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ABSTRACT 

 

Dimension scaling has been the driving force for improved performance of semiconductor 

integrated circuits (ICs) for the past few decades. While the semiconductor industry continues to 

achieve returns on Moore’s law, the resistance-capacitance (RC) delay remains a critical 

bottleneck towards further performance improvement. To support advanced computing 

performance, the development and integration of new low dielectric (low-k) materials to reduce 

the capacitance of interconnects are crucial. Apart from the low dielectric constant value, one of 

the other vital parameters to replace the current dielectric material is mechanical stability. 

Materials in the boron, carbon, and nitrogen ternary triangle have emerged promising low 

dielectric materials. The combination of boron, carbon, and nitrogen leads to unique materials 

exhibiting distinct properties from graphite to boron carbide (B4C), boron nitride (BN), boron 

carbon nitride (BCN) compounds going from metallic to semiconducting to insulating. BCN 

compounds combine properties of diamond to display excellent mechanical properties and 

reproduce BN semiconducting properties with adjustable bandgaps. The dielectric constant (k) 

value of B4C and BCN is between 4-6. This dissertation attempted to reduce the k value of B4C 

and BCN by introducing non-polar bonds in the materials through hydrogenation using the RF 

magnetron sputtering technique. Thin films were deposited by single or dual-target sputtering 

from B4C and BN targets by varying hydrogen to nitrogen reactive gas and substrate temperature.  

All the films demonstrated distinct composition at different growth parameters and displayed 

evidence of tunable properties with film composition.  It was shown that tuning film composition 
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achieves low-k values while ensuring no deterioration in the mechanical properties of thin films. 

Moreover, the influence of hydrogenation and variation in substrate temperature was 

investigated on B4C and BCN properties for applications in electrical, mechanical, and optical 

devices. Additionally, graphene analogous BCN nanocoating synthesized in this study exhibited 

outstanding inhibition against bacterial growth and biofilm formation, making them promising 

for biomedical devices. 
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CHAPTER ONE: INTRODUCTION 

Advances in the semiconductor technology due to dimensional scaling over the past few decades 

has manifested packing more transistors onto a single chip. Dimension scaling has been the most 

significant characteristic of the development and evolution of the solid-state electronics industry 

following The International Technology Roadmap for Semiconductors [1]. The continuous 

miniaturization to abide by Moore’s law is stimulated by the improved performance due to 

increased speed and more functions per unit area. The solid-state electronics thus evolved 

through the microelectronics stage has reached the nanoelectronics technology node. The 

semiconductor industry crossed the 10 nm silicon logic threshold in 2018, and accomplished 2 

nm technology node in 2021, which can pack over 50 billion transistors onto a chip the size of a 

fingernail.  

Materials have played a crucial role in this evolution of the semiconductor industry. Device 

performance and reliability depend greatly on the materials chosen and the compatibility of the 

materials with the fabrication processes employed. The transistor device consists of metallic 

segments connected horizontally and vertically, serving as gate contacts, diffusion barrier layer 

and dielectric layers. State-of-the-art devices consists of multiple layers of metallization, as 

shown in figure 1.1 [2].  
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Figure 1.1: Cross-section of multi-layer integrated circuit. 

Interlayer Dielectrics (ILD) can be divided into three categories based on their functions namely 

the active dielectric layer, the layers required for device processing, and the insulating layers. The 

active dielectric layer fundamentally plays an important role in device operation specific for the 

storage of charges. These are gate oxide and capacitor dielectric in memory devices. The layers 

required for device processing consists of etch stop layers such as silicon nitride needed during 

etching and chemical mechanical polishing processes, anti-reflective coatings for lithography, 

diffusion layers to enable selective area diffusion or ion implantation.  ILD administers isolation 

between the metal lines for single or multi-layer metal interconnects.  

To continue the development of the IC industry, it is essential to introduce new materials to 

accommodate further miniaturization. As dimensions shrink, the switching speed of transistors 

increases since the carrier transit time across the channel length decreases. The effective device 

speed is controlled by the intrinsic gate delay as well as the time of signal propagation through 

the metal interconnects. Any interconnection can be represented as a chain of resistors and 
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capacitors, as shown in figure 1.2 [3]. A signal propagating through this interconnection 

experiences a resistance-capacitance (RC) delay. The continuous scaling of feature size of 

integrated circuits to achieve continued returns on Moore’s law is hindered by the 

interconnection delay. RC time delay remains a critical bottleneck to improve the computing 

performance.  

 
 

Figure 1.2: Schematic of Cu metal lines in the dielectric layer. 

To understand RC delay, figure 1.3 shows a schematic model of interconnects circuit [4]. Referring 

to figure 1.3, P represents the line pitch, W is the line width, S is the line spacing, and T represents 

the line thickness. The RC delay [4, 5] is given by: 

RC = 2ρκϵ0 [(4L2/P2) + (L2/T2)]                                                                                                              (1) 

Where ρis the metal resistivity,κis the relative dielectric constant of the ILD, ϵ0 is the vacuum 

permittivity, and L is the line length. Dimensional scaling with a decrease in feature size provokes 
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a sharp increase in RC time delay. The RC time delay governs the overall on-chip cycle time for 

devices smaller than 0.25 µm [6].  

 

Figure 1.3: Schematic of a typical interconnect circuit. LG refers to line-to-ground, and LL refers 

to line-to-line contributions.  

The propagation velocity of electromagnetic waves becomes critical due to unyielding constraints 

on the interconnect delay. To support a further increase in transistor density and improve the 

performance, either conductor resistance or dielectric capacitance must decrease. The 

introduction of Cu has improved the situation significantly compared to the conventional Al/SiO2 

technology by reducing the resistivity between the interconnects. However, the impact of delay 

is persistently more than ever as we enter the nanometer regime. As Cu has become the 

established choice of conductor material, the primary focus and challenge remain on exploring 

new low dielectric (low-k) materials to replace the traditional SiO2 (k=4) to achieve lower signal 

delay. Reducing the dielectric capacitance is also significant for reducing power consumption. 

Ever-increasing frequencies and higher transistor densities on chips lead to a dramatic increase 
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in power consumption. The relation between power and the capacitance of dielectric material is 

given by [7] 

P = CV2f,                                                                                                                                                     (2)  

Where P is the power consumption,  is the wire activity, C is the total on capacitance, V is the 

supply voltage, and f is the operational frequency. The total capacitance C can be expressed as: 

C = Coutput + Cwire + Cinput                                                                                                  (3) 

Coutput and Cinput  are the output and input capacitance of the transistor itself, and Cwire is the 

capacitance introduced every time the wire is active. Thus, the dielectric constant of the material 

significantly influences the power dissipation. Reducing the k value by reducing C will curtail the 

power dissipation and make circuits faster.  

1.1 Dielectric Properties  

A dielectric material is an insulator that can be polarized on the application of an external electric 

field. ILD properties can be categorized into four domains: electrical, mechanical, chemical, and 

thermal. Table 1.1 lists the requirements for low dielectric constant ILD material [4]. The 

synthesizing technique may alter the properties of ILD material, and thus determining the 

required properties to ensure the reliability of ILD is of utmost importance.  
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Table 1.1: Requirements for ILD materials 

Electrical Mechanical Chemical Thermal 

Low dissipation Film thickness High chemical 
resistance 

High thermal stability 

Low leakage Adhesion High etch selectivity Low thermal 
expansion 

High reliability Low stress Low moisture 
absorption 

Low thermal 
shrinkage 

Low charge trapping High tensile modulus Low solubility of H2O High thermal 
conductivity 

High electric field 
strength 

High hardness Low gas permeability  

 Low shrinkage High purity  

 Low weight loss No metal corrosion  

 High fracture 
toughness 

High storage life  

  Environmentally safe 
and health 
compatible 

 

 

The electrical stability of the dielectric materials is one of the most critical parameters 

irrespective if the dielectric is used as an ILD or as a passivation layer for device processing. 

Ideally, a good ILD material must display high electrical bulk and surface resistivity, low leakage 

current, and thus very high dielectric breakdown strength, low charge trapping, low dielectric 

constant, low dissipation, and high reliability.   

Resistivity: The amount of voltage-induced current through the dielectric material is determined 

by the resistivity values. Dielectric layers in the integrated circuits are subjected to high electrical 

fields (~107 volt/cm) [4]. Thus materials with very high resistivity ( > 1014 ohm-cm at RT) are 

preferred for the dielectric layer.  
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Current Leakage and Dielectric Strength: Ideally, dielectric materials are perfect insulators with 

very high resistivity. However, all dielectrics allow the passage of some current under the 

influence of applied voltage. Poole-Frenkel emission [8] and Fowler-Nordheim tunneling [9] are 

responsible for the passage of electric current through impurity-free dielectric materials. The 

maximum voltage a dielectric material can sustain without causing runaway currents is the 

leakage current capability. At high runaway currents, the dielectric breaks down and discharges. 

This maximum field is known as the dielectric strength and is represented as volt/cm. Dielectric 

strength depends on the thin film thickness and shows a reducing trend with thickness. The 

dielectric field strength reduces with higher thickness due to defects, low thermal conductivity 

of dielectrics, and the Joule heating, which raises the temperature more in thicker films than 

thinner films. 

Mechanical properties also play a critical role in deciding the reliability of semiconductor 

materials and devices. Mechanical failures such as cracks, lack of adhesion, stress-related defects, 

and fractures during chemical-mechanical planarization are some of the factors that affect 

dielectric materials performance. Many of the properties are highly dependent on the process 

parameters of dielectric thin films.  

Stress: The stress can be compressive or tensile if the material under stress will expand or 

contract respectively, under the impact of force causing the stress. General convention states 

that compressive stresses are negative and tensile stresses are positive. High tensile stress leads 

to cracks in the films, and compressive stress leads to curling. The intrinsic stress can be due to 
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multiple reasons such as lattice mismatch between the substrate and film, the film 

microstructure, defects in the film, volume changes associated with chemical or metallurgical 

interactions, anisotropic growth, and surface tension [4]. Thus, it is crucial that the dielectric thin 

films exhibit lower stress leading to more reliable connections.  

Adhesion: In the IC, the adhesion of the film to the substrate is of utmost importance and should 

not be affected during the several IC fabrication steps. Fundamentally, the interatomic 

interactive forces across the film-substrate interface determine the adhesion. Atoms and 

molecules with large polarizabilities have higher adhesion strength. Interfacial bonding forces 

and adhesion are affected due to the presence of impurities, surface roughness, reactive 

environment, overlying coatings, and temperature.  To ensure good adhesion between the film 

and substrate, there must be (i) strong interatomic bonding across the film-substrate interface, 

(ii) absence of fracture modes and reactive environment that can produce stress, (iii) a low level 

of film stress, and (iv) absence of long-term degradation modes [10]. 

Some of the other properties which affect the mechanical stability of ILD films are thin film 

thickness uniformity, high tensile modulus and hardness, high crack resistance, and low 

shrinkage.  Since most ILD applications require chemical mechanical polishing (CMP) of ILD films, 

higher tensile modulus, and higher hardness are fundamental requirements for ILD films. 

Unoptimized deposition conditions introduce many undesirable behaviors in ILD. A non-uniform 

thickness creates non-uniform stress characteristics and causes difficulties in further processing 

of the film. Excessive shrinkage, which occurs with many organics dielectrics, leads to cracks in 
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the films. Pores and cracks create pathways for metal diffusions leading to leakage and eventually 

short between two levels of metal interconnects. Thus heightened attention must be paid to 

engineer dielectric for ILD applications.  

 1.2 How To Reduce The k-value 

To sustain and enhance device performance through miniaturization of device size, it is essential 

to find new materials with dielectric constants lower than 4 or lower the dielectric value of known 

materials. A low-k material typically is an insulating material that exhibits weak polarization when 

subjected to an externally applied electric field. Dielectric constant (k), also known as relative 

permittivity is the ratio of permittivity of a substance to that of free space. Polarization induces 

dipoles in the dielectric material, and all dipoles become aligned with the applied field. Figure 1.4 

shows a schematic illustration of a capacitor [11].  Thus, the charge distribution induced by the 

external field results from cumulative contributions from electronic, ionic, orientation, and space 

charge polarization. The electronic and ionic polarizations are attributed to applied field-induced 

displacement of electrons with respect to nucleus and negative and positive ions in ionic 

dielectric. On the other hand, the orientation and space charge polarization are associated with 

the field-induced alignment of existing dipoles in the material with existing mobile charges at 

defect sites. The relation between dielectric constant value and polarizability is given as follows 

[4]:  

𝑘 =
3

1−(4𝜋 𝑁 𝛼 /3)
− 2                     (4) 
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Where k is the dielectric constant value, N is the number of molecules per unit value, and 𝛼 is 

the total polarizability of dielectric materials.  

It can be observed that the higher the N and 𝛼, the higher is the k value. The larger molar volume 

would result in lower N and thus lower k. Therefore, to develop materials with lower k, materials 

with larger molar volumes (N) and lower polarizability (𝛼) becomes necessary. ILD designed with 

smaller atoms (such as C, B, H) have comparatively lower 𝛼 and lower k values. Lowering the 

dielectric constant can be achieved by reducing the electron density of conventional dielectric 

materials. One of the most obvious choices is choosing materials with chemical bonds of lower 

polarizability than Si-O, choosing a structure with lower mass density than SiO2, or adding 

porosity to the film [12]. Unfortunately, most methods that lower the electron density also show 

a dramatic decline in the mechanical properties. The IC industry has already replaced Si-O bonds 

with materials that exhibit lower polarizable bonds such as Si-F or Si-C [13]. A more fundamental 

reduction can be achieved by using virtually all nonpolar bonds such as C-C or C-H.  
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Figure 1.4: Schematic illustration of a capacitor with electrical dipoles.  

