝑡+1) 
    𝑡 ← 𝑜𝑏𝑗. 𝑆𝑖𝑧𝑒; 
     if (t == 0)            

 %  First data point to learn.  

                𝜶 ← 𝑞𝑡+1 

                𝑪 ← 𝑟𝑡+1 

                𝑸 ← 𝑘(𝐱𝑡+1, 𝐱𝑡+1)−1 
    else  

                 𝜶 ← [
𝜶
0

] + 𝑞𝑡+1s𝑡+1 

                 𝑪 ← [
𝑪 𝟎𝑡

𝟎𝑡
𝑇 0

] + 𝑟𝑡+1s𝑡+1s𝑡+1
𝑇                   

                 𝑸 = [
𝑸 𝟎𝒕

𝟎𝒕
𝑻 0

] + 𝛾𝑡+1
−1 [

𝒆̂𝑡+1

−1
] [

𝒆̂𝑡+1

−1
]

𝑇

 

    end                                     
 
   obj.addObservationToBVSet(𝐱𝑡+1, y𝑡+1);            
 
    if ((t + 1) > obj.Capacity) 

         obj.prune(); 

    end 

end 
 
 

function prune(obj)   

    Calculate scores 𝜀𝑡+1(𝑖) for all basis vectors.     

    i ← index of basis vector with the smallest score. 
    Swap (i-th basis vector, m+1-th basis vector) 

        

    𝜶 ← 𝜶(𝑚) −
𝛼∗

𝑐∗+𝑞∗
(𝑸∗ + 𝑪∗)  

    𝑪 ← 𝑪(𝑚) +
𝑸∗𝑸∗𝑇

𝑞∗
−

(𝑸∗+𝑪∗)(𝑸∗+𝑪∗)𝑇

𝑞∗+𝑐∗
  

    𝑸 ← 𝑸(𝑚) −
𝑸∗𝑸∗𝑇

𝑞∗
                          

end 
 

Figure 2.2: Matlab-like pseudocode for the SOGP training algorithm. 
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Let us consider any function f sampled from the GP. The solution to the classification problem is 

based on a deterministic function of f, which is built through a sigmoid function 𝜎(𝑎): 

                                              𝜋𝑓(𝐱) ≡ 𝑝(y = +1|𝐱) =  𝜎(𝑓(𝐱)) .  ( 2.113 ) 

Note that 𝜋𝑓 is a non-Gaussian stochastic process over the space of functions {𝑔|𝑔: ℝ → [0,1]}. 

Although the function f is shown alone here, it is important to keep in mind that its distribution is 

conditioned on any observed data X, y. Inference for classification is done in two steps: 

STEP 1: The posterior distribution of the latent GP 𝑝(𝑓𝑁+1|𝑿, 𝐲, 𝐱𝑁+1) is determined as follows: 

                       𝑝(𝑓𝑁+1|𝑿, 𝐲, 𝐱𝑁+1) = ∫ 𝑝(𝑓𝑁+1, 𝐟|𝑿, 𝐲, 𝐱𝑁+1)𝑑𝐟  

                                                       =
1

𝑝(𝐲)
∫ 𝑝(𝐲|𝐟, 𝑓𝑁+1, 𝑿, 𝐱𝑁+1)𝑝(𝑓𝑁+1, 𝐟|𝑿, 𝐱𝑁+1)𝑑𝐟  

                                                       =
1

𝑝(𝐲)
∫ 𝑝(𝐲|𝐟, 𝑿)𝑝(𝐟|𝑿)𝑝(𝑓𝑁+1|𝐟, 𝑿, 𝐱𝑁+1)𝑑𝐟  

                                                       = ∫ 𝑝(𝐟|𝐲, 𝑿)𝑝(𝑓𝑁+1|𝐟, 𝑿, 𝐱𝑁+1)𝑑𝐟 .  ( 2.114 )  

In the previous derivation f denotes a vector taking values in ℝ𝑁. The conditional 

distribution 𝑝(𝑓𝑁+1|𝐟, 𝑿, 𝐱𝑁+1) is obtained as the posterior GP, using the same equations as for 

the regression case: 

               𝑓𝑁+1|𝐟, 𝑿, 𝐱𝑁+1~𝒩(𝐶𝑁+1
𝑇 𝐶−1𝐟, 𝐶(𝐱𝑁+1,  𝐱𝑁+1) − 𝐶𝑁+1

𝑇 𝐶−1𝐶𝑁+1) ,  ( 2.115 ) 

where 𝐶𝑁+1 denotes the column vector 𝑘(𝑿,  𝐱𝑁+1). However, the posterior distribution 

𝑝(𝐟|𝑿, 𝐲) is not Gaussian. This makes the posterior distribution 𝑝(𝑓𝑁+1|𝑿, 𝐲, 𝐱𝑁+1) a non-

Gaussian stochastic process.  
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Having a Gaussian posterior for 𝑓𝑁+1 facilitates further analytical treatment. Three approaches to 

obtain a Gaussian approximation to this posterior have been proposed. One technique makes use 

of local variational bounds on logistic sigmoid functions (Gibbs & MacKay, 2000). A second 

approach employs an approximation technique called expectation propagation (Opper & 

Winther, 2000) (Minka, 2001) (Seeger M. , 2003). The third approach consists of obtaining a 

Gaussian Laplace approximation to the posterior 𝑝(𝐟|𝐲, 𝑿), and then approximating the posterior 

distribution of  𝑓𝑁+1 as the integral of two Gaussian distributions (Rasmussen & Williams, 

2006). 

STEP 2: The expected value of 𝜋𝑓(𝐱) is calculated according to the following expression: 

                   𝜋̅𝑓(𝐱𝑁+1) = 𝔼[𝜋𝑓(𝐱𝑁+1)] =  𝔼𝑓𝑁+1
[𝑝(y𝑁+1 = +1 | 𝑿, 𝐲, 𝐱𝑁+1)] 

                                    = ∫ 𝑝(y𝑁+1 = +1 | 𝑓𝑁+1, 𝑿, 𝐲, 𝐱𝑁+1)𝑝(𝑓𝑁+1|𝑿, 𝐲, 𝐱𝑁+1) 𝑑𝑓𝑁+1 

                                    = ∫ 𝜎(𝑓𝑁+1)𝑝(𝑓𝑁+1|𝑿, 𝐲, 𝐱𝑁+1)  𝑑𝑓𝑁+1 .  ( 2.116 ) 

If we employ the approximated posterior distribution from STEP 1 then 𝜋̅𝑓(𝐱) can be obtained 

by using well-established results that allow approximating the convolution of a sigmoid function 

(e.g., the cumulative Gaussian or the logistic sigmoid function) and a Gaussian function 

(Spiegelhalter & Lauritzen, 1990). Alternatively, 𝜋̅𝑓(𝐱) can be obtained using Monte Carlo 

sampling methods (Neal, 1997). 

2.3.4 Gaussian Processes for Novelty Detection 

The use of GP regression and GP binary classification as novelty detection techniques was 

originally proposed in (Kemmler, Rodner, & Denzler, 2010). That work was subsequently 
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expanded in (Kemmler M. , Rodner, Wacker, & Denzler, 2013), where the authors provided 

links between their approach and other algorithms, and offered multiple experimental results. 

The training data in this case are denoted by 𝐷 = {𝑿, 𝐲} = {(𝐱𝑖, y𝑖)|𝐱𝑖𝜖𝒳, y𝑖 = 1, 𝑖 = 1, … , 𝑁}. 

As noted in (Kemmler M. , Rodner, Wacker, & Denzler, 2013), two problems appear when 

attempting to use posterior GPs for novelty detection: (1) GPs are not designed to estimate the 

probability density of the input data (as done by other statistical methods employed in novelty 

detection) and (2) applying a regression technique to a data set in which the dependent variable y 

is constant should lead to a constant regression function, which is the simplest model that fits the 

data. These problems are circumvented by using a prior GP with a zero-mean prior GP. If a 

smooth kernel function k is used, then functions f sampled from the posterior GP will be smooth 

and will evaluate to zero or near-zero at data points that are distant from training observations, 

while evaluating close to 1 at points near those in 𝐷. In other words, after training the GP on D, 

if a test observation 𝐱∗ is very near to points in D then the corresponding posterior mean  𝜇∗ will 

be close to 1, but  𝜇∗  will be close to zero for data points that are distant from training 

observations. In a similar fashion, the posterior variance of the GP (𝜎∗
2) will be greater for 

observations that are increasingly distant from points in 𝐷. Consequently, class membership 

scores based on the posterior mean  𝜇∗, the posterior variance 𝜎∗
2, or a combination of both, can 

be used to detect novel observations. The lower the membership score of a given input 𝐱∗, the 

higher the likelihood of 𝐱∗ being an outlier.  

Table 2.2 lists the four measures proposed in (Kemmler, Rodner, & Denzler, 2010) and 

(Kemmler M. , Rodner, Wacker, & Denzler, 2013): Probability (P), Mean (M), Negative 

Variance (V) and Heuristic (H). The score V was previously proposed as part of a clustering 
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technique in (Kim & Lee, 2006), and score H was successfully applied to object categorization in 

(Kapoor, Grauman, Urtasun, & Darrell, 2010). Note that the probability score P, despite its 

name, is actually the value at y = 1 of the posterior probability density function of y∗.  

 

Table 2.2: Membership scores for novelty detection using Gaussian processes. Table taken from 

(Kemmler, Rodner, & Denzler, 2010).    

Membership score Expression 

Probability (P) 𝑝(y∗ = 1 | 𝑿, 𝐲, 𝐱∗) 

Mean (M) 𝜇∗ = 𝐸[y∗|𝑿, 𝐲, 𝐱∗] 

Negative Variance (𝑉) −𝜎∗
2 = −𝑉𝑎𝑟(y∗|𝑿, 𝐲, 𝐱∗) 

Heuristic (H) 𝜇∗ 𝜎∗
−1 

 

The experiments in (Kemmler, Rodner, & Denzler, 2010) compared these membership scores 

using GP regression (GP-Reg) and approximated binary GP classification using both Laplace 

approximation (LA) and expectation propagation (EP). Additionally, the work in (Kemmler, 

Rodner, & Denzler, 2010) compared GP-based novelty detection using these membership scores 

to Support Vector Data Descriptor (Tax & Duin, 2004).  The corresponding experiments were 

run on all object categories (classes) of the Caltech 101 image database (Fei-Fei, Fergus, & 

Perona, 2004), where one class at a time was used as the target class. Each experiment assessed 

the performances of SVDD and each GP-based scoring method on a different target class. 

Subsequently, an average performance value was obtained for each detection method by 

averaging the corresponding performance values across all classes. Note that no detailed 
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analyses of performance on individual image categories were offered in (Kemmler, Rodner, & 

Denzler, 2010). Two image-based kernel functions were employed: the pyramid of oriented 

gradients (PHoG) (Bosch, Zisserman, & Munoz, 2007) and the spatial pyramid matching (SPM) 

kernel (Lazebnik, Schmid, & Ponce, 2006).  

According to the analysis done in (Kemmler, Rodner, & Denzler, 2010), scores using GP 

regression (GP-Reg-P, GP-Reg-M, GP-Reg-V, GP-Reg-H) performed consistently similar or 

better than the corresponding scores based on approximate GP classification with LA and EP. 

Additionally, performance values obtained through the SPM kernel were consistently higher 

across all methods than the corresponding performance values obtained through the PHoG 

kernel. That motivated Kemmler et al. to focus their conclusions on results obtained when using 

the SPM kernel. Average performance values from GP regression were better than those 

obtained from SVDD for all membership scores except when using GP-Reg-M (the GP-Reg-M 

score showed a great variation in performance across image categories). In particular, novelty 

detection based on GP-Reg-V consistently outperformed all other methods on the Caltech 101 

data set.  

As mentioned above, the experimental work described in (Ramirez-Padron, Mederos, & 

Gonzalez, 2013) shows that the performance of novelty detection methods based on online GPs 

can be similar to the performance of batch GP-based novelty detection. Interestingly, it was also 

reported in that work that the probability score (P) and the heuristic score (H) consistently 

outperformed the other two scores. This result suggests that scores that combine the posterior 
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mean and the posterior variance of the GP might be better fitted to GP-based novelty detection 

that scores employing each of these statistics alone.  

The high performance of GP-based novelty detection has also been shown in other domains aside 

of visual object recognition. For instance, GP-based novelty detection outperformed widely 

popular methods like Gaussian mixture models, Parzen density estimation and SVDD in doing 

defect detection in wire ropes, novel bacteria identification based on Raman spectroscopy, 

attribute prediction, and background subtraction (Kemmler M. , Rodner, Wacker, & Denzler, 

2013). Additionally, GP-based novelty detection has been reported as a very accurate technique 

for doing video segmentation through event detection, using a frame-by-frame processing 

approach (Krishna, Bodesheim, & Denzler, 2013), (Krishna, Bodesheim, Körner, & Denzler, 

2014). It was established in (Schölkopf, Platt, Shawe-Taylor, Smola, & Williamson, 2001) that 

SVDD is equivalent to one-class SVM when the kernel used in both methods has a constant 

value for 𝑘(𝐱, 𝐱), for all 𝐱 ∈ 𝒳. The experiments described in (Kemmler M. , Rodner, Wacker, 

& Denzler, 2013) employed kernels having that property. Consequently, the work of Kemmler et 

al. also showed (in an indirect way) that GP-based novelty detection can outperform one-class 

SVM in multiple application domains.  

A difficulty of GP-based novelty detection is that the technique of maximum likelihood 

estimation (MLE), commonly used to automatically estimate hyperparameters in GP regression 

and GP classification, cannot be employed in this case. Given that all labels are equal to 1, MLE 

leads to an ill-posed optimization problem, which makes MLE solvers crash due to numerical 

instabilities (Kemmler M. , Rodner, Wacker, & Denzler, 2013). Hyperparameter estimation in 
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GP-based novelty detection is currently considered an open problem. A very recent publication 

(Xiao, Wang, & Xu, 2014) has proposed a possible solution based on the expected differences in 

the prediction of mean and variance between edge samples and interior samples. However, it is 

important to note that this dissertation does not attempt to solve the problem of hyperparameter 

estimation in the case of GP-based novelty detection, which is considered here an important 

topic for further research. The main purpose of this dissertation is to propose robust variants of 

batch GP and online GPs for doing regression, and to assess their performance compared to 

standard batch GP and online GPs when used for GP-based novelty detection. The specific scope 

and goals of this dissertation are described in detail in the following chapter. 

  



111 

 

CHAPTER 3: PROBLEM STATEMENT 
 

Gaussian processes have been used to solve many regression and classification problems with a 

performance typically exceeding that of other state-of-the-art machine learning techniques 

(Rasmussen & Williams, 2006). Interestingly, there are very few cases of GPs applied to novelty 

detection. However, the experimental work reported in (Kemmler M. , Rodner, Wacker, & 

Denzler, 2013) demonstrate that GP-based novelty detection can outperform state-of-the-art 

methods. Those encouraging results and the advantages of Bayesian methods mentioned in the 

previous chapter support the choice for the general topic considered in this dissertation: to 

advance the state of the art of GP-based novelty detection. Given that GPs are kernel 

methods, this choice allows proposing new solutions that can be easily adapted to different data 

types and can work effectively with high-dimensional data, in order to fit the needs of many 

modern application domains.  

The following section states the specific problems addressed in this work, aiming at making 

contributions to the general topic stated above. This chapter concludes with two brief sections: 

one section states the hypothesis considered in this dissertation, and the last section lists the 

contributions of this research effort. 

3.1 The Specific Problems 

There are two specific problems considered in this dissertation: (1) develop robust variants of 

Gaussian processes in order to further improve the performance of GP-based novelty 

detection, and (2) explore the applicability of online GP and SOGP, and the corresponding 
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robust variants proposed here, to novelty detection. Each of these topics is described in more 

detail in the following subsections.  

3.1.1 The Need for Robust GP-based Novelty Detection 

As described in previous chapters, novelty detection techniques build a model of the normal 

class based on the training data, and they subsequently use that model to assign labels or outlier 

scores to new observations. However, if the method employed to build the model is sensitive to 

outliers (i.e. non-robust) then the resulting model might lead to inaccurate outlier detection when 

the training data contain mislabeled examples or observations with erroneous data. This might be 

reflected in operation by incorrectly labeling outliers as members of the normal class (the so 

called masking effect), or labeling normal observations as outliers, which is usually called the 

swamping effect (Rousseeuw & Hubert, 2011). Having incorrectly labeled data is a common 

issue in real-life data sets. Consequently, modern methods should be robust. However, many of 

the methods previously described in our introductory chapters assume that training data are 

correct. Arguably, methods from statistical novelty detection are more amenable to the 

introduction of a robust approach, by directly leveraging techniques from robust statistics. A 

good review of some robust techniques is given in (Rousseeuw & Hubert, 2011). Some novelty 

detection methods can be made robust by replacing their estimators of location and scale by their 

robust counterparts. For instance, the mean can be replaced by the median or an M-estimator of 

location; and the standard deviation can be replaced by a robust measure of scale, like the MAD 

(the median of absolute deviations from the median) and the interquartile range (IQR). In the 

case of multivariate data, robust estimators of location and dispersion can be obtained by using 

the minimum covariance determinant (MCD) method (Rousseeuw P. J., 1985), (Hubert & 
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Debruyne, 2010). Note that robust estimators that are even more efficient can be obtained when 

the MCD robust estimates mentioned above are used to assign weights to the observations based 

on their robust Mahalanobis distance to the MCD-based mean, and subsequently those weights 

are used to obtain new robust estimators of location and dispersion (Rousseeuw & Hubert, 2011). 

Subspace-based novelty detection methods can also benefit from robust statistics. A simple 

example is the use of a robust PCA method, like ROBPCA (Hubert, Rousseeuw, & Vanden 

Branden, 2005), instead of the classical PCA.  

In the particular case of GP regression, one of the main difficulties is the need for properly 

optimizing hyperparameters, which are the noise variance and the parameters of the covariance 

function. Maximum likelihood estimation (MLE) is a method widely used to estimate 

hyperparameters. It is easy to understand, asymptotically efficient in many cases (Daniels, 1961), 

and relatively simple to implement. However, it is well-known that MLE is highly sensitive to 

the presence of outliers in the data, which could radically affect posterior distributions in a 

Bayesian framework (Agostinelli & Greco, 2013). As a simple example, consider the data shown 

in Figure 3.1, taken from sampling the function y = 5sin(x) from -10 to 10 at regular increments 

of 0.5, with noise variance 𝜎2 = 0.5. A few sample points were randomly converted to outliers. 

Figure 3.2 shows the useless posterior GP obtained by using the simple exponential kernel (see 

equation 4.39) and hyperparameters that were estimated by MLE. Furthermore, obtaining an 

effective GP in the presence of outliers can be challenging regardless of whether or not MLE is 

employed to estimate hyperparameters (Jylänki, Vanhatalo, & Vehtari, 2011). As an example of 

this, Figure 3.3 shows the posterior GP trained on the same artificial data set using again the 

simple exponential kernel, but this time employing the suitable hyperparameter values 𝑎1 = 1 
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and 𝜎2 = 0.5. Although the results are much better than relying on the MLE method, it is clear 

that the prediction of the posterior GP becomes affected by the outliers in the training data.  

 

 
Figure 3.1: Data from sampling y = 5sin(x) at regular increments of 1 from -10 to 10, with 

noise variance 0.5 and added outliers. The underlying true function is shown as a discontinuous 

red line.  
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Figure 3.2: Posterior GP obtained by using hyperparameter values obtained from MLE. The 

continuous blue line denotes the posterior mean, and the shaded area denotes the corresponding 

95% confidence interval. The MLE method was called with suitable initial values 𝜎2 = 0.5 and  

𝑎1 = 1, but numerical instability led MLE to incorrect estimates 𝜎2 = 40.2909 and 𝑎1 =
1.4756𝑒 − 06. 

 
Figure 3.3: Posterior GP obtained by using suitable hyperparameter values: 𝑎1 = 1 and 𝜎2 =
0.5. The continuous blue line denotes the posterior mean, and the shaded area denotes the 

corresponding 95% confidence interval. 
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A typical approach to tackle this problem is to employ likelihood functions that are robust to 

outliers. For instance, robust pseudo-likelihoods have been employed to obtain robust posterior 

distributions (Greco, Racugno, & Ventura, 2008). The presence of outliers has also been handled 

by using likelihoods corresponding to robust distributions. For instance, a Student-t observation 

model is employed in (Jylänki, Vanhatalo, & Vehtari, 2011) to obtain a robust GP. However, 

employing non-Gaussian likelihoods leads to analytically intractable inference, which requires 

the use of approximation techniques that may be complex, computationally expensive and/or 

inefficient. Consequently, the most important specific problem of this dissertation is to 

obtain robust variants of Gaussian processes, both for batch and online learning, which 

could be implemented without using approximation techniques. These robust GPs can be 

leveraged to improve the effectiveness of the GP-based novelty detection approach 

described in (Kemmler M. , Rodner, Wacker, & Denzler, 2013). Inspired by the use of weights 

in robust and quasi-robust statistics in order to obtain robust estimates, this dissertation explores 

weights as the mechanism to address this specific problem. 

3.1.2 The Need for Online GP-based Novelty Detection 

Most novelty detection algorithms follow a batch approach. Additionally, in the case of 

supervised and semi-supervised learning, it is commonly assumed that all observations labeled as 

members of the normal class are labeled correctly. In general, training data are assumed to be 

fully and truly representative of the normal class. However, in practice training data are typically 

not only affected by a small percentage of outliers but might not be representative of the whole 

input space, which in turn affects the resulting models. Additionally, even in the case of a 

complete and high-quality training data set, in various domains the statistical properties of 
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variables and processes are highly dynamic; so that even a well-trained system will eventually 

become obsolete. Consequently, processing data as they arrive has become a necessity of several 

modern applications, such as fraud detection, automatic surveillance, network intrusion 

detection, and interactive training systems. Updating the corresponding normality model in an 

incremental fashion has been an important concern in recent applications (Pokrajac, Lazarevic, & 

Latecki, 2007).  

The intrinsic variability of processes is denoted in machine learning by the term concept drift 

(Zliobaite, 2009). As a simple example of the nature of concept drift in novelty detection, 

consider a probability density function for normal data consisting of two local maxima.  It may 

be case that an algorithm was initially trained using data coming mostly from a neighborhood of 

the first maximum. While in operation, however, data coming from a neighborhood of the 

second local maximum will be incorrectly classified as outliers. If the algorithm did not provide 

a way of updating its domain knowledge, those normal data points would always be considered 

outliers. The outputs of many commercial systems for novelty detection are analyzed by human 

experts to determine whether abnormal observations are actually outliers. However, few systems 

address the problem of integrating the experts’ decisions back into the system in an effective and 

speedy way.   

