
University of Central Florida University of Central Florida

STARS STARS

Electronic Theses and Dissertations

2015

Batch and Online Implicit Weighted Gaussian Processes for Batch and Online Implicit Weighted Gaussian Processes for

Robust Novelty Detection Robust Novelty Detection

Padron Ruben Ramirez
University of Central Florida

 Part of the Engineering Commons

Find similar works at: https://stars.library.ucf.edu/etd

University of Central Florida Libraries http://library.ucf.edu

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted

for inclusion in Electronic Theses and Dissertations by an authorized administrator of STARS. For more information,

please contact STARS@ucf.edu.

STARS Citation STARS Citation
Ramirez, Padron Ruben, "Batch and Online Implicit Weighted Gaussian Processes for Robust Novelty
Detection" (2015). Electronic Theses and Dissertations. 712.
https://stars.library.ucf.edu/etd/712

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
https://network.bepress.com/hgg/discipline/217?utm_source=stars.library.ucf.edu%2Fetd%2F712&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/712?utm_source=stars.library.ucf.edu%2Fetd%2F712&utm_medium=PDF&utm_campaign=PDFCoverPages

BATCH AND ONLINE IMPLICIT WEIGHTED GAUSSIAN PROCESSES

FOR ROBUST NOVELTY DETECTION

by

RUBEN RAMIREZ PADRON

M.S. University of Central Florida, 2009

B.S. Universidad Central “Marta Abreu” de Las Villas, 1996

A dissertation submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy in Computer Engineering

in the Department of Electrical Engineering and Computer Science

in the College of Engineering and Computer Science

at the University of Central Florida

Orlando, Florida

Summer Term

2015

Major Professor: Avelino Gonzalez

ii

© 2015 Ruben Ramirez Padron

iii

ABSTRACT

This dissertation aims mainly at obtaining robust variants of Gaussian processes (GPs) that do

not require using non-Gaussian likelihoods to compensate for outliers in the training data.

Bayesian kernel methods, and in particular GPs, have been used to solve a variety of machine

learning problems, equating or exceeding the performance of other successful techniques. That is

the case of a recently proposed approach to GP-based novelty detection that uses standard GPs

(i.e. GPs employing Gaussian likelihoods). However, standard GPs are sensitive to outliers in

training data, and this limitation carries over to GP-based novelty detection. This limitation has

been typically addressed by using robust non-Gaussian likelihoods. However, non-Gaussian

likelihoods lead to analytically intractable inferences, which require using approximation

techniques that are typically complex and computationally expensive. Inspired by the use of

weights in quasi-robust statistics, this work introduces a particular type of weight functions,

called here data weighers, in order to obtain robust GPs that do not require approximation

techniques and retain the simplicity of standard GPs. This work proposes implicit weighted

variants of batch GP, online GP, and sparse online GP (SOGP) that employ weighted Gaussian

likelihoods. Mathematical expressions for calculating the posterior implicit weighted GPs are

derived in this work. In our experiments, novelty detection based on our weighted batch GPs

consistently and significantly outperformed standard batch GP-based novelty detection whenever

data was contaminated with outliers. Additionally, our experiments show that novelty detection

based on online GPs can perform similarly to batch GP-based novelty detection. Membership

scores previously introduced by other authors are also compared in our experiments.

iv

To my wife Roxana and my daughter Camila,

for their constant love

and for supporting me every day with a high probability.

To my family in Cuba, for inculcating in me

the values of Honesty and Perseverance

since I was as young as Camila is now.

v

ACKNOWLEDGMENTS

I met my advisor, Dr. Avelino Gonzalez, ten years ago in Guatemala City. I worked at a

university in Guatemala City at that time, and I was asked to publicize and support Dr.

Gonzalez’s presentations about graduate studies at UCF. I applied to UCF motivated by his

presentations, and I got accepted as a PhD student in 2007. I am sincerely grateful to Dr.

Gonzalez for his continuous interest in fostering my personal and professional development

during all these years at UCF. His many comments and suggestions on the multiple phases of the

research presented here have been crucial for the successful completion of this dissertation.

When I started my graduate studies at UCF, I initially joined the Machine Learning Lab under

the guidance of Dr. Michael Georgiopoulos and Dr. Georgios Anagnostopoulos. I am very

thankful to both for the good times that we shared working together and for the many things

about machine learning that I learned from them. I am particularly grateful to Dr. Georgiopoulos.

The advice and support provided by him played a significant role during the time I was applying

to UCF and during my first two years at UCF as my advisor. His support has continued as a

member of my Dissertation Committee. I am very thankful to the other members of my current

Dissertation Committee as well, for their support, helpful comments and suggestions: Dr. Boris

Mederos, Dr. Kenneth Stanley, and Dr. Morgan C. Wang. This recognition extends to Dr. Jose

Sepulveda, which was initially a member of my Committee but retired recently. Special thanks

go out to Dr. Mederos for the multiple meetings on Skype to clarify my questions when I was

learning the theory behind Gaussian processes and robust statistics. Additionally, I gratefully

vi

acknowledge the support of UCF’s I2Lab Fellowship and the College of Engineering and

Computer Science during the first three years of my graduate studies.

I have worked in this dissertation in parallel with working full time as a software engineer during

the last four years and being a new father for almost three years. Because of that, this dissertation

would not be possible, despite the good will and plentiful support from the professors mentioned

above, without the support of my wife, my sister in law, and my parents in law when they visited

us. Thanks to you all for providing the essential time that allowed me to reach the point of

writing these acknowledgments!

vii

TABLE OF CONTENTS

LIST OF FIGURES .. xii

LIST OF TABLES ... xvi

CHAPTER 1: INTRODUCTION AND BACKGROUND .. 1

1.1 Background .. 1

1.2 Historical Origins of Outlier Detection .. 4

1.3 Main Aspects of a Novelty Detection Problem .. 15

1.3.1 Nature of Data ... 16

1.3.2 Type of Output .. 18

1.3.3 Type of Anomaly .. 19

1.3.4 Data Labels ... 20

1.3.5 Computational Requirements.. 22

1.3.6 Learning Framework ... 22

1.4 Modern Approaches to Novelty Detection... 23

1.4.1 Statistical Novelty Detection .. 27

1.4.2 Classification-based Novelty Detection .. 32

1.4.3 Clustering-based Novelty Detection ... 37

1.4.4 Distance-based Novelty Detection .. 40

viii

1.4.5 Information Theoretic Novelty Detection ... 42

1.4.6 Subspace-based Novelty Detection... 43

1.4.7 Angle-based Novelty Detection .. 45

1.5 Advantages and Limitations of Modern Approaches ... 45

CHAPTER 2: STATE OF THE ART IN KERNEL NOVELTY DETECTION.......................... 51

2.1 Statistical Patterns and Kernel Methods... 53

2.1.1 Statistical Patterns ... 54

2.1.2 Kernel Functions for Pattern Analysis .. 55

2.1.3 Kernel transformations.. 58

2.1.4 Classification of Kernels ... 60

2.1.5 Properties of Data in Feature Spaces .. 62

2.2 Classification-based Kernel Methods for Novelty Detection .. 64

2.2.1 Batch methods ... 65

2.2.2 Online Methods ... 73

2.3 Gaussian Processes for Novelty Detection... 80

2.3.1 Bayesian Modeling ... 82

2.3.2 Gaussian Processes ... 88

2.3.3 Gaussian Processes for Binary Classification ... 102

2.3.4 Gaussian Processes for Novelty Detection ... 105

ix

CHAPTER 3: PROBLEM STATEMENT.. 111

3.1 The Specific Problems ... 111

3.1.1 The Need for Robust GP-based Novelty Detection .. 112

3.1.2 The Need for Online GP-based Novelty Detection .. 116

3.2 Hypothesis .. 122

3.3 Contributions .. 122

CHAPTER 4: IMPLICIT WEIGHTED GAUSSIAN PROCESSES ... 124

4.1 Robust Potentials and Weights ... 129

4.2 Implicit Weighted Gaussian Processes .. 132

4.2.1 Implicit Weighted Batch GP ... 135

4.2.2 Implicit Weighted Online GP ... 138

4.2.3 Implicit Weighted Sparse Online GP .. 139

4.3 Data Weighers .. 140

4.3.1 HeteroscedasticReg DataWeigher .. 140

4.3.2 RobustReg DataWeigher .. 141

4.3.3 HeteroscedasticRobustReg DataWeigher ... 141

4.4 Notes on Computational Complexity ... 141

4.5 Experiments .. 143

4.5.1 Heteroscedastic Data without Outliers.. 145

x

4.5.2 Homoscedastic Data with Outliers.. 149

4.5.3 Heteroscedastic Data with Outliers ... 153

4.6 Effect of Weights on the MLE Method .. 157

CHAPTER 5: IMPLICIT WEIGHTED GAUSSIAN PROCESSES FOR NOVELTY

DETECTION .. 161

5.1 Robust Data Weigher ... 161

5.2 Experimental Setup .. 163

5.2.1 Comparison of Standard GPs and Weighted GPs ... 165

5.2.2 Comparison of Batch GPs and Online GPs .. 166

5.2.3 Comparison of Scores ... 167

5.3 Data Sets and Kernels .. 168

5.3.1 Points within Circles ... 168

5.3.2 Vertebral Column.. 170

5.3.3 Pima Indians Diabetes... 170

5.3.4 Caltech 101 ... 172

5.4 Experiment Results and Analyses .. 175

5.4.1 Comparison of Standard GPs and Weighted GPs ... 176

5.4.2 Comparison of Scores ... 187

5.4.3 Comparison of Batch GPs and Online GPs .. 193

xi

CHAPTER 6: CONCLUSIONS ... 201

6.1 Summary .. 201

6.2 Conclusions .. 206

6.3 Future Research .. 208

xii

LIST OF FIGURES

Figure 1.1: Main aspects of a novelty detection problem. .. 16

Figure 2.1: Matlab-like pseudocode for the Online GP training algorithm. 98

Figure 2.2: Matlab-like pseudocode for the SOGP training algorithm. 103

Figure 3.1: Data from sampling y = 5sin(x) at regular increments of 1 from -10 to 10, with

noise variance 0.5 and added outliers. The underlying true function is shown as a discontinuous

red line. ... 114

Figure 3.2: Posterior GP obtained by using hyperparameter values obtained from MLE. The

continuous blue line denotes the posterior mean, and the shaded area denotes the corresponding

95% confidence interval. The MLE method was called with suitable initial values 𝜎2 = 0.5 and

𝑎1 = 1, but numerical instability led MLE to incorrect estimates 𝜎2 = 40.2909 and 𝑎1 =

1.4756𝑒 − 06. .. 115

Figure 3.3: Posterior GP obtained by using suitable hyperparameter values: 𝑎1 = 1 and 𝜎2 =

0.5. The continuous blue line denotes the posterior mean, and the shaded area denotes the

corresponding 95% confidence interval.. 115

Figure 4.1: (a) The simulated training data set with two regions having different variances. (b)

Prediction from batch GP. (c) Prediction from weighted batch GP. .. 146

Figure 4.2: Prediction of online GPs on the heteroscedastic data. (a) Online GP (hyperparameters

as used in batch GP). (b) Weighted Online GP (hyperparameters as used in weighted batch GP).

... 147

xiii

Figure 4.3: Prediction of SOGPs on the heteroscedastic data, where capacity m was set to 16 (~

20% of data). (a) SOGP (hyperparameters as used in Batch GP). (b) Weighted SOGP

(hyperparameters as used in weighted batch GP). .. 147

Figure 4.4: Prediction of weighted GPs on the heteroscedastic data. Models were trained using

HeteroscedasticReg. (a) Weighted GP. (b) Weighted online GP (hyperparameters as used in

weighted batch GP). (c) Weighted SOGP with capacity m = 16, which is ~ 20% of data

(hyperparameters as used in weighted batch GP). (d) Weighted SOGP with capacity m = 28,

which is ~ 35% of data (hyperparameters as used in weighted batch GP). 148

Figure 4.5: (a) Simulated training data set containing outliers. (b) Prediction using batch GP,

with GP hyperparameters obtained through MLE. (c) Prediction using weighted batch GP, with

GP hyperparameters obtained through MLE. (d) Prediction using batch GP, with GP

hyperparameters as were estimated for weighted batch GP. .. 151

Figure 4.6: Prediction of online GPs on the homoscedastic data with outliers. (a) Online GP

(hyperparameters as used in weighted batch GP). (b) Weighted Online GP (hyperparameters as

used in weighted batch GP). ... 152

Figure 4.7: Prediction of SOGPs on the homoscedastic data with outliers; capacity m = 12 (~

20% of data). (a) SOGP (hyperparameters as used in weighted batch GP). (b) Weighted SOGP

(hyperparameters as used in weighted batch GP). (c) Histogram of the weights of the final basis

vectors of the weighted SOGP. ... 152

Figure 4.8: Results from weighted SOGP with capacity m = 20. (a) Prediction. (b) Histogram of

weights of the final basis vectors. ... 153

xiv

Figure 4.9: (a) The simulated heteroscedastic data set containing outliers. (b) Prediction from the

batch GP, with GP hyperparameters obtained through MLE. (c) Prediction from the weighted

batch GP, with GP hyperparameters obtained through MLE. (d) Prediction from the batch GP,

using values of hyperparameters obtained for weighted batch GP. .. 155

Figure 4.10: Prediction of online GPs trained on the heteroscedastic data with outliers. (a) Online

GP (hyperparameters as used in weighted batch GP). (b) Weighted Online GP (hyperparameters

as used in weighted batch GP). ... 156

Figure 4.11: Prediction of SOGPs trained on the heteroscedastic data with outliers, where

capacity m was set to 12 (~ 20% of data). (a) SOGP (hyperparameters as used in weighted batch

GP). (b) Weighted SOGP (hyperparameters as used in weighted batch GP). 156

Figure 4.12: Histograms of weights from the three weighted GP models after training. (a)

Weights assigned to all data points by weighted batch GP. (b) Weights assigned to final basis

vectors by the weighted online GP. (c) Weights assigned to final basis vectors by the weighted

SOGP. ... 157

Figure 4.13: (a) MLE optimization surface from batch GP trained on data set with outliers from

the second experiment. (b) MLE optimization surface from weighted batch GP trained on data

set with outliers from the second experiment. (c) MLE optimization surface from batch GP

trained on similar data but without outliers (“clean” data set). (d) Prediction of the batch GP

model trained on the “clean” data set. .. 159

Figure 4.14: Predictions from the batch GP model when trained on the second data set, this time

using log normal priors for its hyperparameters. .. 160

xv

Figure 5.1: The simple “Points within Circles” data set. Random observations on the center

correspond to the target class. The small clusters on the corners are used as outliers, both as a

source of contamination and for testing purposes. .. 169

xvi

LIST OF TABLES

Table 2.1: Commonly used kernel functions. In this case data points 𝐱, 𝐱′ ∈ ℝ𝑑, where d is a

positive integer. ... 57

Table 2.2: Membership scores for novelty detection using Gaussian processes. Table taken from

(Kemmler, Rodner, & Denzler, 2010). ... 107

Table 5.1: Number of positive and negative relative changes in AUC that were significant at α =

0.01, and how many of them had its absolute value greater or equal than 2%. Points within

Circles data set. ... 177

Table 5.2: Number of positive and negative relative changes in AUC that were significant at α =

0.01, and how many of them had absolute value greater or equal than 2%. Vertebral Column data

set. ... 178

Table 5.3: Number of positive and negative relative changes in AUC that were significant at α =

0.01, and how many of them had absolute value greater or equal than 2%. Pima Indians Diabetes

data set. ... 179

Table 5.4: Number of positive and negative relative changes in AUC that were significant at α =

0.01, and how many of them had absolute value greater or equal than 2%. Caltech 101 data set.

Beaver target class. ... 180

Table 5.5: Number of positive and negative relative changes in AUC that were significant at α =

0.01, and how many of them had absolute value greater or equal than 2%. Caltech 101 data set.

Cougar Body target class. ... 180

xvii

Table 5.6: Number of positive and negative relative changes in AUC that were significant at α =

0.01, and how many of them had absolute value greater or equal than 2%. Caltech 101 data set.

Crocodile target class. ... 181

Table 5.7: Number of positive and negative relative changes in AUC that were significant at α =

0.01, and how many of them had absolute value greater or equal than 2%. Caltech 101 data set.

Joshua Tree target class. ... 181

Table 5.8: Number of positive and negative relative changes in AUC that were significant at α =

0.01, and how many of them had absolute value greater or equal than 2%. Caltech 101 data set.

Minaret target class. .. 182

Table 5.9: Number of positive and negative relative changes in AUC that were significant at α =

0.01, and how many of them had absolute value greater or equal than 2%. Caltech 101 data set.

Okapi target class. ... 182

Table 5.10: Number of positive and negative relative changes in AUC that were significant at α =

0.01, and how many of them had absolute value greater or equal than 2%. Caltech 101 data set.

Windsor Chair target class. ... 183

Table 5.11: Number of positive and negative relative changes in AUC that were significant at α =

0.01, and how many of them had absolute value greater or equal than 2%. Caltech 101 data set.

All classes combined... 184

Table 5.12: Number of positive and negative relative changes in AUC that were significant at α =

0.01, and how many of them had absolute value greater or equal than 2%. Results aggregated

from all data sets. .. 187

xviii

Table 5.13: Counting best and worst novelty detection scores, aggregated over all contamination

levels. Points within Circles data set... 188

Table 5.14: Counting best and worst novelty detection scores, aggregated over all contamination

levels. Vertebral Column data set. .. 189

Table 5.15: Counting best and worst novelty detection scores, aggregated over all contamination

levels. Pima Indians Diabetes data set. ... 189

Table 5.16: Counting best and worst novelty detection scores, aggregated over all contamination

levels. Beaver data set. .. 190

Table 5.17: Counting best and worst novelty detection scores, aggregated over all contamination

levels. Cougar Body data set. .. 190

Table 5.18: Counting best and worst novelty detection scores, aggregated over all contamination

levels. Crocodile data set. ... 190

Table 5.19: Counting best and worst novelty detection scores, aggregated over all contamination

levels. Joshua Tree data set. .. 190

Table 5.20: Counting best and worst novelty detection scores, aggregated over all contamination

levels. Minaret data set. .. 191

Table 5.21: Counting best and worst novelty detection scores, aggregated over all contamination

levels. Okapi data set. ... 191

Table 5.22: Counting best and worst novelty detection scores, aggregated over all contamination

levels. Windsor Chair data set. ... 191

Table 5.23: Counting of best and worst novelty detection scores. All target classes combined. 191

Table 5.24: Counting of best and worst novelty detection scores. All target classes combined. 193

xix

Table 5.25: Suitable membership score for each data set. .. 193

Table 5.26: Counting of rank allocation for each particular GP type, aggregated over

contamination levels. Points within Circles data set. .. 194

Table 5.27: Counting of rank allocation for each particular GP type, aggregated over

contamination levels. Vertebral Column data set. .. 195

Table 5.28: Counting of rank allocation for each particular GP type, aggregated over

contamination levels. Pima Indians Diabetes data set. ... 195

Table 5.29: Counting of rank allocation for each particular GP type, aggregated over

contamination levels. Caltech 101 data set. Beaver target class. .. 196

Table 5.30: Counting of rank allocation for each particular GP type, aggregated over

contamination levels. Caltech 101 data set. Cougar Body target class. 196

Table 5.31: Counting of rank allocation for each particular GP type, aggregated over

contamination levels. Caltech 101 data set. Crocodile target class. ... 197

Table 5.32: Counting of rank allocation for each particular GP type, aggregated over

contamination levels. Caltech 101 data set. Joshua Tree target class. .. 197

Table 5.33: Counting of rank allocation for each particular GP type, aggregated over

contamination levels. Caltech 101 data set. Minaret target class. .. 197

Table 5.34: Counting of rank allocation for each particular GP type, aggregated over

contamination levels. Caltech 101 data set. Okapi target class. ... 198

Table 5.35: Counting of rank allocation for each particular GP type, aggregated over

contamination levels. Caltech 101 data set. Windsor Chair target class. 198

xx

Table 5.36: Counting of rank allocation for each particular GP type, aggregated over

contamination levels. Caltech 101 data set. All target classes combined. 198

Table 5.37: Counting of rank allocation for each particular GP type, aggregated over

contamination levels and all data sets. .. 199

1

CHAPTER 1: INTRODUCTION AND BACKGROUND

This dissertation investigates the development of robust novelty detection algorithms that use

weighted variants of Gaussian processes (GPs) as their theoretical foundation, which are also

proposed in this work. Note that the term “novelty detection” covers the same types of problems

and algorithms considered by the area of “outlier detection”. Both terms differ mainly in the

interpretation given to anomalous observations. Note also that the term anomaly detection is

commonly used as a synonymous to outlier detection. Consequently, the three terms are used

indistinctly in this work. However, the term “novelty detection” is favored in this dissertation for

reasons exposed in the following subsection.

The objective of Chapter 1 is to introduce the various terms used in this dissertation. The

research efforts made by others in the field of novelty detection are also discussed. We begin by

providing a historical perspective on outlier detection (arguably the first term used to denote this

research area). Afterwards, a review of modern outlier detection methods is offered. A particular

emphasis is given to kernel methods, given that GPs rely on kernel functions to define

covariance matrices. The advantages and limitations of modern techniques are also mentioned in

this chapter.

1.1 Background

Prices for data storage have been falling at a rapid pace recently. This has enabled the recording

and management of a variety of every-day activities, thereby resulting in storing increasingly

2

larger amounts of data for various purposes. Consequently, retrieving knowledge from data sets

has become a very important practical problem, typically covered by statistics and –more

recently– data mining. The primary goal of data mining is to find useful hidden patterns in large

data sets. However, problems in data mining have become much more difficult recently, not only

because of the larger size of data sets, but also because the increasing variety and complexity of

the data.

From a very general point of view, the search for knowledge in large amounts of data can be

done by employing two very different approaches. The first approach assumes that the initial

data set contains all the information required to find the type of patterns we are interested in.

Consequently, one or more learning algorithms are applied once to the available data, and any

patterns obtained are considered valid for a relatively long time. This scenario is known as batch

learning. The second scenario assumes that observations come on a serial fashion and possibly

generated by a slowly changing distribution. These assumptions imply that knowledge needs to

be constantly updated based on new input data. Algorithms designed to work under this setting

are said to follow an online learning approach. The research described in this dissertation

addresses both batch and online outlier detection.

Currently, many databases contain a mixture of data types: numerical and categorical variables,

graphs, maps, images, video and sound, among others. Data mining researchers and practitioners

employ several techniques, mainly from statistics and machine learning, in order to find

interesting and actionable patterns within those large and potentially complex data sets (Tan,

Steinbach, & Kumar, 2005). The wide applicability of data mining and the increasing complexity

3

of the problems it tackles have led to the creation of standards for describing data mining

models. An example worthy of mention here is the Predictive Model Markup Language (PMML)

(Guazzelli, Zeller, Lin, & Williams, 2009). PMML allows several mainstream data analysis

software to exchange data mining models, e.g., IBM DB2 Data Warehouse, Microsoft SQL

Server Analysis Services, Rattle/R, Statistica, SPSS, SAS Enterprise Miner, KNIME, and

RapidMiner.

The problems traditionally considered in data mining are clustering, classification,

dimensionality reduction, association mining, and outlier detection. Outlier detection is a

growing field within data mining. It focuses on detecting unusual observations in data sets and

processes. Hawkins defined an outlier as “an observation that deviates so much from other

observations as to arouse suspicion that it was generated by a different mechanism” (Hawkins

D. M., 1980). This general definition is broadly accepted nowadays. Detection of credit card

fraud, computer network attacks, anomalous clinical results, suspicious activity in electronic

commerce and faulty sensor readings are some of the most important applications of outlier

detection.

The term novelty detection is another synonymous to outlier detection. The difference between

the two terms is based on the interpretation given to the suspiciously abnormal data points. An

outlier (or anomaly) is an observation that does not belong to the population or process being

modeled, while novelty detection refers to “the identification of new or unknown data or signals

that a machine learning system is not aware of during training” (Markou & Singh, 2003).

Nevertheless, the terms outlier detection, anomaly detection and novelty detection denote the

4

same set of techniques and encompass the same theoretical and practical concerns. Because of

that, they will be used indistinctly in this dissertation. However, novelty detection is the term

used in the title because it better reflects the learning approach investigated in this research.

While outliers and anomalies are observations that should not belong to the concept previously

learned, novelty detection provides a more general interpretation because it opens the door to the

realization that some of the abnormal observations actually belong to under-represented or

emerging areas that could increasingly be considered normal. In those cases, the model should be

adjusted accordingly over time, in order to include the novel observations as part of the normal

class; even if initially they are not given much importance in the model. This idea is explored in

this dissertation through the use of weights that embody the importance of observations. Weights

would allow learning new regions of the normal class in a way that is robust to the presence of

actual outliers in the training data.

1.2 Historical Origins of Outlier Detection

Outlier detection has been done for centuries. For instance, it was common practice among

astronomers on the eighteenth century to reject observations with particularly large deviations

from the sample mean. However, detection of “doubtful observations” was not based on any

mathematical foundation at that time. Scientists dealing with series of observations used their

experience and intuition to decide, arbitrarily, whether to keep or reject those observations that

seemed to be erroneous measures, or possibly coming from another source. This practice, as

might be expected, was highly controversial.

5

One of the first references to outlier detection was based on large residuals. It came from the

head of the German School of Astronomers in 1838 (Anscombe & Guttman, 1960). This

approach assumes that outliers are observations lying in low-probability regions of a stochastic

model that describes a normal class. The underlying distribution of each normal class is

estimated from the training data set. Outliers are determined by calculating the probabilities of

obtaining a new observation from each normal class using the corresponding estimated class

distributions.

In 1852, Benjamin Peirce, the father of Charles Sanders Peirce, published the first effort to

establish a formal test for outlier detection (Peirce, 1852). Given a series of N observations,

Peirce proposed to obtain a threshold T for the errors (which he called “limit of error”) such that

observations with residuals from the mean greater than T would be considered outliers. In

Peirce’s words, the principle behind his criterion is that “the proposed observations should be

rejected when the probability of the system of errors obtained by retaining them is less than that

of the system of errors obtained by their rejection multiplied by the probability of making so

many, and no more, abnormal observations”. When his work was published, one of the main

difficulties practitioners were facing was to decide whether “doubtful observations” were

actually outliers. The small amounts of data managed at that time allowed practitioners to

determine those doubtful observations by visual inspection. Consequently, Peirce assumed that

the number of observations proposed to be rejected, n, was known in advance. Peirce’s paper is

not straightforward to read because the notation is very different from modern notation. A paper

published in 1855 by Benjamin Apthorp Gould, the founder of the American Astronomical

Journal, provides a description of Peirce’s criterion that is somewhat easier to understand despite

6

the old-fashioned notation (Gould, 1855). A brief description of Peirce’s criterion is given below

using modern notation.

Let 𝑋 = {x1, x2, … , x𝑁} be a series of N observations, and n the number of doubtful observations

that we are intending to reject. Peirce denoted by m the number of unknown variables contained

in the observations, which is a quantity that the practitioner must fix in advance. Let us denote by

𝜎1 the standard deviation of the original sample. The standard deviation of the remaining

observations after removing the n doubtful observations is denoted by 𝜎2. Let us define 𝜆 ≡
𝜎1

𝜎2
,

and assume that the threshold 𝑇 = 𝑐𝜎1. The main goal of Peirce’s criterion is to obtain a value

for c such that any observation x𝑖 with |x𝑖 − 𝜇𝑋| > 𝑇 has a high probability of being an outlier.

To decide on rejecting n doubtful observations following Peirce’s criterion, the following

inequality must be satisfied:

 𝜆𝑁−𝑛𝑒
1

2
𝑛(𝑐2−1)(2Φ(−𝑐))

𝑛
< 𝑄𝑁 , (1.1)

where 𝑄𝑁 =
𝑛𝑛(𝑁−𝑛)𝑁−𝑛

𝑁𝑁 and Φ denotes the cumulative distribution function of the standard

normal distribution. Clearly, 2Φ(−𝑐) denotes the probability of having residuals greater than c in

absolute value, provided the residuals follow a standard normal distribution.

Peirce assumed that “the excess of the sum of squares of the residual errors above the

corresponding sum in the series remaining after the n observations have been excluded is only

equal to the sum of the squares of the rejected residuals”. Under that assumption, which seems

general enough, the following equations are obtained:

7

 𝜆2 =
𝑁−𝑚−𝑛𝑐2

𝑁−𝑚−𝑛
 , (1.2)

𝑐2 = 1 +
𝑁−𝑚−𝑛

𝑛
(1 − 𝜆2) . (1.3)

Given Peirce’s assumption on the sum of squared residuals, inequality (1.1) becomes

 𝜆𝑁−𝑛𝑅𝑛 = 𝑄𝑁 , (1.4)

where 𝑅 = 𝑒
1

2
(𝑐2−1)2Φ(−𝑐).

The application of the criterion consists of the following steps using the last three equations: 1)

an approximate value for R is assumed; 2) the corresponding value for 𝜆 is estimated using R and

Q; 3) an estimate for c is obtained using the estimate for 𝜆. The process could be repeated

iteratively to increase precision. After one or more iterations to estimate c, the threshold T is

calculated as 𝑇 = 𝑐𝜎1. To apply Peirce’s criterion, the threshold must first be determined for the

hypothesis of n = 1. If the test supported rejecting one observation, the hypothesis of n = 2 is

tested, and so on.

Peirce’s criterion was highly controversial. Several scientists had harsh criticism, particularly Sir

George Biddell Airy, the director of the Royal Greenwich Observatory. Airy wrote “the whole

theory is defective in its foundations, and illusory in its results” (Airy, 1856). Despite the critics,

Peirce’s criterion was in use very soon after its publication. Among the first applications were

analysis of astronomical data and the rejection of doubtful observations from the United States

Coast Survey. The astronomer Joseph Winlock strongly criticized Airy’s statements (Winlock,

1856). He stated that some of Airy’s arguments, like the inapplicability of probability laws to

observations that were already recorded, were not sound from a statistical point of view. Airy

had asserted that it was as probable for the retention of doubtful observation to be beneficial as to

8

be harmful for data analysis. Regarding this assertion, Winlock’s argument was that rejecting a

valid observation does not necessarily introduce an error, while keeping an abnormal observation

as valid definitely affects any statistics obtained from the data. In Winlock’s words: “we must

reject whenever an observation is so doubtful, that retaining it makes our conclusions less

reliable than they would be if its evidence had not been used” (Winlock, 1856). Interestingly

enough, this sentence reflects Peirce’s own approach to the outlier rejection problem.

The second important work on outlier detection from the nineteen century was the approximation

method proposed by Chauvenet (Chauvenet, 1868). That work was the appendix to Chauvenet’s

book "Manual of spherical and practical astronomy". The last section of the treatise, starting on

page 558, offers a description of Peirce's criterion. After that review, Chauvenet proposed an

approximate criterion for rejecting a single doubtful observation, based on the foundation of least

squares. He mentioned that such approximations were also possible for the general case, but they

were more cumbersome than Peirce’s criterion, so he preferred not to develop it further.

Assuming that the residuals of the observations distributes N(0, σ2), the actual number of

residuals n to be expected greater than a threshold T in absolute value, where 𝑇 = 𝑐σ, is given by

 𝑛 = 2𝑁Φ(−c). Again, Φ denotes the cumulative distribution function of the standard normal

distribution. The main idea behind Chauvenet’s criterion is to find T such that, regardless of the

number of observations N, on average, half an observation of valid data is rejected. Accordingly,

if c satisfied 2𝑁Φ(−c) = 0.5 then any residual greater than 𝑇 = cσ in absolute value should be

rejected.

9

An important aspect to note from Chauvenet’s criterion is that the threshold c decreases when the

number of observations decreases, causing a variable proportion of observations to be rejected.

The criterion is devised to test for a single outlier because N changes once an outlier is rejected,

and consequently, the threshold must be updated. Chauvenet suggested a successive application

of his criterion for the rejection of two or more outliers. It is also important to note that

Chauvenet was supportive of Peirce’s criterion, and he recommended it for those situations

where his approximation was not applicable.

 The third important work from the nineteenth century, in chronological order, is the outlier

rejection method from Stone (Stone, 1868). His article offered an alternative to Peirce's criterion

and Chauvenet's outlier rejection method. The main idea was to determine a threshold T for the

residuals based on the proportion of outliers within a data set, which is assumed to be known in

advance. Stone defined the term “modulus of carelessness” as the average number of

observations containing exactly one outlier for the sample at hand. He denoted by n the modulus

of carelessness. If the value c satisfying the following equation is found:

 2Φ(−𝑐) =
1

𝑛
 , (1.5)

we would have a threshold 𝑇 = 𝑐𝜎 that fits the expected proportion of outliers in the sample.

Contrary to Chauvenet’s method, by using this rule the value of c does not depend on the number

of observations. Therefore, the number of outliers increases for larger number of observations.

This approach seems to be the seed for the current rule of thumb that rules out normal

observations which are farther than three standard deviations from the mean. It is trivial to

realize that such rule of thumb actually corresponds to a modulus of carelessness approximately

10

equal to 370; i.e. a probability of encountering an outlier is assumed to be around 0.0027.

Apparently, this was not the first rule of thumb to be used. The work of (Wright, 1884) proposed

to reject observations with residuals above 3.37 times the standard deviation in absolute value

(using old notation: five times the probable error).

The methods from the nineteenth century were always concerned with the probabilities of

observations lying far enough from the sample mean assuming a normal distribution. A method

described in (Irwin, 1925a) introduced the idea of taking into account the difference between

neighboring observations. If observations taken at random from a normal population were

arranged in descending order of magnitude, the frequency distribution of the differences between

the p
th

 and (p + 1)
th

 observations can be obtained (Irwin, 1925b). In particular, Irwin noted that

for p = 1 and p = 2, those frequency distributions could be approximated by functions from the

following family (using Irwin’s notation):

 y = y0𝑒
−

1

2
{

(x+ℎ)2−ℎ2

Σ2 }
 , (1.6)

where x ϵ [0, ∞), and the parameters y0, h and Σ depend on the size of the sample at hand. Let us

denote by σ the standard deviation of the sample population. If the probability of any of these

two differences being greater than 𝑐𝜎 is small enough, then the corresponding observations (the

first, or the first and second observations) should be rejected. The constant c, denoted by λ in

Irwin’s paper, is to be determined by the person using the method, based on which value for

P(difference > cσ) is sufficiently small. Irwin commented on how to use his method for

establishing the “outlierness” of differences when p > 2, but he noted that for typical data sets (at

that time) “it does not often happen that there are more than three or four outlying

11

observations”. As a curiosity, Irwin had strong words in his paper against Peirce’s criterion,

which was one of the outlier detection methods to which he compared his own method.

Another interesting point of view appeared in (Jeffreys, 1932). According to that paper, “the

probability that a given observation has been affected by an abnormal cause of error is a

continuous function of the deviation”. Consequently, it might be better to take those probabilities

into account than to completely reject some of the observations. Apparently, Jeffreys was the

first one to propose a distribution for the data that is actually a sum of a normal distribution and a

“contaminating” distribution:

 𝑓(x) = (1 − 𝑝)
𝑒

−
(x−μ)2

2σ2

√2πσ2
 + 𝑝

𝑒
−

(x−μ−y)2

2σc
2

√2πσc
2

 , (1.7)

where µ is the population mean, x denotes an observation, σ denotes the standard deviation for

normal observations, σc denotes the standard deviation of the contaminating distribution, and y

denotes a systematic error. It is important to note that this formula was written here using

modern notation, but Jeffreys wrote it slightly differently by using the concept “modulus of

precision” instead of standard deviation. The problem that Jeffreys tackled in his paper was to

estimate μ and y, given a series of N observations X = {x1, x2, … , x𝑁}. He proposed a solution to

this problem under two different scenarios:

 The parameters p, σ and σc were known in advance.

 The parameters p, σ and σc are unknown, so they have to be estimated from the sample.

12

In the first case, by carrying out the maximum likelihood method, Jeffreys arrived at expressions

to calculate µ and (µ + y) as weighted averages of the observations. Clearly, if p was assumed

equal to zero, then we have that µ is equal to the arithmetic mean of the observations and y is

indeterminate. Interestingly, under this derivation, large deviations have smaller weights than

small deviations in the estimation of µ. On the contrary, large deviations have greater weights in

estimating (µ + y). The solution requires successive approximations to the values of µ and y. The

second case was also solved using successive approximations on a set of equations which

included p, σ and σc as unknown variables.

Another work worth mentioning from the early twentieth century is that of William Thompson

(Thompson, 1935). It seems to be the first publication where the Student’s t-distribution was

used in an outlier detection method to deal with the fact that most of the time practitioners do not

have access to the mean and standard deviation of the population. In that case, those values are

approximated by the sample mean x̅ and the sample standard deviation s. Unless there are a large

number of observations, those approximations do not justify using the normal distribution. To

account for the possible error incurred in estimating the population parameters, Thompson

defined a new random variable 𝜏 ≡
𝑋−x̅

𝑠
. He showed that 𝜏 = 𝑡√

𝑛+1

𝑛+𝑡2 , where t follows a Student

t-distribution with n = N – 2 degrees of freedom. Thompson followed the same approach as

Stone, fixing a priori the expected number of observations to be rejected, denoted by 𝜙, for a

sample of size N. Given 𝜙 and N, a probability p is calculated as 𝑝 =
𝜙

𝑁
. A threshold value 𝜏0 is

obtained such that 𝑃(|𝜏| > 𝜏0) = 𝑝. Consequently, any observation x𝑖 such that |x𝑖 − x̅| > 𝜏0𝑠

13

is considered an outlier. On average, this method will reject one valid observation (i.e. a non-

outlier) in every
1

𝜙
 observations.

The work of (Pearson & Sekar, 1936) argued that Thompson’s method was essentially a test for

the hypothesis 𝐻0 that “a sample of N observations has been drawn from a single normal

population”. They praised Thompson’s method because it provides control over the error of type

I when rejecting the null hypothesis 𝐻0. However, Thompson did not establish what the

alternative hypotheses were. Pearson and Sekar stated as the alternative hypothesis that k

observations, k > 0, come from normal populations having different means or standard deviations

from the population from which the valid N – k observations were drawn. By imposing outer

limits in the extreme values for the studentized residuals τ, Pearson and Sekar showed that for

samples with two or more outliers which are close together, any attempt to remove them one at a

time using Thompson’s method is worthless. This fact was subsequently named in literature as

the “masking effect”.

Another statistic from the beginnings of the twentieth century was based on the range of the

sample. Having the observations sorted as x1 ≤ x2 ≤ ⋯ ≤ x𝑁 the statistic 𝑤 =
x𝑁−x1

𝜎
 can be

used to establish abnormal observations. However, this statistic was limited to very small

samples, since for the more than 12 values the probability law of w “becomes very sensitive to

relatively slight departures from normality in the tails of the population distribution” (Pearson &

Hartely, 1942). Consequently, “the use of range for control purposes in larger samples is of

doubtful value”. The 𝑤 statistic was subsequently used in the Bliss-Cochran-Tukey rule (Bliss,

14

Cochran, & Tukey, 1956) in order to determine the presence of outliers from several small

samples, each one with N observations.

Another interesting outlier rejection method was proposed in (Grubbs F. E., 1950). Again, the

observations are assumed to be sorted as x1 ≤ x2 ≤ ⋯ ≤ x𝑁. This method tests the significance

of the largest observation in the sample from a normal population using the following statistic:

𝑆1,𝑁−1

2

𝑆2 =
∑ (x𝑖−x̅1,𝑁−1)𝑁−1

𝑖=1

∑ (x𝑖−x̅)𝑁
𝑖=1

 , (1.8)

where x̅𝑗,𝑘 =
∑ x𝑖

𝑘
𝑖=𝑗

𝑘−𝑗+1
; k > j, and x̅ is the mean of the whole sample. If the significance of the

smallest observation in the sample was the one to be tested, then a similar statistic
𝑆2,𝑁

2

𝑆2 =

∑ (x𝑖−x̅2,𝑁)𝑁
𝑖=2

∑ (x𝑖−x̅)𝑁
𝑖=1

 can be employed. Grubbs found out that
𝑆1,𝑁−1

2

𝑆2 = 1 −
1

𝑁−1
(

x𝑁−x̅

𝑠
)

2

= 1 −
1

𝑁−1
𝑇𝑁

2.

Here, 𝑇𝑁 is the sudentized extreme deviation that Pearson and Sekar used for expanding

Thompson’s work. Grubbs obtained the exact distribution of
𝑆1,𝑁−1

2

𝑆2 (and similarly of
𝑆2,𝑁

2

𝑆2) in order

to test the corresponding significance. He defined similar statistics to test the significance of

either the two largest or the two smallest values in a small sample. It is important to note that

Grubbs derived a general recursive expression for the cumulative probability function of
x𝑁−x̅

𝜎
.

That same result was previously published in (McKay, 1935). Grubbs pointed out that his

derivation was obtained independently from McKay’s work and it was much simpler. Grubbs’

statistics are limited to a very small number of observations, given that the distribution on which

they are based depends on N. Grubbs published tables with four significance values for values of

N ranging from 2 to 25.

15

1.3 Main Aspects of a Novelty Detection Problem

Continuous advances in disk storage, memory speed and capacity, computational power, added

to the decreasing cost of hardware and the surge of distributed systems running on “commodity

hardware”, have allowed data mining techniques to expand out of the realm of powerful

companies and large institutions to become common place in a variety of application domains.

The same computational advances have allowed the implementation of more complex and

accurate algorithms. The multiple domains to which data mining techniques are currently applied

have characteristics that determine the specific formulation of the problems to be solved. This

section describes the main aspects of a novelty detection problem, particularly those that are

determined by the corresponding application domain.

According to (Chandola, Banerjee, & Kumar, 2009), the most important factors determining the

formulation of an anomaly detection problem are the following: the nature of data, the type of

output, the type of anomaly, and the availability or unavailability of data labels. This section

extends the categorization given in (Chandola, Banerjee, & Kumar, 2009) by adding two other

factors that are also important when defining a novelty detection problem: computational

requirements and the learning framework. These aspects are shown in Figure 1.1 below, inspired

on a similar diagram from (Chandola, Banerjee, & Kumar, 2009). They are described in the

subsections that follow. If some characteristics of these aspects were particularly relevant for the

research described in this dissertation then they will be noted in the corresponding subsections.

16

Figure 1.1: Main aspects of a novelty detection problem.

1.3.1 Nature of Data

Input data can be defined as a collection of data instances that represent fundamental

characteristics of objects from the application domain. In this dissertation, data instances are also

called observations. Observations are typically stored as univariate or multivariate vectors. Each

component of an observation is denoted in this dissertation by the term attribute (feature and

characteristic are also used here sporadically). Attributes might be numerical, categorical,

unstructured text, images, videos, or sound, among other types. In the case of multivariate

observations, whether attributes are of the same type or not makes an important difference

regarding the algorithms that can be applied. Most of the current approaches have been focused

on detecting outliers exclusively on a particular type of data. However, data sets with a mixture

of data types (also called mixed-attribute data sets) appear in many real-world applications. A

17

very common case is the mixture of numerical and categorical data (Otey, Ghoting, &

Parthasarathy, 2006), (Koufakou & Georgiopoulos, 2010).

This dissertation focuses on a particular type of kernel method for novelty detection. Kernel

methods effectively decouple the underlying data types of the observations from the particular

algorithm employed. Consequently, novelty detection techniques proposed here are not sensitive

to changes in data types, as far as an appropriate kernel can be found.

Another useful classification for the nature of data is based on relationships among the

observations (Tan, Steinbach, & Kumar, 2005). Most novelty detection algorithms assume no

relationship among data instances. In that case, observations are also denoted by the terms data

points and data records. Some possible relationships in related data are: sequential, spatial, and

spatio-temporal. Sequence data contains linearly ordered data; for instance, time-series (also

called temporal data), and genome sequences. Spatial data contain one or more attributes

describing the spatial location of observations. Main examples are geological and ecological

data. Spatial data with a temporal attribute is referred to as spatio-temporal data. Finally, the

term graph data typically denotes data that contain more general relationships (social data is a

prime example of this category). A good review of current outlier detection methods for

temporal data, including spatio-temporal data and sequences of graphs, is given in (Gupta, Gao,

Aggarwal, & Han, 2014). Although data relationships are a fundamental component of some

novelty detection techniques, this dissertation is not concerned with modeling data relationships.

However, it is important to note that the methods employed in this work could benefit from such

relationships through the use of kernel functions that are designed to leverage them.

18

1.3.2 Type of Output

Typically, the output from novelty detection methods are of two types: labels and scores

(Chandola, Banerjee, & Kumar, 2009). Techniques that use labels classify each observation as

either outlier or normal. Scoring techniques assign to each observation a score value (typically a

real number) that states either its degree of “outlierness” or its degree of membership to the

normal class. Score values are denoted by the term novelty scores or membership scores,

respectively. Novelty scores allow analysts and researchers to maintain a ranked list of

observations that were classified as outliers. Consequently, they can focus on the most relevant

anomalies. Furthermore, novelty scores might be an important feature in some application

domains to determine whether an outlier or a group of outliers should be added to the normal

model or not. Finally, if the need appeared, then scores can be converted into labels by defining a

threshold value. Because of the advantages of novelty scores over labels, this dissertation focuses

on scoring algorithms.

The work of (Breunig, Kriegel, Ng, & Sander, 2000) was the first one to use scores to describe

outliers. It was an important step towards establishing novelty scores through rankings. The

work in (Hawkins, He, Williams, & Baxter, 2002) used the reconstruction error of replicator

neural networks as the anomaly score for each observation. A rule-based approach was employed

in (Fan, Miller, Stolfo, Lee, & Chan, 2001), defining novelty scores as the inverse of confidence

factors. In (He, Xu, Huang, & Deng, 2004), novelty scores of categorical observations were

defined based on the number of frequent itemsets in which they appeared. The work of (Byers &

Raftery, 1998) calculated the novelty score of a data point as the distance to its k
th

 nearest

neighbor.

19

1.3.3 Type of Anomaly

Anomalies can be classified into three different categories: point anomalies, contextual

anomalies, and collective anomalies. Point anomaly is the simplest type of ‘outlierness’. An

observation is a point anomaly when it is considered an outlier with respect to data that is

considered normal. For instance, a particularly high or low credit card transaction compared to

the typical expenditure pattern of the card holder could be considered an anomaly. Another

example is a very unusual sensor reading, far beyond the range of previous observations. Most

novelty detection techniques focus on this type of anomaly.

Contextual anomaly (also called conditional anomaly) establishes that an observation can be

considered an outlier only within a particular context (Song, Wu, Jermaine, & Ranka, 2007). The

notion of a context is induced by the structure in the data set. Typically, attributes are classified

as either contextual attributes (those defining the particular context on which the observation

lies) or behavioral attributes (those containing non-contextual characteristics of the

observations). Contextual information might be very useful when available (for instance, to deal

with segmented data). However, deciding on which contextual attributes are appropriate is not

always a straight-forward process. Contextual novelty detection has been explored mainly in the

presence of related data, e.g. (Salvador & Chan, 2005), (Kou, Lu, & Chen, 2006).

A set of observations is called a collective anomaly if the occurrence of all the observations

together is suspiciously abnormal, but the individual observations might not be anomalies by

themselves. The following are examples of recent work on collective anomalies: (Shekhar, Lu, &

Zhang, 2002), (Noble & Cook, 2003), (Sun, Chawla, & Arunasalam, 2006), and (Kou, Lu, &

20

Dos Santos, 2007). Collective anomalies cannot occur in data containing unrelated observations.

Consequently, this dissertation does not consider algorithms that look for collective anomalies.

Furthermore, this work is specifically interested in the problem of detecting point anomalies.

1.3.4 Data Labels

A training data set is labeled when each training observation has an attribute denoting the correct

response that should be given by a machine learning algorithm that learnt a model from that data

set. In the case of novelty detection, that label is the correct output for reporting an anomaly, i.e.

a binary label or a score value. The existence or absence of labels in a data set defines the type of

learning task to be undertaken. Essentially, there are three different types of learning tasks based

on data labeling: supervised, semi-supervised and unsupervised novelty detection.

Techniques following a supervised learning approach assume that both normal and abnormal

observations are correctly labeled. In those cases, a classification algorithm might be employed.

However, most classification techniques need to be adapted because a major difficulty typically

not present in traditional classification theory: imbalanced class distribution. It is common to

have in a data set many more observations coming from normal data than from the class of

outliers. Several authors have addressed this imbalance issue in different ways; e.g. (Joshi,

Agarwal, & Kumar, 2001), (Joshi, Agarwal, & Kumar, 2002), (Phua, Alahakoon, & Lee, 2004)

and (Vilalta & Ma, 2002).

For some domains it is very difficult to obtain a representative set of labeled outliers. There are

two main reasons for this difficulty. First, outliers are typically rare observations in comparison

to what is considered normal, and sometimes their rare occurrences are attached to high cost

21

effects (such as airplane engine failures or ecological catastrophes). Second, it is almost

impossible to predict in advance every possibly type of anomaly that might appear in most

systems. Consequently, supervised novelty detection has very limited applicability in practice.

Semi-supervised novelty detection methods are designed to be trained on a data set containing

labels only for normal observations. The basic learning approach in this case is to find a model

for the normal class. New observations not fitting well into that model are labeled as anomalies.

Although semi-supervised techniques are more broadly applicable than supervised novelty

detection techniques, sometimes it is difficult or even impossible to gather a representative

training data set encompassing the normal class. Among the most important reasons behind that

limitation we have: (1) it might be very difficult to define a region encompassing every possible

normal observation; (2) the boundaries between normal and anomalous observations are not

always well-defined; (3) the concept of normality might be changing with time, potentially

turning previous labels as incorrect. The final section of this chapter explains how these

limitations can be overcome with the use of online learning methods and robust techniques.

The third type of learning task, unsupervised novelty detection, deals with data sets without label

information at all. Methods following an unsupervised approach are the most widely applicable.

However, the lack of labels forces these techniques to implicitly assume that normal observations

are much more frequent than outliers; which is not necessarily the case because outliers can be

members of an undefined but large class. Additionally, outliers are assumed to be qualitatively

different from normal observations. These assumptions become requirements on the application

domains to which unsupervised novelty detection is applied. This dissertation focuses on

22

learning models of the normal class employing semi-supervised learning algorithms, which are

not restricted by the assumptions of the unsupervised approach.

1.3.5 Computational Requirements

There are some application domains with very specific requirements or limitations. In those

cases, traditional novelty detection techniques might not be directly applicable, and techniques

specifically tailored to those constraints need to be devised. Sensor networks are a good example

of an application domain with very particular characteristics which requires specialized novelty

detection techniques; e.g. (Sheng, Li, Mao, & Jin, 2007) (Zhang, Meratnia, & Havinga, 2010).

There are other scenarios where data are distributed across several nodes and novelty detection

needs to be performed on the data as a whole without revealing sensitive information between

nodes. That scenario is commonly called privacy-preserving outlier detection. Recent works on

this specific domain are: (Vaidya & Clifton, 2004), (Aggarwal & Yu, 2008) and (Dai, Huang,

Zhu, & Yang, 2010). This dissertation is not aimed at specifically constrained application

domains.

1.3.6 Learning Framework

Outlier detection algorithms are typically trained off-line using a fixed training data set. The

model obtained after the training phase is subsequently evaluated on new observations, which are

taken from either a previously stored testing data set or data not available when the algorithm

was trained. This approach is called batch learning or off-line learning. On the other hand,

algorithms that can update their model incrementally while learning from a sequence of

observations are called online learning algorithms.

23

Designing and implementing efficient batch learning algorithms becomes particularly hard when

the amount of training data is very large. Even with an efficient implementation, expensive

hardware might be required. Alternatively, online learning algorithms are well suited for large

data sets. Furthermore, online learning can be particularly useful to keep models up-to-date when

training data become available as a stream of data. This dissertation focuses on both batch and

online learning algorithms.

1.4 Modern Approaches to Novelty Detection

Two recent surveys of the different approaches to outlier/novelty detection can be found in

(Chandola, Banerjee, & Kumar, 2009) and (Pimentel, Clifton, Clifton, & Tarassenko, 2014).

According to (Chandola, Banerjee, & Kumar, 2009), the different approaches to outlier detection

methods can be classified into six broad groups: (1) statistical methods, (2) classification-based

methods, (3) clustering-based methods, (4) nearest neighbor-based methods, (5) information

theoretic methods, and (6) the spectral approach. Statistical methods typically estimate the

probability distribution of the data and use statistical tests to determine whether new

observations are potential outliers. Methods relying on other statistical techniques, such as linear

and nonlinear regression and Gaussian processes, are also members of this category. The

classification-based category refers to methods that were originally developed to solve binary or

multi-class classification problems, but were subsequently modified to work as one-class

classifiers. The clustering approach includes mostly methods that rely on unsupervised learning

to determine one or more clusters of observations that belong to the normal class. Nearest

neighbor-based methods take into account the distances to neighboring observations when

24

determining whether an observation is an outlier. Information theoretic methods assume that

outliers have the highest impact on the information content of the data set, as estimated by an

information theoretic measure. Finally, the spectral approach refers to methods that project the

input data into a subspace.

The categorization given in (Pimentel, Clifton, Clifton, & Tarassenko, 2014) differs in various

ways from the one described above. It lists the following categories: (1) probabilistic methods,

(2) distance-based methods, (3) reconstruction-based methods, (4) domain-based methods, and

(5) information-theoretic methods. Similar to (Chandola, Banerjee, & Kumar, 2009), the

category of probabilistic methods include methods that estimate the generative density functions

of the normal data and use hypothesis testing. Methods in this category can be classified into

parametric and non-parametric. In the first subcategory there are methods leveraging parametric

techniques, like Gaussian mixture models (GMMs), time-series techniques like ARIMA and

ARMA, and state-space models like hidden Markov models (HMMs), Kalman filters and

dynamic Bayesian networks. The non-parametric subcategory includes methods leveraging non-

parametric techniques, like histograms and kernel density estimators (such as the Parzen

windows estimator and Gaussian processes). Contrary to (Chandola, Banerjee, & Kumar, 2009),

in (Pimentel, Clifton, Clifton, & Tarassenko, 2014) regression models are not fully included in

the category of probabilistic methods: some methods using auto-regressive models are listed as

probabilistic methods, while other methods using regression models are mentioned also in the

“reconstruction-based” category. Distance-based methods consider mainly the subcategories of

nearest neighbor-based methods and clustering-based approaches. The reconstruction-based

approach to novelty detection consider methods that model the underlying data and determine

25

whether a new observation is an outlier based on its distance to the model’s output (the

reconstruction error). The main subcategories of the reconstruction-based approach are the neural

network-based approach and the subspace-based approach (called the spectral approach in

(Chandola, Banerjee, & Kumar, 2009)). Domain-based novelty detection refers to methods that

construct boundaries around the normal class, without considering the actual class density or any

approximation to it. Finally, the information-theoretic approach denotes exactly the same type of

methods listed under that name in (Chandola, Banerjee, & Kumar, 2009).