Minimizing the moisture content in the dielectric material to minimize the highly polar O-H bonds 

(k=80) is yet another approach for reducing k values in dielectric materials. Ideal low-k dielectric 

materials must be hydrophobic to prevent deterioration of their k value.  

 1.3 Motivation 

The search and implementation of new materials have been ongoing for use as the intermetal 

dielectric (IMD) or ILD. The first such IMD/ILD material implemented was silicon oxyfluoride 

(SiOF) with a k value between 3.6 to 3.8 [14]. This was followed by the replacement of aluminum 

(Al) with copper (Cu) metal as Cu interconnects showed a 40-45% drop in the resistance 

compared to Al wiring [15]. Replacement of metal interconnect with Cu also led to the 
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development of damascene processing modifying the subtractive metal approach with 

subtractive dielectric approach [16]. Around this time, inorganic-organic carbon-doped oxide (a-

SiOC:H) materials with low dielectric constant values ( k= 3.1 - 3.3) were also scrutinized to 

replace SiOF [17].  Since then, several types of materials such as SiC:H (k = 4.0-7.0), SiN:H, SiCN:H 

(k = 4.5-5.8) have been investigated to be used as ILD material.  Various polymers such as poly 

methyl methacrylate (PMMA), polyhedral oligomeric silsesquioxane (POSS) and poly dimethyl- 

siloxane (PDMS) were also investigated for low-k materials. However, these materials exhibit 

challenges in maintaining the chemical, thermal, electrical, mechanical stability with low-k value 

[18]. The inevitable falloff in the mechanical properties with decreasing k value labeled as the 

low-k death curve is one of the primary obstacles in improving low-k ILD materials.  

As discussed in the above sections, for successful integration of low-k dielectric materials in the 

IC manufacturing processes, it must abide by the following requirements: a) exhibit appropriate 

electrical characteristics along with good thermal and mechanical properties; b) be able to 

perform with other interconnect materials; c) be compatible with manufacturing processes in 

place; d) be available in high purity form and economical, and e) have high reliability over the 

product lifetime under specific device operation conditions. A candidate material that exhibits 

most of these requirements and has attracted much attention is boron carbon nitride (BCN). BCN 

materials belong to the family of diamond, boron carbide (B4C), boron nitride (BN), and 

hypothetical carbon nitride (β-C3N4). Initially, BCN compounds gathered interest due to their 

dielectric properties, which was the primary pursuit of the semiconductor industry to reduce the 

time delay and increase the computing performance of ICs through dimension scaling.  
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BCN materials have been able to demonstrate low dielectric constant values. Additionally, since 

BCN materials belong to the diamond family, they exhibit excellent mechanical properties and 

maintain stringent requirements of the back end of line processing, unlike other polymers 

investigated in the past. BCN compounds are known to combine the excellent properties of B4C, 

BN, and C3N4, with their properties adjustable depending on the composition and structure [19]. 

As graphite is semi-metallic and h-BN is insulating, hybrid BCN between graphite and h-BN 

exhibits semiconducting properties. 

Since hydrogen is the lowest atomic number element (Z=1), hydrogenation of dielectric materials 

to obtain low dielectric constant values through the formation of non-polar bonds has gained 

much interest. Materials such as a-Si:H, a-C:H, a-SiC:H, and SiCN:H have reported lower dielectric 

values after hydrogenation [18, 20]. Although BCN is a potential low-k dielectric material, focused 

research on the influence of hydrogenation has not been evaluated. It is essential to analyze the 

impact of hydrogenation and other deposition parameters on B4C and BCN electrical properties 

such as dielectric constant and resistivity. While it is essential to obtain low-k values with 

hydrogenation, it is also extremely crucial that the films mechanical properties do not 

deteriorate. As BCN is a wide bandgap material, there is an imminent requirement to evaluate 

the influence of hydrogenation on optical properties. This can further open new opportunities in 

optoelectronic applications in extreme conditions.  
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 1.4 Objective and Outline 

The primary focus of this dissertation is aimed at investigating the influence of hydrogenation on 

B4C and BCN thin films using the reactive RF magnetron sputtering technique. The influence of 

hydrogenation and other deposition parameters on electrical, optical, mechanical, and 

photoluminescence properties were assessed. These assessments help determine the feasibility 

of BCN materials as potential candidates for low-k in the CMOS technology. As low-k dielectric 

materials also need to satisfy the stringent requirements for mechanical properties, 

investigations on mechanical properties of BCN thin films were also examined. With the latest 

developments of BCN nanomaterials showcasing desirable and controllable properties in the 

nano-biotechnology and nanomedicine field, the efficacy of BCN nano-coatings on bacterial 

inhibition was evaluated. This thesis is organized as follows. In chapter 1, a brief introduction of 

the impact of dimensional scaling in the CMOS devices is discussed. The essential equations 

describing the relationship between dimension scaling and challenges in improving the 

computing performance in the IC industry is discussed. It also discusses the opportunities and 

challenges for low-k materials.  

Chapter 2 provides the readers with a comprehensive background on the compounds in the B-C-

N ternary triangle. This chapter attempts to contemplate the BCN materials with the greatest 

attention to detail on synthesis techniques, properties, and corresponding applications. It also 

provides a comparison of BCN thin films with other prominently studied low dielectric materials. 

After graphene, graphene analogous BCN nanomaterials are researched intensively due to their 

unique chemical and physical properties. This chapter highlights BCN nanomaterials, their 
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synthesis techniques in different dimensions, along with properties and corresponding 

applications.  

Chapter 3 includes the experimental process, equipment, and techniques used to study BCN thin 

films and nano-coatings. The deposition techniques and process parameters used to synthesize 

thin films and nanocoatings of boron carbide and boron carbon nitride are explained. This section 

focuses on techniques used for surface characterization, electrical and optical properties. 

Detailed discussions about the methods and techniques used to investigate the mechanical 

properties of BCN thin films are presented.  The equipment, settings, data collection and analysis 

for photoluminescence studies on hydrogenated BCN thin films are covered in detail. Methods 

used to evaluate the efficacy of BCN nano-coating on bacterial inhibition properties are 

explained. 

Chapter 4 covers the results and discussion. This chapter focuses on the results obtained by 

depositing BC, BCN thin films with different process parameters using RF magnetron sputtering. 

The influence of process parameters on electrical, optical, and mechanical properties are 

displayed and discussed. This chapter also covers the distinct and tunable photoluminescence 

properties observed and potential applications. Further, the chapter also discusses the unique 

properties of BCN nanocoatings to inhibit bacterial growth and biofilm formation on central 

venous catheters.  

Chapter 5 provides details on the conclusion of the studies performed and paves a path for 

further exploration.  
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CHAPTER TWO: LITERATURE REVIEW 

Research in carbon-based materials has aroused great interest for many decades for the latest 

technological advancements. New forms of carbon are also investigated extensively to address 

environmental concerns. When carbon is combined with other materials, it enhances the 

structural diversity, which promotes these materials to exhibit an extensive range of properties 

and applications. Combining carbon with boron and nitrogen results in interesting phases due to 

covalent bonding between the elements. The compounds in the boron-carbon-nitrogen ternary 

triangle such as diamond (C ), cubic boron nitride (c-BN), boron carbide (B4C), and hypothetical 

carbon nitride (β-C3N4) are popular due to their covalent bonding, short bond lengths, and low 

atomic mass which allows the materials to have low dielectric constant along with excellent 

thermal and mechanical strength [21-25]. Diamond is the hardest material known, c-BN is next 

to diamond in hardness, and B4C is the third hardest material [26].  

 2.1 Boron Carbon Nitride (BCN) 

 

Boron carbon nitride (BCN) compounds are known to combine the unique properties of B4C and 

BN, and their properties can be tuned depending on composition and structure. As graphite is 

semi-metallic and h-BN is insulating, hybrid BCN situated between graphite and h-BN exhibits 

excellent semiconducting properties [27, 28].  B-C-N based system commonly exhibits the 

following bonding structures: (i) cubic diamond or c-BN with sp3 based tetrahedral coordination, 

(ii) hexagonal graphite or h-BN with sp2 based tetrahedral trigonal atom coordination, and (iii) 
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rhombohedral crystals of boron carbide with B12 icosahedral coordination [25]. Cubic boron 

carbon nitride (c-BCN) structure combines the properties of diamond and c-BN and exhibits 

superior hardness. Furthermore, hexagonal-BCN structures replicate the h-BN semiconducting 

property and exhibit tunable bandgap.  Figure 2.1 shows the phases observed in the ternary B-C-

N triangle. 

What makes BCN materials interesting is that it is not only possible to tune the composition and 

structure using different deposition techniques, but distinct composition demonstrates unique 

properties. This exceptional behavior of BCN materials gathered overwhelming attention in 

research and industry. BCN materials are reported to demonstrate low dielectric constant value 

as low as 1.9 [29], excellent hardness and elastic modulus of 33.7 GPa and 256 GPa, respectively 

[30], a high breakdown voltage of 3.4 MV/cm [31], low friction of coefficient (0.1-0.2) [32], high 

adhesion [33] and exceptional thermal stability up to 1000°C [34]. Owing to these properties, 

BCN thin films find electrical applications in the form of supercapacitors, field-effect transistors 

(FET), high voltage photodetectors. Due to their optical transparency and tunable bandgap, BCN 

thin films find applications in optoelectronic devices as well as UV detectors [35]. The exceptional 

mechanical properties such as good wear resistance, high hardness, low friction of coefficient 

make BCN thin films an ideal candidate material for cutting tools and anti-wear protective 

coatings [32, 36-39]. Table 2.1 [25] shows the distinguished properties of BCN thin films 

compared with other commonly used low dielectric materials.  
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Figure 2.1: Ternary boron-carbon-nitrogen triangle displaying different phases.  

Various techniques have been used to synthesize thin and robust films of BCN such as chemical 

vapor deposition (CVD) [40-42], RF magnetron sputtering [43-45], DC sputtering [39, 46], dual ion 

beam sputtering [47], high power impulse magnetron sputtering [48], pulsed laser deposition 

[49-51] and ion-beam assisted deposition (IBAD) [52, 53]. Distinct synthesis conditions assign 

unique properties to BCN thin films, and growth parameters greatly influence the properties.  
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Table 2.1: Comparison of BCN thin film properties with other low dielectric materials. 

Semiconductor 
Material 

h-BN SiO2 SiOC:H BC:H BCN 

Density (g 
cm−3) 

2.2 
 

1.4–2.1 0.9–1.3 1.5 ± 0.08 2.4–2.5 

Young’s 
modulus (GPa) 

36.5 75.2 3–15 126 ± 5 ∼285 

Hardness 
(GPa) 

1.5–1.3 7.9 0.2–2.3 1–35 30–40 

Stress (MPa) 1–16 21.01 Highly 
variable 

−400 ± 100 150 

Energy 
bandgap (eV) 

5.86 8.9  7.9  2.4–3.6 1.9–3.7 

Breakdown 
voltage (MV 

cm−1) 

1.5–2.5 >4.3 >6 >5 3.4 

Dielectric 
constant 

2–4 3.9 2.2–3.2 3.3 ± 0.15 1.9 

Leakage 
current 
(Acm−2) 

(@ 1 MV/cm-

1) 
10–6 

(@ 4 MV/cm-

1) 
10−7 - 10−9 

(@ 2 MV/cm-

1) 
10−8 - 10−9 

(@ 2 MV/cm-

1) 
9 × 10−9 

(@1 MV/cm-

1) 
10−5-10−8 

Resistivity (Ω 
cm) 

1014–1016 1017 1017 1010–1015 109–1012 

 

2.2 Deposition Techniques for BCN Thin Films 

2.2.1 Chemical Vapor Deposition 

Chemical Vapor Deposition (CVD) is one of the most common techniques to synthesize films in 

the B-C-N ternary triangle. CVD provides the advantage of producing high-quality films with 

relative ease of controlling material microstructure and composition. A typical CVD process 

utilizes volatile precursors that react and form the required material on the substrate surface. 
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Synthesis of BCN with CVD technique was first reported by Kosalapova et al. in the early 1970s 

using reactions between carbon and boron in the presence of NH3 or N2 [42]. These reactions 

were attempted at high temperatures of 1800-2000 °C. Several precursors containing mixtures 

of boron halogenides, hydrides mixed with hydrocarbons, ammonia, nitrogen were used for CVD 

of BCN thin films. However, further development of BCN synthesis with these precursors was not 

viable due to their high toxicity and hazardous nature. Since then, significant advancement has 

been made towards the development of single source organoboron precursor containing boron, 

carbon, and nitrogen, which are essential to form BCN [54-58]. The first attempt at synthesizing 

BCN by CVD process using boron trichloride (BCl3) precursor was reported by Badzian et al. All 

the films grown were reported to be polycrystalline with composition of (BN)xC1-x [59]. Apart from 

BCl3, BCN has also been reported to be synthesized using the CVD process from diborane 

precursor (B2H6) [60]. Two different mixtures of precursors were used, namely – mixture 1 

(B2H6 + NH3 + C2H4) and mixture 2 (B2H6 + Dimethylamine (CH3)2NH). The concentrations of B, C, 

and N in the films produced were reported to be 51.4–63.0 at.%, 6.2–20.5 at.%, and 16.8–

38.2 at.%, respectively, for mixture 1 and 77.8–92 at.%, 5.3–16.5 at.%, and 1.8–7.4 at.%, 

respectively, for mixture 2. The films deposited using mixture 1 were close to the BN region in 

the BCN composition triangle, whereas the films deposited using mixture 2 were close to the BC 

region in the composition triangle. Thus, BCN films with different compositions can be obtained 

by varying the reactive atmosphere in the CVD process.  