A common solution to the problems imposed by incomplete training data and concept drift is to 

re-train the algorithm using updated training data. In general, that approach is not efficient. For 

instance, re-training might be a resource-consuming process, because of the memory and the 

time required to store and process increasingly bigger, typically high-dimensional, data sets. 
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Some online outlier detection algorithms address these limitations by regularly applying a batch 

learning algorithm to a small subset of the original training data added to a set containing the 

latest misclassified observations. One example of that approach is the online training algorithm 

for support vector machine (SVM) proposed in (Zhang & Shen, 2005), which employs a one-

class SVM. It iteratively applies an SVM training algorithm to a training data set composed of 

the new observations and the support vectors of previous iterations, producing an updated 

decision function at each step. Although this algorithm resembles an incremental approach (the 

model is updated for new training observations), it actually applies a batch training algorithm at 

each step, which can be a resource-consuming process. Additionally, previously well-classified 

observations might be miss-classified in the future. Consequently, the algorithm needs to adjust 

for the loss of previous knowledge. It is desirable to have a mechanism that allows a faster and 

more efficient update of the model than the periodic application of a batch training technique.  

Learning algorithms capable of updating their knowledge in a truly online fashion (i.e. learning 

one observation at a time) seem to offer a more promising solution to the problems of incomplete 

training data and concept drift (Giraud-Carrier, 2000). Online learning is typically more 

computationally efficient than batch re-training. Furthermore, it appears to be a more natural 

approach to problems involving online data processing (e.g., video surveillance, network traffic 

monitoring, monitoring sensor data in real time, and auditing credit card transactions). However, 

the online learning approach has been applied to novelty detection in very few cases. To mention 

one example, an incremental version of the Local Outlier Factor (LOF) algorithm (Breunig, 

Kriegel, Ng, & Sander, 2000) was introduced in (Pokrajac, Lazarevic, & Latecki, 2007) with 

good results. Another important result is the Incremental Connectivity-Based Outlier Factor 
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(COF) algorithm (Pokrajac, Reljin, Pejcic, & Lazarevic, 2008). These two algorithms use a 

distance-based approach (specifically nearest neighbor-based techniques). There are some 

advantages in using this approach: it is well fitted to unsupervised novelty detection, the concept 

of a distance between observations is applicable to a great number of data types, and the online 

learning operations are relatively simple. However, the distance-based approach also has 

disadvantages. For instance, it is highly sensitive to the presence of normal observations in low-

density areas of the training data. Additionally, outliers can be misclassified as normal 

observations when they appear within small clusters of outliers. Finally, novelty detection 

algorithms using the distance-based approach typically face a trade-off between the 

computational complexity of classifying new observations and the amount of memory needed to 

operate. 

A good online novelty detection method should combine the strengths of the distance-based 

approach and of methods building a knowledge model, like one-class SVM and GPs. It is 

desirable to have algorithms that use simple and efficient incremental operations as well. One 

novelty detection algorithm that follows such an approach is the one described in (Kivinen, 

Smola, & Williamson, 2004). In this algorithm, the training examples are available one at a time 

from the sequence of pairs {(𝐱1, y1), (𝐱2, y2), … , (𝐱𝑡, y𝑡), … . }. The learning algorithm produces a 

sequence of models {𝑓1, 𝑓2, … , 𝑓𝑡 , … } that serve as decision functions. At iteration t, the algorithm 

computes its decision function as follows: 

                                                          𝑓𝑡(𝑥) = ∑ 𝛼𝑖𝑘(𝑥𝑖 , 𝑥)𝑡
𝑖=1  .  ( 3.1 ) 
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The coefficients 𝛼𝑖 are updated at each iteration. To deal with an increasingly larger number of 𝛼 

coefficients, the authors proposed ways to store and update only a subset of them at each 

iteration t. Although that work follows a truly incremental approach, it has at least three 

drawbacks. First, the method does not take into account the relevance of examples already 

learned or the relative importance of the current example used to update the decision function. 

Second, there is no guarantee that a decision function 𝑓𝑡 improves on the previous decision 

function, from iteration to iteration. Third, the update rules for the  𝛼 coefficients depend on 

parameters that are difficult to estimate.  

Other works, like those of (Tax & Laskov, 2003) and (Laskov, Gehl, Krüger, & Müller, 2006) 

have also focused on online learning algorithms that can be directly used for novelty detection or 

leveraged for that purpose. The first one proposed an online variant of the SVDD method, which 

was called Online SVDD. The second paper studied the convergence properties of an exact 

incremental SVM method proposed in (Cauwenberghs & Poggio, 2001), for which, according to 

(Laskov, Gehl, Krüger, & Müller, 2006), no successful practical applications had been reported. 

Laskov et al. offered some improvements on that exact algorithm. A more recent variant of an 

online SVDD, called Incremental SVDD, was proposed in (Tavakkoli, Nicolescu, Bebis, & 

Nicolescu, 2008). It was reported in that paper that training Incremental SVDD is faster and 

requires less memory than training SVDD and Online SVDD, and it is capable of outperforming 

those methods. Online kernel methods such as Online SVDD and Incremental SVDD have 

addressed some of the limitations typically related to batch learning algorithms. However, there 

are still difficulties associated to online kernel-based methods. For instance, they usually depend 
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on kernel parameters, and effectively estimating those parameters in the online learning approach 

is, in general, more difficult than in the batch approach.  

Online GP and SOGP have the advantages offered by the GP Bayesian formulation while 

providing an incremental learning approach that is appropriate to many modern problems. SOGP 

in particular is well suited to problems dealing with limited memory and/or very large or 

undetermined number of observations (e.g. sensor streams). Given the recent successful 

applications of GPs in machine learning, and novelty detection in particular, it is expected that 

online GP-based novelty detection will provide results similar to those obtained from batch GP-

based novelty detection. That would mean that they could compare favorably to modern online 

classification-based kernel methods, while benefitting from the advantages provided by the 

Bayesian approach. However, to the best of our knowledge the work reported in (Ramirez-

Padron, Mederos, & Gonzalez, 2013) offers the only application of online GPs to novelty 

detection. The experimental results in that work, although preliminary, show that novelty 

detection using online GPs can achieve performances similar to those from batch GP, even under 

strong sparseness constraints in the case of SOGP. For these reasons, the second specific 

problem considered in this dissertation is to expand the experimental work presented by 

the author in (Ramirez-Padron, Mederos, & Gonzalez, 2013), by comparing the performance 

of batch GP and online GPs when used for novelty detection on various data sets. We are 

particularly interested in comparing the capabilities of the robust variants of online GPs 

and batch GP introduced in this dissertation, when used on training data contaminated 

with outliers.  
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3.2 Hypothesis 

The main hypothesis in this dissertation is that robust variants of GPs can be proposed in a 

way that the computational complexity of the robust GPs are similar to the computational 

complexity of the corresponding standard GPs, but the robust variants are more effective 

than standard GPs at solving regression problems with data contaminated with outliers. It 

is expected that the new robust GPs will perform better than standard GPs when used for 

GP-based novelty detection in the presence of outliers. This advantage should be confirmed 

experimentally for batch and online robust variants of GPs. 

3.3 Contributions 

This research provides the following contributions to the field of machine learning: 

1. New robust variants of batch GP, online GP, and SOGP within a regression framework. 

2. An experimental comparison of robust GP regression and standard GP regression in 

various simulated problems, using training data with and without outliers.  

3. An experimental design to compare the effectiveness of robust GP-based novelty 

detection to standard GP-based novelty detection. The experimental comparison includes 

batch GP, online GP, and SOGP with two different capacities. Experiments are run on 

data sets containing no outliers as well as data sets contaminated with outliers.  

4. Experimental results obtained from implementing the experimental design. These results 

allow the following analyses: 

a. A comparison of GP-based novelty detection using standard GPs versus GP-based 

novelty detection using robust GPs. 
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b. A comparison of GP-based novelty detection using batch GPs versus GP-based 

novelty detection using online GPs. 

c. A comparison of the four membership scores employed in (Kemmler M. , Rodner, 

Wacker, & Denzler, 2013). 
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CHAPTER 4: IMPLICIT WEIGHTED GAUSSIAN PROCESSES 

 

As described in the previous chapter, the MLE method for parameter estimation is highly 

sensitive to outliers in the training data, which could strongly affect the posterior distributions, 

which are used for GP regression in our case. The most common approach to tackle this problem 

is to modify the likelihood function so that it becomes robust to outliers. The standard 

approaches rely on introducing robust pseudo-likelihoods (Greco, Racugno, & Ventura, 2008) or 

using likelihoods corresponding to robust distributions, e.g. (Jylänki, Vanhatalo, & Vehtari, 

2011). These approaches typically lead to intractable inferences, which usually require the use of 

computationally expensive approximation techniques.  

The usage of weighted likelihoods in Bayes formula was proposed in (Agostinelli & Greco, 

2013).  That work assigns a weight function as an exponent to each term of the likelihood, with 

the goal of diminishing the effect of anomalous observations. That approach is briefly described 

here. Let 𝐗 = (𝐱1, 𝐱2, … , 𝐱𝑁) be an i.i.d. sample drawn from a random variable X with 

probability density 𝑝(𝐱|𝜽), where 𝜽 ∈ 𝚯 ⊆ ℝ𝒑, with 𝑝 ≥ 1. Let 𝐹̂𝑁 denote the empirical 

cumulative distribution function based on 𝐗. In (Agostinelli & Greco, 2013), a weighted 

likelihood function is defined as: 

                                               𝐿𝑤(𝐗|𝜽) = ∏ 𝑝(𝐱𝑖|𝜽)𝑤(𝐱𝒊; 𝜼, 𝐹̂𝑁)𝑁
𝑖=1 ,  ( 4.1 ) 

where the weight function 𝑤 is bounded differentiable and non-negative, 𝜼 denotes unknown 

parameters of 𝑤, and typically 𝜽 ⊆ 𝜼. The intuition behind this approach is the following: given 

that weights very near to zero are assigned to outliers, the corresponding weighted likelihood 
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terms take values approximately equal to 1. Consequently, the expression for 𝐿𝑤(𝐗|𝜽) depends 

little on likelihood terms corresponding to outliers in the data. For weight functions satisfying a 

certain sufficient condition, 𝐿𝑤(𝐗|𝜽) has the asymptotic properties of the “genuine” likelihood 

function 𝐿(𝐗|𝜽) = ∏ 𝑝(𝐱𝑖|𝜽)𝑁
𝑖=1  when no outliers are present. Additionally, the parameter 

values 𝜽̂, estimated through MLE on the weighted likelihood, are high breakdown estimators in 

the presence of outliers. Aside from being restrictive regarding the location of the weight 

functions, the type of weight functions proposed in (Agostinelli & Greco, 2013) might be 

expensive to compute, given its dependency on parameter estimates and on the empirical 

cumulative distribution function.  

As a separate concern, classic regression analysis assumes that errors are normally distributed 

with a constant variance. However, in many cases the assumption of constant noise variance does 

not hold, leading to another difficulty: learning from heteroscedastic data. Weighted least squares 

is a solution to this problem within the linear regression framework. It involves adding weights 

to the least squares formulation; i.e., the coefficients 𝜷 and b of a linear regression model 

y = 𝜷𝐱 + 𝑏 are obtained by minimizing the following loss expression: 

                                               𝑊(𝜷, 𝑏) = ∑ 𝑤𝑖(y𝑖 − 𝜷𝐱𝑖 − 𝑏 )2𝑁
𝑖=1 ,  ( 4.2 ) 

where typically each weight 𝑤𝑖 is the reciprocal of the error variance at point 𝐱𝑖, estimated from 

the data (Ryan, 1996). Assigning a small weight to an observation (𝐱𝑖, y𝑖) allows the prediction 

of the model at 𝐱𝑖 to depart from y𝑖 without incurring in a great loss.  

We are not aware of any work that uses weighted likelihoods in GPs to effectively learn from 

heteroscedastic data. Additionally, the MLE method is not only sensitive to outliers but also to 
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misspecifications of heteroscedasticity in data (Carroll & Ruppert, 1982). Standard GPs assume 

that noise is equally distributed in the training data (i.e. homoscedasticity), which makes standard 

GPs sensitive to the presence of varying noise levels and outliers in the data when 

hyperparameters are estimated through the MLE method. The problem of varying uncertainty 

has been effectively handled in GPs by modeling noise variance as a function of the input data, 

leading to heteroscedastic GP models (Goldberg, Williams, & Bishop, 1998), (Kersting, 

Plagemann, Pfaff, & Burgard, 2007). However, these approaches equally weight all data points, 

which greatly limit their capability to effectively model data affected by outliers. To effectively 

deal with both problems (outliers and heteroscedasticity) using weights, the weight of each 

observation should be individually assessed, even when taking into account other observations. 

To the best of our knowledge, the only application of individual uncorrelated weights in GPs to 

model heteroscedastic data is presented in (Rottmann & Burgard, 2010). In that work, it is noted 

that “the weight of a sample and thus the importance on the predictive distribution can be 

regulated by adapting the observation noise correspondingly”. Their approach is to determine an 

individual weight for each sample and subsequently employ the weights to estimate individual 

noise levels for each training point. The individual noise levels are added to the set of 

hyperparameters of the GP model, which makes this approach very expensive computationally. 

There are at least two further limitations associated to weighted GPs as proposed in (Rottmann & 

Burgard, 2010): (1) Weighted cross-validation (Sugiyama, Krauledat, & Müller, 2007) is 

employed to estimate the GP hyperparameters. In general, cross-validation (CV) is a 

computationally demanding technique. (2) The CV criterion used in (Rottmann & Burgard, 

2010) depends only on the predicted mean of the model (leaving out the quality of variance 
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prediction). To arrive at the final predictive model, a second GP is employed to model predictive 

variances, leveraging the posterior means of the first GP as its mean function. CV is applied 

again to estimate the parameters of the second GP. Although this approach seems to effectively 

deal with both heteroscedasticity and the presence of outliers, the addition of a noise parameter 

per observation and the dual application of CV make it impractical for most real-life 

applications. 

To the best of our knowledge, no work has proposed the use of weight functions in the definition 

of the likelihood terms in order to obtain robust GPs or improve the effectiveness of the MLE 

method. Contrary to the work of (Rottmann & Burgard, 2010), here we propose GPs that are 

robust and can effectively model heteroscedastic data without the need to add a hyperparameter 

to the GP model for each observation in the training data. The work presented in this chapter is 

inspired by the weighted likelihood approach of (Agostinelli & Greco, 2013). However, our 

approach differs from that of (Agostinelli & Greco, 2013) in various aspects: we propose using 

weighted likelihoods that include weights as part of the definition of the likelihood terms, instead 

of requiring that weight functions must be exponents of the likelihood terms in a joint likelihood. 

Additionally, our weight functions (called here “data weighers”) do not depend on empirical 

cumulative distribution functions. We only require from the weight functions to take values in 

the interval (0, 1] and that weights denote how consistent data points are with respect to the 

underlying model, based on their relative positions to other training observations. We do not 

specify a particular placeholder for the weight functions within the term of a weighted 

likelihood. However, we require that weighted likelihoods retain the properties of “genuine” 

likelihoods, to guarantee that proper posteriors are obtained, and consequently the validity of the 
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Bayesian inference. We claim that weighted likelihoods, as defined later in this chapter, can be 

useful to obtain robust GP models as well as for dealing with heteroscedastic data. Similar to the 

work of (Rottmann & Burgard, 2010), our work proposes to take advantage of individual 

weights. However, it does that through the use of a weighted likelihood instead of adding 

multiple hyperparameters to the GP models. Consequently, the computational complexity of 

obtaining the posterior GP would be affected only by the complexity of calculating the weight 

functions. When using a heteroscedastic data weigher, our GP models can effectively learn 

heteroscedastic data without explicitly modeling the different noise variances; a property that we 

call implicit heteroscedasticity.  

The proposed approach is illustrated by deriving a weighted Gaussian likelihood formulation for 

batch GP, online GP, and SOGP. As a consequence of having the weight functions within the 

likelihood terms, the mathematical formulation of our weighted GPs using a weighted Gaussian 

likelihood remains very similar to the formulation of standard GPs. Essentially, we propose 

robust weighted GPs that do not require the use of approximation techniques because in this 

particular case our weighted likelihood is also a Gaussian distribution. Because of this and to 

differentiate our approach from other applications of weights in GPs, our weighted GPs are 

called implicit weighted GPs. Note however that this and subsequent chapters might refer to our 

implicit weighted GPs just as weighted GPs, whenever that becomes clear from the context. 

Three data weighers are introduced in this chapter: one to make GPs robust to outliers, one to 

obtain implicitly heteroscedastic GPs, and a third one that combines the previous two in order to 

obtain robust and implicitly heteroscedastic GPs. The applicability of these data weighers is 
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demonstrated through experiments on simulated data. It is shown through the experiments that 

the optimization surfaces from the MLE method are highly distorted by the presence of outliers 

in the data in the case of standard (non-weighted) GPs. However, MLE’s optimization surfaces 

were shaped as if the data contained no outliers when our weighted likelihoods were used. 

This rest of this chapter is structured as follows: Section 4.1 provides some mathematical 

preliminaries from robust statistics, which will be used in the following sections. Section 4.2 

introduces our approach to obtain weighted GPs by using weighted likelihoods. Implicit 

weighted variants of batch GP, online GP and SOGP are derived for the particular case of 

weighted Gaussian likelihoods, including the formulas needed to estimate GP hyperparameters 

using the MLE method. It is important to note that our weighted Gaussian likelihood is not a 

weighted likelihood function according to the definition given in (Agostinelli & Greco, 2013). 

Section 4.3 introduces our three data weighers. A comparison of the computational complexities 

of traditional GPs and the implicit weighted GPs proposed here is given in section 4.4. Section 

4.5 provides experimental evidence of the benefits of learning weighted GPs models from data 

containing outliers and/or heteroscedastic regions. Finally, the positive effect of the weighted 

likelihood approach on the MLE optimization surface is shown in section 4.6. 

4.1 Robust Potentials and Weights 

Robust statistics (Huber & Ronchetti, 2009), (Maronna, Martin, & Yohai, 2006) yields 

estimation methods that are not greatly affected by outliers. Given a set of observations {y𝑖: 𝑖 =

1 … 𝑁}, let us assume the following data model: 

                                                                    y𝑖 =  𝜃 + 𝜂𝑖 ,  ( 4.3 ) 
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where the true value of 𝜃 is unknown and the additive errors {𝜂𝑖: 𝑖 = 1 … 𝑁} are independent and 

identically distributed (i.i.d.) random variables. This data model is known as a location model. It 

is commonly considered that the distribution of errors comes from a parametric family. 

However, typically there is a small percentage of errors that do not obey the assumed 

distribution. The idea of robust statistics is to give less influence to abnormal data in order to 

better estimate  𝜃. To accomplish this goal, a special type of cost functions 𝜌(∙), called robust 

potentials, play a key role in the following optimization problem: 

                                                       𝜃 = 𝑎𝑟𝑔 𝑚𝑖𝑛 ∑ 𝜌(y𝑖 − 𝜃)𝑁
𝑖=1 ,   ( 4.4 ) 

where 𝜃 is called the M-estimator of location. A potential function 𝜌: ℝ ⟶ ℝ satisfies the 

following two properties: 

 Symmetry 𝜌(−𝑧) = 𝜌(𝑧),  ( 4.5 ) 

 Robustness lim𝑧→+∞
𝜓(𝑧)

 𝑧
= 0,   ( 4.6 ) 

where 𝜓(𝑧) =
𝜕𝜌(𝑧)

𝜕𝑧
 is known as the influence function (Hampel, Ronchetti, Rousseeuw, & 

Stahel, 1986), (Maronna, Martin, & Yohai, 2006). The robustness property implies that errors 𝜂𝑖 

that are too large have a lower cost than that quantified by the quadratic potential 𝑧2. Given a 

robust potential 𝜌, a possible way to solve problem (4.4) is to solve the following equation: 

                                                               ∑ 𝜓(y𝑖 − 𝜃)𝑁
𝑖=1 = 0 .   ( 4.7 ) 

Assuming that 𝜓 has derivative at 0, the robust weight functions are constructed as follows: 

                                                           𝑤(𝑧) = {
𝜓(𝑧)

𝑧
,      𝑖𝑓 𝑧 ≠ 0

𝜓′(0),   𝑖𝑓 𝑧 = 0
  .   ( 4.8 ) 

Using equation (4.8), the equation (4.7) can be rewritten as  
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                                                          ∑ 𝑤(y𝑖 − 𝜃)(y𝑖 − 𝜃)𝑁
𝑖=1 = 0 ,    ( 4.9 ) 

which provides a method to compute 𝜃 as a weighted mean through an iterative scheme: 

                                                             𝜃𝑘+1 =
∑ 𝑤(y𝑖−𝜃𝑘)y𝑖

𝑁
𝑖=1

∑ 𝑤(y𝑖−𝜃𝑘)𝑁
𝑖=1

 .   ( 4.10 ) 

If the recursive equation (4.10) converges then its limit is 𝜃. The definitions of the weights 𝑤(∙) 

and the robustness property of 𝜌 ensure that outlying observations receive small weights; 

therefore the contribution of these observations to the model is small. Therefore, they are 

appropriate to be used as weights in approaches different to M-estimators but related to them, 

such as weighted regression in robust statistics (Agostinelli & Greco, 2013), (Maronna, Martin, 

& Yohai, 2006). 

Three main classes of robust potentials can be found in the literature: 1) Monotone  𝜓 (e.g. the 

Huber´s potential), 2) Soft redescending 𝜓 (e.g. Cauchy´s potential), and 3) Hard redescender 𝜓. 

The later class includes the well-known and widely used Welsh´s potential, which has a scale 

factor k: 

                                                            𝜌(z) = 1 −
1

2𝑘
e−𝑘z2

,     ( 4.11 ) 

For some robust potentials we have that 
𝜓(𝑧)

 𝑧
→ 0 very rapidly when 𝑧 → ∞. Consequently, 

observations which are not too distant from the corresponding M-estimate would have a very 

small influence in the estimation process. Additionally, the robustness property can yield 

numerical algorithms that are ill-posed (Rey, 1983). To overcome these limitations, the 

robustness property can be relaxed as follows: 

                                                       lim𝑧→+∞
𝜓(𝒛)

 𝑧
= γ,   γ ∈ (0,1) .  ( 4.12 ) 
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Typically γ is set to a small value. A potential that satisfies equation (4.12) is called a quasi-

robust potential (Rey, 1983), usually denoted by 𝜌𝑄(∙). A common way of building a quasi-

robust potential is to add a small quadratic perturbation to a robust potential: 

                                                  𝜌𝑄(𝑧) = (1 − γ)𝜌(𝑧) + γz2.    ( 4.13 ) 

A computation of the corresponding weight function reveals that the weights are also a convex 

combination: 

                                                𝑤𝑄(𝑧) = (1 − γ)𝑤(𝑧) + γ ∙ 1 .   ( 4.14 ) 

Equation (4.14) leads to computing the estimator 𝜃 without severely penalizing potential outliers. 