The introduction to current methods in novelty detection given in this section follows mainly the

classification proposed in (Chandola, Banerjee, & Kumar, 2009), with three modifications, two

of them inspired by the review of Pimentel et al.: First, the nearest neighbor-based approach is

considered a subcategory of the more general distance-based approach. This is based on the fact

that all nearest-neighbor techniques require a distance, but distance-based techniques are not

restricted to dealing exclusively with local information (as explained in a subsection below, there

are distance-based methods that aim at finding global outliers). However, contrary to the

categorization of Pimentel et al., we maintain the clustering-based approach as a separate

category. A reason for that is that some clustering techniques do not exclusively rely on

distances, but they also employ subspaces and density estimation, among other techniques.

Furthermore, although most clustering algorithms explicitly rely on a distance, it is possible to

find clusters by employing a distribution-based approach; for instance, using the expectation-

maximization (EM) algorithm to estimate the parameters of Gaussian mixture models that better

fit the data. Consequently, it is considered more important here to set aside the clustering

approach (which does not have novelty detection as its original goal but as a sub-product of it),

26

than to limit it to a subcategory of distance-based novelty detection or to split it as various

subcategories within the other categories. Second, the category of spectral methods is renamed

here as subspace-based methods, which better describes the intention of methods included in that

category. Finally, we have added a new category that was not considered in neither of the two

reviews mentioned above: angle-based methods. Those methods benefit from the fact that angles

are more stable than distances when working with high-dimensional data. In summary, this

dissertation proposes the following categorization of modern novelty detection approaches: (1)

statistical, (2) classification-based, (3) clustering-based, (4) distance-based, (5) information

theoretic, (6) subspace-based, and (7) angle-based.

The following subsections briefly introduce modern approaches to novelty detection. It is

important to note a few things before delving into these subsections. First, the area of

novelty/outlier detection is so broad and dynamic that there could exist one or more methods not

included in our literature review for which none of the categories described here is a good fit.

Furthermore, the following subsections do not attempt to describe all possible techniques that fit

into these categories, but to offer a representative set of examples of modern methods in each

category. Second, there are methods that leverage a combination of approaches, and sometimes

they can be considered members of multiple categories. Just to name a few examples: (Filev &

Tseng, 2006) leverages fuzzy k-nearest neighbors clustering and the statistical technique

Gaussian mixture models (GMMs) to model machine health status and predict anomalous

conditions; the work in (Galeano, Peña, & Tsay, 2006) uses projection pursuit (a subspace

technique) and an autoregressive moving average (ARMA) model (a statistical technique) in

order to find outliers in multivariate time series; and the novelty detection method proposed in

27

(Kit, Sullivan, & Ballard, 2011) uses a growing neural gas (Fritzke, 1995) to detect changes in

videos taken by a robot. Growing neural gas is a type of neural network, and in our review neural

networks belong to the classification-based category. However, that particular type of neural

network is essentially an incremental clustering algorithm, so that method could be categorized

as clustering-based as well.

1.4.1 Statistical Novelty Detection

As noted in section 1.2, the statistical approach is the oldest. In general terms, statistical methods

can be classified as parametric versus nonparametric, and numeric versus categorical.

Parametric methods assume that the distribution of the normal class, denoted by 𝐹(𝐱, Θ), is

known or can be effectively estimated from training data. The argument x denotes an observation

and Θ denotes a vector of parameters. Typically, there are two ways of dealing with possible

outliers. A hypothesis test can be applied with the null hypothesis that an observation x was

generated from the distribution underlying normal data (Barnett & Lewis, 1994), (Eskin, 2000).

This type of test is typically known as outlier discordancy test. The observation x can be

considered an outlier if the null hypothesis was rejected. In that case, the corresponding test

statistic can be used to provide a novelty score value for x. Alternatively, a novelty score for an

observation x can be defined based on a previously defined criteria. For instance, the novelty

score of an observation x can be equal to
1

𝑓(𝐱,Θ)
, where f is the probability density function of the

normal data. This example is an instance of density-based novelty detection, which is closely

related to the local distance-based approach described in one of the following subsections.

28

Another example of a statistical novelty score is the distance of the observation to the estimated

mean of the data from the normal class assuming a Gaussian distribution.

Whenever a novelty score is used without applying an outlier discordancy test, thresholds are

needed to discriminate between normal and novel observations. The most widely-known

statistical novelty threshold, employed for Gaussian models, is to declare as outliers those

observations lying outside the 𝜇 ± 3𝜎 region, where 𝜇 denotes the distribution mean and 𝜎

denotes the standard deviation of the distribution. The box plot rule is another commonly

employed technique. Any observation outside of the interval [𝑄1 − 1.5𝐼𝑄𝑅, 𝑄3 + 1.5𝐼𝑄𝑅] is

declared an outlier, where 𝑄1 is the lower quartile, 𝑄3 is the upper quartile, and IQR denotes the

inter quartile range (Horn, Feng, Li, & Pesce, 2001). The Grubb’s test, which also assumes a

Gaussian distribution but uses mean and standard deviation of a data sample, is another

parametric technique worth of mentioning. Grubb’s test was originally proposed for univariate

data (Grubbs F. , 1969). However, it has been expanded to multivariate data (Aggarwal & Yu,

2001), (Aggarwal & Yu, 2008) and graph structured data (Shekhar, Lu, & Zhang, 2002).

Sometimes data from the normal class cannot be properly fitted by a Gaussian distribution but it

can be modeled as a mixture of parametric distributions. The most common mixture is the

combination of two or more Gaussian distributions, which is called a Gaussian mixture model

(GMM). A brief introduction to GMMs is given in (Reynolds, 2009). Examples of novelty

detection algorithms using GMMs can be found in (Song, Wu, Jermaine, & Ranka, 2007),

(Agarwal, 2007), (Ilonen, Paalanen, & Kamarainen, 2006) and (Roberts, 2000). Mixtures of non-

Gaussian distributions have been used for novelty detection as well. For instance, a mixture of

29

Poisson distributions was used in (Byers & Raftery, 1998). Note that the work of (Roberts, 2000)

is also an example of another statistical technique applied to novelty detection: extreme value

theory (EVT). A description of recent methods that apply EVT to novelty detection using

multivariate and multimodal distributions is given in (Clifton, Hugueny, & Tarassenko, 2011).

Time series analysis is another area where parametric outlier detection has been widely used.

The most common approach is to fit an autoregressive model to the training data and to use the

magnitude of the residual corresponding to a new observation as its novelty score. Robust

regression (Rousseeuw & Leroy, 1987) is typically used to minimize the effect of outliers that

might be present in the training data. The work of (Hoares, Asbridge, & Beatty, 2002) proposed

a method called the Automatic Dynamic Data Mapper (ADDaM), which outperformed other

time-series methods when employed to detect artefacts in heart rate data. Several regression-

based novelty detection techniques have been devised to handle multivariate time-series data;

e.g., (Tsay, Peña, & Pankratz, 2000), (Chen, Chao, Hu, & Su, 2005), (Galeano, Peña, & Tsay,

2006).

Parametric methods using state-space models are typically used to detect outliers in time-series

data, but they are listed separately here given that the approaches employed in those cases are not

related to autoregressive modeling. State-space models typically contain a set of observed

variables and a set of hidden states, both evolving through time. They assume that the

distribution of the observed variables depend on the values of the hidden states at each particular

point in time. These models include conditional probability distributions describing the

likelihood of moving from state to state and also the likelihood of each possible observation

30

given each state. Hidden Markov models (HMMs) and Kalman filters are the most commonly

used state-space models in novelty detection. Examples of recent works leveraging HMMs can

be found in (Yeung & Ding, 2003), (Ariu, Giacinto, & Perdisci, 2007), and (Ntalampiras,

Potamitis, & Fakotakis, 2011). Examples of recent methods using Kalman filters include (Quinn

& Williams, 2007), (Lee & Roberts, 2008), and (Quinn, Williams, & McIntosh, 2009). Finally,

more general probabilistic graphical models, such as dynamic Bayesian networks (DBNs), have

also been employed for novelty detection; e.g. (Janakiram, Adi Mallikarjuna Reddy, & Phani

Kumar, 2006) and (Pinto, Pronobis, & Reis, 2011).

In many real-world scenarios, it is not possible to define a priori the underlying distribution of

the training data; which greatly limits the practical importance of parametric models.

Nonparametric methods are more useful in those cases. They assume only some degree of

smoothness from the underlying density in order to maintain a profile of the normal class.

Among the most common profile-keeping techniques there are histogram-based and density-

based profiling methods. The first approach typically involves constructing and maintaining an

attribute-wise histogram for the data from the normal class. The novelty score assigned to a new

observation is directly proportional to the heights of the bins of the histogram containing each

attribute. Histogram-based novelty detection has been particularly useful for intrusion detection

(Eskin, 2000), (Mahoney & Chan, 2002); structural damage detection (Manson, 2002); fraud

detection (Yamanishi, Takeuchi, Williams, & Milne, 2004); and Web attacks detection (Kruegel

& Vigna, 2003); among other domains.

31

The density-based approach involves using kernel functions to estimate the probability density

function of the normal class. Parzen windows estimation (Parzen, 1962) is a commonly used

density estimation technique for novelty detection; e.g. (Desforges, Jacob, & Cooper, 1998),

(Yeung & Chow, 2002), (Vincent & Bengio, 2002), (Bengio, Larochelle, & Vincent, 2005), and

(Fairley, Georgoulas, Stylios, & Rye, 2010). Recently, Gaussian processes (GPs) originally

intended for regression have been leveraged to accomplish outlier detection, showing very good

results on various data sets when compared to other state of the art kernel methods (Kemmler,

Rodner, & Denzler, 2010), (Kemmler M. , Rodner, Wacker, & Denzler, 2013). Four GP-based

score functions were proposed (and compared to each other) to translate the output of GP-based

regression to membership scores. The core proposition of this dissertation lies in further

improving this particular method by making different variants of GPs more robust to outliers

present in the training data. Consequently, GP-based novelty detection will be reviewed in detail

in a subsequent chapter, among other state-of-the-art kernel methods.

Note that the statistical techniques described above are most suitable for numerical data.

However, some of them may be applied to categorical data as well. For instance, histograms

have been used to estimate the probability mass functions of categorical data (Yamanishi,

Takeuchi, Williams, & Milne, 2004). As another example, informal box plots have been

employed for novelty detection on ordinal and categorical data (Laurikkala, Juhola, & Kentala,

2000). Finally, the GP-based method proposed in (Kemmler, Rodner, & Denzler, 2010) can be

applied to any type of data, as far as there is a kernel function defined for it.

32

1.4.2 Classification-based Novelty Detection

The classification-based approach involves training a classifier to discriminate between normal

and anomalous data. Traditionally, classifiers are trained on a data set containing labeled

examples for all the classes involved in the domain to be learned. A testing phase involves

assigning labels to new observations. In the case of novelty detection, a classifier must learn a

model from positive instances that are considered normal. The testing phase proceeds by

recognizing whether new observations correspond to one of the normal classes or they should be

declared outliers. In a broad sense, classification-based novelty detection can be split in two

groups: one-class and multi-class anomaly detection. One-class algorithms assume that normal

training examples belong to a single class. One-class Support Vector Machines (Schölkopf, Platt,

Shawe-Taylor, Smola, & Williamson, 2001) and the Support Vector Data Description (SVDD)

method (Tax & Duin, 2004) constitute two of the most representative examples of state of the art

one-class kernel methods. For that reason, they will be described in more detail in a future

chapter. In the case of multi-class novelty detection, a classifier must learn from a training data

set containing normal examples from two or more classes. Among the most commonly used

multi-class classifiers are neural networks (NNs), Bayesian networks, rule-based classifiers, and

some kernel-based classifiers.

Neural networks have been applied both in one-class and multi-class scenarios; e.g. (Odin &

Addison, 2000), (Stefano, Sansone, & Vento, 2000), (Augusteijn & Folkert, 2002), (Hawkins,

He, Williams, & Baxter, 2002). A good review of applications of different types of NNs to

novelty detection until around 2003 can be found in (Markou & Singh, 2003). Examples of more

recent applications are given below.

33

In (Marsland, Nehmzow, & Shapiro, 2005), a “grows when required” neural network (GWR

network) (Marsland, Shapiro, & Nehmzow, 2002) was employed to make a mobile robot ignore

observations that were very similar to previous input, while highlighting novel parts of its

environment. Similarly focused on robotic sensing, (Kit, Sullivan, & Ballard, 2011) proposes the

use of a growing neural gas (Fritzke, 1995) to detect environmental changes using a camera. The

work of (Haggett, Chu, & Marshall, 2008) employed a dynamic predictive coding neural

network as a novelty detector. It compared three evolutionary algorithms to optimize the network

structures: a simple genetic algorithm, NEAT (Stanley, 2004), and FS-NEAT (Whiteson, Stone,

Stanley, Miikkulainen, & Kohl, 2005); with NEAT-optimized networks outperforming other

networks. In (Wu, Wang, & Lee, 2010), an online fault detection method based on a self-

organized map (SOM) was used as part of a maintenance system. The use of SOMs to detect

anomalies in time series is explored in (Barreto & Aguayo, 2009). As a final example, the work

of (García-Rodríguez, Angelopoulou, García-Chamiz, Orts-Escolano, & Morell-Giménez, 2012)

uses a modified learning algorithm for a growing neural gas network to satisfy certain real-time

constraints.

Bayesian networks are probabilistic classifiers, thus novelty detection methods that leverage

them can be also considered examples of the statistical approach. As classifiers, they are

typically used in multi-class scenarios where there are some examples from the abnormal class as

well (i.e. in supervised learning). Given a new observation, they estimate the posterior

probabilities of the class labels based on the prior probability of that observation conditioned on

each label and the prior probabilities of the normal and abnormal classes. Novelty detection

techniques using Bayesian networks can be classified in two broad disjoint groups: those

34

assuming independence between the data attributes, e.g. (Barbara, Couto, Jajodia, & Wu, 2001),

(Sebyala, Olukemi, & Sacks, 2002), (Bronstein, et al., 2001), (Diehl & Hampshire, 2002) and

(Wong, Moore, Cooper, & Wagner, 2003); and those assuming conditional dependencies

between some attributes, e.g. (Janakiram, Adi Mallikarjuna Reddy, & Phani Kumar, 2006) and

(Das & Schneider, 2007).

Rule-based classifiers are based on a set of rules that together model the response of the system

to each observation. They have been applied in single-class and multi-class discrimination

problems. In the case of novelty detection, rule-based classifiers label a new observation as an

outlier if no rule labeling it as part of the normal class was found. Typically, rule-based

techniques consist of two phases: a training step, in which a rule-learning algorithm learn

‘normality rules’ from the training data set; and a testing step, in which the algorithm must

identify whether or not there are rules covering new observations as normal. In rare occasions in

which a representative sample of the outliers’ class is available, there could be rules covering it

as well.

A few examples of rule-based novelty detectors are the following: The well-known C4.5

algorithm to generate decision trees (Quinlan, 1993) has been used to detect outliers in

categorical data (John, 1995). A learning rule algorithm known as RIPPER has been employed

to describe temporal states constituting the normal operation of devices, which in turn can be

used to detect anomalies (Salvador & Chan, 2005). Association rule mining (Agrawal & Srikant,

1995) has been employed for unsupervised one-class novelty detection on categorical data sets;

e.g. (Mahoney & Chan, 2003), (He, Xu, Huang, & Deng, 2004), (Tandon & Chan, 2007).

35

Kernel-based classifiers have been particularly successful in recent years. Among them, support

vector machines (SVMs) are likely the most widely used. They were originally defined as binary

classifiers that find the maximum-margin separating hyperplane between instances of two

classes. SVMs manage to obtain non-linear separating surfaces in the input space by applying

linear techniques on a higher-dimensional feature space to where observations are mapped

(Vapnik, 1995), (Abe, 2010). SVMs rely on kernel functions to accomplish the feature mapping

(Shawe-Taylor & Cristianini, 2004). They have been employed in novelty detection through the

one-class SVM approach, in which a SVM learns a boundary of a region containing the normal

observations (Schölkopf, Platt, Shawe-Taylor, Smola, & Williamson, 2001). New observations

are declared outliers if they resided outside of the region encompassing data from the normal

class. The defining boundary is found by separating the training data from the origin in the

feature space using the maximum-margin hyperplane approach.

An interesting application of the one-class SVM approach is detecting seizures in human EEG

(Gardner, Krieger, Vachtsevanos, & Litt, 2006). In that work, intracranial normal EEG time

series were partitioned into one-second segments that were used for the SVM to learn a model

for normal EEG. Another application of one-class SVM to temporal data can be found in (Ma &

Perkins, 2003). Other examples of recent works using one-class SVM are (Hardoon & Manevitz,

2005), (Zhuang & Dai, 2006), (Rabaoui, Kadri, & Ellouze, 2008), (Clifton, Clifton, Watkinson,

& Tarassenko, 2011), (Zhu, Ye, Yu, Xu, & Li, 2014), (Metzler & Kalinina, 2014). Additionally,

robust SVMs have been employed to better adjust to the likely presence of outliers within the

training data (Song, Hu, & Xie, 2002), (Hu, Liao, & Vemuri, 2003).

36

One-class SVM relies on a parameter that denotes the expected percentage of outliers in the

training data, which are allowed to remain outside of the region defining the normal class. It has

been noted that the effectiveness of this method is highly affected by setting the value of this

parameter (Manevitz & Yousef, 2002). The one-class Kernel Fisher Discriminant (KFD)

classifier (Roth, 2006) was proposed to overcome this limitation. It relates one-class kernel-

based classification to Gaussian density estimation in the feature space. A cross-validated

likelihood criterion is used to estimate all the parameters of the model. Abnormal observations

are those considered highly unlikely according to the Gaussian model.

The Support Vector Domain Description (SVDD) method (Tax & Duin, 1999) finds the

hypersphere with minimum volume that contains all or most of the training data in the feature

space. Although this method was designed to be a one-class classifier from its inception, it is

included here because it is inspired by SVM. Furthermore, its mathematical derivation follows

the same approach as SVM: it uses Lagrange multipliers to optimize a regularized expression

(consisting of the squared radius of the hypersphere and the sum of slack variables denoting how

much each point can outspread beyond the hypersphere). As in SVM, a subset of the training

data is obtained as support vectors, and the rest of the training data can be safely discarded. After

training the model, a new observation is considered an outlier if its distance to the center of the

hypersphere is greater than the optimized radius. This method was subsequently expanded in

(Tax & Duin, 2004) to learn also from negative examples if they were present in the training

data. The expanded method was named Support Vector Data Description, although the acronym

remained as SVDD. From here on, the term SVDD refers to the expanded method unless it is

clearly stated otherwise. Note also that the expanded SVDD behaves exactly like the original

37

SVDD if no negative examples were labeled as such in the training data. Some extensions to

SVDD have been proposed recently. Some of them have focused on improving the efficacy of

the boundaries of the hypershere, e.g. (Wu & Ye, 2009) and (Le, Tran, Ma, & Sharma, 2010).

Other extensions have focused in solving an optimization problem that includes various

hyperspheres with different centers and radii (Le, Tran, Ma, & Sharma, 2011). Finally, some

extensions have been proposed to improve the time complexity of SVDD, e.g. (Liu, Liu, &

Chen, 2010) and (Peng & Xu, 2012).

Single-class Minimax Probability Machine (MPM) (Lanckriet, Ghaoui, Bhattacharyya, &

Jordan, 2002) is another example of a kernel-based classifier that has been used for novelty

detection. The reader can refer to (Lanckriet, El Ghaoui, & Jordan, 2003) and (Kwok, Tsang, &

Zurada, 2007) for details on the MPM classifier.

1.4.3 Clustering-based Novelty Detection

Clustering is the action of grouping similar observations into classes. Each class must contain

very similar observations while, at the same time, observations from different classes should be

as dissimilar as possible (Tan, Steinbach, & Kumar, 2005). Clustering techniques have been

traditionally linked to unsupervised learning. However, clustering has been applied in a semi-

supervised scenario as well (Basu, Bilenko, & Mooney, 2004).

Novelty detection techniques based on clustering can be classified in two broad categories:

clustering techniques that force every observation to belong to one of the clusters found in the

data, and those that do not enforce cluster membership for all observations. In both cases, the

basic approach consists of two steps: First, a clustering algorithm is applied to the training data

38

set. Second, some criteria are applied in order to determine which observations should be

classified as outliers. When the clustering algorithm does not force all observations to belong to

a cluster, the simplest criterion is to label as outliers those observations without a cluster

membership; e.g. DBSCAN (Ester, Kriegel, Sander, & Xu, 1996), ROCK (Guha, Rastogi, &

Shim, 2000), The FindOut algorithm (Yu, Sheikholeslami, & Zhang, 2002), and SNN (Ertöz,

Steinbach, & Kumar, 2003). If the clustering technique assigned cluster memberships to all

training observations, like the widely used k-means clustering, choosing what observations

should be outliers is not straightforward. The most common criterion is to classify as outliers

those observations lying far away from their closest cluster centroid (Smith, Bivens, Embrechts,

Palagiri, & Szymanski, 2002), (Clifton, Bannister, & Tarassenko, 2007).

Note that the k-means clustering algorithm, although widely used, is very sensitive to outliers in

the training data. To alleviate this limitation, a recent work has proposed to combine clustering

and outlier detection within the same unified approach, extensible to all distance measures that

can be expressed as a Bregman divergence (Chawla & Gionis, 2013). Another limitation of the

k-means algorithm is that it requires the number of clusters k as an input parameter. The work in

(Lei, Zhu, Chen, Lin, & Yang, 2012) has attempted to automate k-means clustering by estimating

the number of clusters in the data through a method called subtractive clustering. Finally, it is

well known that k-means clustering is very sensitive to the initial assignment of cluster centers

(Peña, Lozano, & Larrañaga, 1999), which can lead the algorithm to local minima. Recent works

have addressed this limitation as well; e.g. (Khan & Ahmad, 2004) and (Ahmed & Ashour,

2011). Some research has been devoted to novelty detection using fuzzy variants of k-means

clustering. Within that area, it is relevant to note the works in (Wang, 2009) and (Filippone,

39

Masulli, & Rovetta, 2010), that applied a kernel-based approach in combination with fuzzy

clustering.

After clusters are obtained by using a technique from either of the two broad categories

mentioned above, a new test observation is typically labeled as an outlier based on how distant it

is from the nearest cluster (or the centroid of the nearest cluster). Regardless of the cluster

membership policy employed, sometimes several outliers were close enough to each other as to

constitute a cluster by themselves. For that reason, some clustering methods also label as outliers

the members of clusters whose size and/or density lies below certain threshold (Eskin, Arnold,

Prerau, Portnoy, & Stolfo, 2002), (Pires & Santos-Pereira, 2005), (He, Xu, & Deng, 2003). Some

clustering-based techniques are particularly designed to deal with very large data sets; for

instance, see (Zhang, Ramakrishnan, & Livny, 1997), (Chiu, Fang, Chen, Wang, & Jeris, 2001)

and (Yu, Sheikholeslami, & Zhang, 2002). Other clustering-based methods attempt to detect the

appearance of new normal classes within an online learning framework (Spinosa, de Leon F. de

Carvalho, & Gama, 2009). As a final example, (Zhou, Fu, Sun, & Fang, 2011) proposes a

distributed novelty detection method, for scenarios where data are distributed across multiple

computers and cannot be merged.

Most clustering-based methods require a distance defined on the input space. Consequently they

appear to be very similar to distance-based novelty detectors. However, clustering-based novelty

detectors cannot be classified into global or local techniques, because distance calculations are

determined by cluster memberships. Another important difference is that the clustering-based

40

approach detects outliers as a by-product of the underlying clustering methods, which do not

have finding outliers as a primary goal.

1.4.4 Distance-based Novelty Detection

Distance-based methods require the formulation of a distance (or, equivalently, a similarity

function) defined on pairs of observations from the input space. Outliers can be determined

based on the distance from an observation to other observations in the data set. In contrast to

statistical methods, distance-based methods do not require an underlying distribution.

Additionally, they are particularly well-suited to unsupervised learning scenarios. Some

definitions of outliers use a global approach, where the distance of an observation to all other

observations in the training data set is considered. Alternatively, a local approach can be

employed, focusing on a neighborhood around each data point. The local approach is typically

called nearest neighbor-based novelty detection.

The work of (Knorr & Ng, 1997) is a good example of a global approach to outlier detection. It

defines an object O to be an outlier if “at least a fraction p of the objects in the data set lies

greater than distance D from O”. Alternatively, nearest neighbor-based methods assume that

outliers occur in very low density neighborhoods. They can be divided in two broad

subcategories: k-NN methods, based on the distances of observations to their k
th

 nearest

neighbors, where k is a fixed integer; and methods focusing on the relative density around an

observation by employing neighborhoods of a fixed measure. The later subcategory is known as

the density-based approach.

41

One of the first papers proposing the nearest neighbor approach for outlier detection was

(Hellman, 1970). Hellman’s method looks at the k-nearest neighbors of the testing observation.

A rejection rule based on the quantity of neighbors belonging to the same class was employed.

Other novelty detection algorithms using the k-nearest neighbors approach show variations in the

way novelty scores are calculated. For instance, the novelty score of a testing observation can be

calculated as the distance to its k
th

 nearest neighbor (Byers & Raftery, 1998). Alternatively, the

novelty score can be calculated as the sum of distances to the k nearest neighbors; e.g. (Eskin,

Arnold, Prerau, Portnoy, & Stolfo, 2002), (Zhang & Wang, 2006). The work of Zhang and Wang

tackles a problem that goes beyond deciding whether observations are outliers or not: to find the

subspaces (subsets of features) in which observations are outliers. Their outlying subspace

detection method is called High-Dimension Outlying Subspace Detection (HighDOD). It is

important to note that despite k-NN being a simple and relatively old approach to novelty

detection, it is still widely used. In a recent study (Ding, Li, Belatreche, & Maguire, 2014), k-NN

outperformed three novelty detection techniques, including the state of the art SVDD, on various

real-life data sets.

When a density-based approach is used, novelty scores are proportional to the inverse of the

relative densities. Typically, novelty scores have been calculated as the number of nearest

neighbors within a neighborhood of the testing observations (Knorr & Ng, 1997), (Knorr, Ng, &

Tucakov, 2000). Another density-based procedure to calculate the novelty score using kernels

was introduced recently: the summation kernel similarity score (SKSS) (Ramirez-Padron,

Foregger, Manuel, Georgiopoulos, & Mederos, 2010). Essentially, the SKSS value of a testing

observation x is the sum of the similarities between x and all its neighbors within a ball of fixed

42

radius p. SKSS was proposed within the geometric framework for kernel novelty detection

introduced in (Eskin, Arnold, Prerau, Portnoy, & Stolfo, 2002). That geometric framework

involves the use of kernel functions to map input data to very high-dimensional feature spaces

where current distance-based novelty detectors could be applied. The main assumption behind

the introduction of kernel methods in this case is that outliers might be better detected in the

high-dimensional feature space associated with the kernel function.

We wrap up this section by listing other representative nearest neighbor-based methods: Local

Outlier Factor (LOF) (Breunig, Kriegel, Ng, & Sander, 2000); Connectivity-based Outlier Factor

(COF) (Tang, Chen, Fu, & Cheung, 2002); LOCI (Papadimitriou, Kitagawa, Gibbons, &

Faloutsos, 2002), which can find anomalous micro-clusters besides individual outliers; and the

Local Distance-based Outlier Factor (LDOF) method (Zhang, Hutter, & Jin, 2009), which was

devised to work on scattered data sets.

1.4.5 Information Theoretic Novelty Detection

Information theoretic methods define as outliers those observations having the highest impact on

the information content of the data set. The main assumption behind these methods is that

outliers have a much higher impact on the information content of a data set than observations

from the normal class. The basic technique of theoretic novelty detection is to find Pareto-

optimal solutions (Deb, 2005) to a dual-objective optimization problem. Given a data set D, the

problem consists in finding the minimal subset of instances I, such that C(D) – C(D – I) is

maximum, where C denotes an information theoretic measure. The observations in the subset I

are considered outliers.

43

Among the most commonly used measures are Kolmogorov complexity, entropy, relative

entropy, conditional entropy, and relative conditional entropy; e.g. (Arning, Agrawal, &

Raghavan, 1996), (Lee & Xiang, 2001), (Keogh, Lonardi, & Ratanamahatana, 2004), (Lakhina,

Crovella, & Diot, 2005), (Gu, Fogla, Dagon, Lee, & Škorić, 2006), (Ando, 2007), (Afgani,

Sinanovic, & Haas, 2010). The information theoretic approach has been applied to data sets with

related observations; for instance, sequential data (Arning, Agrawal, & Raghavan, 1996), (Lin,

Keogh, Fu, & Van Herle, 2005); spatial data (Lin & Brown, 2006); and graph data (Noble &

Cook, 2003).

1.4.6 Subspace-based Novelty Detection

Subspace-based novelty detection methods look for outliers in low-dimensional projections of

the observations; under the assumption that outliers are easier to detect on low dimensional

projections that encompass most of the variability in the data. This approach can be valuable

when using high-dimensional data. In that case, all observations are typically distant from each

other; to a point that differences between distances become irrelevant and the concept of

neighborhood might not be useful anymore.

Principal Component Analysis (PCA) (Joliffe, 2002) has been commonly employed by outlier

detection methods to obtain lower dimensional projections of the input data. Outliers can be

found by looking for projections with high values along low-variance principal components

(Parra, Deco, & Miesbach, 1996), (Dutta, Giannella, Borne, & Kargupta, 2007). Robust PCA

(Huber & Ronchetti, 2009) has been employed as well; e.g. (Shyu, Chen, Sarinnapakorn, &

Chang, 2003).

44

Kernel methods have been mentioned in this chapter as part of various approaches to novelty

detection. Similarly, kernel methods have been devised within the subspace-based approach. The

most notable example is the application of kernel PCA (KPCA) to novelty detection (Hoffmann,

2007). Essentially, training data are mapped through a kernel function into a very high-

dimensional feature space, in which KPCA extracts the principal components. The novelty

scores of data instances are calculated as the squared distances to the principal subspace (also

called squared reconstruction errors). As an interesting follow-up, the work in (Li,

Georgiopoulos, & Anagnostopoulos, 2011) computes the reconstruction error by projecting any

test observation onto the orthogonal complement of the KPCA-generated principal subspace and

subsequently calculating the Mahalanobis distance of that projection from the mean of all

transformed training observations. This variant, called MD-based KPCA, showed about the same

or better performance than one-class SVM and KPCA novelty detection on various real-life data

sets.

It has been claimed that novelty detection techniques that use PCA display a degrading

performance on high-dimensional input spaces containing low-relevance or noisy attributes. An

alternative to PCA when prior class information is available has been offered in (Sofman,

Bagnell, & Stentz, 2010). It uses Multiple Discriminant Analysis (MDA) to obtain the low-

dimensional subspace. Interestingly, that work employs an online detection algorithm that can be

seen as a particular case of a kernel online learning technique called NORMA (Kivinen, Smola,

& Williamson, 2004). The NORMA algorithm will be described in a following chapter, among

other kernel-based online learning techniques.

45

1.4.7 Angle-based Novelty Detection

As mentioned above, the concepts of distance and neighborhood become irrelevant when

working with data in high dimensions. Assuming outliers are located at the borders of the

distribution generating the normal class, the angle-based approach relies on a property that

remains consistent even for high-dimensional data: if an observation is an outlier then most other

objects in the data set will be located in similar directions from it (that is clearly not the case for

most normal observations). A prime example of this approach is the work of (Kriegel, Schubert,

& Zimek, 2008), where, for each observation, the spectrum of the angles to all other observations

is obtained. Subsequently, an “outlierness” score is obtained for each data point based on how

broad its spectrum is.

1.5 Advantages and Limitations of Modern Approaches

Statistical techniques for novelty detection have a variable computational complexity,

depending on the type of statistical model employed. Typically, they are either linear or

quadratic with respect to the number of observations. An advantage of these techniques is that

novelty scores are usually related to confidence intervals, offering a statistical support to decision

making based on the scores. Additionally, the use of robust statistics allows the application of

this approach to data sets containing incorrect labels, as far as the training data is not extremely

contaminated with outliers. Except in some well-known domains, the non-parametric approach

should be preferred over the parametric approach. There are two main reasons behind this

statement: First, for some data sets it might be very difficult to find a suitable known distribution.

46

Second: implementing hypothesis tests for complex distributions might be very difficult,

computationally expensive, or both.

In general, statistical methods have some limitations that need to be considered as well. For

instance, many methods consider attributes independently, preventing the detection of outliers

that have common individual values for their attributes but a rare combination of values for two

or more attributes. Additionally, virtually all statistical techniques become computationally

expensive and inefficient when used on high-dimensional data sets.

Classification-based techniques benefit from powerful and thoroughly studied algorithms,

sometimes with guaranteed convergence properties. Additionally, they typically have a fast

response when evaluating new observations. Multi-class techniques are limited to supervised

learning scenarios because labels are needed for the different normal classes. However, one-class

classification algorithms can be employed in most practical situations when labels are available

for a single normal class or even not present at all, e.g. (Schölkopf, Platt, Shawe-Taylor, Smola,

& Williamson, 2001), (Roth, 2006). Classification-based techniques tend to be most effective

when labels are available. However, it is important to keep in mind that the distribution of

normal and abnormal labels are typically imbalanced, making the learning task more difficult

compared to standard classification problems.

Although several classifiers only provide a binary novelty score, there are classification-based

methods that provide novelty scores in a wide range of values, e.g. (Platt J. , 2000). Regarding

computational complexity, the training algorithms of classifiers involving quadratic

optimization, like SVM, can be slow on large data sets. However, efforts have been made in

47

order to improve their computational complexity. For instance, SVM training algorithms have

achieved significant improvements on their time complexity, like Sequential Minimal

Optimization (Platt J. C., 1999), (Keerthi, Shevade, Bhattacharyya, & Murthy, 2001), and linear

time SVM (Joachims, 2006). These relatively advantageous characteristics of the classification-

based approach to novelty detection make them particularly attractive for many real-life

applications.

Clustering-based algorithms can have a quadratic or subquadratic training time complexity.

However, their test phase is typically fast because new observations are compared only to

representatives of a small quantity of clusters. Similarly to distance-based methods, clustering-

based methods can work in unsupervised learning scenarios, and adapting them to different data

types is relatively straightforward: by employing a clustering algorithm that can handle the new

data type.

The main limitations of clustering-based methods are the following: Some clustering methods

are not necessarily robust to the presence of outliers in the training data. Consequently, a

relatively high quantity of outliers might not be detected. Furthermore, this limitation can be

stated as follows: clustering-based methods typically detect outliers as a byproduct of the

clustering process, and hence some might be unfit for novelty detection. A second limitation of

clustering techniques is that many of them are not effective when the data contain small clusters

of anomalies. As mentioned in section 1.4.3, this drawback can be alleviated by setting a

size/density threshold constraint on the clusters obtained in the training phase. Finally, similarly

48

to distance-based novelty detection methods, clustering-based techniques are very sensitive to

the curse of dimensionality.

Straightforward implementations of distance-based methods have at least a quadratic

complexity, because of the computation of pairwise distances. However, some approaches have

been proposed to obtain subquadratic time complexities. One of those approaches obtains a

representative subset of the data set, called outlier detection solving set, which can be used to

detect outliers faster while maintaining a prediction quality comparable to quadratic techniques

(Angiulli, Basta, & Pizzuti, 2006). In the case of nearest neighbor-based methods, efficient data

structures like k-d trees (Bentley J. , 1980) and R-trees (Sellis, Roussopoulos, & Faloutsos, 1987)

have been used to efficiently locate nearest neighbors; e.g., (Roussopoulos, Kelley, & Vincent,

1995), (Yershova & LaValle, 2007), (Yen, Shih, Chang, & Li, 2010). Alternatively, observations

can be grouped into regular (congruent and non-overlapping) regions of the attribute space to

make nearest neighbor searching more efficient for large data sets, e.g. Elias methods (Rivest,

1974), (Cleary, 1979). Although both approaches are computationally efficient in the number of

observations, unfortunately they do not scale well when the number of attributes are relatively

high. In order to deal with the curse of dimensionality, further refinements have been proposed

(Katayama & Satoh, 1997), (Hinneburg, Aggarwal, & Keim, 2000), (Tao, Yi, Sheng, & Kalnis,

2009). In general however, the ability of distance-based methods to differentiate between normal

and anomalous data is strongly affected by high dimensionality.

Despite the limitations of distance-based algorithms, they have some advantages that make them

attractive for novelty detection: These methods are unsupervised in nature, thereby fitting a wide

49

range of problem domains. Adapting a distance-based method to a particular data type is as

straightforward as to define a distance function for that data type, whenever that is feasible. In

contrast to many statistical methods, they do not require modeling the underlying distributions of

the data. Finally, nearest neighbor methods can be more effective on semi-supervised learning

scenarios (when labels for the normal data are available) than other more complex approaches.

Information theoretic-based methods have an exponential computational complexity when

implemented to solve exactly the combinatorial dual-optimization problem from its definition.

However, some approaches have offered scalable approximate solutions to that optimization

problem (He, Deng, Xu, & Huang, 2006), (Ando, 2007). Similarly to clustering and distance-

based methods, this approach is unsupervised in nature and no assumptions about underlying

statistical distributions are needed. One of the major limitations of this approach is that defining

novelty scores is not an easy task in the majority of cases. Additionally, information measures

should be sensitive enough to detect a small percentage of outliers for the corresponding problem

domain.

The computational complexity of the subspace-based approach to novelty detection varies with

the type of projection technique employed. The most commonly used technique, PCA, is

typically linear in the number of data instances and quadratic in the number of dimensions.

However, some efforts have been made to improve on that complexity; e.g. a fast

implementation of kernel PCA (Günter, Schraudolph, & Vishwanathan, 2007). Subspace-based

methods can be applied in unsupervised learning scenarios, do not require prior knowledge of

statistical distributions, and they are particularly devised to tackle the curse of dimensionality.

50

However, they assume that outliers can be distinguished from normal observations when data is

projected into lower dimensional spaces. In many domains it is not easy or even possible to

guarantee the veracity of that assumption.

The angle-based approach will work only if outliers are located at the borders of the data

distribution and members of the normal class are grouped around some center area. Still, it can

be a valuable alternative (or a complement) to subspace-based methods when working with high-

dimensional data.

51

CHAPTER 2: STATE OF THE ART IN KERNEL NOVELTY DETECTION

This chapter reviews methods that are currently considered the state of the art in kernel-based

novelty detection. Both batch and online approaches are considered. Kernel methods for pattern

analysis have several advantages over other methods described in the previous chapter. These

advantageous properties were the reason to select kernel methods as the theoretical framework

for this dissertation. As an introduction to this chapter, some relevant advantages of kernel

methods are summarized below.

The majority of novelty detection algorithms are limited to numerical data. They leverage

multiple well-established techniques and theories. However, there is an increasing interest in

working on data that have non-numerical attributes. As a result of that interest, several novelty

detection algorithms have been proposed to build models from non-numerical data (Pimentel,

Clifton, Clifton, & Tarassenko, 2014), (Chandola, Banerjee, & Kumar, 2009). Kernels methods

have given researchers the capability to deal with multiple data types within a single framework,

including complex data such as images, videos, DNA sequences and graphs (Shawe-Taylor &

Cristianini, 2004). Consequently, kernel methods have blurred the classic distinction between

statistical and syntactical pattern analysis.

Classic linear techniques for pattern analysis are computationally efficient and rely on well-

studied mathematical properties. However, they do not generalize as well as non-linear

techniques, like neural networks. On the other hand, most non-linear techniques don’t rely on

theoretical foundations as strong as those from linear models. Thanks to the “kernel trick”, kernel

methods offer the best from both worlds: the generalization capacity of non-linear techniques

52

and the theoretical advantages of well-established linear techniques (which are applied in the

feature space). Several works have proposed the “kernelization” of different classic outlier

detection algorithms (Eskin, Arnold, Prerau, Portnoy, & Stolfo, 2002), (Roth, 2006), (Latecki,

Lazarevic, & Pokrajac, 2007), (Shen, 2007), (Oh & Gao, 2009).

Most kernel methods for novelty detection follow a classification-based approach.

Consequently, classification-based kernel methods for novelty detection constitute a baseline to

which new novelty detection algorithms should compare to; as done, for example, by the authors

of GP-based novelty detection (Kemmler M. , Rodner, Wacker, & Denzler, 2013). Despite their

successful applications, most kernel methods for novelty detection have some limitations. Two

of the most relevant limitations are: (1) there is no straightforward way of introducing prior

information into the models; and (2) classification is provided only as point estimates of the

unknown variables, without estimating the corresponding uncertainty. It is well-known that

Bayesian learning techniques provide a practical approach to introducing prior information into

models, through the use of prior distributions. Additionally, Bayesian modeling offers not only

point estimates of unknown variables and parameters, but they also estimate the uncertainty

associated to predictions. Recently, kernel methods have been used into the Bayesian

nonparametric framework with great success (Rasmussen & Williams, 2006). The main idea

behind this approach is to build a data-driven model employing Gaussian processes (GPs), using

kernels as prior covariance functions. GPs have been applied almost exclusively for regression

and classification problems. However, a few recent papers describe the use of GPs for novelty

detection as well. Experimental comparisons described in (Kemmler M. , Rodner, Wacker, &

53

Denzler, 2013) have shown the performance advantages of batch GPs over state-of-the-art

classification-based kernel methods, including the successful SVDD method.

This rest of this chapter is structured as follows: Section 2.1 offers an introduction to pattern

analysis and kernel functions, including mathematical properties underlying the different kernel

methods considered in subsequent sections. Section 2.2 describes some representative

classification-based kernel methods for novelty detection. Both batch learning and online

learning state-of-the-art methods are considered. Section 2.3 introduces GPs and describes their

typical usage in machine learning, with emphasis in novelty detection as presented in (Kemmler

M. , Rodner, Wacker, & Denzler, 2013).

2.1 Statistical Patterns and Kernel Methods

This section introduces several fundamental concepts underlying kernel methods. Kernel-based

learning methods were introduced in machine learning to obtain non-linear patterns while relying

essentially on well-established linear techniques. This section summarizes several advantages

associated to this approach. To set the stage, let us assume that we have a training data set

𝐗 = {𝐱𝑖|𝐱𝑖𝜖𝒳, 𝑖 = 1, … , 𝑁}, where 𝒳 denotes a finite-dimensional domain. Additionally, we

might have a corresponding set of labels 𝐘 = {y𝑖|y𝑖𝜖ℝ, 𝑖 = 1, . . , 𝑁}. When labels are available

for all observations in 𝐗, it is said that the learning problem is supervised, and we learn from a

set of data points (𝐱𝑖, y𝑖). If labels were not present then we have an unsupervised learning

problem. Typically for supervised learning, if the y𝑖 labels took values in a finite subset of ℝ

then they denote the class of the corresponding observation 𝐱𝑖. The case of labels taking values

in an infinite set corresponds to a regression problem. In this dissertation, we denote the training

54

data by the symbol 𝐷. Generally, we specify whether the training data contain labels or not, writing

𝐷 = {𝐗, 𝐲} = {(𝐱𝑖, y𝑖): 𝐱𝑖 ∈ 𝒳, y𝑖 ∈ ℝ} and 𝐷 = 𝐗 = {𝐱𝑖: 𝐱𝑖 ∈ 𝒳}, respectively. When a statement that

involves the training data is applicable to both cases, as done in the following subsection, the training data

is specified here as 𝐷 = {𝐳𝑖: 𝐳𝑖 ∈ 𝒵, 𝑖 = 1, … , 𝑁}, where 𝒵 could be either 𝒳 or 𝒳 ∪ ℝ.

2.1.1 Statistical Patterns

The training data are assumed here to be independently and identically distributed (i.i.d.)

according to some unknown probability measure. Under this assumption, the main goal of any

pattern analysis method is to extract general statistical patterns from the training data, which can

be defined as follows (Shawe-Taylor & Cristianini, 2004):

Definition: A general statistical pattern for a data set 𝐷 = {𝐳𝑖: 𝐳𝑖 ∈ 𝒵, 𝑖 = 1, … , 𝑁} with

independently and identically distributed (i.i.d.) observations that are generated according to a

probability distribution P, is a non-trivial non-negative function l that satisfies:

 𝐸𝒵[𝑙(𝐳)] ≈ 0, (2.1)

where 𝐸𝒵[𝑙] denotes the expectation of the function l under the distribution of the training data.

As an example of a statistical pattern, consider the classic regression problem on a training data

set 𝐷 = {𝐗, 𝐲} = {(𝐱𝑖, y𝑖): 𝐱𝑖 ∈ 𝒳, y𝑖 ∈ ℝ}. In this case, a statistical pattern is defined as a loss

function 𝑙(𝐱, y) = ℒ(𝑔(𝐱), y), where g denotes the linear prediction function. The loss function

𝑙(𝐱, y) measures the discrepancy between 𝑔(𝐱) and the correct label y; and consequently 𝑙(𝐱, y)

will be close to zero when evaluated in training observations that fit the pattern. As a second

example consider the novelty detection problem. The training data in this case consist of

observations from a space 𝒳 that are labeled as members of the normal class, i.e. 𝐷 = {𝑿, 𝐲} =

55

{(𝐱𝑖, y𝑖) | 𝐱𝑖𝜖𝒳, y𝑖 = 1, 𝑖 = 1, … , 𝑁}. An appropriate pattern in this case would be a non-negative

function 𝑙: 𝒳 → ℝ such that 𝑙(𝐱) ≈ 0 for observations generated from the (generally unknown)

distribution of the normal class. On the other hand, 𝑙(𝐱) should noticeably deviate from zero

when evaluated on observations that are very different to the majority of observations in the

training data. This statistical pattern 𝑙(𝐱) can be leveraged to define membership scores (or

novelty scores) that help us to estimate whether a new observation belongs to the normal class or

can be considered an outlier.

Based on the above definition of a statistical pattern, a pattern analysis algorithm is defined in

(Shawe-Taylor & Cristianini, 2004) as an algorithm that, given a finite training data set 𝐷, its

output is either a statistical pattern or an indication that no patterns were detected in 𝐷. One of

the most important properties of a pattern analysis algorithm is to be statistically stable.

Informally, this property denotes the fact that any pattern found actually resembles a

characteristic of the data source instead of being obtained by chance. When a pattern is

statistically stable, it should be obtained from different samples of the same data source. Of

course, no algorithm can absolutely guarantee the stability of a pattern. For that reason, some

probabilistic results have been derived that allow researchers to state their confidence in the

output of a pattern analysis algorithm. The Rademacher complexity theory plays an important

role in that sense (Bartlett & Mendelson, 2002), (Koltchinskii & Panchenko, 2000).

2.1.2 Kernel Functions for Pattern Analysis

Kernel functions were introduced in machine learning as a way of finding complex non-linear

patterns in data sets of arbitrary data types through the application of linear methods to a

56

representation of the data in a high-dimensional inner product space, which is commonly called

the feature space and it is denoted here by ℱ. Kernels allow mapping input data points to a

feature space ℱ without explicitly using the mapped feature vectors. The feature space must be a

vector space, and it usually has a much higher dimension than the input space 𝒳 (including

infinite dimensions). This approach allows building complex non-linear discrimination surfaces

in the original input space. The following definition establishes what a kernel function is

(Shawe-Taylor & Cristianini, 2004):

Definition: Given a Hilbert space ℱ, and an arbitrary space 𝒳, a function 𝑘: 𝒳 × 𝒳 → ℝ is a

kernel function if ∀ 𝐱, 𝐱′ ∈ 𝒳, 𝑘(𝐱, 𝐱′) = 〈𝜙(𝐱), 𝜙(𝐱′)〉, for some mapping function 𝜙: 𝒳 → ℱ.

The kernel approach to pattern analysis entails using a kernel function k to map training

observations 𝐱𝑖 to ℱ using the mapping function 𝜙: 𝒳 → ℱ. Subsequently, a linear model is

learned on the transformed data in ℱ. The linear model thus obtained is re-interpreted as a likely

non-linear pattern in the original input space. This is a common process in several areas of

mathematics, where data from a given space where a problem is difficult to solve are

transformed into another space where a feasible well-known technique can be applied. The

corresponding solution is then interpreted back into the original space. What makes kernel

methods particularly special is that this process can be applied efficiently because of two very

important characteristics. First, the algorithms to be “kernelized” rely exclusively on inner

products in ℱ. Second, those inner products can be calculated directly from the observations in

the input space by using the corresponding kernel function. Consequently, typically there is no

need to obtain an explicit expression for the mapping function 𝜙 or the coordinates of the

mapped observations in ℱ.

57

It is useful to think of kernel functions as similarity measures between any two observations.

This interpretation is justified by considering the well-known geometric interpretation of an inner

product. Another important aspect of kernel methods is that the particular algorithm to be applied

becomes independent of the data type of the input space. Training data can be mapped to a

feature space as far as an appropriate kernel function is defined for the corresponding data type.

Consequently, another benefit of kernel methods is that non-linear patterns can be found for

training data containing non-numerical attributes. Table 2.1 shows commonly used kernels that

apply to numerical data. More specialized kernels are described in (Shawe-Taylor & Cristianini,

2004).

Table 2.1: Commonly used kernel functions. In this case data points 𝐱, 𝐱′ ∈ ℝ𝑑 , where d is a

positive integer.

Kernel Kernel name

(Equivalent model)

𝑘(𝐱, 𝐱′) = 〈𝐱, 𝐱′〉 Linear kernel

(Linear classifier)

𝑘(𝐱, 𝐱′) = (〈𝐱, 𝐱′〉 + 1)𝑞 Polynomial kernel

(Polynomial of degree q)

𝑘(𝐱, 𝐱′) = 𝑒𝑥𝑝 (−
‖𝐱 − 𝐱′‖2

2𝜎2
)

Gaussian kernel

(Gaussian radial basis function network)

𝑘(𝐱, 𝐱′) = 𝑒𝑥𝑝 (−
1

2
∑ 𝑎𝑖(𝐱𝒊 − 𝐱𝒊

′)2

𝑑

𝑖=1

)

Simple exponential kernel

𝑘(𝐱, 𝐱′) = 𝑡𝑎𝑛ℎ(〈𝐱, 𝐱′〉 − 𝜃) Sigmoid kernel

(Multi-Layer Perceptron with one hidden layer)

58

Considering that training data are always finite, the kernel function has a matrix expression

associated to the data. The following definition relates the concepts of kernel function and kernel

matrix:

Definition: Given a kernel function 𝑘: 𝒳 × 𝒳 → ℝ and a set 𝐗 = {𝐱1, 𝐱2, … , 𝐱𝑁| 𝐱𝑖 ∈ 𝒳}, the

corresponding kernel matrix K is defined as the 𝑁 × 𝑁 real matrix such that 𝑲𝑖,𝑗 = 𝑘(𝐱𝑖, 𝐱𝑗).

A natural question at this point is what functions k are feasible kernels for using in a kernel

method. It turns out that a kernel function 𝑘: 𝒳 × 𝒳 → ℝ should fulfill the characterization that

appears below. Note that it implies that 𝑘(𝐱, 𝐱) ≥ 0, ∀𝐱 ∈ 𝒳.

Characterization: A symmetric function 𝑘: 𝒳 × 𝒳 → ℝ is called a positive semi-definite kernel

function if and only if for any positive integer N, any choice of objects 𝐱1, 𝐱2, … , 𝐱𝑁 ∈ 𝒳 and

any choice of real numbers 𝑐1, 𝑐2, … , 𝑐𝑁, the resulting N x N kernel matrix K is symmetric and

satisfies that ∑ ∑ 𝑐𝑖𝑐𝑗𝑲𝑖,𝑗
𝑛
𝑗=1

𝑛
𝑖=1 ≥ 0 (i.e. K is positive semi-definite

1
).

2.1.3 Kernel transformations

Choosing a kernel for a particular problem reflects most of our prior knowledge about the data

source and the problem (actually, the only knowledge about the data that is not included in the

kernel is the set of labels in supervised and semi-supervised problems). Consequently, operations

on kernel matrices might represent important changes regarding our understanding of the data.

The following results allow the creation and combination of kernel functions, providing the

means to integrate prior knowledge into the kernel matrices (Shawe-Taylor & Cristianini, 2004):

1
 The expression “positive semi-definite” is used here as defined in Matrix Theory, i.e. 0xx KT for all

mRx .

Please, note that in (Scholkpof and Smola, 2002) the term “positive definite” is used instead with the same meaning.

59

Let 𝑘1 and 𝑘2 be kernel functions defined over 𝒳 × 𝒳, where 𝒳 ⊆ ℝ𝑛. Additionally, 𝑓: 𝒳 → ℝ,

𝜙: 𝒳 → ℝ𝑚, and 𝑘3 is a kernel function defined over ℝ𝑚 × ℝ𝑚. The following functions are

kernels:

(i) 𝑘(𝐱, 𝐳) = 𝑘1(𝐱, 𝐳) + 𝑘2(𝐱, 𝐳)

(ii) 𝑘(𝐱, 𝐳) = 𝑎𝑘1(𝐱, 𝐳); where 𝑎 ∈ ℝ+

(iii)𝑘(𝐱, 𝐳) = 𝑘1(𝐱, 𝐳)𝑘2(𝐱, 𝐳)

(iv) 𝑘(𝐱, 𝐳) = 𝑓(𝐱)𝑓(𝐳)

(v) 𝑘(𝐱, 𝐳) = 𝑘3(𝜙(𝐱), 𝜙(𝐳))

(vi) 𝑘(𝐱, 𝐳) = 𝐱𝑇𝐵𝐳; where B is a symmetric positive semi-definite matrix.

It is important to consider how feature spaces are transformed by some of these operations. For

instance, the new feature vectors 𝜙(𝐱) obtained through construct (i) satisfies 𝜙(𝐱) =

[𝜙1(𝐱), 𝜙2(𝐱)], where 𝜙𝑖(𝐱) denotes a feature vector from kernel 𝑘𝑖; construct (ii) re-scales the

vectors in the feature space by √𝑎; and construct (iv) defines a one-dimensional feature space

through function f.

Besides creating new kernels using the previous constructs, we can also benefit from some

operations on current kernel matrices to achieve certain transformations on the feature space.

Some simple transformations are listed below, assuming that 𝑘1 is a kernel function:

 The function 𝑘(𝐱, 𝐳) = 𝑘1(𝐱, 𝐳) + 𝑎, with 𝑎 ∈ ℝ+, is a kernel function having a feature

space equal to the feature space of k with a constant-valued dimension added to it.

 The function

60

 𝑘(𝐱, 𝐳) = {
𝑘1(𝐱, 𝐳) + 𝑎 𝑖𝑓 𝐱 = 𝐳

𝑘1(𝐱, 𝐳) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 , (2.2)

where 𝑎 ∈ ℝ+, corresponds to adding a new feature with different values to the feature

space associated to the kernel function 𝑘1.