Microwave PECVD (MW-PECVD) was also used to synthesize BCN thin films using triethylamine 

borane (TEAB) single-source precursor at microwave powers of 300 W, 400 W for 30 minutes 
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[40]. The B, C, and N concentration of films deposited using 300 W and 400 W microwave power 

was recorded to be B50C12N38 and B47C16N37, respectively. A hybrid B-C-N atomic configuration 

was identified using XPS. The particle size was 100 nm and 150 nm for the films deposited at 300 

W and 400 W microwave power, respectively. The microhardness also displayed an increasing 

trend with microwave power. This indicates that the grain size and microhardness of BCN thin 

films can be altered by tuning the microwave power.  

2.2.2 Magnetron Sputtering 

Magnetron sputtering is a popular technique to deposit superhard BCN thin films as it produces 

conformal deposition with low cost and low operating temperatures. Ulrich and coworkers used 

the h-BN target in argon plasma and acetylene (C2H2) to RF sputter BCN thin films. The flow rate 

of C2H2 / Ar was observed to significantly affect BCN thin films deposition rate. Stoichiometries 

of B2C0·2N, B2C0·5N, B2C1N, and B2C1·5N were identified for C2H2/Ar gas flow ratios of 0.05%, 0.13%, 

0.5%, and 0.8%, respectively [45]. Due to their excellent mechanical and tribological properties, 

BCN materials with potential for wood cutting tools were investigated by Wu et al. by RF 

sputtering of B4C target [33]. The N2 gas flow was varied at 5, 10, 15, and 20 sccm to achieve 

different film compositions. They reported a decrease in the B content, increase in critical loads 

indicating enhanced adhesion and crack propagation resistance with N2 flow in the deposited 

BCN coatings. Apart from the reactive gas flow, other process parameters also affect the 

properties of RF sputtered BCN thin films. Zhuang et al. reported that the bond content in the B-

C-N films could be tuned based on the substrate temperature and bias voltage [43].  
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The correlation between deposition parameters on composition, structure, and mechanical 

properties of BCN films deposited by DC magnetron sputtering was reported [46]. The N content 

was varied from 0 to 100% to characterize the bonding structure and the mechanical properties 

of the film deposited on Si substrates. For 50% N2, substrate potential between −150 V 

and −450 V was applied to targets. This deposition technique provides flexibility for tuning the 

mechanical properties of film for desired applications by proper control of gas mixture.  

2.2.3 Pulsed Laser Deposition  

The pulsed laser deposition (PLD) technique has developed significantly over the years and is 

currently used extensively in research as well as industrial thin films production. One of the 

earliest PLD studies reported the synthesis of BCN thin films from BN-graphite target [49]. The 

sequential PLD technique facilitates the formation of BCN thin films with different 

stoichiometries based on substrate temperature variation. BCN films deposited at room 

temperature (RT) were polycrystalline, whereas films deposited at higher substrate temperatures 

were amorphous.  

Wang et al. reported that laser fluence affects the microstructure, bonding structure, and 

mechanical properties of BCN thin films [30]. The contents of N–C and B–C bonds in B–C–N films 

increase with increasing laser fluence, affecting mechanical properties. Increasing the laser 

fluence from 1.0 J/cm2 to 3.0J/cm2 dramatically changes the hardness and elastic modulus of the 

films. Films synthesized using varying laser fluences were amorphous in nature. At a higher 

fluence of 3.0J/cm2, a greater number of hard B–C and sp3 N–C bonds are observed with a lesser 
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number of soft sp2 B–N and N=C bonds. These characteristics designated the films with maximum 

hardness of 33.7 G Pa and Young’s modulus of 256 GPa. Comparing the hardness values achieved 

for BCN thin films deposited using other techniques such as dual ion beam sputtering [47], the 

PLD technique to deposit BCN films exhibits a maximum hardness of 33.7 GPa.  

Along with favorable mechanical properties, the PLD technique assisted with electron cyclotron 

resonance (ECR) plasma produces BCN films with excellent adhesion to substrates and high 

transparency in the near IR region [61]. The nitrogen plasma was generated from the ECR 

microwave discharge in nitrogen gas. The BCN films exhibit a B/C/N atomic ratio of 3: 1: 3.8. Ying 

et al. have reported amorphous and nanocrystalline B-C-N hybridization films using nitrogen ion 

beam assisted laser ablation of B4C target [26]. B, C, N, O composition for nitrogen ion beam–

assisted films were 43%, 15%, 33%, and 9%, respectively.  

2.2.4 Ion Beam Assisted Deposition  

The ion beam assisted deposition (IBAD) technique combines ion implantation with another PVD 

technique to deposit thin films. The evaporated material produced by PVD is simultaneously 

bombarded with the independently generated flux of ions. IBAD is a powerful technique to 

deposit BCN thin films with preferred composition and bonding structure. BCN films produced by 

IBAD deposited boron and carbon using electron beam heating, and nitrogen was incorporated 

using ion implantation [53]. Target materials used were graphite blocks, a mixture of pure boron 

and C grains, and B4C blocks. Films produced by electron beam evaporation of (B + C) along with 

simultaneous N ion implantation acquired B: C: N atomic ratio of 4: 91: 5 at the surface. Whereas 
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in the case of BCN film produced by electron beam evaporation of B4C blocks along with N ion 

implantation acquired B: C: N atomic ratio of 28: 63: 9 at the film surface. It is evident that the 

target materials affect the atomic elemental composition of the deposited film.  

Table 2.2: A summary of BCN thin film synthesis techniques used to achieve some of the best-

reported properties in the literature.  

Desired Property Synthesis Technique Reference 
Low dielectric constant (1.9) PACVD [29] 
High hardness (33.7GPa) and 

Elastic modulus (256 GPa) 
PLD [30] 

UV detection capability Dual target RF magnetron 

sputtering 
[35] 

High breakdown voltage (3.4 

MV/cm) 
RF magnetron sputtering [31] 

Photoluminescence Electron-cyclotron-wave-

resonance PLD, Dual target 

RF magnetron sputtering 

[62] 

High transparency in the near 

infrared region (80%) 
Plasma-assisted PLD [61] 

High adhesion RF magnetron sputtering [33] 
Low friction coefficient (0.1-

0.2) 

High power impulse 

magnetron sputtering  
[32] 

Electromagnetic wave 

absorption capability 

CVD [63] 

High thermal stability 

(1000°C) 

Direct current unbalanced 

magnetron sputtering 
[34] 

 

BCN film structure evolves from amorphous to hexagonal phase by changing the momentum 

transfer using the evaporation of B4C lumps and N2 ion assistance [64]. E-beam evaporation of 

B4C provides the B and C atoms. Ion energies between 100 and 1200 eV and ion current densities 

up to 0.4 mA/cm2 were applied to N2 for ion assistance, impacting the film structure. Table 2.2 
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[25] shows a summary of BCN film synthesis techniques adopted to achieve some of the best-

reported properties in the literature based on all the deposition techniques discussed above.  

2.3 Properties of BCN Thin Films 

Understanding the fundamental film structure, chemical composition, and other properties 

regarding the deposition technique is crucial to tuning the BCN thin films for corresponding 

applications. To explore BCN thin film properties, it is necessary to perform a combination of 

techniques to investigate electrical, mechanical, morphological, and bonding properties. 

Additionally, the feasibility of wet and dry etching techniques for ILD thin films is essential for 

device fabrication process optimization.  

2.3.1 Electrical Properties 

The BCN hybrid materials in the B-C-N ternary triangle exhibit remarkable electrical properties. 

These electrical properties can be tuned based on the elemental film composition to satisfy 

specific requirements for electrical applications. Electrical properties are commonly studied by 

fabrication metal-insulator-metal (MIM) devices and characterizing the I-V and C-V curves. The 

electrical properties are strongly influenced by the deposition techniques and synthesizing 

parameters such as pressure, gas flow, substrate temperature. BCN films deposited using RF 

magnetron sputtering display decreased dielectric constant with increasing substrate 

temperature [31]. Figure 2.2 a-b shows the dielectric constant as a function of substrate 

temperature and gas flow ratio, respectively. The dielectric constant followed a decreasing trend 



26 
 

with substrate deposition temperature. At higher temperatures, BCN thin films possess the 

lowest C content and highest N content. As a result, the film exhibits more BN-like characteristics. 

As the k value of BN is lower than BCN, the films show reduced dielectric values. The dielectric 

constant displayed an increasing varying trend with the gas ratio. The k value reduced with gas 

ratio from 0.2 to 0.8; however, it suddenly increased for N2/Ar= 1.0. This increase in the dielectric 

constant value was attributed to higher capacitance in the thicker films deposited at N2/Ar= 1.0. 

It is important to note how tiny changes in the film composition drastically affect the electrical 

properties of RF magnetron sputtered BCN films.  

 

Figure 2.2: Dielectric constant trend of BCN thin films deposited by RF magnetron sputtering as 

a function of (a) substrate deposition temperature and (b) reactive gas flow ratio.  

Multiple studies in the literature report the dependence of electrical properties on the thin film 

composition. BCN thin films synthesized using PACVD displayed reduced resistivity from 1×1012 

Ω-cm to 3.4×109 Ω-cm when C composition increased from 6% to 30% [65].  While the resistivity 
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values were reduced, the dielectric constant was 3.4, which is higher than the dielectric constant 

value achieved by depositing BCN films using the RF magnetron sputtering technique. BCN films 

synthesized from N-trimethylborazine precursor from PECVD exhibited a broad range of k values 

between 2.2 and 8.9 with a change in ammonia gas and deposition temperature (373-973 K) [66].  

 

Figure 2.3: The dielectric constant of BCN thin films before and after annealing.  

To lower the dielectric constant of BCN films, Umeda et al. attempted to incorporate hydrogen 

in the BCN thin films using the PACVD technique [29]. The lowest k value of 1.9 was achieved by 

annealing the films at 400°C. Figure 2.3 shows the reduction in k value observed on annealing the 

films. The reduction in k value was attributed to increasing C=C and C-H bonds in the BCNH films, 

reducing the polarization of films. Table 2.3 summarizes all the electrical properties reported in 

the literature for BCN films deposited using various techniques [25].  
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Table 2.3: Summary of electrical properties of BCN thin films.  

Film Deposition 
Technique 

Dielectric value 
k 

Thickness (nm) Resistivity 
ρ (Ω cm) 

Breakdown 
strength Ebd 

(MV/cm) 

PACVD 3.4 100 - 300 1×1012 - 3.4×109 nm 

Dual target 
Sputtering 

3.9 - 4.6 200 - 400 nm nm 

RF sputtering 2.13 90 - 200 3×1012 3.4 

PACVD 2.4 100 - 300 nm nm 

PACVD 2.1 100 - 300 nm nm 

PECVD 2.2 - 8.9 100 - 300 109 -1011 0.1 - 1 

 

2.3.2 Mechanical Properties 

2.3.2 (a) Effect of Nitrogen and Carbon Content 

BCN thin films belong to the family of diamond materials and hence are frontrunner candidates 

for protective and hard coatings in cutting tools and other anti-wear applications. Numerous 

parameters which are known to influence the mechanical properties of BCN thin films are 

nitrogen content [46, 67], carbon content [68-70], deposition and annealing temperatures [71, 

72], and deposition energy [30, 46, 73]. Martinez et al. performed early studies on mechanical 

properties of sputter-deposited BCN thin films [67]. The atomic nitrogen concentration in the 

films was varied from 0 to 40% by varying the nitrogen gas mixture during sputtering from 0 to 

10%. Microhardness reduced from 26 to 13 GPa, and Young’s modulus reduced from 280 to 180 

GPa with increasing N2 content in the sputtering gas mixture. The residual stress and friction 

coefficient were also observed to decrease with N2 content. Figure 2.4 a shows the effect of N 
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content on residual stress and critical load. Figure 2.4 b shows the effect of N content on change 

in friction coefficient.  

 

Figure 2.4: Effect of N content in the BCN films on (a) residual stress and critical load and (b) 

friction coefficient obtained by sliding against diamond.  

Our research group had reported a similar trend in reduction in hardness and Young’s modulus 

when nitrogen gas was added to the sputtering chamber, compared to films deposited in the 

presence of pure Ar [74]. BCN films deposited solely in the presence of Ar gas exhibited high 

hardness values in the range of 30-40 GPa and a high Young’s modulus of ~285 GPa. With the 
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introduction of nitrogen gas in the sputtering chamber, the hardness and Young’s modulus values 

were observed to significantly reduce to 6-13 GPa and 100-150 GPa, respectively. Similar to 

nitrogen composition [70], carbon content also plays a vital role in determining the mechanical 

properties of BCN films. Chen et al. reported a steady increase in the hardness of sputtered BCN 

films from 11.5 GPa to 18.2 GPa when the C content increased from 26.9 wt% to 61.3 wt%. This 

increase is attributed to the presence of higher sp3 N-C bonds in the films [69].  