The Welsh’s potential will be employed in defining our data weighers later in this dissertation. 

Its corresponding weight function is written as: 

                                                          𝑤𝑄(𝑧) = (1 − γ)𝑒−𝑘𝑧2
+ γ .  ( 4.15 ) 

 

4.2 Implicit Weighted Gaussian Processes 

Our approach assumes that the likelihood 𝑝(𝐷|f𝐷) depends on a collection of weights w𝐷 =

[w1, w2, … , w𝑁], where each w𝑖 ∈ (0,1]. These weights express how consistent each data 

point (𝐱𝑖, y𝑖) is with respect to the underlying model. We assume that the training data are 

conditionally independent, so that: 

                                        𝑝(𝐷|f𝐷; w𝐷) = 𝑝(y|f𝐷; w𝐷) = ∏ 𝑝(y
𝑖
| f𝑖; w𝑖)

𝑁
𝑖=1  .  ( 4.16 ) 

A particular structure is not demanded here from the expression of 𝑝(y
𝑖
|f𝑖; w𝑖). However, 

𝑝(y
𝑖
|f𝑖; w𝑖) must be a “genuine” likelihood (i.e. a posterior obtained by using it in a Bayesian 
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expression must be a proper probability distribution). This guarantees that posterior GPs are 

valid for doing inferences. We call any likelihood 𝑝(𝐷|f𝐷; w𝐷) having this property an implicit 

weighted likelihood (this and subsequent sections might use the term weighted likelihood if it is 

clear from the context that we refer to the implicit type introduced in this work).  

Weights might be given as part of the training data, but most likely they would have to be 

calculated using certain weight functions, which we call data weighers. The input to a data 

weigher is a finite collection 𝐷 = {𝐗, 𝐲} = {(𝐱𝑖, y𝑖): 𝐱𝑖 ∈ 𝒳, y𝑖 ∈ ℝ}, and their output consists 

of a weight per data point in 𝐷 (note however that for the case of online GPs we need to calculate 

at each learning step 𝑡 + 1 only the weight for the observation (𝐱𝑡+1, y𝑡+1)). To calculate w𝑖 for 

an observation (𝐱𝑖, y𝑖) our data weighers use a neighborhood 𝑁𝑖 of 𝐱𝑖. The data weighers are 

devised based on whether we are learning from heteroscedastic data or from data containing 

outliers or both. In the case of heteroscedasticity, each weight w𝑖 must be inversely proportional 

to the variance of the set {y𝑗:  𝐱𝑗 ∈ 𝑁𝑖}. In that case, weights are normalized so that they take 

values in (0, 1].  Our experiments show that heteroscedastic data weighers can allow GPs to 

effectively model heteroscedastic data without the need for modeling noise variance as a 

function of the input data or adding hyperparameters to the GPs. This property is called here 

implicit heteroscedasticity. In the case of data with outliers, each  w𝑖 is estimated based on the 

relationship of the corresponding observation y𝑖 to robust estimations of mean and variance of 

the set {y𝑗:  𝐱𝑗 ∈ 𝑁𝑖}. This approach makes the GP robust by assigning small weights to 

observations that significantly deviates from the robust estimate of location. In order to obtain a 
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posterior GP that is both robust and implicitly heteroscedastic, we propose a data weigher that is 

a combination of a robust data weigher and a heteroscedastic data weigher. 

For some observations, the corresponding neighborhoods might contain so few data points that 

weights could not be estimated reliably. A default weight is assigned to those observations. 

Using 1 as the default weight could become problematic if the recipient observations were 

actually unworthy of the highest possible weight; i.e. the posterior model will be over-confident 

when making predictions on the corresponding input regions, with predictive means inaccurately 

biased towards the training data. To avoid this risk, we chose 0.5 as the default weight; which 

denotes the uncertainty associated to the lack of data in 𝑁𝑖. The risk in this case is obtaining 

posterior means slightly biased towards the prior means, and posterior variances greater than it 

should be for some input regions. Researchers might prefer to take this risk however, given that 

most real-life data contain noise and outliers. Details on how to define 𝑁𝑖 for GP regression and 

when to assign the default weight are given in a section below. 

This approach allows using any implicit weighted likelihood. However, this work focuses in 

introducing the following implicit weighted Gaussian likelihood: 

                                 𝑝(𝐷|f𝐷; w𝐷) =
1

√(2𝜋)𝑁|W|
𝑒−

1

2
(y𝐷−f𝐷)

𝑇
W−1(y𝐷−f𝐷)

 ,    ( 4.17 ) 

where W = 𝜎2diag (
1

w1
,

1

w2
, … ,

1

w𝑁
), and |W| denotes the determinant of W. The main reason for 

this choice is that posterior GPs are obtained analytically. Note that weights were introduced into 

the original Gaussian likelihood in a way that smaller weights effectively increase the noise 

variance for the corresponding observations. Consequently, the smaller a weight w𝑖 the more 
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irrelevant becomes that y
𝑖
 and f

𝑖
 greatly differ from each other. In other words, the 

corresponding likelihood is near to 1 for a broad range of f
𝑖
 values when the weight is very small. 

This allows us to obtain models with predictions that greatly deviate from “dubious” training 

observations without incurring in high losses. 

4.2.1 Implicit Weighted Batch GP 

Recalling that the joint distribution for the prior GP is 

𝑝𝑜(f𝐷) =
1

√(2𝜋)𝑁|𝐾𝐷|
𝑒−

1

2
(f𝐷−𝐸0[f𝐷])𝑇𝐾𝐷

−1(f𝐷−𝐸0[f𝐷])
, we use the formula for joint Gaussian 

distributions of two random vectors to find an analytic expression for the log marginal likelihood 

𝑙𝑛 ∫ 𝑝(𝐲| f𝐷; w𝐷)𝑝𝑜(f𝐷)𝑑f𝐷: 

𝑝(𝐲| f𝐷; w𝐷)𝑝𝑜(f𝐷) = 𝑝 ([
f𝐷

𝐲
] ; w𝐷) = 𝒩 ([

𝐸0[f𝐷]

𝐸0[f𝐷]
] , [

𝐾𝐷
−1 + W

−1 −W
−1

−W
−1

 W
−1

]
−1

).  ( 4.18 ) 

Applying properties of multivariate Gaussian distributions: 

    𝑙𝑛 ∫ 𝑝(𝐲| f𝐷; w𝐷)𝑝𝑜(f𝐷)𝑑f𝐷 = 𝑙𝑛 (𝑁(𝐸0[f𝐷], 𝐾𝐷 + W)) 

       = 𝑙𝑛 (
1

√(2𝜋)𝑁|𝐾𝐷+W|
𝑒−

1

2
(𝐲 − 𝐸0[f𝐷])𝑇[𝐾𝐷+W]−1(𝐲 − 𝐸0[f𝐷])

) 

       = −
1

2
(𝐲 − 𝐸0[f𝐷])𝑇[𝐾𝐷 + W]−1(𝐲 − 𝐸0[f𝐷]) −

1

2
𝑙𝑛|𝐾𝐷 + W| −

𝑁

2
𝑙𝑛(2𝜋) .  ( 4.19 ) 

Consequently, the parameters of the normalization lemma 𝒒 and 𝑹 are expressed as: 

                                             𝒒 = [𝐾𝐷 + W]−1(𝐲 − 𝐸0[f𝐷]) ,  ( 4.20 ) 

                                             𝑹 = −[𝐾𝐷 + W]−1 .  ( 4.21 ) 
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These results lead to the following expression for the prediction of a posterior weighted batch GP 

when using our weighted Gaussian likelihood: 

                                            𝜇∗ = 𝜇0(𝐱∗) + 𝒌∗
𝑇𝜶,  ( 4.22 ) 

                                           𝜎∗
2 = 𝑘(𝐱∗, 𝐱∗) +  𝒌∗

𝑇𝑪 𝒌∗,  ( 4.23 ) 

 where   

                                            𝜶 =  [𝐾𝐷 + W]−1(𝐲 − 𝝁0(𝑿)),   ( 4.24 ) 

                                            𝑪 = −[𝐾𝐷 + W]−1.  ( 4.25 )  

4.2.1.1 Estimation of Weighted GP Hyperparameters 

Let us denote the vector of kernel parameters by 𝜽𝑘 = (𝜃𝑘1
, 𝜃𝑘2

, … , 𝜃𝑘𝑙
), where 𝑙 ≥ 0 (i.e. 𝜽𝑘 

might be empty). We denote the GP hyperparameters by 𝜽 = (𝜃1, 𝜃2, … , 𝜃𝑙+1) = (𝜎2, 𝜽𝑘). The 

MLE method is commonly used to estimate the values of hyperparameters. This section derives 

the MLE formulation to estimate hyperparameters for weighted batch GP using the weighted 

Gaussian likelihood from equation (4.17). MLE consists of finding the parameter values that 

maximize the following log marginal likelihood with respect to 𝜽: 

                                     ℒ1 = ln(𝑝(𝐲|𝑿, 𝜽)) = 𝑙𝑛 ∫ 𝑝(𝐲|𝜽, f𝐷)𝑝𝑜(f𝐷)𝑑f𝐷 .  ( 4.26 ) 

The expression for ℒ1 in our case is given by equation (4.19). In general, there is no analytical 

solution to this optimization problem. Numerical optimization methods that benefit from the 

derivatives of the objective function are typically employed. Denoting 𝐾𝐷 + 𝑾 by 𝐾𝑝, the 

derivative of  ℒ1 w.r.t. to each 𝜃𝑖 is written as: 

               
𝜕ℒ1

𝜕𝜃𝑖
=

1

2
(𝐲 − 𝐸0[f𝐷])𝑇𝐾𝑝

−1 𝜕𝐾𝑝

𝜕𝜃𝑖
𝐾𝑝

−1(𝐲 − 𝐸0[f𝐷])  − 
1

2
𝑡𝑟 (𝐾𝑝

−1 𝜕𝐾𝑝

𝜕𝜃𝑖
) ,  ( 4.27 ) 

where the different derivatives of 𝐾𝑝 are as follows: 
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𝜕𝐾𝑝

𝜕𝜎2 =
𝜕(𝐾𝐷+W)

𝜕𝜎2 =
𝜕W

𝜕𝜎2 = diag (
1

w1
,

1

w2
, … ,

1

w𝑁
) ,  ( 4.28 ) 

                                        
𝜕𝐾𝑝

𝜕𝜃𝑘𝑖

=
𝜕(𝐾𝐷+W)

𝜕𝜃𝑘𝑖

=
𝜕𝐾𝐷

𝜕𝜃𝑘𝑖

 .  ( 4.29 ) 

4.2.1.2 Optimizing hyperparameters with priors 

In the case of having a prior 𝑝(𝜽) for the hyperparameters, that prior is included into the MLE 

formulation by maximizing the following log posterior instead of the log marginal likelihood: 

                                                 ℒ2 = 𝑙𝑛(𝑝(𝐲|𝑿, 𝜽)𝑝(𝜽)) .  ( 4.30 ) 

In our particular case, all hyperparameters 𝜃𝑖 are non-negative and are assumed independent 

from other hyperparameters, so that 𝑝(𝜽) = ∏ 𝑝(𝜃𝒊)
|𝜽|
𝑖=1 , and the objective function can be 

written as: 

                                                 ℒ2 = ℒ1 + ∑ 𝑙𝑛(𝑝(𝜃𝑖))
|𝜽|
𝑖=1  .  ( 4.31 ) 

In our experiments, each hyperparameter 𝜃𝑖 is assumed to be distributed 𝑙𝑛 𝒩(𝜇𝜃𝑖
, 𝜎𝜃𝑖

2 ), where 

𝜇𝜃𝑖
 and 𝜎𝜃𝑖

2  are the mean and variance, respectively, of the transformed variable 𝑙𝑛(𝜃𝑖). 

Consequently: 

                        ℒ2 = ℒ1 −  ∑ [𝑙𝑛(𝜃𝑖) + 𝑙𝑛(𝜎𝜃𝑖
√2𝜋) +  

(𝑙𝑛𝜃𝑖−𝜇𝜃𝑖
)

2

2𝜎𝜃𝑖
2 ]

|𝜽|
𝑖=1  .  ( 4.32 ) 

The objective function is simplified by removing constant terms: 

                       ℒ2
∗ = −

1

2
(𝐲 − 𝐸0[f𝐷])𝑇𝐾𝑝

−1(𝐲 − 𝐸0[f𝐷]) −
1

2
𝑙𝑛|𝐾𝑝| 

                                 − ∑ [𝑙𝑛(𝜃𝑖) +  
(𝑙𝑛𝜃𝑖−𝜇𝜃𝑖

)
2

2𝜎𝜃𝒊
2 ]

|𝜽|
𝑖=1  .  ( 4.33 ) 

The corresponding derivative is obtained as follows:  
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𝜕ℒ2

∗

𝜕𝜃𝑖
=

𝜕ℒ1

𝜕𝜃𝑖
 −  

1

𝜃𝑖
(1 +

𝑙𝑛𝜃𝑖−𝜇𝜃𝑖

𝜎𝜃𝑖
2 ) .  ( 4.34 ) 

4.2.2 Implicit Weighted Online GP 

The expressions for the implicit weighted online GP are obtained here by finding the expressions 

for the terms 𝑞𝑡+1 and 𝑟𝑡+1 when the weighted Gaussian likelihood is used. The derivation 

proceeds as follows: 

        𝐸𝑡[𝑝(𝑦𝑡+1|𝑓𝑡+1)] = ∫ 𝑝(y𝑡+1|𝑓𝑡+1)𝑝𝑡(𝑓𝑡+1) 𝑑𝑓𝑡+1 

                                     = ∫ 𝒩 (𝑓𝑡+1,
𝜎2

w𝑡+1
) 𝒩(𝐸𝑡[𝑓𝑡+1], 𝐾𝑡(x𝑡+1, x𝑡+1))𝑑𝑓𝑡+1  

                                    = ∫ 𝒩 ([
𝐸𝑡[𝑓𝑡+1]

𝐸𝑡[𝑓𝑡+1]
] , [

1

𝜎𝑡+1
2 +

w𝑡+1

𝜎2 −
w𝑡+1

𝜎2

−
w𝑡+1

𝜎2

w𝑡+1

𝜎2

]

−1

) 𝑑𝑓𝑡+1  

                                    = 𝒩 (𝐸𝑡[𝑓𝑡+1],  𝜎𝑡+1
2 +

𝜎2

w𝑡+1
) .  ( 4.35 ) 

Consequently, the parameters 𝑞𝑡+1 and 𝑟𝑡+1 in our case are written as follows: 

                         𝑞𝑡+1 =
𝜕

𝜕𝐸𝑡[𝑓𝑡+1]
𝑙𝑛 𝐸𝑡[𝑝(y𝑡+1|𝑓𝑡+1)] =

(y𝑡+1− 𝑚𝑡+1)

 𝜎𝑡+1
2 + 

𝜎2

w𝑡+1

 ,    ( 4.36 ) 

                                                𝑟𝑡+1 = −
1

 𝜎𝑡+1
2 + 

𝜎2

w𝑡+1

 ,                      ( 4.37 ) 

where  𝑚𝑡+1 = 𝐸𝑡[𝑓𝑡+1] and  w𝑡+1 is a function of  {(𝐱𝑖, y𝑖): 𝑖 = 1, 2 … 𝑡 + 1}. 

The model parameters 𝛂 and 𝐂 are updated at each step of the training algorithm shown in Figure 

2.1, using the values 𝑞𝑡+1 and 𝑟𝑡+1 just obtained. However, weights for previously learned 

observations would likely change at each learning step if they were recalculated.  Consequently, 

for the case of weighted online GPs the prediction of the model is likely affected by this 
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discrepancy between previous and current weights. An ideal solution to this issue would be to 

update parameters 𝛂 and 𝐂 in a way that weight changes are properly reflected in the model. 

However, this is a very difficult approach given the recursive nature of the learning algorithm, 

and it will not be explored in this work. Weights are expected to change significantly at the 

beginning of the learning process. However, they should tend to stabilize after learning a 

considerable number of observations (assuming there is not a significant concept drift in our 

data). Based on this rationale, a second approach consists of not attempting to correct for 

changes in the weights of previously learned data; in other words, it is expected that weight 

stability will be achieved eventually. This is the approach taken in this dissertation.  

4.2.3 Implicit Weighted Sparse Online GP 

The formulation of the implicit weighted SOGP is essentially the same as that of SOGP, with the 

exception that the terms 𝑞𝑡+1 and 𝑟𝑡+1 are calculated using equations (4.36) and (4.37). Note that 

the existence of a BV set with a fixed capacity m increases the risk of learning observations with 

inadequate weights. Although in the case of weighted online GP it is reasonable to expect that 

weights should be increasingly more accurate as more training data arrive, that expectation is 

justified in the case of weighted SOGP only if the capacity m is large enough to accommodate a 

representative sample of the input space.  

Given that SOGP regularly removes from the BV set the least informative observations, it is 

intuitive to expect that removed observations were typically learned with low weights.  If that 

was the case, the discrepancies between previous and current weights will be alleviated by the 



140 

 

removal process. The validity of this expectation is considered in the experimental section of this 

chapter. 

4.3 Data Weighers 

This section introduces three data weighers to be used in regression problems: 

HeteroscedasticReg, RobustReg and HeteroscedasticRobustReg. These data weighers take values 

in the interval (𝛾,1], where 0 < 𝛾 ≪ 0.5. They have three parameters: a neighborhood radius r, a 

neighborhood size s, and a weight floor 𝛾.  As mentioned above, these data weighers work by 

focusing on a data point (𝐱𝑖 , y𝑖) at a time. The corresponding neighborhood 𝑁𝑖 is defined here as 

the closed ball 𝐵(𝐱𝑖; 𝑟) = { 𝐱𝑗 ∈ 𝐗 ∶ ‖𝐱𝑖 − 𝐱𝑗‖ ≤ 𝑟}. We assign a non-default weight to (𝐱𝑖, y𝑖) 

if and only if  𝑁𝑖 contains at least s observations. The following subsections describe how each 

data weigher calculates non-default weights. 

4.3.1 HeteroscedasticReg DataWeigher 

For each observation (𝐱𝑖, y𝑖) such that |𝑁𝑖| ≥ 𝑠, where 𝑠 is the neighborhood size, this data 

weigher first executes two steps: (1) calculates a robust variance 𝑣𝑖 for the set {yj: 𝐱j ∈ 𝑁𝑖}, and 

(2) calculates a preliminary weight 𝑤𝑖
′ =  

1

𝑣𝑖
. After doing that for all observations, each 𝑤𝑖

′ is 

normalized by dividing it by the maximum of the 𝑤𝑖
′ values. The normalized weights are denoted 

here by 𝑤𝑖
′′. Finally, we leverage the quasi-robust approach to guarantee that no weights are 

lower than γ, by computing non-default weights as 𝑤i = γ + (1 − γ) 𝑤𝑖
′′. 
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4.3.2 RobustReg DataWeigher 

For each observation (𝐱𝑖, y𝑖) to receive a non-default weight, this data weigher calculates a 

robust mean 𝜇𝑖 and robust variance 𝑣𝑖 of the set {yj: 𝐱j ∈ 𝑁𝑖}. Subsequently, each weight is 

calculated using the Welsh’s quasi-robust weight function from equation (4.15): 

                                                    𝑤i = (1 − γ)𝑒
− 

(𝑦𝑖−𝜇𝑖)
2

𝑣𝑖 + γ .  ( 4.38 ) 

Note that the scale factor k was set to 1 here because the term 𝑧 =
𝑦𝑖−𝜇𝑖

√𝑣𝑖
  is already normalized to 

scale. 

4.3.3 HeteroscedasticRobustReg DataWeigher 

For each observation (𝐱𝑖, y𝑖) to receive a non-default weight, this data weigher calculates the 

heteroscedastic and robust weights as described above. Subsequently, 𝑤i is calculated as the 

minimum of the two weights.  

4.4 Notes on Computational Complexity 

This section analyzes how the computational complexities of learning GP regression models are 

affected by the use of an implicit weighted likelihood that employs any of the three data 

weighers introduced above. The reliance on searching for observations within neighborhoods of 

data points naturally leads to implementations that employ space-partitioning data structures 

such as k-d trees (Bentley J. , 1980). Constructing a k-d tree can be achieved in 𝑂(𝑁 ∙ 𝑙𝑜𝑔𝑁) 

computational complexity (Wald & Havran, 2006). Searching for the neighborhood of each 

particular data point has 𝑂(𝑙𝑜𝑔𝑁) computational complexity. Once the neighborhood of an 

observation has been found, what methods are employed to calculate the robust statistics 
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determine the computational complexity of calculating the corresponding weight. As noted 

below, in our experiments we employed the mcdcov function from the MATLAB library LIBRA 

(Verboven & Hubert, 2010), which relies on the minimum covariance determinant (MCD) 

estimator (Rousseeuw P. J., 1984). It was shown recently that the MCD estimator has 

𝑂 (𝑁
𝑑(𝑑+3)

2 ) computational complexity (Bernholt & Fischer, 2004), where d denotes the 

dimensionality of the input space 𝒳. Consequently, the use of the mcdcov in our data weighers 

implies a 𝑂(𝑁2) complexity for calculating the robust mean and variance for each neighborhood.   

In the case of implicit weighted batch GP, our data weighers have 𝑂(𝑁 ∙ 𝑙𝑜𝑔𝑁) computational 

complexity for constructing the k-d tree for the training data set, 𝑂(𝑁 ∙ 𝑙𝑜𝑔𝑁) computational 

complexity to search for the neighborhoods of all points in the data set, and 𝑂(𝑁3) complexity to 

calculate the robust statistics (and weights) for N neighborhoods. This leads to an aggregated 

𝑂(𝑁3) computational complexity for processing the training data set to calculate weights. 

Consequently, our implicit weighted batch GP has the same computational complexity than 

batch GP.  

In the case of implicit weighted online GP, a k-d tree should be constructed iteratively by adding 

observations at each learning step. Adding a single observation to a k-d tree that contains t 

observations has 𝑂(log (𝑡 + 1)) complexity. Consequently, building a k-d tree from an empty 

tree for N observations requires 𝑂(𝑙𝑜𝑔(𝑁!)), which is better than 𝑂(𝑁 ∙ 𝑙𝑜𝑔𝑁). The same 

complexity is required for neighborhood searching for the first N observations. The use of the 

MCD estimator again requires 𝑂(𝑁3) time complexity. Consequently, the computational 
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complexity of our implicit weighted online GP is 𝑂(𝑁3), that is the computational complexity of 

online GP.  