 The kernel

 𝑘(𝐱, 𝐳) =
𝑘1(𝐱,𝐳)

√𝑘1(𝐱,𝐱)𝑘1(𝐳,𝐳)
 (2.3)

corresponds to a normalization of all vectors in the feature space of 𝑘1, effectively

mapping all observations to a hyper-sphere.

As a final note, it is possible to assess how different two kernel matrices are by defining a

similarity measure. A simple similarity measure is the alignment between two kernels:

Definition: Let 𝑲1 and 𝑲2 be two kernel matrices of dimension 𝑁 × 𝑁. The alignment

𝐴(𝑲1, 𝑲2) is defined as

 𝐴(𝑲1, 𝑲2) =
〈𝑲1,𝑲2〉

√〈𝑲1,𝑲1〉〈𝑲2,𝑲2〉
 , (2.4)

where 〈𝑲𝑖, 𝑲𝑗〉 = 𝑡𝑟𝑎𝑐𝑒(𝑲𝑖
𝑇𝑲𝑗) is the Frobenius inner product between the two matrices.

From this definition, it follows that the alignment between two kernel matrices corresponds to

the cosine of the angle between the two matrices taken as 𝑁2-dimensional vectors.

2.1.4 Classification of Kernels

Kernels functions have been categorized based on various characteristics, such as whether they

are local kernels or not, separable or non-separable, stationary or non-stationary, among other

61

characteristics (Genton, 2001). The following class of kernels is of particular importance to

leveraging kernels in a nearest-neighbor method:

Definition: A kernel function 𝑘: 𝒳 × 𝒳 → ℝ is isotropic stationary if there is a function

𝑔𝑘: ℝ → ℝ such that 𝑘(𝐱, 𝐳) = 𝑔𝑘(‖𝐱 − 𝐳‖).

Isotropic stationary kernels are invariant to rotations and translations. The well-known Gaussian

RBF kernel is an example of an isotropic stationary kernel. On the other hand, the polynomial

kernel of degree d and the linear kernel are examples of non-isotropic stationary kernels. The

previous definition is limited to input spaces where a norm is defined. A generalization to the

class of isotropic stationary kernels that considers input spaces with arbitrary data types, called

similarity kernel, was introduced in (Ramirez-Padron, Foregger, Manuel, Georgiopoulos, &

Mederos, 2010):

Definition: A positive semi-definite kernel function 𝑘: 𝒳 × 𝒳 → ℝ is a similarity kernel if and

only if there exist 𝑐 ∈ ℝ+ such that ∀𝐱 ∈ 𝒳, 𝑘(𝐱, 𝐱) = 𝑐.

As noted in (Ramirez-Padron, Foregger, Manuel, Georgiopoulos, & Mederos, 2010), a similarity

kernel k can be interpreted as a similarity measure in 𝒳 that fulfills the following properties:

 Symmetry (by definition of kernel function).

 ∀𝐱 ∈ 𝒳, 𝑘(𝐱, 𝐱) = 𝑐 (by definition of similarity kernel).

 ∀𝐱, 𝐳 ∈ 𝒳, 𝑘(𝐱, 𝐳) ≤ 𝑐.

 ∃𝑑 ∈ ℝ such that ∀𝐱, 𝐳 ∈ 𝒳, 𝑘(𝐱, 𝐳) ≥ 𝑑.

62

The previous properties are particularly important for nearest neighbor-based outlier detection

methods that use kernels.

2.1.5 Properties of Data in Feature Spaces

Despite the absence of an explicit representation for the projection 𝜙(𝐱), a kernel function grants

us access to several properties of data projected into a kernel-defined feature space. The

following well-known properties are described in this subsection: the norm of a feature vector,

the distance between feature vectors, characteristics of the center of mass of a set of feature

vectors, and the variance of the norm of projections in the feature space (Shawe-Taylor &

Cristianini, 2004).

The norm of a feature vector is obtained directly from the properties of inner products:

 ‖𝜙(𝐱)‖2 = √〈𝜙(𝐱), 𝜙(𝐱)〉 = √𝑘(𝐱, 𝐱) . (2.5)

Similarly, the distance between two feature vectors can be easily calculated as:

 ‖𝜙(𝐱) − 𝜙(𝒛)‖ = √〈𝜙(𝐱) − 𝜙(𝐳), 𝜙(𝐱) − 𝜙(𝐳)〉

 = √𝑘(𝐱, 𝐱) − 2𝑘(𝐱, 𝐳) + 𝑘(𝐳, 𝐳) . (2.6)

As before, let 𝐗 = {𝐱1, 𝐱2, … , 𝐱𝑁} be a random sample from a domain space 𝒳. Let us denote by

𝜙(𝐗) the image of X under 𝜙 (i.e. 𝜙(𝐗) = { 𝜙(𝐱1), 𝜙(𝐱2), … , 𝜙(𝐱𝑁)}). The center of mass of

𝜙(𝐗) is defined as the sample mean of the feature vectors in 𝜙(𝐗):

 𝜙̅𝑠 =
1

𝑁
∑ 𝜙(𝐱𝑖)

𝑁
𝑖=1 . (2.7)

63

Given that the feature vectors in 𝜙(𝐗) are typically infinite-dimensional, it is not possible in

general to have an explicit representation for the vector 𝜙̅𝑠. However, the norm of 𝜙̅𝑠 and its

distance from other feature vectors are measurable quantities:

 ‖𝜙̅𝑠‖
2

= 〈𝜙̅𝑠, 𝜙̅𝑠〉 =
1

𝑁2
∑ 𝑘(𝐱𝑖, 𝐱𝑗)𝑁

𝑖,𝑗=1 , (2.8)

 ‖𝜙(𝐱) − 𝜙̅𝑠‖
2

= 𝑘(𝐱, 𝐱) +
1

𝑁2
∑ 𝑘(𝐱𝑖, 𝐱𝑗)𝑁

𝑖,𝑗=1 −
2

𝑁
∑ 𝑘(𝐱𝑖, 𝐱)𝑁

𝑖=1 . (2.9)

Translating the origin of the feature space to the center of mass 𝜙̅𝑠 corresponds to minimizing the

sum of the squared norms of the feature vectors, which in turn implies a minimization of the

trace of the kernel matrix (Shawe-Taylor & Cristianini, 2004). Consequently, centering the

feature data can be expressed through the following kernel transformation, where 𝑘𝑐 denotes the

kernel function corresponding to the centered data and 𝑘 denotes the original kernel function:

 𝑘𝑐(𝐱, 𝐳) = 𝑘(𝐱, 𝐳) +
1

𝑁2
∑ 𝑘(𝐱𝑖, 𝐱𝑗)𝑁

𝑖,𝑗=1 −
1

𝑁
∑ 𝑘(𝐱𝑖, 𝐱)𝑁

𝑖=1 −
1

𝑁
∑ 𝑘(𝐱𝑖, 𝐳)𝑁

𝑖=1 . (2.10)

The last property considered here is the variance of the norm of projections within the feature

space. For that matter, let us assume that the feature data has zero mean (this can be achieved

through the centering procedure formulated above). Let us denote by 𝚽 the matrix containing the

feature vectors:

 𝚽 = [ϕ(𝐱1), ϕ(𝐱2), … , ϕ(𝐱N)]𝑇 . (2.11)

From classic statistics, the covariance matrix C of feature data can be written as 𝑪 =
1

𝑁
𝚽𝑇𝚽. Let

us denote by v a unit vector in the feature space. The projection 𝑃𝑣(𝜙(𝐱)) of a vector 𝜙(𝐱) onto

v is expressed as:

 𝑃𝐯(𝜙(𝐱)) =
〈𝐯,𝜙(𝐱)〉

‖𝐯‖2 𝐯 = 〈𝐯, 𝜙(𝐱)〉𝐯 . (2.12)

64

Consequently, ‖𝑃𝐯(𝜙(𝐱))‖ = 〈𝐯, 𝜙(𝐱)〉. Given that the feature data have zero mean, it is

obtained that the expected value of the norm of the projections 𝜇𝐯 = 𝐸̂[‖𝑃𝐯(𝜙(𝐱))‖] = 0. The

variance of the norms of the projections onto v is expressed as follows (Shawe-Taylor &

Cristianini, 2004):

 𝜎𝐯
2 = 𝑣𝑎𝑟(‖𝑃𝐯(𝜙(𝐱))‖) =

1

𝑁
𝐯𝑇𝚽𝑇𝚽𝐯 = 𝐯𝑇𝑪𝐯 . (2.13)

There is no explicit expression for 𝜎𝑣
2 for a general vector v. However, if we assume 𝐯 = 𝚽𝑇𝜶,

an expression for it can be obtained as 𝜎𝐯
2 =

1

𝑁
𝛂𝑇𝑲2𝛂.

2.2 Classification-based Kernel Methods for Novelty Detection

Classification-based kernel methods for novelty detection take advantage of good generalization

properties from statistical learning theory and the possibility of dealing with infinite dimensional

feature spaces. Recently, they have been applied successfully in a variety of domains and their

performance compares favorably to other methods currently used for novelty detection (Gardner,

Krieger, Vachtsevanos, & Litt, 2006) (Liu, Liu, & Chen, 2010) (Blanchard, Lee, & Scott, 2010),

(Kemmler M. , Rodner, Wacker, & Denzler, 2013). Consequently, they can be considered state-

of-the-art methods for novelty detection. New approaches or algorithms aiming at improving the

effectiveness of novelty detection methods should be compared to one or more of these

classification-based kernel methods. This section describes some of the most successful kernel-

based methods. One subsection is devoted to batch methods and a second subsection describes

current online methods.

65

2.2.1 Batch methods

One-class SVM (Schölkopf, Platt, Shawe-Taylor, Smola, & Williamson, 2001)

The goal of one-class SVM is to rely on the training sample to estimate the support of the

corresponding distribution (i.e. the set of data points for which the density function is not zero-

valued). Consequently, the model from one-class SVM is essentially a binary function f that

specifies regions containing most of the data from the normal class. The function f should return

1 in a relatively small region that contains most of the observations, and -1 elsewhere. One-class

SVM is formulated in the feature space ℱ associated to a kernel function k. It looks for the

hyperplane that better separates the feature vectors from the origin with maximum margin. A test

observation 𝒛𝜖𝒳 will be declared a member of the normal class if the projection of z lies on the

side of the optimal hyperplane facing most of the mapped training data; i.e. if 𝑓(𝒛) = 1.

Given an unsupervised training data set 𝐗 = {𝐱𝑖|𝐱𝑖𝜖𝒳, 𝑖 = 1, … , 𝑁}, where 𝒳 denotes a finite-

dimensional domain, finding the separating hyperplane with optimal margin is stated as a

quadratic optimization problem:

 min𝐰∈ℱ,𝝃∈ℝ𝑁,𝜌 ∈ℝ
1

2
‖𝐰‖2 +

1

𝜐𝑁
∑ 𝜉𝑖𝑖 − 𝜌 , (2.14)

 subject to: 〈𝐰, 𝜙(𝐱𝑖)〉 ≥ 𝜌 − 𝜉𝑖, 𝜉𝑖 ≥ 0 ,

where 𝜐 denotes the expected rate of outliers in the data. The decision function f has the

following expression:

 𝑓(𝐱) = 𝑠𝑔𝑛(〈𝐰, 𝜙(𝐱𝑖)〉 − 𝜌) . (2.15)

66

The function f will be positive for most of the observations in the training data set, since the

slack variables 𝜉𝑖 are penalized in the quadratic problem. Introducing Lagrange multipliers

𝛼𝑖, 𝛽𝑖 ≥ 0 the following Lagrangian is obtained:

𝐿(𝐰, 𝝃, 𝜌, 𝜶, 𝜷) =
1

2
‖𝒘‖2 +

1

𝜐𝑁
∑ 𝜉𝑖𝑖 − 𝜌 − ∑ 𝛼𝑖[〈𝐰, 𝜙(𝐱𝑖)〉 − 𝜌 + 𝜉𝑖]𝑖 − ∑ 𝛽𝑖𝜉𝑖𝑖 . (2.16)

Equating to zero the derivatives of L with respect to the primal variables 𝐰, 𝝃, and 𝜌, the

following conditions are found:

 𝐰 = ∑ 𝛼𝑖𝜙(𝐱𝑖)𝑖 , (2.17)

 𝛼𝑖 =
1

𝜐𝑁
− 𝛽𝑖 ≤

1

𝜐𝑁
 , (2.18)

 ∑ 𝛼𝑖𝑖 = 1 . (2.19)

Substituting these conditions into L, a dual optimization problem is obtained:

 min𝜶
1

2
∑ 𝛼𝑖𝛼𝑗𝑘(𝐱𝑖, 𝐱𝑗)𝑖,𝑗 , (2.20)

subject to: ∑ 𝛼𝑖𝑖 = 1; 0 ≤ 𝛼𝑖 ≤
1

𝜐𝑁

The values for the 𝛼𝑖 Lagrange parameters are obtained by solving the above dual optimization

problem. As in the standard SVM method, those observations for which 𝛼𝑖 > 0 are called

support vectors. Given that 𝐰 = ∑ 𝛼𝑖𝜙(𝐱𝑖)𝑖 , the decision function is re-written as:

 𝑓(𝐱) = 𝑠𝑔𝑛(∑ 𝛼𝑖𝑘(𝐱𝑖, 𝐱)𝑖 − 𝜌) . (2.21)

The only parameter pending for estimation is ρ, which is calculated using the following

expression:

 𝜌 = ∑ 𝛼𝑖𝑘(𝐱𝑖, 𝐱𝑘)𝑖 , (2.22)

67

where xk is any support vector such that 0 < 𝛼𝑘 <
1

𝜐𝑁
. Having any test observation 𝒛𝜖𝒳, it can

be declared an outlier if 𝑓(𝒛) = −1, i.e. if z lies outside of the region containing most of the

training data.

One-class SVM has been successfully applied to detecting epochs containing seizure activity

from one-second windows of intracranial EEG (Gardner, Krieger, Vachtsevanos, & Litt, 2006).

In (Clifton, Yin, Clifton, & Zhang, 2007), one-class SVM is leveraged to predict combustion

instability from time-series data. The work of (Rabaoui, Kadri, & Ellouze, 2008) applies one-

class SVM to detect events in continuous audio streams, reporting substantial improvements in

performance compared to other popular approaches. One-class SVM has been also employed

successfully to recognize physiological deterioration in patients under continuous monitoring

(Clifton, Clifton, Watkinson, & Tarassenko, 2011). Other examples of applications of one-class

SVM are listed in section 1.4.2.

Recently, an extension to one-class SVM, called one class-SVM with minimum within-class

scatter (OC-WCSSVM) has been proposed; aimed at finding a more effective hyperplane using

information of the scatter within the training data (An, Liang, & Liu, 2014). The corresponding

experimental results showed improvements when compared to other modern algorithms on

multiple real-world data sets. Another very recent extension is presented in (Khan, Ksantini,

Ahmad, & Guan, 2014), where the low-variance directions of the data are taken into account to

detect outliers. This method employs the estimated covariance matrix of the training data to

control the direction of the separating hyperplane.

68

Support Vector Domain Description (SVDD) (Tax & Duin, 1999)

The approach employed by SVDD is to find a hypersphere in the feature space ℱ that contains

most of the observations in the training data set. This hypersphere would serve as the data

domain description for the normal class represented by the training data set. It translates into a

region covering most of the training points when mapped back into the input space 𝒳.

Observations lying outside of that region are considered outliers.

Given the training data set 𝐗 = {𝐱𝑖|𝐱𝑖𝜖𝒳, 𝑖 = 1, … , 𝑁}, the SVDD problem consists of finding

the smallest hypersphere in the feature space that contains most of the feature vectors

{𝜙1, 𝜙2, … , 𝜙𝑁} , where 𝜙𝑖 = 𝜙(𝐱𝑖). Essentially, the hypersphere should not contain data points

lying far away from its center. Remote observations should be considered outliers and should not

be included in the model. To accomplish this goal, non-negative slack variables 𝝃 =

{𝜉1, 𝜉2, … , 𝜉𝑁} are introduced, to allow for some training observations to be outside of the

hypersphere. The corresponding optimization problem, called soft minimal hyper-sphere, is

stated as follows:

 𝑚𝑖𝑛𝒄,𝑟,𝝃 𝑟2 + 𝐶‖𝝃‖1 , (2.23)

 subject to:

‖𝜙𝑖 − 𝒄‖2 = (𝜙𝑖 − 𝒄)𝑇(𝜙𝑖 − 𝒄) ≤ 𝑟2 + 𝜉𝑖, 𝑖 = 1,2, … , 𝑁;

𝜉𝑖 ≥ 0, 𝑖 = 1,2, … , 𝑁;

69

where 𝐶 is a regularization parameter, and c and r denote the center and the radius of the

hypersphere, respectively. Introducing Lagrange multipliers 𝛼𝑖 ≥ 0 and 𝛽𝑖 ≥ 0 the following

Lagrangian is obtained:

 𝐿(𝒄, 𝑟, 𝜶, 𝝃) = 𝑟2 + 𝐶‖𝝃‖1 + ∑ 𝛼𝑖[‖𝜙𝑖 − 𝒄‖2 − 𝑟2 − 𝜉𝑖]
𝑁
𝑖=1 − ∑ 𝛽𝑖𝜉𝑖

𝑁
𝑖=1 . (2.24)

By differentiating L with respect to the primal variables 𝒄, 𝑟, 𝝃 the following equations are

obtained:

𝜕𝐿

𝜕𝒄
= 2 ∑ 𝛼𝑖(𝜙𝑖 − 𝒄)𝑁

𝑖=1 = 0 , (2.25)

𝜕𝐿

𝜕𝑟
= 2𝑟(1 − ∑ 𝛼𝑖

𝑁
𝑖=1) = 0 , (2.26)

𝜕𝐿

𝜕𝜉𝑖
= 𝐶 − 𝛼𝑖 − 𝛽𝑖 = 0 , (2.27)

Finally, the following constraints are obtained:

 ∑ 𝛼𝑖 = 1𝑁
𝑖=1 , (2.28)

 𝒄 = ∑ 𝛼𝑖𝜙𝑖
𝑁
𝑖=1 , (2.29)

 0 ≤ 𝛼𝑖 ≤ 𝐶 . (2.30)

Substituting these constraints into the Lagrangian leads the following dual optimization problem:

 𝑚𝑎𝑥𝜶 ∑ 𝛼𝑖𝑘(𝐱𝑖, 𝐱𝑖)
𝑁
𝑖=1 − ∑ 𝛼𝑖𝛼𝑗𝑘(𝐱𝑖, 𝐱𝑗)𝑁

𝑖,𝑗=1 , (2.31)

subject to:

 ∑ 𝛼𝑖
𝑁
𝑖=1 = 1 ,

 0 ≤ 𝛼𝑖 ≤ 𝐶, 𝑖 = 1, 2, … , 𝑁 .

Feature vectors on the hypersphere’s boundary have 𝛼𝑖 coefficients such that 0 < 𝛼𝑖 < 𝐶. The

radius r of the hypersphere is calculated as the distance from its center to one of those vectors.

70

Feature vectors with 𝛼𝑖 = 𝐶 are located outside the hypersphere. Consequently, they are

considered outliers. All feature vectors with positive 𝛼𝑖 values influence the domain description,

and they are called the support vectors (SVs) of the description. A test point 𝒛𝜖𝒳 is declared an

outlier if its distance to the center of the hypersphere is greater than r; i.e. if:

 𝑑(𝜙(𝐳), 𝒄) = √𝑘(𝐳, 𝒛) − 2 ∑ 𝛼𝑖𝑘(𝐳, 𝐱𝑖)
𝑁
𝑖=1 + ∑ 𝛼𝑖𝛼𝑗𝑘(𝐱𝑖, 𝐱𝑗)𝑁

𝑖,𝑗=1 > 𝑟 . (2.32)

Given that ∑ 𝛼𝑖
𝑁
𝑖=1 = 1, the value of C must be in the interval [

1

𝑁
, 1]. Consequently, for 𝐶 <

1

𝑁

no solution can be found. On the other hand, for C > 1 a solution covering all feature vectors can

always be found.

The SVDD novelty detector has two important advantages. First, similar to one-class SVM, it

relies on modeling the boundary of the density distribution of the normal data instead of the

actual distribution, so that it is robust to variations of the distribution within the region defined as

normal. Only variations of the distribution beyond that boundary will affect SVDD’s

performance. The second advantage is related to the estimation of the expected target error rate

(error of type I). A target error occurs when an observation drawn from the target distribution is

incorrectly classified as an outlier. Assuming that all observations in the training data set are

actually drawn from the target distribution, support vectors with 𝛼𝑖 = 𝐶 are considered target

errors. If a support vector xi with 𝛼𝑖 < 𝐶 was removed from the training data before training,

then the resulting boundary might shrink. In that case, evaluating the novelty detector on xi will

trigger a target error. On the other hand, training SVDD on the data set with one or more non-

support vectors (𝛼𝑖 = 0) left out renders the same solution that is obtained with the original

training data. Because non-support vectors lies within the target boundary they won’t be detected

71

as outliers. In summary, a leave-one-out estimation (Bishop, 1995) of the target error rate is

given by the expression
#𝑆𝑉𝑠

𝑁
, where #SVs denotes the number of support vectors.

Support Vector Data Description (SVDD) (Tax & Duin, 2004). The Support Vector Domain

Description method was subsequently expanded to accept negative examples (examples of

outliers) as part of the learning process. The method was renamed as Support Vector Data

Description. The optimization problem of the original SVDD was modified to consider negative

examples as well. When there are no negative examples, the new SVDD remains the same as the

Support Vector Domain Description. Following the notation in (Tax & Duin, 2004), the target

objects (normal observations) are enumerated by indices i, j, and the negative examples are

enumerated by indices l, m. The normal (target) objects are labeled as y𝑖 = 1 and the negative

examples are labeled as y𝑙 = −1. Introducing slack variables 𝜉𝑖 and 𝜉𝑙 for both the target and the

outlier examples, the modified primal optimization problem is as follows:

 𝑚𝑖𝑛𝒄,𝑟,𝜉𝑖,𝜉𝑙
 𝑟2 + 𝐶1 ∑ 𝜉𝑖𝑖 + 𝐶2 ∑ 𝜉𝑙𝑙 , (2.33)

 subject to:

‖𝜙𝑖 − 𝒄‖2 = (𝜙𝑖 − 𝒄)𝑇(𝜙𝑖 − 𝒄) ≤ 𝑟2 + 𝜉𝑖; 𝜉𝑖 ≥ 0; ∀𝑖

‖𝜙𝑙 − 𝒄‖2 = (𝜙𝑙 − 𝒄)𝑇(𝜙𝑙 − 𝒄) ≥ 𝑟2 − 𝜉𝑙; 𝜉𝑙 ≥ 0; ∀𝑙

Introducing Lagrange multipliers 𝛼𝑖 , 𝛽𝑖 ≥ 0 and 𝛼𝑙 , 𝛽𝑙 ≥ 0 and applying a derivation process

similar as the one used for Support Vector Domain Description, the following constraints are

obtained:

 ∑ 𝛼𝑖𝑖 − ∑ 𝛼𝑙 = 1𝑙 , (2.34)

72

 𝒄 = ∑ 𝛼𝑖𝜙𝑖𝑖 − ∑ 𝛼𝑙𝜙𝑙𝑙 , (2.35)

 0 ≤ 𝛼𝑖 ≤ 𝐶1 , 0 ≤ 𝛼𝑙 ≤ 𝐶2; ∀𝑖, 𝑙 (2.36)

The dual optimization problem is expressed as:

𝑚𝑎𝑥{𝛼𝑖},{𝛼𝑙}
 ∑ 𝛼𝑖𝑘(𝐱𝑖, 𝐱𝑖)𝑖 − ∑ 𝛼𝑙𝑘(𝐱𝑙, 𝐱𝑙)𝑙 − ∑ 𝛼𝑖𝛼𝑗𝑘(𝐱𝑖, 𝐱𝑗)𝑖,𝑗 − ∑ 𝛼𝑙𝛼𝑚𝑘(𝐱𝑙, 𝐱𝑚)𝑙,𝑚 +

2 ∑ 𝛼𝑙𝛼𝑗𝑘(𝐱𝑙, 𝐱𝑗)𝑙,𝑗 , (2.37)

subject to:

 ∑ 𝛼𝑖𝑖 − ∑ 𝛼𝑙 = 1𝑙 , (2.38)

 0 ≤ 𝛼𝑖 ≤ 𝐶1; 0 ≤ 𝛼𝑙 ≤ 𝐶2; ∀𝑖, 𝑙 (2.39)

Let us assume there N observations in the training data (including both target and negative

examples), and let us enumerate variables corresponding to all training observations by using

index i. Defining new variables 𝛼𝑖
′ = y𝑖𝛼𝑖, constraints (2.38) and (2.39) change into

 ∑ 𝛼𝑖
′𝑁

𝑖=1 = 1 and 𝒄 = ∑ 𝛼𝑖
′𝜙𝑖

𝑁
𝑖=1 . (2.40)

Consequently, by doing this transformation, the SVDD with negative examples is expressed

mathematically in the same terms as the unsupervised version of SVDD. Similarly, the function

to detect whether a test observation 𝒛𝜖𝒳 is an outlier has the same expression for both versions

of SVDD.

The work in (Wu & Ye, 2009) aims at improving the margins of SVDD’s hypersphere, so that its

distance from outliers in the training data is maximized. That work is extended in (Le, Tran, Ma,

& Sharma, 2010), where the margin between the hypersphere and normal observations is also

maximized. Modeling multiple hyperspheres has also been proposed recently (Le, Tran, Ma, &

Sharma, 2011), outperforming the original SVDD method in multiple data sets. Some efforts

73

have also been made to improve the speed of the SVDD method, such as fast SVDD (Liu, Liu, &

Chen, 2010) and efficient SVDD (Peng & Xu, 2012).

2.2.2 Online Methods

Online SVDD (Tax & Laskov, 2003)

This method is based on a generalization of incremental SVM (Cauwenberghs & Poggio, 2001),

which is an exact solution to supervised online SVM learning. Consequently, in order to

understand online SVDD it is necessary to briefly introduce first the standard SVM binary

classifier and incremental SVM.

The model of the standard soft-margin SVM binary classifier represents a separating hyperplane

𝑓(𝐱) in the feature space, which has maximum margin and allows for some mislabeled training

examples (Cortes & Vapnik, 1995):

 𝑓(𝐱) = 〈𝐰, 𝜙(𝐱)〉 + 𝑏 , (2.41)

such that y𝑖(𝐰, 𝜙(𝐱𝒊) + 𝑏) ≥ 1 − 𝜉𝑖 for i = 1,2,…,N; where 𝐱𝑖 denote the training vectors, the

labels y𝑖 take value in {-1, 1}, and 𝜉𝑖 are non-negative slack variables that are as small as

possible (how small is defined by a regularization parameter C introduced below).

To obtain the trained SVM model, a primal optimization problem is written as:

 𝑚𝑖𝑛𝐰,𝑏,𝜉𝑖

1

2
‖𝐰‖2 + 𝐶 ∑ 𝜉𝑖

𝑁
𝑖=1 , (2.42)

subject to:

 y𝑖(𝐰, 𝜙(𝐱𝒊) + 𝑏) ≥ 1 − 𝜉𝑖 and 𝜉𝑖 ≥ 0, for 𝑖 = 1, 2, … , 𝑁.

74

Using the technique of Lagrange multipliers, this primal problem is converted into the following

convex quadratic dual problem:

 max𝑏 min𝛼𝑖
 𝑊 =

1

2
 ∑ 𝛼𝑖𝛼𝑗y𝑖y𝑗𝑘(𝐱𝑖, 𝐱𝑗)𝑁

𝑖,𝑗=1 − ∑ 𝛼𝑖
𝑁
𝑖=1 + 𝑏 ∑ y𝑖𝛼𝑖

𝑁
𝑖=1 , (2.43)

 subject to:

0 ≤ 𝛼𝑖 ≤ 𝐶, for 𝑖 = 1,2, … , 𝑁.

Deriving 𝑊 w.r.t. variables 𝛼𝑖 and b, the following conditions, called Karush–Kuhn–Tucker

(KKT) conditions, are obtained:

 𝑔𝑖 =
𝜕𝑊

𝜕𝛼𝑖
= ∑ 𝛼𝑗y𝑖y𝑗𝑘(𝐱𝑖, 𝐱𝑗)𝑁

𝑗=1 + 𝑏y𝑖 − 1 {

𝑔𝑖 ≥ 0, 𝑖𝑓 𝛼𝑖 = 0
𝑔𝑖 = 0, 𝑖𝑓 0 < 𝛼𝑖 < 𝐶
𝑔𝑖 ≤ 0, 𝑖𝑓 𝛼𝑖 = 𝐶

 , (2.44)

𝜕𝑊

𝜕𝑏
= ∑ y𝑖𝛼𝑖

𝑁
𝑖=1 = 0 . (2.45)

Finally, the function for the optimal separating hyperplane can be written as a linear combination

of values of the kernel function:

 𝑓(𝐱) = ∑ 𝛼𝑖y𝑖𝑘(𝐱𝑖, 𝐱)𝑁
𝑖=1 + 𝑏, (2.46)

for which coefficients 𝛼𝑖 and b are calculated by solving the dual problem stated above.

The incremental SVM method allows the addition of training observations, one at a time, to an

SVM model. It also allows removing a single observation from an SVM model. Training

observations are explicitly classified into three categories: the set S of margin support vectors

(i.e. those for which 0 < 𝛼𝑖 < 𝐶), the set E of error support vectors (those exceeding the margin

but not necessarily misclassified, for which 𝛼𝑖 = 𝐶), and the set R containing the rest of the

vectors.

75

Let us assume that an optimal solution to the SVM optimization problem is already available,

which could have been obtained through batch training. Let us assume also that a new vector 𝐱𝑐,

with label y𝑐, needs to be added to the corresponding SVM model. As a first step, 𝐱𝑐 is added

with coefficient 𝛼𝑐 = 0, which does not affect the model nor the KKT conditions. If 𝑔𝑐 > 0 then

the algorithm terminates; otherwise, the value 𝛼𝑐 is incremented as much as possible, until either

(1) 𝑔𝑐 = 0, (2) 𝛼𝑐 = 𝐶, or (3) previously learned vectors migrate across sets S, E, and R. In the

first two cases some model updates are executed and the algorithm terminates. In the third case,

updates are applied to maintain the KKT conditions, and the previous step to increment 𝛼𝑐 is

repeated. A similar procedure is applied to remove an observation from the SVM model, in this

case iteratively decrementing the corresponding 𝛼𝑐 coefficient until it reaches zero, while

keeping the KKT conditions fulfilled, which implies having an optimal model. Incremental SVM

relies on equations that allow calculating, given a change in 𝛼𝑐 denoted by Δ𝛼𝑐, the

corresponding changes in b, 𝛼𝑖, and the derivatives 𝑔𝑖 (denoted by Δb, Δ𝛼𝑖, and Δ𝑔𝑖,

respectively). According to its authors, the algorithm converges to a solution identical to the

SVM model obtained through standard approaches based on quadratic optimization of the dual

problem.

Online SVDD is based on a generalization of the dual problem of SVM and the formulation of

the incremental SVM algorithm. A general abstract form of the SVM optimization problem is

considered in (Tax & Laskov, 2003), which is stated below (with some changes in notation to

better match the notation used above):

 max𝑏 min𝜶 𝑊 =
1

2
 𝜶𝑇𝑀𝜶 − 𝒄𝑇𝜶 + 𝑏(𝒂𝑇𝜶 + 𝑑) , (2.47)

76

subject to

0 ≤ 𝜶 ≤ 𝐶
𝒂𝑇𝜶 + 𝑑 = 0

where c and 𝒂 are vectors of size N, M is a 𝑁 × 𝑁 matrix, and d is a real value. Note that this

problem becomes the standard SVM dual problem when using 𝒄 = 𝟏, 𝒂 = 𝐲, and 𝑑 = 0.

Alternatively, the above expression denotes the dual problem from the SVDD method if

𝒄 = 𝑑𝑖𝑎𝑔(𝑀), 𝒂 = 𝐲, and 𝑑 = −1. An online version of SVDD is obtained by applying the

mathematical derivation of incremental SVM to the general problem (2.47), and subsequently

substituting the values of 𝒄, 𝒂 and d corresponding to the SVDD method. The only major

difference between incremental SVM and online SVDD arises at the moment of defining an

initial optimal model: when using incremental SVM for a classification problem, an initial

solution can always be found for even a single observation. However, for online SVDD at least

⌈
1

𝐶
⌉ examples are needed to define an initial solution, where 𝐶 ∈ [

1

𝑁
, 1]. This is required in order

to satisfy conditions 0 ≤ 𝜶 ≤ 𝐶 and 𝐲𝑇𝜶 = 1 at the same time. The following procedure was

proposed in (Tax & Laskov, 2003) to obtain the initial solution for online SVDD:

1. Take the first ⌊
1

𝐶
⌋ training observations into the set E and assign them weight C.

2. Take another observation xk, assign it a weight 𝛼𝑘 = 1 − ⌊
1

𝐶
⌋ 𝐶, and put it into set S.

3. Compute gradients gi of all objects in the solution.

4. Compute b such that for all observations in E the gradient is non-positive.

5. Enter the online learning phase of the algorithm.

77

A detailed analysis of the convergence properties and the algorithmic complexity of incremental

SVM (and consequently online SVDD) is given in (Laskov, Gehl, Krüger, & Müller, 2006). The

work of Laskov et al. also demonstrated the applicability of incremental SVM to real-life

problems. Examples of more recent applications of online SVDD can be found in (Yin, Zhang,

Li, Ren, & Fan, 2014) and (Kolev, Suvorov, Morozov, Markarian, & Angelov, 2015).

NORMA (Kivinen, Smola, & Williamson, 2004)

The term NORMA stands for Naive Online Rreg Minimization Algorithm. Actually, it denotes a

collection of online algorithms that perform stochastic gradient descent with respect to a risk

functional defined on the Hilbert (feature) space ℱ. NORMA is described here first in general

terms (applicable to different types of learning problems). Subsequently, a variant of NORMA

suited to online novelty detection is then briefly described.

The general approach used to develop NORMA considers a function estimation problem: to

learn a mapping 𝑓: 𝒳 → ℝ from a training data set 𝐷 = {𝐗, 𝐲} = {(𝐱𝑖, y𝑖)|𝐱𝑖𝜖𝒳, y𝑖𝜖𝒴, 𝑖 =

1, … , 𝑁}. A loss function 𝑙: ℝ × 𝒴 → ℝ, given by 𝑙(𝑓(𝐱), y), penalizes the deviation of estimates

𝑓(𝐱) from the observed label y. Although the authors of NORMA didn’t state a particular

relationship between 𝒴 and ℝ, it is apparent from their formulation that 𝒴 ⊆ ℝ. Any estimate 𝑓

obtained by the learning algorithm is called a hypothesis. It is assumed that the feature space ℱ

is a reproducing kernel Hilbert space (Aronszajn, 1950), (Schölkopf & Smola, 2001), which

contains all possible hypotheses. The main implication of this assumption is that the associated

kernel function k has the following reproducing property:

 〈𝑓, 𝑘(𝐱, .)〉 = 𝑓(𝐱), ∀𝐱 ∈ 𝒳. (2.48)

78

The concept of risk functional is very important in NORMA. Typically, all examples from the

training data set 𝐷 are assumed to be drawn independently from some distribution P defined

over 𝒳 × 𝒴. Given an estimate 𝑓 of the function to be learned, the following expected risk

offers a natural measure of the quality of the estimation 𝑓:

 𝑅[𝑓, 𝑃] ≡ 𝐸𝑃 [𝑙(𝑓(𝐱), y)] . (2.49)

Since P is unknown, the expected risk can be approximated by the empirical risk Remp:

 𝑅𝑒𝑚𝑝[𝑓, 𝐷] ≡
1

𝑁
∑ 𝑙(𝑓(𝐱𝒊), y𝑖)𝑁

𝑖=1 . (2.50)

However, to avoid overfitting, a regularized risk should be used instead of Remp:

 𝑅𝑟𝑒𝑔[𝑓, 𝐷] ≡
1

𝑁
∑ 𝑙(𝑓(𝐱𝒊), y𝑖)𝑁

𝑖=1 +
𝜆

2
‖𝑓‖

2
; 𝜆 > 0. (2.51)

The previous risk functionals are the ones typically used in batch learning. A definition of a risk

functional dealing with one example at a time is needed for online learning. For NORMA, the

instantaneous regularized risk on a single example (x, y) is defined as follows:

 𝑅𝑖𝑛𝑠𝑡[𝑓, 𝐱, y] ≡ 𝑅𝑟𝑒𝑔[𝑓, {(𝐱, y)}] . (2.52)

NORMA assumes the existence of an arbitrary initial hypothesis 𝑓1. After NORMA examines the

t
th

 example (𝐱𝑡, y𝑡), it generates an updated hypothesis 𝑓𝑡+1. Consequently, the goal for

NORMA is to reduce the loss 𝑙(𝑓𝑡(𝐱𝑡), y𝑡) made by the learning algorithm when it predicts y𝑡

based on 𝐱𝑡 and previous examples {(𝐱𝑖, y𝑖)}𝑖=1,2,…,𝑡−1. The main idea is to carry out the classic

stochastic gradient descent with respect to the instantaneous risk 𝑅𝑖𝑛𝑠𝑡. The general form of the

update rule is the following:

79

 𝑓𝑡+1 = 𝑓𝑡 − 𝜂𝑡
𝜕

𝜕𝑓
𝑅𝑖𝑛𝑠𝑡[𝑓, 𝐱𝑡, y𝑡] |

𝑓=𝑓̂𝑡

 , (2.53)

where 𝜂𝑡 > 0 is the learning rate, similar to the learning rate employed in multilayer neural

networks. Employing properties of reproducing kernel Hilbert spaces, the update rule becomes:

 𝑓𝑡+1(𝐱) ≡ (1 − 𝜂𝑡𝜆)𝑓𝑡(𝐱) − 𝜂𝑡𝑙′(𝑓𝑡(𝐱𝑡), y𝑡) 𝑘(𝐱𝑡, 𝐱) . (2.54)

Consequently, the function 𝑓𝑡, at any step t, can be written as a kernel expansion (Schölkopf,

Herbrich, & Smola, 2001):

 𝑓𝑡(𝐱) = ∑ 𝛼𝑖𝑘(𝐱𝑖, 𝐱)𝑡−1
𝑖=1 . (2.55)

Considering loss functions that are convex in the first argument, the general NORMA algorithm

is summarized in the following two steps:

STEP 1. Choose as initial function estimate 𝑓1 = 0.

STEP 2. The coefficients 𝛼1, 𝛼2, … , 𝛼𝑡 are updated at step t using the following expressions:

 𝛼𝑡 ← −𝜂𝑡𝑙′(𝑓𝑡(𝐱𝑡), y𝑡) , (2.56)

 𝛼𝑖 ← (1 − 𝜂𝑡𝜆)𝛼𝑖; 𝑖 = 1, 2, … , 𝑡 − 1 , (2.57)

where the symbol ← denotes a value assignment. To avoid a continuously increasing number of

coefficients, the authors of NORMA suggested removing observations having very small

coefficient values. This truncation procedure also allows NORMA to forget old instances that

become irrelevant. This is particularly beneficial in the case of a changing distribution 𝑃(𝑥, 𝑦).

A variant of NORMA for novelty detection was derived in (Kivinen, Smola, & Williamson,

2004). It assumes an unsupervised learning scenario in which the following loss function is used:

80

 𝑙(𝑓(𝐱), 𝐱) = 𝑚𝑎𝑥 (0, 𝜌 − 𝑓(𝐱)) − 𝜐𝜌 , (2.58)

where parameter 𝜌 denotes the width of the margin, and 0 < 𝜐 < 1 allows to set an upper limit

in the frequency of outlier alerts (𝑓(𝐱) < 𝜌). The update rule in this case, for 𝑖 = 1,2, … , 𝑡 − 1,

is:

 (𝛼𝑖, 𝛼𝑡 , 𝜌) = {
((1 − 𝜂𝑡)𝛼𝑖, 𝜂, 𝜌 + 𝜂(1 − 𝜐)) , 𝑖𝑓 𝑓(𝐱) < 𝜌

((1 − 𝜂𝑡)𝛼𝑖, 0, 𝜌 − 𝜂𝜐) , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 . (2.59)

Note that whenever 𝑓(𝐱) ≥ 𝜌 we have that 𝛼𝑡 = 0. This means that there is no need to keep the

corresponding 𝐱𝑡 vector in memory, which provides some sparseness to the underlying model.

As an example of a recent and interesting application of the NORMA algorithm to novelty

detection, note that it has been used with great success to learn the normal postures of elderly

persons, using short video clips as training data (Yu, Yu, Rhuma, Naqvi, Wang, & Chambers,

2013). Using video monitoring, the algorithm identified abnormal postures that were likely

corresponding to falls; achieving in some cases 100% fall detection rate and only 3% false

detection rate.

2.3 Gaussian Processes for Novelty Detection

A Gaussian process (GP) is a stochastic process used to specify a probability distribution over a

space of functions without constraining the corresponding functional model to a particular form.

Essentially, GPs are a flexible nonparametric function estimation technique. GP models can be

obtained from a training data set using a batch learning algorithm. Additionally, there are

algorithms to learn GP models incrementally, such as Online GP and the Sparse Online GP

(SOGP) (Csató & Opper, 2002). SOGP can be used in applications that impose relatively strong

81

memory constraints; for instance, in some embedded systems. Batch GP and Online GP might

not be appropriate in those cases, given that their models do not include an approach to

compensate for the potential absence of available memory. SOGP achieves this capability by

adding a parameter m that specifies the capacity of the model, with the goal of building a sparse

but efficient knowledge representation.

Gaussian processes have been used successfully in many areas as a powerful Bayesian regression

tool, given its flexible modeling capabilities, and the fact that posterior GPs can be obtained

analytically when using Gaussian likelihoods. Their use in machine learning has been mainly

limited to solving regression and classification problems (Rasmussen & Williams, 2006), and to

estimate the probability density functions underlying a set of observations (Csató, 2002) (Adams,

Murray, & MacKay, 2009). In most cases, GPs have showed a great performance compared to

other highly successful techniques (Rasmussen & Williams, 2006).

It was reported in (Kemmler, Rodner, & Denzler, 2010) and (Kemmler M. , Rodner, Wacker, &

Denzler, 2013) that GPs can be effectively used for novelty detection as well. Their experimental

results show that GP-based novelty detection can outperform on average the state-of-the-art

SVDD algorithm. However, despite the general acceptance of GPs for the domains mentioned

above, applications of GPs to novelty detection seem to have been limited to the approach

originally published in (Kemmler, Rodner, & Denzler, 2010). Furthermore, the work of

(Kemmler, Rodner, & Denzler, 2010) and (Kemmler M. , Rodner, Wacker, & Denzler, 2013)

was constrained to the use of batch GP. To the best of our knowledge, the only work that has

considered the application of online GPs to novelty detection is described in (Ramirez-Padron,

82

Mederos, & Gonzalez, 2013). Its preliminary experimental results show that the performance of

novelty detection methods based on online GPs can be similar to the performance of batch GP-

based novelty detection. Given the promising results presented in (Kemmler M. , Rodner,

Wacker, & Denzler, 2013) and (Ramirez-Padron, Mederos, & Gonzalez, 2013), and the

renowned flexibility of GPs as modeling tools, extending the application of GPs to particular

types of novelty detection problems seems to be a promising research effort.

This section introduces Bayesian modeling, which lies at the core of the GP approach to novelty

detection, and subsequently offers a brief introduction to GPs and its applications to regression

and classification problems. This introduction is needed because applications of GPs to density

estimation and novelty detection are based on ideas that were developed for regression and

classification within the Bayesian framework. Finally, this section describes the approach

proposed in (Kemmler, Rodner, & Denzler, 2010) and (Kemmler M. , Rodner, Wacker, &

Denzler, 2013) for applying GPs to novelty detection.

2.3.1 Bayesian Modeling

The simplest approaches to learning a model from a training data set involve using an expression

𝑓(𝐱, 𝐰) that is linear in the unknown parameters 𝐰. Typically in the case of supervised learning,

the model parameters are found by minimizing an error function that measures the misfit

between the model and the training labels. A regularization approach is commonly employed to

avoid over-fitting the training data. Regularization involves adding one or more penalty terms to

the objective function of the optimization problem. Penalty terms are called regularization terms,

because they measure how much the model deviates from some pre-defined desirable conditions.

83

The following regularized objective function is commonly used in various methods, including

SVM:

 𝐸(𝐰) =
1

2
∑ [𝑓(𝐱𝑖, 𝐰) − y𝑖]2 + 𝑁

𝑖=1
𝜆

2
‖𝐰‖𝟐 . (2.60)

The second term of 𝐸(𝐰) is the regularization term, which is inversely proportional to the

smoothness of the model. The coefficient 𝜆 is a model parameter that allows fine-tuning the

relative importance of the regularization term in comparison with the error term. Parameters

modifying the complexity of the model, like 𝜆, are called complexity parameters. Other

complexity parameters are typically considered as part of the expression for 𝑓(𝐱, 𝐰); for

instance, if 𝑓(𝐱, 𝐰) = ∑ 𝐰𝑖
𝑚
𝑖=1 𝜙𝑖(𝐱), where {𝜙𝑖} is a set of m basis functions, then the number m

is a complexity parameter. In the case of SVM, the parameters of the kernel function can be

considered complexity parameters. In general, a model might have several complexity

parameters that need to be estimated in addition to estimate the parameters 𝐰. The act of

estimating the complexity parameters constitutes an example of a task known in statistics as

model selection. One of the classic approaches to model selection is to employ a k-fold cross-

validation procedure over different combinations of values of the complexity parameters. As a

result, complexity parameters are set to the combination of values for which the average of the

function error 𝐸(𝐰) over the cross-validation runs is a minimum. This approach to model

selection is clearly cumbersome and computationally expensive, and it might be infeasible for

models with various complexity parameters that take values in large domains. One of the main

advantages of the Bayesian approach to statistical inference is that it allows estimating the

probability distributions of all model parameters in a unified way. Additionally, the introduction

of prior distributions that favor model smoothness removes the need for explicit regularization

84

terms. In other words, prior distributions play the role of regularization terms, preventing the

posterior model from deviating too much from prior conditions that are typically smooth.

The previous argument in favor of Bayesian learning methods is just one of their multiple

advantages. When a system is modeled using a Bayesian framework, our knowledge is expressed

by probability distributions defined on the parameters of the model. Initially, a model is built

relying exclusively on our prior beliefs about the system. Subsequently, training data are used to

adjust the probability distributions of the model, in a way that it provides a better explanation for

the data. Another major advantage relies on the fact that predictions of Bayesian models are fully

probabilistic; i.e. Bayesian models do not only produce point estimates of the dependent

variables (as it is the case for regularized linear models), but they also provide posterior

probability distributions for those variables. Consequently, they provide a measure of the

uncertainty associated to predictions.

The core of Bayesian modeling is Bayes’ theorem, published originally in 1763 for the specific

case of updating the parameters of a Binomial distribution based on observational data (Bayes,

1763). The modern expression of Bayes’ theorem, extended to arbitrary distributions, was

presented in (Laplace, 1812). The prevailing interpretation of probabilities based on frequencies

during the 19
th

 century caused Bayes theorem to be overlooked for about 100 years (Cox, 1946).

Currently, there is a great interest in setting most statistical methods into a Bayesian framework

(Bolstad, 2007). Similarly, many machine learning algorithms have been re-stated within a

Bayesian framework (Bishop, 2006). Bayesian inference can be done on two levels. The first

level is concerned with inferring the distribution of model parameters, while the second level

85

deals with selecting the most appropriate models. In the following subsections, the two levels of

Bayesian inference are described in general terms, independently of any particular model.

First level of Bayesian Inference

Let us assume that a particular model M was chosen based on certain prior information, to fit a

data set 𝐗 = {𝐱1, 𝐱2, … , 𝐱𝑁| 𝐱𝑖 ∈ 𝒳} , where 𝒳 denotes a finite-dimensional space. The model

M is defined by some fixed algebraic structure, and a set of parameters 𝐰 for which we have a

prior distribution 𝑝(𝐰|𝑀). The first level of Bayesian inference consists of inferring the posterior

distribution of the parameters 𝐰 given training data coming from the system that is being

modeled. That inference is done through Bayes’ theorem:

 𝑝(𝐰|𝐗, 𝑀) =
𝑝(𝐗|𝐰,𝑀)𝑝(𝐰|𝑀)

𝑝(𝐗|𝑀)
=

𝑝(𝐗|𝐰,𝑀)𝑝(𝐰|𝑀)

∫ 𝑝(𝐗|𝐰,𝑀)𝑝(𝐰|𝑀)𝑑𝐰
 . (2.61)

The term 𝑝(𝐗|𝐰, 𝑀) is called the likelihood of the data, and the term 𝑝(𝐗|𝑀) is called the

marginal likelihood (or evidence). Point estimates of the model parameters 𝐰 are typically

obtained by calculating the mean or the mode (maximum a posteriori) of the posterior

distribution 𝑝(𝐰|𝐗, 𝑀). Employing the terms introduced above, Bayes’ theorem can be stated as

follows in general terms:

 𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 =
(𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑)(𝑃𝑟𝑖𝑜𝑟)

𝐸𝑣𝑖𝑑𝑒𝑛𝑐𝑒
 . (2.62)

Our beliefs about the parameters 𝐰 are conditioned on the structure of the model M. However, if

the model M was fixed a priori, then the conditioning on M is usually omitted to simplify the

notation of Bayes’ theorem:

 𝑝(𝐰|𝐗) =
𝑝(𝐗|𝐰)𝑝(𝐰)

𝑝(𝐗)
=

𝑝(𝐗|𝐰)𝑝(𝐰)

∫ 𝑝(𝐗|𝐰)𝑝(𝐰)𝑑𝐰
 . (2.63)

86

Researchers have defined families of likelihood functions. For each particular family of

likelihoods there exists an associated family of prior distributions 𝑝(𝐰), called the conjugate

prior family, such that if 𝑝(𝐰) is a conjugate prior then the posterior distribution 𝑝(𝐰|𝐗)

remains a member of the same conjugate prior family. The main advantage of using conjugate

priors is that typically the integral in the denominator of Bayes’ theorem can be calculated

analytically, which is very convenient (Bolstad, 2007).

One of the main motivations for obtaining the posterior distribution of the parameters 𝐰 is to

estimate the conditional predictive distribution of a new observation 𝐱𝑁+1. The predictive

distribution 𝑝(𝐱𝑁+1|𝐗) allows calculating point estimates of 𝐱𝑁+1, typically expressed as the

mean of 𝑝(𝐱𝑁+1|𝐗). Additionally, the predictive distribution can be used to obtain a Bayesian

credible interval for 𝐱𝑁+1. The predictive distribution 𝑝(𝐱𝑁+1|𝐗) can be obtained through a

technique called marginalization over a random variable, which allows us to write 𝑝(𝐱𝑁+1|𝐗)

employing known terms that involve another random variable. In this case, marginalizing

𝑝(𝐱𝑁+1|𝐗) over 𝐰 consists of “injecting” the parameters 𝐰 in the following manner:

 𝑝(𝐱𝑁+1|𝐗) = ∫ 𝑝(𝐱𝑁+1, 𝐰|𝐗)𝑑𝐰 = ∫ 𝑝(𝐱𝑁+1|𝐰, 𝐗) 𝑝(𝐰|𝐗)𝑑𝐰. (2.64)

Assuming that the values 𝐱𝑖 are conditionally independent from each other given 𝐰, their

distribution is fully determined by the likelihood term 𝑝(𝐱𝑁+1|𝐰) and the posterior term

𝑝(𝐰|𝐗), which leads to the following equation:

 𝑝(𝐱𝑁+1|𝐗) = ∫ 𝑝(𝐱𝑁+1|𝐰) 𝑝(𝐰|𝐗)𝑑𝐰. (2.65)

In the case of supervised learning (regression or classification problems), the training data are

denoted by 𝐷 = {𝐗, 𝐲} = {(𝐱𝑖, y𝑖)|𝐱𝑖𝜖𝒳, y𝑖𝜖ℝ, 𝑖 = 1, … , 𝑁}, 𝒳 being a finite-dimensional

87

space. The motivation behind obtaining the posterior distribution of the parameters 𝐰 is to model

the underlying mapping between the attributes 𝐱𝑖 and the responses y𝑖. Only the response

variables y𝑖 are considered random in that case. Consequently, it is required to estimate the

predictive distribution of the response y𝑁+1 given a new observation 𝐱𝑁+1 and 𝐷, which is

typically obtained also through marginalization over 𝐰:

𝑝(y𝑁+1|𝐷, 𝐱𝑁+1) = ∫ 𝑝(y𝑁+1, 𝐰|𝐷, 𝐱𝑁+1)𝑑𝐰 = ∫ 𝑝(y𝑁+1|𝐰, 𝐱𝑁+1) 𝑝(𝐰|𝐷, 𝐱𝑁+1)𝑑𝐰 . (2.66)

Second Level of Bayesian Inference

Besides the parameters 𝐰, for which we are obtaining the conditional distributions, some terms

in the Bayesian model, like the likelihood or the prior distribution, might in turn be conditioned

on one or more parameters 𝜽, typically called hyperparameters. By varying the values of those

hyperparameters, it is possible to have prior distributions that better express our beliefs and

previous domain knowledge. Let us assume that we can choose a model from a family of

models ℳ = {𝑀𝑖|𝑖 ∈ 𝐼}, where 𝐼 is any index set. Each model 𝑀𝑖 has a set of

hyperparameters 𝜽𝑖. A question that arises immediately is how to decide which model is a better

fit to the training data 𝐷. The second level of Bayesian inference helps to provide an answer to

this question. It consists of applying Bayes’ theorem with a prior distribution over the set of

models, and calculating the posterior distribution of the models given the data:

 𝑝(𝑀𝑖|𝐷) =
𝑝(𝐷|𝑀𝑖)𝑝(𝑀𝑖)

𝑝(𝐷)
 . (2.67)

88

The posterior distribution of the models allows us to establish which models are more likely

given the data.