2.3.2 (b) Effect of Deposition Temperature and Post-Deposition Annealing 

Both deposition temperature and annealing temperature affect the mechanical properties of 

BCN thin films. An increase in deposition temperature from RT to 650 °C was found to increase 

the hardness from 24 GPa to 31 GPa [70]. This enhancement in the hardness values was 

associated with two reasons. First, the increase in deposition temperature leads to increased 

crystallinity, subsequently increasing the hardness. Second, with an increase in temperature, the 

carbon content increased, which helped to increase the hardness. Xu et al. studied the influence 

of post-deposition annealing on sputter-deposited BCN thin films [34]. Annealing at 

temperatures from 600°C to 1000°C resulted in a decreasing trend in hardness and Young’s 

modulus values. The hardness and Young’s modulus of the as-deposited films were noted to be 

27 GPa and 321 GPa, respectively. The values reduce to 19 GPa and 223 GPa, respectively, for 

films annealed at 1000 °C. Higher annealing temperatures result in the formation of soft sp2 B-N 

bonds, which deteriorates the mechanical properties of the films.  
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2.3.2 (c) Effect of Deposition Energy 

 

Figure 2.5: Hardness and elastic modulus of B-C-N thin films deposited at varying laser fluence.  

The deposition energy used during PVD deposition of thin films plays a crucial role in determining 

the bonding structure of films, thereby influencing the mechanical properties. The influence of 

laser fluence on mechanical properties of BCN films deposited using PLD by an Nd:YAG laser was 

investigated [30]. The films were deposited using a B4C target at laser fluence from 1 J/cm2 to 3 

J/cm2. The elastic modulus and hardness values drastically increased with laser fluence, as shown 

in figure 2.5. Maximum hardness and elastic modulus of 33.7 GPa and 256 GPa were recorded 

for the film deposited at 3 J/cm2  fluence. This increment in hardness and elastic modulus was 

associated with a steady decrease in soft sp2 B-N bonds and a steady increase in hard B-C and N-

C bonds with laser fluence.  
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Substrate biasing during sputtering of BCN films increased the hardness and Young’s modulus 

along with better adhesion [46, 75]. These results were attributed to the increase in ion energy 

of incoming ions, which improves the film-forming capabilities and allows for the formation of 

dense microstructure in the films. The densely networked microstructures have better film 

strength as well as higher strength between the film-substrate interface. BCN films deposited 

using microwave-PECVD displayed enhanced mechanical properties with increasing microwave 

power [40]. This implies the possibility of varying mechanical properties of BCN thin films by 

varying deposition techniques and growth parameters to engineer the films for suitable 

applications.  

2.3.2 (d) Thermal Stability and Oxidation Resistance 

BCN materials are popular due to their extremely high thermal stability and excellent oxidation 

resistance compared to other similar hard materials. Gago et al. and group were the first to 

perform thermal stability studies on BCN films deposited using the IBAD technique [76]. The 

thermal stability of BCN films was compared with other hard materials such as a-C, a-CNx, h-BCN, 

c-BCN,s, and BxC as shown in figure 2.6. 
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Figure 2.6: Thermal stability comparison of materials in the B-C-N triangle. 

BCN films deposited using unbalanced magnetron sputtering of B4C target and a graphite ring did 

not decompose to any of its binary phases even when annealed to a high temperature of 1000°C, 

thus proving its excellent thermal stability [34]. The films were analyzed using the XRD technique. 

XRD did not reveal diffraction peaks pertaining to B4C, graphite phases, or any other binary phase. 

BCN thin films deposited using the IBAD technique from a C/B composite target in the presence 

of nitrogen gas also exhibit higher oxidation resistance as compared with other similar hard 

materials [38]. The deposited films were annealed up to 500°C in air. Mass change measurements 

were performed on BCN and CNx films post-annealing. The mass change measurements revealed 

that BCN films were more thermally stable and displayed better resistance to oxidation than the 

CNx films. 
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2.4 Applications of BCN Thin Films 

BCN compounds exhibit excellent properties in cubic and hexagonal phases due to the structural 

similarity with allotropic forms of carbon and boron nitride. While c-BCN gathered attention for 

its exceptional hardness, h-BCN demonstrates a tunable bandgap with composition and structure 

to suit desired applications [77]. The flexibility of controlling bandgap by atomic composition and 

structure makes BCN films a popular candidate material for electronic and photonic devices [78, 

79]. Weber et al. have reported that BCN can be used as mask substrates for x-ray lithography 

due to the optical transparency property of BCN films [80]. As BCN thin films exhibit better 

oxidation resistance and excellent thermal and chemical stability than graphite and other 

materials, many research groups have demonstrated BCN applications in electronic devices [81]. 

BCN materials were reported to be candidates for field emission with a threshold electrical field 

as low as 4 V/μm and an emission current as high as 0.31 mA [82]. BC5N films serve as 

electrochemical sensors to detect dopamine and uric acid selectively in the presence of ascorbic 

acid [83]. BCN materials also find applications in high voltage photodetectors owing to their low-

k values and very high dielectric breakdown strength (~ 3.4 MV/cm) [31].  

BCN materials have stimulated research for their use as UV emitters and UV detectors [27, 84]. 

Our group has previously reported MIM-based BCN UV detectors demonstrated UV detection 

with maximum photoresponsivity of 6mA/W [35]. These measurements were performed under 

365 nm illumination. Figure 2.7 (a) shows the cross-section of the MIM device, and figure 2.7 (b) 

shows the actual fabricated detector. Figure 2.7 (c) shows the Al-BCN-Au MIM photodetector 

current under dark and UV conditions. XPS studies revealed several phases such as h-BCN, sp3 C-
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N, B-C, h-BN, and sp2 C-N. Deep UV photodetectors commonly find applications in military, space 

communications, NASA spacecraft, flame sending, quick missile plume detection, and 

environmental issues such as water purification [85].  

 

Figure 2.7: BCN device showing (a) schematic of the MIM cross-section, (b) actual fabricated 

device on the glass substrate, (c) I-V characteristics of MIM device under dark and UV light 

conditions. 

Owing to the popularity of nitride-based phosphors, Wang et al., for the first time, reported a 

breakthrough development of color emitting metal-free BCNO phosphor [86]. The color of the 

BCNO phosphors synthesized from boric acid, urea, and water-soluble organic compound 

polyethylene glycol (PEG) can be tuned over the entire visible light spectrum. Figure 2.8 (a) shows 

the schematic process used to synthesize the BCNO phosphors and blue BCNO phosphors under 

365 nm excitation. Figure 2.8 (b) shows the PL spectra of color-tunable phosphors achieved by 



36 
 

varying PEG/B ratios. The novel BCN-based phosphors are promising for general lighting, 

automobiles, DNA labeling, bioimaging, and medical applications.  

 

Figure 2.8: (a) Schematic of BCNO synthesis and blue BCNO phosphors under 365 nm 

illumination and (b) PL spectra of color-tunable BCNO phosphors.  

BCN materials are used for hard coatings, low friction, and long-wear applications due to their 

exceptional mechanical and tribological properties. Multilayers of BCN co-deposited with CrN 

exhibited a hardness of 25 GPa, low friction coefficient of 0.4-0.5, and low wear rates [87]. BCN 

has also been identified as a promising material for electromagnetic wave (EMW) absorption 

material, thus displaying excellent potential for aircraft and industrial shielding material [63].  

2.5 Boron Carbon Nitride Nanomaterials 

Graphene is popular owing to its fascinating physical properties such as quantum Hall effect and 

zero bandgap semiconductor with potential applications in nanoelectronics [88]. Substitutional 
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doping of graphene with other elements such as boron and nitrogen has been proven to modify 

the structure of graphene, resulting in metal to semiconductor transitions. Substitutional doping 

of boron and nitrogen in graphene led to development and research on tunable BCN 

nanomaterials which exhibited wider range of applications. As developing nanomaterials with 

desirable and tunable properties has been a fundamental challenge for years, BCN nanomaterials 

which exhibit unique tunable properties with composition attracted great attention. Graphene 

analogous BCN nanomaterials are categorized as new multifunctional nanomaterials that obtain 

unique electrical and physical properties, distinct from graphene and h-BN. The elemental 

composition of C in BCN nanomaterials provides the ability to vary electronic properties such as 

conductivity, carrier mobility, and concentration [25, 89, 90]. Additionally, BCN nanomaterials 

possess the ability to control bandgap, making them compatible with photonic devices compared 

to bandgap-less graphene. BCN nanomaterials have been synthesized in various low-dimensional 

phases such as 0D nanoparticles [91], 1D nanotubes and nanorods [92], 2D nanosheets [89], and 

3D foams [93] as shown in figure 2.9 [25].  

BCN nanomaterials have been fundamental towards clean and economical energy storage 

generation and storage technologies. Due to their unique properties and flexibility of tuning the 

composition, BCN nanostructures find applications in supercapacitors [94, 95], lithium ion 

batteries [96], electrolytic and photocatalytic catalysts [97, 98]. Due to their fascinating 

adsorption properties, BCN nanomaterials are attractive for water purification [99], nano-

biotechnology, and nano medicine [100].  
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Figure 2.9 : (a) TEM image of 0D BCN nanoparticle, (b) SEM image of 1D BCN nanotube, (c) 

FESEM image of 2D BCNNs, and (d) Freestanding 3D BCN foam.  

2.5.1 Synthesis 

 

Many processes have been reported to synthesize BCN nanomaterials such as arc discharge [101, 

102], laser ablation [103], CVD [104, 105], solid-state reactions [106], and thermal catalytic 

reactions [107]. Although many processes have been demonstrated to synthesize BCN 

nanostructures, chemical processes are most favored due to their simplicity and means to tune 

composition to establish desired morphology. Chemical processes from a eutectic salt melt of 

sodium borohydride and urea (CH4N2O) were used to develop BCNO nanoparticles of 5 nm in size 
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[91]. 1D BCN nanotubes (BCNNTs) are prominent due to their outstanding physical and chemical 

characteristics, antioxidant capacities up to 900 °C, along with excellent mechanical properties. 

Unlike the limitation of composition tuning in carbon nanotubes, BCNNTs allow tuning of 

electrical and optical properties based on the composition and structure of B, C, N atoms.  CVD 

is the most promising approach to synthesize BCNNTs. Li et al. [108] synthesized composition 

tunable BCNNTs using acid-treated carbon nanotubes, boric acid and ammonia gas as precursors 

at 830 °C. The temperature of the furnace was maintained for 1 hour, and finally the carbon 

residue was eliminated to form pure BCNNTs.  By controlling the flow of ammonia gas in the 

furnace, composition tuning with distinct doping levels of B and N atoms was achieved for desired 

applications.  

Integration of graphene-based 2D-Si development to progress towards “more than Moore” era 

is researched extensively and finds commercial applications in gas, image, and biosensors [109]. 

2D BCN, analogous to 2D graphene, has also gained significant attention due to its impressive 

properties. Karbhal and coworkers reported green, scalable, and facile synthesis techniques of 

2D BCN nanosheets (BCNNSs) using boric acid, urea, and glucose.  The mixture was heated to 65 

°C to form needle like white BN adduct, which was then mixed with glucose in different ratios. 

The mixture was heated to 900 °C for 5 hours in the presence of argon to achieve BCNNs. These 

nanosheets showed typical XPS peaks of C-C, B-C, B-N and C-N bonds thus confirming the 

formation of B-C-N [110].  
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Unique properties of graphene finding enormous electrical applications fueled the curiosity to 

inspect the electrical performance of tunable 3D BCN nanostructures. 3D BCN foams were 

synthesized by doping graphene foams with N and B heteroatoms using the thermal CVD 

technique [111]. Nickel foam and melamine diborate precursor were loaded inside a furnace at 

1000 °C in argon hydrogen gas flow ( 100: 100) sccm. Subsequently, the nickel foam was removed, 

and nitrogen gas was introduced inside the furnace to facilitate the growth of BN-graphene 

foams. The 3D foams thus synthesized exhibited good thermal stability and superior 

electrocatalytic activity towards oxygen reduction reaction (ORR) than undoped graphene foams.  

2.5.2 BCN Nanomaterials Properties and Applications 

 

Graphene analogous BCN nanomaterials have attracted great attention due to the structural 

similarity with graphene and enhancement in properties due to boron and nitrogen doping. Table 

2.4 shows the comparison of graphene and graphene analogous BCN nanostructures [25].  

Table 2.4: Comparison in properties of graphene and graphene analogous boron carbon nitride 

nanostructures 

Property Graphene BCN nanostructure 

Thermal conductivity at RT 
(W m-1 K-1) 

1800-5400 0.57 

Thermal stability 450-650°C 1000°C 

Bandgap None 2.6 - 5.5 eV 

Luminescence No Up to DUV region. 

Specific capacitance 
(mAhg-1) 

372 710 

Specific surface area 
(m2 g-1) 

1520 2911 
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Investigation of electronic structure and optical properties by Quin et al. demonstrated that 

B0.38C0.27N0.35 nanosheets displayed intense emission at 3.27 eV, thus making BCNNSs a promising 

candidate for applications in nanoelectronics, catalyst supports, gas adsorption, etc. [89]. 

Additionally, BCN nanostructures have shown superior performance for supercapacitor 

applications [110]. BCNNSs achieved by varying the ratio of BN to glucose as BCN (1:3), BCN (1:1), 

and BCN (3:1) exhibited specific capacitance of 103, 188, and 244 F/g, respectively. They 

demonstrated high stability, as revealed from the current density of 5A/g and 96% retention of 

capacitance after 3000 cycles.  