The discussion for online GP holds in the case of implicit weighted SOGP, with the exception 

that processing N observations online would eventually require removing observations from the 

BV set, and consequently removing them from the k-d tree as well. Removing a data point from a 

k-d tree has the same logarithmic complexity than adding a data point, i.e. 𝑂(log (𝑛)), where n 

denotes the number of data points in the tree. Let us consider the worst-case scenario in which 

we have a k-d tree containing m observations already, and learning the next N observations will 

trigger N additions and N removals. That scenario leads to 𝑂(2𝑁 ∙ 𝑙𝑜𝑔(𝑚)) = 𝑂(𝑁 ∙ 𝑙𝑜𝑔(𝑚2)) 

as the complexity for iteratively constructing the tree, and 𝑂(𝑁 ∙ 𝑙𝑜𝑔(𝑚)) for neighborhood 

searching. The time complexity of using the MCD estimator in this case for the N neighborhoods 

is 𝑂(𝑚3) ≤ 𝑂(𝑁𝑚2). Consequently, implicit weighted SOGP and SOGP share the same 

computational complexity: 𝑂(𝑁𝑚2).  

4.5 Experiments 

The different variants of GP regression were implemented in MATLAB. Our implementation of 

batch GP was validated against the NETLAB toolbox (Nabney, 2004). The online GP and SOGP 

were validated against Grollman’s Online Gaussian Process C++ Library, available at the time of 

writing at http://brown-rlab.googlecode.com/svn/trunk/SOGP/. Robust means and robust 

variances were calculated using the function mcdcov from the MATLAB library LIBRA 

(Verboven & Hubert, 2010). 

http://brown-rlab.googlecode.com/svn/trunk/SOGP/
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The hyperparameters for the batch GPs and weighted batch GPs were estimated by applying the 

MLE method to the marginal likelihood. The online GP and SOGP variants used the values of 

hyperparameters estimated for the corresponding batch variant whenever possible. This was done 

for two reasons: First, estimating parameters in the case of online GPs is a very difficult problem. 

Furthermore, it is impossible to obtain reliable parameter values before some critical mass of 

training data has been learned. Second, given that the main goal of our experiments is to compare 

the predictive quality of the implicit weighted GPs versus standard GPs, using the best possible 

parameters in each case supports a more fair comparison (parameters should be better estimated 

by leveraging all the training data). If the values estimated for batch GP on a particular data set 

were useless, then all the models in that case employed the values estimated for weighted batch 

GP. Those cases will be noted throughout this section. The well-known simple exponential 

kernel was used in our experiments: 

                                                     𝑘(𝐱, 𝐱′) = 𝑒−
1

2
∑ 𝑎𝑖(𝐱𝒊−𝐱𝒊

′)
2𝑑

𝑖=1 ,  ( 4.39 ) 

where d denotes the dimensionality of the space 𝒳. In order to simplify the hyperparameter 

space so that the implicit weighted GPs could be easily contrasted to their standard counterparts, 

the experiments consisted of simulated data with d = 1. Consequently, GPs in our experiments 

have only two hyperparameters: the noise variance σ2 and the scale parameter 𝑎1 from the 

kernel. Each training data set was randomly “shuffled”, so that the data were not presented to the 

online GPs as time series. Shuffling was done only once for each experiment, so that training 

observations were given in the same order to all GP variants. 
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4.5.1 Heteroscedastic Data without Outliers 

This is a simple experiment that shows the potential advantages of weighted GPs when modeling 

heteroscedastic data. We fabricated a training data set containing two regions, each with a 

different noise variance. The underlying ground-truth function was y(x) = 10 ∙ 𝑠𝑖𝑛𝑐(x). A 

Gaussian noise was added to y(x). The noise variance was set to 0.2 for x ≤ 0, and to 1.2 

for x > 0. The training data is shown in Figure 4.1(a).  

The parameters estimated for the batch GP were  σ2 = 1.095 and 𝑎1 = 3.5051. Notice that σ2 is 

similar to the greater of the two actual variances. Prediction from batch GP is shown in Figure 

4.1(b), including the 95% confidence interval. The dotted red line shows the underlying true 

function. Notice how batch GP over-estimated the variance on the left side of the data. Figure 

4.1(c) shows the better fit achieved by a weighted GP that employed a data weigher that assigns 

a weight = 1 to observations having negative x values and a weight = 0.1667 otherwise. These 

weights were found by assigning a preliminary weight to each observation equal to the inverse of 

the corresponding noise variance, and subsequently dividing those preliminary weights by the 

maximum preliminary weight (i.e., 5). The estimated hyperparameters for the weighted batch GP 

were  σ2 =0.16481 and 𝑎1 = 3.6243; i.e. this time  σ2 was estimated near the lowest of the actual 

noise variances. Greater variances for the right side of the graph were achieved through the lower 

weights in that region.  

The predictions from the online models are shown in Figure 4.2 and Figure 4.3. Both weighted 

GPs were capable of implicitly modeling the different variances. In the case of the sparse GPs, 

black circles denote the data points kept in the BV sets. SOGP retained mostly points from the 
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right side. However, the weighted SOGP kept mainly observations from the region having the 

smallest noise variance, which received the greater weights. This supports our expectation: that 

weighted SOGP would be prone to avoid having data with relatively small weights in the BV set.  

These results show the potential capabilities of weighted GP for implicitly modeling 

heteroscedasticity. However, actual noise variances are rarely known. In practical terms, we 

should compare standard GP models to weighted GP models that rely on more generic data 

weighers. Consequently, we repeated the experiment employing HeteroscedasticReg, with s = 3, 

r = 2.0 and γ = 0.05. The values estimated for the weighted GP hyperparameters were  σ2 = 

0.13797 and 𝑎1 = 2.8615. The graphs in Figure 4.4 show the predictions that were obtained in 

this case. The weighted variants of batch and online GP were still able to implicitly model the 

heteroscedasticity in the data. However, this was not achieved by the weighted SOGP. Despite 

that, it still retained more data from the left side than SOGP. An increase in the capacity m was 

required to compensate for the use of a generic data weigher. The weighted SOGP started to 

model the heteroscedasticity for m = 28 (around 35% of the data); as illustrated in Figure 4.4(d). 

 

Figure 4.1: (a) The simulated training data set with two regions having different variances. (b) 

Prediction from batch GP. (c) Prediction from weighted batch GP. 
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Figure 4.2: Prediction of online GPs on the heteroscedastic data. (a) Online GP (hyperparameters 

as used in batch GP). (b) Weighted Online GP (hyperparameters as used in weighted batch GP). 

 

 

Figure 4.3: Prediction of SOGPs on the heteroscedastic data, where capacity m was set to 16 (~ 

20% of data). (a) SOGP (hyperparameters as used in Batch GP). (b)  Weighted SOGP 

(hyperparameters as used in weighted batch GP). 
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Figure 4.4: Prediction of weighted GPs on the heteroscedastic data. Models were trained using 

HeteroscedasticReg. (a) Weighted GP. (b) Weighted online GP (hyperparameters as used in 

weighted batch GP). (c)  Weighted SOGP with capacity m = 16, which is ~ 20% of data 

(hyperparameters as used in weighted batch GP). (d) Weighted SOGP with capacity m = 28, 

which is ~ 35% of data (hyperparameters as used in weighted batch GP). 
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4.5.2 Homoscedastic Data with Outliers 

Our second experiment focused on learning homoscedastic data containing outliers. The ground-

truth function in this case was y(x) = 𝑠𝑖𝑛 (
1

2
x) (

10𝑙𝑜𝑔(x+2)

x
) +

x2

200
. It was sampled at 60 

equidistant points from x = 0.25 to 30. A Gaussian noise with variance equal to 0.5 was added to 

the sample. Subsequently, each observation was randomly considered, with probability 0.1, to be 

converted into an outlier by adding a value randomly taken from the set [−10, −8] ∪ [8, 10]. 

The resulting training data, shown in Figure 4.5(a), contained approximately 10% of outliers. 

The hyperparameters of batch GP were estimated as σ2 = 13.6013 and 𝑎1 = 5.3929e-08. The 

corresponding prediction rendered a flat line, as shown in Figure 4.5(b). Using weighted batch 

GP with RobustReg (s = 3, r = 2.0, γ = 0.005), the MLE method gave us  σ2 = 0.20699 and 𝑎1 = 

0.10553. The trained weighted batch GP lead to the highly accurate prediction shown in Figure 

4.5(c). Finally, prediction from batch GP was greatly improved when we used the same 

parameters as the weighted batch GP. However, as can be seen in Figure 4.5(d), its results were 

not as good as those obtained from the weighted batch GP. 

The online GP and SOGP models were run employing the hyperparameter values estimated for 

the weighted batch GP. The corresponding predictions are shown in Figure 4.6 and Figure 4.7. 

The advantage of using our weighted online GP over the online GP is clear from the graphs. 

However, the two SOGP variants performed similarly. In the case of our weighted online GP, 14 

out of 60 points (approx. 23.33% of the data) were given the default weight. On the other hand, 

the small capacity forced our weighted SOGP to learn 37 data points (approx. 61.67% of the 

data) using the default weight. This high percentage of default weights explains why the 
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weighted SOGP behaved similarly to SOGP; i.e. most training observations were similarly 

relevant to the weighted model, which is about the same as using SOGP. Figure 4.7(c) shows a 

histogram of the weights of the basis vectors kept by the weighted SOGP. 

When the capacity m was increased to 20 (one third of the data), only 14 observations (approx. 

23.33% of the data) received the default weight. Results were greatly improved, as can be seen in 

Figure 4.8, which shows the weighted SOGP prediction and the histogram of weights of the basis 

vectors after training. As in the first experiment, SOGP tended to keep in the BV set observations 

that were not in agreement with the underlying model, while the weighted SOGP retained fewer 

observations that deviated from the underlying model, which also received smaller weights. 

As a final step, we assessed the robustness of the models. Our comparison took into account only 

the batch GP variants, given that other variants are approximations to the corresponding batch 

cases. As before, estimation of hyperparameters for the batch GP led to flat line predictions. 

Consequently, we compared the robustness of batch GP and weighted batch GP using the values 

estimated for the weighted batch GP. The predictions of batch GP and weighted batch GP were 

plotted for data sets having the same ground-truth function used in this second experiment, but 

containing different percentages of outliers: 5%, 10%, 15%, 20%, 30%, 40% and 50%. The 

weighted GP employed RobustReg with the same parameter values used before. At 5%, 10% and 

15% of outliers the weighted batch GP models were highly accurate and clearly better than the 

corresponding batch GP models. Both GP variants behaved similarly at around 20% of outliers 

in the data, still rendering accurate predictions. The performance of both models started to 

degrade at a similar rate at 30% of outliers. For some of the datasets we also estimated 
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hyperparameters for the batch GP using as starting point for the MLE method the values from the 

corresponding weighted GP model. In those cases, batch GP still performed worse than the 

weighted GP. More details about the relationship between weights and MLE in the case of 

outliers are given later in this chapter. 

 

Figure 4.5: (a) Simulated training data set containing outliers. (b) Prediction using batch GP, 

with GP hyperparameters obtained through MLE. (c) Prediction using weighted batch GP, with 

GP hyperparameters obtained through MLE. (d) Prediction using batch GP, with GP 

hyperparameters as were estimated for weighted batch GP. 
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Figure 4.6: Prediction of online GPs on the homoscedastic data with outliers. (a) Online GP 

(hyperparameters as used in weighted batch GP). (b) Weighted Online GP (hyperparameters as 

used in weighted batch GP). 

 

 

Figure 4.7: Prediction of SOGPs on the homoscedastic data with outliers; capacity m = 12 (~ 

20% of data). (a) SOGP (hyperparameters as used in weighted batch GP). (b)  Weighted SOGP 

(hyperparameters as used in weighted batch GP). (c) Histogram of the weights of the final basis 

vectors of the weighted SOGP. 
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Figure 4.8: Results from weighted SOGP with capacity m = 20. (a) Prediction. (b)  Histogram of 

weights of the final basis vectors. 

 

4.5.3 Heteroscedastic Data with Outliers 

The third experiment focused on learning heteroscedastic data containing outliers. The training 

data were generated as done in the second experiment, except that samples for which x < 15 were 

affected by a Gaussian noise with variance equal to 0.5 and other samples were affected by a 

Gaussian noise with variance equal to 1.5. Figure 4.9(a) shows the training data. The 

hyperparameters estimated for batch GP were  σ2 = 24.1159 and 𝑎1 = 1.2238e-07. Prediction 

using those values rendered a useless flat line, as shown in Figure 4.9(b). Using weighted batch 

GP and employing HeteroscedasticRobustReg (s = 3, r = 2.0 and γ = 0.005), the estimation of 

GP hyperparameters gave us  σ2 = 0.22363 and 𝑎1 =0.12524. The corresponding plot is shown in 

Figure 4.9(c). Similar to the first experiment,  σ2 was estimated near the smaller of the two actual 

noise variances. A batch GP using those values for its hyperparameters produced the prediction 
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shown in Figure 4.9(d), which is clearly inferior to the prediction depicted in Figure 4.9(c). The 

online GP and SOGP models employed the hyperparameter values of the weighted batch GP. 

Their predictions are shown in Figure 4.10 and Figure 4.11. 

Histograms of the weights assigned by the three weighted GP variants to the observations that 

remained in the BV set after training are shown in Figure 4.12. In the case of weighted batch GP, 

no observation received the default weight; which might explain its good performance compared 

to the other models. Weighted online GP learned 15 out of 60 points using the default weight. 

Weighted SOGP learned 29 data points out of 60 using the default weight (approx. 48.33% of the 

data). Furthermore, the weights of the majority of vectors in its BV set were concentrated in [0.5, 

0.6]. These facts help understand why the predictions of weighted SOGP and SOGP were very 

similar. The prediction from our weighted online GP was similar to the prediction obtained from 

the standard online GP. In this case most weights were concentrated around 0 and 0.5. 

Consequently, its predictions should be similar to those obtained from a standard online GP that 

was trained on a smaller data set containing only the data points with weights significantly 

greater than zero. This remark gives an insight into why the implicit weighted GPs and the 

standard online GPs behaved similarly. 
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Figure 4.9: (a) The simulated heteroscedastic data set containing outliers. (b) Prediction from the 

batch GP, with GP hyperparameters obtained through MLE. (c) Prediction from the weighted 

batch GP, with GP hyperparameters obtained through MLE. (d) Prediction from the batch GP, 

using values of hyperparameters obtained for weighted batch GP. 
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Figure 4.10: Prediction of online GPs trained on the heteroscedastic data with outliers. (a) Online 

GP (hyperparameters as used in weighted batch GP). (b) Weighted Online GP (hyperparameters 

as used in weighted batch GP). 

 

Figure 4.11: Prediction of SOGPs trained on the heteroscedastic data with outliers, where 

capacity m was set to 12 (~ 20% of data). (a) SOGP (hyperparameters as used in weighted batch 

GP). (b)  Weighted SOGP (hyperparameters as used in weighted batch GP). 
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Figure 4.12: Histograms of weights from the three weighted GP models after training. (a) 

Weights assigned to all data points by weighted batch GP. (b) Weights assigned to final basis 

vectors by the weighted online GP. (c) Weights assigned to final basis vectors by the weighted 

SOGP. 

 

4.6 Effect of Weights on the MLE Method 

In this section we focus on the difficulty to estimate hyperparameters using the MLE method for 

the batch GP when the data contain outliers, and why the same estimation method was effective 

when employed for the weighted batch GPs. Figure 4.13(a) shows the MLE optimization surface 

corresponding to batch GP from the second experiment. Figure 4.13(b) shows the MLE 

optimization surface for the weighted batch GP from the same experiment. Note that the 

optimization surface from batch GP is mostly flat and has no global minimum. The use of 

weights reshaped the optimization surface so that it had a global minimum and convergence 

could be easily achieved, as seen in Figure 4.13(b).  
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We generated a new data set using the sampling procedure from the second experiment, except 

that it contained no outliers. On this “clean” data, batch GP rendered an accurate prediction, 

shown in Figure 4.13(d). The estimated hyperparameters: σ2 = 0.37709 and 𝑎1 = 0.1086. Figure 

4.13(c) shows the corresponding optimization surface. This surface is almost identical to that in 

Figure 4.13(b). Consequently, outliers can make the MLE method ineffective, while using a 

robust data weigher may allow the MLE method to regain its effectiveness for estimating GP 

hyperparameters. 

To explore this issue further, we ran MLE on the data from the second experiment using prior 

distributions for the hyperparameters. Both prior distributions were defined as 𝑙𝑛 𝒩(0, 1), to 

match the starting point (1, 1) previously given to the optimization procedure. The optimization 

surfaces for batch GP and weighted batch GP were similar to the corresponding surfaces when 

no priors were used. In the case of weighted batch GP, the estimated values for the 

hyperparameters were almost the same as before. The values estimated for batch GP (σ2 = 

11.4616, 𝑎1 = 0.16112) were more effective this time, as shown in Figure 4.14. However, even 

the use of reasonable priors did not allow the standard batch GP to achieve the effectiveness of 

our weighted batch GP. We repeated the study described in this section for the data set of our 

third experiment. The same results were obtained. 
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Figure 4.13: (a) MLE optimization surface from batch GP trained on data set with outliers from 

the second experiment. (b) MLE optimization surface from weighted batch GP trained on data 

set with outliers from the second experiment. (c) MLE optimization surface from batch GP 

trained on similar data but without outliers (“clean” data set). (d) Prediction of the batch GP 

model trained on the “clean” data set. 
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Figure 4.14: Predictions from the batch GP model when trained on the second data set, this time 

using log normal priors for its hyperparameters. 
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CHAPTER 5: IMPLICIT WEIGHTED GAUSSIAN PROCESSES FOR 

NOVELTY DETECTION 
 

The implicit weighted GPs proposed in the previous chapter can be used for novelty detection in 

the same way as standard GPs were employed in (Kemmler M. , Rodner, Wacker, & Denzler, 

2013) and (Ramirez-Padron, Mederos, & Gonzalez, 2013); which was described in section 2.3.4. 

There is only one modification required: we need a data weigher that can provide a preliminary 

assessment of the importance of an observation based on its distance to observations that are 

highly representative of the target class. There are clearly various ways in which a data weigher 

could be defined. In this chapter, we present a data weigher for novelty detection that relies on 

the assumption (commonly employed in data mining algorithms) that the importance of an 

observation is inversely proportional to its distance to a robust mean of the training observations. 

This data weigher, called here Robust Data Weigher, is introduced in the following subsection. 

Subsequently, this chapter describes the experimental setup used to compare the performances of 

standard GPs and weighted GPs for novelty detection. A subsequent subsection describes the 

data sets employed in our experiments, as well as the kernel used in each case. The final two 

subsections provide the results of our experiments and offer some closing remarks, respectively. 

5.1 Robust Data Weigher 

Similar to the data weighers described in chapter 4, our robust data weigher leverages the quasi-

robust approach to guarantee that the resulting weights take values in the interval (𝛾,1], where 

0 < 𝛾 ≪ 0.5. Given the training data 𝐷 = {𝑿, 𝐲} = {(𝐱𝑖, y𝑖) | 𝐱𝑖𝜖𝒳, y𝑖 = 1, 𝑖 = 1, … , 𝑁}, let us 

denote by 𝝁𝑿 a robust average of all observations in 𝑿. In our experiments, 𝝁𝑿 was calculated by 
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the function mcdcov from the MATLAB library LIBRA (Verboven & Hubert, 2010). The 

mcdcov function was also employed to estimate the corresponding robust covariance matrix Σ𝑿. 

This matrix is used in the calculation of distances to the robust mean, as described below. For 

each observation 𝐱𝑖, the robust data weigher for novelty detection is calculated as follows: 

                                             𝑤i = (1 − γ)𝑒−𝑑𝑀(𝐱𝑖, 𝝁𝑿)2
+ γ ,    ( 5.1 ) 

where 𝑑𝑀(𝐱𝑖, 𝝁𝑿) denotes a robust version of the Mahalanobis distance (Mahalanobis, 1936): 

                                        𝑑𝑀(𝐱𝑖, 𝝁𝑿) = (𝐱𝑖 −  𝝁𝑿)𝑇Σ𝑿
−1(𝐱𝑖 −  𝝁𝑿) .  ( 5.2 ) 

It is important to note that 𝑤i receives the default value 0.5 if the number of observations in 𝑿 is 

less than a certain threshold s (similar to data weighers introduced in the previous chapter). The 

experiments described in this chapter use different values of s, which will be noted in each case. 

Note also that the use of the Mahalanobis distance in our data weigher implies that the data in 𝑿 

lie on a hyper-ellipsoid. Furthermore, it is assumed that the hyper-ellipsoid that contains the 

target class has no regions that constitute a potential source of outliers. 

Contrary to the case of our implicit weighted GP regression, the data weigher proposed in this 

chapter applies the mcdcov function to observations in 𝑿 instead of labels. This has a strong 

negative impact in the computational complexity of weight calculation, which turns out to be 

(𝑁
𝑑(𝑑+3)

2 ) , where d denotes the dimensionality of the input space 𝒳. Because of this polynomial 

complexity, our data weigher can only be applied to input spaces of small dimensionality. In 

particular, the mcdcov function works with data sets of up to 50 dimensions. Consequently, for 

problems of higher dimensionality the data have to be projected into low-dimensional subspaces 

for our data weigher to be able to calculate their weights.  
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5.2 Experimental Setup 

The main purposes of our experiments are (1) to determine whether each weighted GP variant is 

capable of outperforming the corresponding standard GP, (2) to determine how the performance 

of the different online GPs compare to the performance of batch GP-based novelty detection, and 

(3) to compare the four membership scores employed in (Kemmler M. , Rodner, Wacker, & 

Denzler, 2013). Our experiments considered four data sets, which are described in the following 

section. The first three data sets consist of a single target class each, while the fourth data set 

consists of eight separate target classes. In that latter case, our experimental setup (which is 

described below) was executed independently on each target class. In other words, for each 

target class, its observations became the normal observations while observations from the other 

classes were used as contamination sources and for testing purposes. Consequently, the fourth 

data set is actually the source of eight different training data sets for our experimental purposes. 

At each experiment, the labels in the training data for members and not members of the target 

class are all known. We employ 10-fold stratified cross-validation (CV) (Kohavi, 1995) to 

validate the GP-based novelty detectors, each detector using one membership score at a time. 

Stratified CV delivers training data folds that contain roughly the same class proportions as in 

the training data. Consequently, given the use of 10-fold CV, all GPs were trained on 

approximately 90% of the target class at each CV step. SOGPs were cross-validated at two 

different capacities: m = 10 and m = 30.  