A Note on Intractable Marginal Likelihoods

A difficulty commonly associated with Bayesian modeling is that the integral corresponding to

the marginal likelihood term could be analytically intractable. Typically, that happens when prior

distributions are not from the corresponding conjugate prior family. Sometimes we need to use

priors that are inconvenient from an analytical point of view, in order to have priors that truly

reflect our beliefs. In those cases, there are several ways of approximating the intractable

integral. It is important to note however, that for some applications of the Bayes’ theorem it is

not necessary to calculate the marginal likelihood. For instance, in the second level of inference

we are interested in determining which models provide the highest probability, but we are not

interested in knowing the actual values of the corresponding posterior. Given that 𝑝(𝐷) is a

constant term, the following proportional form of Bayes’ theorem can be employed in that case

to determine the most promising model:

 𝑝(𝑀𝑖|𝐷) ∝ 𝑝(𝐷|𝑀𝑖)𝑝(𝑀𝑖) . (2.68)

2.3.2 Gaussian Processes

This subsection provides a comprehensive introduction to batch GP, online GP, and SOGP in the

context of nonparametric Bayesian regression. Gaussian processes are nonparametric kernel-

based function estimation techniques that model a probability distribution over a space 𝔉 of

functions 𝑓: 𝒳 → ℝ, where 𝒳 ⊆ ℝ𝑑 (d being a positive integer) is a continuous input space

(Bishop, 2006), (MacKay, 1998), (Rasmussen & Williams, 2006), (Seeger M. , 2004). GPs

89

provide an assessment of the uncertainty associated to predicting 𝑓(𝐱) at any point 𝐱 ∈ 𝒳. Note

that 𝑓𝐱 and 𝑓(𝐱) are used indistinctly in this work. Similarly, the random variable y(𝐱) is

sometimes denoted by y𝐱. The following definition of GPs is commonly used (Rasmussen &

Williams, 2006), (Lifshits, 2012):

Definition: A Gaussian process is a collection of random variables {𝑓𝐱}𝐱∈𝒳, such that any

finite subcollection 𝐟 = {𝑓𝐱1
, 𝑓𝐱2

, … , 𝑓𝐱𝑀
}, where M is any positive integer, has a joint Gaussian

distribution.

This definition implies that a GP is completely determined by its mean function 𝜇 and covariance

(kernel) function 𝑘:

 𝜇(𝑓𝐱) = 𝐸[𝑓𝐱] , (2.69)

 𝑘 (𝑓𝐱𝒊
, 𝑓𝐱𝒋

) = 𝐸 [(𝑓𝐱𝒊
− 𝜇(𝑓𝐱𝒊

)) (𝑓𝐱𝒋
− 𝜇 (𝑓𝐱𝒋

))] , (2.70)

where 𝑘 (𝑓𝐱𝒊
, 𝑓𝐱𝒋

) = 𝑐𝑜𝑣(𝑓𝐱𝑖
, 𝑓𝐱𝑗

) is a positive definite kernel function. In practice, the function 𝑘

directly depends on the points 𝐱𝑖 and 𝐱𝑗; hence, it is typically denoted by 𝑘(𝐱𝑖, 𝐱𝑗). Usually 𝑘

also depends on some parameters 𝜽𝑘, thus formally it should be denoted by 𝑘(𝐱𝑖, 𝐱𝑗; 𝜽𝑘). We

generally write 𝑘(𝐱𝑖, 𝐱𝑗) for the sake of simplifying notation. However, the existence of kernel

parameters 𝜽𝑘, which constitute hyperparameters for the GP, is implicitly assumed throughout

this dissertation, unless stated otherwise.

Sometimes a GP is denoted as 𝑓 ~ 𝒢𝒫(𝜇, 𝑘). This notation should be interpreted as follows:

Given any arbitrary set of values {𝐱𝑖|𝐱𝑖𝜖𝒳; 𝑖 = 1, … , 𝑁}, the corresponding set of f variables

{𝑓𝐱𝟏
, 𝑓𝐱𝟐

, … , 𝑓𝐱𝑵
} follows a joint normal distribution 𝒩 ((𝜇(𝐱1), … , 𝜇(𝐱𝑁))

𝑇
, 𝐾), where K

90

denotes the covariance matrix obtained by evaluating the kernel function k in all pairs (𝐱𝑖, 𝐱𝑗). A

Bayesian approach to GP modeling focuses on establishing a prior distribution for the functions

f, and subsequently estimating the posterior distribution 𝑝(𝑓|𝐷). The mean function of a prior

GP is denoted here by 𝜇0(x) and the prior covariance function is denoted by 𝑘0(x, x′).

Estimating the posterior GP implies obtaining expressions for its posterior mean function and its

posterior covariance function, as described below.

2.3.2.1 Batch GP Regression

Let our training data 𝐷 = {𝐗, 𝐲} = {(𝐱𝑖, y𝑖): 𝐱𝑖 ∈ 𝒳, y𝑖 ∈ ℝ, 𝑖 = 1,2 … 𝑁} be a set of input-

output observations, where each y𝑖 is a noisy observation of a latent variable f that depends on 𝐱𝑖.

A regression problem consists of constructing a model 𝑓(𝐱; 𝐰) that provides the best possible fit

to the training data. In a non-Bayesian approach, the quality of the models is assessed through

certain optimization criterion, like the least-squares method or a regularized version of it.

Consequently, the non-Bayesian solution provides only a point estimate of 𝑓𝐱 given an

observation 𝐱. In contrast, the goal of the Bayesian approach to regression is to estimate a model

defined as the posterior distribution 𝑝(𝑓𝐱|𝐷, 𝐱); which in turn is used to obtain the predictive

distribution 𝑝(y𝐱|𝐱, 𝐷). This involves (1) defining prior distributions 𝑝(𝐰) for the parameters of

the underlying family of functions, (2) calculating the posterior distribution 𝑝(𝐰|𝐷) using the

first level of Bayesian inference described above, and (3) calculating the distribution 𝑝(𝑓𝐱|𝐷, 𝐱).

This subsection describes how GPs are used to solve regression problems using a Bayesian non-

parametric approach. Gaussian processes are plugged into the Bayesian regression framework to

introduce a great deal of flexibility regarding the model: no need to enforce a fixed algebraic

91

structure on the function space; i.e. only basic properties like smoothness are required from f.

This can be achieved because a GP model defines prior distributions 𝑝(𝑓) on a very flexible

function space. We assume the classic approach that relates y(𝐱) and 𝑓(𝐱) as follows:

 y(𝐱) = 𝑓(𝐱; 𝐰) + 𝜀, (2.71)

where 𝐰 is a vector of function parameters, and the distribution of the observation error 𝜀

determines the conditional distribution of y𝐱|𝑓𝐱 (i.e. the likelihood model). The term 𝜀 denotes

additive noise that follows an independent and identically distributed (i.i.d.) Gaussian

distribution 𝒩(0, 𝜎2). We are ultimately concerned with estimating the probability density

function 𝑝(y𝐱|𝐷, 𝐱) for any 𝐱 ∈ 𝒳. However, note that sometimes GP models are used only to

predict the most likely value of 𝑓(𝐱) given a new observation 𝐱.

The variables {𝑓𝐱} are used as latent random variables that are initially modeled using a prior GP

(i.e. variables {𝑓𝐱} play the role of the vector of parameters 𝐰 in this case). Consequently, given

an arbitrary finite set of indexes 𝑿′ = [𝐱1
′ , 𝐱2

′ , … , 𝐱𝑀
′]𝑇, the corresponding random vector

f = [𝑓(𝐱1
′), 𝑓(𝐱2

′), … , 𝑓(𝐱𝑀
′)]𝑇 has the following joint prior distribution:

 𝑝0(f) =
1

√(2𝜋)𝑀|𝑲0|
𝑒

−
1

2
(f − 𝝁0(𝑿′))

𝑇
𝑲0

−1(f − 𝝁0(𝑿′))
, (2.72)

where 𝝁0(𝑿′) = [𝜇0(𝐱1
′), 𝜇0(𝐱2

′), … , 𝜇0(𝐱𝑀
′)]𝑇 and 𝑲0 = 𝑲0(𝑿′) = (𝑘0(𝐱𝑖

′, 𝐱𝑗
′))

𝑖,𝑗
 is an M x M

matrix.

In the following, f𝐷 = [𝑓(𝐱1), 𝑓(𝐱2), … , 𝑓(𝐱𝑁)]𝑇 denotes a Gaussian random vector as modeled

by the GP on the indexes [x1, x2, … , x𝑁]. As mentioned above, the goal behind the GP derivation

is to estimate the posterior distribution of f given 𝐷:

𝑝𝑝𝑜𝑠𝑡(f) = 𝑝(f|D) =
𝑝(𝐷|f)𝑝𝑜(f)

𝑝(𝐷)
=

𝑝(𝐷|f) ∫ 𝑝𝑜(f, f𝐷) 𝑑f𝐷

∫ 𝑝(𝐷, f𝐷)𝑑f𝐷

92

 =
∫ 𝑝(𝐷|f) 𝑝𝑜(f, f𝐷)𝑑f𝐷

∫ 𝑝(𝐷|f𝐷)𝑝𝑜(f𝐷)𝑑f𝐷
=

∫ 𝑝(𝐲|f) 𝑝𝑜(f, f𝐷)𝑑f𝐷

𝐸0[𝑝(𝐲 | f𝐷)]
 , (2.73)

where 𝐸0 denotes expected value w.r.t. the prior GP. Consequently, the predictive distribution

𝑝(y𝐱|𝐷, 𝐱) given a single input 𝐱 is written as:

𝑝(y𝐱|𝐱, D) = ∫ 𝑝(y𝐱|f
x
) 𝑝𝑝𝑜𝑠𝑡(f

x
)𝑑f

x

 =
∫ 𝑝(y𝐱|f

x
) 𝑝(𝐲|f

x
) 𝑝𝑜(f

x
, f𝐷)𝑑f𝐷𝑑f

x

𝐸0[𝑝(𝐲| f𝐷)]
 . (2.74)

The posterior 𝑝𝑝𝑜𝑠𝑡(f) can be derived analytically only if the likelihood 𝑝(𝐲| f𝐷) is Gaussian,

which in the case of single input 𝐱 is written as y𝐱|𝑓𝐱 ~ 𝒩(𝑓𝐱, 𝜎2). When the likelihood 𝑝(𝐲|f𝐷)

is not Gaussian, calculating the posterior GP implies computing an N-dimensional integral which

might be analytically intractable. In that case, there are techniques that can be used to

approximate the posterior 𝑝𝑝𝑜𝑠𝑡(f). In this work we are only employing Gaussian likelihoods.

For that reason, approximation techniques are not considered here. Still, the fact that f appears

within an integral in the equation corresponding to 𝑝𝑝𝑜𝑠𝑡(f) requires evaluating that integral for

doing predictions at arbitrary data points. To avoid computing high-dimensional integrals in that

case, the parametrisation lemma (Csató & Opper, 2002) shows how predictions can rely only on

linear and bilinear combinations of the kernel function evaluated in the training data 𝐷:

Parametrisation Lemma (Csató & Opper, 2002): Given a training data set 𝐷 = {𝐗, 𝐲} =

{(𝐱𝑖, y𝑖): 𝐱𝑖 ∈ 𝒳, y𝑖 ∈ ℝ, 𝑖 = 1 … 𝑁}, an arbitrary likelihood p(𝐷|f𝐷), and a prior GP with mean

𝜇0(x) and covariance function 𝑘0(x, x′), the resulting posterior GP has mean and covariance

functions given by:

 𝜇𝑝𝑜𝑠𝑡(𝐱) = 𝜇0(𝐱) + ∑ 𝑘0(x, 𝐱𝑖)𝑞𝑖
𝑁
𝑖=1 = 𝜇0(𝐱) + 𝒌𝐱

𝑇𝒒 , (2.75)

 𝑘𝑝𝑜𝑠𝑡(x, x′) = 𝑘0(x, x′) + ∑ 𝑘0(x, 𝐱𝑖)𝑅𝑖𝑗𝑘0(𝐱𝑗, x′)𝑁
𝑖,𝑗=1

93

 = 𝑘0(x, x′) + 𝒌𝐱
𝑇𝑹 𝒌x′ . (2.76)

The parameters 𝑞𝑖 and 𝑅𝑖𝑗 are given by:

 𝑞𝑖 =
𝜕

𝜕𝐸0[f
x𝑖

]
𝑙𝑛 ∫ 𝑝(𝐷| f𝐷)𝑝𝑜(f𝐷)𝑑f𝐷, (2.77)

 𝑅𝑖𝑗 =
𝜕2

𝜕𝐸0[f
x𝑖

]𝜕𝐸0[f
x𝑗

]
𝑙𝑛 ∫ 𝑝(𝐷| f𝐷)𝑝𝑜(f𝐷)𝑑f𝐷, (2.78)

where f𝐷 = [f
x1

, f
x2

, … , f
x𝑁

]
𝑇

, and the partial derivatives are calculated with respect to the prior

mean of the GP at the x𝑖 points. In the case of a Gaussian likelihood 𝑝(𝐷| f𝐷), the predictive

formulas from the posterior GP are written as follows:

Given the set D as defined above and an arbitrary point 𝐱∗, we have that 𝑓𝐱∗
|𝐷, 𝐱∗ ~ 𝒩(𝜇∗, 𝜎∗

2),

with the posterior moments calculated as:

 𝜇∗ = 𝜇0(𝐱∗) + 𝒌∗
𝑇𝜶 , (2.79)

 𝜎∗
2 = 𝑘0(𝐱∗, 𝐱∗) + 𝒌∗

𝑇𝑪 𝒌∗ , (2.80)

where

 𝒌∗ = (𝑘0(𝐱∗, 𝐱1), … , 𝑘0(𝐱∗, 𝐱𝑁))
𝑇
, (2.81)

 𝜶 = (𝑲 + 𝜎2 𝐼)−1(𝐲 − 𝜇0(𝑿)) , (2.82)

 𝑪 = −(𝑲 + 𝜎2 𝐼)−1 , (2.83)

and 𝑲 = (𝑘0(x𝑖, x𝑗))
𝑖,𝑗

 is an N x N matrix. The posterior variance 𝜎∗
2 is smaller than the prior

variance of 𝑓𝐱∗
, because the matrix 𝑪 is negative definite (Rasmussen & Williams, 2006). This

reflects the reduction in uncertainty that is achieved by learning the training data. We can

establish a similarity between the geometric approach of kernel methods (SVM-like algorithms)

and GPs for regression as described here, by noting that the predictive mean 𝜇∗ becomes a linear

combination of N kernel functions, each centered on a training data point, when 𝜇0(𝐱∗) = 0 (i.e.

94

when a prior GP with zero mean is used). Additionally, the predictive distribution of the target

value y∗ can be obtained by just adding the noise variance 𝜎2 to the expression of 𝜎∗
2; i.e.

y∗|𝐷, 𝐱∗~𝒩(𝜇∗, 𝜎∗
2 + 𝜎2).

Note that obtaining the posterior batch GP includes the inversion of a 𝑁 × 𝑁 covariance matrix

in order to calculate the matrix 𝑪. That operation has a computational complexity of 𝑂(𝑁3) if we

used a straightforward algorithm for matrix inversion. This complexity is a serious limitation

when we have to work with large data sets. In that case, we can use matrix inversion algorithms

that are slightly faster when used with large matrices. For instance, the popular Strassen

algorithm has a computational complexity of approximately 𝑂(𝑁2.8074) (Strassen, 1969).

However, all practical matrix inversion algorithms known to the author has computational

complexities that are greater than 𝑂(𝑁2) and tend to significantly deviate from 𝑂(𝑁3) only for

very large matrices, typically in the order of thousands. For the purposes of this dissertation, we

consider that training a batch GP has a computational complexity of 𝑂(𝑁3). It can be easily seen

that evaluating the GP model in a new data point 𝐱∗ has 𝑂(𝑁2) computational complexity.

Finally, note that batch GP has a space complexity of 𝑂(𝑁2) as well, based on the need to keep

the matrix 𝑪 in memory.

The marginal likelihood 𝑝(𝐲|𝑿) is typically used for selecting appropriate values for kernel

hyperparameters. The marginal likelihood is expressed as the integral of the likelihood times the

prior distribution:

 𝑝(𝐲|𝑿) = ∫ 𝑝(𝐲|f𝐷, 𝑿) 𝑝(f𝐷|𝑿)𝑑f𝐷 . (2.84)

Given that the marginal likelihood is typically used as an argument for optimization problems,

any monotonic function of it is equally useful for hyperparameter selection. For operational

95

convenience, log 𝑝(𝐲|𝑿) is commonly used instead. The likelihood 𝐲|f𝐷~𝒩(f𝐷 , 𝜎2𝐼), and f𝐷|𝑿

has a 𝒩(𝜇0(𝑿), 𝑲) distribution, where 𝑲 = 𝑘0(𝑿, 𝑿). By applying a classic result from

multivariate statistics stating that the multiplication of two multivariate Gaussian distributions is

also a Gaussian distribution, integrating with respect to f𝐷, and applying logarithm, the following

expression is obtained for the log marginal likelihood (Rasmussen & Williams, 2006):

 Log 𝑝(𝐲|𝑿) = −
1

2
(𝐲 − 𝝁0(𝑿))

𝑇
[𝑲 + 𝜎2𝐼]−1(𝐲 − 𝝁0(𝑿))

 −
1

2
𝑙𝑜𝑔|𝑲 + 𝜎2𝐼| −

𝑁

2
𝑙𝑜𝑔(2𝜋) . (2.85)

2.3.2.2 Online GP

The parametrisation lemma allows us to avoid integration for doing predictions. However, to

calculate the coefficients 𝑞𝑖 and 𝑅𝑖𝑗 using a batch learning approach we still have to deal with N-

dimensional integrals. Additionally, if not all training data were known in advance then

incremental learning becomes the ideal approach. A solution is to employ an online learning

approach to obtain a sequence of approximated posterior processes, learning from one

observation (𝐱𝑡, y𝑡) at a time (Opper M. , 1998). Online GP (Csató & Opper, 2002) uses this

approach. It assumes that the data are conditionally independent, and thus the likelihood can be

expressed as:

 𝑝(𝐷| f𝐷) = ∏ 𝑝(y𝑖|𝑓𝐱𝒊
)𝑁

𝑖=1 . (2.86)

At any step t, the Gaussian approximation obtained after learning observation (𝐱𝑡, y𝑡) is denoted

by 𝑝̂𝑡(𝐟); where the hat denotes approximation of the posterior to the closest GP when the

likelihood is not Gaussian (no approximation is needed when the likelihood is Gaussian). The

96

posterior GP at step 𝑡 + 1, denoted by 𝑝̂𝑡+1(𝐟), is estimated as the Gaussian distribution closest

to the following Bayesian update:

 𝑝𝑡+1(𝐟) =
𝑝(y𝑡+1|𝐟) 𝑝̂𝑡(𝐟)

∫ 𝑝(y𝑡+1|𝐟) 𝑝̂𝑡(𝐟)𝑑𝐟
=

𝑝(y𝑡+1|𝐟) 𝑝̂𝑡(𝐟)

𝐸𝑡[𝑝(y𝑡+1|𝐟)]
 . (2.87)

It can be assumed without loss of generality that 𝐟 contains 𝑓𝑡+1, so that the

likelihood 𝑝(y𝑡+1|𝐟) = 𝑝(y𝑡+1|𝑓𝑡+1). Applying the parametrisation lemma sequentially, using at

each step 𝑡 + 1 the prior GP 𝑝̂𝑡(𝐟) and the likelihood 𝑝(y𝑡+1|𝑓𝑡+1), the following recursive

expressions are obtained for the moments of the posterior GP at step 𝑡 + 1:

 𝜇𝑡+1(x) = 𝜇𝑡(x) + 𝑘𝑡(x, 𝐱𝑡+1)𝑞𝑡+1 , (2.88)

 𝑘𝑡+1(x, x′) = 𝑘𝑡(x, x′) + 𝑘𝑡(x, 𝐱𝑡+1)𝑟𝑡+1𝑘𝑡(𝐱𝑡+1, x′) . (2.89)

The parameters 𝑞𝑡+1 and 𝑟𝑡+1, which depend on the likelihood, are given by:

 𝑞𝑡+1 =
𝜕

𝜕𝐸𝑡[𝑓𝑡+1]
 𝑙𝑛 𝐸𝑡[𝑝(y𝑡+1|𝑓𝑡+1)] , (2.90)

 𝑟𝑡+1 =
𝜕2

𝜕𝐸𝑡[𝑓𝑡+1]
 𝑙𝑛 𝐸𝑡[𝑝(y𝑡+1|𝑓𝑡+1)] . (2.91)

By unfolding the previous recursive equations, the iterative formulations for estimating the

moments of the online GP at step 𝑡 are written as follows:

 𝜇𝑡(x) = 𝜇0(𝐱) + 𝒌𝐱
𝑇𝜶𝑡 , (2.92)

 𝑘𝑡(𝐱, 𝐱′) = 𝑘0(𝐱, 𝐱′) + 𝒌𝐱
𝑇𝑪𝑡𝒌𝐱′ , (2.93)

where 𝒌𝐱 = (𝑘0(𝐱, 𝐱1), … , 𝑘0(𝐱, 𝐱𝑡))
𝑇
, the vector 𝜶𝑡 is an approximation to the first 𝑡

coefficients in 𝒒, and 𝑪𝑡 is an approximation to the first 𝑡 × 𝑡 coefficients in 𝑹. The expressions

to calculate 𝜶 and 𝑪 at each step 𝑡 + 1 are listed in Figure 2.1, which contains Matlab-like

pseudocode for the function that learns a new data point (𝐱𝑡+1, y𝑡+1). The online GP algorithm

97

starts with 𝜶 = 𝑪 = 0. At each step 𝑡 + 1, it recursively updates the vector 𝜶 and the matrix 𝑪.

The Online GP adds each new observation to a set of learned vectors. The algorithm is fully

described in (Csató & Opper, 2002).

For the particular case of a GP with a Gaussian likelihood, the parameters 𝑞𝑡+1 and 𝑟𝑡+1 are

expressed as:

 𝑞𝑡+1 =
y𝑡+1− 𝑚𝑡+1

 𝜎𝑡+1
2 + 𝜎2 , (2.94)

 𝑟𝑡+1 = −
1

 𝜎𝑡+1
2 + 𝜎2 , (2.95)

where

 𝑚𝑡+1 = 𝐸𝑡[𝑓𝑡+1] = 𝜇0(𝐱𝑡+1) + 𝒌𝐱𝑡+1
𝑇 𝜶𝑡 , (2.96)

 𝜎𝑡+1
2 = 𝑘0(𝐱𝑡+1, 𝐱𝑡+1) + 𝒌𝐱𝑡+1

𝑇 𝑪𝑡𝒌𝐱𝑡+1
 . (2.97)

Similar to batch GP, online GP has a space complexity of 𝑂(𝑁2). Training an online GP model

on N data points also has a computational complexity of 𝑂(𝑁3). This can be seen in Figure 2.1,

where calculating the matrix 𝑪 at each particular step 𝑡 + 1 has a computational complexity of

𝑂((𝑡 + 1)2). Summing these quadratic complexities for the N learning steps leads to 𝑂(𝑁3).

Finally, given that the equations to calculate the posterior moments for a new observation 𝐱∗

remain the same as in batch GP, the predictive operation is 𝑂(𝑁2) as well.

98

% The obj parameter stands for an instance of our OnlineGP class.
% Symbol 𝟎t stands for a zero column vector of length t.
function trainOnline(obj, 𝐱𝑡+1, y𝑡+1)
 𝑡 ← obj. Size; % t = Number of points learned so far.
 obj.addObservationToLearnedVectors(𝐱𝑡+1, y𝑡+1);
 Calculate qt+1 and rt+1 according to likelihood model.

 if (𝑡 == 0)
 % First data point to learn.
 𝛂 ← 𝑞𝑡+1
 𝐂 ← 𝑟𝑡+1
 else

 𝐤𝐱𝑡+1
← (𝑘0(𝐱𝑡+1, 𝐱1), … , k0(𝐱𝑡+1, 𝐱𝑡))

T

 st+1 ← [
𝐂𝐤𝐱𝑡+1

1
]

 𝛂 ← [
𝛂
0

] + 𝑞𝑡+1s𝑡+1

 𝐂 ← [
𝐂 𝟎𝑡

𝟎𝑡
T 0

] + 𝑟𝑡+1s𝑡+1s𝑡+1
T

 end
 end

Figure 2.1: Matlab-like pseudocode for the Online GP training algorithm.

2.3.2.3 Sparse Online GP

As noted in previous sections, training batch GP and online GP involve a computational

complexity of 𝑂(𝑁3). This complexity is a serious limitation when we have to work with large

data sets. Furthermore, given the quadratic space complexity of batch GP and online GP, we

might find GPs infeasible for some relatively large data sets. Consequently, several

approximation techniques for GP modeling have been devised in recent years. These

approximation techniques are typically based on finding a small subset of the training data that is

representative of the process to be learned, which leads to a sparse knowledge representation

(Seeger, Williams, & Lawrence, 2003), (Tresp, 2001), (Williams & Seeger, 2001), (Smola &

Bartlett, 2001) (Csató & Opper, 2002), (Gibbs, 1997). This subsection describes the sparse

99

online GP (SOGP) method (Csató & Opper, 2002), which is employed in the theoretical and

experimental sections of our work.

SOGP overcomes memory limitations by having a capacity parameter m that determines the

maximum number of most relevant observations to keep in memory. The set of most relevant

observations is called the BV set. SOGP has a much better space complexity than GP: 𝑂(𝑚2)

instead of 𝑂(𝑁2). Additionally, SOGP modeling achieves a time complexity that is linear with

respect to the data size: 𝑂(𝑁𝑚2) (Csató, 2002).

The SOGP algorithm takes into account the representation of the input vectors x through a

mapping 𝜙 into a feature space ℱ, which is typically of much higher dimension than the original

space 𝒳. The mapping 𝜙: 𝒳 → ℱ is given implicitly through the kernel function, such that

𝑘(x, x′) = 〈𝜙(x), 𝜙(x′)〉. Let us assume that after learning the first t observations {(𝐱𝑖, y𝑖), 𝑖 =

1,2, … , 𝑡}, the BV set kept the vectors {(𝐱𝑖1
, y𝑖1

), (𝐱𝑖2
, y𝑖2

), … , (𝐱𝑖𝑟
, y𝑖𝑟

)}, where {𝑖1, 𝑖2, … , 𝑖𝑟} ⊆

{1,2, … , 𝑡}. Given a new training observation (𝐱𝑡+1, y𝑡+1), the feature vector 𝜙𝑡+1 = 𝜙(𝐱𝑡+1) is

decomposed as:

 𝜙𝑡+1 = 𝜙̂𝑡+1 + 𝑣𝑟𝑒𝑠 = 𝚽𝑡𝒆̂𝑡+1 + √𝛾𝑡+1𝜙𝑟𝑒𝑠 , (2.98)

where 𝜙̂𝑡+1 denotes the orthogonal projection of 𝜙𝑡+1 onto the span of the BV set; 𝚽𝑡 =

[𝜙𝑖1
, 𝜙𝑖2

, … , 𝜙𝑖𝑟
]; 𝜙𝑟𝑒𝑠 denotes the corresponding unit vector orthogonal to the space spanned

by 𝚽𝑡; and 𝛾𝑡+1 = ‖𝜙𝑡+1 − 𝜙̂𝑡+1‖
2
. The coordinates 𝒆̂𝑡+1 = 𝑲𝑡

−1𝒌𝐱𝑡+1
, where 𝑲𝑡 denotes

the 𝑟 × 𝑟 covariance matrix of the vectors in 𝚽𝑡, and 𝒌𝐱𝑡+1
= (𝑘(𝐱𝑡+1, 𝐱𝑖1

), … , 𝑘(𝐱𝑡+1, 𝐱𝑖𝑟
))

𝑇

.

Given that the inversion of 𝑲𝑡 at each learning step is an expensive operation, the SOGP

100

algorithm maintains a variable 𝑸𝑡 = 𝑲𝑡
−1, which is updated recursively when a new vector is

added to the BV set:

 𝑸𝑡+1 = [
𝑸𝑡 𝟎𝑡

𝟎𝑡
𝑇 0

] + 𝛾𝑡+1
−1 [

𝒆̂𝑡+1

−1
] [

𝒆̂𝑡+1

−1
]

𝑇

 , (2.99)

where 𝟎𝑡 stands for a zero column vector of length t. Finally, 𝛾𝑡+1 = 𝑘(𝐱𝑡+1, 𝐱𝑡+1) −

𝒌𝐱𝑡+1
𝑇 𝑸𝑡𝒌𝐱𝑡+1

. The remainder of this section briefly describes the SOGP learning algorithm.

SOGP learns the first observation (𝐱1, y1) by adding it to the BV set and initializing variables as

follows: 𝜶 = 𝑞1, 𝑪 = 𝑟1, 𝑸 = 𝑘(𝐱1, 𝐱1)−1. At each subsequent step 𝑡 + 1, the procedure to

learn observation (𝐱𝑡+1, y𝑡+1) depends on 𝛾𝑡+1. If 𝛾𝑡+1 ≥ 𝜖, where 𝜖 is some small tolerance,

then (𝐱𝑡+1, y𝑡+1) is added to the BV set and a full online update is executed, as done in online

GP. The matrix 𝑸 is also updated using equation (2.99). On the other hand, if 𝛾𝑡+1 < 𝜖 then

SOGP learns from the projection 𝜙̂𝑡+1, disregarding the residual vector 𝑣𝑟𝑒𝑠. The BV set is not

altered in that case and variables 𝜶 and 𝑪 are updated without increasing their sizes:

 𝜂𝑡+1 ← (1 + 𝛾𝑡+1𝑟𝑡+1)−1 , (2.100)

 s𝑡+1 ← 𝑪𝒌𝐱𝑡+1
+ 𝒆̂𝑡+1 , (2.101)

 𝜶 ← 𝜶 + 𝑞𝑡+1𝜂𝑡+1s𝑡+1 , (2.102)

 𝑪 ← 𝑪 + 𝑟𝑡+1𝜂𝑡+1s𝑡+1s𝑡+1
𝑇 . (2.103)

Let us assume that a full online update occurred at certain step 𝑡 + 1 and the size of the BV set

went over its capacity m. In that case, the GP needs to be “pruned”. Let us denote the GP at that

step by 𝐺𝑃𝑡+1. Pruning is done by removing from the BV set the basis vector that contributes the

least to the GP representation, carrying out a recomputation (and the corresponding reduction in

size) of 𝜶, 𝑪 and 𝑸. Following (Csató, 2002), the pruning formulas are written here such that the

101

basis vector occupying the 𝑚 + 1 position is the one to be removed. However, a vector at any

position i can be removed from the BV set using the same formulas with index i instead. The

removal of a basis vector is done in a way that the model retains as much information from it as

possible.

The problem of removing the 𝑚 + 1-th basis vector from the BV set is solved by approximating

𝐺𝑃𝑡+1 by the Gaussian process 𝐺𝑃̂𝑡+1 that has the minimum Kullback-Leibler distance

𝐾𝐿(𝐺𝑃|| 𝐺𝑃𝑡+1) to 𝐺𝑃𝑡+1, among all SOGPs containing the same BV set as 𝐺𝑃𝑡+1 and having the

coefficients corresponding to the 𝑚 + 1-th basis vector equal to zero. This optimization problem

leads to the following equations to obtain 𝐺𝑃̂𝑡+1:

 𝜶̂𝑡+1 = 𝜶(𝑚) −
𝛼∗

𝑐∗+𝑞∗
(𝑸∗ + 𝑪∗) , (2.104)

 𝑪̂𝑡+1 = 𝑪(𝑚) +
𝑸∗𝑸∗𝑇

𝑞∗
−

(𝑸∗+𝑪∗)(𝑸∗+𝑪∗)𝑇

𝑞∗+𝑐∗
 , (2.105)

 𝑸̂𝑡+1 = 𝑸(𝑚) −
𝑸∗𝑸∗𝑇

𝑞∗ , (2.106)

where the different terms are obtained from partitioning 𝜶𝑡+1, 𝑪𝑡+1, and 𝑸𝑡+1 as follows:

 𝜶𝑡+1 = [𝜶(𝑚)

𝛼∗
] , (2.107)

 𝑪𝑡+1 = [𝑪(𝑚) 𝑪∗

𝑪∗𝑇 𝑐∗
] , (2.108)

 𝑸𝑡+1 = [
𝑸(𝑚) 𝑸∗

𝑸∗𝑇 𝑞∗] . (2.109)

In order to decide which basis vector to remove, an “importance” score is computed for each i-th

vector, equal to the error corresponding to using the approximation 𝐺𝑃̂𝑡+1:

102

 𝜀𝑡+1(𝑖) =
(𝜶𝑡+1(𝑖))

2

𝑞(𝑖)+𝑐(𝑖)
−

𝑠(𝑖)

𝑞(𝑖)
+ 𝑙𝑛 (1 +

𝑐(𝑖)

𝑞(𝑖)
) , (2.110)

where 𝑞(𝑖), c(𝑖) and 𝑠(𝑖) are the i-th diagonal elements of the matrices Q, C and 𝑺𝑡+1 =

(𝑪𝑡+1
−1 + 𝑲𝑡+1)−1, respectively. It was shown in (Csató, 2002) that the error 𝜀𝑡+1(𝑖) can be

effectively approximated by:

 𝜀𝑡̂+1(𝑖) =
(𝜶𝑡+1(𝑖))

2

𝑞(𝑖)+𝑐(𝑖)
, (2.111)

which is the expression employed in the experimental section of our work. The SOGP algorithm

is summarized in the pseudo-code shown in Figure 2.2 below.

2.3.3 Gaussian Processes for Binary Classification

This section describes the use of GPs for solving binary classification problems. The goal in this

case is to find a discriminative model for the posterior probability 𝑝(y𝑁+1 = +1|𝐷, 𝐱𝑁+1) given

a data set 𝐷 = {𝑿, 𝐲} = {(𝐱𝑖, y𝑖)|𝐱𝑖𝜖𝒳, y𝑖𝜖{+1, −1}, 𝑖 = 1, … , 𝑁}, where 𝒳 denotes a finite-

dimensional space. Note that only the conditional probability of y = +1 needs to be modeled

because 𝑝(y𝑁+1 = −1|𝐷, 𝐱𝑁+1) = 1 − 𝑝(y𝑁+1 = +1|𝐷, 𝐱𝑁+1).

The main limitation to use a GP in this case is that the predictions of a GP are defined over the

set of real values, whereas the response value for classification is limited to the interval [0, 1].

The easiest way to overcome this limitation is to apply a sigmoid function 𝜎(𝑎) to the outcome

of a GP in order to get values in [0, 1]. First, a GP prior is defined over a space of latent

functions 𝑓: 𝒳 → ℝ. In this case, a noise-free model is typically assumed, i.e. y𝑖 = 𝑓(𝐱𝑖).

Consequently, the GP prior can be expressed as follows for the training data set:

 𝐲~𝒩(𝟎, 𝐶) , (2.112)

103

where 𝐶(𝐱𝑖, 𝐱𝑗) = 𝑘(𝐱𝑖, 𝐱𝑗) is the noise-free covariance matrix. However, it is common to

define the covariance matrix 𝐶 as 𝐶(𝐱𝑖, 𝐱𝑗) = 𝑘(𝐱𝑖, 𝐱𝑗) + 𝜈𝛿𝑖𝑗, were 𝜈 is a noise-like parameter

that ensures that 𝐶 is a positive definite matrix (i.e. 𝒛𝑻𝐶𝒛 > 0 for every non-zero vector 𝒛).

% The obj parameter stands for an instance of SOGP class.

% Variables 𝜶 and 𝑪 are properties of the OnlineGP, which are
initially empty.

function trainOnline(obj, 𝐱𝑡+1, y𝑡+1)

 𝑡 ← 𝑜𝑏𝑗. 𝑆𝑖𝑧𝑒;

 Calculate 𝑞𝑡+1 and 𝑟𝑡+1 according to likelihood model.

 if (t == 0)

 % First data point to learn.

 sparseUpdateAllowed = false;

 s𝑡+1 ← 1

 𝒆̂𝑡+1 ← []
 𝛾𝑡+1 ← []
 else

 𝒌𝐱𝑡+1
← (𝑘(𝐱𝑡+1, 𝐱𝑖1

), … , 𝑘(𝐱𝑡+1, 𝐱𝑖𝑟
))

𝑇

 𝒆̂𝑡+1 ← 𝑸𝒌𝐱𝑡+1

 𝛾𝑡+1 ← 𝑘(𝐱𝑡+1, 𝐱𝑡+1) − 𝒌𝐱𝑡+1

𝑇 𝒆̂𝑡+1

 if (𝛾𝑡+1 < 𝜖)

 sparseUpdateAllowed = true;

 s𝑡+1 ← 𝑪𝒌𝐱𝑡+1
+ 𝒆̂𝑡+1

 else

 sparseUpdateAllowed = false;

 s𝑡+1 ← [
𝑪𝒌𝐱𝑡+1

1
]

 end
 end

 if (sparseUpdateAllowed == true)

 obj.runSparseUpdate(s𝑡+1, 𝑞𝑡+1, 𝑟𝑡+1, 𝛾𝑡+1);
 else

 obj.runFullUpdate(𝐱𝑡+1, y𝑡+1, s𝑡+1, 𝑞𝑡+1, 𝑟𝑡+1, 𝛾𝑡+1, 𝒆̂𝑡+1);
 end

 end

function runSparseUpdate(obj, s𝑡+1, 𝑞𝑡+1, 𝑟𝑡+1, 𝛾𝑡+1);
 % Size didn't change. No need to modify Q and BV set.

 𝜂𝑡+1 ← (1 + 𝛾𝑡+1𝑟𝑡+1)−1
 𝜶 ← 𝜶 + 𝑞𝑡+1𝜂𝑡+1s𝑡+1
 𝑪 ← 𝑪 + 𝑟𝑡+1𝜂𝑡+1s𝑡+1s𝑡+1

𝑇
end

function runFullUpdate(obj, 𝐱𝑡+1, y𝑡+1, s𝑡+1, 𝑞𝑡+1, 𝑟𝑡+1, 𝛾𝑡+1, 𝒆̂𝑡+1)
 𝑡 ← 𝑜𝑏𝑗. 𝑆𝑖𝑧𝑒;
 if (t == 0)

 % First data point to learn.

 𝜶 ← 𝑞𝑡+1

 𝑪 ← 𝑟𝑡+1

 𝑸 ← 𝑘(𝐱𝑡+1, 𝐱𝑡+1)−1
 else

 𝜶 ← [
𝜶
0

] + 𝑞𝑡+1s𝑡+1

 𝑪 ← [
𝑪 𝟎𝑡

𝟎𝑡
𝑇 0

] + 𝑟𝑡+1s𝑡+1s𝑡+1
𝑇

 𝑸 = [
𝑸 𝟎𝒕

𝟎𝒕
𝑻 0

] + 𝛾𝑡+1
−1 [

𝒆̂𝑡+1

−1
] [

𝒆̂𝑡+1

−1
]

𝑇

 end

 obj.addObservationToBVSet(𝐱𝑡+1, y𝑡+1);

 if ((t + 1) > obj.Capacity)

 obj.prune();

 end

end

function prune(obj)

 Calculate scores 𝜀𝑡+1(𝑖) for all basis vectors.

 i ← index of basis vector with the smallest score.
 Swap (i-th basis vector, m+1-th basis vector)

 𝜶 ← 𝜶(𝑚) −
𝛼∗

𝑐∗+𝑞∗
(𝑸∗ + 𝑪∗)

 𝑪 ← 𝑪(𝑚) +
𝑸∗𝑸∗𝑇

𝑞∗
−

(𝑸∗+𝑪∗)(𝑸∗+𝑪∗)𝑇

𝑞∗+𝑐∗

 𝑸 ← 𝑸(𝑚) −
𝑸∗𝑸∗𝑇

𝑞∗

end

Figure 2.2: Matlab-like pseudocode for the SOGP training algorithm.

104

Let us consider any function f sampled from the GP. The solution to the classification problem is

based on a deterministic function of f, which is built through a sigmoid function 𝜎(𝑎):

 𝜋𝑓(𝐱) ≡ 𝑝(y = +1|𝐱) = 𝜎(𝑓(𝐱)) . (2.113)

Note that 𝜋𝑓 is a non-Gaussian stochastic process over the space of functions {𝑔|𝑔: ℝ → [0,1]}.

Although the function f is shown alone here, it is important to keep in mind that its distribution is

conditioned on any observed data X, y. Inference for classification is done in two steps:

STEP 1: The posterior distribution of the latent GP 𝑝(𝑓𝑁+1|𝑿, 𝐲, 𝐱𝑁+1) is determined as follows:

 𝑝(𝑓𝑁+1|𝑿, 𝐲, 𝐱𝑁+1) = ∫ 𝑝(𝑓𝑁+1, 𝐟|𝑿, 𝐲, 𝐱𝑁+1)𝑑𝐟

 =
1

𝑝(𝐲)
∫ 𝑝(𝐲|𝐟, 𝑓𝑁+1, 𝑿, 𝐱𝑁+1)𝑝(𝑓𝑁+1, 𝐟|𝑿, 𝐱𝑁+1)𝑑𝐟

 =
1

𝑝(𝐲)
∫ 𝑝(𝐲|𝐟, 𝑿)𝑝(𝐟|𝑿)𝑝(𝑓𝑁+1|𝐟, 𝑿, 𝐱𝑁+1)𝑑𝐟

 = ∫ 𝑝(𝐟|𝐲, 𝑿)𝑝(𝑓𝑁+1|𝐟, 𝑿, 𝐱𝑁+1)𝑑𝐟 . (2.114)

In the previous derivation f denotes a vector taking values in ℝ𝑁. The conditional

distribution 𝑝(𝑓𝑁+1|𝐟, 𝑿, 𝐱𝑁+1) is obtained as the posterior GP, using the same equations as for

the regression case:

 𝑓𝑁+1|𝐟, 𝑿, 𝐱𝑁+1~𝒩(𝐶𝑁+1
𝑇 𝐶−1𝐟, 𝐶(𝐱𝑁+1, 𝐱𝑁+1) − 𝐶𝑁+1

𝑇 𝐶−1𝐶𝑁+1) , (2.115)

where 𝐶𝑁+1 denotes the column vector 𝑘(𝑿, 𝐱𝑁+1). However, the posterior distribution

𝑝(𝐟|𝑿, 𝐲) is not Gaussian. This makes the posterior distribution 𝑝(𝑓𝑁+1|𝑿, 𝐲, 𝐱𝑁+1) a non-

Gaussian stochastic process.

105

Having a Gaussian posterior for 𝑓𝑁+1 facilitates further analytical treatment. Three approaches to

obtain a Gaussian approximation to this posterior have been proposed. One technique makes use

of local variational bounds on logistic sigmoid functions (Gibbs & MacKay, 2000). A second

approach employs an approximation technique called expectation propagation (Opper &

Winther, 2000) (Minka, 2001) (Seeger M. , 2003). The third approach consists of obtaining a

Gaussian Laplace approximation to the posterior 𝑝(𝐟|𝐲, 𝑿), and then approximating the posterior

distribution of 𝑓𝑁+1 as the integral of two Gaussian distributions (Rasmussen & Williams,

2006).

STEP 2: The expected value of 𝜋𝑓(𝐱) is calculated according to the following expression:

 𝜋̅𝑓(𝐱𝑁+1) = 𝔼[𝜋𝑓(𝐱𝑁+1)] = 𝔼𝑓𝑁+1
[𝑝(y𝑁+1 = +1 | 𝑿, 𝐲, 𝐱𝑁+1)]

 = ∫ 𝑝(y𝑁+1 = +1 | 𝑓𝑁+1, 𝑿, 𝐲, 𝐱𝑁+1)𝑝(𝑓𝑁+1|𝑿, 𝐲, 𝐱𝑁+1) 𝑑𝑓𝑁+1

 = ∫ 𝜎(𝑓𝑁+1)𝑝(𝑓𝑁+1|𝑿, 𝐲, 𝐱𝑁+1) 𝑑𝑓𝑁+1 . (2.116)

If we employ the approximated posterior distribution from STEP 1 then 𝜋̅𝑓(𝐱) can be obtained

by using well-established results that allow approximating the convolution of a sigmoid function

(e.g., the cumulative Gaussian or the logistic sigmoid function) and a Gaussian function

(Spiegelhalter & Lauritzen, 1990). Alternatively, 𝜋̅𝑓(𝐱) can be obtained using Monte Carlo

sampling methods (Neal, 1997).

2.3.4 Gaussian Processes for Novelty Detection

The use of GP regression and GP binary classification as novelty detection techniques was

originally proposed in (Kemmler, Rodner, & Denzler, 2010). That work was subsequently

106

expanded in (Kemmler M. , Rodner, Wacker, & Denzler, 2013), where the authors provided

links between their approach and other algorithms, and offered multiple experimental results.

The training data in this case are denoted by 𝐷 = {𝑿, 𝐲} = {(𝐱𝑖, y𝑖)|𝐱𝑖𝜖𝒳, y𝑖 = 1, 𝑖 = 1, … , 𝑁}.

As noted in (Kemmler M. , Rodner, Wacker, & Denzler, 2013), two problems appear when

attempting to use posterior GPs for novelty detection: (1) GPs are not designed to estimate the

probability density of the input data (as done by other statistical methods employed in novelty

detection) and (2) applying a regression technique to a data set in which the dependent variable y

is constant should lead to a constant regression function, which is the simplest model that fits the

data. These problems are circumvented by using a prior GP with a zero-mean prior GP. If a

smooth kernel function k is used, then functions f sampled from the posterior GP will be smooth

and will evaluate to zero or near-zero at data points that are distant from training observations,

while evaluating close to 1 at points near those in 𝐷. In other words, after training the GP on D,

if a test observation 𝐱∗ is very near to points in D then the corresponding posterior mean 𝜇∗ will

be close to 1, but 𝜇∗ will be close to zero for data points that are distant from training

observations. In a similar fashion, the posterior variance of the GP (𝜎∗
2) will be greater for

observations that are increasingly distant from points in 𝐷. Consequently, class membership

scores based on the posterior mean 𝜇∗, the posterior variance 𝜎∗
2, or a combination of both, can

be used to detect novel observations. The lower the membership score of a given input 𝐱∗, the

higher the likelihood of 𝐱∗ being an outlier.

Table 2.2 lists the four measures proposed in (Kemmler, Rodner, & Denzler, 2010) and

(Kemmler M. , Rodner, Wacker, & Denzler, 2013): Probability (P), Mean (M), Negative

Variance (V) and Heuristic (H). The score V was previously proposed as part of a clustering

107

technique in (Kim & Lee, 2006), and score H was successfully applied to object categorization in

(Kapoor, Grauman, Urtasun, & Darrell, 2010). Note that the probability score P, despite its

name, is actually the value at y = 1 of the posterior probability density function of y∗.

Table 2.2: Membership scores for novelty detection using Gaussian processes. Table taken from

(Kemmler, Rodner, & Denzler, 2010).

Membership score Expression

Probability (P) 𝑝(y∗ = 1 | 𝑿, 𝐲, 𝐱∗)

Mean (M) 𝜇∗ = 𝐸[y∗|𝑿, 𝐲, 𝐱∗]

Negative Variance (𝑉) −𝜎∗
2 = −𝑉𝑎𝑟(y∗|𝑿, 𝐲, 𝐱∗)

Heuristic (H) 𝜇∗ 𝜎∗
−1

The experiments in (Kemmler, Rodner, & Denzler, 2010) compared these membership scores

using GP regression (GP-Reg) and approximated binary GP classification using both Laplace

approximation (LA) and expectation propagation (EP). Additionally, the work in (Kemmler,

Rodner, & Denzler, 2010) compared GP-based novelty detection using these membership scores

to Support Vector Data Descriptor (Tax & Duin, 2004). The corresponding experiments were

run on all object categories (classes) of the Caltech 101 image database (Fei-Fei, Fergus, &

Perona, 2004), where one class at a time was used as the target class. Each experiment assessed

the performances of SVDD and each GP-based scoring method on a different target class.

Subsequently, an average performance value was obtained for each detection method by

averaging the corresponding performance values across all classes. Note that no detailed

108

analyses of performance on individual image categories were offered in (Kemmler, Rodner, &

Denzler, 2010). Two image-based kernel functions were employed: the pyramid of oriented

gradients (PHoG) (Bosch, Zisserman, & Munoz, 2007) and the spatial pyramid matching (SPM)

kernel (Lazebnik, Schmid, & Ponce, 2006).

According to the analysis done in (Kemmler, Rodner, & Denzler, 2010), scores using GP

regression (GP-Reg-P, GP-Reg-M, GP-Reg-V, GP-Reg-H) performed consistently similar or

better than the corresponding scores based on approximate GP classification with LA and EP.

Additionally, performance values obtained through the SPM kernel were consistently higher

across all methods than the corresponding performance values obtained through the PHoG

kernel. That motivated Kemmler et al. to focus their conclusions on results obtained when using

the SPM kernel. Average performance values from GP regression were better than those

obtained from SVDD for all membership scores except when using GP-Reg-M (the GP-Reg-M

score showed a great variation in performance across image categories). In particular, novelty

detection based on GP-Reg-V consistently outperformed all other methods on the Caltech 101

data set.

As mentioned above, the experimental work described in (Ramirez-Padron, Mederos, &

Gonzalez, 2013) shows that the performance of novelty detection methods based on online GPs

can be similar to the performance of batch GP-based novelty detection. Interestingly, it was also

reported in that work that the probability score (P) and the heuristic score (H) consistently

outperformed the other two scores. This result suggests that scores that combine the posterior

109

mean and the posterior variance of the GP might be better fitted to GP-based novelty detection

that scores employing each of these statistics alone.

The high performance of GP-based novelty detection has also been shown in other domains aside

of visual object recognition. For instance, GP-based novelty detection outperformed widely

popular methods like Gaussian mixture models, Parzen density estimation and SVDD in doing

defect detection in wire ropes, novel bacteria identification based on Raman spectroscopy,

attribute prediction, and background subtraction (Kemmler M. , Rodner, Wacker, & Denzler,

2013). Additionally, GP-based novelty detection has been reported as a very accurate technique

for doing video segmentation through event detection, using a frame-by-frame processing

approach (Krishna, Bodesheim, & Denzler, 2013), (Krishna, Bodesheim, Körner, & Denzler,

2014). It was established in (Schölkopf, Platt, Shawe-Taylor, Smola, & Williamson, 2001) that

SVDD is equivalent to one-class SVM when the kernel used in both methods has a constant

value for 𝑘(𝐱, 𝐱), for all 𝐱 ∈ 𝒳. The experiments described in (Kemmler M. , Rodner, Wacker,

& Denzler, 2013) employed kernels having that property. Consequently, the work of Kemmler et

al. also showed (in an indirect way) that GP-based novelty detection can outperform one-class

SVM in multiple application domains.

A difficulty of GP-based novelty detection is that the technique of maximum likelihood

estimation (MLE), commonly used to automatically estimate hyperparameters in GP regression

and GP classification, cannot be employed in this case. Given that all labels are equal to 1, MLE

leads to an ill-posed optimization problem, which makes MLE solvers crash due to numerical

instabilities (Kemmler M. , Rodner, Wacker, & Denzler, 2013). Hyperparameter estimation in

110

GP-based novelty detection is currently considered an open problem. A very recent publication

(Xiao, Wang, & Xu, 2014) has proposed a possible solution based on the expected differences in

the prediction of mean and variance between edge samples and interior samples. However, it is

important to note that this dissertation does not attempt to solve the problem of hyperparameter

estimation in the case of GP-based novelty detection, which is considered here an important

topic for further research. The main purpose of this dissertation is to propose robust variants of

batch GP and online GPs for doing regression, and to assess their performance compared to

standard batch GP and online GPs when used for GP-based novelty detection. The specific scope

and goals of this dissertation are described in detail in the following chapter.

111

CHAPTER 3: PROBLEM STATEMENT

Gaussian processes have been used to solve many regression and classification problems with a

performance typically exceeding that of other state-of-the-art machine learning techniques

(Rasmussen & Williams, 2006). Interestingly, there are very few cases of GPs applied to novelty

detection. However, the experimental work reported in (Kemmler M. , Rodner, Wacker, &

Denzler, 2013) demonstrate that GP-based novelty detection can outperform state-of-the-art

methods. Those encouraging results and the advantages of Bayesian methods mentioned in the

previous chapter support the choice for the general topic considered in this dissertation: to

advance the state of the art of GP-based novelty detection. Given that GPs are kernel

methods, this choice allows proposing new solutions that can be easily adapted to different data

types and can work effectively with high-dimensional data, in order to fit the needs of many

modern application domains.

The following section states the specific problems addressed in this work, aiming at making

contributions to the general topic stated above. This chapter concludes with two brief sections:

one section states the hypothesis considered in this dissertation, and the last section lists the

contributions of this research effort.

3.1 The Specific Problems

There are two specific problems considered in this dissertation: (1) develop robust variants of

Gaussian processes in order to further improve the performance of GP-based novelty

detection, and (2) explore the applicability of online GP and SOGP, and the corresponding

112

robust variants proposed here, to novelty detection. Each of these topics is described in more

detail in the following subsections.

3.1.1 The Need for Robust GP-based Novelty Detection

As described in previous chapters, novelty detection techniques build a model of the normal

class based on the training data, and they subsequently use that model to assign labels or outlier

scores to new observations. However, if the method employed to build the model is sensitive to

outliers (i.e. non-robust) then the resulting model might lead to inaccurate outlier detection when

the training data contain mislabeled examples or observations with erroneous data. This might be

reflected in operation by incorrectly labeling outliers as members of the normal class (the so

called masking effect), or labeling normal observations as outliers, which is usually called the

swamping effect (Rousseeuw & Hubert, 2011). Having incorrectly labeled data is a common

issue in real-life data sets. Consequently, modern methods should be robust. However, many of

the methods previously described in our introductory chapters assume that training data are

correct. Arguably, methods from statistical novelty detection are more amenable to the

introduction of a robust approach, by directly leveraging techniques from robust statistics. A

good review of some robust techniques is given in (Rousseeuw & Hubert, 2011). Some novelty

detection methods can be made robust by replacing their estimators of location and scale by their

robust counterparts. For instance, the mean can be replaced by the median or an M-estimator of

location; and the standard deviation can be replaced by a robust measure of scale, like the MAD

(the median of absolute deviations from the median) and the interquartile range (IQR). In the

case of multivariate data, robust estimators of location and dispersion can be obtained by using

the minimum covariance determinant (MCD) method (Rousseeuw P. J., 1985), (Hubert &

113

Debruyne, 2010). Note that robust estimators that are even more efficient can be obtained when

the MCD robust estimates mentioned above are used to assign weights to the observations based

on their robust Mahalanobis distance to the MCD-based mean, and subsequently those weights

are used to obtain new robust estimators of location and dispersion (Rousseeuw & Hubert, 2011).

Subspace-based novelty detection methods can also benefit from robust statistics. A simple

example is the use of a robust PCA method, like ROBPCA (Hubert, Rousseeuw, & Vanden

Branden, 2005), instead of the classical PCA.

In the particular case of GP regression, one of the main difficulties is the need for properly

optimizing hyperparameters, which are the noise variance and the parameters of the covariance

function. Maximum likelihood estimation (MLE) is a method widely used to estimate

hyperparameters. It is easy to understand, asymptotically efficient in many cases (Daniels, 1961),

and relatively simple to implement. However, it is well-known that MLE is highly sensitive to

the presence of outliers in the data, which could radically affect posterior distributions in a

Bayesian framework (Agostinelli & Greco, 2013). As a simple example, consider the data shown

in Figure 3.1, taken from sampling the function y = 5sin(x) from -10 to 10 at regular increments

of 0.5, with noise variance 𝜎2 = 0.5. A few sample points were randomly converted to outliers.