One of the most exciting features of BCN nanodomains is its ability to cross-link with itself or 

other 2D layered materials such as C3N4 and MoS2. Covalently cross-linked BCN materials with 

other 2D materials is an advanced strategy for generating novel materials with enhanced 

properties. BCN-MoS2 nanocomposite demonstrated specific capacitance between 176-243 F/g, 

and remarkable electrochemical hydrogen evolution reaction (HER) activity [112]. Studies 

performed on the electrochemical behavior of BCNNS for the first time displayed excellent 

lithium storage capabilities with a low current density of 30 mA/g and stabilized capacity of 390 

mAh/g for 5000 cycles [113]. Following this, multiple reports confirmed BCN nanomaterials as 

promising candidates for lithium batteries [96, 114].   
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CHAPTER THREE: METHODOLOGY 

  

Boron carbide thin films were deposited using the radio frequency (RF) magnetron sputtering 

technique. Magnetron sputtering is a type of physical vapor deposition (PVD) technique used to 

deposition metals, alloys and compounds, and other materials with thickness up to 5 microns. 

Figure 3.1 shows a schematic of the sputter deposition process.  The substrate to be coated and 

the sputtering target are placed in a high vacuum chamber containing an inert gas, typically 

argon. Sputter deposition employs an electrically excited gas plasma in a high vacuum system. 

High voltage is applied between the cathode (target) and the anode (substrate) to initiate plasma. 

By applying a high electric field, the gas atoms lose electrons to become positively charged ions 

which are then accelerated towards the negatively charged target surface with high kinetic 

energy. Each of these collisions causes atoms at the surface of the target to be ejected into the 

vacuum environment. This sputtered material now constitutes a vapor stream that travels 

towards the substrate and sticks to it, forming a thin film.  

A magnetron sputtering takes advantage of the above phenomenon by applying a magnetic field 

perpendicular to the electric field leading to electron confinement near the target surface. 

Confining the electrons leads to a higher density of the plasma and higher deposition rates and 

avoids the surface damage to the substrate by the direct impact of electrons. 
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Figure 3.1: Schematic of sputtering deposition technique 

All the thin films reported in this study were deposited using RF (13.56 MHz) magnetron 

sputtering technique in an ultra-high vacuum AJA International Inc. sputtering tool. Figure 3.2 

shows the AJA International 3-gun sputtering tool. The sputtering system is connected to four 

gas lines – argon, nitrogen, hydrogen-argon, and oxygen. This tool can accommodate three 

targets with 3” diameter. BC and BCN thin films were deposited using individual B4C, BN or a 

combination of both using dual-target sputtering. The targets are connected to individual RF 

power sources for magnetron sputtering.  
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Figure 3.2: An AJA International 3-gun sputtering system used to sputter thin films of 

hydrogenated boron carbide.  

3.1 Experimental Details of Hydrogenated BC thin films 

 3.1.1 Thin Film Deposition 

Hydrogenated boron carbide thin films (BC:H) were deposited using a 3” diameter powder-

pressed B4C target. The purity of the B4C target is 99.5%. Corning glass slides and p-type silicon 

(100) with resistivity ~20 Ω cm were used as substrates to deposit thin films. The target is placed 

at the cathode, and the substrates are placed at the anode during the deposition. Substrates 

were cleaned following the traditional method of rinsing with acetone, methanol, DI water and 

dried with nitrogen gas. Cleaning the substrate surface prevents thin film contamination. The 
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system base pressure was ~1 x 10-7 Torr before the process initiation. Hydrogen gas (3% 

hydrogen, 97% argon) was introduced in the vacuum chamber using a mass flow controller. Since 

hydrogen gas is premixed with argon, it will hereafter be referred to as H2Ar. Total gas flow was 

set to 20 sccm at a constant deposition pressure of 5 mTorr. The RF power to the B4C target was 

maintained at 200 W. The thickness of the films was determined using Dektak 150 stylus 

profilometer by Veeco, shown in figure 3.3.  

 

Figure 3.3: Dektak 150 stylus profilometer by Veeco used to measure the thickness of deposited 

thin films.  
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The thickness of BC:H films ranged between 1000 Å to 1200 Å. The depositions were performed 

at four different substrate temperatures of room temperature (RT), 100 °C, 200 °C, and 300 °C. A 

quartz lamp connected to an automated temperature controller was used to monitor the 

substrate temperatures. 

3.1.2 Fabrication of Metal-Insulator-Metal Devices 

Metal-insulator-metal (MIM) structures were fabricated to study the electrical properties of 

hydrogenated BC films. Glass slides were cleaned using the conventional acetone, methanol, and 

DI water rinse. Aluminum was used as the top and bottom metal electrode for the MIM structure. 

Bottom electrodes of 3 mm width Al metal stripes were thermally evaporated on a clean glass 

substrate using a mechanical mask. Hydrogenated boron carbide thin film is deposited using RF 

sputtering described in the previous section on top of bottom Al electrodes. Finally, top metal 

electrodes of Al running perpendicular to the bottom electrodes were thermally evaporated on 

hydrogenated boron carbide thin film. The thickness of the bottom and top thermally evaporated 

Al electrodes was ~1500 Å. Figure 3.4 shows the schematic and actual fabricated structure of Al- 

a-BC:H- Al structure on the glass substrate.  
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Figure 3.4: (a) Schematic of the cross-sectional view of Al-a-BC:H-Al MIM capacitors; (b) actual 

fabricated structure for the film deposited at 300 °C consisting of 15 capacitor devices.  

 3.1.3 Surface Characterization  

 3.1.3 (a) X-ray Photoelectron Spectroscopy 

As the demand for high-performance materials in current and future technologies is 

skyrocketing, surface analysis of materials has become necessary. Understanding the physical 

and chemical interactions of elements that occur at the surface or interfaces of material layers 

helps to decode problems associated with modern materials and investigate their efficacy for 

several applications. X-ray photoelectron spectroscopy (XPS) is the most widely used surface 

analysis technique as it can be applied to a broad range of materials. It is a quantitative technique 

for measuring the elemental composition at the surface of a material and evaluating the 
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elements chemical bonding states. XPS typically probes to a depth of 10 nm. The sample surface 

is irradiated by x-ray beams that interact with the atoms electronic shells causing electron 

ejection. The kinetic energy of the ejected electron depends on the incident photon energy (hν) 

and the binding energy (BE) of the electron. An electron analyzer is used to measure the energy 

of emitted photoelectrons. Electrons contained in different subshells have different energies. 

From the binding energy and intensity of the photoelectron peak, it is possible to identify the 

composition of the material and its chemical states. XPS can detect all elements except hydrogen 

and helium. 

XPS characterization was performed on films deposited on the silicon substrates using the 

ESCALAB 250 Xi XPS system (ThermoFisher Scientific, USA), shown in figure 3.5. The sample 

surface was etched using an Ar ion gun of 1kV for ~10 sec to eliminate surface oxidation. The 

base pressure during the analysis was 7×10-9 Torr. High-resolution scans of B 1s, C 1s, and O 1s 

spectra are recorded using a monochromatic Al-Kα radiation source (hν = 1486.6 eV) with a pass 

energy of 20 eV to achieve maximum spectral resolution. B, C, N, and O elements were selected 

to be identified in the sample from the multispectrum function. Finally, the x-ray gun and the 

flood gun were turned on to irradiate the samples. XPS scans were deconvoluted using the 

Avantage Peakfit software (Version 5.99) to identify the chemical functional groups present in 

the deposited thin films. Finally, XPS curve fitting was performed using the Gaussian/Lorentzian 

peak shape.  
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Figure 3.5: (a) Thermo Scientific ESCALAB XI+ XPS microprobe, (b) Thin-film samples loaded on 

XPS holder ready to be transferred to the sample entry lock chamber.  

3.1.3 (b) Reflection Electron Energy Loss Spectroscopy  

As XPS cannot detect hydrogen, Reflection Electron Energy Loss Spectroscopy (REELS) was used 

for hydrogen detection in boron carbide thin films. Electron energy loss spectroscopy (EELS) 

generally involves focusing a beam of monoenergetic electrons typically < 2keV on the surface of 

the sample. As electrons interact with the material, some undergo inelastic scattering due to loss 

of kinetic energy. In REELS, the electrons that are both elastically and inelastically scattered are 

collected using an electron energy analyzer. The REELS spectrum contains the elastic peak as well 

as the plasmon peaks. These peaks are characteristics of the elements present in the sample and 

their bonding environment, thus specifying the atomic and chemical bonding data. An interesting 

capability of REELS is to detect and quantify hydrogen in thin films. As a result, a combined XPS 

and REELS analysis provides a complete compositional analysis of hydrogenated thin films.  
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REELS analysis was performed on BC:H thin films deposited on silicon substrates using the Theta 

Probe of ESCALAB 250 Xi XPS system. The primary electron beam with energy between 1-2 keV 

for REELS measurement was supplied by an electron gun. The incident beam angle was 60° with 

respect to the surface, and the electron detection was set normal to the surface. REELS spectra 

were recorded in the range of 980 eV to 1010 eV kinetic energy. Origin was used to fit the REELS 

spectra by applying the Savitzky-Golay filter.   

 3.1.4 Electrical Characterization 

The electrical properties such as dielectric constant and resistivity were measured from the MIM 

devices fabricated on the glass substrates. The insulating film whose electrical properties need 

to be investigated is sandwiched between the top and bottom metal electrodes, forming a MIM 

structure. Thermally evaporated Al metal formed the top and bottom electrodes of the MIM 

device. Al electrodes are 3 mm wide. Top electrodes are deposited perpendicular to the bottom 

electrodes, thus forming a device area of 3 mm x 3 mm. Each glass substrate consisted of 15 MIM 

devices. The electrical properties reported are average of these 15 devices.   

LCR meter (Keysight E4980A) was used to measure the C-V characteristics at 1 V and 100 kHz 

frequency. Figure 3.6 (a) shows the Keysight LCR meter used to measure the capacitance values 

and figure 3.6 (b) shows the probed MIM device. The dielectric constant value (k) was extracted 

from the measured capacitance values using the following equation:  

𝑘 =
𝐶 𝑑

 ε 0 A
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Where C is the capacitance of devices, d is the thickness of the insulating film, ε 0  is the 

permittivity of free space, and A is the area of capacitor devices.  

 

Figure 3.6: (a) Keysight E4980A LCR meter used to measure the capacitance values of MIM 

detector at 1V, 100 kHz, (b) probed MIM device.  

I-V characteristics were measured on MIM devices using a 2450 Keithley source measurement 

unit, shown in figure 3.7. From the I-V measurements, the resistivity of the films was extracted 

using the following equation:  

𝜌 = 𝑅 
𝐴

𝐿
          

Where 𝜌 is the resistivity in Ωcm, R is the resistance extracted from I-V curves, A is the area of 

MIM devices, and L is the length or thickness of the BC:H film.  
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Figure 3.7: Keithley source measurement unit used to measure the I-V characteristics of MIM 

devices.  

 3.1.5 Optical Characterization 

Materials in the B-C-N ternary triangle are popular due to their wide bandgap and finds various 

optoelectronic applications. As a result, it is essential to investigate the impact of hydrogenation 

and substrate temperature on the optical properties of BC:H thin films. Optical characterization 

of BC:H thin films were performed using a UV-Visible spectrophotometer (Cary 100, Varian), as 

shown in figure 3.8. The transmission values of BC:H thin films deposited at different substrate 

temperatures were recorded.  Optical transmission values (% T) were used to calculate the optical 

density and absorption coefficient (α) for thin films as shown below: 
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α = 2.303 ∗ OD = (
− 2.303

𝑡
) log10(% 𝑇) 

where OD is the optical density and t is the thickness of the deposited film. Optical bandgap (Eg) 

for films deposited at different substrate temperatures were extracted from the Tauc plot using 

the following equation: 

(αhν)(
1
𝑛

) = 𝐵 ( ℎ𝜈 − 𝐸𝑔) 

where hν is the incident photon energy, B is a constant, and Eg is the optical band gap. Typically, 

the n value is defined as 2 for amorphous films. A Tauc plot displays (αhν)(
1

𝑛
) on y-axis plotted 

as a function of the photon energy (hν) on the x-axis. Extrapolating the linear region of this curve 

yields the energy of the optical bandgap of the material.   

 

Figure 3.8: Cary 100 UV-Visible spectrophotometer used for optical characterization of thin 

films.  
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 3.2 Experimental Details of 3% Hydrogenated BCN Thin Films for Mechanical and 

Photoluminescence Studies  

 3.2.1 Thin Film Deposition 

Dual target RF magnetron sputtering from B4C and BN targets was performed to deposit BCN thin 

films. Oxidized silicon wafers with an oxide thickness of ~4000 Å and glass slides were used as 

substrates. The substrates were cleaned by rinsing with acetone, methanol, DI water, and blow-

dried with nitrogen. The substrates were placed on a rotating substrate holder with a rotation 

speed set to 20 rpm to achieve uniform film thickness. Both the B4C and BN targets used were 

powder pressed and had 99.5 % purity.  Both the targets face the substrate holder at an angle of 

45°. The deposition chamber was evacuated to a base pressure of ~1x10-7 Torr before deposition. 

Hydrogen-argon (3% hydrogen, 97% argon) and nitrogen were the two reactive gases used to 

deposit BCN:H thin films. This study aimed at investigating the influence of hydrogenation and 

substrate temperature on mechanical properties and photoluminescence of BCN thin films. As a 

result, the experimental structure can be divided into two sets, one designed to vary the 

hydrogen gas flow and the other designed to vary the substrate temperature.  In the first set of 

experiments, the reactive gas flow was varied, and the substrate temperature was maintained 

constant at room temperature. The H2Ar to (H2Ar + N2) gas ratio was varied from 0 to 1 in steps 

of 0.2, whereas the total gas flow to the deposition chamber was set to 20 sccm. In the second 

set of depositions, the reactive gas flow ratio was maintained constant at 1, and BCN films were 

deposited at varying substrate temperatures from RT to 400 °C. Identical sputtering power of 200 

W was provided to both B4C and BN targets at a deposition pressure of 5 mTorr.  Glass substrates 
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were used to measure the thin film thickness. The thickness of BCN:H thin films was measured 

using Dektak 150 stylus profilometer, and it ranged between 2000 Å and 3000 Å.  Table 3.1 shows 

the gas flow and substrate temperature computations used to deposit BCN films.  