To assess the performance of each GP for each membership score, we leveraged receiver 

operating characteristic (ROC) curves (Fawcett T. , 2006). An ROC curve is a graph commonly 
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used in machine learning to visualize the performance of a binary classifier, by plotting the true 

positive rate (proportion of positive observations correctly classified as such) against the false 

positive rate (proportion of negative observations that were incorrectly classified) of the 

classifier. In our case, positive observations correspond to true members of the normal class. An 

ROC curve is constructed by plotting these two rates at numerous discrimination thresholds that 

range from the minimum to the maximum of the scores provided by the classifier on a particular 

data set.  In our case, the membership scores obtained on a training data from each stratified CV 

were used to obtain each ROC curve. The overall quality of each novelty detector was assessed 

by estimating the area under its ROC curve, called AUC value (Fawcett T. , 2006). AUC values 

tend to be in the interval [0.5, 1], where AUC values near 0.5 correspond to a random binary 

classifier. A widely-used rule of thumb is to categorize the quality of classifiers according to the 

traditional academic grading system: excellent classifiers have AUC values between 0.9 and 1, 

classifiers with AUC values from 0.8 to 0.9 are typically considered good, and those having 

AUC values from 0.7 to 0.8 are considered fair. Classifiers with AUC values that are less than 

0.6 are considered failed models and are typically discarded. 

In our experiments, the 10-fold stratified CVs were repeated 30 times for each combination of 

GP variant and membership score, so that 30 ROC curves (and consequently 30 AUC values) 

were obtained in each case. In total, an application of our experimental setup on a single training 

data set generated 960 AUC values (from the combinations of eight GP instances and four 

membership scores). The cross-validation procedures were implemented by the author in Matlab, 

leveraging the functions cvpartition and perfcurve from the Matlab Statistics toolbox.  
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Given that the data sets did not contain outliers originally, the experimental setup just described 

was also run on various “contaminated” versions of the data sets, in order to compare the 

performance of the GP-based novelty detectors when the training data contained outliers. Let us 

denote by 𝑙, where 𝑙 ∈ [0,1], a level of contamination; i.e. the percentage of observations labeled 

as members of the target class that are outliers. For positive values of 𝑙, we calculated how many 

observations from the non-target classes had to be added to the target class to achieve the 

contamination level 𝑙:  

                                                 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠_𝑡𝑜_𝑎𝑑𝑑 = ⌈
𝑙 𝑁1

1−𝑙
⌉ ,  ( 5.3 ) 

where 𝑁1 denotes the number of observations originally in the data set that are members of the 

target class. If 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠_𝑡𝑜_𝑎𝑑𝑑 ≥ 1, then the original data set was contaminated before 

executing each particular CV run by randomly choosing that number of observations from the 

non-target class and temporarily labeling them as members of the target class. This allowed us to 

obtain training data sets with the required level of outliers. Employing this contamination 

procedure, our experimental setup was repeated for the following contamination levels: 0.05, 

0.10, 0.15, and 0.20. 

5.2.1 Comparison of Standard GPs and Weighted GPs 

In order to compare each variant of standard GP (i.e. batch, online, SOGP with m = 10, and 

SOGP with m = 30) against the corresponding weighted GP variant, the set of AUC values from 

each combination of data set, contamination level and membership score were analyzed by a 

one-way ANOVA. The significance level α for the ANOVAs was set to 0.01 instead of the most 

commonly used 0.05, to compensate for the multiple inferences in this case. From those AUC 
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differences that were significant at the 0.01 significance level, we counted those for which the 

absolute value of average AUC difference represented a relative change in AUC of at least 2%. 

This was done to gather statistics not only on significant differences but also on differences that 

were both significant and represented a noticeable effect on the quality of outlier detection. 

5.2.2 Comparison of Batch GPs and Online GPs 

In order to simplify the comparison of batch GPs and the different online GPs (i.e. Online GP, 

SOGP with m = 10, and SOGP with m = 30), we decided to employ a single score per data set. 

For each data set, if there was a single score that significantly outperformed all other scores at 

various levels of outlier contamination, then that score is chosen as the suitable score for the data 

set. Otherwise, our comparison would be performed by employing a score that fulfills the 

following two conditions: (1) it was not the worst score for the data set and (2) it exhibited good 

performance across most data sets. Because of this dependency on selecting suitable scores, the 

comparison between batch and online GPs was actually performed after the comparison of the 

scores. Consequently, it is described in the last subsection of the experimental results, despite 

being the second goal of this dissertation.  

The comparison was implemented separately on results corresponding to standard GPs and on 

results corresponding to weighted GPs. This was done to assess whether batch GPs and online 

GPs compared similarly in both cases. In each case, multivariate one-way ANOVAs were run on 

the AUC values obtained from each experiment at each contamination level, to determine 

whether there were significant differences between the performances of the four GPs under 

comparison. If a multivariate ANOVA indicated that AUC differences between the GPs were 
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significant at the 0.01 significance threshold α, then the AUC values were subsequently 

compared pairwise by employing Tukey HSD test for multiple comparisons (Lane, 2010). The 

significance level for the pairwise comparisons was also set to 0.01 to compensate for the 

multiple tests.  

Once the results from the ANOVAs and Tukey HSD were acquired, we obtained a ranking of the 

different types of GPs for each data set and each contamination level. The rankings were 

established through the following procedure: If the multivariate ANOVA indicated that 

differences in AUC were not significant, then all GPs under comparison are allocated to the same 

rank (Rank 1). Otherwise, the pairwise comparisons from Tukey HSD test are employed to 

attempt to allocate the different GPs into as many ranks as possible. This was done in a way that, 

given any rank 𝑅𝑎𝑛𝑘𝑖, all GPs allocated to 𝑅𝑎𝑛𝑘𝑖 showed significantly better performance than 

the GPs in all subsequent ranks according to the pairwise comparisons. As a final step, the 

appearances of each GP type in each particular rank were counted, aggregating over all 

contamination levels.   

5.2.3 Comparison of Scores 

The membership scores are compared using only the experimental results from standard batch 

GP and weighted batch GP, given that the different types of online GPs are essentially 

approximations to the corresponding batch GP. The differences in performance for the different 

scores were analyzed separately for the cases of batch GP and weighted batch GP. A multivariate 

one-way ANOVA was run to decide in each case whether there were significant differences 

between the AUC values from the four scores. If a multivariate ANOVA indicated significant 
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differences between the four scores at the 0.01 significance threshold α, then the scores were 

compared pairwise by employing Tukey HSD test, using 0.01 as the significance level. We based 

our analysis of the pairwise comparisons on counting the instances (for each data set and 

contamination level) of two different cases: (1) one of the scores was significantly better than the 

others, and (2) one of the scores was significantly worse than the others. This was done in order 

to further reduce the likelihood of erroneously accepting differences between scores as 

significant when they were actually due to chance. 

5.3 Data Sets and Kernels 

This section describes the data sets employed in our experiments. Note that the first data set was 

generated as a proof of concept. It is one of the simplest data sets that can be used to compare the 

weighted and standard GP variants under different levels of contamination. The rest of the data 

sets belong to real-life problems of varying levels of difficulty. 

5.3.1 Points within Circles 

This data set consists of a set of two-dimensional points. Observations from the target class were 

generated as random points in the circle centered at (0, 0) with a radius equal to 20. The target 

class consisted of 100 points. Four small groups of 10 points each were generated as random 

points within circles of radius = 3, centered at different locations:  (-30, -30), (30, -30), (-30, 30), 

and (30, 30). Figure 5.1 (below) shows the particular data set employed in our experiments. 

Weighted GP-based novelty detection should perform significantly better than standard GP-

based novelty detection on this data set. 
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The simple squared exponential kernel given in equation 4.39 was employed in this case. As 

mentioned above, automatic estimation of hyperparameters for GP-based novelty detection is an 

open problem not addressed in this work. We relied on the intuitive interpretation of the 

parameters of the simple squared exponential kernel, assigning to each scale parameter 𝑎𝑖 the 

inverse of the robust variance of the corresponding attribute, as calculated by the mcdcov 

function of the LIBRA library (Verboven & Hubert, 2010). This estimation approach was used 

on other data sets whenever the simple squared exponential kernel was employed. The GP 

hyperparameter noise variance was set to 0.0001 (any small value should be fine here, to denote 

the lack of noise in the labels). Finally, the robust data weigher (5.1) was configured so that 

γ = 0.0001 and at least 5 observations were required to calculate a non-default weight. 

 

 

Figure 5.1: The simple “Points within Circles” data set. Random observations on the center 

correspond to the target class. The small clusters on the corners are used as outliers, both as a 

source of contamination and for testing purposes. 
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5.3.2 Vertebral Column 

The Vertebral Column data set was retrieved from the UCI Machine Learning Repository 

(Lichman, 2013). It was originally compiled by Dr. Henrique da Mota during a medical 

residence in the Group of Applied Research in Orthopaedics (GARO) of the Centre Médico-

Chirurgical et de Réadaptation des Massues, in France. It consists of 100 observations 

corresponding to patients having a normal vertebral column and 210 observations taken from the 

same number of abnormal patients (60 patients had disk hernias and 150 patients had a 

displacement of vertebras called Spondylolisthesis). There are six numeric attributes in the data 

set, which denote properties derived from the shape and orientation of the pelvis and lumbar 

spine: (1) pelvic incidence, (2) pelvic tilt, (3) lumbar lordosis angle, (4) sacral slope, (5) pelvic 

radius and (6) grade of spondylolisthesis. The observations corresponding to the normal patients 

were considered in our experiments as examples of the target class.  

The simple squared exponential kernel was employed in this case. As mentioned above, 

estimation of hyperparameters was done by assigning to each scale parameter 𝑎𝑖 the inverse of 

the robust variance of the corresponding attribute, as calculated by the mcdcov function of the 

LIBRA library (Verboven & Hubert, 2010). The GP hyperparameter noise variance was set to 

0.0001. Finally, the robust data weigher (5.1) was configured so that γ = 0.0001 and at least 12 

observations were required to calculate a non-default weight. 

5.3.3 Pima Indians Diabetes 

This data set consists of 768 observations, each having eight numeric attributes (not counting the 

class attribute). It contains features of women at least 21 years old of Pima Indian heritage, and 
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was obtained also from the UCI Machine Learning Repository (Lichman, 2013). The class labels 

indicate whether the corresponding patient tested positive for diabetes. In our experiments the 

absence of diabetes was considered the target class. There are 500 observations corresponding to 

non-diabetic patients and 268 observations from women that were diagnosed as diabetic. The 

eight attributes are listed below: 

1. Number of times pregnant 

2. Plasma glucose concentration from an oral glucose tolerance test 

3. Diastolic blood pressure (mm Hg) 

4. Triceps skin fold thickness (mm) 

5. 2-Hour serum insulin (mu U/ml) 

6. Body mass index (weight in kg/(height in m)^2) 

7. Diabetes pedigree function 

8. Age (years) 

As noted in the UCI repository, this data set contains zeroes in places where zero cannot be a 

valid value, so they most likely denote missing values. Given that the main goal of our 

experiments is to assess the effectiveness of weighted GPs as robust novelty detectors, no rows 

were omitted in our experiments and no efforts were made to compensate for missing values. 

The simple squared exponential kernel given in equation 4.39 was also employed in this case. 

Similar to the experiments with the Vertebral Column data set, each scale parameter 𝑎𝑖 was 

assigned the inverse of the robust variance of the corresponding attribute. The GP 
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hyperparameter noise variance was set to 0.0001. The robust data weigher (5.1) was configured 

so that γ = 0.0001 and at least 16 observations were required to calculate a non-default weight. 

5.3.4 Caltech 101 

We decided to use the Caltech 101 image database (Fei-Fei, Fergus, & Perona, 2004), given the 

good performance of GP-based novelty detection on it, reported in (Kemmler M. , Rodner, 

Wacker, & Denzler, 2013). This was particularly true when using the spatial pyramid matching 

(SPM) kernel (Lazebnik, Schmid, & Ponce, 2006). Additionally, using Caltech 101 allows us to 

contrast our results to those of Kemmler, Rodner, Wacker & Denzler (2013). Caltech 101 

contains pictures of objects taken from 101 categories. The size of each image is approximately 

300 x 200 pixels. Contrary to the work of Kemmler et al., which focused on average 

performance of novelty detectors across all image categories, our work focused on eight 

individual object categories from Caltech 101. Those categories were chosen here based on 

experimental results reported by (Lazebnik, Schmid, & Ponce, 2006). The SPM kernel achieved 

high classification performance on four of them (minaret, Windsor chair, Joshua tree, and okapi), 

and poor classification performance on the remaining four categories (cougar body, beaver, 

crocodile, and ant). These eight categories were chosen for our experiments because they were 

identified as key examples in the work of Lazebnik et al. Our experiments were run 

independently for each of the eight categories serving as target classes; while the remaining 

categories remained in the training data for doing the cross-validations and also as a source of 

contamination when adding the different levels of outliers to each target class. Our experiments 

employed the SPM kernel as well. For that reason, SPM is briefly introduced next. 
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The SPM kernel works on descriptor vectors calculated on the images that are input to the 

kernel. It takes into account coarse spatial information about local features from those images. 

The SPM kernel makes use of the pyramid match kernel (Grauman & Darrell, 2005). 

Consequently, it is important to understand pyramid matching in order to fully understand SPM. 

Let us denote two sets of local features obtained from two images as 𝑋1 and 𝑋2. Primary 

examples of such local features are SIFT descriptors (Lowe, 1999), which were used in our 

experiments. Both feature sets 𝑋1 and 𝑋2 must take values in the same d-dimensional feature 

space. The original pyramid matching kernel is applied as follows: A sequence of increasingly 

finer grids with resolutions 0, 1, … , L is placed over the space of local features so that at each 

resolution l, the corresponding grid has a total of 𝐷𝑙 = 2𝑑𝑙 cells. Any two points, one from 𝑋1 

and the other from 𝑋2, are a match at resolution l if they fall into the same cell at that resolution. 

At each resolution l, a histogram is built for each feature set, with each bin corresponding to a 

different grid cell. The histogram intersection function 𝐼(. , . ) (Swain & Ballard, 1991) is used to 

calculate the total number of feature matches at a given resolution l:  

                              𝐼𝑙 = 𝐼(𝐻𝑋1

𝑙 , 𝐻𝑋2

𝑙 ) = ∑ mi𝑛 (𝐻𝑋1

𝑙 (𝑖), 𝐻𝑋2

𝑙 (𝑖))
𝐷𝑙
𝑖=1    ( 5.4 ) 

where 𝐻𝑋1

𝑙  and 𝐻𝑋2

𝑙  denotes the histograms at resolution l for 𝑋1 and  𝑋2 respectively. Finally, the 

pyramid match kernel  𝜅𝐿 is calculated as follows: 

                                         𝜅𝐿(X1, X2) =
1

2𝐿 𝐼0 + ∑
1

2𝐿−𝑙+1 𝐼𝑙
𝐿
𝑙=1    ( 5.5 ) 

The SPM kernel uses spatial information by applying the pyramid match kernel in the two-

dimensional image space instead of the space of local features. Before doing that, each feature 

set is quantized into M feature types, where M is a fixed number.  SPM then applies the pyramid 
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match kernel in the image space M times, each time constrained to the coordinates associated to 

the corresponding feature type. The SPM kernel is defined as the sum of pyramid match kernels 

on the image space over the M feature types: 

                                          𝑘𝐿(X1, X2) = ∑ 𝜅𝐿(𝐶𝑋1

𝑚 , 𝐶𝑋2

𝑚)𝑀
𝑚=1     ( 5.6 ) 

where 𝐶𝑋𝑖

𝑚 denotes the image coordinates associated to features from the feature set 𝑋i that are of 

type m. A normalization of histograms by the total weight of all features in the image permits the 

evaluation of the kernel on images of different sizes.  

A pre-processing step is needed to create a dictionary of size M, which is used to quantize the 

feature set from each image. The elements of the dictionary were selected in (Lazebnik, Schmid, 

& Ponce, 2006) as the centroids of the M clusters obtained by applying the k-means algorithm to 

features taken from all classes from multi-class classification problems. Quantization of each 

feature vector was performed by choosing its nearest element from the dictionary. It was shown 

by Lazebnik et al. that support vector machines using the SPM kernel outperform other modern 

classifiers on three image datasets, including the Caltech 101 database (Fei-Fei, Fergus, & 

Perona, 2004). 

In our experiments, we used the Matlab implementation of the SPM kernel from (Lazebnik, 

Schmid, & Ponce, 2006), keeping their recommended values for the parameters: M = 200 and L 

= 2.  Similarly, we used their default SIFT descriptors of 16 x 16 pixel patches computed over a 

dense grid spaced at eight pixels. However, we had to generate a dictionary for each target class, 

given that we are modeling a target class at a time instead of dealing with a multi-classification 
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problem. The pyramid histograms for all images from the eight categories were built against the 

dictionary of the particular target class to be learned in each case. 

Contrary to the previous data sets, the observations in this case were high-dimensional, 

corresponding to pyramid histograms of length 4,200 each. In this case, we employed ROBPCA 

(Hubert, Rousseeuw, & Vanden Branden, 2005) to project the data into a low-dimensional 

subspace before calculating the weights. The projected data consisted of the robust principal 

components that made for 95% of the variance in the data, or the first 50 components if more 

than 50 components were required to cover up to 95% of the variance (the author is not aware of 

any instance in which such cutoff was needed). In our experiments, projection by ROBPCA was 

employed only for the purpose of weight calculation. In other words, the training data was 

handed entirely to the corresponding GP, given that the SPM kernel required the data in its 

original format in order to work properly. 

5.4 Experiment Results and Analyses 

This section contains three subsections. The first one summarizes the results from the one-way 

ANOVAs that compared the performance of standard and weighted GPs. The second subsection 

contains the results from the comparison of batch GPs and online GPs. The third subsection 

contains the analysis of the performance of the four scores. As a final note, all standard and 

weighted GP variants performed very poorly on the target class “ant” from Caltech 101, with 

most AUC values falling in the interval (0.5, 0.6). Consequently, the “ant” class was excluded 

from our experiment results and the corresponding analysis. The “ant” target class was already 

identified in (Lazebnik, Schmid, & Ponce, 2006) as a class in which multi-classification kernel 
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methods using the SPM kernel showed a particularly poor performance. As noted in (Ramirez-

Padron, Mederos, & Gonzalez, 2013), the SPM kernel is not invariant to translations and/or 

rotations. Consequently, images containing exactly the same object at different locations and/or 

rotated are considered different objects by the kernel function.  Not only was this the case for the 

images in the “ant” class, but images of ants ranged from hand-drawn sketches of ants to photos 

of ants in different positions with very different backgrounds.  

5.4.1 Comparison of Standard GPs and Weighted GPs 

The tables in this subsection list how many times the performance of weighted GP-based novelty 

detection showed significant differences at the 0.01 significance level when compared to the 

corresponding standard GP, aggregating over the four membership scores.  The significant 

differences in AUC values were categorized as either positive or negative relative changes. 

Relative changes were calculated as follows:  

              𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒_𝑐ℎ𝑎𝑛𝑔𝑒 =  100
(𝑚𝑒𝑎𝑛𝐴𝑈𝐶𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐺𝑃 −  𝑚𝑒𝑎𝑛𝐴𝑈𝐶𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐺𝑃) 

|𝑚𝑒𝑎𝑛𝐴𝑈𝐶𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐺𝑃|
 .   ( 5.7 ) 

Consequently, a positive relative change indicates the percentage by which weighted GP-based 

novelty detection outperformed novelty detection based on the corresponding standard GP. 

Similarly, a negative relative change indicates the percentage by which weighted GP-based 

novelty detection underperformed compared to novelty detection based on the corresponding 

standard GP. Additionally, each table lists the number of positive and negative significant 

differences that corresponded to a relative change in AUC greater or equal than 2% (in absolute 

values).  
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5.4.1.1 Points within Circles 

The table below shows that the proposed weighted GPs significantly outperformed standard GPs 

in the vast majority of cases for this data set. Note that standard GPs were never able to 

outperform our weighted GPs. 

Table 5.1: Number of positive and negative relative changes in AUC that were significant at α = 

0.01, and how many of them had its absolute value greater or equal than 2%. Points within 

Circles data set. 

 

 

5.4.1.2 Vertebral Column 

The table below shows that our weighted bath GPs clearly outperformed the standard batch GPs, 

while the opposite was never the case. However, there is not a clear winner between the two GP 

variants if we considered all types of GPs (i.e. batch and online GPs combined). 

  

ContaminationLevel GPType Positive_AUC_Changes Negative_AUC_Changes Positive_AUC_Changes Negative_AUC_Changes

0 Batch

0 Online

0 SOGP_m10 1 1

0 SOGP_m30

5 Batch 4 1

5 Online 4 1

5 SOGP_m10 4 4

5 SOGP_m30 4 4

10 Batch 4 4

10 Online 4 4

10 SOGP_m10 4 4

10 SOGP_m30 4 4

15 Batch 4 4

15 Online 4 4

15 SOGP_m10 4 4

15 SOGP_m30 4 4

20 Batch 4 4

20 Online 4 4

20 SOGP_m10 4 4

20 SOGP_m30 4 4

All Combined Batch 16 13

All Combined Online 16 13

All Combined SOGP_m10 17 17

All Combined SOGP_m30 16 16

Significant differences alpha = 0.01

Significant differences alpha = 0.01 and 

Abs(Relative_Change_Perc) >=  2%
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Table 5.2: Number of positive and negative relative changes in AUC that were significant at α = 

0.01, and how many of them had absolute value greater or equal than 2%. Vertebral Column data 

set. 

 

 

5.4.1.3 Pima Indians Diabetes 

The values in Table 5.3 shows that our weighted GPs clearly outperformed the corresponding 

standard GPs in all cases except for SOGPm_10, which clearly was too limited in capacity to 

benefit from our data weigher. Interestingly, from the significant positive differences only those 

corresponding to SOGP_m30 represented an increase in AUC value that exceeded a 2% relative 

change. 

  

ContaminationLevel GPType Positive_AUC_Changes Negative_AUC_Changes Positive_AUC_Changes Negative_AUC_Changes

0 Batch 1

0 Online

0 SOGP_m10

0 SOGP_m30 3

5 Batch 3

5 Online

5 SOGP_m10

5 SOGP_m30 2

10 Batch 4

10 Online 1

10 SOGP_m10

10 SOGP_m30 3

15 Batch 4

15 Online 3

15 SOGP_m10

15 SOGP_m30 1

20 Batch 4

20 Online 2

20 SOGP_m10

20 SOGP_m30 1 1

All Combined Batch 16

All Combined Online 6

All Combined SOGP_m10

All Combined SOGP_m30 6 4 1

Significant differences alpha = 0.01

Significant differences alpha = 0.01 and 

Abs(Relative_Change_Perc) >=  2%
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Table 5.3: Number of positive and negative relative changes in AUC that were significant at α = 

0.01, and how many of them had absolute value greater or equal than 2%. Pima Indians Diabetes 

data set. 