Figure 3.2 shows the useless posterior GP obtained by using the simple exponential kernel (see

equation 4.39) and hyperparameters that were estimated by MLE. Furthermore, obtaining an

effective GP in the presence of outliers can be challenging regardless of whether or not MLE is

employed to estimate hyperparameters (Jylänki, Vanhatalo, & Vehtari, 2011). As an example of

this, Figure 3.3 shows the posterior GP trained on the same artificial data set using again the

simple exponential kernel, but this time employing the suitable hyperparameter values 𝑎1 = 1

114

and 𝜎2 = 0.5. Although the results are much better than relying on the MLE method, it is clear

that the prediction of the posterior GP becomes affected by the outliers in the training data.

Figure 3.1: Data from sampling y = 5sin(x) at regular increments of 1 from -10 to 10, with

noise variance 0.5 and added outliers. The underlying true function is shown as a discontinuous

red line.

115

Figure 3.2: Posterior GP obtained by using hyperparameter values obtained from MLE. The

continuous blue line denotes the posterior mean, and the shaded area denotes the corresponding

95% confidence interval. The MLE method was called with suitable initial values 𝜎2 = 0.5 and

𝑎1 = 1, but numerical instability led MLE to incorrect estimates 𝜎2 = 40.2909 and 𝑎1 =
1.4756𝑒 − 06.

Figure 3.3: Posterior GP obtained by using suitable hyperparameter values: 𝑎1 = 1 and 𝜎2 =
0.5. The continuous blue line denotes the posterior mean, and the shaded area denotes the

corresponding 95% confidence interval.

116

A typical approach to tackle this problem is to employ likelihood functions that are robust to

outliers. For instance, robust pseudo-likelihoods have been employed to obtain robust posterior

distributions (Greco, Racugno, & Ventura, 2008). The presence of outliers has also been handled

by using likelihoods corresponding to robust distributions. For instance, a Student-t observation

model is employed in (Jylänki, Vanhatalo, & Vehtari, 2011) to obtain a robust GP. However,

employing non-Gaussian likelihoods leads to analytically intractable inference, which requires

the use of approximation techniques that may be complex, computationally expensive and/or

inefficient. Consequently, the most important specific problem of this dissertation is to

obtain robust variants of Gaussian processes, both for batch and online learning, which

could be implemented without using approximation techniques. These robust GPs can be

leveraged to improve the effectiveness of the GP-based novelty detection approach

described in (Kemmler M. , Rodner, Wacker, & Denzler, 2013). Inspired by the use of weights

in robust and quasi-robust statistics in order to obtain robust estimates, this dissertation explores

weights as the mechanism to address this specific problem.

3.1.2 The Need for Online GP-based Novelty Detection

Most novelty detection algorithms follow a batch approach. Additionally, in the case of

supervised and semi-supervised learning, it is commonly assumed that all observations labeled as

members of the normal class are labeled correctly. In general, training data are assumed to be

fully and truly representative of the normal class. However, in practice training data are typically

not only affected by a small percentage of outliers but might not be representative of the whole

input space, which in turn affects the resulting models. Additionally, even in the case of a

complete and high-quality training data set, in various domains the statistical properties of

117

variables and processes are highly dynamic; so that even a well-trained system will eventually

become obsolete. Consequently, processing data as they arrive has become a necessity of several

modern applications, such as fraud detection, automatic surveillance, network intrusion

detection, and interactive training systems. Updating the corresponding normality model in an

incremental fashion has been an important concern in recent applications (Pokrajac, Lazarevic, &

Latecki, 2007).

The intrinsic variability of processes is denoted in machine learning by the term concept drift

(Zliobaite, 2009). As a simple example of the nature of concept drift in novelty detection,

consider a probability density function for normal data consisting of two local maxima. It may

be case that an algorithm was initially trained using data coming mostly from a neighborhood of

the first maximum. While in operation, however, data coming from a neighborhood of the

second local maximum will be incorrectly classified as outliers. If the algorithm did not provide

a way of updating its domain knowledge, those normal data points would always be considered

outliers. The outputs of many commercial systems for novelty detection are analyzed by human

experts to determine whether abnormal observations are actually outliers. However, few systems

address the problem of integrating the experts’ decisions back into the system in an effective and

speedy way.

A common solution to the problems imposed by incomplete training data and concept drift is to

re-train the algorithm using updated training data. In general, that approach is not efficient. For

instance, re-training might be a resource-consuming process, because of the memory and the

time required to store and process increasingly bigger, typically high-dimensional, data sets.

118

Some online outlier detection algorithms address these limitations by regularly applying a batch

learning algorithm to a small subset of the original training data added to a set containing the

latest misclassified observations. One example of that approach is the online training algorithm

for support vector machine (SVM) proposed in (Zhang & Shen, 2005), which employs a one-

class SVM. It iteratively applies an SVM training algorithm to a training data set composed of

the new observations and the support vectors of previous iterations, producing an updated

decision function at each step. Although this algorithm resembles an incremental approach (the

model is updated for new training observations), it actually applies a batch training algorithm at

each step, which can be a resource-consuming process. Additionally, previously well-classified

observations might be miss-classified in the future. Consequently, the algorithm needs to adjust

for the loss of previous knowledge. It is desirable to have a mechanism that allows a faster and

more efficient update of the model than the periodic application of a batch training technique.

Learning algorithms capable of updating their knowledge in a truly online fashion (i.e. learning

one observation at a time) seem to offer a more promising solution to the problems of incomplete

training data and concept drift (Giraud-Carrier, 2000). Online learning is typically more

computationally efficient than batch re-training. Furthermore, it appears to be a more natural

approach to problems involving online data processing (e.g., video surveillance, network traffic

monitoring, monitoring sensor data in real time, and auditing credit card transactions). However,

the online learning approach has been applied to novelty detection in very few cases. To mention

one example, an incremental version of the Local Outlier Factor (LOF) algorithm (Breunig,

Kriegel, Ng, & Sander, 2000) was introduced in (Pokrajac, Lazarevic, & Latecki, 2007) with

good results. Another important result is the Incremental Connectivity-Based Outlier Factor

119

(COF) algorithm (Pokrajac, Reljin, Pejcic, & Lazarevic, 2008). These two algorithms use a

distance-based approach (specifically nearest neighbor-based techniques). There are some

advantages in using this approach: it is well fitted to unsupervised novelty detection, the concept

of a distance between observations is applicable to a great number of data types, and the online

learning operations are relatively simple. However, the distance-based approach also has

disadvantages. For instance, it is highly sensitive to the presence of normal observations in low-

density areas of the training data. Additionally, outliers can be misclassified as normal

observations when they appear within small clusters of outliers. Finally, novelty detection

algorithms using the distance-based approach typically face a trade-off between the

computational complexity of classifying new observations and the amount of memory needed to

operate.

A good online novelty detection method should combine the strengths of the distance-based

approach and of methods building a knowledge model, like one-class SVM and GPs. It is

desirable to have algorithms that use simple and efficient incremental operations as well. One

novelty detection algorithm that follows such an approach is the one described in (Kivinen,

Smola, & Williamson, 2004). In this algorithm, the training examples are available one at a time

from the sequence of pairs {(𝐱1, y1), (𝐱2, y2), … , (𝐱𝑡, y𝑡), … . }. The learning algorithm produces a

sequence of models {𝑓1, 𝑓2, … , 𝑓𝑡 , … } that serve as decision functions. At iteration t, the algorithm

computes its decision function as follows:

 𝑓𝑡(𝑥) = ∑ 𝛼𝑖𝑘(𝑥𝑖 , 𝑥)𝑡
𝑖=1 . (3.1)

120

The coefficients 𝛼𝑖 are updated at each iteration. To deal with an increasingly larger number of 𝛼

coefficients, the authors proposed ways to store and update only a subset of them at each

iteration t. Although that work follows a truly incremental approach, it has at least three

drawbacks. First, the method does not take into account the relevance of examples already

learned or the relative importance of the current example used to update the decision function.

Second, there is no guarantee that a decision function 𝑓𝑡 improves on the previous decision

function, from iteration to iteration. Third, the update rules for the 𝛼 coefficients depend on

parameters that are difficult to estimate.

Other works, like those of (Tax & Laskov, 2003) and (Laskov, Gehl, Krüger, & Müller, 2006)

have also focused on online learning algorithms that can be directly used for novelty detection or

leveraged for that purpose. The first one proposed an online variant of the SVDD method, which

was called Online SVDD. The second paper studied the convergence properties of an exact

incremental SVM method proposed in (Cauwenberghs & Poggio, 2001), for which, according to

(Laskov, Gehl, Krüger, & Müller, 2006), no successful practical applications had been reported.

Laskov et al. offered some improvements on that exact algorithm. A more recent variant of an

online SVDD, called Incremental SVDD, was proposed in (Tavakkoli, Nicolescu, Bebis, &

Nicolescu, 2008). It was reported in that paper that training Incremental SVDD is faster and

requires less memory than training SVDD and Online SVDD, and it is capable of outperforming

those methods. Online kernel methods such as Online SVDD and Incremental SVDD have

addressed some of the limitations typically related to batch learning algorithms. However, there

are still difficulties associated to online kernel-based methods. For instance, they usually depend

121

on kernel parameters, and effectively estimating those parameters in the online learning approach

is, in general, more difficult than in the batch approach.

Online GP and SOGP have the advantages offered by the GP Bayesian formulation while

providing an incremental learning approach that is appropriate to many modern problems. SOGP

in particular is well suited to problems dealing with limited memory and/or very large or

undetermined number of observations (e.g. sensor streams). Given the recent successful

applications of GPs in machine learning, and novelty detection in particular, it is expected that

online GP-based novelty detection will provide results similar to those obtained from batch GP-

based novelty detection. That would mean that they could compare favorably to modern online

classification-based kernel methods, while benefitting from the advantages provided by the

Bayesian approach. However, to the best of our knowledge the work reported in (Ramirez-

Padron, Mederos, & Gonzalez, 2013) offers the only application of online GPs to novelty

detection. The experimental results in that work, although preliminary, show that novelty

detection using online GPs can achieve performances similar to those from batch GP, even under

strong sparseness constraints in the case of SOGP. For these reasons, the second specific

problem considered in this dissertation is to expand the experimental work presented by

the author in (Ramirez-Padron, Mederos, & Gonzalez, 2013), by comparing the performance

of batch GP and online GPs when used for novelty detection on various data sets. We are

particularly interested in comparing the capabilities of the robust variants of online GPs

and batch GP introduced in this dissertation, when used on training data contaminated

with outliers.

122

3.2 Hypothesis

The main hypothesis in this dissertation is that robust variants of GPs can be proposed in a

way that the computational complexity of the robust GPs are similar to the computational

complexity of the corresponding standard GPs, but the robust variants are more effective

than standard GPs at solving regression problems with data contaminated with outliers. It

is expected that the new robust GPs will perform better than standard GPs when used for

GP-based novelty detection in the presence of outliers. This advantage should be confirmed

experimentally for batch and online robust variants of GPs.

3.3 Contributions

This research provides the following contributions to the field of machine learning:

1. New robust variants of batch GP, online GP, and SOGP within a regression framework.

2. An experimental comparison of robust GP regression and standard GP regression in

various simulated problems, using training data with and without outliers.

3. An experimental design to compare the effectiveness of robust GP-based novelty

detection to standard GP-based novelty detection. The experimental comparison includes

batch GP, online GP, and SOGP with two different capacities. Experiments are run on

data sets containing no outliers as well as data sets contaminated with outliers.

4. Experimental results obtained from implementing the experimental design. These results

allow the following analyses:

a. A comparison of GP-based novelty detection using standard GPs versus GP-based

novelty detection using robust GPs.

123

b. A comparison of GP-based novelty detection using batch GPs versus GP-based

novelty detection using online GPs.

c. A comparison of the four membership scores employed in (Kemmler M. , Rodner,

Wacker, & Denzler, 2013).

124

CHAPTER 4: IMPLICIT WEIGHTED GAUSSIAN PROCESSES

As described in the previous chapter, the MLE method for parameter estimation is highly

sensitive to outliers in the training data, which could strongly affect the posterior distributions,

which are used for GP regression in our case. The most common approach to tackle this problem

is to modify the likelihood function so that it becomes robust to outliers. The standard

approaches rely on introducing robust pseudo-likelihoods (Greco, Racugno, & Ventura, 2008) or

using likelihoods corresponding to robust distributions, e.g. (Jylänki, Vanhatalo, & Vehtari,

2011). These approaches typically lead to intractable inferences, which usually require the use of

computationally expensive approximation techniques.

The usage of weighted likelihoods in Bayes formula was proposed in (Agostinelli & Greco,

2013). That work assigns a weight function as an exponent to each term of the likelihood, with

the goal of diminishing the effect of anomalous observations. That approach is briefly described

here. Let 𝐗 = (𝐱1, 𝐱2, … , 𝐱𝑁) be an i.i.d. sample drawn from a random variable X with

probability density 𝑝(𝐱|𝜽), where 𝜽 ∈ 𝚯 ⊆ ℝ𝒑, with 𝑝 ≥ 1. Let 𝐹̂𝑁 denote the empirical

cumulative distribution function based on 𝐗. In (Agostinelli & Greco, 2013), a weighted

likelihood function is defined as:

 𝐿𝑤(𝐗|𝜽) = ∏ 𝑝(𝐱𝑖|𝜽)𝑤(𝐱𝒊; 𝜼, 𝐹̂𝑁)𝑁
𝑖=1 , (4.1)

where the weight function 𝑤 is bounded differentiable and non-negative, 𝜼 denotes unknown

parameters of 𝑤, and typically 𝜽 ⊆ 𝜼. The intuition behind this approach is the following: given

that weights very near to zero are assigned to outliers, the corresponding weighted likelihood

125

terms take values approximately equal to 1. Consequently, the expression for 𝐿𝑤(𝐗|𝜽) depends

little on likelihood terms corresponding to outliers in the data. For weight functions satisfying a

certain sufficient condition, 𝐿𝑤(𝐗|𝜽) has the asymptotic properties of the “genuine” likelihood

function 𝐿(𝐗|𝜽) = ∏ 𝑝(𝐱𝑖|𝜽)𝑁
𝑖=1 when no outliers are present. Additionally, the parameter

values 𝜽̂, estimated through MLE on the weighted likelihood, are high breakdown estimators in

the presence of outliers. Aside from being restrictive regarding the location of the weight

functions, the type of weight functions proposed in (Agostinelli & Greco, 2013) might be

expensive to compute, given its dependency on parameter estimates and on the empirical

cumulative distribution function.

As a separate concern, classic regression analysis assumes that errors are normally distributed

with a constant variance. However, in many cases the assumption of constant noise variance does

not hold, leading to another difficulty: learning from heteroscedastic data. Weighted least squares

is a solution to this problem within the linear regression framework. It involves adding weights

to the least squares formulation; i.e., the coefficients 𝜷 and b of a linear regression model

y = 𝜷𝐱 + 𝑏 are obtained by minimizing the following loss expression:

 𝑊(𝜷, 𝑏) = ∑ 𝑤𝑖(y𝑖 − 𝜷𝐱𝑖 − 𝑏)2𝑁
𝑖=1 , (4.2)

where typically each weight 𝑤𝑖 is the reciprocal of the error variance at point 𝐱𝑖, estimated from

the data (Ryan, 1996). Assigning a small weight to an observation (𝐱𝑖, y𝑖) allows the prediction

of the model at 𝐱𝑖 to depart from y𝑖 without incurring in a great loss.

We are not aware of any work that uses weighted likelihoods in GPs to effectively learn from

heteroscedastic data. Additionally, the MLE method is not only sensitive to outliers but also to

126

misspecifications of heteroscedasticity in data (Carroll & Ruppert, 1982). Standard GPs assume

that noise is equally distributed in the training data (i.e. homoscedasticity), which makes standard

GPs sensitive to the presence of varying noise levels and outliers in the data when

hyperparameters are estimated through the MLE method. The problem of varying uncertainty

has been effectively handled in GPs by modeling noise variance as a function of the input data,

leading to heteroscedastic GP models (Goldberg, Williams, & Bishop, 1998), (Kersting,

Plagemann, Pfaff, & Burgard, 2007). However, these approaches equally weight all data points,

which greatly limit their capability to effectively model data affected by outliers. To effectively

deal with both problems (outliers and heteroscedasticity) using weights, the weight of each

observation should be individually assessed, even when taking into account other observations.

To the best of our knowledge, the only application of individual uncorrelated weights in GPs to

model heteroscedastic data is presented in (Rottmann & Burgard, 2010). In that work, it is noted

that “the weight of a sample and thus the importance on the predictive distribution can be

regulated by adapting the observation noise correspondingly”. Their approach is to determine an

individual weight for each sample and subsequently employ the weights to estimate individual

noise levels for each training point. The individual noise levels are added to the set of

hyperparameters of the GP model, which makes this approach very expensive computationally.

There are at least two further limitations associated to weighted GPs as proposed in (Rottmann &

Burgard, 2010): (1) Weighted cross-validation (Sugiyama, Krauledat, & Müller, 2007) is

employed to estimate the GP hyperparameters. In general, cross-validation (CV) is a

computationally demanding technique. (2) The CV criterion used in (Rottmann & Burgard,

2010) depends only on the predicted mean of the model (leaving out the quality of variance

127

prediction). To arrive at the final predictive model, a second GP is employed to model predictive

variances, leveraging the posterior means of the first GP as its mean function. CV is applied

again to estimate the parameters of the second GP. Although this approach seems to effectively

deal with both heteroscedasticity and the presence of outliers, the addition of a noise parameter

per observation and the dual application of CV make it impractical for most real-life

applications.

To the best of our knowledge, no work has proposed the use of weight functions in the definition

of the likelihood terms in order to obtain robust GPs or improve the effectiveness of the MLE

method. Contrary to the work of (Rottmann & Burgard, 2010), here we propose GPs that are

robust and can effectively model heteroscedastic data without the need to add a hyperparameter

to the GP model for each observation in the training data. The work presented in this chapter is

inspired by the weighted likelihood approach of (Agostinelli & Greco, 2013). However, our

approach differs from that of (Agostinelli & Greco, 2013) in various aspects: we propose using

weighted likelihoods that include weights as part of the definition of the likelihood terms, instead

of requiring that weight functions must be exponents of the likelihood terms in a joint likelihood.

Additionally, our weight functions (called here “data weighers”) do not depend on empirical

cumulative distribution functions. We only require from the weight functions to take values in

the interval (0, 1] and that weights denote how consistent data points are with respect to the

underlying model, based on their relative positions to other training observations. We do not

specify a particular placeholder for the weight functions within the term of a weighted

likelihood. However, we require that weighted likelihoods retain the properties of “genuine”

likelihoods, to guarantee that proper posteriors are obtained, and consequently the validity of the

128

Bayesian inference. We claim that weighted likelihoods, as defined later in this chapter, can be

useful to obtain robust GP models as well as for dealing with heteroscedastic data. Similar to the

work of (Rottmann & Burgard, 2010), our work proposes to take advantage of individual

weights. However, it does that through the use of a weighted likelihood instead of adding

multiple hyperparameters to the GP models. Consequently, the computational complexity of

obtaining the posterior GP would be affected only by the complexity of calculating the weight

functions. When using a heteroscedastic data weigher, our GP models can effectively learn

heteroscedastic data without explicitly modeling the different noise variances; a property that we

call implicit heteroscedasticity.

The proposed approach is illustrated by deriving a weighted Gaussian likelihood formulation for

batch GP, online GP, and SOGP. As a consequence of having the weight functions within the

likelihood terms, the mathematical formulation of our weighted GPs using a weighted Gaussian

likelihood remains very similar to the formulation of standard GPs. Essentially, we propose

robust weighted GPs that do not require the use of approximation techniques because in this

particular case our weighted likelihood is also a Gaussian distribution. Because of this and to

differentiate our approach from other applications of weights in GPs, our weighted GPs are

called implicit weighted GPs. Note however that this and subsequent chapters might refer to our

implicit weighted GPs just as weighted GPs, whenever that becomes clear from the context.

Three data weighers are introduced in this chapter: one to make GPs robust to outliers, one to

obtain implicitly heteroscedastic GPs, and a third one that combines the previous two in order to

obtain robust and implicitly heteroscedastic GPs. The applicability of these data weighers is

129

demonstrated through experiments on simulated data. It is shown through the experiments that

the optimization surfaces from the MLE method are highly distorted by the presence of outliers

in the data in the case of standard (non-weighted) GPs. However, MLE’s optimization surfaces

were shaped as if the data contained no outliers when our weighted likelihoods were used.

This rest of this chapter is structured as follows: Section 4.1 provides some mathematical

preliminaries from robust statistics, which will be used in the following sections. Section 4.2

introduces our approach to obtain weighted GPs by using weighted likelihoods. Implicit

weighted variants of batch GP, online GP and SOGP are derived for the particular case of

weighted Gaussian likelihoods, including the formulas needed to estimate GP hyperparameters

using the MLE method. It is important to note that our weighted Gaussian likelihood is not a

weighted likelihood function according to the definition given in (Agostinelli & Greco, 2013).

Section 4.3 introduces our three data weighers. A comparison of the computational complexities

of traditional GPs and the implicit weighted GPs proposed here is given in section 4.4. Section

4.5 provides experimental evidence of the benefits of learning weighted GPs models from data

containing outliers and/or heteroscedastic regions. Finally, the positive effect of the weighted

likelihood approach on the MLE optimization surface is shown in section 4.6.

4.1 Robust Potentials and Weights

Robust statistics (Huber & Ronchetti, 2009), (Maronna, Martin, & Yohai, 2006) yields

estimation methods that are not greatly affected by outliers. Given a set of observations {y𝑖: 𝑖 =

1 … 𝑁}, let us assume the following data model:

 y𝑖 = 𝜃 + 𝜂𝑖 , (4.3)

130

where the true value of 𝜃 is unknown and the additive errors {𝜂𝑖: 𝑖 = 1 … 𝑁} are independent and

identically distributed (i.i.d.) random variables. This data model is known as a location model. It

is commonly considered that the distribution of errors comes from a parametric family.

However, typically there is a small percentage of errors that do not obey the assumed

distribution. The idea of robust statistics is to give less influence to abnormal data in order to

better estimate 𝜃. To accomplish this goal, a special type of cost functions 𝜌(∙), called robust

potentials, play a key role in the following optimization problem:

 𝜃 = 𝑎𝑟𝑔 𝑚𝑖𝑛 ∑ 𝜌(y𝑖 − 𝜃)𝑁
𝑖=1 , (4.4)

where 𝜃 is called the M-estimator of location. A potential function 𝜌: ℝ ⟶ ℝ satisfies the

following two properties:

 Symmetry 𝜌(−𝑧) = 𝜌(𝑧), (4.5)

 Robustness lim𝑧→+∞
𝜓(𝑧)

 𝑧
= 0, (4.6)

where 𝜓(𝑧) =
𝜕𝜌(𝑧)

𝜕𝑧
 is known as the influence function (Hampel, Ronchetti, Rousseeuw, &

Stahel, 1986), (Maronna, Martin, & Yohai, 2006). The robustness property implies that errors 𝜂𝑖

that are too large have a lower cost than that quantified by the quadratic potential 𝑧2. Given a

robust potential 𝜌, a possible way to solve problem (4.4) is to solve the following equation:

 ∑ 𝜓(y𝑖 − 𝜃)𝑁
𝑖=1 = 0 . (4.7)

Assuming that 𝜓 has derivative at 0, the robust weight functions are constructed as follows:

 𝑤(𝑧) = {
𝜓(𝑧)

𝑧
, 𝑖𝑓 𝑧 ≠ 0

𝜓′(0), 𝑖𝑓 𝑧 = 0
 . (4.8)

Using equation (4.8), the equation (4.7) can be rewritten as

131

 ∑ 𝑤(y𝑖 − 𝜃)(y𝑖 − 𝜃)𝑁
𝑖=1 = 0 , (4.9)

which provides a method to compute 𝜃 as a weighted mean through an iterative scheme:

 𝜃𝑘+1 =
∑ 𝑤(y𝑖−𝜃𝑘)y𝑖

𝑁
𝑖=1

∑ 𝑤(y𝑖−𝜃𝑘)𝑁
𝑖=1

 . (4.10)

If the recursive equation (4.10) converges then its limit is 𝜃. The definitions of the weights 𝑤(∙)

and the robustness property of 𝜌 ensure that outlying observations receive small weights;

therefore the contribution of these observations to the model is small. Therefore, they are

appropriate to be used as weights in approaches different to M-estimators but related to them,

such as weighted regression in robust statistics (Agostinelli & Greco, 2013), (Maronna, Martin,

& Yohai, 2006).

Three main classes of robust potentials can be found in the literature: 1) Monotone 𝜓 (e.g. the

Huber´s potential), 2) Soft redescending 𝜓 (e.g. Cauchy´s potential), and 3) Hard redescender 𝜓.

The later class includes the well-known and widely used Welsh´s potential, which has a scale

factor k:

 𝜌(z) = 1 −
1

2𝑘
e−𝑘z2

, (4.11)

For some robust potentials we have that
𝜓(𝑧)

 𝑧
→ 0 very rapidly when 𝑧 → ∞. Consequently,

observations which are not too distant from the corresponding M-estimate would have a very

small influence in the estimation process. Additionally, the robustness property can yield

numerical algorithms that are ill-posed (Rey, 1983). To overcome these limitations, the

robustness property can be relaxed as follows:

 lim𝑧→+∞
𝜓(𝒛)

 𝑧
= γ, γ ∈ (0,1) . (4.12)

132

Typically γ is set to a small value. A potential that satisfies equation (4.12) is called a quasi-

robust potential (Rey, 1983), usually denoted by 𝜌𝑄(∙). A common way of building a quasi-

robust potential is to add a small quadratic perturbation to a robust potential:

 𝜌𝑄(𝑧) = (1 − γ)𝜌(𝑧) + γz2. (4.13)

A computation of the corresponding weight function reveals that the weights are also a convex

combination:

 𝑤𝑄(𝑧) = (1 − γ)𝑤(𝑧) + γ ∙ 1 . (4.14)

Equation (4.14) leads to computing the estimator 𝜃 without severely penalizing potential outliers.

The Welsh’s potential will be employed in defining our data weighers later in this dissertation.

Its corresponding weight function is written as:

 𝑤𝑄(𝑧) = (1 − γ)𝑒−𝑘𝑧2
+ γ . (4.15)

4.2 Implicit Weighted Gaussian Processes

Our approach assumes that the likelihood 𝑝(𝐷|f𝐷) depends on a collection of weights w𝐷 =

[w1, w2, … , w𝑁], where each w𝑖 ∈ (0,1]. These weights express how consistent each data

point (𝐱𝑖, y𝑖) is with respect to the underlying model. We assume that the training data are

conditionally independent, so that:

 𝑝(𝐷|f𝐷; w𝐷) = 𝑝(y|f𝐷; w𝐷) = ∏ 𝑝(y
𝑖
| f𝑖; w𝑖)

𝑁
𝑖=1 . (4.16)

A particular structure is not demanded here from the expression of 𝑝(y
𝑖
|f𝑖; w𝑖). However,

𝑝(y
𝑖
|f𝑖; w𝑖) must be a “genuine” likelihood (i.e. a posterior obtained by using it in a Bayesian

133

expression must be a proper probability distribution). This guarantees that posterior GPs are

valid for doing inferences. We call any likelihood 𝑝(𝐷|f𝐷; w𝐷) having this property an implicit

weighted likelihood (this and subsequent sections might use the term weighted likelihood if it is

clear from the context that we refer to the implicit type introduced in this work).

Weights might be given as part of the training data, but most likely they would have to be

calculated using certain weight functions, which we call data weighers. The input to a data

weigher is a finite collection 𝐷 = {𝐗, 𝐲} = {(𝐱𝑖, y𝑖): 𝐱𝑖 ∈ 𝒳, y𝑖 ∈ ℝ}, and their output consists

of a weight per data point in 𝐷 (note however that for the case of online GPs we need to calculate

at each learning step 𝑡 + 1 only the weight for the observation (𝐱𝑡+1, y𝑡+1)). To calculate w𝑖 for

an observation (𝐱𝑖, y𝑖) our data weighers use a neighborhood 𝑁𝑖 of 𝐱𝑖. The data weighers are

devised based on whether we are learning from heteroscedastic data or from data containing

outliers or both. In the case of heteroscedasticity, each weight w𝑖 must be inversely proportional

to the variance of the set {y𝑗: 𝐱𝑗 ∈ 𝑁𝑖}. In that case, weights are normalized so that they take

values in (0, 1]. Our experiments show that heteroscedastic data weighers can allow GPs to

effectively model heteroscedastic data without the need for modeling noise variance as a

function of the input data or adding hyperparameters to the GPs. This property is called here

implicit heteroscedasticity. In the case of data with outliers, each w𝑖 is estimated based on the

relationship of the corresponding observation y𝑖 to robust estimations of mean and variance of

the set {y𝑗: 𝐱𝑗 ∈ 𝑁𝑖}. This approach makes the GP robust by assigning small weights to

observations that significantly deviates from the robust estimate of location. In order to obtain a

134

posterior GP that is both robust and implicitly heteroscedastic, we propose a data weigher that is

a combination of a robust data weigher and a heteroscedastic data weigher.

For some observations, the corresponding neighborhoods might contain so few data points that

weights could not be estimated reliably. A default weight is assigned to those observations.

Using 1 as the default weight could become problematic if the recipient observations were

actually unworthy of the highest possible weight; i.e. the posterior model will be over-confident

when making predictions on the corresponding input regions, with predictive means inaccurately

biased towards the training data. To avoid this risk, we chose 0.5 as the default weight; which

denotes the uncertainty associated to the lack of data in 𝑁𝑖. The risk in this case is obtaining

posterior means slightly biased towards the prior means, and posterior variances greater than it

should be for some input regions. Researchers might prefer to take this risk however, given that

most real-life data contain noise and outliers. Details on how to define 𝑁𝑖 for GP regression and

when to assign the default weight are given in a section below.

This approach allows using any implicit weighted likelihood. However, this work focuses in

introducing the following implicit weighted Gaussian likelihood:

 𝑝(𝐷|f𝐷; w𝐷) =
1

√(2𝜋)𝑁|W|
𝑒−

1

2
(y𝐷−f𝐷)

𝑇
W−1(y𝐷−f𝐷)

 , (4.17)

where W = 𝜎2diag (
1

w1
,

1

w2
, … ,

1

w𝑁
), and |W| denotes the determinant of W. The main reason for

this choice is that posterior GPs are obtained analytically. Note that weights were introduced into

the original Gaussian likelihood in a way that smaller weights effectively increase the noise

variance for the corresponding observations. Consequently, the smaller a weight w𝑖 the more

135

irrelevant becomes that y
𝑖
 and f

𝑖
 greatly differ from each other. In other words, the

corresponding likelihood is near to 1 for a broad range of f
𝑖
 values when the weight is very small.

This allows us to obtain models with predictions that greatly deviate from “dubious” training

observations without incurring in high losses.

4.2.1 Implicit Weighted Batch GP

Recalling that the joint distribution for the prior GP is

𝑝𝑜(f𝐷) =
1

√(2𝜋)𝑁|𝐾𝐷|
𝑒−

1

2
(f𝐷−𝐸0[f𝐷])𝑇𝐾𝐷

−1(f𝐷−𝐸0[f𝐷])
, we use the formula for joint Gaussian

distributions of two random vectors to find an analytic expression for the log marginal likelihood

𝑙𝑛 ∫ 𝑝(𝐲| f𝐷; w𝐷)𝑝𝑜(f𝐷)𝑑f𝐷:

𝑝(𝐲| f𝐷; w𝐷)𝑝𝑜(f𝐷) = 𝑝 ([
f𝐷

𝐲
] ; w𝐷) = 𝒩 ([

𝐸0[f𝐷]

𝐸0[f𝐷]
] , [

𝐾𝐷
−1 + W

−1 −W
−1

−W
−1

 W
−1

]
−1

). (4.18)

Applying properties of multivariate Gaussian distributions:

 𝑙𝑛 ∫ 𝑝(𝐲| f𝐷; w𝐷)𝑝𝑜(f𝐷)𝑑f𝐷 = 𝑙𝑛 (𝑁(𝐸0[f𝐷], 𝐾𝐷 + W))

 = 𝑙𝑛 (
1

√(2𝜋)𝑁|𝐾𝐷+W|
𝑒−

1

2
(𝐲 − 𝐸0[f𝐷])𝑇[𝐾𝐷+W]−1(𝐲 − 𝐸0[f𝐷])

)

 = −
1

2
(𝐲 − 𝐸0[f𝐷])𝑇[𝐾𝐷 + W]−1(𝐲 − 𝐸0[f𝐷]) −

1

2
𝑙𝑛|𝐾𝐷 + W| −

𝑁

2
𝑙𝑛(2𝜋) . (4.19)

Consequently, the parameters of the normalization lemma 𝒒 and 𝑹 are expressed as:

 𝒒 = [𝐾𝐷 + W]−1(𝐲 − 𝐸0[f𝐷]) , (4.20)

 𝑹 = −[𝐾𝐷 + W]−1 . (4.21)

136

These results lead to the following expression for the prediction of a posterior weighted batch GP

when using our weighted Gaussian likelihood:

 𝜇∗ = 𝜇0(𝐱∗) + 𝒌∗
𝑇𝜶, (4.22)

 𝜎∗
2 = 𝑘(𝐱∗, 𝐱∗) + 𝒌∗

𝑇𝑪 𝒌∗, (4.23)

 where

 𝜶 = [𝐾𝐷 + W]−1(𝐲 − 𝝁0(𝑿)), (4.24)

 𝑪 = −[𝐾𝐷 + W]−1. (4.25)

4.2.1.1 Estimation of Weighted GP Hyperparameters

Let us denote the vector of kernel parameters by 𝜽𝑘 = (𝜃𝑘1
, 𝜃𝑘2

, … , 𝜃𝑘𝑙
), where 𝑙 ≥ 0 (i.e. 𝜽𝑘

might be empty). We denote the GP hyperparameters by 𝜽 = (𝜃1, 𝜃2, … , 𝜃𝑙+1) = (𝜎2, 𝜽𝑘). The

MLE method is commonly used to estimate the values of hyperparameters. This section derives

the MLE formulation to estimate hyperparameters for weighted batch GP using the weighted

Gaussian likelihood from equation (4.17). MLE consists of finding the parameter values that

maximize the following log marginal likelihood with respect to 𝜽:

 ℒ1 = ln(𝑝(𝐲|𝑿, 𝜽)) = 𝑙𝑛 ∫ 𝑝(𝐲|𝜽, f𝐷)𝑝𝑜(f𝐷)𝑑f𝐷 . (4.26)

The expression for ℒ1 in our case is given by equation (4.19). In general, there is no analytical

solution to this optimization problem. Numerical optimization methods that benefit from the

derivatives of the objective function are typically employed. Denoting 𝐾𝐷 + 𝑾 by 𝐾𝑝, the

derivative of ℒ1 w.r.t. to each 𝜃𝑖 is written as:

𝜕ℒ1

𝜕𝜃𝑖
=

1

2
(𝐲 − 𝐸0[f𝐷])𝑇𝐾𝑝

−1 𝜕𝐾𝑝

𝜕𝜃𝑖
𝐾𝑝

−1(𝐲 − 𝐸0[f𝐷]) −
1

2
𝑡𝑟 (𝐾𝑝

−1 𝜕𝐾𝑝

𝜕𝜃𝑖
) , (4.27)

where the different derivatives of 𝐾𝑝 are as follows:

137

𝜕𝐾𝑝

𝜕𝜎2 =
𝜕(𝐾𝐷+W)

𝜕𝜎2 =
𝜕W

𝜕𝜎2 = diag (
1

w1
,

1

w2
, … ,

1

w𝑁
) , (4.28)

𝜕𝐾𝑝

𝜕𝜃𝑘𝑖

=
𝜕(𝐾𝐷+W)

𝜕𝜃𝑘𝑖

=
𝜕𝐾𝐷

𝜕𝜃𝑘𝑖

 . (4.29)

4.2.1.2 Optimizing hyperparameters with priors

In the case of having a prior 𝑝(𝜽) for the hyperparameters, that prior is included into the MLE

formulation by maximizing the following log posterior instead of the log marginal likelihood:

 ℒ2 = 𝑙𝑛(𝑝(𝐲|𝑿, 𝜽)𝑝(𝜽)) . (4.30)

In our particular case, all hyperparameters 𝜃𝑖 are non-negative and are assumed independent

from other hyperparameters, so that 𝑝(𝜽) = ∏ 𝑝(𝜃𝒊)
|𝜽|
𝑖=1 , and the objective function can be

written as:

 ℒ2 = ℒ1 + ∑ 𝑙𝑛(𝑝(𝜃𝑖))
|𝜽|
𝑖=1 . (4.31)

In our experiments, each hyperparameter 𝜃𝑖 is assumed to be distributed 𝑙𝑛 𝒩(𝜇𝜃𝑖
, 𝜎𝜃𝑖

2), where

𝜇𝜃𝑖
 and 𝜎𝜃𝑖

2 are the mean and variance, respectively, of the transformed variable 𝑙𝑛(𝜃𝑖).

Consequently:

 ℒ2 = ℒ1 − ∑ [𝑙𝑛(𝜃𝑖) + 𝑙𝑛(𝜎𝜃𝑖
√2𝜋) +

(𝑙𝑛𝜃𝑖−𝜇𝜃𝑖
)

2

2𝜎𝜃𝑖
2]

|𝜽|
𝑖=1 . (4.32)

The objective function is simplified by removing constant terms:

 ℒ2
∗ = −

1

2
(𝐲 − 𝐸0[f𝐷])𝑇𝐾𝑝

−1(𝐲 − 𝐸0[f𝐷]) −
1

2
𝑙𝑛|𝐾𝑝|

 − ∑ [𝑙𝑛(𝜃𝑖) +
(𝑙𝑛𝜃𝑖−𝜇𝜃𝑖

)
2

2𝜎𝜃𝒊
2]

|𝜽|
𝑖=1 . (4.33)

The corresponding derivative is obtained as follows:

138

𝜕ℒ2

∗

𝜕𝜃𝑖
=

𝜕ℒ1

𝜕𝜃𝑖
 −

1

𝜃𝑖
(1 +

𝑙𝑛𝜃𝑖−𝜇𝜃𝑖

𝜎𝜃𝑖
2) . (4.34)

4.2.2 Implicit Weighted Online GP

The expressions for the implicit weighted online GP are obtained here by finding the expressions

for the terms 𝑞𝑡+1 and 𝑟𝑡+1 when the weighted Gaussian likelihood is used. The derivation

proceeds as follows:

 𝐸𝑡[𝑝(𝑦𝑡+1|𝑓𝑡+1)] = ∫ 𝑝(y𝑡+1|𝑓𝑡+1)𝑝𝑡(𝑓𝑡+1) 𝑑𝑓𝑡+1

 = ∫ 𝒩 (𝑓𝑡+1,
𝜎2

w𝑡+1
) 𝒩(𝐸𝑡[𝑓𝑡+1], 𝐾𝑡(x𝑡+1, x𝑡+1))𝑑𝑓𝑡+1

 = ∫ 𝒩 ([
𝐸𝑡[𝑓𝑡+1]

𝐸𝑡[𝑓𝑡+1]
] , [

1

𝜎𝑡+1
2 +

w𝑡+1

𝜎2 −
w𝑡+1

𝜎2

−
w𝑡+1

𝜎2

w𝑡+1

𝜎2

]

−1

) 𝑑𝑓𝑡+1

 = 𝒩 (𝐸𝑡[𝑓𝑡+1], 𝜎𝑡+1
2 +

𝜎2

w𝑡+1
) . (4.35)

Consequently, the parameters 𝑞𝑡+1 and 𝑟𝑡+1 in our case are written as follows:

 𝑞𝑡+1 =
𝜕

𝜕𝐸𝑡[𝑓𝑡+1]
𝑙𝑛 𝐸𝑡[𝑝(y𝑡+1|𝑓𝑡+1)] =

(y𝑡+1− 𝑚𝑡+1)

 𝜎𝑡+1
2 +

𝜎2

w𝑡+1

 , (4.36)

 𝑟𝑡+1 = −
1

 𝜎𝑡+1
2 +

𝜎2

w𝑡+1

 , (4.37)

where 𝑚𝑡+1 = 𝐸𝑡[𝑓𝑡+1] and w𝑡+1 is a function of {(𝐱𝑖, y𝑖): 𝑖 = 1, 2 … 𝑡 + 1}.

The model parameters 𝛂 and 𝐂 are updated at each step of the training algorithm shown in Figure

2.1, using the values 𝑞𝑡+1 and 𝑟𝑡+1 just obtained. However, weights for previously learned

observations would likely change at each learning step if they were recalculated. Consequently,

for the case of weighted online GPs the prediction of the model is likely affected by this

139

discrepancy between previous and current weights. An ideal solution to this issue would be to

update parameters 𝛂 and 𝐂 in a way that weight changes are properly reflected in the model.

However, this is a very difficult approach given the recursive nature of the learning algorithm,

and it will not be explored in this work. Weights are expected to change significantly at the

beginning of the learning process. However, they should tend to stabilize after learning a

considerable number of observations (assuming there is not a significant concept drift in our

data). Based on this rationale, a second approach consists of not attempting to correct for

changes in the weights of previously learned data; in other words, it is expected that weight

stability will be achieved eventually. This is the approach taken in this dissertation.

4.2.3 Implicit Weighted Sparse Online GP

The formulation of the implicit weighted SOGP is essentially the same as that of SOGP, with the

exception that the terms 𝑞𝑡+1 and 𝑟𝑡+1 are calculated using equations (4.36) and (4.37). Note that

the existence of a BV set with a fixed capacity m increases the risk of learning observations with

inadequate weights. Although in the case of weighted online GP it is reasonable to expect that

weights should be increasingly more accurate as more training data arrive, that expectation is

justified in the case of weighted SOGP only if the capacity m is large enough to accommodate a

representative sample of the input space.

Given that SOGP regularly removes from the BV set the least informative observations, it is

intuitive to expect that removed observations were typically learned with low weights. If that

was the case, the discrepancies between previous and current weights will be alleviated by the

140

removal process. The validity of this expectation is considered in the experimental section of this

chapter.

4.3 Data Weighers

This section introduces three data weighers to be used in regression problems:

HeteroscedasticReg, RobustReg and HeteroscedasticRobustReg. These data weighers take values

in the interval (𝛾,1], where 0 < 𝛾 ≪ 0.5. They have three parameters: a neighborhood radius r, a

neighborhood size s, and a weight floor 𝛾. As mentioned above, these data weighers work by

focusing on a data point (𝐱𝑖 , y𝑖) at a time. The corresponding neighborhood 𝑁𝑖 is defined here as

the closed ball 𝐵(𝐱𝑖; 𝑟) = { 𝐱𝑗 ∈ 𝐗 ∶ ‖𝐱𝑖 − 𝐱𝑗‖ ≤ 𝑟}. We assign a non-default weight to (𝐱𝑖, y𝑖)

if and only if 𝑁𝑖 contains at least s observations. The following subsections describe how each

data weigher calculates non-default weights.

4.3.1 HeteroscedasticReg DataWeigher

For each observation (𝐱𝑖, y𝑖) such that |𝑁𝑖| ≥ 𝑠, where 𝑠 is the neighborhood size, this data

weigher first executes two steps: (1) calculates a robust variance 𝑣𝑖 for the set {yj: 𝐱j ∈ 𝑁𝑖}, and

(2) calculates a preliminary weight 𝑤𝑖
′ =

1

𝑣𝑖
. After doing that for all observations, each 𝑤𝑖

′ is

normalized by dividing it by the maximum of the 𝑤𝑖
′ values. The normalized weights are denoted

here by 𝑤𝑖
′′. Finally, we leverage the quasi-robust approach to guarantee that no weights are

lower than γ, by computing non-default weights as 𝑤i = γ + (1 − γ) 𝑤𝑖
′′.

141

4.3.2 RobustReg DataWeigher

For each observation (𝐱𝑖, y𝑖) to receive a non-default weight, this data weigher calculates a

robust mean 𝜇𝑖 and robust variance 𝑣𝑖 of the set {yj: 𝐱j ∈ 𝑁𝑖}. Subsequently, each weight is

calculated using the Welsh’s quasi-robust weight function from equation (4.15):

 𝑤i = (1 − γ)𝑒
−

(𝑦𝑖−𝜇𝑖)
2

𝑣𝑖 + γ . (4.38)

Note that the scale factor k was set to 1 here because the term 𝑧 =
𝑦𝑖−𝜇𝑖

√𝑣𝑖
 is already normalized to

scale.

4.3.3 HeteroscedasticRobustReg DataWeigher

For each observation (𝐱𝑖, y𝑖) to receive a non-default weight, this data weigher calculates the

heteroscedastic and robust weights as described above. Subsequently, 𝑤i is calculated as the

minimum of the two weights.

4.4 Notes on Computational Complexity

This section analyzes how the computational complexities of learning GP regression models are

affected by the use of an implicit weighted likelihood that employs any of the three data

weighers introduced above. The reliance on searching for observations within neighborhoods of

data points naturally leads to implementations that employ space-partitioning data structures

such as k-d trees (Bentley J. , 1980). Constructing a k-d tree can be achieved in 𝑂(𝑁 ∙ 𝑙𝑜𝑔𝑁)

computational complexity (Wald & Havran, 2006). Searching for the neighborhood of each

particular data point has 𝑂(𝑙𝑜𝑔𝑁) computational complexity. Once the neighborhood of an

observation has been found, what methods are employed to calculate the robust statistics

142

determine the computational complexity of calculating the corresponding weight. As noted

below, in our experiments we employed the mcdcov function from the MATLAB library LIBRA

(Verboven & Hubert, 2010), which relies on the minimum covariance determinant (MCD)

estimator (Rousseeuw P. J., 1984). It was shown recently that the MCD estimator has

𝑂 (𝑁
𝑑(𝑑+3)

2) computational complexity (Bernholt & Fischer, 2004), where d denotes the

dimensionality of the input space 𝒳. Consequently, the use of the mcdcov in our data weighers

implies a 𝑂(𝑁2) complexity for calculating the robust mean and variance for each neighborhood.

In the case of implicit weighted batch GP, our data weighers have 𝑂(𝑁 ∙ 𝑙𝑜𝑔𝑁) computational

complexity for constructing the k-d tree for the training data set, 𝑂(𝑁 ∙ 𝑙𝑜𝑔𝑁) computational

complexity to search for the neighborhoods of all points in the data set, and 𝑂(𝑁3) complexity to

calculate the robust statistics (and weights) for N neighborhoods. This leads to an aggregated

𝑂(𝑁3) computational complexity for processing the training data set to calculate weights.

Consequently, our implicit weighted batch GP has the same computational complexity than

batch GP.

In the case of implicit weighted online GP, a k-d tree should be constructed iteratively by adding

observations at each learning step. Adding a single observation to a k-d tree that contains t

observations has 𝑂(log (𝑡 + 1)) complexity. Consequently, building a k-d tree from an empty

tree for N observations requires 𝑂(𝑙𝑜𝑔(𝑁!)), which is better than 𝑂(𝑁 ∙ 𝑙𝑜𝑔𝑁). The same

complexity is required for neighborhood searching for the first N observations. The use of the

MCD estimator again requires 𝑂(𝑁3) time complexity. Consequently, the computational

143

complexity of our implicit weighted online GP is 𝑂(𝑁3), that is the computational complexity of

online GP.

The discussion for online GP holds in the case of implicit weighted SOGP, with the exception

that processing N observations online would eventually require removing observations from the

BV set, and consequently removing them from the k-d tree as well. Removing a data point from a

k-d tree has the same logarithmic complexity than adding a data point, i.e. 𝑂(log (𝑛)), where n

denotes the number of data points in the tree. Let us consider the worst-case scenario in which

we have a k-d tree containing m observations already, and learning the next N observations will

trigger N additions and N removals. That scenario leads to 𝑂(2𝑁 ∙ 𝑙𝑜𝑔(𝑚)) = 𝑂(𝑁 ∙ 𝑙𝑜𝑔(𝑚2))

as the complexity for iteratively constructing the tree, and 𝑂(𝑁 ∙ 𝑙𝑜𝑔(𝑚)) for neighborhood

searching. The time complexity of using the MCD estimator in this case for the N neighborhoods

is 𝑂(𝑚3) ≤ 𝑂(𝑁𝑚2). Consequently, implicit weighted SOGP and SOGP share the same

computational complexity: 𝑂(𝑁𝑚2).

4.5 Experiments

The different variants of GP regression were implemented in MATLAB. Our implementation of

batch GP was validated against the NETLAB toolbox (Nabney, 2004). The online GP and SOGP

were validated against Grollman’s Online Gaussian Process C++ Library, available at the time of

writing at http://brown-rlab.googlecode.com/svn/trunk/SOGP/. Robust means and robust

variances were calculated using the function mcdcov from the MATLAB library LIBRA

(Verboven & Hubert, 2010).

http://brown-rlab.googlecode.com/svn/trunk/SOGP/

144

The hyperparameters for the batch GPs and weighted batch GPs were estimated by applying the

MLE method to the marginal likelihood. The online GP and SOGP variants used the values of

hyperparameters estimated for the corresponding batch variant whenever possible. This was done

for two reasons: First, estimating parameters in the case of online GPs is a very difficult problem.

Furthermore, it is impossible to obtain reliable parameter values before some critical mass of

training data has been learned. Second, given that the main goal of our experiments is to compare

the predictive quality of the implicit weighted GPs versus standard GPs, using the best possible

parameters in each case supports a more fair comparison (parameters should be better estimated

by leveraging all the training data). If the values estimated for batch GP on a particular data set

were useless, then all the models in that case employed the values estimated for weighted batch

GP. Those cases will be noted throughout this section. The well-known simple exponential

kernel was used in our experiments:

 𝑘(𝐱, 𝐱′) = 𝑒−
1

2
∑ 𝑎𝑖(𝐱𝒊−𝐱𝒊

′)
2𝑑

𝑖=1 , (4.39)

where d denotes the dimensionality of the space 𝒳. In order to simplify the hyperparameter

space so that the implicit weighted GPs could be easily contrasted to their standard counterparts,

the experiments consisted of simulated data with d = 1. Consequently, GPs in our experiments

have only two hyperparameters: the noise variance σ2 and the scale parameter 𝑎1 from the

kernel. Each training data set was randomly “shuffled”, so that the data were not presented to the

online GPs as time series. Shuffling was done only once for each experiment, so that training

observations were given in the same order to all GP variants.

145

4.5.1 Heteroscedastic Data without Outliers

This is a simple experiment that shows the potential advantages of weighted GPs when modeling

heteroscedastic data. We fabricated a training data set containing two regions, each with a

different noise variance. The underlying ground-truth function was y(x) = 10 ∙ 𝑠𝑖𝑛𝑐(x). A

Gaussian noise was added to y(x). The noise variance was set to 0.2 for x ≤ 0, and to 1.2

for x > 0. The training data is shown in Figure 4.1(a).

The parameters estimated for the batch GP were σ2 = 1.095 and 𝑎1 = 3.5051. Notice that σ2 is

similar to the greater of the two actual variances. Prediction from batch GP is shown in Figure

4.1(b), including the 95% confidence interval. The dotted red line shows the underlying true

function. Notice how batch GP over-estimated the variance on the left side of the data. Figure

4.1(c) shows the better fit achieved by a weighted GP that employed a data weigher that assigns

a weight = 1 to observations having negative x values and a weight = 0.1667 otherwise. These

weights were found by assigning a preliminary weight to each observation equal to the inverse of

the corresponding noise variance, and subsequently dividing those preliminary weights by the

maximum preliminary weight (i.e., 5). The estimated hyperparameters for the weighted batch GP

were σ2 =0.16481 and 𝑎1 = 3.6243; i.e. this time σ2 was estimated near the lowest of the actual

noise variances. Greater variances for the right side of the graph were achieved through the lower

weights in that region.

The predictions from the online models are shown in Figure 4.2 and Figure 4.3. Both weighted

GPs were capable of implicitly modeling the different variances. In the case of the sparse GPs,

black circles denote the data points kept in the BV sets. SOGP retained mostly points from the

146

right side. However, the weighted SOGP kept mainly observations from the region having the

smallest noise variance, which received the greater weights. This supports our expectation: that

weighted SOGP would be prone to avoid having data with relatively small weights in the BV set.

These results show the potential capabilities of weighted GP for implicitly modeling

heteroscedasticity. However, actual noise variances are rarely known. In practical terms, we

should compare standard GP models to weighted GP models that rely on more generic data

weighers. Consequently, we repeated the experiment employing HeteroscedasticReg, with s = 3,

r = 2.0 and γ = 0.05. The values estimated for the weighted GP hyperparameters were σ2 =

0.13797 and 𝑎1 = 2.8615. The graphs in Figure 4.4 show the predictions that were obtained in

this case. The weighted variants of batch and online GP were still able to implicitly model the

heteroscedasticity in the data. However, this was not achieved by the weighted SOGP. Despite

that, it still retained more data from the left side than SOGP. An increase in the capacity m was

required to compensate for the use of a generic data weigher. The weighted SOGP started to

model the heteroscedasticity for m = 28 (around 35% of the data); as illustrated in Figure 4.4(d).

Figure 4.1: (a) The simulated training data set with two regions having different variances. (b)

Prediction from batch GP. (c) Prediction from weighted batch GP.

147

Figure 4.2: Prediction of online GPs on the heteroscedastic data. (a) Online GP (hyperparameters

as used in batch GP). (b) Weighted Online GP (hyperparameters as used in weighted batch GP).

Figure 4.3: Prediction of SOGPs on the heteroscedastic data, where capacity m was set to 16 (~

20% of data). (a) SOGP (hyperparameters as used in Batch GP). (b) Weighted SOGP

(hyperparameters as used in weighted batch GP).

148

Figure 4.4: Prediction of weighted GPs on the heteroscedastic data. Models were trained using

HeteroscedasticReg. (a) Weighted GP. (b) Weighted online GP (hyperparameters as used in

weighted batch GP). (c) Weighted SOGP with capacity m = 16, which is ~ 20% of data

(hyperparameters as used in weighted batch GP). (d) Weighted SOGP with capacity m = 28,

which is ~ 35% of data (hyperparameters as used in weighted batch GP).

149

4.5.2 Homoscedastic Data with Outliers

Our second experiment focused on learning homoscedastic data containing outliers. The ground-

truth function in this case was y(x) = 𝑠𝑖𝑛 (
1

2
x) (

10𝑙𝑜𝑔(x+2)

x
) +

x2

200
. It was sampled at 60

equidistant points from x = 0.25 to 30. A Gaussian noise with variance equal to 0.5 was added to

the sample. Subsequently, each observation was randomly considered, with probability 0.1, to be

converted into an outlier by adding a value randomly taken from the set [−10, −8] ∪ [8, 10].

The resulting training data, shown in Figure 4.5(a), contained approximately 10% of outliers.