Table 3.1: Variations in hydrogen gas flow ratios and substrate temperature used to deposit 

BCN thin films.  

Film H2Ar / (H2Ar + N2) H2Ar N2 Deposition 
Temperature (°C) 

A 0 0 20 RT 

B 0.2 4 16 RT 

C 0.4 8 12 RT 

D 0.6 12 8 RT 

E 0.8 16 4 RT 

F 1.0 20 0 RT 

G 1.0 20 0 100 

H 1.0 20 0 200 

I 1.0 20 0 300 

J 1.0 20 0 400 

 3.2.2 Surface Characterization  

 3.2.2 (a) Energy Dispersive X-Ray Spectroscopy 

The energy-dispersive x-ray spectroscopy (EDS) is an analytical method that allows the elemental 

identification of materials. EDS systems are generally attached to electron microscopy 

instruments such as scanning electron microscopy (SEM) or transmission electron microscopy 

(TEM). EDS relies on the interaction of x-ray excitation on the sample surface. An energetic beam 

of electrons focused on the sample excites the inner electron causing it to eject from its shell. A 

higher energy outer electron proceeds to fill its place and the difference in energy levels is 
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released in the form of x-rays. The energy of x-rays emitted are characteristic of specific elements 

and are collected by the detector. EDS analysis generates a spectrum that displays peaks 

correlating to the elemental composition of the surface under investigation.  

 

Figure 3.9: Zeiss ULTRA – 55 SEM equipped with Thermo ScientificTM NORANTM system 7 used 

for EDS analysis of BCN thin films.  

EDS was performed to identify the compositional analysis of hydrogenated BCN film deposited. 

As BCN thin films exhibit unique properties for distinct composition, it is essential to explore the 

composition of films for potential applications. BCN:H films deposited on oxidized silicon 

substrates were used for EDS. Figure 3.9 shows the SEM (Zeiss ULTRA-55)  equipped with the 

Thermo ScientificTM NORANTM system 7 used to identify the elemental composition of BCN thin 
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films. The EDS data was acquired at an operating voltage of 5 kV and a working distance of 13 

mm. 

3.2.2 (b) Fourier Transform Infrared Spectroscopy 

Fourier transform infrared spectroscopy (FTIR) is a technique used to acquire an infrared 

spectrum of absorption or emission of a solid, liquid, or gas. When IR radiation is passed through 

a sample, the sample molecules selectively absorb specific wavelengths, which causes a change 

in dipole moment and transmits some wavelengths. Consequently, the vibrational energy levels 

of the sample molecules are modified. The intensity of absorption or transmission peaks is 

related to the change in dipole moment and possible transitions in the vibrational energy levels. 

The resulting signal at the detector is characteristic of the molecular composition of the sample. 

As a result, analysis of the infrared spectrum provides molecular interaction of the sample.   
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Figure 3.10: Jasco FT/IR 6600 spectrometer used to detect chemical bonding in the BCN thin 

films.  

FTIR for BCN:H thin films were recorded using the Jasco FT/IR 6600 spectrometer equipped with 

a Ge/KBr beam splitter, as shown in figure 3.10. This equipment is located in the Department of 

Chemistry at the University of Central Florida (UCF). A DLaTGS (deuterated lanthanum α-alanine 

doped triglycine sulfate) detector was employed to detect the spectral fingerprints of the thin 

films. Transmission FTIR spectra were collected from 400 – 4000 cm-1 with a resolution of 4 cm-1. 

 3.2.3 Mechanical Properties 

Nanoindentation technique allows measurements of mechanical properties such as modulus, 

hardness, fracture toughness, or yield strength of materials existing in different shapes, sizes, and 

scales. This technique is remarkable as it can measure properties for various materials ranging 
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from extremely hard alloys to soft biomaterials. Hardness tests are performed by using an 

indenter probe displaced into the surface under a specific load. The size and depth of the 

indentation are essential parameters to determine the hardness of the surface. Uniaxial 

compression and tensile testing are performed to determine the elastic modulus of the surfaces. 

Hysitron Triboindenter shown in figure 3.11 at the University of South Florida, was utilized to 

characterize mechanical properties such as hardness and Young’s modulus of BCN:H thin films. 

This triboindenter is equipped with a Berkovich diamond tip. A three-plate capacitive transducer 

is used as an internal part of the indenter to execute measurements.  The Triboscan software was 

used to set up all the parameters required for the characterization of mechanical properties. 

Indentation time was set to 4 s for both loading and unloading steps. A fixed distance of 30 µm 

was maintained between two neighboring indents during the measurements. Multiple 

indentations were made for each film at a load of 4mN. Hardness and Young’s modulus values 

obtained through numerous indentations were averaged for each film.  
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Figure 3.11: Hysitron Tribointeder used to characterize mechanical properties of thin films.  

 3.2.4 Photoluminescence Studies 

Photoluminescence (PL) is an optical phenomenon displayed by semiconductors that gives light 

emissions after absorbing incident light with higher energy than the bandgap energy of the 

semiconductor. Photoexcitation causes the electrons to get excited to higher energy levels, and 

relaxing back to its lower energy state is accompanied by emitting photons. The emission of 

phonons or luminescence through this process is termed as PL. The PL measurements were 

performed on BCN:H thin films using a FluoroMax-3 (Horiba Jobin Yvon, NJ) shown in figure 3.12. 

This spectrometer is located in the Department of Chemistry at UCF.  The measurement 

equipment consists of a 150 W Xenon arc lamp as the light source. The 1200 grooves mm-1 

gratings are blazed at 330 nm (excitation) and 500 nm (emission). A photomultiplier tube 
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detector was operated in the photon-counting mode.  The measurements were performed at RT 

and 77 K on a custom fiber optic probe (FOP) using two excitation and emission fibers (8 around 

2 configurations). The copper tube used to hold the custom fibers provided mechanical support 

to immerse the samples in cryogens. Commercially available software (DataMax) was used for 

automated scanning and data acquisition.  

 

Figure 3.12: FluoroMax-3 spectrometer by Horiba used for PL studies at RT and 77K.  
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3.3 Experimental Details of 99.99% Hydrogenated BCN Thin Films 

3.3.1 Thin Film Deposition 

BCN and BCN:H thin films were deposited by dual-target sputtering using B4C and BN targets. The 

base pressure of the deposition chamber was 1×10-7 Torr prior to the deposition. Thin films were 

deposited in the presence of reactive gas of N2, H2, and inert Ar. The H2/N2 gas flow was varied 

from 0/10 to 10/10 while maintaining Ar flow constant at 10 sccm for all depositions. Thus, the 

total gas flow in the deposition chamber was 20 sccm. The N2 gas flow was reduced from 10 to 0 

in steps of 2 with a corresponding increase in H2 gas flow at constant Ar gas flow. Thus the total 

H2 gas flow in the deposition chamber was varied from 0% (0/20) to 50% (10/20). Table 3.2 shows 

the gas flow combinations used for deposition of BCN and BCN:H thin films. Both the targets of 

B4C and BN were sputtered at RF power of 200 W at 5 mTorr deposition pressure. The substrates 

were rotated on the substrate holder at 20 rpm speed to achieve uniform film thickness. Thin 

films were deposited on dual side polished Si wafers for surface analysis and glass substrates for 

electrical and optical characterization. The Si wafers and glass substrates were cleaned using the 

standard procedure of acetone, methanol, DI water rinse, and air-dried with nitrogen gas.  

Table 3.2 : Variations in H2/N2 gas flow ratios performed during depositions 

Film % H2 Ar N2 H2 

BCN 0 10 10 0 

BCN:H10 10 10 8 2 

BCN:H20 20 10 6 4 

BCN:H30 30 10 4 6 

BCN:H40 40 10 2 8 

BCN:H50 50 10 0 10 



63 
 

3.3.2 Surface Characterization  

3.3.2 (a) X-ray Photoelectron Spectroscopy 

Thin films deposited on silicon wafers were examined using XPS for elemental composition and 

bonding structure following the procedure explained in section 3.1.3 (a).  

3.3.2 (b) Fourier Transform Infrared Spectroscopy 

As XPS cannot detect hydrogen, the chemical bonding between B, C, N, and H atoms in the BCN 

and BCN:H thin films were analyzed using FTIR. Vacuum bench BOMEM DA8 FTIR spectrometer 

with a resolution of 4 cm-1  shown in figure 3.13, was used to record the transmittance spectra of 

thin films. This equipment is located in the Department of Physics at UCF. Thin films deposited 

on dual side polished Si wafers were illuminated using a Globar light source with a KBr beam 

splitter. The IR signal was detected using a liquid nitrogen cooled mercury cadmium telluride 

(MCT) detector in the wavenumber range of 500 – 4000 cm-1.  
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Figure 3.13: Vacuum bench BOMEM DA8 FTIR spectrometer equipped with MCT detector.  

3.3.3 Electrical Characterizations 

The electrical characteristics such as the dielectric constant and resistivity of BCN and BCN:H 

thin films were measured from the MIM devices following the procedure explained in section 

3.1.4.  
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3.3.4 Optical Properties 

The influence of hydrogenation on optical properties of BCN thin films was investigated using 

Cary 100 UV-Visible spectrophotometer. The details of measurements and analysis are explained 

in section 3.1.5.    

 3.4 Experimental Details of BCN Nano-Coatings for Bacterial Inhibition 

 3.4.1 Nano-Coating Deposition 

BCN and TiO2  nano-coatings were deposited using RF magnetron sputtering. Central Venous 

Catheters (CVCs) were cut into 7cm long segments for deposition of nano-coatings. Catheters are 

coated in a two-step process. Since the surface of CVCs is cylindrical, when it is placed on the 

substrate holder, the surface in contact with the holder does not get coated. Hence the cylindrical 

catheters are rotated after the first deposition, and the uncoated side is exposed for deposition 

on the second run. BCN nano-coatings were deposited in the ultra high-vacuum AJA International 

sputtering system. The base pressure of the deposition chamber was 1x10-7 Torr before process 

initiation. A three-inch diameter B4C target with 99.9% purity is used along with reactive nitrogen 

gas to deposit BCN nano-coatings. N2/Ar gas ratio was 0.25, while the total gas flow into the 

deposition chamber was 20 sccm. RF power to B4C target was 200 W at a deposition pressure of 

5 mTorr.  

TiO2 nano-coatings were deposited on CVCs using Ti target in an in-house sputtering system that 

can accommodate one 2” target. The deposition was performed in the presence of O2/Ar = 0.25. 

The total gas flow in the deposition chamber was 20 sccm. Ti target was sputtered at RF power 
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of 50 W and deposition pressure of 10 mTorr. Both BCN and TiO2 nano-coatings were deposited 

at room temperature. The film thickness of BCN and TiO2 nano-coatings was measured using 

Dektak 150 stylus profilometer (Veeco). The thickness of both the nano-coatings ranged between 

80-90 nm.  

 3.4.2 Surface Characterization of Nano-Coatings 

 3.4.2 (a) Scanning Electron Microscopy 

The scanning electron microscope (SEM) focuses a beam of high-energy electrons on the sample 

surface to produce a variety of signals. These signals include secondary electrons, backscattered 

electrons, diffracted backscattered electrons that provide crucial information about the sample.  

The electron-sample interactions reveal information including morphology, chemical 

composition, structure, and homogeneity of the sample surface. Secondary electrons and 

backscattered electrons are used for sample imaging. Secondary electrons provide information 

about sample morphology, and backscattered electrons are valuable for illustrating contrasts in 

the compositional analysis of the sample. The FEI NOVA 430 SEM was used to observe 

morphological features on U-C, BCN-C, and TiO2-C. This is a high-resolution scanning electron 

microscope that can image features down to the nanometer range using its backscatter and 

through a lens detector. It has capabilities of very low kV characterization as well as analytical 

capabilities. High-resolution imaging can be obtained even on non-conductive nanomaterials and 

surfaces.  
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 3.4.2 (b) Atomic Force Microscopy 

U-C and BCN-C surface properties were determined using the Dimension 3100 scanning probe 

microscope atomic force microscope SPM/AFM. It produces high-resolution three-dimensional 

images by scanning a sharp tip over the surface of the sample. The tip is mounted on a flexible 

cantilever which forms one end of a cylindrical piezoelectric tube. The piezoelectric tube deflects 

horizontally on the application of voltage to X and Y electrodes to produce a precise raster scan 

over the sample surface. The voltage applied to the Z electrode on the piezo tube controls the 

height of the tip. Thus, the tip moves across the surface following the contours of the topography 

and plots the surface image. CVCs coated with nano-coatings were measured using the SPM/AFM 

in non-contact tapping mode. In this mode, the tip oscillates in close proximity of the sample 

surface using interactive forces without contacting the surface, thus facilitating non-invasive and 

highly accurate topography imaging. Catheter surface area of 100 µm2 was scanned for 

comparison. Additionally, distinct 10 µm2 surface scans displaying the surface peaks and valleys 

were also recorded. 