 

 

5.4.1.4 Caltech 101 

Individual Target Classes 

The values shown in tables ranging from Table 5.4 to Table 5.10 indicate mixed results for the 

Caltech 101 data set. Our weighted GPs outperformed standard GPs for the target classes Beaver, 

Cougar Body, Crocodile and Joshua Tree. On the other hand, results for the target classes 

Minaret, Okapi and Windsor Chair favor the standard GPs. Note however that for all target 

classes our weighted batch GPs outperformed standard batch GPs. More insight about this 

regularity and a possible explanation for the mixed results in the case of online GPs are provided 

in section 5.4.1.5, which contains an analysis of the results from all data sets.  

ContaminationLevel GPType Positive_AUC_Changes Negative_AUC_Changes Positive_AUC_Changes Negative_AUC_Changes

0 Batch 4

0 Online 4

0 SOGP_m10

0 SOGP_m30 4 3

5 Batch 4

5 Online 4

5 SOGP_m10

5 SOGP_m30 4 4

10 Batch 4

10 Online 4

10 SOGP_m10

10 SOGP_m30 4 3

15 Batch 4

15 Online 4

15 SOGP_m10

15 SOGP_m30 4 1

20 Batch 4

20 Online 4

20 SOGP_m10

20 SOGP_m30 4 3

All Combined Batch 20

All Combined Online 20

All Combined SOGP_m10

All Combined SOGP_m30 20 14

Significant differences alpha = 0.01 and 

Abs(Relative_Change_Perc) >=  2%Significant differences alpha = 0.01
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Table 5.4: Number of positive and negative relative changes in AUC that were significant at α = 

0.01, and how many of them had absolute value greater or equal than 2%. Caltech 101 data set. 

Beaver target class. 

 

Table 5.5: Number of positive and negative relative changes in AUC that were significant at α = 

0.01, and how many of them had absolute value greater or equal than 2%. Caltech 101 data set. 

Cougar Body target class. 

 

ContaminationLevel GPType Positive_AUC_Changes Negative_AUC_Changes Positive_AUC_Changes Negative_AUC_Changes

0 Batch 2 1

0 Online 3

0 SOGP_m10 2

0 SOGP_m30 3

5 Batch 3 2

5 Online 4 3

5 SOGP_m10 1 1

5 SOGP_m30 4 4

10 Batch 4 2

10 Online 4 4

10 SOGP_m10

10 SOGP_m30 4 4

15 Batch 4 4

15 Online 4 4

15 SOGP_m10 2 2

15 SOGP_m30 4 4

20 Batch 4 4

20 Online 4 4

20 SOGP_m10 3 3

20 SOGP_m30 4 4

All Combined Batch 17 1 12

All Combined Online 19 15

All Combined SOGP_m10 6 2 6

All Combined SOGP_m30 19 16

Significant differences alpha = 0.01

Significant differences alpha = 0.01 and 

Abs(Relative_Change_Perc) >=  2%

ContaminationLevel GPType Positive_AUC_Changes Negative_AUC_Changes Positive_AUC_Changes Negative_AUC_Changes

0 Batch 3 1

0 Online 4

0 SOGP_m10 1 1 1 1

0 SOGP_m30 4

5 Batch 4 4

5 Online

5 SOGP_m10 1 1 1 1

5 SOGP_m30

10 Batch 4 4

10 Online 4 4

10 SOGP_m10 1 1

10 SOGP_m30 4 4

15 Batch 4 4

15 Online 4 4

15 SOGP_m10 1 1

15 SOGP_m30 4 4

20 Batch 4 4

20 Online 4 4

20 SOGP_m10 1 1

20 SOGP_m30 4 4

All Combined Batch 19 17

All Combined Online 12 4 12

All Combined SOGP_m10 4 3 4 3

All Combined SOGP_m30 12 4 12

Significant differences alpha = 0.01

Significant differences alpha = 0.01 and 

Abs(Relative_Change_Perc) >=  2%
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Table 5.6: Number of positive and negative relative changes in AUC that were significant at α = 

0.01, and how many of them had absolute value greater or equal than 2%. Caltech 101 data set. 

Crocodile target class. 

 

Table 5.7: Number of positive and negative relative changes in AUC that were significant at α = 

0.01, and how many of them had absolute value greater or equal than 2%. Caltech 101 data set. 

Joshua Tree target class. 

 

ContaminationLevel GPType Positive_AUC_Changes Negative_AUC_Changes Positive_AUC_Changes Negative_AUC_Changes

0 Batch 4 4

0 Online 4

0 SOGP_m10 3 2

0 SOGP_m30 4

5 Batch 4 4

5 Online 4 4

5 SOGP_m10 3 3

5 SOGP_m30 3 3

10 Batch 4 4

10 Online 4 4

10 SOGP_m10 2 2

10 SOGP_m30 3 3

15 Batch 4 4

15 Online 4 4

15 SOGP_m10 2 2

15 SOGP_m30 4 4

20 Batch 4 4

20 Online 4 4

20 SOGP_m10 3 3

20 SOGP_m30 4 4

All Combined Batch 20 20

All Combined Online 20 16

All Combined SOGP_m10 13 12

All Combined SOGP_m30 18 14

Significant differences alpha = 0.01

Significant differences alpha = 0.01 and 

Abs(Relative_Change_Perc) >=  2%

ContaminationLevel GPType Positive_AUC_Changes Negative_AUC_Changes Positive_AUC_Changes Negative_AUC_Changes

0 Batch 4 2

0 Online 4 2

0 SOGP_m10 2 2

0 SOGP_m30 4 3

5 Batch 1

5 Online

5 SOGP_m10 1 1

5 SOGP_m30 1 1

10 Batch 4 4

10 Online

10 SOGP_m10 2 2

10 SOGP_m30 1

15 Batch 4 4

15 Online 3 3

15 SOGP_m10 3 3

15 SOGP_m30 2 2

20 Batch 4 4

20 Online 3 3

20 SOGP_m10 3 3

20 SOGP_m30 2 2

All Combined Batch 13 4 12 2

All Combined Online 6 4 6 2

All Combined SOGP_m10 11 2 9

All Combined SOGP_m30 4 6 4 4

Significant differences alpha = 0.01

Significant differences alpha = 0.01 and 

Abs(Relative_Change_Perc) >=  2%
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Table 5.8: Number of positive and negative relative changes in AUC that were significant at α = 

0.01, and how many of them had absolute value greater or equal than 2%. Caltech 101 data set. 

Minaret target class. 

 

Table 5.9: Number of positive and negative relative changes in AUC that were significant at α = 

0.01, and how many of them had absolute value greater or equal than 2%. Caltech 101 data set. 

Okapi target class. 

 

ContaminationLevel GPType Positive_AUC_Changes Negative_AUC_Changes Positive_AUC_Changes Negative_AUC_Changes

0 Batch 3

0 Online 4

0 SOGP_m10 4

0 SOGP_m30 4

5 Batch 4

5 Online 3

5 SOGP_m10 3 3

5 SOGP_m30 3 1

10 Batch 4 3

10 Online 3 2

10 SOGP_m10 4 4

10 SOGP_m30 1

15 Batch 4 4

15 Online 3 3

15 SOGP_m10 4 4

15 SOGP_m30 1 1

20 Batch 4 4

20 Online 4 4

20 SOGP_m10 3 3

20 SOGP_m30 3 3

All Combined Batch 16 3 11

All Combined Online 17 9

All Combined SOGP_m10 18 14

All Combined SOGP_m30 12 5

Significant differences alpha = 0.01

Significant differences alpha = 0.01 and 

Abs(Relative_Change_Perc) >=  2%

ContaminationLevel GPType Positive_AUC_Changes Negative_AUC_Changes Positive_AUC_Changes Negative_AUC_Changes

0 Batch 4

0 Online 4

0 SOGP_m10 4 2

0 SOGP_m30 4

5 Batch

5 Online 2

5 SOGP_m10 3 3

5 SOGP_m30 2

10 Batch 2 1

10 Online 1

10 SOGP_m10 2 2

10 SOGP_m30 2

15 Batch 3 2

15 Online 2 2

15 SOGP_m10 3 3

15 SOGP_m30 1

20 Batch 4 3

20 Online

20 SOGP_m10 2 2

20 SOGP_m30

All Combined Batch 9 4 6

All Combined Online 9 2

All Combined SOGP_m10 14 12

All Combined SOGP_m30 9

Significant differences alpha = 0.01

Significant differences alpha = 0.01 and 

Abs(Relative_Change_Perc) >=  2%
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Table 5.10: Number of positive and negative relative changes in AUC that were significant at α = 

0.01, and how many of them had absolute value greater or equal than 2%. Caltech 101 data set. 

Windsor Chair target class. 

 

 

All Target Classes Combined 

Table 5.11 contains the totals obtained by aggregating the results from Table 5.4 to Table 5.10. It 

is clear by looking at this table that results are highly mixed for the Caltech 101 data set. 

However, it is also evident that for all target classes our weighted batch GPs outperformed 

standard batch GPs in the vast majority of cases. As mentioned above, more insight about this 

regularity is offered in section 5.4.1.5. 

  

ContaminationLevel GPType Positive_AUC_Changes Negative_AUC_Changes Positive_AUC_Changes Negative_AUC_Changes

0 Batch 4

0 Online 3

0 SOGP_m10 1

0 SOGP_m30 1 2

5 Batch 4 4

5 Online 4 4

5 SOGP_m10 3 3

5 SOGP_m30 3 3

10 Batch 4 4

10 Online 4 4

10 SOGP_m10 4 4

10 SOGP_m30 4 4

15 Batch 4 4

15 Online 4 4

15 SOGP_m10 4 4

15 SOGP_m30 4 4

20 Batch 4 4

20 Online 4 4

20 SOGP_m10 1 1

20 SOGP_m30 4 4

All Combined Batch 20 16

All Combined Online 19 16

All Combined SOGP_m10 13 12

All Combined SOGP_m30 1 17 15

Significant differences alpha = 0.01

Significant differences alpha = 0.01 and 

Abs(Relative_Change_Perc) >=  2%
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Table 5.11: Number of positive and negative relative changes in AUC that were significant at α = 

0.01, and how many of them had absolute value greater or equal than 2%. Caltech 101 data set. 

All classes combined. 

 

 

5.4.1.5 Analysis of Results 

The weighted GP variants greatly outperformed the corresponding standard GPs for all positive 

contamination levels when data from the Points within Circles data set became contaminated 

with outliers, as shown in Table 5.1. This outstanding performance was obtained because of the 

simplicity of the corresponding detection problem. In the case of Pima Indians Diabetes, it is 

remarkable that there was not a single occasion in which standard GPs significantly 

outperformed weighted GPs, as can be seen in Table 5.3. On the other hand, weighted GPs 

significantly outperformed standard GPs for all GP types except for SOGP with m = 10. This 

result suggests that m = 10 is a very low capacity value for this particular problem. Interestingly, 

ContaminationLevel GPType Positive_AUC_Changes Negative_AUC_Changes Positive_AUC_Changes Negative_AUC_Changes

0 Batch 13 12 5 2

0 Online 7 19 2

0 SOGP_m10 6 14 3 3

0 SOGP_m30 8 18 3

5 Batch 20 14

5 Online 8 9 7 4

5 SOGP_m10 6 10 6 10

5 SOGP_m30 7 9 7 5

10 Batch 26 22

10 Online 12 8 12 6

10 SOGP_m10 4 11 4 11

10 SOGP_m30 11 8 11 4

15 Batch 27 26

15 Online 15 9 15 9

15 SOGP_m10 8 11 8 11

15 SOGP_m30 14 6 14 5

20 Batch 28 27

20 Online 15 8 15 8

20 SOGP_m10 10 6 10 6

20 SOGP_m30 14 7 14 7

All Combined Batch 114 12 94 2

All Combined Online 57 53 49 29

All Combined SOGP_m10 34 52 31 41

All Combined SOGP_m30 54 48 46 24

Significant differences alpha = 0.01

Significant differences alpha = 0.01 and 

Abs(Relative_Change_Perc) >=  2%
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significant differences related to relative AUC changes of at least 2% corresponded only to 

weighted SOGP with m = 30. It is not clear to the author why other weighted GPs did not 

achieve the same level of positive relative change. A possible explanation is that the capacity m 

= 30 permitted the weighted SOGP to properly learn from the data but at the same it enforced the 

removal of superfluous or potentially misleading observations. This suggestion is based on 

extrapolating the observation from the previous chapter on how our weighted SOGP tended to 

retain less outlying data points than standard SOGP. 

In the case of classes from Caltech 101, if we looked at the results from all classes combined, 

shown in Table 5.11, there were more cases in which weighted GPs outperformed the standard 

GPs than the opposite, except –again– for SOGP with m = 10. However, there were several 

occasions in which standard GPs outperformed weighted GPs as well. At first glance, it seems 

that there was not a clear winner between weighted and standard GPs for the Caltech 101 data 

set. However, if we considered only the case of weighted batch GPs vs. standard batch GPs, then 

a clear regularity emerges: novelty detection based on weighted batch GP consistently and 

significantly outperformed novelty detection based on standard batch GP for all target classes 

and all positive contamination levels. Given that online GP and SOGP are approximations to 

batch GP, the regularity mentioned above substantiates the superiority of weighted GP-based 

novelty detection also in the case of the Caltech 101 data set.  

Finally, results from the Vertebral Column data set showed the least number of significant 

differences, with various cases in which standard GPs significantly outperformed weighted GPs. 

However, the regularity mentioned above appears here as well: weighted batch GPs consistently 
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and significantly outperformed standard batch GPs for all positive contamination levels, as 

shown in Table 5.2. Furthermore, there was not a single case in which standard batch GP 

significantly outperformed weighted batch GP when data was contaminated with outliers. If we 

restricted our analysis only to the case of significant differences corresponding to relative AUC 

changes of at least 2%, note that only one significant difference remains: a case in which 

weighted SOGP with m = 30 outperformed the corresponding standard SOGP at 20% 

contamination level. The author believes that the same possible reason given above for a similar 

case from the Pima Indians Diabetes data set may apply in this case.  

The aggregated results presented in Table 5.12 offer the big picture of differences in 

performance across all data sets. These results clearly highlight the regularity across all 

individual data sets noted above (i.e. that novelty detection based on weighted batch GP 

consistently and significantly outperformed novelty detection based on standard batch GP 

whenever data was contaminated with outliers). This regularity validates our hypothesis that our 

implicit weighted GPs perform better than standard GPs when training data is contaminated with 

outliers. 
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Table 5.12: Number of positive and negative relative changes in AUC that were significant at α = 

0.01, and how many of them had absolute value greater or equal than 2%. Results aggregated 

from all data sets. 

 

 

5.4.2 Comparison of Scores 

This section analyzes the tables that resulted from the analysis of the multivariate one-way 

ANOVAs employed to compare the performance of the four scores. This analysis was done in 

two steps. The first step consisted in obtaining one table per data set that registered whether there 

was a best and worst novelty score for each combination of outlier contamination level and GP 

type (based on the existence of pair-wise significant differences from Tukey HSD test, as 

described in section 5.2). Note that this first table contains 10 rows, given that two types of GPs 

(weighted batch GP and standard batch GP) were run at each of the five contamination levels 

(0%, 5%, 10%, 15% and 20%). For the cases in which no score was significantly better or worse 

ContaminationLevel GPType Positive_AUC_Changes Negative_AUC_Changes Positive_AUC_Changes Negative_AUC_Changes

0 Batch 18 12 5 2

0 Online 11 19 0 2

0 SOGP_m10 7 14 4 3

0 SOGP_m30 15 18 3 3

5 Batch 31 15

5 Online 16 9 8 4

5 SOGP_m10 10 10 10 10

5 SOGP_m30 17 9 15 5

10 Batch 38 26

10 Online 20 9 16 6

10 SOGP_m10 8 11 8 11

10 SOGP_m30 19 11 18 4

15 Batch 39 30

15 Online 23 12 19 9

15 SOGP_m10 12 11 12 11

15 SOGP_m30 22 7 19 5

20 Batch 40 31

20 Online 23 10 19 8

20 SOGP_m10 14 6 14 6

20 SOGP_m30 23 7 22 7

All Combined Batch 166 12 107 2

All Combined Online 93 59 62 29

All Combined SOGP_m10 51 52 48 41

All Combined SOGP_m30 96 52 77 24

Significant differences alpha = 0.01

Significant differences alpha = 0.01 and 

Abs(Relative_Change_Perc) >=  2%
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than the other scores, the corresponding table cells were labeled as “NA”. The second step 

consisted in aggregating into a second table the information from the corresponding first table 

over the different contamination levels. Each second table shows how many times each score 

was significantly better or worse than the others for each GP type. Given that our conclusions, 

which are presented in a following section, were based on the aggregated tables from the second 

step, only those tables are presented in this subsection. The reader can refer to Appendix A to 

review the first set of tables, which served as the source for the tables presented here. 

5.4.2.1 Points within Circles 

The following table indicates that the Mean membership score was the worst score for the Points 

within Circles data set in four out of ten instances. No score was significantly better than the rest 

for this data set. 

Table 5.13: Counting best and worst novelty detection scores, aggregated over all contamination 

levels. Points within Circles data set. 

 

5.4.2.2 Vertebral Column 

The following table shows that the Mean score performed significantly worse than the other 

scores for the Vertebral Column data set. As with the previous data set, no score was 

significantly better than the others in this case. 

  

                        /     Score

GPType     Best Worst Best Worst Best Worst Best Worst

Batch 4

WeightedBatch

TOTALS 4

Mean NegVariance Probability Heuristic
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Table 5.14: Counting best and worst novelty detection scores, aggregated over all contamination 

levels. Vertebral Column data set. 

 

5.4.2.3 Pima Indians Diabetes 

In the case of the Pima Indians Diabetes data set, we obtained that the Negative Variance score 

was the best score in various occasions. This can be seen in Table 5.15 below. Note that the 

Mean score was significantly outperformed by the other scores for all GP types and all 

contamination levels.  

Table 5.15: Counting best and worst novelty detection scores, aggregated over all contamination 

levels. Pima Indians Diabetes data set. 

 

5.4.2.4 Caltech 101 

Individual Target Classes 

The values shown in tables ranging from Table 5.16 to Table 5.22 depicts a mixed set of results 

for the Caltech 101. This is not surprising given the different types of objects with different 

backgrounds contained in the images of each target class. However, a few regularities are worth 

of mentioning here. The Mean score behaved unreliably, ranging from the best score in very few 

cases to the worst score in multiple cases. The Negative Variance score was the worst score for 

multiple target classes, and it never was the best score. Finally, the Probability and Heuristic 

                        /     Score

GPType     Best Worst Best Worst Best Worst Best Worst

Batch 5

WeightedBatch 2

TOTALS 7

Mean NegVariance Probability Heuristic

                        /     Score

GPType     Best Worst Best Worst Best Worst Best Worst

Batch 5 2

WeightedBatch 5 4

TOTALS 10 6

Mean NegVariance Probability Heuristic
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scores appeared at least once as the best score for two and three target classes, respectively. 

There was no target class for which these two scores could be labeled as the worst score.  

Table 5.16: Counting best and worst novelty detection scores, aggregated over all contamination 

levels. Beaver data set. 

 

Table 5.17: Counting best and worst novelty detection scores, aggregated over all contamination 

levels. Cougar Body data set. 

 

Table 5.18: Counting best and worst novelty detection scores, aggregated over all contamination 

levels. Crocodile data set. 

 

Table 5.19: Counting best and worst novelty detection scores, aggregated over all contamination 

levels. Joshua Tree data set. 

 

  

                        /     Score

GPType     Best Worst Best Worst Best Worst Best Worst

Batch 2

WeightedBatch 5 3

TOTALS 7 3

Mean NegVariance Probability Heuristic

                        /     Score

GPType     Best Worst Best Worst Best Worst Best Worst

Batch 1 1

WeightedBatch 2 1

TOTALS 3 2

Mean NegVariance Probability Heuristic

                        /     Score

GPType     Best Worst Best Worst Best Worst Best Worst

Batch 1 1

WeightedBatch 1 4

TOTALS 2 5

Mean NegVariance Probability Heuristic

                        /     Score

GPType     Best Worst Best Worst Best Worst Best Worst

Batch 1

WeightedBatch 1 5

TOTALS 1 6

Mean NegVariance Probability Heuristic
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Table 5.20: Counting best and worst novelty detection scores, aggregated over all contamination 

levels. Minaret data set. 

 

Table 5.21: Counting best and worst novelty detection scores, aggregated over all contamination 

levels. Okapi data set. 

 

Table 5.22: Counting best and worst novelty detection scores, aggregated over all contamination 

levels. Windsor Chair data set. 

 

All Target Classes Combined 

The table that appears below aggregates the results from the individual target classes of the 

Caltech 101 data set. The regularities noted above for the case of the individual target classes are 

easier to spot when these aggregated results are considered. 

Table 5.23: Counting of best and worst novelty detection scores. All target classes combined. 

 

                        /     Score

GPType     Best Worst Best Worst Best Worst Best Worst

Batch 3 1

WeightedBatch 3

TOTALS 3 4

Mean NegVariance Probability Heuristic

                        /     Score

GPType     Best Worst Best Worst Best Worst Best Worst

Batch 4 1

WeightedBatch 3

TOTALS 7 1

Mean NegVariance Probability Heuristic

                        /     Score

GPType     Best Worst Best Worst Best Worst Best Worst

Batch 2 4

WeightedBatch 5

TOTALS 7 4

Mean NegVariance Probability Heuristic

                        /     Score

GPType     Best Worst Best Worst Best Worst Best Worst

Batch 1 6 10 5

WeightedBatch 2 7 21 3

TOTALS 3 13 31 3 5

Mean NegVariance Probability Heuristic
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5.4.2.5 Analysis of Results 

Various conclusions can be derived from the tables that compare the membership scores. 

Arguably the most important conclusion is that no score can be considered better or worse than 

the other three in absolute terms. However, there are some interesting observations to be made. 