The hyperparameters of batch GP were estimated as σ2 = 13.6013 and 𝑎1 = 5.3929e-08. The

corresponding prediction rendered a flat line, as shown in Figure 4.5(b). Using weighted batch

GP with RobustReg (s = 3, r = 2.0, γ = 0.005), the MLE method gave us σ2 = 0.20699 and 𝑎1 =

0.10553. The trained weighted batch GP lead to the highly accurate prediction shown in Figure

4.5(c). Finally, prediction from batch GP was greatly improved when we used the same

parameters as the weighted batch GP. However, as can be seen in Figure 4.5(d), its results were

not as good as those obtained from the weighted batch GP.

The online GP and SOGP models were run employing the hyperparameter values estimated for

the weighted batch GP. The corresponding predictions are shown in Figure 4.6 and Figure 4.7.

The advantage of using our weighted online GP over the online GP is clear from the graphs.

However, the two SOGP variants performed similarly. In the case of our weighted online GP, 14

out of 60 points (approx. 23.33% of the data) were given the default weight. On the other hand,

the small capacity forced our weighted SOGP to learn 37 data points (approx. 61.67% of the

data) using the default weight. This high percentage of default weights explains why the

150

weighted SOGP behaved similarly to SOGP; i.e. most training observations were similarly

relevant to the weighted model, which is about the same as using SOGP. Figure 4.7(c) shows a

histogram of the weights of the basis vectors kept by the weighted SOGP.

When the capacity m was increased to 20 (one third of the data), only 14 observations (approx.

23.33% of the data) received the default weight. Results were greatly improved, as can be seen in

Figure 4.8, which shows the weighted SOGP prediction and the histogram of weights of the basis

vectors after training. As in the first experiment, SOGP tended to keep in the BV set observations

that were not in agreement with the underlying model, while the weighted SOGP retained fewer

observations that deviated from the underlying model, which also received smaller weights.

As a final step, we assessed the robustness of the models. Our comparison took into account only

the batch GP variants, given that other variants are approximations to the corresponding batch

cases. As before, estimation of hyperparameters for the batch GP led to flat line predictions.

Consequently, we compared the robustness of batch GP and weighted batch GP using the values

estimated for the weighted batch GP. The predictions of batch GP and weighted batch GP were

plotted for data sets having the same ground-truth function used in this second experiment, but

containing different percentages of outliers: 5%, 10%, 15%, 20%, 30%, 40% and 50%. The

weighted GP employed RobustReg with the same parameter values used before. At 5%, 10% and

15% of outliers the weighted batch GP models were highly accurate and clearly better than the

corresponding batch GP models. Both GP variants behaved similarly at around 20% of outliers

in the data, still rendering accurate predictions. The performance of both models started to

degrade at a similar rate at 30% of outliers. For some of the datasets we also estimated

151

hyperparameters for the batch GP using as starting point for the MLE method the values from the

corresponding weighted GP model. In those cases, batch GP still performed worse than the

weighted GP. More details about the relationship between weights and MLE in the case of

outliers are given later in this chapter.

Figure 4.5: (a) Simulated training data set containing outliers. (b) Prediction using batch GP,

with GP hyperparameters obtained through MLE. (c) Prediction using weighted batch GP, with

GP hyperparameters obtained through MLE. (d) Prediction using batch GP, with GP

hyperparameters as were estimated for weighted batch GP.

152

Figure 4.6: Prediction of online GPs on the homoscedastic data with outliers. (a) Online GP

(hyperparameters as used in weighted batch GP). (b) Weighted Online GP (hyperparameters as

used in weighted batch GP).

Figure 4.7: Prediction of SOGPs on the homoscedastic data with outliers; capacity m = 12 (~

20% of data). (a) SOGP (hyperparameters as used in weighted batch GP). (b) Weighted SOGP

(hyperparameters as used in weighted batch GP). (c) Histogram of the weights of the final basis

vectors of the weighted SOGP.

153

Figure 4.8: Results from weighted SOGP with capacity m = 20. (a) Prediction. (b) Histogram of

weights of the final basis vectors.

4.5.3 Heteroscedastic Data with Outliers

The third experiment focused on learning heteroscedastic data containing outliers. The training

data were generated as done in the second experiment, except that samples for which x < 15 were

affected by a Gaussian noise with variance equal to 0.5 and other samples were affected by a

Gaussian noise with variance equal to 1.5. Figure 4.9(a) shows the training data. The

hyperparameters estimated for batch GP were σ2 = 24.1159 and 𝑎1 = 1.2238e-07. Prediction

using those values rendered a useless flat line, as shown in Figure 4.9(b). Using weighted batch

GP and employing HeteroscedasticRobustReg (s = 3, r = 2.0 and γ = 0.005), the estimation of

GP hyperparameters gave us σ2 = 0.22363 and 𝑎1 =0.12524. The corresponding plot is shown in

Figure 4.9(c). Similar to the first experiment, σ2 was estimated near the smaller of the two actual

noise variances. A batch GP using those values for its hyperparameters produced the prediction

154

shown in Figure 4.9(d), which is clearly inferior to the prediction depicted in Figure 4.9(c). The

online GP and SOGP models employed the hyperparameter values of the weighted batch GP.

Their predictions are shown in Figure 4.10 and Figure 4.11.

Histograms of the weights assigned by the three weighted GP variants to the observations that

remained in the BV set after training are shown in Figure 4.12. In the case of weighted batch GP,

no observation received the default weight; which might explain its good performance compared

to the other models. Weighted online GP learned 15 out of 60 points using the default weight.

Weighted SOGP learned 29 data points out of 60 using the default weight (approx. 48.33% of the

data). Furthermore, the weights of the majority of vectors in its BV set were concentrated in [0.5,

0.6]. These facts help understand why the predictions of weighted SOGP and SOGP were very

similar. The prediction from our weighted online GP was similar to the prediction obtained from

the standard online GP. In this case most weights were concentrated around 0 and 0.5.

Consequently, its predictions should be similar to those obtained from a standard online GP that

was trained on a smaller data set containing only the data points with weights significantly

greater than zero. This remark gives an insight into why the implicit weighted GPs and the

standard online GPs behaved similarly.

155

Figure 4.9: (a) The simulated heteroscedastic data set containing outliers. (b) Prediction from the

batch GP, with GP hyperparameters obtained through MLE. (c) Prediction from the weighted

batch GP, with GP hyperparameters obtained through MLE. (d) Prediction from the batch GP,

using values of hyperparameters obtained for weighted batch GP.

156

Figure 4.10: Prediction of online GPs trained on the heteroscedastic data with outliers. (a) Online

GP (hyperparameters as used in weighted batch GP). (b) Weighted Online GP (hyperparameters

as used in weighted batch GP).

Figure 4.11: Prediction of SOGPs trained on the heteroscedastic data with outliers, where

capacity m was set to 12 (~ 20% of data). (a) SOGP (hyperparameters as used in weighted batch

GP). (b) Weighted SOGP (hyperparameters as used in weighted batch GP).

157

Figure 4.12: Histograms of weights from the three weighted GP models after training. (a)

Weights assigned to all data points by weighted batch GP. (b) Weights assigned to final basis

vectors by the weighted online GP. (c) Weights assigned to final basis vectors by the weighted

SOGP.

4.6 Effect of Weights on the MLE Method

In this section we focus on the difficulty to estimate hyperparameters using the MLE method for

the batch GP when the data contain outliers, and why the same estimation method was effective

when employed for the weighted batch GPs. Figure 4.13(a) shows the MLE optimization surface

corresponding to batch GP from the second experiment. Figure 4.13(b) shows the MLE

optimization surface for the weighted batch GP from the same experiment. Note that the

optimization surface from batch GP is mostly flat and has no global minimum. The use of

weights reshaped the optimization surface so that it had a global minimum and convergence

could be easily achieved, as seen in Figure 4.13(b).

158

We generated a new data set using the sampling procedure from the second experiment, except

that it contained no outliers. On this “clean” data, batch GP rendered an accurate prediction,

shown in Figure 4.13(d). The estimated hyperparameters: σ2 = 0.37709 and 𝑎1 = 0.1086. Figure

4.13(c) shows the corresponding optimization surface. This surface is almost identical to that in

Figure 4.13(b). Consequently, outliers can make the MLE method ineffective, while using a

robust data weigher may allow the MLE method to regain its effectiveness for estimating GP

hyperparameters.

To explore this issue further, we ran MLE on the data from the second experiment using prior

distributions for the hyperparameters. Both prior distributions were defined as 𝑙𝑛 𝒩(0, 1), to

match the starting point (1, 1) previously given to the optimization procedure. The optimization

surfaces for batch GP and weighted batch GP were similar to the corresponding surfaces when

no priors were used. In the case of weighted batch GP, the estimated values for the

hyperparameters were almost the same as before. The values estimated for batch GP (σ2 =

11.4616, 𝑎1 = 0.16112) were more effective this time, as shown in Figure 4.14. However, even

the use of reasonable priors did not allow the standard batch GP to achieve the effectiveness of

our weighted batch GP. We repeated the study described in this section for the data set of our

third experiment. The same results were obtained.

159

Figure 4.13: (a) MLE optimization surface from batch GP trained on data set with outliers from

the second experiment. (b) MLE optimization surface from weighted batch GP trained on data

set with outliers from the second experiment. (c) MLE optimization surface from batch GP

trained on similar data but without outliers (“clean” data set). (d) Prediction of the batch GP

model trained on the “clean” data set.

160

Figure 4.14: Predictions from the batch GP model when trained on the second data set, this time

using log normal priors for its hyperparameters.

161

CHAPTER 5: IMPLICIT WEIGHTED GAUSSIAN PROCESSES FOR

NOVELTY DETECTION

The implicit weighted GPs proposed in the previous chapter can be used for novelty detection in

the same way as standard GPs were employed in (Kemmler M. , Rodner, Wacker, & Denzler,

2013) and (Ramirez-Padron, Mederos, & Gonzalez, 2013); which was described in section 2.3.4.

There is only one modification required: we need a data weigher that can provide a preliminary

assessment of the importance of an observation based on its distance to observations that are

highly representative of the target class. There are clearly various ways in which a data weigher

could be defined. In this chapter, we present a data weigher for novelty detection that relies on

the assumption (commonly employed in data mining algorithms) that the importance of an

observation is inversely proportional to its distance to a robust mean of the training observations.

This data weigher, called here Robust Data Weigher, is introduced in the following subsection.

Subsequently, this chapter describes the experimental setup used to compare the performances of

standard GPs and weighted GPs for novelty detection. A subsequent subsection describes the

data sets employed in our experiments, as well as the kernel used in each case. The final two

subsections provide the results of our experiments and offer some closing remarks, respectively.

5.1 Robust Data Weigher

Similar to the data weighers described in chapter 4, our robust data weigher leverages the quasi-

robust approach to guarantee that the resulting weights take values in the interval (𝛾,1], where

0 < 𝛾 ≪ 0.5. Given the training data 𝐷 = {𝑿, 𝐲} = {(𝐱𝑖, y𝑖) | 𝐱𝑖𝜖𝒳, y𝑖 = 1, 𝑖 = 1, … , 𝑁}, let us

denote by 𝝁𝑿 a robust average of all observations in 𝑿. In our experiments, 𝝁𝑿 was calculated by

162

the function mcdcov from the MATLAB library LIBRA (Verboven & Hubert, 2010). The

mcdcov function was also employed to estimate the corresponding robust covariance matrix Σ𝑿.

This matrix is used in the calculation of distances to the robust mean, as described below. For

each observation 𝐱𝑖, the robust data weigher for novelty detection is calculated as follows:

 𝑤i = (1 − γ)𝑒−𝑑𝑀(𝐱𝑖, 𝝁𝑿)2
+ γ , (5.1)

where 𝑑𝑀(𝐱𝑖, 𝝁𝑿) denotes a robust version of the Mahalanobis distance (Mahalanobis, 1936):

 𝑑𝑀(𝐱𝑖, 𝝁𝑿) = (𝐱𝑖 − 𝝁𝑿)𝑇Σ𝑿
−1(𝐱𝑖 − 𝝁𝑿) . (5.2)

It is important to note that 𝑤i receives the default value 0.5 if the number of observations in 𝑿 is

less than a certain threshold s (similar to data weighers introduced in the previous chapter). The

experiments described in this chapter use different values of s, which will be noted in each case.

Note also that the use of the Mahalanobis distance in our data weigher implies that the data in 𝑿

lie on a hyper-ellipsoid. Furthermore, it is assumed that the hyper-ellipsoid that contains the

target class has no regions that constitute a potential source of outliers.

Contrary to the case of our implicit weighted GP regression, the data weigher proposed in this

chapter applies the mcdcov function to observations in 𝑿 instead of labels. This has a strong

negative impact in the computational complexity of weight calculation, which turns out to be

(𝑁
𝑑(𝑑+3)

2) , where d denotes the dimensionality of the input space 𝒳. Because of this polynomial

complexity, our data weigher can only be applied to input spaces of small dimensionality. In

particular, the mcdcov function works with data sets of up to 50 dimensions. Consequently, for

problems of higher dimensionality the data have to be projected into low-dimensional subspaces

for our data weigher to be able to calculate their weights.

163

5.2 Experimental Setup

The main purposes of our experiments are (1) to determine whether each weighted GP variant is

capable of outperforming the corresponding standard GP, (2) to determine how the performance

of the different online GPs compare to the performance of batch GP-based novelty detection, and

(3) to compare the four membership scores employed in (Kemmler M. , Rodner, Wacker, &

Denzler, 2013). Our experiments considered four data sets, which are described in the following

section. The first three data sets consist of a single target class each, while the fourth data set

consists of eight separate target classes. In that latter case, our experimental setup (which is

described below) was executed independently on each target class. In other words, for each

target class, its observations became the normal observations while observations from the other

classes were used as contamination sources and for testing purposes. Consequently, the fourth

data set is actually the source of eight different training data sets for our experimental purposes.

At each experiment, the labels in the training data for members and not members of the target

class are all known. We employ 10-fold stratified cross-validation (CV) (Kohavi, 1995) to

validate the GP-based novelty detectors, each detector using one membership score at a time.

Stratified CV delivers training data folds that contain roughly the same class proportions as in

the training data. Consequently, given the use of 10-fold CV, all GPs were trained on

approximately 90% of the target class at each CV step. SOGPs were cross-validated at two

different capacities: m = 10 and m = 30.

To assess the performance of each GP for each membership score, we leveraged receiver

operating characteristic (ROC) curves (Fawcett T. , 2006). An ROC curve is a graph commonly

164

used in machine learning to visualize the performance of a binary classifier, by plotting the true

positive rate (proportion of positive observations correctly classified as such) against the false

positive rate (proportion of negative observations that were incorrectly classified) of the

classifier. In our case, positive observations correspond to true members of the normal class. An

ROC curve is constructed by plotting these two rates at numerous discrimination thresholds that

range from the minimum to the maximum of the scores provided by the classifier on a particular

data set. In our case, the membership scores obtained on a training data from each stratified CV

were used to obtain each ROC curve. The overall quality of each novelty detector was assessed

by estimating the area under its ROC curve, called AUC value (Fawcett T. , 2006). AUC values

tend to be in the interval [0.5, 1], where AUC values near 0.5 correspond to a random binary

classifier. A widely-used rule of thumb is to categorize the quality of classifiers according to the

traditional academic grading system: excellent classifiers have AUC values between 0.9 and 1,

classifiers with AUC values from 0.8 to 0.9 are typically considered good, and those having

AUC values from 0.7 to 0.8 are considered fair. Classifiers with AUC values that are less than

0.6 are considered failed models and are typically discarded.

In our experiments, the 10-fold stratified CVs were repeated 30 times for each combination of

GP variant and membership score, so that 30 ROC curves (and consequently 30 AUC values)

were obtained in each case. In total, an application of our experimental setup on a single training

data set generated 960 AUC values (from the combinations of eight GP instances and four

membership scores). The cross-validation procedures were implemented by the author in Matlab,

leveraging the functions cvpartition and perfcurve from the Matlab Statistics toolbox.

165

Given that the data sets did not contain outliers originally, the experimental setup just described

was also run on various “contaminated” versions of the data sets, in order to compare the

performance of the GP-based novelty detectors when the training data contained outliers. Let us

denote by 𝑙, where 𝑙 ∈ [0,1], a level of contamination; i.e. the percentage of observations labeled

as members of the target class that are outliers. For positive values of 𝑙, we calculated how many

observations from the non-target classes had to be added to the target class to achieve the

contamination level 𝑙:

 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠_𝑡𝑜_𝑎𝑑𝑑 = ⌈
𝑙 𝑁1

1−𝑙
⌉ , (5.3)

where 𝑁1 denotes the number of observations originally in the data set that are members of the

target class. If 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠_𝑡𝑜_𝑎𝑑𝑑 ≥ 1, then the original data set was contaminated before

executing each particular CV run by randomly choosing that number of observations from the

non-target class and temporarily labeling them as members of the target class. This allowed us to

obtain training data sets with the required level of outliers. Employing this contamination

procedure, our experimental setup was repeated for the following contamination levels: 0.05,

0.10, 0.15, and 0.20.

5.2.1 Comparison of Standard GPs and Weighted GPs

In order to compare each variant of standard GP (i.e. batch, online, SOGP with m = 10, and

SOGP with m = 30) against the corresponding weighted GP variant, the set of AUC values from

each combination of data set, contamination level and membership score were analyzed by a

one-way ANOVA. The significance level α for the ANOVAs was set to 0.01 instead of the most

commonly used 0.05, to compensate for the multiple inferences in this case. From those AUC

166

differences that were significant at the 0.01 significance level, we counted those for which the

absolute value of average AUC difference represented a relative change in AUC of at least 2%.

This was done to gather statistics not only on significant differences but also on differences that

were both significant and represented a noticeable effect on the quality of outlier detection.

5.2.2 Comparison of Batch GPs and Online GPs

In order to simplify the comparison of batch GPs and the different online GPs (i.e. Online GP,

SOGP with m = 10, and SOGP with m = 30), we decided to employ a single score per data set.

For each data set, if there was a single score that significantly outperformed all other scores at

various levels of outlier contamination, then that score is chosen as the suitable score for the data

set. Otherwise, our comparison would be performed by employing a score that fulfills the

following two conditions: (1) it was not the worst score for the data set and (2) it exhibited good

performance across most data sets. Because of this dependency on selecting suitable scores, the

comparison between batch and online GPs was actually performed after the comparison of the

scores. Consequently, it is described in the last subsection of the experimental results, despite

being the second goal of this dissertation.

The comparison was implemented separately on results corresponding to standard GPs and on

results corresponding to weighted GPs. This was done to assess whether batch GPs and online

GPs compared similarly in both cases. In each case, multivariate one-way ANOVAs were run on

the AUC values obtained from each experiment at each contamination level, to determine

whether there were significant differences between the performances of the four GPs under

comparison. If a multivariate ANOVA indicated that AUC differences between the GPs were

167

significant at the 0.01 significance threshold α, then the AUC values were subsequently

compared pairwise by employing Tukey HSD test for multiple comparisons (Lane, 2010). The

significance level for the pairwise comparisons was also set to 0.01 to compensate for the

multiple tests.

Once the results from the ANOVAs and Tukey HSD were acquired, we obtained a ranking of the

different types of GPs for each data set and each contamination level. The rankings were

established through the following procedure: If the multivariate ANOVA indicated that

differences in AUC were not significant, then all GPs under comparison are allocated to the same

rank (Rank 1). Otherwise, the pairwise comparisons from Tukey HSD test are employed to

attempt to allocate the different GPs into as many ranks as possible. This was done in a way that,

given any rank 𝑅𝑎𝑛𝑘𝑖, all GPs allocated to 𝑅𝑎𝑛𝑘𝑖 showed significantly better performance than

the GPs in all subsequent ranks according to the pairwise comparisons. As a final step, the

appearances of each GP type in each particular rank were counted, aggregating over all

contamination levels.

5.2.3 Comparison of Scores

The membership scores are compared using only the experimental results from standard batch

GP and weighted batch GP, given that the different types of online GPs are essentially

approximations to the corresponding batch GP. The differences in performance for the different

scores were analyzed separately for the cases of batch GP and weighted batch GP. A multivariate

one-way ANOVA was run to decide in each case whether there were significant differences

between the AUC values from the four scores. If a multivariate ANOVA indicated significant

168

differences between the four scores at the 0.01 significance threshold α, then the scores were

compared pairwise by employing Tukey HSD test, using 0.01 as the significance level. We based

our analysis of the pairwise comparisons on counting the instances (for each data set and

contamination level) of two different cases: (1) one of the scores was significantly better than the

others, and (2) one of the scores was significantly worse than the others. This was done in order

to further reduce the likelihood of erroneously accepting differences between scores as

significant when they were actually due to chance.

5.3 Data Sets and Kernels

This section describes the data sets employed in our experiments. Note that the first data set was

generated as a proof of concept. It is one of the simplest data sets that can be used to compare the

weighted and standard GP variants under different levels of contamination. The rest of the data

sets belong to real-life problems of varying levels of difficulty.

5.3.1 Points within Circles

This data set consists of a set of two-dimensional points. Observations from the target class were

generated as random points in the circle centered at (0, 0) with a radius equal to 20. The target

class consisted of 100 points. Four small groups of 10 points each were generated as random

points within circles of radius = 3, centered at different locations: (-30, -30), (30, -30), (-30, 30),

and (30, 30). Figure 5.1 (below) shows the particular data set employed in our experiments.

Weighted GP-based novelty detection should perform significantly better than standard GP-

based novelty detection on this data set.

169

The simple squared exponential kernel given in equation 4.39 was employed in this case. As

mentioned above, automatic estimation of hyperparameters for GP-based novelty detection is an

open problem not addressed in this work. We relied on the intuitive interpretation of the

parameters of the simple squared exponential kernel, assigning to each scale parameter 𝑎𝑖 the

inverse of the robust variance of the corresponding attribute, as calculated by the mcdcov

function of the LIBRA library (Verboven & Hubert, 2010). This estimation approach was used

on other data sets whenever the simple squared exponential kernel was employed. The GP

hyperparameter noise variance was set to 0.0001 (any small value should be fine here, to denote

the lack of noise in the labels). Finally, the robust data weigher (5.1) was configured so that

γ = 0.0001 and at least 5 observations were required to calculate a non-default weight.

Figure 5.1: The simple “Points within Circles” data set. Random observations on the center

correspond to the target class. The small clusters on the corners are used as outliers, both as a

source of contamination and for testing purposes.

170

5.3.2 Vertebral Column

The Vertebral Column data set was retrieved from the UCI Machine Learning Repository

(Lichman, 2013). It was originally compiled by Dr. Henrique da Mota during a medical

residence in the Group of Applied Research in Orthopaedics (GARO) of the Centre Médico-

Chirurgical et de Réadaptation des Massues, in France. It consists of 100 observations

corresponding to patients having a normal vertebral column and 210 observations taken from the

same number of abnormal patients (60 patients had disk hernias and 150 patients had a

displacement of vertebras called Spondylolisthesis). There are six numeric attributes in the data

set, which denote properties derived from the shape and orientation of the pelvis and lumbar

spine: (1) pelvic incidence, (2) pelvic tilt, (3) lumbar lordosis angle, (4) sacral slope, (5) pelvic

radius and (6) grade of spondylolisthesis. The observations corresponding to the normal patients

were considered in our experiments as examples of the target class.

The simple squared exponential kernel was employed in this case. As mentioned above,

estimation of hyperparameters was done by assigning to each scale parameter 𝑎𝑖 the inverse of

the robust variance of the corresponding attribute, as calculated by the mcdcov function of the

LIBRA library (Verboven & Hubert, 2010). The GP hyperparameter noise variance was set to

0.0001. Finally, the robust data weigher (5.1) was configured so that γ = 0.0001 and at least 12

observations were required to calculate a non-default weight.

5.3.3 Pima Indians Diabetes

This data set consists of 768 observations, each having eight numeric attributes (not counting the

class attribute). It contains features of women at least 21 years old of Pima Indian heritage, and

171

was obtained also from the UCI Machine Learning Repository (Lichman, 2013). The class labels

indicate whether the corresponding patient tested positive for diabetes. In our experiments the

absence of diabetes was considered the target class. There are 500 observations corresponding to

non-diabetic patients and 268 observations from women that were diagnosed as diabetic. The

eight attributes are listed below:

1. Number of times pregnant

2. Plasma glucose concentration from an oral glucose tolerance test

3. Diastolic blood pressure (mm Hg)

4. Triceps skin fold thickness (mm)

5. 2-Hour serum insulin (mu U/ml)

6. Body mass index (weight in kg/(height in m)^2)

7. Diabetes pedigree function

8. Age (years)

As noted in the UCI repository, this data set contains zeroes in places where zero cannot be a

valid value, so they most likely denote missing values. Given that the main goal of our

experiments is to assess the effectiveness of weighted GPs as robust novelty detectors, no rows

were omitted in our experiments and no efforts were made to compensate for missing values.

The simple squared exponential kernel given in equation 4.39 was also employed in this case.

Similar to the experiments with the Vertebral Column data set, each scale parameter 𝑎𝑖 was

assigned the inverse of the robust variance of the corresponding attribute. The GP

172

hyperparameter noise variance was set to 0.0001. The robust data weigher (5.1) was configured

so that γ = 0.0001 and at least 16 observations were required to calculate a non-default weight.

5.3.4 Caltech 101

We decided to use the Caltech 101 image database (Fei-Fei, Fergus, & Perona, 2004), given the

good performance of GP-based novelty detection on it, reported in (Kemmler M. , Rodner,

Wacker, & Denzler, 2013). This was particularly true when using the spatial pyramid matching

(SPM) kernel (Lazebnik, Schmid, & Ponce, 2006). Additionally, using Caltech 101 allows us to

contrast our results to those of Kemmler, Rodner, Wacker & Denzler (2013). Caltech 101

contains pictures of objects taken from 101 categories. The size of each image is approximately

300 x 200 pixels. Contrary to the work of Kemmler et al., which focused on average

performance of novelty detectors across all image categories, our work focused on eight

individual object categories from Caltech 101. Those categories were chosen here based on

experimental results reported by (Lazebnik, Schmid, & Ponce, 2006). The SPM kernel achieved

high classification performance on four of them (minaret, Windsor chair, Joshua tree, and okapi),

and poor classification performance on the remaining four categories (cougar body, beaver,

crocodile, and ant). These eight categories were chosen for our experiments because they were

identified as key examples in the work of Lazebnik et al. Our experiments were run

independently for each of the eight categories serving as target classes; while the remaining

categories remained in the training data for doing the cross-validations and also as a source of

contamination when adding the different levels of outliers to each target class. Our experiments

employed the SPM kernel as well. For that reason, SPM is briefly introduced next.

173

The SPM kernel works on descriptor vectors calculated on the images that are input to the

kernel. It takes into account coarse spatial information about local features from those images.

The SPM kernel makes use of the pyramid match kernel (Grauman & Darrell, 2005).

Consequently, it is important to understand pyramid matching in order to fully understand SPM.

Let us denote two sets of local features obtained from two images as 𝑋1 and 𝑋2. Primary

examples of such local features are SIFT descriptors (Lowe, 1999), which were used in our

experiments. Both feature sets 𝑋1 and 𝑋2 must take values in the same d-dimensional feature

space. The original pyramid matching kernel is applied as follows: A sequence of increasingly

finer grids with resolutions 0, 1, … , L is placed over the space of local features so that at each

resolution l, the corresponding grid has a total of 𝐷𝑙 = 2𝑑𝑙 cells. Any two points, one from 𝑋1

and the other from 𝑋2, are a match at resolution l if they fall into the same cell at that resolution.

At each resolution l, a histogram is built for each feature set, with each bin corresponding to a

different grid cell. The histogram intersection function 𝐼(. , .) (Swain & Ballard, 1991) is used to

calculate the total number of feature matches at a given resolution l:

 𝐼𝑙 = 𝐼(𝐻𝑋1

𝑙 , 𝐻𝑋2

𝑙) = ∑ mi𝑛 (𝐻𝑋1

𝑙 (𝑖), 𝐻𝑋2

𝑙 (𝑖))
𝐷𝑙
𝑖=1 (5.4)

where 𝐻𝑋1

𝑙 and 𝐻𝑋2

𝑙 denotes the histograms at resolution l for 𝑋1 and 𝑋2 respectively. Finally, the

pyramid match kernel 𝜅𝐿 is calculated as follows:

 𝜅𝐿(X1, X2) =
1

2𝐿 𝐼0 + ∑
1

2𝐿−𝑙+1 𝐼𝑙
𝐿
𝑙=1 (5.5)

The SPM kernel uses spatial information by applying the pyramid match kernel in the two-

dimensional image space instead of the space of local features. Before doing that, each feature

set is quantized into M feature types, where M is a fixed number. SPM then applies the pyramid

174

match kernel in the image space M times, each time constrained to the coordinates associated to

the corresponding feature type. The SPM kernel is defined as the sum of pyramid match kernels

on the image space over the M feature types:

 𝑘𝐿(X1, X2) = ∑ 𝜅𝐿(𝐶𝑋1

𝑚 , 𝐶𝑋2

𝑚)𝑀
𝑚=1 (5.6)

where 𝐶𝑋𝑖

𝑚 denotes the image coordinates associated to features from the feature set 𝑋i that are of

type m. A normalization of histograms by the total weight of all features in the image permits the

evaluation of the kernel on images of different sizes.

A pre-processing step is needed to create a dictionary of size M, which is used to quantize the

feature set from each image. The elements of the dictionary were selected in (Lazebnik, Schmid,

& Ponce, 2006) as the centroids of the M clusters obtained by applying the k-means algorithm to

features taken from all classes from multi-class classification problems. Quantization of each

feature vector was performed by choosing its nearest element from the dictionary. It was shown

by Lazebnik et al. that support vector machines using the SPM kernel outperform other modern

classifiers on three image datasets, including the Caltech 101 database (Fei-Fei, Fergus, &

Perona, 2004).

In our experiments, we used the Matlab implementation of the SPM kernel from (Lazebnik,

Schmid, & Ponce, 2006), keeping their recommended values for the parameters: M = 200 and L

= 2. Similarly, we used their default SIFT descriptors of 16 x 16 pixel patches computed over a

dense grid spaced at eight pixels. However, we had to generate a dictionary for each target class,

given that we are modeling a target class at a time instead of dealing with a multi-classification

175

problem. The pyramid histograms for all images from the eight categories were built against the

dictionary of the particular target class to be learned in each case.

Contrary to the previous data sets, the observations in this case were high-dimensional,

corresponding to pyramid histograms of length 4,200 each. In this case, we employed ROBPCA

(Hubert, Rousseeuw, & Vanden Branden, 2005) to project the data into a low-dimensional

subspace before calculating the weights. The projected data consisted of the robust principal

components that made for 95% of the variance in the data, or the first 50 components if more

than 50 components were required to cover up to 95% of the variance (the author is not aware of

any instance in which such cutoff was needed). In our experiments, projection by ROBPCA was

employed only for the purpose of weight calculation. In other words, the training data was

handed entirely to the corresponding GP, given that the SPM kernel required the data in its

original format in order to work properly.

5.4 Experiment Results and Analyses

This section contains three subsections. The first one summarizes the results from the one-way

ANOVAs that compared the performance of standard and weighted GPs. The second subsection

contains the results from the comparison of batch GPs and online GPs. The third subsection

contains the analysis of the performance of the four scores. As a final note, all standard and

weighted GP variants performed very poorly on the target class “ant” from Caltech 101, with

most AUC values falling in the interval (0.5, 0.6). Consequently, the “ant” class was excluded

from our experiment results and the corresponding analysis. The “ant” target class was already

identified in (Lazebnik, Schmid, & Ponce, 2006) as a class in which multi-classification kernel

176

methods using the SPM kernel showed a particularly poor performance. As noted in (Ramirez-

Padron, Mederos, & Gonzalez, 2013), the SPM kernel is not invariant to translations and/or

rotations. Consequently, images containing exactly the same object at different locations and/or

rotated are considered different objects by the kernel function. Not only was this the case for the

images in the “ant” class, but images of ants ranged from hand-drawn sketches of ants to photos

of ants in different positions with very different backgrounds.

5.4.1 Comparison of Standard GPs and Weighted GPs

The tables in this subsection list how many times the performance of weighted GP-based novelty

detection showed significant differences at the 0.01 significance level when compared to the

corresponding standard GP, aggregating over the four membership scores. The significant

differences in AUC values were categorized as either positive or negative relative changes.

Relative changes were calculated as follows:

 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒_𝑐ℎ𝑎𝑛𝑔𝑒 = 100
(𝑚𝑒𝑎𝑛𝐴𝑈𝐶𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐺𝑃 − 𝑚𝑒𝑎𝑛𝐴𝑈𝐶𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐺𝑃)

|𝑚𝑒𝑎𝑛𝐴𝑈𝐶𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐺𝑃|
 . (5.7)

Consequently, a positive relative change indicates the percentage by which weighted GP-based

novelty detection outperformed novelty detection based on the corresponding standard GP.

Similarly, a negative relative change indicates the percentage by which weighted GP-based

novelty detection underperformed compared to novelty detection based on the corresponding

standard GP. Additionally, each table lists the number of positive and negative significant

differences that corresponded to a relative change in AUC greater or equal than 2% (in absolute

values).

177

5.4.1.1 Points within Circles

The table below shows that the proposed weighted GPs significantly outperformed standard GPs

in the vast majority of cases for this data set. Note that standard GPs were never able to

outperform our weighted GPs.

Table 5.1: Number of positive and negative relative changes in AUC that were significant at α =

0.01, and how many of them had its absolute value greater or equal than 2%. Points within

Circles data set.

5.4.1.2 Vertebral Column

The table below shows that our weighted bath GPs clearly outperformed the standard batch GPs,

while the opposite was never the case. However, there is not a clear winner between the two GP

variants if we considered all types of GPs (i.e. batch and online GPs combined).

ContaminationLevel GPType Positive_AUC_Changes Negative_AUC_Changes Positive_AUC_Changes Negative_AUC_Changes

0 Batch

0 Online

0 SOGP_m10 1 1

0 SOGP_m30

5 Batch 4 1

5 Online 4 1

5 SOGP_m10 4 4

5 SOGP_m30 4 4

10 Batch 4 4

10 Online 4 4

10 SOGP_m10 4 4

10 SOGP_m30 4 4

15 Batch 4 4

15 Online 4 4

15 SOGP_m10 4 4

15 SOGP_m30 4 4

20 Batch 4 4

20 Online 4 4

20 SOGP_m10 4 4

20 SOGP_m30 4 4

All Combined Batch 16 13

All Combined Online 16 13

All Combined SOGP_m10 17 17

All Combined SOGP_m30 16 16

Significant differences alpha = 0.01

Significant differences alpha = 0.01 and

Abs(Relative_Change_Perc) >= 2%

178

Table 5.2: Number of positive and negative relative changes in AUC that were significant at α =

0.01, and how many of them had absolute value greater or equal than 2%. Vertebral Column data

set.

5.4.1.3 Pima Indians Diabetes

The values in Table 5.3 shows that our weighted GPs clearly outperformed the corresponding

standard GPs in all cases except for SOGPm_10, which clearly was too limited in capacity to

benefit from our data weigher. Interestingly, from the significant positive differences only those

corresponding to SOGP_m30 represented an increase in AUC value that exceeded a 2% relative

change.

ContaminationLevel GPType Positive_AUC_Changes Negative_AUC_Changes Positive_AUC_Changes Negative_AUC_Changes

0 Batch 1

0 Online

0 SOGP_m10

0 SOGP_m30 3

5 Batch 3

5 Online

5 SOGP_m10

5 SOGP_m30 2

10 Batch 4

10 Online 1

10 SOGP_m10

10 SOGP_m30 3

15 Batch 4

15 Online 3

15 SOGP_m10

15 SOGP_m30 1

20 Batch 4

20 Online 2

20 SOGP_m10

20 SOGP_m30 1 1

All Combined Batch 16

All Combined Online 6

All Combined SOGP_m10

All Combined SOGP_m30 6 4 1

Significant differences alpha = 0.01

Significant differences alpha = 0.01 and

Abs(Relative_Change_Perc) >= 2%

179

Table 5.3: Number of positive and negative relative changes in AUC that were significant at α =

0.01, and how many of them had absolute value greater or equal than 2%. Pima Indians Diabetes

data set.

5.4.1.4 Caltech 101

Individual Target Classes

The values shown in tables ranging from Table 5.4 to Table 5.10 indicate mixed results for the

Caltech 101 data set. Our weighted GPs outperformed standard GPs for the target classes Beaver,

Cougar Body, Crocodile and Joshua Tree. On the other hand, results for the target classes

Minaret, Okapi and Windsor Chair favor the standard GPs. Note however that for all target

classes our weighted batch GPs outperformed standard batch GPs. More insight about this

regularity and a possible explanation for the mixed results in the case of online GPs are provided

in section 5.4.1.5, which contains an analysis of the results from all data sets.

ContaminationLevel GPType Positive_AUC_Changes Negative_AUC_Changes Positive_AUC_Changes Negative_AUC_Changes

0 Batch 4

0 Online 4

0 SOGP_m10

0 SOGP_m30 4 3

5 Batch 4

5 Online 4

5 SOGP_m10

5 SOGP_m30 4 4

10 Batch 4

10 Online 4

10 SOGP_m10

10 SOGP_m30 4 3

15 Batch 4

15 Online 4

15 SOGP_m10

15 SOGP_m30 4 1

20 Batch 4

20 Online 4

20 SOGP_m10

20 SOGP_m30 4 3

All Combined Batch 20

All Combined Online 20

All Combined SOGP_m10

All Combined SOGP_m30 20 14

Significant differences alpha = 0.01 and

Abs(Relative_Change_Perc) >= 2%Significant differences alpha = 0.01

180

Table 5.4: Number of positive and negative relative changes in AUC that were significant at α =

0.01, and how many of them had absolute value greater or equal than 2%. Caltech 101 data set.

Beaver target class.

Table 5.5: Number of positive and negative relative changes in AUC that were significant at α =

0.01, and how many of them had absolute value greater or equal than 2%. Caltech 101 data set.

Cougar Body target class.

ContaminationLevel GPType Positive_AUC_Changes Negative_AUC_Changes Positive_AUC_Changes Negative_AUC_Changes

0 Batch 2 1

0 Online 3

0 SOGP_m10 2

0 SOGP_m30 3

5 Batch 3 2

5 Online 4 3

5 SOGP_m10 1 1

5 SOGP_m30 4 4

10 Batch 4 2

10 Online 4 4

10 SOGP_m10

10 SOGP_m30 4 4

15 Batch 4 4

15 Online 4 4

15 SOGP_m10 2 2

15 SOGP_m30 4 4

20 Batch 4 4

20 Online 4 4

20 SOGP_m10 3 3

20 SOGP_m30 4 4

All Combined Batch 17 1 12

All Combined Online 19 15

All Combined SOGP_m10 6 2 6

All Combined SOGP_m30 19 16

Significant differences alpha = 0.01

Significant differences alpha = 0.01 and

Abs(Relative_Change_Perc) >= 2%

ContaminationLevel GPType Positive_AUC_Changes Negative_AUC_Changes Positive_AUC_Changes Negative_AUC_Changes

0 Batch 3 1

0 Online 4

0 SOGP_m10 1 1 1 1

0 SOGP_m30 4

5 Batch 4 4

5 Online

5 SOGP_m10 1 1 1 1

5 SOGP_m30

10 Batch 4 4

10 Online 4 4

10 SOGP_m10 1 1

10 SOGP_m30 4 4

15 Batch 4 4

15 Online 4 4

15 SOGP_m10 1 1

15 SOGP_m30 4 4

20 Batch 4 4

20 Online 4 4

20 SOGP_m10 1 1

20 SOGP_m30 4 4

All Combined Batch 19 17

All Combined Online 12 4 12

All Combined SOGP_m10 4 3 4 3

All Combined SOGP_m30 12 4 12

Significant differences alpha = 0.01

Significant differences alpha = 0.01 and

Abs(Relative_Change_Perc) >= 2%

181

Table 5.6: Number of positive and negative relative changes in AUC that were significant at α =

0.01, and how many of them had absolute value greater or equal than 2%. Caltech 101 data set.

Crocodile target class.

Table 5.7: Number of positive and negative relative changes in AUC that were significant at α =

0.01, and how many of them had absolute value greater or equal than 2%. Caltech 101 data set.

Joshua Tree target class.

ContaminationLevel GPType Positive_AUC_Changes Negative_AUC_Changes Positive_AUC_Changes Negative_AUC_Changes

0 Batch 4 4

0 Online 4

0 SOGP_m10 3 2

0 SOGP_m30 4

5 Batch 4 4

5 Online 4 4

5 SOGP_m10 3 3

5 SOGP_m30 3 3

10 Batch 4 4

10 Online 4 4

10 SOGP_m10 2 2

10 SOGP_m30 3 3

15 Batch 4 4

15 Online 4 4

15 SOGP_m10 2 2

15 SOGP_m30 4 4

20 Batch 4 4

20 Online 4 4

20 SOGP_m10 3 3

20 SOGP_m30 4 4

All Combined Batch 20 20

All Combined Online 20 16

All Combined SOGP_m10 13 12

All Combined SOGP_m30 18 14

Significant differences alpha = 0.01

Significant differences alpha = 0.01 and

Abs(Relative_Change_Perc) >= 2%

ContaminationLevel GPType Positive_AUC_Changes Negative_AUC_Changes Positive_AUC_Changes Negative_AUC_Changes

0 Batch 4 2

0 Online 4 2

0 SOGP_m10 2 2

0 SOGP_m30 4 3

5 Batch 1

5 Online

5 SOGP_m10 1 1

5 SOGP_m30 1 1

10 Batch 4 4

10 Online

10 SOGP_m10 2 2

10 SOGP_m30 1

15 Batch 4 4

15 Online 3 3

15 SOGP_m10 3 3

15 SOGP_m30 2 2

20 Batch 4 4

20 Online 3 3

20 SOGP_m10 3 3

20 SOGP_m30 2 2

All Combined Batch 13 4 12 2

All Combined Online 6 4 6 2

All Combined SOGP_m10 11 2 9

All Combined SOGP_m30 4 6 4 4

Significant differences alpha = 0.01

Significant differences alpha = 0.01 and

Abs(Relative_Change_Perc) >= 2%

182

Table 5.8: Number of positive and negative relative changes in AUC that were significant at α =

0.01, and how many of them had absolute value greater or equal than 2%. Caltech 101 data set.

Minaret target class.

Table 5.9: Number of positive and negative relative changes in AUC that were significant at α =

0.01, and how many of them had absolute value greater or equal than 2%. Caltech 101 data set.

Okapi target class.

ContaminationLevel GPType Positive_AUC_Changes Negative_AUC_Changes Positive_AUC_Changes Negative_AUC_Changes

0 Batch 3

0 Online 4

0 SOGP_m10 4

0 SOGP_m30 4

5 Batch 4

5 Online 3

5 SOGP_m10 3 3

5 SOGP_m30 3 1

10 Batch 4 3

10 Online 3 2

10 SOGP_m10 4 4

10 SOGP_m30 1

15 Batch 4 4

15 Online 3 3

15 SOGP_m10 4 4

15 SOGP_m30 1 1

20 Batch 4 4

20 Online 4 4

20 SOGP_m10 3 3

20 SOGP_m30 3 3

All Combined Batch 16 3 11

All Combined Online 17 9

All Combined SOGP_m10 18 14

All Combined SOGP_m30 12 5

Significant differences alpha = 0.01

Significant differences alpha = 0.01 and

Abs(Relative_Change_Perc) >= 2%

ContaminationLevel GPType Positive_AUC_Changes Negative_AUC_Changes Positive_AUC_Changes Negative_AUC_Changes

0 Batch 4

0 Online 4

0 SOGP_m10 4 2

0 SOGP_m30 4

5 Batch

5 Online 2

5 SOGP_m10 3 3

5 SOGP_m30 2

10 Batch 2 1

10 Online 1

10 SOGP_m10 2 2

10 SOGP_m30 2

15 Batch 3 2

15 Online 2 2

15 SOGP_m10 3 3

15 SOGP_m30 1

20 Batch 4 3

20 Online

20 SOGP_m10 2 2

20 SOGP_m30

All Combined Batch 9 4 6

All Combined Online 9 2

All Combined SOGP_m10 14 12

All Combined SOGP_m30 9

Significant differences alpha = 0.01

Significant differences alpha = 0.01 and

Abs(Relative_Change_Perc) >= 2%

183

Table 5.10: Number of positive and negative relative changes in AUC that were significant at α =

0.01, and how many of them had absolute value greater or equal than 2%. Caltech 101 data set.

Windsor Chair target class.

All Target Classes Combined

Table 5.11 contains the totals obtained by aggregating the results from Table 5.4 to Table 5.10. It

is clear by looking at this table that results are highly mixed for the Caltech 101 data set.

However, it is also evident that for all target classes our weighted batch GPs outperformed

standard batch GPs in the vast majority of cases. As mentioned above, more insight about this

regularity is offered in section 5.4.1.5.

ContaminationLevel GPType Positive_AUC_Changes Negative_AUC_Changes Positive_AUC_Changes Negative_AUC_Changes

0 Batch 4

0 Online 3

0 SOGP_m10 1

0 SOGP_m30 1 2

5 Batch 4 4

5 Online 4 4

5 SOGP_m10 3 3

5 SOGP_m30 3 3

10 Batch 4 4

10 Online 4 4

10 SOGP_m10 4 4

10 SOGP_m30 4 4

15 Batch 4 4

15 Online 4 4

15 SOGP_m10 4 4

15 SOGP_m30 4 4

20 Batch 4 4

20 Online 4 4

20 SOGP_m10 1 1

20 SOGP_m30 4 4

All Combined Batch 20 16

All Combined Online 19 16

All Combined SOGP_m10 13 12

All Combined SOGP_m30 1 17 15

Significant differences alpha = 0.01

Significant differences alpha = 0.01 and

Abs(Relative_Change_Perc) >= 2%

184

Table 5.11: Number of positive and negative relative changes in AUC that were significant at α =

0.01, and how many of them had absolute value greater or equal than 2%. Caltech 101 data set.

All classes combined.

5.4.1.5 Analysis of Results

The weighted GP variants greatly outperformed the corresponding standard GPs for all positive

contamination levels when data from the Points within Circles data set became contaminated

with outliers, as shown in Table 5.1. This outstanding performance was obtained because of the

simplicity of the corresponding detection problem. In the case of Pima Indians Diabetes, it is

remarkable that there was not a single occasion in which standard GPs significantly

outperformed weighted GPs, as can be seen in Table 5.3. On the other hand, weighted GPs

significantly outperformed standard GPs for all GP types except for SOGP with m = 10. This

result suggests that m = 10 is a very low capacity value for this particular problem. Interestingly,

ContaminationLevel GPType Positive_AUC_Changes Negative_AUC_Changes Positive_AUC_Changes Negative_AUC_Changes

0 Batch 13 12 5 2

0 Online 7 19 2

0 SOGP_m10 6 14 3 3

0 SOGP_m30 8 18 3

5 Batch 20 14

5 Online 8 9 7 4

5 SOGP_m10 6 10 6 10

5 SOGP_m30 7 9 7 5

10 Batch 26 22

10 Online 12 8 12 6

10 SOGP_m10 4 11 4 11

10 SOGP_m30 11 8 11 4

15 Batch 27 26

15 Online 15 9 15 9

15 SOGP_m10 8 11 8 11

15 SOGP_m30 14 6 14 5

20 Batch 28 27

20 Online 15 8 15 8

20 SOGP_m10 10 6 10 6

20 SOGP_m30 14 7 14 7

All Combined Batch 114 12 94 2

All Combined Online 57 53 49 29

All Combined SOGP_m10 34 52 31 41

All Combined SOGP_m30 54 48 46 24

Significant differences alpha = 0.01

Significant differences alpha = 0.01 and

Abs(Relative_Change_Perc) >= 2%

185

significant differences related to relative AUC changes of at least 2% corresponded only to

weighted SOGP with m = 30. It is not clear to the author why other weighted GPs did not

achieve the same level of positive relative change. A possible explanation is that the capacity m

= 30 permitted the weighted SOGP to properly learn from the data but at the same it enforced the

removal of superfluous or potentially misleading observations. This suggestion is based on

extrapolating the observation from the previous chapter on how our weighted SOGP tended to

retain less outlying data points than standard SOGP.

In the case of classes from Caltech 101, if we looked at the results from all classes combined,

shown in Table 5.11, there were more cases in which weighted GPs outperformed the standard

GPs than the opposite, except –again– for SOGP with m = 10. However, there were several

occasions in which standard GPs outperformed weighted GPs as well. At first glance, it seems

that there was not a clear winner between weighted and standard GPs for the Caltech 101 data

set. However, if we considered only the case of weighted batch GPs vs. standard batch GPs, then

a clear regularity emerges: novelty detection based on weighted batch GP consistently and

significantly outperformed novelty detection based on standard batch GP for all target classes

and all positive contamination levels. Given that online GP and SOGP are approximations to

batch GP, the regularity mentioned above substantiates the superiority of weighted GP-based

novelty detection also in the case of the Caltech 101 data set.

Finally, results from the Vertebral Column data set showed the least number of significant

differences, with various cases in which standard GPs significantly outperformed weighted GPs.

However, the regularity mentioned above appears here as well: weighted batch GPs consistently

186

and significantly outperformed standard batch GPs for all positive contamination levels, as

shown in Table 5.2. Furthermore, there was not a single case in which standard batch GP

significantly outperformed weighted batch GP when data was contaminated with outliers. If we

restricted our analysis only to the case of significant differences corresponding to relative AUC

changes of at least 2%, note that only one significant difference remains: a case in which

weighted SOGP with m = 30 outperformed the corresponding standard SOGP at 20%

contamination level. The author believes that the same possible reason given above for a similar

case from the Pima Indians Diabetes data set may apply in this case.

The aggregated results presented in Table 5.12 offer the big picture of differences in

performance across all data sets. These results clearly highlight the regularity across all

individual data sets noted above (i.e. that novelty detection based on weighted batch GP

consistently and significantly outperformed novelty detection based on standard batch GP

whenever data was contaminated with outliers). This regularity validates our hypothesis that our

implicit weighted GPs perform better than standard GPs when training data is contaminated with

outliers.

187

Table 5.12: Number of positive and negative relative changes in AUC that were significant at α =

0.01, and how many of them had absolute value greater or equal than 2%. Results aggregated

from all data sets.

5.4.2 Comparison of Scores

This section analyzes the tables that resulted from the analysis of the multivariate one-way

ANOVAs employed to compare the performance of the four scores. This analysis was done in

two steps. The first step consisted in obtaining one table per data set that registered whether there

was a best and worst novelty score for each combination of outlier contamination level and GP

type (based on the existence of pair-wise significant differences from Tukey HSD test, as

described in section 5.2). Note that this first table contains 10 rows, given that two types of GPs

(weighted batch GP and standard batch GP) were run at each of the five contamination levels

(0%, 5%, 10%, 15% and 20%). For the cases in which no score was significantly better or worse

ContaminationLevel GPType Positive_AUC_Changes Negative_AUC_Changes Positive_AUC_Changes Negative_AUC_Changes

0 Batch 18 12 5 2

0 Online 11 19 0 2

0 SOGP_m10 7 14 4 3

0 SOGP_m30 15 18 3 3

5 Batch 31 15

5 Online 16 9 8 4

5 SOGP_m10 10 10 10 10

5 SOGP_m30 17 9 15 5

10 Batch 38 26

10 Online 20 9 16 6

10 SOGP_m10 8 11 8 11

10 SOGP_m30 19 11 18 4

15 Batch 39 30

15 Online 23 12 19 9

15 SOGP_m10 12 11 12 11

15 SOGP_m30 22 7 19 5

20 Batch 40 31

20 Online 23 10 19 8

20 SOGP_m10 14 6 14 6

20 SOGP_m30 23 7 22 7

All Combined Batch 166 12 107 2

All Combined Online 93 59 62 29

All Combined SOGP_m10 51 52 48 41

All Combined SOGP_m30 96 52 77 24

Significant differences alpha = 0.01

Significant differences alpha = 0.01 and

Abs(Relative_Change_Perc) >= 2%

188

than the other scores, the corresponding table cells were labeled as “NA”. The second step

consisted in aggregating into a second table the information from the corresponding first table

over the different contamination levels. Each second table shows how many times each score

was significantly better or worse than the others for each GP type. Given that our conclusions,

which are presented in a following section, were based on the aggregated tables from the second

step, only those tables are presented in this subsection. The reader can refer to Appendix A to

review the first set of tables, which served as the source for the tables presented here.

5.4.2.1 Points within Circles

The following table indicates that the Mean membership score was the worst score for the Points

within Circles data set in four out of ten instances. No score was significantly better than the rest

for this data set.

Table 5.13: Counting best and worst novelty detection scores, aggregated over all contamination

levels. Points within Circles data set.

5.4.2.2 Vertebral Column

The following table shows that the Mean score performed significantly worse than the other

scores for the Vertebral Column data set. As with the previous data set, no score was

significantly better than the others in this case.

 / Score

GPType Best Worst Best Worst Best Worst Best Worst

Batch 4

WeightedBatch

TOTALS 4

Mean NegVariance Probability Heuristic

189

Table 5.14: Counting best and worst novelty detection scores, aggregated over all contamination

levels. Vertebral Column data set.

5.4.2.3 Pima Indians Diabetes

In the case of the Pima Indians Diabetes data set, we obtained that the Negative Variance score

was the best score in various occasions. This can be seen in Table 5.15 below. Note that the

Mean score was significantly outperformed by the other scores for all GP types and all

contamination levels.

Table 5.15: Counting best and worst novelty detection scores, aggregated over all contamination

levels. Pima Indians Diabetes data set.

5.4.2.4 Caltech 101

Individual Target Classes

The values shown in tables ranging from Table 5.16 to Table 5.22 depicts a mixed set of results

for the Caltech 101. This is not surprising given the different types of objects with different

backgrounds contained in the images of each target class. However, a few regularities are worth

of mentioning here. The Mean score behaved unreliably, ranging from the best score in very few

cases to the worst score in multiple cases. The Negative Variance score was the worst score for

multiple target classes, and it never was the best score. Finally, the Probability and Heuristic

 / Score

GPType Best Worst Best Worst Best Worst Best Worst

Batch 5

WeightedBatch 2

TOTALS 7

Mean NegVariance Probability Heuristic

 / Score

GPType Best Worst Best Worst Best Worst Best Worst

Batch 5 2

WeightedBatch 5 4

TOTALS 10 6

Mean NegVariance Probability Heuristic

190

scores appeared at least once as the best score for two and three target classes, respectively.

There was no target class for which these two scores could be labeled as the worst score.

Table 5.16: Counting best and worst novelty detection scores, aggregated over all contamination

levels. Beaver data set.

Table 5.17: Counting best and worst novelty detection scores, aggregated over all contamination

levels. Cougar Body data set.

Table 5.18: Counting best and worst novelty detection scores, aggregated over all contamination

levels. Crocodile data set.

Table 5.19: Counting best and worst novelty detection scores, aggregated over all contamination

levels. Joshua Tree data set.