 3.4.3 Bacterial Growth  

To study the efficacy of RF magnetron sputtered nano-coatings on bacterial inhibition,  E.coli K-

12 and B.cereus bacterial cultures were used. A single bacterial colony of both E.coli and B.cereus 

was inoculated in Luria Broth (LB) and incubated overnight at 37°C in static conditions. LB is a 

commonly used medium for bacterial cultivation and growth. One liter of sterile medium 

comprises 10 grams of tryptone, 5 grams of yeast, and 10 grams of sodium chloride, with a pH 
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value of 7.0. A cell density of 5x104 cells ml-1 was achieved through inoculation.  Once the serial 

dilutions of bacterial cultures were available, U-C, BCN-C, and TiO2-C segments of 1 cm length 

were immersed in 5 ml culture tubes with sufficient aeration. These culture tubes were incubated 

for 6 hours at 37°C for E.coli and 30°C for B.cereus. 

After incubation, the catheter segments were removed from the culture tubes using sterile 

forceps and rinsed in tubes of sterile water. The catheter surfaces were rolled back and forth on 

the surface of the nutrient plate using the standard roll plate method [115, 116].  Nutrient agar 

plate was used for E.coli, whereas blood agar plate was used for B.cereus. Culture plates were 

covered and incubated for 24 hours at 37°C for E.coli and 30°C for B.cereus. The number of 

colonies in both the plates were counted manually and recorded after the incubation period. All 

the experimental values were obtained in triplicates for both E.coli and B.cereus bacterial 

colonies for this study.  

 3.4.4 Biofilm Formation and Analysis 

For biofilm formation, serial dilutions of E.coli K-12 and B.cereus bacterial cultures were made 

with Luria broth to achieve a cell density of 5 x 106 cells ml-1. 1 cm long U-C and BCN-C segments 

were immersed in 5 ml culture tubes with adequate aeration. Culture tubes were incubated at 

37°C for 6 hours at static conditions. After incubation, the catheter segments are removed and 

rinsed in sterile water. Rinsed catheters were inserted into culture tubes containing 2 ml of Luria 

broth. The biofilm was allowed to develop on catheters by incubating at 37°C for E.coli and 30°C 

for B.cereus under static conditions.  
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Catheter segments were removed and rinsed in sterile water, and transferred to 96 well 

microtiter plate stained with 0.1% crystal violet (aqueous). 125 µl of 30% acetic acid was dripped 

onto each catheter surface. This allows the adhered biofilm to solubilize in their respective wells. 

The optical density of adherent biofilm stained with crystal violet was measured using 

SpectraMax iD3 and iD5 Multi-Mode Microplate Reader. This equipment measures absorbance, 

fluorescence, and luminescence of samples. Optical densities of E.coli and B.cereus biofilms were 

recorded by measuring absorbance at 550 nm. 30% acetic acid was used as a baseline to report 

optical density.   

 3.4.5 Statistical Analysis 

All experiments and measurements were performed in triplicates on each catheter for statistical 

accountability. One-tailed student t-test analysis was performed, and the probability value (p-

value) is reported to represent the statistical significance of the obtained data.   
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CHAPTER FOUR: RESULTS AND DISCUSSION 

 4.1 Hydrogenated Boron Carbide Thin Films 

4.1.1 Surface Characterization 

4.1.1 (a) X-ray Photoelectron Spectroscopy 

The chemical composition and surface chemistry of BC:H thin films deposited by RF magnetron 

sputtering of B4C target were investigated using XPS. The sample surface was etched using low 

energy Ar ion gun at 1 kV for ~10 sec prior to XPS to eliminate the surface oxidation. Figure 4.1 

shows the high-resolution scans of B 1s, C 1s, and O 1s spectra for the film deposited at RT. 

Prominent peaks in the B 1s region located at 191 eV and 192.5 eV are assigned to B-C-O and B-

O bonds, respectively [117, 118]. This implies that the primary interactions of boron in the film 

correspond to B-C-O and B-O, with B-C-O bonding being dominant. The presence of both B-C-O 

and B-O bonds also suggests higher oxidation of boron atoms in the deposited films. The C 1s 

spectra can be divided into three components centered at 284.8 eV, 286.4, and 288 eV. The peak 

at 284.8 eV with high intensity is attributed to sp2 C-C and C-H bonding in the films [119]. The 

shoulder peak appearing at 286.4 eV is assigned to C-O-H and C-O-C bonding, whereas the peak 

at 288 eV is assigned to C=O [120]. This suggests C-C and C-H are dominating components in the 

C 1s spectra, along with evidence of C partially bonding with O in the films. The O 1s spectra are 

fitted with two peaks centered at 530.6 eV and 532.5 eV attributed to C-O-H and O-B bonding, 

respectively  [120, 121]. These bonding configurations were also verified through the B 1s and C 

1s spectra.   
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Figure 4.1: XPS spectra of BC:H thin film deposited at room temperature displaying (a) B 1s, (b) 

C 1s, and (c) O 1s peaks.  

The elemental content of boron and carbon obtained from the XPS results is shown in Figure 4.2. 

The films evidently demonstrate carbon enriched a-BxCy:H composition. It can be observed that 

an increase in deposition temperature resulted in higher elemental C content in the films. This 

was accompanied by a decrease in B/C ratio. With the increase in substrate temperature, C-C 

bonds dramatically increase due to structural modifications and atomic ordering changes in the 

films. C elemental composition tends to increase due to the dissociation process of remained 

hydrocarbides [122, 123]. Such bond formations can be explained by means of the Frenklash and 

Spear model, which illustrates that the breaking of C-H bonds produces new C-C bonds [124].  

According to the Frenklash and Spear model, the dissociation of C-H bonds to produce new C-C 

bonds can be expressed as follows [125]: 

C-H + C-H  → C-C + H2 
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Figure 4.2: Atomic percentage of C and corresponding variation in B/C elemental ratio with 

deposition temperature. 

A similar trend of increasing C content and a corresponding reduction in B/C ratio with deposition 

temperature is reported for boron carbide films deposited using various techniques [122, 126, 

127]. The XPS results corroborate the high oxygen content in these films. It can be predicted that 

the relatively higher oxygen content could have originated due to the lower density of films and 

post-growth exposure to atmospheric conditions.  
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 4.1.1 (b) Hydrogen Detection using REELS 

REELS was used to examine the presence of hydrogen in boron carbide thin films as XPS cannot 

detect hydrogen. REELS spectra are shown in Figure 4.3.  

 

Figure 4.3: REELS spectra for a-BC:H films deposited at different substrate temperatures 

displaying the peak due to the presence of hydrogen atoms at 1003.5 eV. The inset figure is the 

complete REELS scan from 980-1010 eV for the film deposited at 300 °C.  

The large peak observed at 1004 eV is due to the elastic scattering of electrons. The distinct 

shoulder peak observed at 1003.5 eV is attributed to elastic scattering collisions with hydrogen 

atoms. As hydrogen has the lowest atomic number, it facilitates reduction in total mass density 

and is also known to reduce the dielectric constant of the films [20]. The inset figure shows the 
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complete scan measured over 980-1010 eV kinetic energy for the film deposited at 300°C. H2Ar 

gas used for these depositions consists of only 3% hydrogen in 97% argon. As the total hydrogen 

concentration in the films is estimated to be less than 10%, it was challenging to quantify the 

atomic hydrogen content in the films.  

4.1.2 Electrical Characterization 

Dielectric constant values of a-BC:H films were measured from the C-V characterization of MIM 

devices. Figure 4.4 shows the dielectric values as a function of substrate temperature. It is 

interesting to note that the dielectric values exhibited a decreasing trend with substrate 

temperature. The dielectric constant of pure boron carbide thin films lies between 4.8 and 8 [31]. 

The hydrogenated boron carbide films deposited in this study exhibited dielectric values between 

6.5 and 3.5. The film deposited at 300°C, which incorporated maximum sp2 carbon content and 

lowest B/C ratio as seen from XPS, and the highest amount of hydrogen concentration as revealed 

from REELS also displayed the lowest dielectric value of 3.5. Reduction in dielectric value is 

correlated with the highest C content in the films, which is favorable in reducing total film density. 

The lower the film density, the higher is the free volume within the films, which is an effective 

way of reducing dielectric constant values of materials. The presence of hydrogen also enhances 

the film porosity, which further reduces the dielectric constant of materials [128, 129]. In this 

study, higher C content and presence of hydrogen contributed collectively towards the decrease 

in the dielectric constant value of a-BC:H thin films. The range of dielectric values obtained for a-
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BC:H in this study using RF magnetron sputtering is consistent with previously reported values 

for a-BC:H films synthesized using PECVD [20, 130].  

 

Figure 4.4: Dielectric values of a-BC:H thin films with varying substrate temperature. 

Figure 4.5 shows the electrical resistivity trend of RF magnetron sputtered a-BC:H thin films as a 

function of substrate temperature. The electrical resistivity of a-BC:H thin films varied in 

magnitude of 109 Ω-cm for the film deposited at RT to 108 Ω-cm for the film deposited at 300°C. 

Pure boron carbide films grown in argon ambiance are reported to exhibit resistivity in the order 

of 109 Ω-cm at RT [131]. Amorphous hydrogenated boron carbide thin films investigated in this 

study demonstrated one order lower resistivity values at deposition temperatures of 100°C, 



76 
 

200°C, and 300°C. As C content was highest in the films deposited at 300°C, it can be established 

that an increase in C content with substrate temperature resulted in reduced electrical resistivity. 

An increase in sp2 carbon content influences changes in carbon hybridization, which in turn 

affects the number of free electrons in the films and thus influences the resistivity values [132]. 

Similar trends of decreasing electrical resistivity due to higher C elemental content has been 

reported in boron carbide films [133].  

 

 

Figure 4.5: Electrical resistivity trend of a-BC:H thin films as a function of substrate 

temperature.  
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 4.1.3 Optical Characterization 

Optical characterization of a-BC:H thin films was performed by measuring transmission values in 

the visible light spectrum. Figure 4.6 shows the transmission values obtained over a wavelength 

range of 200 – 800 nm. All the films deposited in this study exhibited transmission values between 

75-82% in the visible region, which are highly desired for applications in optical devices. It can be 

observed that films deposited at substrate temperature higher than RT demonstrated higher 

transmission values.  

 

Figure 4.6: Optical transmission values of a-BC:H thin films deposited at varying substrate 

temperature.  

Optical bandgap values of a-BC:H thin films were calculated from the measured transmission (%T) 

data. Figure 4.7 shows the Tauc plot used to extrapolate Eg. The n value on the y-axis was defined 

as 2, which is typically a standard value used for amorphous films. The optical bandgap for the 

films was estimated by extrapolating the linear region of curves to the energy axis.  
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Figure 4.7: Extrapolating the linear region of Tauc plot to obtain bandgap values of a-BC:H thin 

films deposited at varying substrate temperatures.  

Table 4.1 shows the bandgap values obtained from the Tauc plot. The optical bandgap varied 

slightly from 2.25 eV to 2.6 eV with an increase in substrate temperature. As seen from previous 

sections, which demonstrated surface characterization, films displayed hydrogen-rich nature 

with an increase in substrate temperature. This suggests that higher hydrogen content in the 

films with substrate temperature resulted in higher bandgap values in the thin films. A similar 

correlation between hydrogen concentration and bandgap values is reported for other dielectric 

materials such as a-SiC:H [134], a-Si:H [135], and a-C:H [136]. The Eg values obtained for a-BC:H 
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thin films deposited by RF magnetron sputtering in this study are analogous to Eg values of a-

BC:H films synthesized by PECVD [20].  

Table 4.1: Optical bandgap values of a-BC:H thin films. 

Deposition Temperature (°C) Optical Bandgap (eV) 

RT 2.25 

100 2.4 

200 2.49 

300 2.6 

 

 4.2 3% Hydrogenated BCN Thin Films For Mechanical and Photoluminescence Studies 

4.2.1 Surface Characterization 

4.2.1 (a) Energy Dispersive Spectroscopy 

The elemental composition of BCN:H thin films deposited in this study were examined using EDS. 

EDS confirmed the presence of boron, carbon, nitrogen, and oxygen in the films. Film 

composition significantly depends on the deposition conditions, as shown in Figure 4.8 a-b. 

Referring to figure 4.8 (a), an initial increase in the hydrogen gas flow ratio caused a slight 

reduction in elemental boron content in the film. The boron content reduced from 10 at a gas 

flow ratio of 0 to 6 at a gas flow ratio of 0.6. However, further increase in gas flow ratio increased 

the boron content in the films dramatically to 15% at a gas flow ratio of 0.8 and 33.4% at a ratio 

of 1. 



80 
 

Similarly, the nitrogen composition in thin films also displayed drastic changes with varying gas. 

For film deposited at gas flow ratio of 0, the nitrogen content in the films is highest at 35%. As 

expected, the nitrogen content is highest when only reactive nitrogen sputtering was used to 

deposit film. An increase in hydrogen gas subsequently reduced the nitrogen content to ~15% 

for gas flow ratios of 0.2, 0.4, 0.6, and 1, except H2Ar/(H2Ar + N2) ratio of 0.8, where nitrogen 

composition was higher at 25%. This value is still lower than the nitrogen content reported in 

pure BCN film for gas ratio H2Ar/(H2Ar + N2) = 0, as anticipated. It is interesting to observe that 

the carbon composition in films deposited at different gas flow ratios did not show significant 

variation. EDS recorded high oxygen content in the films. Reduction in oxygen content as gas flow 

H2Ar/(H2Ar + N2) = 1 is compensated by a corresponding increase in boron content. The presence 

of oxygen may be associated with the post-processing of the samples in atmospheric conditions. 