The Mean score showed a fluctuating performance across all data sets, leaning in the majority of 

cases towards bad performance, a characteristic that was also reported by (Kemmler M. , Rodner, 

Wacker, & Denzler, 2013). The Negative Variance score was the score of choice in (Kemmler 

M. , Rodner, Wacker, & Denzler, 2013). However, this score performed worse than the 

Probability and Heuristic scores on all the data sets except Pima Indian Diabetes. It is difficult to 

determine the reasons behind this difference in results, given that the work by Kemmler et al. 

averaged the AUC values across all 101 classes contained in Caltech 101. Furthermore, although 

their work also employed the SPM kernel, they used a different clustering technique to build 

their dictionaries. In any case, our results show that Negative Variance (a.k.a. GP-Reg-V) is not 

necessarily the score of choice for visual object recognition and other tasks. For the data sets 

considered here, the Heuristic and Probability scores performed similarly or better than the other 

two scores in most cases. Additionally, these two scores were the only scores that never appeared 

as the worst score in our experiments. This result in conjunction with the disappointing 

performance of the Mean and Negative Variance scores suggest that membership scores that use 

a combination of the posterior mean and the posterior variance are more appropriate for GP-

based novelty detection in most cases. Interestingly, the Heuristic and Probability scores were 

the only scores in the work by Kemmler et al. that significantly outperformed SVDD for the two 

kernels used in that research. That fact was not highlighted in their paper given the good average 
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performance of the Negative Variance score when they used their preferred SPM kernel. Table 

5.24 aggregates the results discussed in this section across all data sets. The conclusions offered 

here can be seen clearly from the aggregated values. 

Table 5.24: Counting of best and worst novelty detection scores. All target classes combined. 

 

 

5.4.3 Comparison of Batch GPs and Online GPs 

As mentioned above, the first step in order to compare batch GPs and the different types of 

online GPs was to select a suitable membership score for each data set, employing the approach 

described in section 5.2.2. The membership score selected for each data set is listed in Table 

5.25.  

The following subsections contain tables that show the number of times each type of GP was 

allocated to each particular rank, aggregating over all contamination levels. Note that standard 

GPs and weighted GPs were aggregated separately. The reader may refer to Appendix B to look 

at the same information listed for individual contamination levels.   

Table 5.25: Suitable membership score for each data set. 

Data set Suitable Membership Score 

Points within Circles Heuristic 

Vertebral Column Heuristic 

Pima Indians Diabetes Negative Variance 

Caltech 101 Heuristic 

 

                        /     Score

GPType     Best Worst Best Worst Best Worst Best Worst

Batch 1 20 2 10 5

WeightedBatch 2 14 4 21 3

TOTALS 3 34 6 31 3 5

Mean NegVariance Probability Heuristic
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5.4.3.1 Points within Circles 

The table shown below contains the rank allocation for the different GP types, aggregated over 

all contamination levels. It is clear that batch GP and online GP were the best performers, both in 

the standard and weighted cases. SOGP_m30 showed as good performance as online GP and 

batch GP only when using weighted GPs. The fact that SOGP_m10 occupied the last rank in 

most cases indicates that its capacity was not appropriate for this problem. 

Table 5.26: Counting of rank allocation for each particular GP type, aggregated over 

contamination levels. Points within Circles data set. 

 

 

5.4.3.2 Vertebral Column 

Similarly to the previous data set, online GP and batch GP consistently shared Rank 1 as the best 

performers. SOGP_m30 was consistently assigned to Rank 2. SOGP_m10 was consistently 

allocated to the last rank. Again, this indicates that capacity equal to 10 was not appropriate for 

this problem. These results can be seen below, in Table 5.27. 

  

Standard/Weighted GP Type Rank 1 Rank 2 Rank 3 Rank 4

BatchGP 5

OnlineGP 5

SOGP_m10 1 4

SOGP_m30 1 4

BatchGP 5

OnlineGP 5

SOGP_m10 1 4

SOGP_m30 5

Standard

Weighted
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Table 5.27: Counting of rank allocation for each particular GP type, aggregated over 

contamination levels. Vertebral Column data set. 

 

5.4.3.3 Pima Indians Diabetes 

The results for the Pima Indians Diabetes were very similar to those obtained for the previous 

two data sets. They are shown in the table below. 

Table 5.28: Counting of rank allocation for each particular GP type, aggregated over 

contamination levels. Pima Indians Diabetes data set. 

 

5.4.3.4 Caltech 101 

Individual Target Classes 

The results for the different target classes of the Caltech 101 data set were different depending on 

whether the standard GPs or our weighted GPs were employed. In the case of standard GPs, 

online GP and batch GP shared Rank 1 as the best performers in the vast majority of cases, and 

SOGPm_30 was capable of achieving similar performances in many cases. SOGP_m10 was 

Standard/Weighted GP Type Rank 1 Rank 2 Rank 3 Rank 4

BatchGP 5

OnlineGP 5

SOGP_m10 5

SOGP_m30 5

BatchGP 5

OnlineGP 5

SOGP_m10 5

SOGP_m30 5

Standard

Weighted

Standard/Weighted GP Type Rank 1 Rank 2 Rank 3 Rank 4

BatchGP 5

OnlineGP 5

SOGP_m10 4 1

SOGP_m30 5

BatchGP 5

OnlineGP 5

SOGP_m10 5

SOGP_m30 5

Standard

Weighted
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typically relegated to Rank 2, although in a few cases it was also able to match the performance 

of batch GP and online GP. In the case of weighted GPs, there were more differences between 

the different GP types. In various cases batch GP outperformed online GP, and SOGP_m10 

tended to occupy Ranks 3 and 4 for multiple target classes. The following tables show the results 

corresponding to each target class. Section 5.4.3.5 offers some insight regarding the different 

results obtained when employing standard GPs and weighted GPs.  

 

Table 5.29: Counting of rank allocation for each particular GP type, aggregated over 

contamination levels. Caltech 101 data set. Beaver target class. 

 

 

Table 5.30: Counting of rank allocation for each particular GP type, aggregated over 

contamination levels. Caltech 101 data set. Cougar Body target class. 

 

  

Standard/Weighted GP Type Rank 1 Rank 2 Rank 3 Rank 4

BatchGP 5

OnlineGP 5

SOGP_m10 3 2

SOGP_m30 5

BatchGP 2 3

OnlineGP 4 1

SOGP_m10 2 3

SOGP_m30 5

Standard

Weighted

Standard/Weighted GP Type Rank 1 Rank 2 Rank 3 Rank 4

BatchGP 5

OnlineGP 5

SOGP_m10 3 2

SOGP_m30 5

BatchGP 5

OnlineGP 3 2

SOGP_m10 3 2

SOGP_m30 3 2

Standard

Weighted
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Table 5.31: Counting of rank allocation for each particular GP type, aggregated over 

contamination levels. Caltech 101 data set. Crocodile target class. 

 

 

Table 5.32: Counting of rank allocation for each particular GP type, aggregated over 

contamination levels. Caltech 101 data set. Joshua Tree target class. 

 

 

Table 5.33: Counting of rank allocation for each particular GP type, aggregated over 

contamination levels. Caltech 101 data set. Minaret target class. 

 

  

Standard/Weighted GP Type Rank 1 Rank 2 Rank 3 Rank 4

BatchGP 5

OnlineGP 5

SOGP_m10 4 1

SOGP_m30 5

BatchGP 5

OnlineGP 3 2

SOGP_m10 1 2 2

SOGP_m30 2 3

Weighted

Standard

Standard/Weighted GP Type Rank 1 Rank 2 Rank 3 Rank 4

BatchGP 5

OnlineGP 5

SOGP_m10 4 1

SOGP_m30 4 1

BatchGP 5

OnlineGP 2 3

SOGP_m10 2 3

SOGP_m30 2 3

Standard

Weighted

Standard/Weighted GP Type Rank 1 Rank 2 Rank 3 Rank 4

BatchGP 4 1

OnlineGP 4 1

SOGP_m10 1 4

SOGP_m30 2 3

BatchGP 5

OnlineGP 1 4

SOGP_m10 1 1 3

SOGP_m30 1 1 3

Standard

Weighted
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Table 5.34: Counting of rank allocation for each particular GP type, aggregated over 

contamination levels. Caltech 101 data set. Okapi target class. 

 

 

Table 5.35: Counting of rank allocation for each particular GP type, aggregated over 

contamination levels. Caltech 101 data set. Windsor Chair target class. 

 

All Target Classes Combined 

The following table aggregates the results from the individual target classes. The results 

mentioned above for the individual target classes still can be seen here. 

Table 5.36: Counting of rank allocation for each particular GP type, aggregated over 

contamination levels. Caltech 101 data set. All target classes combined. 

 

Standard/Weighted GP Type Rank 1 Rank 2 Rank 3 Rank 4

BatchGP 5

OnlineGP 5

SOGP_m10 5

SOGP_m30 5

BatchGP 5

OnlineGP 3 2

SOGP_m10 3 2

SOGP_m30 3 2

Standard

Weighted

Standard/Weighted GP Type Rank 1 Rank 2 Rank 3 Rank 4

BatchGP 5

OnlineGP 5

SOGP_m10 4 1

SOGP_m30 4 1

BatchGP 5

OnlineGP 5

SOGP_m10 4 1

SOGP_m30 4 1

Standard

Weighted

Standard/Weighted GP Type Rank 1 Rank 2 Rank 3 Rank 4

BatchGP 34 1

OnlineGP 34 1

SOGP_m10 10 19 6

SOGP_m30 30 5

BatchGP 32 3

OnlineGP 16 19

SOGP_m10 1 11 16 7

SOGP_m30 14 14 7

Standard

Weighted
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5.4.3.5 Analysis of Results 

Table 5.37, shown below, aggregates the previous results over all data sets. It provides a big 

picture of how the different GP types compared to each other, both for standard GPs and 

weighted GPs. 

Table 5.37: Counting of rank allocation for each particular GP type, aggregated over 

contamination levels and all data sets. 

 

Three conclusions are apparent from the results shown in Table 5.37, as well as from the notes 

from the previous subsections: 

 (1) Online GP can provide as good performances as batch GP when using standard GP variants, 

based on how batch GP and (non-sparse) online GP were both allocated to Rank 1 in 49 cases 

(out of 50 cases in total). However, if we were using our weighted GP variants, then batch GP 

took greater advantage of weights than online GPs: our weighted online GP was assigned to 

Rank 1 in 31 cases, while in the other 19 cases it was downgraded to Rank 2. Comparatively, our 

weighted batch GP occupied Rank 1 in 47 cases. Taking into account that weighted GPs 

consistently and significantly outperformed standard GPs for all data sets only in the batch case 

(as concluded in section 5.4.1.5), it is reasonable to hypothesize that such significant difference 

is the main reason for having significant differences between weighted batch GP and weighted 

online GP. However, the author also noticed that in a few cases, such effect was intensified by an 

Standard/Weighted GP Type Rank 1 Rank 2 Rank 3 Rank 4

BatchGP 49 1

OnlineGP 49 1

SOGP_m10 11 23 16

SOGP_m30 31 19

BatchGP 47 3

OnlineGP 31 19

SOGP_m10 2 15 26 7

SOGP_m30 19 24 7

Standard

Weighted
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actual decrease in performance of weighted online GP compared to standard online GP (this can 

be seen in the tables of Appendix B, which contain the average performance of the different GP 

types for each contamination level). In those cases, apparently the set of observations used to 

train the weighted online GPs were not large enough to offset the possibly misleading influence 

of imprecise weights calculated at the beginning of the training process (when few observations 

are available to the online GP). Finally, note that all cases in which online GP and batch GP were 

not assigned to Rank 1 correspond to the more complex Caltech 101 data set. This is can be 

easily verified by looking at the tables corresponding to other data sets (i.e. Table 5.26, Table 

5.27 and Table 5.28). 

(2) The performances of SOGP_m10 were typically allocated to the last ranks, indicating that 

capacity m = 10 was insufficient to grasp the difficulties of the problems at hand.  

(3) In many cases SOGP_m30 shared the rank of the best performer batch GP. This makes 

SOGP an attractive alternative to consider when implementing GP-based novelty detection on 

systems with strong memory constraints, as far as a suitable capacity limit can be employed. This 

was particularly evident when using standard GPs, where SOGP_m30 was allocated to rank 1 in 

62% of the experiments. When our weighted GP variants were used, this was the case in only 

38% of the experiments. Apparently SOGP_m30 was affected by misleading weights that were 

calculated at the beginning of the training process, as it should have been the case with online GP 

as well. Still, note that the effect of initial imprecise weights should fade with time, provided 

online GPs are trained on a long enough sequence of observations. 
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CHAPTER 6: CONCLUSIONS 
 

This chapter concludes this dissertation. It provides a brief summary of the work and results 

described in the previous chapters. Additionally, it offers conclusions that are derived from our 

results, and suggests further research that can departure from the theoretical and experimental 

work described here. 

6.1 Summary 

The increasing amount of data present in real-life problems, its variety, and the ever growing 

need to process data at faster speeds, make the problem of automated novelty detection 

particularly important. Multiple methods and approaches have been proposed to address this 

problem. Most of these are reviewed in chapter 1 of this dissertation. Kernel methods taken from 

the classification approach have been particularly successful, such as the Support Vector Data 

Description (SVDD) method (Tax & Duin, 2004), one-class SVM (Schölkopf, Platt, Shawe-

Taylor, Smola, & Williamson, 2001) and Online SVDD (Tax & Laskov, 2003). It has been 

proposed recently to use Gaussian processes (GPs) as part of an approach to novelty detection 

that builds membership scores based on the predictive distribution of GPs (Kemmler M. , 

Rodner, Wacker, & Denzler, 2013). This GP-based novelty detection approach has been used 

with great success on multiple real-life problems, and it has been proven to outperform state-of-

the-art methods such as SVDD and one-class SVM (Kemmler M. , Rodner, Wacker, & Denzler, 

2013), (Krishna, Bodesheim, & Denzler, 2013). Additionally, GP-based novelty detection also 
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benefits from various advantages associated to Bayesian learning methods, which were briefly 

reviewed in chapter 2 of this dissertation. 

Despite the recent success of GP-based novelty detection, that approach has a potential limitation 

that was demonstrated with a simple example in chapter 3: standard GPs employing Gaussian 

likelihoods are highly sensitive to outliers in the training data (Jylänki, Vanhatalo, & Vehtari, 

2011). This limitation is particularly evident when maximum likelihood estimation (MLE) is 

employed to estimate the hyperparameters of the GP model. MLE is commonly used to estimate 

hyperparameters, but it has been shown that it is highly sensitive to outliers in the data 

(Agostinelli & Greco, 2013). Current efforts to address this problem include the use of pseudo-

likelihoods (Greco, Racugno, & Ventura, 2008) and likelihoods corresponding to robust 

distributions (Jylänki, Vanhatalo, & Vehtari, 2011). However, these approaches lead to 

analytically intractable inferences, which involve the use of approximation techniques that are 

typically complex, computationally expensive and/or inefficient. The work in (Agostinelli & 

Greco, 2013) proposes the use of weighted likelihoods in Bayes formula to obtain robust 

Bayesian inferences. Weighted likelihoods are defined in (Agostinelli & Greco, 2013) as joint 

likelihoods in which weight functions serve as exponents of each likelihood term. Aside from 

being restrictive regarding the location of the weight functions and not being specifically applied 

to GPs, the type of weight functions proposed in (Agostinelli & Greco, 2013) might be expensive 

to compute, given its dependency on parameter estimates and the empirical cumulative 

distribution function. The work in (Rottmann & Burgard, 2010)  employs weights in GPs in 

order to model heteroscedastic data. Their approach employs weights to estimate a noise level 

parameter for each training observation, using cross-validation twice and introducing a 
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complicated dual-GP model. That approach leads to greatly increasing the computational 

complexity of calculating the posterior GP. In summary, we are not aware of any work that 

employs weighted likelihoods in GPs to model either data that contain outliers or heteroscedastic 

data. 

The main motivation for the work described in this dissertation is to address the lack of 

robustness of standard GPs described above by using weight functions within the likelihood 

terms. In the case of GP regression, this is done in a way that the computational complexity of 

our proposed implicit weighted GPs is the same as the computational complexity of standard 

GPs. These goals included obtaining implicit weighted variants of batch GP, online GP, and 

sparse online GP (SOGP). Although our main focus is robustness, this dissertation also proposes 

a weight function that allows an implicit weighted GP to effectively model heteroscedastic data. 

Additionally, this work focuses on a comprehensive experimental study of the advantages that 

our robust weighted GPs would convey to the GP-based novelty detection approach described in 

(Kemmler M. , Rodner, Wacker, & Denzler, 2013). We were particularly interested in studying 

the performance of online GPs given the preliminary experimental work described in (Ramirez-

Padron, Mederos, & Gonzalez, 2013), which shows that the performance of GP-based novelty 

detection using online GPs can be similar to the performance of batch GP-based novelty 

detection in many cases.  

The main contributions of this study are listed below:  

1) The first chapter of this dissertation expands a relatively recent survey on novelty (anomaly) 

detection offered in (Chandola, Banerjee, & Kumar, 2009), by adding two factors to their 



204 

 

categorization of important factors that define a novelty detection problem: computational 

requirements and learning framework. These two factors make explicit current technological 

trends into the formulation of a novelty detection problem, such as distributed computing in big 

data projects and the need for online learning techniques.  

2) This dissertation offers its own classification of modern approaches to novelty detection, 

which is based on a revision of two previous categorizations: (Chandola, Banerjee, & Kumar, 

2009) and (Pimentel, Clifton, Clifton, & Tarassenko, 2014).  The classification of modern 

methods for novelty detection proposed here is as follows: (1) statistical, (2) classification-

based, (3) clustering-based, (4) distance-based, (5) information theoretic, (6) subspace-based, 

and (7) angle-based.  

 3) Implicit weighted variants of batch GP, online GP, and SOGP for the case of a Gaussian 

likelihood within a regression framework. Weight functions are employed as part of the 

likelihood terms, without enforcing strong constraints on the weight functions or adding a 

variable number of hyperparameters to the GP models. The mathematical derivation of our 

weighted GPs included expressions for hyperparameter estimation using MLE on marginal 

likelihoods and posterior marginal likelihoods.  

4) Three data weighers that can be used for implicit weighted GP regression are proposed in 

chapter 4: HeteroscedasticReg, which allows learning from heteroscedastic data without the need 

for modeling noise variances (a property that is coined here as ‘implicit heteroscedasticity’); 

RobustReg, which allows obtaining robust GPs; and HeteroscedasticRobustReg for obtaining 

both robust and implicitly heteroscedastic GPs. As shown in section 4.4, the computational 
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complexities of our weighted GPs match the computational complexities of the corresponding 

standard GPs.  

5) A preliminary experimental comparison of implicit weighted GP regression and standard GP 

regression in various simple simulated problems confirmed the effectiveness of our approach. 

Data with and without outliers were used, as well as heteroscedastic data.  

6) A robust data weigher to be used in robust GP-based novelty detection is proposed in chapter 

5. It was noted that this particular data weigher cannot be used on high-dimensional data because 

of its polynomial computational complexity. Subspace projection techniques can be leverage in 

order to calculate weights in the case of high-dimensional data.  

7) A detailed experimental comparison of GP-based novelty detection using standard and 

weighted variants of batch GP and online GPs. The experiments were run on one simulated data 

set and three real-life multivariate data sets, showing that:  

 Our weighted batch GP consistently and significantly outperformed standard batch GP 

when used for novelty detection. 

 From the four membership scores that were used in (Kemmler M. , Rodner, Wacker, & 

Denzler, 2013), the Heuristic and Probability scores reported better performance across 

all data sets than the Mean and Negative Variance scores. 

 Novelty detection using online GP and SOGP performed similar to batch GP-based 

novelty detection in many cases. This is particularly true for the case of online GP.  
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6.2 Conclusions 

This dissertation has introduced implicit weighted GPs, which are defined as GPs that make use 

of weighted likelihoods that include weight functions called here data weighers. Data weighers 

have to take values in (0, 1] and the weights they assign to observations are proportional to how 

consistent those observations are with respect to the underlying model.  We require that data 

weighers be used in a likelihood expression in a way that the corresponding weighted likelihood 

is a “genuine likelihood”. The data weighers proposed in this dissertation are based on a quasi-

robust potential to avoid numerical issues that might appear when weight functions are derived 

from robust potentials. We developed the mathematical expressions for implicit weighted GPs 

that employ an implicit weighted Gaussian likelihood. 

The preliminary experiments from chapter 4 suggest that our approach allows the effective 

application of the MLE method to estimate GP hyperparameters for regression problems when 

the data contain outliers, removing a well-known limitation of the MLE method. Additionally, 

our weighted GPs outperformed standard GPs in most cases when data was contaminated with 

outliers, regardless of whether GP hyperparameters were estimated using MLE or appropriate 

values were used instead. Our experiments indicate that, in the case of heteroscedastic data and 

employing a heteroscedastic data weigher, the MLE method estimates the GP variance σ2 near 

the value of the smallest noise variance in the data, as far as weights are inversely proportional to 

locally-estimated noise variances. Additionally, it was shown that the use of an implicit weighted 

Gaussian likelihood with a robust data weigher favors robust GP models while avoiding 

analytically intractable inferences and the associated approximation techniques. Interestingly, 
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our weighted SOGP tended to retain fewer data points that were not in accordance with the 

underlying model than standard SOGP, which indicates an increase in the quality of SOGP’s set 

of basis vectors in that case.  

Novelty detection based on our weighted batch GPs consistently and significantly outperformed 

novelty detection based on standard batch GPs whenever data was contaminated with outliers, 

for all the data sets used in our study in chapter 5. The same strong assessment cannot be made in 

the case of the various online GPs under comparison. However, there were many more cases of 

weighted online GPs outperforming the corresponding standard online GPs on contaminated data 

than the opposite. Chapter 5 also expanded the experimental work presented by the author in 

(Ramirez-Padron, Mederos, & Gonzalez, 2013), by comparing membership scores and the 

performance of batch GP and online GPs when used for novelty detection. The Heuristic and 

Probability scores performed similarly or better than the other two scores in most cases, and they 

never appeared as the worst score in any of the experiments. This leads to the conclusion that 

these scores should be preferred over Mean and Negative Variance in most cases. Regarding our 

comparison of online GPs and batch GPs, it was noted that online GP provided as good 

performance as batch GP in all cases when using standard GPs. However, in the case of our 

weighted GP variants, batch GP tended to perform better than online GP, which indicates that 

weighted batch GP was able to better leverage weights than online GP. Finally, the performance 

of SOGPs in general was inferior to the performance of batch GP, particularly when weighted 

GP variants were used. However, it is worth noting that SOGP with capacity m =  30 was able to 

perform as well as batch GP in 50% of the cases. This makes SOGP a compelling option for GP-

based novelty detection on systems imposing strong memory constraints. 
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6.3 Future Research 

In the experiments described in chapter 4, the parameters of the data weighers were easy to 

determine because of the low dimensionality of the data. The neighborhood size s was set to a 

value that greatly limited the need to rely on the default weight. The values of  𝛾 were small 

enough to accommodate the expected levels of model disagreement of outliers in the data. How 

to effectively estimate these parameters in a more general scenario is an open question worthy of 

further research. A related question is how sensitive our weighted GPs are to variations in the 

values of parameters of the data weighers. Additionally, we are interested in identifying real-life 

regression problems for which our approach would be particularly well-fitted. These questions 

apply to the case of GP-based novelty detection as well.  