 / Score

GPType Best Worst Best Worst Best Worst Best Worst

Batch 2

WeightedBatch 5 3

TOTALS 7 3

Mean NegVariance Probability Heuristic

 / Score

GPType Best Worst Best Worst Best Worst Best Worst

Batch 1 1

WeightedBatch 2 1

TOTALS 3 2

Mean NegVariance Probability Heuristic

 / Score

GPType Best Worst Best Worst Best Worst Best Worst

Batch 1 1

WeightedBatch 1 4

TOTALS 2 5

Mean NegVariance Probability Heuristic

 / Score

GPType Best Worst Best Worst Best Worst Best Worst

Batch 1

WeightedBatch 1 5

TOTALS 1 6

Mean NegVariance Probability Heuristic

191

Table 5.20: Counting best and worst novelty detection scores, aggregated over all contamination

levels. Minaret data set.

Table 5.21: Counting best and worst novelty detection scores, aggregated over all contamination

levels. Okapi data set.

Table 5.22: Counting best and worst novelty detection scores, aggregated over all contamination

levels. Windsor Chair data set.

All Target Classes Combined

The table that appears below aggregates the results from the individual target classes of the

Caltech 101 data set. The regularities noted above for the case of the individual target classes are

easier to spot when these aggregated results are considered.

Table 5.23: Counting of best and worst novelty detection scores. All target classes combined.

 / Score

GPType Best Worst Best Worst Best Worst Best Worst

Batch 3 1

WeightedBatch 3

TOTALS 3 4

Mean NegVariance Probability Heuristic

 / Score

GPType Best Worst Best Worst Best Worst Best Worst

Batch 4 1

WeightedBatch 3

TOTALS 7 1

Mean NegVariance Probability Heuristic

 / Score

GPType Best Worst Best Worst Best Worst Best Worst

Batch 2 4

WeightedBatch 5

TOTALS 7 4

Mean NegVariance Probability Heuristic

 / Score

GPType Best Worst Best Worst Best Worst Best Worst

Batch 1 6 10 5

WeightedBatch 2 7 21 3

TOTALS 3 13 31 3 5

Mean NegVariance Probability Heuristic

192

5.4.2.5 Analysis of Results

Various conclusions can be derived from the tables that compare the membership scores.

Arguably the most important conclusion is that no score can be considered better or worse than

the other three in absolute terms. However, there are some interesting observations to be made.

The Mean score showed a fluctuating performance across all data sets, leaning in the majority of

cases towards bad performance, a characteristic that was also reported by (Kemmler M. , Rodner,

Wacker, & Denzler, 2013). The Negative Variance score was the score of choice in (Kemmler

M. , Rodner, Wacker, & Denzler, 2013). However, this score performed worse than the

Probability and Heuristic scores on all the data sets except Pima Indian Diabetes. It is difficult to

determine the reasons behind this difference in results, given that the work by Kemmler et al.

averaged the AUC values across all 101 classes contained in Caltech 101. Furthermore, although

their work also employed the SPM kernel, they used a different clustering technique to build

their dictionaries. In any case, our results show that Negative Variance (a.k.a. GP-Reg-V) is not

necessarily the score of choice for visual object recognition and other tasks. For the data sets

considered here, the Heuristic and Probability scores performed similarly or better than the other

two scores in most cases. Additionally, these two scores were the only scores that never appeared

as the worst score in our experiments. This result in conjunction with the disappointing

performance of the Mean and Negative Variance scores suggest that membership scores that use

a combination of the posterior mean and the posterior variance are more appropriate for GP-

based novelty detection in most cases. Interestingly, the Heuristic and Probability scores were

the only scores in the work by Kemmler et al. that significantly outperformed SVDD for the two

kernels used in that research. That fact was not highlighted in their paper given the good average

193

performance of the Negative Variance score when they used their preferred SPM kernel. Table

5.24 aggregates the results discussed in this section across all data sets. The conclusions offered

here can be seen clearly from the aggregated values.

Table 5.24: Counting of best and worst novelty detection scores. All target classes combined.

5.4.3 Comparison of Batch GPs and Online GPs

As mentioned above, the first step in order to compare batch GPs and the different types of

online GPs was to select a suitable membership score for each data set, employing the approach

described in section 5.2.2. The membership score selected for each data set is listed in Table

5.25.

The following subsections contain tables that show the number of times each type of GP was

allocated to each particular rank, aggregating over all contamination levels. Note that standard

GPs and weighted GPs were aggregated separately. The reader may refer to Appendix B to look

at the same information listed for individual contamination levels.

Table 5.25: Suitable membership score for each data set.

Data set Suitable Membership Score

Points within Circles Heuristic

Vertebral Column Heuristic

Pima Indians Diabetes Negative Variance

Caltech 101 Heuristic

 / Score

GPType Best Worst Best Worst Best Worst Best Worst

Batch 1 20 2 10 5

WeightedBatch 2 14 4 21 3

TOTALS 3 34 6 31 3 5

Mean NegVariance Probability Heuristic

194

5.4.3.1 Points within Circles

The table shown below contains the rank allocation for the different GP types, aggregated over

all contamination levels. It is clear that batch GP and online GP were the best performers, both in

the standard and weighted cases. SOGP_m30 showed as good performance as online GP and

batch GP only when using weighted GPs. The fact that SOGP_m10 occupied the last rank in

most cases indicates that its capacity was not appropriate for this problem.

Table 5.26: Counting of rank allocation for each particular GP type, aggregated over

contamination levels. Points within Circles data set.

5.4.3.2 Vertebral Column

Similarly to the previous data set, online GP and batch GP consistently shared Rank 1 as the best

performers. SOGP_m30 was consistently assigned to Rank 2. SOGP_m10 was consistently

allocated to the last rank. Again, this indicates that capacity equal to 10 was not appropriate for

this problem. These results can be seen below, in Table 5.27.

Standard/Weighted GP Type Rank 1 Rank 2 Rank 3 Rank 4

BatchGP 5

OnlineGP 5

SOGP_m10 1 4

SOGP_m30 1 4

BatchGP 5

OnlineGP 5

SOGP_m10 1 4

SOGP_m30 5

Standard

Weighted

195

Table 5.27: Counting of rank allocation for each particular GP type, aggregated over

contamination levels. Vertebral Column data set.

5.4.3.3 Pima Indians Diabetes

The results for the Pima Indians Diabetes were very similar to those obtained for the previous

two data sets. They are shown in the table below.

Table 5.28: Counting of rank allocation for each particular GP type, aggregated over

contamination levels. Pima Indians Diabetes data set.

5.4.3.4 Caltech 101

Individual Target Classes

The results for the different target classes of the Caltech 101 data set were different depending on

whether the standard GPs or our weighted GPs were employed. In the case of standard GPs,

online GP and batch GP shared Rank 1 as the best performers in the vast majority of cases, and

SOGPm_30 was capable of achieving similar performances in many cases. SOGP_m10 was

Standard/Weighted GP Type Rank 1 Rank 2 Rank 3 Rank 4

BatchGP 5

OnlineGP 5

SOGP_m10 5

SOGP_m30 5

BatchGP 5

OnlineGP 5

SOGP_m10 5

SOGP_m30 5

Standard

Weighted

Standard/Weighted GP Type Rank 1 Rank 2 Rank 3 Rank 4

BatchGP 5

OnlineGP 5

SOGP_m10 4 1

SOGP_m30 5

BatchGP 5

OnlineGP 5

SOGP_m10 5

SOGP_m30 5

Standard

Weighted

196

typically relegated to Rank 2, although in a few cases it was also able to match the performance

of batch GP and online GP. In the case of weighted GPs, there were more differences between

the different GP types. In various cases batch GP outperformed online GP, and SOGP_m10

tended to occupy Ranks 3 and 4 for multiple target classes. The following tables show the results

corresponding to each target class. Section 5.4.3.5 offers some insight regarding the different

results obtained when employing standard GPs and weighted GPs.

Table 5.29: Counting of rank allocation for each particular GP type, aggregated over

contamination levels. Caltech 101 data set. Beaver target class.

Table 5.30: Counting of rank allocation for each particular GP type, aggregated over

contamination levels. Caltech 101 data set. Cougar Body target class.

Standard/Weighted GP Type Rank 1 Rank 2 Rank 3 Rank 4

BatchGP 5

OnlineGP 5

SOGP_m10 3 2

SOGP_m30 5

BatchGP 2 3

OnlineGP 4 1

SOGP_m10 2 3

SOGP_m30 5

Standard

Weighted

Standard/Weighted GP Type Rank 1 Rank 2 Rank 3 Rank 4

BatchGP 5

OnlineGP 5

SOGP_m10 3 2

SOGP_m30 5

BatchGP 5

OnlineGP 3 2

SOGP_m10 3 2

SOGP_m30 3 2

Standard

Weighted

197

Table 5.31: Counting of rank allocation for each particular GP type, aggregated over

contamination levels. Caltech 101 data set. Crocodile target class.

Table 5.32: Counting of rank allocation for each particular GP type, aggregated over

contamination levels. Caltech 101 data set. Joshua Tree target class.

Table 5.33: Counting of rank allocation for each particular GP type, aggregated over

contamination levels. Caltech 101 data set. Minaret target class.

Standard/Weighted GP Type Rank 1 Rank 2 Rank 3 Rank 4

BatchGP 5

OnlineGP 5

SOGP_m10 4 1

SOGP_m30 5

BatchGP 5

OnlineGP 3 2

SOGP_m10 1 2 2

SOGP_m30 2 3

Weighted

Standard

Standard/Weighted GP Type Rank 1 Rank 2 Rank 3 Rank 4

BatchGP 5

OnlineGP 5

SOGP_m10 4 1

SOGP_m30 4 1

BatchGP 5

OnlineGP 2 3

SOGP_m10 2 3

SOGP_m30 2 3

Standard

Weighted

Standard/Weighted GP Type Rank 1 Rank 2 Rank 3 Rank 4

BatchGP 4 1

OnlineGP 4 1

SOGP_m10 1 4

SOGP_m30 2 3

BatchGP 5

OnlineGP 1 4

SOGP_m10 1 1 3

SOGP_m30 1 1 3

Standard

Weighted

198

Table 5.34: Counting of rank allocation for each particular GP type, aggregated over

contamination levels. Caltech 101 data set. Okapi target class.

Table 5.35: Counting of rank allocation for each particular GP type, aggregated over

contamination levels. Caltech 101 data set. Windsor Chair target class.

All Target Classes Combined

The following table aggregates the results from the individual target classes. The results

mentioned above for the individual target classes still can be seen here.

Table 5.36: Counting of rank allocation for each particular GP type, aggregated over

contamination levels. Caltech 101 data set. All target classes combined.

Standard/Weighted GP Type Rank 1 Rank 2 Rank 3 Rank 4

BatchGP 5

OnlineGP 5

SOGP_m10 5

SOGP_m30 5

BatchGP 5

OnlineGP 3 2

SOGP_m10 3 2

SOGP_m30 3 2

Standard

Weighted

Standard/Weighted GP Type Rank 1 Rank 2 Rank 3 Rank 4

BatchGP 5

OnlineGP 5

SOGP_m10 4 1

SOGP_m30 4 1

BatchGP 5

OnlineGP 5

SOGP_m10 4 1

SOGP_m30 4 1

Standard

Weighted

Standard/Weighted GP Type Rank 1 Rank 2 Rank 3 Rank 4

BatchGP 34 1

OnlineGP 34 1

SOGP_m10 10 19 6

SOGP_m30 30 5

BatchGP 32 3

OnlineGP 16 19

SOGP_m10 1 11 16 7

SOGP_m30 14 14 7

Standard

Weighted

199

5.4.3.5 Analysis of Results

Table 5.37, shown below, aggregates the previous results over all data sets. It provides a big

picture of how the different GP types compared to each other, both for standard GPs and

weighted GPs.

Table 5.37: Counting of rank allocation for each particular GP type, aggregated over

contamination levels and all data sets.

Three conclusions are apparent from the results shown in Table 5.37, as well as from the notes

from the previous subsections:

 (1) Online GP can provide as good performances as batch GP when using standard GP variants,

based on how batch GP and (non-sparse) online GP were both allocated to Rank 1 in 49 cases

(out of 50 cases in total). However, if we were using our weighted GP variants, then batch GP

took greater advantage of weights than online GPs: our weighted online GP was assigned to

Rank 1 in 31 cases, while in the other 19 cases it was downgraded to Rank 2. Comparatively, our

weighted batch GP occupied Rank 1 in 47 cases. Taking into account that weighted GPs

consistently and significantly outperformed standard GPs for all data sets only in the batch case

(as concluded in section 5.4.1.5), it is reasonable to hypothesize that such significant difference

is the main reason for having significant differences between weighted batch GP and weighted

online GP. However, the author also noticed that in a few cases, such effect was intensified by an

Standard/Weighted GP Type Rank 1 Rank 2 Rank 3 Rank 4

BatchGP 49 1

OnlineGP 49 1

SOGP_m10 11 23 16

SOGP_m30 31 19

BatchGP 47 3

OnlineGP 31 19

SOGP_m10 2 15 26 7

SOGP_m30 19 24 7

Standard

Weighted

200

actual decrease in performance of weighted online GP compared to standard online GP (this can

be seen in the tables of Appendix B, which contain the average performance of the different GP

types for each contamination level). In those cases, apparently the set of observations used to

train the weighted online GPs were not large enough to offset the possibly misleading influence

of imprecise weights calculated at the beginning of the training process (when few observations

are available to the online GP). Finally, note that all cases in which online GP and batch GP were

not assigned to Rank 1 correspond to the more complex Caltech 101 data set. This is can be

easily verified by looking at the tables corresponding to other data sets (i.e. Table 5.26, Table

5.27 and Table 5.28).

(2) The performances of SOGP_m10 were typically allocated to the last ranks, indicating that

capacity m = 10 was insufficient to grasp the difficulties of the problems at hand.

(3) In many cases SOGP_m30 shared the rank of the best performer batch GP. This makes

SOGP an attractive alternative to consider when implementing GP-based novelty detection on

systems with strong memory constraints, as far as a suitable capacity limit can be employed. This

was particularly evident when using standard GPs, where SOGP_m30 was allocated to rank 1 in

62% of the experiments. When our weighted GP variants were used, this was the case in only

38% of the experiments. Apparently SOGP_m30 was affected by misleading weights that were

calculated at the beginning of the training process, as it should have been the case with online GP

as well. Still, note that the effect of initial imprecise weights should fade with time, provided

online GPs are trained on a long enough sequence of observations.

201

CHAPTER 6: CONCLUSIONS

This chapter concludes this dissertation. It provides a brief summary of the work and results

described in the previous chapters. Additionally, it offers conclusions that are derived from our

results, and suggests further research that can departure from the theoretical and experimental

work described here.

6.1 Summary

The increasing amount of data present in real-life problems, its variety, and the ever growing

need to process data at faster speeds, make the problem of automated novelty detection

particularly important. Multiple methods and approaches have been proposed to address this

problem. Most of these are reviewed in chapter 1 of this dissertation. Kernel methods taken from

the classification approach have been particularly successful, such as the Support Vector Data

Description (SVDD) method (Tax & Duin, 2004), one-class SVM (Schölkopf, Platt, Shawe-

Taylor, Smola, & Williamson, 2001) and Online SVDD (Tax & Laskov, 2003). It has been

proposed recently to use Gaussian processes (GPs) as part of an approach to novelty detection

that builds membership scores based on the predictive distribution of GPs (Kemmler M. ,

Rodner, Wacker, & Denzler, 2013). This GP-based novelty detection approach has been used

with great success on multiple real-life problems, and it has been proven to outperform state-of-

the-art methods such as SVDD and one-class SVM (Kemmler M. , Rodner, Wacker, & Denzler,

2013), (Krishna, Bodesheim, & Denzler, 2013). Additionally, GP-based novelty detection also

202

benefits from various advantages associated to Bayesian learning methods, which were briefly

reviewed in chapter 2 of this dissertation.

Despite the recent success of GP-based novelty detection, that approach has a potential limitation

that was demonstrated with a simple example in chapter 3: standard GPs employing Gaussian

likelihoods are highly sensitive to outliers in the training data (Jylänki, Vanhatalo, & Vehtari,

2011). This limitation is particularly evident when maximum likelihood estimation (MLE) is

employed to estimate the hyperparameters of the GP model. MLE is commonly used to estimate

hyperparameters, but it has been shown that it is highly sensitive to outliers in the data

(Agostinelli & Greco, 2013). Current efforts to address this problem include the use of pseudo-

likelihoods (Greco, Racugno, & Ventura, 2008) and likelihoods corresponding to robust

distributions (Jylänki, Vanhatalo, & Vehtari, 2011). However, these approaches lead to

analytically intractable inferences, which involve the use of approximation techniques that are

typically complex, computationally expensive and/or inefficient. The work in (Agostinelli &

Greco, 2013) proposes the use of weighted likelihoods in Bayes formula to obtain robust

Bayesian inferences. Weighted likelihoods are defined in (Agostinelli & Greco, 2013) as joint

likelihoods in which weight functions serve as exponents of each likelihood term. Aside from

being restrictive regarding the location of the weight functions and not being specifically applied

to GPs, the type of weight functions proposed in (Agostinelli & Greco, 2013) might be expensive

to compute, given its dependency on parameter estimates and the empirical cumulative

distribution function. The work in (Rottmann & Burgard, 2010) employs weights in GPs in

order to model heteroscedastic data. Their approach employs weights to estimate a noise level

parameter for each training observation, using cross-validation twice and introducing a

203

complicated dual-GP model. That approach leads to greatly increasing the computational

complexity of calculating the posterior GP. In summary, we are not aware of any work that

employs weighted likelihoods in GPs to model either data that contain outliers or heteroscedastic

data.

The main motivation for the work described in this dissertation is to address the lack of

robustness of standard GPs described above by using weight functions within the likelihood

terms. In the case of GP regression, this is done in a way that the computational complexity of

our proposed implicit weighted GPs is the same as the computational complexity of standard

GPs. These goals included obtaining implicit weighted variants of batch GP, online GP, and

sparse online GP (SOGP). Although our main focus is robustness, this dissertation also proposes

a weight function that allows an implicit weighted GP to effectively model heteroscedastic data.

Additionally, this work focuses on a comprehensive experimental study of the advantages that

our robust weighted GPs would convey to the GP-based novelty detection approach described in

(Kemmler M. , Rodner, Wacker, & Denzler, 2013). We were particularly interested in studying

the performance of online GPs given the preliminary experimental work described in (Ramirez-

Padron, Mederos, & Gonzalez, 2013), which shows that the performance of GP-based novelty

detection using online GPs can be similar to the performance of batch GP-based novelty

detection in many cases.

The main contributions of this study are listed below:

1) The first chapter of this dissertation expands a relatively recent survey on novelty (anomaly)

detection offered in (Chandola, Banerjee, & Kumar, 2009), by adding two factors to their

204

categorization of important factors that define a novelty detection problem: computational

requirements and learning framework. These two factors make explicit current technological

trends into the formulation of a novelty detection problem, such as distributed computing in big

data projects and the need for online learning techniques.

2) This dissertation offers its own classification of modern approaches to novelty detection,

which is based on a revision of two previous categorizations: (Chandola, Banerjee, & Kumar,

2009) and (Pimentel, Clifton, Clifton, & Tarassenko, 2014). The classification of modern

methods for novelty detection proposed here is as follows: (1) statistical, (2) classification-

based, (3) clustering-based, (4) distance-based, (5) information theoretic, (6) subspace-based,

and (7) angle-based.

 3) Implicit weighted variants of batch GP, online GP, and SOGP for the case of a Gaussian

likelihood within a regression framework. Weight functions are employed as part of the

likelihood terms, without enforcing strong constraints on the weight functions or adding a

variable number of hyperparameters to the GP models. The mathematical derivation of our

weighted GPs included expressions for hyperparameter estimation using MLE on marginal

likelihoods and posterior marginal likelihoods.

4) Three data weighers that can be used for implicit weighted GP regression are proposed in

chapter 4: HeteroscedasticReg, which allows learning from heteroscedastic data without the need

for modeling noise variances (a property that is coined here as ‘implicit heteroscedasticity’);

RobustReg, which allows obtaining robust GPs; and HeteroscedasticRobustReg for obtaining

both robust and implicitly heteroscedastic GPs. As shown in section 4.4, the computational

205

complexities of our weighted GPs match the computational complexities of the corresponding

standard GPs.

5) A preliminary experimental comparison of implicit weighted GP regression and standard GP

regression in various simple simulated problems confirmed the effectiveness of our approach.

Data with and without outliers were used, as well as heteroscedastic data.

6) A robust data weigher to be used in robust GP-based novelty detection is proposed in chapter

5. It was noted that this particular data weigher cannot be used on high-dimensional data because

of its polynomial computational complexity. Subspace projection techniques can be leverage in

order to calculate weights in the case of high-dimensional data.

7) A detailed experimental comparison of GP-based novelty detection using standard and

weighted variants of batch GP and online GPs. The experiments were run on one simulated data

set and three real-life multivariate data sets, showing that:

 Our weighted batch GP consistently and significantly outperformed standard batch GP

when used for novelty detection.

 From the four membership scores that were used in (Kemmler M. , Rodner, Wacker, &

Denzler, 2013), the Heuristic and Probability scores reported better performance across

all data sets than the Mean and Negative Variance scores.

 Novelty detection using online GP and SOGP performed similar to batch GP-based

novelty detection in many cases. This is particularly true for the case of online GP.

206

6.2 Conclusions

This dissertation has introduced implicit weighted GPs, which are defined as GPs that make use

of weighted likelihoods that include weight functions called here data weighers. Data weighers

have to take values in (0, 1] and the weights they assign to observations are proportional to how

consistent those observations are with respect to the underlying model. We require that data

weighers be used in a likelihood expression in a way that the corresponding weighted likelihood

is a “genuine likelihood”. The data weighers proposed in this dissertation are based on a quasi-

robust potential to avoid numerical issues that might appear when weight functions are derived

from robust potentials. We developed the mathematical expressions for implicit weighted GPs

that employ an implicit weighted Gaussian likelihood.

The preliminary experiments from chapter 4 suggest that our approach allows the effective

application of the MLE method to estimate GP hyperparameters for regression problems when

the data contain outliers, removing a well-known limitation of the MLE method. Additionally,

our weighted GPs outperformed standard GPs in most cases when data was contaminated with

outliers, regardless of whether GP hyperparameters were estimated using MLE or appropriate

values were used instead. Our experiments indicate that, in the case of heteroscedastic data and

employing a heteroscedastic data weigher, the MLE method estimates the GP variance σ2 near

the value of the smallest noise variance in the data, as far as weights are inversely proportional to

locally-estimated noise variances. Additionally, it was shown that the use of an implicit weighted

Gaussian likelihood with a robust data weigher favors robust GP models while avoiding

analytically intractable inferences and the associated approximation techniques. Interestingly,

207

our weighted SOGP tended to retain fewer data points that were not in accordance with the

underlying model than standard SOGP, which indicates an increase in the quality of SOGP’s set

of basis vectors in that case.

Novelty detection based on our weighted batch GPs consistently and significantly outperformed

novelty detection based on standard batch GPs whenever data was contaminated with outliers,

for all the data sets used in our study in chapter 5. The same strong assessment cannot be made in

the case of the various online GPs under comparison. However, there were many more cases of

weighted online GPs outperforming the corresponding standard online GPs on contaminated data

than the opposite. Chapter 5 also expanded the experimental work presented by the author in

(Ramirez-Padron, Mederos, & Gonzalez, 2013), by comparing membership scores and the

performance of batch GP and online GPs when used for novelty detection. The Heuristic and

Probability scores performed similarly or better than the other two scores in most cases, and they

never appeared as the worst score in any of the experiments. This leads to the conclusion that

these scores should be preferred over Mean and Negative Variance in most cases. Regarding our

comparison of online GPs and batch GPs, it was noted that online GP provided as good

performance as batch GP in all cases when using standard GPs. However, in the case of our

weighted GP variants, batch GP tended to perform better than online GP, which indicates that

weighted batch GP was able to better leverage weights than online GP. Finally, the performance

of SOGPs in general was inferior to the performance of batch GP, particularly when weighted

GP variants were used. However, it is worth noting that SOGP with capacity m = 30 was able to

perform as well as batch GP in 50% of the cases. This makes SOGP a compelling option for GP-

based novelty detection on systems imposing strong memory constraints.

208

6.3 Future Research

In the experiments described in chapter 4, the parameters of the data weighers were easy to

determine because of the low dimensionality of the data. The neighborhood size s was set to a

value that greatly limited the need to rely on the default weight. The values of 𝛾 were small

enough to accommodate the expected levels of model disagreement of outliers in the data. How

to effectively estimate these parameters in a more general scenario is an open question worthy of

further research. A related question is how sensitive our weighted GPs are to variations in the

values of parameters of the data weighers. Additionally, we are interested in identifying real-life

regression problems for which our approach would be particularly well-fitted. These questions

apply to the case of GP-based novelty detection as well.

Chapter 4 offered preliminary experimental evidence of the benefits of using the weighted GPs

proposed in this dissertation for solving regression problems where data is potentially

contaminated with outliers. However, a more comprehensive comparison of weighted GPs and

standard GPs for doing regression is needed, based on multi-dimensional data sets taken from

real-life problems. Such study should implement a statistical comparison similar in nature to the

experimental setup offered in chapter 5.

Our experiments in chapter 4 suggest that using the proposed weighted GPs for solving

regression problems allows the use of MLE to estimate GP hyperparameters in the case of data

containing outliers. A theoretical treatment of this experimental result and a more comprehensive

experimental setup is needed in order to assess its validity in general terms. As a related topic, it

is known that MLE cannot be used for estimating GP hyperparameters for GP-based novelty

209

detection problems. How to estimate hyperparameters in that case is still an open problem. It

seems to the author that exploring and potentially improving the estimation procedure proposed

in (Xiao, Wang, & Xu, 2014) is another research path worth taking.

The gap in performance between our weighted variants of batch GP and online GP shown in

chapter 5 might be greatly reduced or even closed in cases where online GP can learn from a

relatively large data set, to compensate for any incorrect weights calculated at the beginning of

the learning process, when few observations are available. Further experimental research would

be needed to determine whether this is actually the case. Additionally, it would be interesting to

design data weighers that, contrary to the robust data weigher proposed in chapter 5, allow

working with regions containing the target class that can have non-ellipsoidal shapes.

As noted in chapter 5, the SPM kernel employed for the target classes of the Caltech 101 data set

is not invariant to translations and rotations. Improving this kernel by making it invariant to these

transformations, as well as less sensitive to image backgrounds, should allow SOGP-based

novelty detection to perform better under low capacity constraints.

As a final note, the author believes that the theoretical framework provided by Rademacher

complexity (Bartlett & Mendelson, 2002), (Koltchinskii & Panchenko, 2000) would make

possible a theoretical study of the learning capabilities and complexities of GP-based novelty

detection when employing both standard and implicit weighted GPs.

210

APPENDIX A: COMPARISON OF STANDARD AND WEIGHTED GPs

211

Best and worst novelty detection scores. Points within Circles data set.

Best and worst novelty detection scores. Vertebral Column data set.

Best and worst novelty detection scores, if any. Pima Indians Diabetes data set.

ContaminationLevel GPType Best Score Worst Score

0 Batch NA NA

0 WeightedBatch NA NA

5 Batch NA Mean

5 WeightedBatch NA NA

10 Batch NA Mean

10 WeightedBatch NA NA

15 Batch NA Mean

15 WeightedBatch NA NA

20 Batch NA Mean

20 WeightedBatch NA NA

ContaminationLevel GPType Best Score Worst Score

0 Batch NA Mean

0 WeightedBatch NA Mean

5 Batch NA Mean

5 WeightedBatch NA Mean

10 Batch NA Mean

10 WeightedBatch NA NA

15 Batch NA Mean

15 WeightedBatch NA NA

20 Batch NA Mean

20 WeightedBatch NA NA

ContaminationLevel GPType Best Score Worst Score

0 Batch NA Mean

0 WeightedBatch NegVariance Mean

5 Batch NA Mean

5 WeightedBatch NA Mean

10 Batch NA Mean

10 WeightedBatch NegVariance Mean

15 Batch NegVariance Mean

15 WeightedBatch NegVariance Mean

20 Batch NegVariance Mean

20 WeightedBatch NegVariance Mean

212

Best and worst novelty detection scores. Caltech 101 data set. Beaver target class.

Best and worst novelty detection scores. Caltech 101 data set. Cougar Body target class.

Best and worst novelty detection scores. Caltech 101 data set. Crocodile target class.

ContaminationLevel GPType Best Score Worst Score

0 Batch NA Mean

0 WeightedBatch Probability Mean

5 Batch NA Mean

5 WeightedBatch Probability Mean

10 Batch NA NA

10 WeightedBatch Probability Mean

15 Batch NA NA

15 WeightedBatch NA Mean

20 Batch NA NA

20 WeightedBatch NA Mean

ContaminationLevel GPType Best Score Worst Score

0 Batch NA Mean

0 WeightedBatch NA Mean

5 Batch NA NA

5 WeightedBatch NA Mean

10 Batch NA NA

10 WeightedBatch NA NA

15 Batch NA NegVariance

15 WeightedBatch NA NA

20 Batch NA NA

20 WeightedBatch NA NegVariance

ContaminationLevel GPType Best Score Worst Score

0 Batch NA NegVariance

0 WeightedBatch NA NA

5 Batch NA NA

5 WeightedBatch NA NegVariance

10 Batch NA NA

10 WeightedBatch NA NegVariance

15 Batch NA NA

15 WeightedBatch NA NegVariance

20 Batch Mean NA

20 WeightedBatch Mean NegVariance

213

Best and worst novelty detection scores. Caltech 101 data set. Joshua Tree target class.

Best and worst novelty detection scores. Caltech 101 data set. Minaret target class.

Best and worst novelty detection scores. Caltech 101 data set. Okapi target class.

ContaminationLevel GPType Best Score Worst Score

0 Batch NA NA

0 WeightedBatch Mean NegVariance

5 Batch NA NA

5 WeightedBatch NA NegVariance

10 Batch NA NA

10 WeightedBatch NA NegVariance

15 Batch NA NegVariance

15 WeightedBatch NA NegVariance

20 Batch NA NA

20 WeightedBatch NA NegVariance

ContaminationLevel GPType Best Score Worst Score

0 Batch NA NegVariance

0 WeightedBatch NA NegVariance

5 Batch NA NA

5 WeightedBatch NA NegVariance

10 Batch NA Mean

10 WeightedBatch NA NegVariance

15 Batch NA Mean

15 WeightedBatch NA NA

20 Batch NA Mean

20 WeightedBatch NA NA

ContaminationLevel GPType Best Score Worst Score

0 Batch Heuristic NegVariance

0 WeightedBatch NA NegVariance

5 Batch NA NegVariance

5 WeightedBatch NA NegVariance

10 Batch NA NegVariance

10 WeightedBatch NA NegVariance

15 Batch NA NegVariance

15 WeightedBatch NA NA

20 Batch NA NA

20 WeightedBatch NA NA

214

Best and worst novelty detection scores. Caltech 101 data set. Windsor Chair target class.

ContaminationLevel GPType Best Score Worst Score

0 Batch Heuristic NegVariance

0 WeightedBatch NA NegVariance

5 Batch Heuristic NegVariance

5 WeightedBatch NA NegVariance

10 Batch Heuristic NA

10 WeightedBatch NA NegVariance

15 Batch Heuristic NA

15 WeightedBatch NA NegVariance

20 Batch NA NA

20 WeightedBatch NA NegVariance

215

APPENDIX B: COMPARISON OF BATCH AND ONLINE GPs

216

Counting of rank allocations for each particular GP type, for different contamination levels,

including average performance of each rank. Points within Circles data set.

Counting of rank allocations for each particular GP type, for different contamination levels,

including average performance of each rank. Vertebral Column data set.

ContaminationLevel Standard/Weighted

Rank 1

(Rank 1 Avg AUC)

Rank 2

(Rank 2 Avg AUC)

Rank 3

(Rank 3 Avg AUC)

Rank 4

(Rank 4 Avg AUC)

0 Standard

All

(0.9995)

0 Weighted

All

(0.9995)

5 Standard

BatchGP, OnlineGP

(0.9930)

SOGP_m30

(0.9270)

SOGP_m10

(0.4157)

5 Weighted

BatchGP, OnlineGP, SOGP_m30

(1.0000)

SOGP_m10

(0.9494)

10 Standard

BatchGP, OnlineGP

(0.9672)

SOGP_m30

(0.8091)

SOGP_m10

(0.2785)

10 Weighted

BatchGP, OnlineGP, SOGP_m30

(1.0000)

SOGP_m10

(0.9318)

15 Standard

BatchGP, OnlineGP

(0.9252)

SOGP_m30

(0.7071)

SOGP_m10

(0.2283)

15 Weighted

BatchGP, OnlineGP, SOGP_m30

(1.0000)

SOGP_m10

(0.9191)

20 Standard

BatchGP, OnlineGP

(0.8638)

SOGP_m30

(0.6060)

SOGP_m10

(0.2270)

20 Weighted

BatchGP, OnlineGP, SOGP_m30

(0.9999)

SOGP_m10

(0.9138)

ContaminationLevel Standard/Weighted

Rank 1

(Rank 1 Avg AUC)

Rank 2

(Rank 2 Avg AUC)

Rank 3

(Rank 3 Avg AUC)

Rank 4

(Rank 4 Avg AUC)

0 Standard

BatchGP, OnlineGP

(0.8780)

SOGP_m30

(0.8615)

SOGP_m10

(0.8339)

0 Weighted

BatchGP, OnlineGP

(0.8791)

SOGP_m30

(0.8675)

SOGP_m10

(0.8366)

5 Standard

BatchGP, OnlineGP

(0.8702)

SOGP_m30

(0.8454)

SOGP_m10

(0.8200)

5 Weighted

BatchGP, OnlineGP

(0.8720)

SOGP_m30

(0.8484)

SOGP_m10

(0.8153)

10 Standard

BatchGP, OnlineGP

(0.8624)

SOGP_m30

(0.8304)

SOGP_m10

(0.7482)

10 Weighted

BatchGP, OnlineGP

(0.8640)

SOGP_m30

(0.8218)

SOGP_m10

(0.7456)

15 Standard

BatchGP, OnlineGP

(0.8554)

SOGP_m30

(0.8129)

SOGP_m10

(0.6781)

15 Weighted

BatchGP, OnlineGP

(0.8568)

SOGP_m30

(0.8124)

SOGP_m10

(0.6779)

20 Standard

BatchGP, OnlineGP

(0.8482)

SOGP_m30

(0.8014)

SOGP_m10

(0.6408)

20 Weighted

BatchGP, OnlineGP

(0.8519)

SOGP_m30

(0.8019)

SOGP_m10

(0.6503)

217

Counting of rank allocations for each particular GP type, for different contamination levels,

including average performance of each rank. Pima Indians Diabetes data set.

Counting of rank allocations for each particular GP type, for different contamination levels,

including average performance of each rank. Caltech 101 data set. Beaver target class.

ContaminationLevel Standard/Weighted

Rank 1

(Rank 1 Avg AUC)

Rank 2

(Rank 2 Avg AUC)

Rank 3

(Rank 3 Avg AUC)

Rank 4

(Rank 4 Avg AUC)

0 Standard

BatchGP, OnlineGP

(0.7379)

SOGP_m30

(0.6996)

SOGP_m10

(0.6838)

0 Weighted

BatchGP, OnlineGP

(0.7459)

SOGP_m30

(0.7229)

SOGP_m10

(0.6836)

5 Standard

BatchGP, OnlineGP

(0.7316)

SOGPm_10,

SOGP_m30

5 Weighted

BatchGP, OnlineGP

(0.7396)

SOGP_m30

(0.7191)

SOGP_m10

(0.6918)

10 Standard

BatchGP, OnlineGP

(0.7268)

SOGPm_10,

SOGP_m30

10 Weighted

BatchGP, OnlineGP

(0.7346)

SOGP_m30

(0.7129)

SOGP_m10

(0.6894)

15 Standard

BatchGP, OnlineGP

(0.7220)

SOGPm_10,

SOGP_m30

15 Weighted

BatchGP, OnlineGP

(0.7293)

SOGP_m30

(0.7041)

SOGP_m10

(0.6866)

20 Standard

BatchGP, OnlineGP

(0.7178)

SOGPm_10,

SOGP_m30

20 Weighted

BatchGP, OnlineGP

(0.7228)

SOGP_m30

(0.7015)

SOGP_m10

(0.6823)

ContaminationLevel Standard/Weighted

Rank 1

(Rank 1 Avg AUC)

Rank 2

(Rank 2 Avg AUC)

Rank 3

(Rank 3 Avg AUC)

Rank 4

(Rank 4 Avg AUC)

0 Standard

BatchGP, OnlineGP, SOGP_m30

(0.7802)

SOGP_m10

(0.7514)

0 Weighted

OnlineGP, SOGP_m30

(0.7848)

BatchGP

(0.7773)

SOGP_m10

(0.7518)

5 Standard

BatchGP, OnlineGP, SOGP_m30

(0.7603)

SOGP_m10

(0.7316)

5 Weighted

OnlineGP, SOGP_m30

(0.7771)

BatchGP

(0.7682)

SOGP_m10

(0.7436)

10 Standard

All

(0.7351)

10 Weighted

BatchGP, OnlineGP, SOGP_m30

(0.7656)

SOGP_m10

(0.7287)

15 Standard

All

(0.7136)

15 Weighted

BatchGP, OnlineGP, SOGP_m30

(0.7560)

SOGP_m10

(0.7152)

20 Standard

All

(0.6906)

20 Weighted

SOGP_m30

(0.7618)

BatchGP, OnlineGP

(0.7464)

SOGP_m10

(0.7116)

218

Counting of rank allocations for each particular GP type, for different contamination levels,

including average performance of each rank. Caltech 101 data set. Cougar Body target class.

Counting of rank allocations for each particular GP type, for different contamination levels,

including average performance of each rank. Caltech 101 data set. Crocodile target class.

ContaminationLevel Standard/Weighted

Rank 1

(Rank 1 Avg AUC)

Rank 2

(Rank 2 Avg AUC)

Rank 3

(Rank 3 Avg AUC)

Rank 4

(Rank 4 Avg AUC)

0 Standard

BatchGP, OnlineGP, SOGP_m30

(0.7633)

SOGP_m10

(0.7174)

0 Weighted

BatchGP

(0.7658)

OnlineGP, SOGP_m30

(0.7515)

SOGP_m10

(0.7105)

5 Standard

BatchGP, OnlineGP, SOGP_m30

(0.7347)

SOGP_m10

(0.6971)

5 Weighted

BatchGP

(0.7562)

OnlineGP, SOGP_m30

(0.7404)

SOGP_m10

(0.6930)

10 Standard

All

(0.6956)

10 Weighted

BatchGP, OnlineGP, SOGP_m30

(0.7309)

SOGP_m10

(0.6829)

15 Standard

All

(0.6771)

15 Weighted

BatchGP, OnlineGP, SOGP_m30

(0.7217)

SOGP_m10

(0.6650)

20 Standard

All

(0.6590)

20 Weighted

BatchGP, OnlineGP, SOGP_m30

(0.7118)

SOGP_m10

(0.6530)

ContaminationLevel Standard/Weighted

Rank 1

(Rank 1 Avg AUC)

Rank 2

(Rank 2 Avg AUC)

Rank 3

(Rank 3 Avg AUC)

Rank 4

(Rank 4 Avg AUC)

0 Standard

BatchGP, OnlineGP, SOGP_m30

(0.7339)

SOGP_m10

(0.7147)

0 Weighted

BatchGP

(0.7497)

OnlineGP, SOGP_m30

(0.7405)

SOGP_m10

(0.7198)

5 Standard

All

(0.6617)

5 Weighted

BatchGP, OnlineGP, SOGP_m30

(0.7068)

SOGP_m10

(0.6672)

10 Standard

All

(0.6046)

10 Weighted

BatchGP, OnlineGP

(0.6802)

SOGP_m30, SOGP_m10

(0.6342)

15 Standard

All

(0.5446)

15 Weighted

BatchGP

(0.6694)

OnlineGP, SOGP_m30

(0.6222)

SOGP_m10

(0.5771)

20 Standard

All

(0.4876)

20 Weighted

All

(0.5784)

219

Counting of rank allocations for each particular GP type, for different contamination levels,

including average performance of each rank. Caltech 101 data set. Joshua Tree target class.

Counting of rank allocations for each particular GP type, for different contamination levels,

including average performance of each rank. Caltech 101 data set. Minaret target class.

ContaminationLevel Standard/Weighted

Rank 1

(Rank 1 Avg AUC)

Rank 2

(Rank 2 Avg AUC)

Rank 3

(Rank 3 Avg AUC)

Rank 4

(Rank 4 Avg AUC)

0 Standard

BatchGP, OnlineGP

(0.8966)

SOGP_m30

(0.8932)

SOGP_m10

(0.8534)

0 Weighted

BatchGP, OnlineGP

(0.8796)

SOGP_m30

(0.8666)

SOGP_m10

(0.8490)

5 Standard

BatchGP, OnlineGP, SOGP_m30

(0.8532)

SOGP_m10

(0.8050)

5 Weighted

BatchGP, OnlineGP

(0.8554)

SOGP_m30

(0.8330)

SOGP_m10

(0.8044)

10 Standard

BatchGP, OnlineGP, SOGP_m30

(0.8137)

SOGP_m10

(0.7551)

10 Weighted

BatchGP

(0.8390)

OnlineGP

(0.8200)

SOGP_m30

(0.7972)

SOGP_m10

(0.7661)

15 Standard

BatchGP, OnlineGP, SOGP_m30

(0.7742)

SOGP_m10

(0.7099)

15 Weighted

BatchGP

(0.8193)

OnlineGP

(0.7885)

SOGP_m30

(0.7667)

SOGP_m10

(0.7439)

20 Standard

BatchGP, OnlineGP, SOGP_m30

(0.7319)

SOGP_m10

(0.6640)

20 Weighted

BatchGP

(0.7954)

OnlineGP

(0.7680)

SOGP_m30

(0.7438)

SOGP_m10

(0.7223)

ContaminationLevel Standard/Weighted

Rank 1

(Rank 1 Avg AUC)

Rank 2

(Rank 2 Avg AUC)

Rank 3

(Rank 3 Avg AUC)

Rank 4

(Rank 4 Avg AUC)

0 Standard

SOGP_m30

(0.9982)

BatchGP, OnlineGP

(0.9978)

SOGP_m10

(0.9971)

0 Weighted

BatchGP, OnlineGP, SOGP_m30

(0.9968)

SOGP_m10

(0.9944)

5 Standard

BatchGP, OnlineGP, SOGP_m30

(0.9692)

SOGP_m10

(0.9348)

5 Weighted

BatchGP

(0.9827)

OnlineGP, SOGP_m30

(0.9562)

SOGP_m10

(0.8922)

10 Standard

BatchGP, OnlineGP

(0.9394)

SOGP_m30

(0.9109)

SOGP_m10

(0.8825)

10 Weighted

BatchGP

(0.9613)

OnlineGP

(0.9260)

SOGP_m30

(0.8936)

SOGP_m10

(0.8246)

15 Standard

BatchGP, OnlineGP

(0.8962)

SOGP_m30

(0.8484)

SOGP_m10

(0.8151)

15 Weighted

BatchGP

(0.9309)

OnlineGP

(0.8639)

SOGP_m30

(0.8229)

SOGP_m10

(0.7411)

20 Standard

BatchGP, OnlineGP

(0.8624)

SOGP_m30

(0.8017)

SOGP_m10

(0.7492)

20 Weighted

BatchGP

(0.8995)

OnlineGP

(0.8052)

SOGP_m30

(0.7554)

SOGP_m10

(0.6934)

220

Counting of rank allocations for each particular GP type, for different contamination levels,

including average performance of each rank. Caltech 101 data set. Okapi target class.

Counting of rank allocations for each particular GP type, for different contamination levels,

including average performance of each rank. Caltech 101 data set. Windsor Chair target class.

ContaminationLevel Standard/Weighted

Rank 1

(Rank 1 Avg AUC)

Rank 2

(Rank 2 Avg AUC)

Rank 3

(Rank 3 Avg AUC)

Rank 4

(Rank 4 Avg AUC)

0 Standard

BatchGP, OnlineGP, SOGP_m30

(0.9416)

SOGP_m10

(0.9344)

0 Weighted

BatchGP, OnlineGP, SOGP_m30

(0.9350)

SOGP_m10

(0.9160)

5 Standard

BatchGP, OnlineGP, SOGP_m30

(0.9234)

SOGP_m10

(0.8965)

5 Weighted

BatchGP, OnlineGP, SOGP_m30

(0.9154)

SOGP_m10

(0.8598)

10 Standard

BatchGP, OnlineGP, SOGP_m30

(0.9039)

SOGP_m10

(0.8688)

10 Weighted

BatchGP, OnlineGP, SOGP_m30

(0.9017)

SOGP_m10

(0.8232)

15 Standard

BatchGP, OnlineGP, SOGP_m30

(0.8887)

SOGP_m10

(0.8387)

15 Weighted

BatchGP

(0.9072)

OnlineGP, SOGP_m30

(0.8718)

SOGP_m10

(0.7917)

20 Standard

BatchGP, OnlineGP, SOGP_m30

(0.8638)

SOGP_m10

(0.8084)

20 Weighted

BatchGP

(0.8945)

OnlineGP, SOGP_m30

(0.8594)

SOGP_m10

(0.7594)

ContaminationLevel Standard/Weighted

Rank 1

(Rank 1 Avg AUC)

Rank 2

(Rank 2 Avg AUC)

Rank 3

(Rank 3 Avg AUC)

Rank 4

(Rank 4 Avg AUC)

0 Standard

BatchGP, OnlineGP, SOGP_m30

(0.9553)

SOGP_m10

(0.9124)

0 Weighted

BatchGP

(0.9602)

OnlineGP, SOGP_m30

(0.9484)

SOGP_m10

(0.9095)

5 Standard

BatchGP, OnlineGP, SOGP_m30

(0.8929)

SOGP_m10

(0.8021)

5 Weighted

BatchGP

(0.9179)

OnlineGP, SOGP_m30

(0.8632)

SOGP_m10

(0.7396)

10 Standard

BatchGP, OnlineGP

(0.8145)

SOGP_m30

(0.7817)

SOGP_m10

(0.6629)

10 Weighted

BatchGP

(0.8538)

OnlineGP, SOGP_m30

(0.7401)

SOGP_m10

(0.6198)

15 Standard

BatchGP, OnlineGP, SOGP_m30

(0.7503)

SOGP_m10

(0.6105)

15 Weighted

BatchGP

(0.8025)

OnlineGP

(0.7017)

SOGP_m30

(0.6567)

SOGP_m10

(0.5140)

20 Standard

BatchGP, OnlineGP, SOGP_m30

(0.6906)

SOGP_m10

(0.5402)

20 Weighted

BatchGP

(0.7473)

OnlineGP, SOGP_m30

(0.6006)

SOGP_m10

(0.5014)

221

REFERENCES

Abe, S. (2010). Support Vector Machines for Pattern Classification. Springer-Verlag.

Adams, R., Murray, I., & MacKay, D. (2009). The Gaussian Process Density Sampler. Advances

in Neural Information Processing Systems (NIPS 2009), 21, pp. 9-16.

Afgani, M., Sinanovic, S., & Haas, H. (2010). The Information Theoretic Approach to Signal

Anomaly Detection for Cognitive Radio. International Journal of Digital Multimedia

Broadcasting, 2010, 18.

Agarwal, D. (2007). Detecting anomalies in cross-classified streams: a Bayesian approach.

Knowledge and Information Systems, 11(1), 29-44.

Aggarwal, C., & Yu, P. (2001). Outlier detection for high dimensional data. Proceedings of the

ACM SIGMOD International Conference on Data Mining (pp. 37-46). ACM Press.

Aggarwal, C., & Yu, P. (2008). Outlier detection with uncertain data. Proceedings of the SIAM

International Conference on Data Mining, (pp. 483-493).

Aggarwal, C., & Yu, P. (2008). Privacy-preserving data mining: models and algorithms.

Springer-Verlag.

Agostinelli, C., & Greco, L. (2013). A Weighted Strategy to Handle Likelihood Uncertainty in

Bayesian Inference. Computational Statistics, 28, 319-339.

222

Agrawal, R., & Srikant, R. (1995). Mining sequential patterns. Proceedings of the Eleventh

International Conference on Data Engineering (pp. 3-14). IEEE Computer Society.

Ahmed, A. H., & Ashour, W. (2011). An Initialization Method for the K-means Algorithm using

RNN and Coupling Degree. International Journal of Computer Applications, 25(1), 1-6.

Airy, G. B. (1856). Letter from Professor Airy, Astronomer Royal, to the Editor. Astronomical

Journal, 4, 137-138.

An, W., Liang, M., & Liu, H. (2014). An improved one-class support vector machine classifier

for outlier detection. Proceedings of the Institution of Mechanical Engineers, Part C:

Journal of Mechanical Engineering Science, 1-9.

Ando, S. (2007). Clustering needles in a haystack: An information theoretic analysis of minority

and outlier detection. Seventh IEEE International Conference on Data Mining. ICDM

2007 (pp. 13-22). IEEE.

Angiulli, F., Basta, S., & Pizzuti, C. (2006). Distance-Based Detection and Prediction of

Outliers. IEEE Transactions on Knowledge and Data Engineering, 18, 145-160.

Anscombe, F. J., & Guttman, I. (1960). Rejection of outliers. Technometrics, 2(2), 123-147.

Ariu, D., Giacinto, G., & Perdisci, R. (2007). Sensing Attacks in Computers Networks with

Hidden Markov Models. Machine Learning and Data Mining in Pattern Recognition.

Lecture Notes in Computer Science. 4571, pp. 449-463. Springer.

223

Arning, A., Agrawal, R., & Raghavan, P. (1996). A linear method for deviation detection in large

databases. In E. Simoudis, J. Han, & U. Fayyad (Ed.), Proceedings KDD 1996 (pp. 164-

169). Portland, OR: AAAI Press.

Aronszajn, N. (1950). Theory of Reproducing Kernels. Transactions of the American

Mathematical Society, 68(3), 337-404.

Ash, R. B. (1990). Information Theory. Dover Publications.

Augusteijn, M. F., & Folkert, B. A. (2002). Neural network classification and novelty detection.

International Journal of Remote Sensing, 23(14), 2891-2902.

Barbara, D., Couto, J., Jajodia, S., & Wu, N. (2001). Detecting novel network intrusions using

bayes estimators. Proceedings of the First SIAM International Conference on Data

Mining. SIAM.

Barnett, V., & Lewis, T. (1994). Outliers in Statistical Data (3 ed.). John Wiley.

Barreto, G., & Aguayo, L. (2009). Time series clustering for anomaly detection using

competitive neural networks. Advances in Self-Organizing Maps,Lecture Notes in

Computer Science. 5629, pp. 28-36. Springer.

Bartlett, P. L., & Mendelson, S. (2002). Rademacher and Gaussian complexities: risk bounds and

structural results. Journal of Machine Learning Research, 3, 463–482.

224

Basu, S., Bilenko, M., & Mooney, R. (2004). A probabilistic framework for semi-supervised

clustering. Proceedings of the Tenth ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining (pp. 59-68). ACM.

Bay, S., & Schwabacher, M. (2003). Mining distance-based outliers in near linear time with

randomization and a simple pruning rule. Proceedings of the 9th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining (pp. 29-38). ACM

Press.

Bayes, T. (1763). An essay towards solving a problem in the doctrine of chances. By the late

Rev. Mr. Bayes, FRS. Communicated by Mr. Price, in a letter to John Canton, AMFRS.

Philosophical Transactions, 53, 370 - 418.

Bengio, Y., Larochelle, H., & Vincent, P. (2005). Non-local Manifold Parzen Windows.

Advances in Neural Information Processing Systems, (pp. 115-122).

Bentley , J. L. (1980). Multidimensional Divide and Conquer. Communications of the ACM,

23(4), 214-229.

Bentley, J. (1980). Multidimensional Divide-and-Conquer. Communications of the ACM, 23(4),

214-229.

Bernholt, T., & Fischer, P. (2004). The complexity of computing the MCD-estimator.

Theoretical Computer Science, 326, 383-398.

Bishop, C. (1995). Neural Networks for Pattern Recognition. Oxford University Press.

225

Bishop, C. (2006). Pattern Recognition and Machine Learning. New York: Springer.

Blanchard, G., Lee, G., & Scott, C. (2010). Semi-Supervised Novelty Detection. Journal of

Machine Learning Research, 11, 2973 - 3009.

Blei, D., Jordan, M., & Ng, A. (2003). Hierarchical Bayesian Models for Applications in

Information Retrieval. In J. Bernardo, M. Bayarri, J. Berger, A. Dawid, D. Heckerman,

A. Smith, et al. (Eds.), Bayesian Statistics (Vol. 7, pp. 25-43). Oxford University Press.

Bliss, C. I., Cochran, W. G., & Tukey, J. W. (1956). A rejection criterion based upon the range.

Biometrika, 43, 418-422.

Bolstad, W. (2007). Introduction to Bayesian Statistics (2 ed.). John Wiley & Sons, Inc.

Bosch, A., Zisserman, A., & Munoz, X. (2007). Representing shape with a spatial pyramid

kernel. Proceedings of the 6th ACM International Conference on Image and Video

Retrieval (pp. 401-408). ACM.

Breunig, M., Kriegel, H., Ng, R., & Sander, J. (2000). LOF: Identifying density-based local

outliers. International Conference on Management of Data, (pp. 1-12).

Bronstein, A., Das, J., Duro, M., Friedrich, R., Kleyner, G., Mueller, M., et al. (2001). Self-

aware services: using Bayesian networks for detecting anomalies in Internet-based

services. 2001 IEEE/IFIP International Symposium on Integrated Network Management

Proceedings (pp. 623-638). IEEE.

226

Byers, S. D., & Raftery, A. E. (1998). Nearest neighbor clutter removal for estimating features in

spatial point processes. Journal of the American Statistical Association, 93(442), 577-

584.

Carroll, R. J., & Ruppert, D. (1982). A Comparison Between Maximum Likelihood and

Generalized Least Squares in a Heteroscedastic Linear Model. Journal of the American

Statistical Association, 77(380), 878-882.

Cauwenberghs, G., & Poggio, T. (2001). Incremental and decremental support vector machine

learning. In T. K. Leen, T. G. Dietterich, & V. Tresp, Advances in Neural Information

Processing Systems (Vol. 13, pp. 409–415). MIT Press.

Chandola, V., Banerjee, A., & Kumar, V. (2009). Anomaly Detection: A Survey. ACM

Computing Surveys, 41, 15:1–15:58.

Chauvenet, W. (1868). A treatise on the method of least squares.

Chawla, S., & Gionis, A. (2013). k-means–: A unified approach to clustering and outlier

detection. 2013 SIAM International Conference on Data Mining (pp. 189-197). SIAM.

Chen, D., Chao, X., Hu, B., & Su, Q. (2005). Simultaneous wavelength selection and outlier

detection in multivariate regression of near-infrared spectra. Analytical Sciences, 21(2),

161-166.