Chapter 4 offered preliminary experimental evidence of the benefits of using the weighted GPs 

proposed in this dissertation for solving regression problems where data is potentially 

contaminated with outliers. However, a more comprehensive comparison of weighted GPs and 

standard GPs for doing regression is needed, based on multi-dimensional data sets taken from 

real-life problems. Such study should implement a statistical comparison similar in nature to the 

experimental setup offered in chapter 5. 

Our experiments in chapter 4 suggest that using the proposed weighted GPs for solving 

regression problems allows the use of MLE to estimate GP hyperparameters in the case of data 

containing outliers. A theoretical treatment of this experimental result and a more comprehensive 

experimental setup is needed in order to assess its validity in general terms. As a related topic, it 

is known that MLE cannot be used for estimating GP hyperparameters for GP-based novelty 
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detection problems. How to estimate hyperparameters in that case is still an open problem. It 

seems to the author that exploring and potentially improving the estimation procedure proposed 

in (Xiao, Wang, & Xu, 2014) is another research path worth taking.  

The gap in performance between our weighted variants of batch GP and online GP shown in 

chapter 5 might be greatly reduced or even closed in cases where online GP can learn from a 

relatively large data set, to compensate for any incorrect weights calculated at the beginning of 

the learning process, when few observations are available. Further experimental research would 

be needed to determine whether this is actually the case. Additionally, it would be interesting to 

design data weighers that, contrary to the robust data weigher proposed in chapter 5, allow 

working with regions containing the target class that can have non-ellipsoidal shapes.  

As noted in chapter 5, the SPM kernel employed for the target classes of the Caltech 101 data set 

is not invariant to translations and rotations. Improving this kernel by making it invariant to these 

transformations, as well as less sensitive to image backgrounds, should allow SOGP-based 

novelty detection to perform better under low capacity constraints.  

As a final note, the author believes that the theoretical framework provided by Rademacher 

complexity (Bartlett & Mendelson, 2002), (Koltchinskii & Panchenko, 2000) would make 

possible a theoretical study of the learning capabilities and complexities of GP-based novelty 

detection when employing both standard and implicit weighted GPs. 
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APPENDIX A: COMPARISON OF STANDARD AND WEIGHTED GPs 
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Best and worst novelty detection scores. Points within Circles data set. 

 

Best and worst novelty detection scores. Vertebral Column data set. 

 

Best and worst novelty detection scores, if any. Pima Indians Diabetes data set. 

 

  

ContaminationLevel GPType Best  Score Worst Score

0 Batch NA NA

0 WeightedBatch NA NA

5 Batch NA Mean

5 WeightedBatch NA NA

10 Batch NA Mean

10 WeightedBatch NA NA

15 Batch NA Mean

15 WeightedBatch NA NA

20 Batch NA Mean

20 WeightedBatch NA NA

ContaminationLevel GPType Best Score Worst Score

0 Batch NA Mean

0 WeightedBatch NA Mean

5 Batch NA Mean

5 WeightedBatch NA Mean

10 Batch NA Mean

10 WeightedBatch NA NA

15 Batch NA Mean

15 WeightedBatch NA NA

20 Batch NA Mean

20 WeightedBatch NA NA

ContaminationLevel GPType Best Score Worst Score

0 Batch NA Mean

0 WeightedBatch NegVariance Mean

5 Batch NA Mean

5 WeightedBatch NA Mean

10 Batch NA Mean

10 WeightedBatch NegVariance Mean

15 Batch NegVariance Mean

15 WeightedBatch NegVariance Mean

20 Batch NegVariance Mean

20 WeightedBatch NegVariance Mean
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Best and worst novelty detection scores. Caltech 101 data set. Beaver target class. 

 

Best and worst novelty detection scores. Caltech 101 data set. Cougar Body target class. 

 

Best and worst novelty detection scores. Caltech 101 data set. Crocodile target class. 

 

  

ContaminationLevel GPType Best Score Worst Score

0 Batch NA Mean

0 WeightedBatch Probability Mean

5 Batch NA Mean

5 WeightedBatch Probability Mean

10 Batch NA NA

10 WeightedBatch Probability Mean

15 Batch NA NA

15 WeightedBatch NA Mean

20 Batch NA NA

20 WeightedBatch NA Mean

ContaminationLevel GPType Best Score Worst Score

0 Batch NA Mean

0 WeightedBatch NA Mean

5 Batch NA NA

5 WeightedBatch NA Mean

10 Batch NA NA

10 WeightedBatch NA NA

15 Batch NA NegVariance

15 WeightedBatch NA NA

20 Batch NA NA

20 WeightedBatch NA NegVariance

ContaminationLevel GPType Best Score Worst Score

0 Batch NA NegVariance

0 WeightedBatch NA NA

5 Batch NA NA

5 WeightedBatch NA NegVariance

10 Batch NA NA

10 WeightedBatch NA NegVariance

15 Batch NA NA

15 WeightedBatch NA NegVariance

20 Batch Mean NA

20 WeightedBatch Mean NegVariance
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Best and worst novelty detection scores. Caltech 101 data set. Joshua Tree target class. 

 

Best and worst novelty detection scores. Caltech 101 data set. Minaret target class. 

 

Best and worst novelty detection scores. Caltech 101 data set. Okapi target class. 

 

  

ContaminationLevel GPType Best Score Worst Score

0 Batch NA NA

0 WeightedBatch Mean NegVariance

5 Batch NA NA

5 WeightedBatch NA NegVariance

10 Batch NA NA

10 WeightedBatch NA NegVariance

15 Batch NA NegVariance

15 WeightedBatch NA NegVariance

20 Batch NA NA

20 WeightedBatch NA NegVariance

ContaminationLevel GPType Best Score Worst Score

0 Batch NA NegVariance

0 WeightedBatch NA NegVariance

5 Batch NA NA

5 WeightedBatch NA NegVariance

10 Batch NA Mean

10 WeightedBatch NA NegVariance

15 Batch NA Mean

15 WeightedBatch NA NA

20 Batch NA Mean

20 WeightedBatch NA NA

ContaminationLevel GPType Best Score Worst Score

0 Batch Heuristic NegVariance

0 WeightedBatch NA NegVariance

5 Batch NA NegVariance

5 WeightedBatch NA NegVariance

10 Batch NA NegVariance

10 WeightedBatch NA NegVariance

15 Batch NA NegVariance

15 WeightedBatch NA NA

20 Batch NA NA

20 WeightedBatch NA NA
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Best and worst novelty detection scores. Caltech 101 data set. Windsor Chair target class. 

 

 

 

  

ContaminationLevel GPType Best Score Worst Score

0 Batch Heuristic NegVariance

0 WeightedBatch NA NegVariance

5 Batch Heuristic NegVariance

5 WeightedBatch NA NegVariance

10 Batch Heuristic NA

10 WeightedBatch NA NegVariance

15 Batch Heuristic NA

15 WeightedBatch NA NegVariance

20 Batch NA NA

20 WeightedBatch NA NegVariance
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APPENDIX B: COMPARISON OF BATCH AND ONLINE GPs 
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Counting of rank allocations for each particular GP type, for different contamination levels, 

including average performance of each rank. Points within Circles data set. 

 

Counting of rank allocations for each particular GP type, for different contamination levels, 

including average performance of each rank. Vertebral Column data set. 

 

  

ContaminationLevel Standard/Weighted

Rank 1

(Rank 1 Avg AUC)

Rank 2

(Rank 2 Avg AUC)

Rank 3

(Rank 3 Avg AUC)

Rank 4

(Rank 4 Avg AUC)

0 Standard

All

(0.9995)

0 Weighted

All

(0.9995)

5 Standard

BatchGP, OnlineGP

(0.9930)

SOGP_m30

(0.9270)

SOGP_m10

(0.4157)

5 Weighted

BatchGP, OnlineGP, SOGP_m30

(1.0000)

SOGP_m10

(0.9494)

10 Standard

BatchGP, OnlineGP

(0.9672)

SOGP_m30

(0.8091)

SOGP_m10

(0.2785)

10 Weighted

BatchGP, OnlineGP, SOGP_m30

(1.0000)

SOGP_m10

(0.9318)

15 Standard

BatchGP, OnlineGP

(0.9252)

SOGP_m30

(0.7071)

SOGP_m10

(0.2283)

15 Weighted

BatchGP, OnlineGP, SOGP_m30

(1.0000)

SOGP_m10

(0.9191)

20 Standard

BatchGP, OnlineGP

(0.8638)

SOGP_m30

(0.6060)

SOGP_m10

(0.2270)

20 Weighted

BatchGP, OnlineGP, SOGP_m30

(0.9999)

SOGP_m10

(0.9138)

ContaminationLevel Standard/Weighted

Rank 1

(Rank 1 Avg AUC)

Rank 2

(Rank 2 Avg AUC)

Rank 3

(Rank 3 Avg AUC)

Rank 4

(Rank 4 Avg AUC)

0 Standard

BatchGP, OnlineGP

(0.8780)

SOGP_m30

(0.8615)

SOGP_m10

(0.8339)

0 Weighted

BatchGP, OnlineGP

(0.8791)

SOGP_m30

(0.8675)

SOGP_m10

(0.8366)

5 Standard

BatchGP, OnlineGP

(0.8702)

SOGP_m30

(0.8454)

SOGP_m10

(0.8200)

5 Weighted

BatchGP, OnlineGP

(0.8720)

SOGP_m30

(0.8484)

SOGP_m10

(0.8153)

10 Standard

BatchGP, OnlineGP

(0.8624)

SOGP_m30

(0.8304)

SOGP_m10

(0.7482)

10 Weighted

BatchGP, OnlineGP

(0.8640)

SOGP_m30

(0.8218)

SOGP_m10

(0.7456)

15 Standard

BatchGP, OnlineGP

(0.8554)

SOGP_m30

(0.8129)

SOGP_m10

(0.6781)

15 Weighted

BatchGP, OnlineGP

(0.8568)

SOGP_m30

(0.8124)

SOGP_m10

(0.6779)

20 Standard

BatchGP, OnlineGP

(0.8482)

SOGP_m30

(0.8014)

SOGP_m10

(0.6408)

20 Weighted

BatchGP, OnlineGP

(0.8519)

SOGP_m30

(0.8019)

SOGP_m10

(0.6503)
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Counting of rank allocations for each particular GP type, for different contamination levels, 

including average performance of each rank. Pima Indians Diabetes data set. 

 

Counting of rank allocations for each particular GP type, for different contamination levels, 

including average performance of each rank. Caltech 101 data set. Beaver target class. 

 

  

ContaminationLevel Standard/Weighted

Rank 1

(Rank 1 Avg AUC)

Rank 2

(Rank 2 Avg AUC)

Rank 3

(Rank 3 Avg AUC)

Rank 4

(Rank 4 Avg AUC)

0 Standard

BatchGP, OnlineGP

(0.7379)

SOGP_m30

(0.6996)

SOGP_m10

(0.6838)

0 Weighted

BatchGP, OnlineGP

(0.7459)

SOGP_m30

(0.7229)

SOGP_m10

(0.6836)

5 Standard

BatchGP, OnlineGP

(0.7316)

SOGPm_10, 

SOGP_m30

5 Weighted

BatchGP, OnlineGP

(0.7396)

SOGP_m30

(0.7191)

SOGP_m10

(0.6918)

10 Standard

BatchGP, OnlineGP

(0.7268)

SOGPm_10, 

SOGP_m30

10 Weighted

BatchGP, OnlineGP

(0.7346)

SOGP_m30

(0.7129)

SOGP_m10

(0.6894)

15 Standard

BatchGP, OnlineGP

(0.7220)

SOGPm_10, 

SOGP_m30

15 Weighted

BatchGP, OnlineGP

(0.7293)

SOGP_m30

(0.7041)

SOGP_m10

(0.6866)

20 Standard

BatchGP, OnlineGP

(0.7178)

SOGPm_10, 

SOGP_m30

20 Weighted

BatchGP, OnlineGP

(0.7228)

SOGP_m30

(0.7015)

SOGP_m10

(0.6823)

ContaminationLevel Standard/Weighted

Rank 1

(Rank 1 Avg AUC)

Rank 2

(Rank 2 Avg AUC)

Rank 3

(Rank 3 Avg AUC)

Rank 4

(Rank 4 Avg AUC)

0 Standard

BatchGP, OnlineGP, SOGP_m30

(0.7802)

SOGP_m10

(0.7514)

0 Weighted

OnlineGP, SOGP_m30

(0.7848)

BatchGP

(0.7773)

SOGP_m10

(0.7518)

5 Standard

BatchGP, OnlineGP, SOGP_m30

(0.7603)

SOGP_m10

(0.7316)

5 Weighted

OnlineGP, SOGP_m30

(0.7771)

BatchGP

(0.7682)

SOGP_m10

(0.7436)

10 Standard

All

(0.7351)

10 Weighted

BatchGP, OnlineGP, SOGP_m30

(0.7656)

SOGP_m10

(0.7287)

15 Standard

All

(0.7136)

15 Weighted

BatchGP, OnlineGP, SOGP_m30

(0.7560)

SOGP_m10

(0.7152)

20 Standard

All

(0.6906)

20 Weighted

SOGP_m30

(0.7618)

BatchGP, OnlineGP

(0.7464)

SOGP_m10

(0.7116)
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Counting of rank allocations for each particular GP type, for different contamination levels, 

including average performance of each rank. Caltech 101 data set. Cougar Body target class. 

 

Counting of rank allocations for each particular GP type, for different contamination levels, 

including average performance of each rank. Caltech 101 data set. Crocodile target class. 

 

ContaminationLevel Standard/Weighted

Rank 1

(Rank 1 Avg AUC)

Rank 2

(Rank 2 Avg AUC)

Rank 3

(Rank 3 Avg AUC)

Rank 4

(Rank 4 Avg AUC)

0 Standard

BatchGP, OnlineGP, SOGP_m30

(0.7633)

SOGP_m10

(0.7174)

0 Weighted

BatchGP

(0.7658)

OnlineGP, SOGP_m30

(0.7515)

SOGP_m10

(0.7105)

5 Standard

BatchGP, OnlineGP, SOGP_m30

(0.7347)

SOGP_m10

(0.6971)

5 Weighted

BatchGP

(0.7562)

OnlineGP, SOGP_m30

(0.7404)

SOGP_m10

(0.6930)

10 Standard

All

(0.6956)

10 Weighted

BatchGP, OnlineGP, SOGP_m30

(0.7309)

SOGP_m10

(0.6829)

15 Standard

All

(0.6771)

15 Weighted

BatchGP, OnlineGP, SOGP_m30

(0.7217)

SOGP_m10

(0.6650)

20 Standard

All

(0.6590)

20 Weighted

BatchGP, OnlineGP, SOGP_m30

(0.7118)

SOGP_m10

(0.6530)

ContaminationLevel Standard/Weighted

Rank 1

(Rank 1 Avg AUC)

Rank 2

(Rank 2 Avg AUC)

Rank 3

(Rank 3 Avg AUC)

Rank 4

(Rank 4 Avg AUC)

0 Standard

BatchGP, OnlineGP, SOGP_m30

(0.7339)

SOGP_m10

(0.7147)

0 Weighted

BatchGP

(0.7497)

OnlineGP, SOGP_m30

(0.7405)

SOGP_m10

(0.7198)

5 Standard

All

(0.6617)

5 Weighted

BatchGP, OnlineGP, SOGP_m30

(0.7068)

SOGP_m10

(0.6672)

10 Standard

All

(0.6046)

10 Weighted

BatchGP, OnlineGP

(0.6802)

SOGP_m30, SOGP_m10

(0.6342)

15 Standard

All

(0.5446)

15 Weighted

BatchGP

(0.6694)

OnlineGP, SOGP_m30

(0.6222)

SOGP_m10

(0.5771)

20 Standard

All

(0.4876)

20 Weighted

All

(0.5784)
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Counting of rank allocations for each particular GP type, for different contamination levels, 

including average performance of each rank. Caltech 101 data set. Joshua Tree target class. 

 

Counting of rank allocations for each particular GP type, for different contamination levels, 

including average performance of each rank. Caltech 101 data set. Minaret target class. 

 

  

ContaminationLevel Standard/Weighted

Rank 1

(Rank 1 Avg AUC)

Rank 2

(Rank 2 Avg AUC)

Rank 3

(Rank 3 Avg AUC)

Rank 4

(Rank 4 Avg AUC)

0 Standard

BatchGP, OnlineGP

(0.8966)

SOGP_m30

(0.8932)

SOGP_m10

(0.8534)

0 Weighted

BatchGP, OnlineGP

(0.8796)

SOGP_m30

(0.8666)

SOGP_m10

(0.8490)

5 Standard

BatchGP, OnlineGP, SOGP_m30

(0.8532)

SOGP_m10

(0.8050)

5 Weighted

BatchGP, OnlineGP

(0.8554)

SOGP_m30

(0.8330)

SOGP_m10

(0.8044)

10 Standard

BatchGP, OnlineGP, SOGP_m30

(0.8137)

SOGP_m10

(0.7551)

10 Weighted

BatchGP

(0.8390)

OnlineGP

(0.8200)

SOGP_m30

(0.7972)

SOGP_m10

(0.7661)

15 Standard

BatchGP, OnlineGP, SOGP_m30

(0.7742)

SOGP_m10

(0.7099)

15 Weighted

BatchGP

(0.8193)

OnlineGP

(0.7885)

SOGP_m30

(0.7667)

SOGP_m10

(0.7439)

20 Standard

BatchGP, OnlineGP, SOGP_m30

(0.7319)

SOGP_m10

(0.6640)

20 Weighted

BatchGP

(0.7954)

OnlineGP

(0.7680)

SOGP_m30

(0.7438)

SOGP_m10

(0.7223)

ContaminationLevel Standard/Weighted

Rank 1

(Rank 1 Avg AUC)

Rank 2

(Rank 2 Avg AUC)

Rank 3

(Rank 3 Avg AUC)

Rank 4

(Rank 4 Avg AUC)

0 Standard

SOGP_m30

(0.9982)

BatchGP, OnlineGP

(0.9978)

SOGP_m10

(0.9971)

0 Weighted

BatchGP, OnlineGP, SOGP_m30

(0.9968)

SOGP_m10

(0.9944)

5 Standard

BatchGP, OnlineGP, SOGP_m30

(0.9692)

SOGP_m10

(0.9348)

5 Weighted

BatchGP

(0.9827)

OnlineGP, SOGP_m30

(0.9562)

SOGP_m10

(0.8922)

10 Standard

BatchGP, OnlineGP

(0.9394)

SOGP_m30

(0.9109)

SOGP_m10

(0.8825)

10 Weighted

BatchGP

(0.9613)

OnlineGP

(0.9260)

SOGP_m30

(0.8936)

SOGP_m10

(0.8246)

15 Standard

BatchGP, OnlineGP

(0.8962)

SOGP_m30

(0.8484)

SOGP_m10

(0.8151)

15 Weighted

BatchGP

(0.9309)

OnlineGP

(0.8639)

SOGP_m30

(0.8229)

SOGP_m10

(0.7411)

20 Standard

BatchGP, OnlineGP

(0.8624)

SOGP_m30

(0.8017)

SOGP_m10

(0.7492)

20 Weighted

BatchGP

(0.8995)

OnlineGP

(0.8052)

SOGP_m30

(0.7554)

SOGP_m10

(0.6934)
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Counting of rank allocations for each particular GP type, for different contamination levels, 

including average performance of each rank. Caltech 101 data set. Okapi target class. 

 

Counting of rank allocations for each particular GP type, for different contamination levels, 

including average performance of each rank. Caltech 101 data set. Windsor Chair target class. 

 

ContaminationLevel Standard/Weighted

Rank 1

(Rank 1 Avg AUC)

Rank 2

(Rank 2 Avg AUC)

Rank 3

(Rank 3 Avg AUC)

Rank 4

(Rank 4 Avg AUC)

0 Standard

BatchGP, OnlineGP, SOGP_m30

(0.9416)

SOGP_m10

(0.9344)

0 Weighted

BatchGP, OnlineGP, SOGP_m30

(0.9350)

SOGP_m10

(0.9160)

5 Standard

BatchGP, OnlineGP, SOGP_m30

(0.9234)

SOGP_m10

(0.8965)

5 Weighted

BatchGP, OnlineGP, SOGP_m30

(0.9154)

SOGP_m10

(0.8598)

10 Standard

BatchGP, OnlineGP, SOGP_m30

(0.9039)

SOGP_m10

(0.8688)

10 Weighted

BatchGP, OnlineGP, SOGP_m30

(0.9017)

SOGP_m10

(0.8232)

15 Standard

BatchGP, OnlineGP, SOGP_m30

(0.8887)

SOGP_m10

(0.8387)

15 Weighted

BatchGP

(0.9072)

OnlineGP, SOGP_m30

(0.8718)

SOGP_m10

(0.7917)

20 Standard

BatchGP, OnlineGP, SOGP_m30

(0.8638)

SOGP_m10

(0.8084)

20 Weighted

BatchGP

(0.8945)

OnlineGP, SOGP_m30

(0.8594)

SOGP_m10

(0.7594)

ContaminationLevel Standard/Weighted

Rank 1

(Rank 1 Avg AUC)

Rank 2

(Rank 2 Avg AUC)

Rank 3

(Rank 3 Avg AUC)

Rank 4

(Rank 4 Avg AUC)

0 Standard

BatchGP, OnlineGP, SOGP_m30

(0.9553)

SOGP_m10

(0.9124)

0 Weighted

BatchGP

(0.9602)

OnlineGP, SOGP_m30

(0.9484)

SOGP_m10

(0.9095)

5 Standard

BatchGP, OnlineGP, SOGP_m30

(0.8929)

SOGP_m10

(0.8021)

5 Weighted

BatchGP

(0.9179)

OnlineGP, SOGP_m30

(0.8632)

SOGP_m10

(0.7396)

10 Standard

BatchGP, OnlineGP

(0.8145)

SOGP_m30

(0.7817)

SOGP_m10

(0.6629)

10 Weighted

BatchGP

(0.8538)

OnlineGP, SOGP_m30

(0.7401)

SOGP_m10

(0.6198)

15 Standard

BatchGP, OnlineGP, SOGP_m30

(0.7503)

SOGP_m10

(0.6105)

15 Weighted

BatchGP

(0.8025)

OnlineGP

(0.7017)

SOGP_m30

(0.6567)

SOGP_m10

(0.5140)

20 Standard

BatchGP, OnlineGP, SOGP_m30

(0.6906)

SOGP_m10

(0.5402)

20 Weighted

BatchGP

(0.7473)

OnlineGP, SOGP_m30

(0.6006)

SOGP_m10

(0.5014)
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