Chen, S., Gunn, S., & Harris, C. (2001). The Relevance Vector Machine Technique for Channel

Equalization Application. IEEE Transactions on Neural Networks, 12(6), 1529-1532.

227

Chiu, T., Fang, D., Chen, J., Wang, Y., & Jeris, C. (2001). A robust and scalable clustering

algorithm for mixed type attributes in large database environment. Proceedings of the

seventh ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining (pp. 263-268). ACM.

Cleary, J. (1979). Analysis of an algorithm for finding nearest neighbors in euclidean space.

ACM Transactions on Mathematical Software, 5(2), 183-192.

Clifton, D., Bannister, P., & Tarassenko, L. (2007). A framework for novelty detection in jet

engine vibration data. Key Engineering Materials, 347, 305-310.

Clifton, D., Hugueny, S., & Tarassenko, L. (2011). Novelty Detection with Multivariate Extreme

Value Statistics. J Sign Process Syst, 65(3), 371-389.

Clifton, L., Clifton, D., Watkinson, P., & Tarassenko, L. (2011). Identification of patient

deterioration in vital-sign data using one-class support vector machines. Federated

Conference on Computer Science and Information Systems (FedCSIS) (pp. 125-131).

IEEE.

Clifton, L., Yin, H., Clifton, Y., & Zhang, Y. (2007). Combined Support Vector Novelty

Detection for Multi-channel Combustion Data. IEEE International Conference on

Networking, Sensing and Control (pp. 495-500). IEEE.

Cortes, C., & Vapnik, V. (1995). Support Vector Networks. Machine Learning(20), 273-297.

Cox, R. (1946). Probability, Frequency and Reasonable Expectation. American Journal of

Physics, 14(1), 1 - 13.

228

Csató, L. (2002). Gaussian Processes – Iterative Sparse Approximations. PhD thesis.

Birmingham, UK: Aston University.

Csató, L., & Opper, M. (2002). Sparse On-line Gaussian Processes. Neural Computation, 14(3),

641 – 668.

Dai, Z., Huang, L., Zhu, Y., & Yang, W. (2010). Privacy Preserving Density-Based Outlier

Detection. 2010 International Conference on Communications and Mobile Computing

(CMC) (pp. 80-85). IEEE.

Daniels, H. E. (1961). The Asymptotic Efficiency of a Maximum Likelihood Estimator. Fourth

Berkeley Symposium on Mathematical Statistics and Probability, vol 1: Contributions to

the Theory of Statistics (pp. 151-163). Berkeley, CA: University of California Press.

Das, K., & Schneider, J. (2007). Detecting anomalous records in categorical datasets.

Proceedings of the 13th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining (pp. 220-229). ACM.

Deb, K. (2005). Multi-Objective Optimization. In E. Burke, & G. Kendall (Eds.), Search

Methodologies (pp. 273-316). Springer.

Desforges, M., Jacob, P., & Cooper, J. (1998). Applications of probability density estimation to

the detection of abnormal conditions in engineering. Proceedings of the Institute of

Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 212, pp.

687-703.

229

Diehl, C., & Hampshire, J. (2002). Real-time object classification and novelty detection for

collaborative video surveillance. Proceedings of the 2002 International Joint Conference

on Neural Networks, 2002. IJCNN '02, (pp. 2620 - 2625).

Ding, X., Li, Y., Belatreche, A., & Maguire, L. P. (2014). An experimental evaluation of novelty

detection methods. Neurocomputing, 135, 313-327.

Dutta, H., Giannella, C., Borne, K., & Kargupta, H. (2007). Distributed top-k outlier detection

from astronomy catalogs using the DEMAC system. Proceedings of 7th SIAM

International Conference on Data Mining. SIAM.

Ertöz, L., Steinbach, M., & Kumar, V. (2003). Finding topics in collections of documents: A

shared nearest neighbor approach. Clustering and Information Retrieval, 83-104.

Eskin, E. (2000). Anomaly Detection over Noisy Data using Learned Probability Distributions.

Proceedings of the International Conference on Machine Learning (pp. 255-262).

Morgan Kaufmann.

Eskin, E., Arnold, A., Prerau, M., Portnoy, L., & Stolfo, S. (2002). A geometric framework for

unsupervised anomaly detection. Proceedings of the Conference on Applications of Data

Mining in Computer Security (pp. 78-100). Kluwer Academics.

Ester, M., Kriegel, H., Sander, J., & Xu, X. (1996). A density-based algorithm for discovering

clusters in large spatial databases with noise. Proceedings of the 2nd International

Conference on Knowledge Discovery and Data Mining (pp. 226-231). AAAI Press.

230

Fairley, J., Georgoulas, G., Stylios, C., & Rye, D. (2010). A Hybrid Approach for Artifact

Detection in EEG Data. Artificial Neural Networks – ICANN 2010. Lecture Notes in

Computer Science. 6352/2010, pp. 436-441. Springer.

Fan, W., Miller, M., Stolfo, S. J., Lee, W., & Chan, P. K. (2001). Using artificial anomalies to

detect unknown and known network intrusions. Proceedings of the IEEE International

Conference on Data Mining (pp. 123–130). IEEE Computer Society.

Fawcett, T. (2006). An Introduction to ROC Analysis. Pattern Recognition Letters, 27(8), 861-

874.

Fawcett, T., & Provost, F. (1999). Activity Monitoring: Noticing Interesting Changes in

Behavior. Proceedings of the 5th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, (pp. 53-62).

Fei-Fei, L., Fergus, R., & Perona, P. (2004). Learning generative visual models from few

training examples: an incremental Bayesian approach tested on 101 object categories.

IEEE CVPR Workshop on Generative-Model Based Vision. IEEE.

Filev, D., & Tseng, F. (2006). Real time novelty detection modeling for machine health

prognostics. Proceedings of the Annual Meeting of the North American Fuzzy

Information Processing Society (NAFIPS) (pp. 529-534). IEEE.

Filippone, M., Masulli, F., & Rovetta, S. (2010). Applying the Possibilistic c-Means Algorithm

in Kernel-Induced Spaces. IEEE Transactions on Fuzzy Systems, 18(3), 572-584.

231

Fritzke, B. (1995). A growing neural gas network learns topologies. Advances in Neural

Information Processing Systems, (pp. 625-632).

Galeano, P., Peña, D., & Tsay, R. (2006). Outlier detection in multivariate time series by

projection pursuit. Journal of the American Statistical Association, 101(474), 654--669.

Gamerman, D., & Lopes, H. (2006). Markov Chain Monte Carlo: Stochastic Simulation for

Bayesian Inference (2 ed.). Chapman & Hall/CRC.

García-Rodríguez, J., Angelopoulou, A., García-Chamiz, J., Orts-Escolano, S., & Morell-

Giménez, V. (2012). Autonomous growing neural gas for applications with time

constraint: optimal parameter estimation. Neural Networks, 32, 196-208.

Gardner, A., Krieger, A., Vachtsevanos, G., & Litt, B. (2006). One-Class Novelty Detection for

Seizure Analysis from Intracranial EEG. The Journal of Machine Learning Research, 7,

1025-1044.

Genton, M. G. (2001). Classes of kernels for machine learning: a statistics perspective. Journal

of Machine Learning Research, 2, 299–312.

Gibbs, M. (1997). Bayesian Gaussian Processes for Regression and Classification. PhD thesis.

University of Cambridge.

Gibbs, M., & MacKay, D. (2000). Variational Gaussian Process Classifiers. IEEE Transactions

on Neural Networks, 11, 1458 - 1464.

232

Gilks, W., Richardson, S., & Spiegelhalter, D. (Eds.). (1995). Markov Chain Monte Carlo in

Practice. Chapman & Hall/CRC.

Giraud-Carrier, C. (2000). A note on the utility of incremental learning. AI Communications,

13(4), 215–223.

Goldberg, P. W., Williams, C. I., & Bishop, C. M. (1998). Regression with input-dependent

noise: A Gaussian process treatment. Advances in Neural Information Processing

Systems (pp. 493-499). MIT Press.

Gould, B. A. (1855). On Peirce's Criterion for the Rejection of Doubtful Observations, with

tables for facilitating its application. Astronomical Journal, 4, 81.

Grauman, K., & Darrell, T. (2005). Pyramid match kernels: Discriminative Classification with

Sets of Image Features. Proceedings of the International Conference on Computer

Vision.

Greco, L., Racugno, W., & Ventura, L. (2008). Robust Likelihood Functions in Bayesian

Analysis. Journal of Statistical Planning and Inference, 138(5), 1258-1270.

Grubbs, F. (1969). Procedures for detecting outlying observations in samples. Technometrics,

11(1), 1-21.

Grubbs, F. E. (1950). Sample Criteria for Testing Outlying Observations. The Annals of

Mathematical Statistics, 21(1), 27-58.

233

Gu, G., Fogla, P., Dagon, D., Lee, W., & Škorić, B. (2006). Measuring intrusion detection

capability: An information-theoretic approach. Proceedings of the 2006 ACM Symposium

on Information, Computer and Communications Security (pp. 90-101). ACM.

Guazzelli, A., Zeller, M., Lin, W. C., & Williams, G. (2009). PMML: An Open Standard for

Sharing Models. The R Journal, 1(1).

Guha, S., Rastogi, R., & Shim, K. (2000). Rock: A robust clustering algorithm for categorical

attributes. Information Systems, 25(5), 345-366.

Günter, S., Schraudolph, N., & Vishwanathan, S. (2007). Fast iterative kernel principal

component analysis. Journal of Machine Learning Research, 8, 1893--1918.

Guo, S. M., Shen, L. C., & Tsai, J. S. (2009). A boundary method for outlier detection based on

support vector domain description. Pattern Recognition, 42, 77-83.

Gupta, M., Gao, J., Aggarwal, C. C., & Han, J. (2014). Outlier Detection for Temporal Data: A

Survey. IEEE Transactions on Knowledge and Data Engineering, 26(9).

Hadi, A. S., Imon, A. M., & Werner, M. (2009). Detection of outliers. Wiley Interdisciplinary

Reviews: Computational Statistics, 1(1), 57—70.

Haggett, S. J., Chu, D. F., & Marshall, I. W. (2008). Evolving a dynamic predictive coding

mechanism for novelty detection. Knowledge-Based Systems, 21, 217-224.

Hampel, F. R., Ronchetti, E. M., Rousseeuw, P. J., & Stahel, W. A. (1986). Robust Statistics.

The Approach Based on Influence Functions. New York: John Wiley and Sons.

234

Hardoon, D. R., & Manevitz, L. M. (2005). fMRI Analysis via One-class Machine Learning

Techniques. International Joint Conference on Artificial Intelligence, IJCAI’05 (pp.

1604-1605). SanFrancisco, CA, USA: Morgan Kaufmann Publishers Inc.

Hawkins, D. M. (1980). Identification of Outliers. Chapman and Hall.

Hawkins, S., He, H., Williams, G. J., & Baxter, R. A. (2002). Outlier detection using replicator

neural networks. Data Warehousing and Knowledge Discovery. Lecture Notes in

Computer Science. 2454/2002, pp. 113-123. Springer-Verlag.

He, Z., Deng, S., Xu, X., & Huang, J. (2006). A Fast Greedy Algorithm for Outlier Mining.

Advances in Knowledge Discovery and Data Mining. Lecture Notes in Computer Science.

3918, pp. 567-576. Springer.

He, Z., Xu, X., & Deng, S. (2003). Discovering cluster-based local outliers. Pattern Recognition

Letters, 24, 1641-1650.

He, Z., Xu, X., Huang, J., & Deng, S. (2004). A Frequent Pattern Discovery Method for Outlier

Detection. Advances in Web-Age Information Management. Lecture Notes in Computer

Science. 3129, pp. 726-732. Springer.

Hellman, M. (1970). The nearest neighbor classification rule with a reject option. IEEE

Transactions on Systems Science and Cybernetics, 6(3), 179-185.

Hinneburg, A., Aggarwal, C., & Keim, D. (2000). What Is the Nearest Neighbor in High

Dimensional Spaces? Proceedings of the 26th International Conference on Very Large

Data Bases (p. 515). Morgan Kaufmann Publishers Inc.

235

Hoares, S., Asbridge, D., & Beatty, P. (2002). On-line novelty detection for artefact

identification in automatic anaesthesia record keeping. Med. Eng. Phys., 24(10), 673-681.

Hoffmann, H. (2007). Kernel PCA for novelty detection. Pattern Recognition, 40(3), 863-874.

Horn, P., Feng, L., Li, Y., & Pesce, A. (2001). Effect of outliers and nonhealthy individuals on

reference interval estimation. Clinical Chemistry, 47(12), 2137-2145.

Hu, W., Liao, Y., & Vemuri, V. (2003). Robust Anomaly Detection using Support Vector

Machines. International Conference on Machine Learning, (pp. 282-289).

Huber, P., & Ronchetti, E. M. (2009). Robust Statistics (2 ed.). Wiley.

Hubert, M., & Debruyne, M. (2010). Minimum covariance determinant. Wiley Interdisciplinary

Reviews: Computational Statistics, 2(1), 36-43.

Hubert, M., Rousseeuw, P. J., & Vanden Branden, K. (2005). ROBPCA: A New Approach to

Robust Principal Component Analysis. Technometrics, 47, 64-79.

Ilonen, J., Paalanen, P., & Kamarainen, J. (2006). Gaussian mixture pdf in one-class

classification: computing and utilizing confidence values. Proceedings of the 18th

International Conference on Pattern Recognition (ICPR). 2, pp. 577-580. IEEE.

Irwin, J. O. (1925a). On a Criterion for the Rejection of Outlying Observations. Biometrika,

17(3), 238-250.

Irwin, J. O. (1925b). The Further Theory of Francis Galton’s Individual Difference Problem.

Biometrika, 17, 100-128.

236

Janakiram, D., Adi Mallikarjuna Reddy, V., & Phani Kumar, A. (2006). Outlier Detection in

Wireless Sensor Networks using Bayesian Belief Networks. First International

Conference on Communication System Software and Middleware, 2006. Comsware 2006

(pp. 1-6). IEEE.

Jeffreys, H. (1932). An alternative to the rejection of observations. Proceedings of the Royal

Society of London, 137(831), 78-87.

Joachims, T. (2006). Training linear SVMs in linear time. Proceedings of the 12th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 217-

226). ACM.

John, G. (1995). Robust Decision Trees: Removing Outliers from Databases. Proceedings of the

First International Conference on Knowledge Discovery and Data Mining (pp. 174-179).

Menlo Park, CA: AAAI Press.

Joliffe, I. (2002). Principal Component Analysis (2 ed.). Springer.

Joshi, M., Agarwal, R., & Kumar, V. (2001). Mining needle in a haystack: classifying rare

classes via two-phase rule induction. Proceedings of the ACM SIGMOD International

Conference on Management of Data (pp. 91-102). ACM Press.

Joshi, M., Agarwal, R., & Kumar, V. (2002). Predicting Rare Classes: Comparing Two-Phase

Rule Induction to Cost-Sensitive Boosting. In T. Elomaa, H. Mannila, & H. Toivonen

(Ed.), Principles of Data Mining and Knowledge Discovery. Lecture Notes in Computer

Science. 2431, pp. 145-167. Springer Berlin/Heidelberg.

237

Jylänki, P., Vanhatalo, J., & Vehtari, A. (2011). Robust Gaussian Process Regression with a

Student-t Likelihood. The Journal of Machine Learning Research, 12, 3227-3257.

Kapoor, A., Grauman, K., Urtasun, R., & Darrell, T. (2010). Gaussian Processes for Object

Categorization. International Journal of Computer Vision, 88(2), 169-188.

Katayama, N., & Satoh, S. (1997). The SR-tree: An index structure for high-dimensional nearest

neighbor queries. Proceedings of the 1997 ACM SIGMOD International Conference on

Management of Data (pp. 369-380). ACM.

Keerthi, S., Shevade, S., Bhattacharyya, C., & Murthy, K. (2001). Improvements to Platt’s SMO

Algorithm for SVM Classifier Design. Neural Computation, 13, 637-649.

Kemmler, M., Denzler, J., Rösch, P., & Popp, J. (2010). Classification of Microorganisms via

Raman Spectroscopy Using Gaussian Processes. Pattern Recognition. Lecture Notes in

Computer Science (pp. 81-90). Springer Berlin / Heidelberg.

Kemmler, M., Rodner, E., & Denzler, J. (2010). One-class Classification with Gaussian

Processes. Proceedings of the Asian Conference on Computer Vision. Lecture Notes in

Computer Science. 6493, pp. 489 - 500. Springer.

Kemmler, M., Rodner, E., Wacker, E. S., & Denzler, J. (2013). One-class classification with

Gaussian processes. Pattern Recognition, 46, 3507–3518.

Keogh, E., Lonardi, S., & Ratanamahatana, C. (2004). Towards parameter-free data mining.

Proceedings of the tenth ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining (pp. 206-215). ACM.

238

Kersting, K., Plagemann, C., Pfaff, P., & Burgard, W. (2007). Most Likely Heteroscedastic

Gaussian Process Regression. 24th International Conference on Machine Learning, (pp.

393-400).

Khan, N. M., Ksantini, R., Ahmad, I. S., & Guan, L. (2014). Covariance-guided One-Class

Support Vector Machine. Pattern Recognition, 47, 2165-2177.

Khan, S. S., & Ahmad, A. (2004). Cluster center initialization algorithm for K-means clustering.

Pattern Recognition Letters, 25(11), 1293-1302.

Kim, H. C., & Lee, J. (2006). Pseudo-density Estimation for Clustering with Gaussian Processes.

Advances in Neural Networks (pp. 1238-1243). Springer.

Kit, D., Sullivan, B., & Ballard, D. (2011). Novelty detection using growing neural gas for visuo-

spatial memory. Proceedings of the IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS) (pp. 1194-1200). IEEE.

Kivinen, J., Smola, A. J., & Williamson, R. C. (2004). Online learning with kernels. IEEE

Transactions on Signal Processing, 52(8), 2165-2176.

Knorr, E. M., & Ng, R. T. (1997). A unified approach for mining outliers. CASCON '97,

Proceedings of the 1997 conference of the Centre for Advanced Studies on Collaborative

Research (pp. 236-248). IBM Press.

Knorr, E. M., Ng, R. T., & Tucakov, V. (2000). Distance-based outliers: algorithms and

applications. The VLDB Journal, 8(3), 237-253.

239

Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and model

selection. Fourteenth International Joint Conference on Artificial Intelligence, (pp.

1137–1143).

Kolev, D., Suvorov, M., Morozov, E., Markarian, G., & Angelov, P. (2015). Incremental

Anomaly Identification in Flight Data Analysis by Adapted One-Class SVM Method. In

P. Koprinkova-Hristova, V. Mladenov, & N. K. Kasabov (Eds.), Artificial Neural

Networks. Methods and Applications in Bio-/Neuroinformatics (Vols. Springer Series in

Bio-/Neuroinformatics. Vol 4, pp. 373-391). Springer International Publishing.

Koltchinskii, V., & Panchenko, D. (2000). Rademacher processes and bounding the risk of

function learning. High Dimensional Probability, 2, 443–459.

Kou, Y., Lu, C., & Chen, D. (2006). Spatial weighted outlier detection. Proceedings of SIAM

Conference on Data Mining.

Kou, Y., Lu, C., & Dos Santos, R. (2007). Spatial outlier detection: a graph-based approach. 19th

IEEE International Conference on Tools with Artificial Intelligence, 2007. ICTAI 2007

(pp. 281-288). IEEE.

Koufakou, A., & Georgiopoulos, M. (2010). A fast outlier detection strategy for distributed high-

dimensional data sets with mixed attributes. Data Mining and Knowledge Discovery,

20(2), 259-289.

240

Kriegel, H. P., Schubert, M., & Zimek, A. (2008). Angle-based Outlier Detection. Proc. ACM

SIGKDD Int. Conf. on Knowledge Discovery and Data Mining (SIGKDD). Las Vegas,

NV.: ACM.

Krishna, M. V., Bodesheim, P., & Denzler, J. (2013). Video Segmentation by Event Detection: A

Novel One-Class Classification Approach. 4th International Workshop on Image Mining.

Theory and Applications (IMTA-4).

Krishna, M. V., Bodesheim, P., Körner, M., & Denzler, J. (2014). Temporal Video Segmentation

by Event Detection: A Novelty Detection Approach. Pattern Recognition and Image

Analysis, 24(2), 243-255.

Kruegel, C., & Vigna, G. (2003). Anomaly detection of web-based attacks. Proceedings of the

10th ACM Conference on Computer and Communications Security (pp. 251-261). ACM.

Kwok, J., Tsang, I., & Zurada, J. (2007). A class of single-class minimax probability machines

for novelty detection. IEEE Transactions on Neural Networks, 18(3), 778-785.

Lakhina, A., Crovella, M., & Diot, C. (2005). Mining anomalies using traffic feature

distributions. Proceedings of the 2005 Conference on Applications, Technologies,

Architectures, and Protocols for Computer Communications (pp. 217-228). ACM.

Lanckriet, G., El Ghaoui, L., & Jordan, M. (2003). Robust novelty detection with single-class

MPM. Advances in Neural Information Processing Systems. NIPS 2003 (pp. 905-912).

MIT Press.

241

Lanckriet, G., Ghaoui, L., Bhattacharyya, C., & Jordan, M. (2002). A robust minimax approach

to classification. The Journal of Machine Learning Research, 3, 555-582.

Lane, D. M. (2010). Tukey's Honestly Significant Difference (HSD). In N. J. Elkind (Ed.),

Encyclopedia of Research Methods. Sage Publications.

Laplace, P. (1812). Théorie Analytique des Probabilities. Paris: Courcier.

Laskov, P., Gehl, C., Krüger, S., & Müller, K.-R. (2006). Incremental Support Vector Learning:

Analysis, Implementation and Applications. Journal of Machine Learning, 7, 1909-1936.

Latecki, L. J., Lazarevic, A., & Pokrajac, D. (2007). Outlier Detection with Kernel Density

Functions. Proceedings of the 5th international conference on Machine Learning and

Data Mining in Pattern Recognition. Lecture Notes in Artificial Intelligence. 4571, pp.

61-75. Springer Verlag.

Laurikkala, J., Juhola, M., & Kentala, E. (2000). Informal identification of outliers in medical

data. The Fifth International Workshop on Intelligent Data Analysis in Medicine and

Pharmacology, (pp. 20-24).

Lazebnik, S., Schmid, C., & Ponce, J. (2006). Beyond bags of features: Spatial pyramid

matching for recognizing natural scene categories. Proceedings of the 2006 IEEE

Conference on Computer Vision and Pattern Recognition (pp. 2169-2178). IEEE.

Le, T., Tran, D., Ma, W., & Sharma, D. (2010). An optimal sphere and two large margins

approach for novelty detection. International Joint Conference on Neural Networks

(IJCNN) (pp. 1-6). IEEE.

242

Le, T., Tran, D., Ma, W., & Sharma, D. (2011). Multiple distribution data description learning

algorithm for novelty detection. 15th Pacific-Asia Conference on Knowledge Discovery

and Data Mining, PAKDD 2011. Lecture Notes in Computer Science. 6635, pp. 246-257.

Shenzhen; China: Springer.

Lee, H., & Roberts, S. (2008). On-line novelty detection using the Kalman filter and extreme

value theory. Proceedings of the 19th International Conference on Pattern Recognition

(ICPR), (pp. 1-4).

Lee, W., & Xiang, D. (2001). Information-theoretic measures for anomaly detection.

Proceedings. 2001 IEEE Symposium on Security and Privacy (pp. 130-143). IEEE.

Lei, D., Zhu, Q., Chen, J., Lin, H., & Yang, P. (2012). Automatic K-Means Clustering Algorithm

for Outlier Detection. International Conference on Information Engineering and

Applications. Lecture Notes in Electrical Engineering. 154, pp. 363-372. Springer.

Li, C., Georgiopoulos, M., & Anagnostopoulos, G. C. (2011). Kernel Principal Subspace

Mahalanobis Distances for Outlier Detection. The 2011 International Joint Conference

on Neural Networks (IJCNN) (pp. 2528-2535). IEEE.

Lichman, M. (2013). UCI Machine Learning Repository. Irvine, CA: University of California,

School of Information and Computer Science.

Lifshits, M. (2012). Lectures on Gaussian Processes. Springer.

243

Lin, J., Keogh, E., Fu, A., & Van Herle, H. (2005). Approximations to magic: Finding unusual

medical time series. Proceedings of the 18th IEEE Symposium on Computer-based

Medical Systems (pp. 329-334). IEEE Computer Society.

Lin, S., & Brown, D. (2006). An outlier-based data association method for linking criminal

incidents. Decision Support Systems, 41(3), 604-615.

Liu, Y., Liu, Y.-C., & Chen, Y. (2010). Fast Support Vector Data Descriptions for Novelty

Detection. IEEE Transactions on Neural Networks, 21(8), 1296 - 1313.

Lowe, D. G. (1999). Object Recognition from Local Scale-invariant Features. Proceedings of the

IEEE International Conference on Computer Vision (pp. 1150–1157). IEEE.

Ma, J., & Perkins, S. (2003). Time-series novelty detection using one-class support vector

machines. Proceedings of the International Joint Conference on Neural Networks, (pp.

1741-1745).

MacKay, D. (1994). Bayesian Methods for Backpropagation Networks. In E. Domany, J. van

Hemmen, & K. Schulten (Eds.), Mdels of Neural Networks III (pp. 211-254). Springer.

MacKay, D. (1998). Introduction to Gaussian Processes. In C. Bishop (Ed.), Neural Networks

and Machine Learning (Vols. NATO ASI Series, vol 168, pp. 133-165). Berlin: Springer.

Mahalanobis, P. C. (1936). On the Generalised Distance in Statistics. Proceedings of the

National Institute of Sciences of India, 2(1), 49–55.

244

Mahoney, M., & Chan, P. (2002). Learning nonstationary models of normal network traffic for

detecting novel attacks. Proceedings of the eighth ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining (pp. 376-385). ACM.

Mahoney, M., & Chan, P. (2003). Learning rules for anomaly detection of hostile network

traffic. Third IEEE International Conference on Data Mining. ICDM 2003 (pp. 601-604).

IEEE Computer Society.

Manevitz, L., & Yousef, M. (2002). One-class SVMs for Document Classification. Journal of

Machine Learning Research, 2, 139-154.

Manson, G. (2002). Identifying damage sensitive, environment insensitive features for damage

detection. Proceedings of the IES Conference.

Markou, M., & Singh, S. (2003). Novelty detection: A review, part 1: Statistical approaches.

Signal Processing, 83, 2481-2497.

Markou, M., & Singh, S. (2003). Novelty detection: a review—part 2: neural network based

approaches. Signal Processing, 83(12), 2499-2521.

Markou, M., & Singh, S. (2006). A Neural Network-Based Novelty Detector for Image

Sequence Analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence,

28(10), 1664-1677.

Maronna, R. A., Martin, D. R., & Yohai, V. J. (2006). Robust Statistics: Theory and Methods.

Wiley.

245

Marsland, S., Nehmzow, U., & Shapiro, J. (2005). On-line novelty detection for autonomous

mobile robots. Robotics and Autonomous Systems, 51(2), 191-206.

Marsland, S., Shapiro, J., & Nehmzow, U. (2002). A self-organising network that grows when

required. Neural Networks, 15(8-9), 1041-1058.

Masud, M., Gao, J., Khan, L., Han, J., & Thuraisingham, B. (2009). Integrating Novel Class

Detection with Classification for Concept-Drifting Data Streams. Machine Learning and

Knowledge Discovery in Databases. Lecture Notes in Computer Science. 5782, pp. 79-

94. Springer.

McDiarmid, C. (1989). On the Method of Bounded Differences. Surveys in Combinatorics, 141,

148-188.

McKay, A. T. (1935). The distribution of the difference between the extreme observation and the

sample mean in samples of n from a normal universe. Biometrika, 27, 466-471.

Metzler, S., & Kalinina, O. V. (2014). Detection of atypical genes in virus families using a one-

class SVM. BMC Genomics, 15, 913.

Minka, T. (2001). A Family of Approximate Algorithms for Bayesian Inference. PhD thesis.

MIT.

Nabney, I. T. (2004). NETLAB: Algorithms for Pattern Recognition. Springer.

246

Neal, R. (1997). Monte Carlo Implementation of Gaussian Process Models for Bayesian

Regression and Classification. Technical Report 9702. Department of Computer

Statistics, University of Toronto.

Noble, C., & Cook, D. (2003). Graph-based anomaly detection. Proceedings of the ninth ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 631-

636). ACM Press.

Ntalampiras, S., Potamitis, I., & Fakotakis, N. (2011). Probabilistic Novelty Detection for

Accoustic Surveillance Under Real-World Conditions. IEEE Transactions on

Multimedia, 13(4), 713-719.

Odin, T., & Addison, D. (2000). Novelty detection using neural network technology .

COMADEM 2000: 13th International Congress on Condition Monitoring and Diagnostic

Engineering Management, (pp. 731-743).

Oh, J. H., & Gao, J. (2009). A kernel-based approach for detecting outliers of high-dimensional

biological data. BMC Bioinformatics, 10((Suppl 4):S7).

Opper, M. (1998). A Bayesian Approach to On-line Learning. In D. Saad (Ed.), On-line

Learning in Neural Networks. Cambridge University Press.

Opper, M., & Winther, O. (2000). Gaussian Processes for Classification. Neural Computation,

12(11), 2655 - 2684.

Otey, M., Ghoting, A., & Parthasarathy, S. (2006). Fast Distributed Outlier Detection in Mixed-

Attribute Data Sets. Data Mining and Knowledge Discovery, 12(2), 203-228.

247

Papadimitriou, S., Kitagawa, H., Gibbons, P. B., & Faloutsos, C. (2002). Loci: Fast outlier

detection using the local correlation integral. Intel Research Laboratory.

Parra, L., Deco, G., & Miesbach, S. (1996). Statistical independence and novelty detection with

information preserving nonlinear maps. Neural Computation, 8(2), 260-269.

Parzen, E. (1962). On estimation of a probability density function and mode. The Annals of

Mathematical Statistics, 33(3), 1065-1076.

Pearson, E. S., & Hartely, H. O. (1942). The Probability Integral of the Range in Samples of n

Observations From a Normal Population. Biometrika, 32, 301-310.

Pearson, E. S., & Sekar, C. (1936). The Efficiency of Statistical Tools and a Criterion for the

Rejection of Outlying Observations. Biometrika, 28(3/4), 308-320.

Peirce, B. (1852). Criterion for the rejection of doubtful observations. Astronomical Journal, 2,

161.

Peña, J. M., Lozano, J. A., & Larrañaga, P. (1999). An empirical comparison of four

initialization methods for the K-Means algorithm. Pattern Recognition Letters, 20(10),

1027-1040.

Peng, X., & Xu, D. (2012). Efficient support vector data descriptions for novelty detection.

Neural Computing and Applications, 21(8), 2023-2032.

Phua, C., Alahakoon, D., & Lee, V. (2004). Minority report in fraud detection: classification of

skewed data. SIGKDD Explorer Newsletter, 6(1), 50-59.

248

Pimentel, M. A., Clifton, D. A., Clifton, L., & Tarassenko, L. (2014). A review of novelty

detection. Signal Processing, 99, 215-249.

Pinto, A. S., Pronobis, A., & Reis, L. P. (2011). Novelty Detection Using Graphical Models for

Semantic Room Classification. 15th Portuguese Conference on Artificial Intelligence,

EPIA 2011. Progress in Artificial Intelligence. Lecture Notes in Computer Science. 7026,

pp. 326-339. Springer.

Pires, A., & Santos-Pereira, C. (2005). Using clustering and robust estimators to detect outliers in

multivariate data. Proceedings of the International Conference on Robust Statistics.

Platt, J. (2000). Probabilistic Outputs for Support Vector Machines and Comparison to

Regularized Likelihood Methods. In P. Bartlett, B. Schölkopf, D. Schuurmans, & A.

Smola (Eds.), Advances in Large Margin Classifiers (pp. 61-74). MIT Press.

Platt, J. C. (1999). Fast training of Support Vector Machines using sequential minimal

optimization. In B. Schölkopf, C. Burges, & A. Smola (Eds.), Advances in Kernel

Methods – Support Vector Learning (pp. 185-208). MIT Press.

Pokrajac, D., Lazarevic, A., & Latecki, L. J. (2007). Incremental local outlier detection for data

streams. Proceedings of the IEEE Symposium on Computational Intelligence and Data

Mining.

Pokrajac, D., Reljin, N., Pejcic, N., & Lazarevic, A. (2008). Incremental Connectivity-Based

Outlier Factor Algorithm. Proceedings of the Conference Visions of Computer Science, 8.

London.

249

Quinlan, J. R. (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers.

Quinn, J. A., & Williams, C. K. (2007). Known Unknowns: Novelty Detection in Condition

Monitoring. Third Iberian Conference, IbPRIA 2007. Pattern Recognition and Image

Analysis. Lecture Notes in Computer Science. 4477, pp. 1-6. Springer.

Quinn, J. A., Williams, C. K., & McIntosh, N. (2009). Factorial Switching Linear Dynamical

Systems Applied to Physiological Condition Monitoring. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 31(9), 1537-1551.

Rabaoui, A., Kadri, H., & Ellouze, N. (2008). New approaches based on one-class SVMs for

impulsive sounds recognition tasks. IEEE Workshop on Machine Learning for Signal

Processing (pp. 285-290). IEEE.

Ramaswamy, S., Rastogi, R., & Shim, K. (2000). Efficient algorithms for mining outliers from

large data sets. Proceedings of the 2000 ACM SIGMOD international conference on

Management of data (pp. 427-438). ACM.

Ramirez-Padron, R., Foregger, D., Manuel, J., Georgiopoulos, M., & Mederos, B. (2010).

Similarity Kernels for Nearest Neighbor-based Outlier Detection. The Ninth International

Symposium on Intelligent Data Analysis, Lectures Notes in Computer Science. 6065, pp.

157-170. Tucson, Arizona: Springer-Verlag.

Ramirez-Padron, R., Mederos, B., & Gonzalez, A. J. (2013). Novelty Detection Using Sparse

Online Gaussian Processes for Visual Object Recognition. Twenty-Sixth International

Florida Artificial Intelligence Research Society Conference.

250

Rasmussen, C., & Williams, C. (2006). Gaussian Processes for Machine Learning. The MIT

Press.

Rey, W. J. (1983). Introduction to Robust and Quasi-robust Statistical Methods. Springer.

Reynolds, D. (2009). Gaussian Mixture Models. In Encyclopedia of Biometrics (pp. 659-663).

Rivest, R. (1974). On the optimality of Elias’s algorithm for performing best-match searches.

Information Processing, 74, 678-681.

Roberts, S. J. (2000). Extreme value statistics for novelty detection in biomedical signal

processing. IEE Proceedings on Science, Technology and Measurement. 147, pp. 363-

367. IET.

Rodner, E., Wacker, E., Kemmler, M., & Denzler, J. (2011). One-Class Classification for

Anomaly Detection in Wire Ropes with Gaussian Processes in a Few Lines of Code.

Proceedings of the 12th IAPR Conference on Machine Vision Applications (MVA 2011).

Roth, V. (2006). Kernel fisher discriminants for outlier detection. Neural Computation, 18(4),

942–960.

Rottmann, A., & Burgard, W. (2010). Learning Non-stationary System Dynamics Online using

Gaussian Processes. 32nd DAGM Symposium, (pp. 192-201). Darmstadt, Germany.

Rousseeuw, P. J. (1984). Least Median of Squares Regression. Journal of American Statistical

Association, 79, 871-880.

251

Rousseeuw, P. J. (1985). Multivariate estimation with high breakdown point. In W. Grossmann,

G. Pflug, I. Vincze, & W. Wertz (Eds.), Mathematical Statistics and Applications (Vol.

B, pp. 283-297). Dordrecht, The Netherlands.

Rousseeuw, P. J., & Hubert, M. (2011). Robust statistics for outlier detection. Wiley

Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 1(1), 73-79.

Rousseeuw, P., & Leroy, A. (1987). Robust regression and outlier detection. John Wiley &

Sons, Inc.

Roussopoulos, N., Kelley, S., & Vincent, F. (1995). Nearest neighbor queries. Proceedings of the

1995 ACM SIGMOD International Conference on Management of Data (pp. 71-79).

ACM.

Ryan, T. P. (1996). Modern Regression Methods. Wiley-Interscience.

Salvador, S., & Chan, P. (2005). Learning States and Rules for Detecting Anomalies in Time

Series. Applied Intelligence, 23(3), 241-255.

Schölkopf, B., & Smola, A. (2001). Learning with Kernels. Cambridge, MA: MIT Press.

Schölkopf, B., Herbrich, R., & Smola, A. (2001). A generalized representer theorem.

Proceedings of the Conference on Computational Learning Theory (pp. 416-426).

Springer.

252

Schölkopf, B., Platt, J. C., Shawe-Taylor, J., Smola, A. J., & Williamson, R. C. (2001).

Estimating the support of a high-dimensional distribution. Neural computation, 13(7),

1443-1471.

Sebyala, A., Olukemi, T., & Sacks, L. (2002). Active platform security through intrusion

detection using naive bayesian network for anomaly detection. Proceedings of the

London Communications Symposium.

Seeger, M. (2003). Bayesian Gaussian Process Models: PAC-Bayesian Generalization Error

Bounds and Sparse Approximations. PhD thesis. University of Edinburg.

Seeger, M. (2004). Gaussian Processes for Machine Learning. International Journal of Neural

Systems, 14(2), 69-106.

Seeger, M., Williams, C., & Lawrence, M. (2003). Fast Forward Selection to Speed up Sparse

Gaussian Processes. In C. Bishop, & B. Frey (Ed.), Proceedings Ninth International

Workshop on Artificial Intelligence and Statistics. Key West, Florida.

Sellis, T., Roussopoulos, N., & Faloutsos, C. (1987). The R-tree: A dynamic index for multi-

dimensional objects. The VLDB Journal, 507-518.

Shawe-Taylor, J., & Cristianini, N. (2004). Kernel methods for pattern analysis. Cambridge

University Press.

Shekhar, S., Lu, C.-T., & Zhang, P. (2002). Detecting graph-based spatial outliers. Intelligent

Data Analysis, 6(5/2002), 451-468.

253

Shen, Y. (2007). Outlier Detection Using the Smallest Kernel Principal Components. PhD

dissertation. Department of Statistics, Temple University.

Sheng, B., Li, Q., Mao, W., & Jin, W. (2007). Outlier detection in sensor networks. Proceedings

of the 8th ACM international symposium on Mobile ad hoc networking and computing

(pp. 219-228). ACM.

Shyu, M., Chen, S., Sarinnapakorn, K., & Chang, L. (2003). A novel anomaly detection scheme

based on principal component classifier. Proceedings of the 3rd IEEE International

Conference on Data Mining (pp. 353-365). IEEE.

Smith, R., Bivens, A., Embrechts, M., Palagiri, C., & Szymanski, B. (2002). Clustering

approaches for anomaly based intrusion detection. Proceedings of Intelligent Engineering

Systems through Artificial Neural Networks (pp. 579-584). ASME Press.

Smola, A., & Bartlett, P. (2001). Sparse Greedy Gaussian Process Regression. In T. Leen, T.

Dietterich, & V. Tresp (Ed.), Advances in Neural Information Processing Systems. 13,

pp. 619 - 625. The MIT Press.

Sofman, B., Bagnell, J., & Stentz, A. (2010). Anytime online novelty detection for vehicle

safeguarding. IEEE International Conference on Robotics and Automation. ICRA 2010

(pp. 1247-1254). IEEE.

Song, Q., Hu, W., & Xie, W. (2002). Robust support vector machine with bullet hole image

classification. IEEE Transactions on Systems, Man, and Cybernetics, Part C:

Applications and Reviews, 32(4), 440-448.

254

Song, X., Wu, M., Jermaine, C., & Ranka, S. (2007). Conditional anomaly detection. IEEE

Trans. Knowl. Data Eng., 19(5), 631-645.

Spiegelhalter, D., & Lauritzen, S. (1990). Sequential Updating of Conditional Probabilities on

Directed Graphical Structures. Networks, 20, 579 - 605.

Spinosa, E. J., de Leon F. de Carvalho, A. P., & Gama, J. (2009). Novelty detection with

application to data streams. Intelligent Data Analysis, 13(3), 405-422.

Stanley, K. O. (2004). Efficient evolution of neural networks through complexification, Ph.D.

thesis. University of Texas at Austin.

Stefano, C., Sansone, C., & Vento, M. (2000). To reject or not to reject: that is the question: An

answer in the case of neural classifiers. IEEE Transactions on Systems, Man, and

Cybernetics, Part C: Applications and Reviews, 30(1), 84-94.

Stone, E. J. (1868). On the Rejection of Discordant Observations. Monthly Notices of the Royal

Astronomical Society.

Strassen, V. (1969). Gaussian Elimination is not Optimal. Numerical Mathematics, 13, 354-356.

Sugiyama, M., Krauledat, M., & Müller, K. R. (2007). Covariate Shift Adaptation by Importance

Weighted Cross Validation. Journal of Machine Learning Research, 8, 985–1005.

Sun, P., Chawla, S., & Arunasalam, B. (2006). Mining for Outliers in Sequential Databases.

Proceedings of the Sixth SIAM International Conference on Data Mining. Society for

Industrial Mathematics.

255

Swain, M., & Ballard, D. (1991). Color Indexing. International Journal of Computer Vision,

7(1), 11-32.

Tan, P.-N., Steinbach, M., & Kumar, V. (2005). Introduction to Data Mining. Addison Wesley.

Tandon, G., & Chan, P. (2007). Weighting versus pruning in rule validation for detecting

network and host anomalies. Proceedings of the 13th ACM SIGKDD international

conference on Knowledge discovery and data mining (pp. 697-706). ACM.

Tang, J., Chen, Z., Fu, A., & Cheung, D. (2002). Enhancing effectiveness of outlier detections

for low density patterns. Advances in Knowledge Discovery and Data Mining, 535-548.

Tao, Y., Yi, K., Sheng, C., & Kalnis, P. (2009). Quality and efficiency in high dimensional

nearest neighbor search. Proceedings of the 35th SIGMOD international conference on

Management of Data (pp. 563-576). ACM.

Tavakkoli, A., Nicolescu, M., Bebis, G., & Nicolescu, M. (2008). Efficient Background

Modeling through Incremental Support Vector Data Description. Proceedings of the 19th

International Conference on Pattern Recognition (pp. 1-4). Tampa, FL: IEEE.

Tax, D. (2001). One-class classification; Concept-learning in the absence of counter-examples.

Ph.D. thesis. Delft University of Technology.

Tax, D. M., & Duin, R. P. (2004). Support Vector Data Description. Machine Learning, 54(1),

45-66.

256

Tax, D. M., & Laskov, P. (2003). Online SVM Learning: From classification to data description

and back. IEEE 13th Workshop on Neural Networks for Signal Processing. NNSP'03.,

(pp. 499-508).

Tax, D., & Duin, R. (1999). Support vector domain description. Pattern Recognition Letters,

20(11), 1191-1199.

Thompson, W. R. (1935). On a criterion for the rejection of observations and the distribution of

the ratio of deviation to sample standard deviation. The Annals of Mathematical

Statistics, 6(4), 214-219.

Tikhonov, A. N., & Arsenin, V. Y. (1977). Solutions of Ill-posed Problems. W.H. Winston.

Tipping, M. (2001). Sparse Bayesian Learning and the Relevance Vector Machine. Journal of

Machine Learning Research, 1, 211-244.

Tresp, V. (2001). Scaling Kernel-based Systems to Large Data Sets. Data Mining and

Knowledge Discovery, 5(3), 197 - 211.

Tsay, R., Peña, D., & Pankratz, A. (2000). Outliers in multivariate time series. Biometrika, 87(4),

789-804.

Vaidya, J., & Clifton, C. (2004). Privacy-preserving outlier detection. Fourth IEEE International

Conference on Data Mining (pp. 233-240). IEEE.

Vapnik, V. (1995). The Nature of Statistical Learning Theory. Springer-Verlag.

257

Verboven, S., & Hubert, M. (2010). Matlab Library LIBRA. Wiley Interdisciplinary Reviews:

Computational Statistics, 2, 509-515.

Vilalta, R., & Ma, S. (2002). Predicting rare events in temporal domains. Proceedings of the

IEEE International Conference on Data Mining (pp. 474-481). IEEE Computer Society.

Vincent, P., & Bengio, Y. (2002). Manifold Parzen Windows. Advances in Neural Information

Processing Systems, (pp. 825-832).

Von Mises, R. (1964). Mathematical Theory of Probability and Statistics. New York: Academic

Press.

Wald, I., & Havran, V. (2006). On building fast kd-Trees for Ray Tracing, and on doing that in

O(N log N). Proceedings of the 2006 IEEE Symposium on Interactive Ray Tracing, (pp.

61-69).

Wang, C. H. (2009). Outlier identification and market segmentation using kernel-based

clustering techniques. Expert Systems with Applications, 36(2), 3744-3750.

Wei, L., Yang, Y., Nishikawa, R., Wernick, M., & Edwards, A. (2005). Relevance Vector

Machine for Automatic Detection of Clustered Microcalcifications. IEEE Transactions

on Medical Imaging, 24(10), 1278-1285.

Whiteson, S., Stone, P., Stanley, K. O., Miikkulainen, R., & Kohl, N. (2005). Automatic feature

selection in neuroevolution. Proceedings of the Genetic and Evolutionary Computation.

ACM Press.

258

Williams, C., & Seeger, M. (2001). Using the Nystrom Method to Speed up Kernel Machines. In

T. Leen, T. Dietterich, & V. Tresp (Ed.), Advances in Neural Information Processing

Systems. 13, pp. 682–688. The MIT Press.

Winlock, J. (1856). On Professor Airy's objections to Peirce's criterion. The Astronomical

Journal, 4, 145-147.

Wong, W., Moore, A., Cooper, G., & Wagner, M. (2003). Bayesian network anomaly pattern

detection for disease outbreaks. Proceedings of the 20th International Conference on

Machine Learning (pp. 808-815). AAAI Press.

Wright, T. W. (1884). A Treatise on the Adjustment of Observations by the Method of Least

Squares. New York.

Wu, F., Wang, T., & Lee, J. (2010). An online adaptive condition-based maintenance method

formechanical systems. Mechanical Systems and Signal Processing, 24(8), 2985-2995.

Wu, M., & Jermaine, C. (2006). Outlier detection by sampling with accuracy guarantees.

Proceedings of the 12th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining (pp. 767–772). ACM Press.

Wu, M., & Ye, J. (2009). A small sphere and large margin approach for novelty detection using

training data with outliers. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 31(11), 2088-2092.

Xiao, Y., Wang, H., & Xu, W. (2014). Hyperparameter Selection for Gaussian Process One-

Class Classification. IEEE Transactions on Neural Networks and Learning Systems.

259

Yamanishi, K., Takeuchi, J., Williams, G., & Milne, P. (2004). On-line unsupervised outlier

detection using finite mixtures with discounting learning algorithms. Data Mining and

Knowledge Discovery, 8(3), 275-300.

Yen, S., Shih, C., Chang, H., & Li, T. (2010). Nearest neighbor searching in high dimensions

using multiple KD-trees. Proceedings of the 10th WSEAS International Conference on

Signal processing, Computational Geometry and Artificial Vision, (pp. 40-45).

Yershova, A., & LaValle, S. (2007). Improving Motion-Planning Algorithms by Efficient

Nearest-Neighbor Searching. IEEE Transactions on Robotics, 23(1), 151-157.

Yeung, D. Y., & Ding, Y. (2003). Host-based intrusion detection using dynamic and static

behavioral models. Pattern Recognition, 36(1), 229-243.

Yeung, D., & Chow, C. (2002). Parzen-Window Network Intrusion Detectors. International

Conference on Pattern Recognition. 4. IEEE Computer Society.

Yin, G., Zhang, Y. T., Li, Z. N., Ren, G. Q., & Fan, H. B. (2014). Online fault diagnosis method

based on Incremental Support Vector Data Description and Extreme Learning Machine

with incremental output structure. Neurocomputing, 128, 224-231.

Yu, D., Sheikholeslami, G., & Zhang, A. (2002). Findout: Finding outliers in very large datasets.

Knowledge and Information Systems, 4(4), 387-412.

Yu, M., Yu, Y., Rhuma, A., Naqvi, S. M.-R., Wang, L., & Chambers, J. A. (2013). An Online

One Class Support Vector Machine-Based Person-Specific Fall Detection System for

260

Monitoring an Elderly Individual in a Room Environment. IEEE Journal on Biomedical

and Health Informatics, 17(6), 1002-1014.

Zhang, J., & Wang, H. (2006). Detecting outlying subspaces for high-dimensional data: the new

task, algorithms, and performance. Knowledge and Information Systems, 10(3), 333-355.

Zhang, K., Hutter, M., & Jin, H. (2009). A New Local Distance-Based Outlier Detection

Approach for Scattered Real-World Data. Advances in Knowledge Discovery and Data

Mining. Lecture Notes in Computer Science. 5476, pp. 813-822. Springer.

Zhang, T., Ramakrishnan, R., & Livny, M. (1997). BIRCH: A New Data Clustering Algorithm

and Its Applications. Data Mining and Knowledge Discovery, 1(2), 141-182.

Zhang, Y., Meratnia, N., & Havinga, P. (2010). Outlier Detection Techniques for Wireless

Sensor Networks: A Survey. IEEE Communications Surveys and Tutorials, 12(2), 159-

170.

Zhang, Z., & Shen, H. (2005). Application of online-training SVMs for real-time intrusion

detection with different considerations. Computer Communications, 28(12), 1428-1442.

Zhou, J., Fu, Y., Sun, C., & Fang, Y. (2011). Unsupervised distributed novelty detection on

scientific simulation data. Journal of Computational Information Systems, 7(5), 1533-

1540.

Zhu, F., Ye, N., Yu, W., Xu, S., & Li, G. (2014). Boundary detection and sample reduction for

one-class Support Vector Machines. Neurocomputing, 123, 166-173.

261

Zhuang, L., & Dai, H. (2006). Parameter optimization of kernel-based one-class classifier on

imbalance learning. Journal of Computers, 1(7), 32-40.

Zliobaite, I. (2009). Learning under Concept Drift: an Overview. Vilnius University, Lithuania,

Faculty of Mathematics and Informatics.

	Batch and Online Implicit Weighted Gaussian Processes for Robust Novelty Detection
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1: INTRODUCTION AND BACKGROUND
	1.1 Background
	1.2 Historical Origins of Outlier Detection
	1.3 Main Aspects of a Novelty Detection Problem
	1.3.1 Nature of Data
	1.3.2 Type of Output
	1.3.3 Type of Anomaly
	1.3.4 Data Labels
	1.3.5 Computational Requirements
	1.3.6 Learning Framework

	1.4 Modern Approaches to Novelty Detection
	1.4.1 Statistical Novelty Detection
	1.4.2 Classification-based Novelty Detection
	1.4.3 Clustering-based Novelty Detection
	1.4.4 Distance-based Novelty Detection
	1.4.5 Information Theoretic Novelty Detection
	1.4.6 Subspace-based Novelty Detection
	1.4.7 Angle-based Novelty Detection

	1.5 Advantages and Limitations of Modern Approaches

	CHAPTER 2: STATE OF THE ART IN KERNEL NOVELTY DETECTION
	2.1 Statistical Patterns and Kernel Methods
	2.1.1 Statistical Patterns
	2.1.2 Kernel Functions for Pattern Analysis
	2.1.3 Kernel transformations
	2.1.4 Classification of Kernels
	2.1.5 Properties of Data in Feature Spaces

	2.2 Classification-based Kernel Methods for Novelty Detection
	2.2.1 Batch methods
	2.2.2 Online Methods

	2.3 Gaussian Processes for Novelty Detection
	2.3.1 Bayesian Modeling
	2.3.2 Gaussian Processes
	2.3.2.1 Batch GP Regression
	2.3.2.2 Online GP
	2.3.2.3 Sparse Online GP

	2.3.3 Gaussian Processes for Binary Classification
	2.3.4 Gaussian Processes for Novelty Detection

	CHAPTER 3: PROBLEM STATEMENT
	3.1 The Specific Problems
	3.1.1 The Need for Robust GP-based Novelty Detection
	3.1.2 The Need for Online GP-based Novelty Detection

	3.2 Hypothesis
	3.3 Contributions

	CHAPTER 4: IMPLICIT WEIGHTED GAUSSIAN PROCESSES
	4.1 Robust Potentials and Weights
	4.2 Implicit Weighted Gaussian Processes
	4.2.1 Implicit Weighted Batch GP
	4.2.1.1 Estimation of Weighted GP Hyperparameters
	4.2.1.2 Optimizing hyperparameters with priors

	4.2.2 Implicit Weighted Online GP
	4.2.3 Implicit Weighted Sparse Online GP

	4.3 Data Weighers
	4.3.1 HeteroscedasticReg DataWeigher
	4.3.2 RobustReg DataWeigher
	4.3.3 HeteroscedasticRobustReg DataWeigher

	4.4 Notes on Computational Complexity
	4.5 Experiments
	4.5.1 Heteroscedastic Data without Outliers
	4.5.2 Homoscedastic Data with Outliers
	4.5.3 Heteroscedastic Data with Outliers

	4.6 Effect of Weights on the MLE Method

	CHAPTER 5: IMPLICIT WEIGHTED GAUSSIAN PROCESSES FOR NOVELTY DETECTION
	5.1 Robust Data Weigher
	5.2 Experimental Setup
	5.2.1 Comparison of Standard GPs and Weighted GPs
	5.2.2 Comparison of Batch GPs and Online GPs
	5.2.3 Comparison of Scores

	5.3 Data Sets and Kernels
	5.3.1 Points within Circles
	5.3.2 Vertebral Column
	5.3.3 Pima Indians Diabetes
	5.3.4 Caltech 101

	5.4 Experiment Results and Analyses
	5.4.1 Comparison of Standard GPs and Weighted GPs
	5.4.1.1 Points within Circles
	5.4.1.2 Vertebral Column
	5.4.1.3 Pima Indians Diabetes
	5.4.1.4 Caltech 101
	5.4.1.5 Analysis of Results

	5.4.2 Comparison of Scores
	5.4.2.1 Points within Circles
	5.4.2.2 Vertebral Column
	5.4.2.3 Pima Indians Diabetes
	5.4.2.4 Caltech 101
	5.4.2.5 Analysis of Results

	5.4.3 Comparison of Batch GPs and Online GPs
	5.4.3.1 Points within Circles
	5.4.3.2 Vertebral Column
	5.4.3.3 Pima Indians Diabetes
	5.4.3.4 Caltech 101
	5.4.3.5 Analysis of Results

	CHAPTER 6: CONCLUSIONS
	6.1 Summary
	6.2 Conclusions
	6.3 Future Research

	APPENDIX A: COMPARISON OF STANDARD AND WEIGHTED GPs
	APPENDIX B: COMPARISON OF BATCH AND ONLINE GPs
	REFERENCES