There is evidence of BCN films deposited in the presence of hydrogen gas reporting a large 

amount of oxygen content in the films due to low porosity [55].  
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Figure 4.8: EDS elemental composition data for films deposited with (a) varying hydrogen gas 

flow ratios and (b) varying substrate temperature. 

Figure 4.8 (b) shows the elemental composition of films deposited at constant gas flow 

H2Ar/(H2Ar + N2) ratio of 1 and different substrate temperatures. Thin-film elemental 

composition displayed a very different relationship with substrate temperature. An increase in 

temperature did not alter the boron content up to 300°C. At deposition temperature of 400°C, 

the boron content was observed to marginally reduce from 34% to 31%. On the contrary, carbon 

and nitrogen displayed an exact opposite behavior with temperature. Carbon content gradually 

increased from RT to 300°C and displayed a sudden rise to 29% at 400°C. Likewise, nitrogen 

content also gradually increased from 10% at RT to 15% at 400°C. It can be noted that oxygen 

content remained relatively low when BCN films were deposited at higher substrate 

temperatures. EDS measurements reported in figure 4.8 a-b did not account for hydrogen 

concentration in the films.  

4.2.1 (b) Fourier Transform Infrared Spectroscopy 

The chemical bonding and presence of hydrogen in the films were evaluated from FTIR analysis. 

Films deposited as a function of varying gas flow ratios demonstrated high oxygen content. As a 

result, further clarification on functional groups was performed. Figure 4.9 shows the FTIR 

transmittance spectra of as-deposited films with varying gas flow H2Ar/(H2Ar + N2) ratios of 0 to 

1 corresponding to films A-F, respectively. Film A corresponds to H2Ar/(H2Ar + N2)=0, film B 

corresponds to H2Ar/(H2Ar + N2)= 0.2 and so on. Refer to Table 3.1 for additional clarification. 
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Transmittance peaks were mainly observed at 2360, 2170, 2100, and 750 cm-1. The peak at 2360 

cm-1 is attributed to C=O bonding in the films [137]. Thus, it can be concluded that the oxygen 

content observed in EDS is corroborated in FTIR, and oxygen in the films seems to bond with 

carbon atoms. 

The peak observed at 2170 cm-1 is associated with C≡N and B-H structure in the films. This peak 

is very distinct for Film A, which is the pure BCN film. With increase in hydrogen gas ratio, it can 

be observed that the peak at 2170 cm-1 gradually decreases for films B to E, and tends to cease 

for film F. Disappearance of this peak indicates phase transitions in the film with varying gas ratio 

and is consistent with previous reports [74]. The broad peak at 2100 cm-1 is attributed to the 

presence of C-N in the films [62]. Although film A exhibited a clear and sharp C-N peak, the peak 

intensity was observed to reduce with the hydrogen gas ratio. Based on this interpretation, it 

may be implied that pure BCN film primarily demonstrates strong C-N bonding, which undergoes 

changes with varying gas ratios. The narrow absorption peak just below 200 cm-1 is possibly due 

to the presence of residual CO2 gas in the FTIR spectrometer. The broad band stretching from 

500-1000 cm-1 with a clear peak at 750 cm-1 is assigned to out-of-plane sp2 bonded B-N-B bending 

mode [35, 138]. FTIR transmittance spectra did not show any evidence of N-H and O-H bonding 

in the films.  

 



83 
 

 

Figure 4.9: FTIR transmittance spectra of BCN:H thin films deposited at varying gas flow ratios. 

4.2.2 Mechanical Properties- Hardness and Young’s Modulus 

The influence of hydrogen gas and substrate temperature on mechanical properties of BCN thin 

films was investigated using nanoindentation studies. Figure 4.10 a-b shows the trend in 

mechanical properties with varying gas flow ratios and substrate temperatures, respectively. 

Young’s modulus for pure BCN film was 134 GPa. An increase in H2Ar/(H2Ar + N2)  ratio from 0 to 

0.2 increased Young’s modulus to 140 GPa. However, further increase in hydrogen gas flow 
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reduced Young’s modulus to 126 GPa. For gas ratios higher than 0.6, Young’s modulus showed a 

slightly increasing trend. Overall, Young’s modulus was observed to show a reducing trend with 

hydrogen gas. Changes in hybridization when H atoms bond with B/C/N can be regarded as a 

reason for the reduction in Young’s modulus [139, 140].  As a function of temperature, Young’s 

modulus followed an increasing trend beyond 200°C by exhibiting values from 125 GPa to 140 

GPa. The highest value of 140 GPa was recorded for BCN:H film deposited at 400°C. 

Hardness values of BCN:H thin films decreased for gas ratios of 0, 0.2, and 0.4 from 15 GPa to 12 

GPa to 6 GPa, respectively. BCN:H films deposited at gas ratio of 0.6 exhibited the lowest 

hardness of 6 GPa in this study. It is interesting to observe that the hardness value increased from 

6 GPa to 18 GPa for higher gas ratios of 0.8 and 1. This increase in hardness is stemmed due to 

the phase transitions in the films with varying gas ratios, as revealed in FTIR above. BCN:H thin 

films exhibited excellent hardness values as a function of substrate deposition temperature. 

Hardness values increased linearly from 18 GPa for the film deposited at RT to 23 GPa for the film 

deposited at 400°C. It is noteworthy that enhancement in hardness values achieved for films 

deposited with variation in substrate deposition temperature (22 GPa at 400°C) is superior to 

maximum hardness achieved for films deposited by varying gas ( 18 GPa for gas ratio 1). Films 

deposited at higher substrate temperature acquired higher carbon and nitrogen content, as seen 

from EDS. Thus, enhancement in hardness can be attributed to characteristic “hard” C-N phases 

in the films [141]. Although literature reports hydrogenation of low dielectric materials 

deteriorates the mechanical strength due to increased porosity, BCN:H films deposited in this 
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study exhibited distinguished mechanical properties. At higher temperatures, the films exhibited 

excellent hardness as well as Young’s modulus.   

 

Figure 4.10: Young’s modulus (E ) and hardness (H) of BCN:H thin films deposited at varying (a) 

gas flow ratios of hydrogen to nitrogen and (b) substrate deposition temperature. 

4.2.3 Photoluminescence Study 

BCN:H thin films were examined at a single excitation wavelength of 365 nm for 

photoluminescence (PL) studies. Figure 4.11 shows PL spectra obtained for films deposited with 

varying gas ratios. All films exhibited two distinct PL peaks. Film A, which is pure BCN film (no 

hydrogen gas) displayed two low-intensity peaks at 490 nm (2.53 eV) and 591 nm (2.1 eV). BCN-

based phosphors synthesized using different techniques have reported similar peaks in the past 

[86, 142, 143]. Films B, C, D, F, which are deposited at higher hydrogen gas ratios, demonstrated 

peak shifts to 499 nm and 602 nm along with sharper peak intensity. Film E (H2Ar/(H2Ar + N2) = 
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0.8) showcased the highest peak intensity compared to other films and a wider peak shift to 515 

nm and 621 nm. The variation in deposition gas flow ratio impacted the film composition, which 

helped attain tunable films with PL peak shifts from 490 nm to 515 nm (green shift) and from 591 

nm to 621 nm (red shift).  

 

Figure 4.11: PL spectra of BCN:H thin films deposited with hydrogen-argon to nitrogen gas 

ratios of 0 to 1.  

Figure 4.12 shows PL properties of BCN:H thin films deposited at different substrate deposition 

temperatures. Clear evidence of PL peak shifting to longer wavelengths was observed with 

temperature. Reference film F deposited at RT displayed two distinctive peaks at 490 nm and 591 

nm. For the film G deposited at 100°C, the peaks shifted to 501 nm and 603 nm. Further increase 

in temperature caused the peaks to shift to 521 nm, and 627 nm for film H deposited at 200°C, 
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and 544 nm and 655 nm for the film deposited at 300 °C. As carbon content increased with 

temperature in the EDS analysis, this causes a reduction in bandgap, which explains the PL peak 

shifts to longer wavelengths [144].  Recently, BCN-based phosphor with a red emission peak up 

to 630 nm was reported [143]. However, BCN:H films in this study exhibited a sharp red emission 

peak up to 655 nm for the first time. The facile deposition technique and unique PL properties 

observed in this study make BCN:H thin films a candidate material for potential LEDs, 

optoelectronics, and bioimaging applications.  

 

Figure 4.12: PL spectra of BCN:H thin films deposited at varying substrate temperature from 

room temperature to 400°C.  
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Another interesting observation was obtained from the PL spectra. Table 4.2 shows that the PL 

intensity tends to increase with hydrogen gas flow in the deposited films. Enhancement in PL 

peak intensity due to hydrogen gas is primarily due to the saturation of non-radiative 

recombination sites in the materials, such as dangling bonds [145]. Films A, B, C, and D, E 

exhibited ~10,000 units higher PL peak intensity. As these films were deposited at a higher 

hydrogen gas ratio, the PL peak intensity enhancement implies hydrogen gas sensing by BCN:H 

thin films. With the current demand for clean energy alternatives for a clean future, hydrogen 

gas will be critical to developing sustainable energy sources. Utmost importance must be given 

to detect hydrogen leaks to avoid hazards. Unlike commercially used hydrogen gas sensing 

materials such as ZnO, NiO, SnO2, Fe2O3, BCN can operate at room temperature, possess good 

mechanical properties, and can withstand harsh temperatures for extreme environments [146].  

Table 4.2:  PL peak details for films deposited at varying hydrogen gas flow and substrate 

temperature displaying peak shifts and different peak intensities. 

Film H2Ar/(H2Ar 
+ N2 

Deposition 
Temperature 

(°C) 

PL 
Peak 

1 
(nm) 

Peak 1 
Intensity 

PL 
Peak 

2 
(nm) 

Peak 2 
Intensity 

Bandgap 
1 (eV) 

Bandgap 
2 (eV) 

A 0 RT 490 19063 591 12521 2.53 2.1 

B 0.2 RT 500 29163 602 29058 2.48 2.06 

C 0.4 RT 499 33249 602 35114 2.48 2.06 

D 0.6 RT 499 35260 602 36366 2.48 2.06 

E 0.8 RT 515 45594 621 45965 2.41 1.99 

F 1.0 RT 499 29155 602 28336 2.48 2.06 

G 1.0 100 501 34166 603 28070 2.47 2.05 

H 1.0 200 521 28248 627 35441 2.38 1.98 

I 1.0 300 544 10802 655 9701 2.38 1.89 

J 1.0 400 501 17569 602 16899 2.47 2.06 



89 
 

BCN:H thin films deposited by dual sputtering in this study exhibited a rare phenomenon of 

negative thermal quenching (NTQ) for the first time. Figure 4.13 shows the photoluminescence 

spectra of BCN:H thin films measured at RT and 77 K using the spectrofluorometer. Films B, C, D, 

and E exhibited the NTQ phenomenon. These films contain both hydrogen and nitrogen 

elemental concentrations. Film A or the pure BCN thin film did not show evidence of NTQ. 

Thermal quenching (TQ) observed in conventional semiconductors is related to decreased 

luminescence intensity with an increase in temperature. This mechanism originates due to the 

temperature-induced increase in the non-radiative recombination probability of PL emission. 

However, certain semiconductors showcase an opposite behavior of increasing luminescence 

intensity with temperature, termed at NTQ. The NTQ phenomenon is commonly observed in 

materials like ZnO, ZnS, and GaAs [147, 148]. The model proposed by Shibata et al. explains the 

TQ and NTQ phenomenon in semiconductors [149]. Consider a material with only two states- 

initial state and final state. If the energy separation between these two states is larger than the 

system temperature, then the thermal excitation of electrons from the final to the initial state is 

considered to be negligible. Nevertheless, materials can obtain multiple states between the initial 

and final states. For material with multiple states, the energy separation between states is 

comparable to the system temperature, and hence the thermal excitation between the states is 

not negligible. As a result, an increase in temperature corresponds to an increase in luminescence 

intensity.  

Since only the films containing both hydrogen and nitrogen doping exhibited NTQ, this emission 

can be attributed to radiation recombination through states related to H and N atoms. In the B-
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C-N ternary triangle, two-dimensional carbon and graphene have been reported to exhibit NTQ 

phenomenon [150]. BCN:H thin films deposited in this study demonstrating NTQ phenomenon 

are promising for selective and tunable optical emitters in the visible region, making them 

candidate materials for biomarkers and optical thermometry applications.  

 

Figure 4.13: PL spectra of (a) film B, (b) film C, (c) film D, and (d) film E exhibiting the rare 

phenomenon of negative thermal quenching.  
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4.3 99.99% Hydrogenated BCN Thin Films 

4.3.1 Surface Characterization  

4.3.1 (a) X-ray Photoelectron Spectroscopy 

Surface characterization was performed on BCN and BCN:H thin films deposited on dual side 

polished Si wafers. The thickness of the films deposited in this study ranged between 1500 – 2500 

Å. XPS studies were performed to analyze the elemental composition and chemical bonding of 

the deposited BCN thin films. Table 4.3 shows the elemental composition of film achieved using 

XPS.  

Table 4.3: Elemental composition of B, C and N atoms in the films with different hydrogen gas 

flow.  

Film % B % C % N 

BCN 29 34 33 

BCN:H10 30 34 30 

BCN:H20 31 35 29 

BCN:H30 28 40 27 

BCN:H40 28 42 25 

BCN:H50 32 44 18 

 

Pure BCN thin films displayed B atomic concentration of 29%, C atomic concentration of 34%, 

and N atomic concentration of 33%. This film was deposited using dual-target sputtering in the 

presence of N2 and Ar. The elemental carbon concentration increased with hydrogen gas flow. 

This increase was compensated by the reduction of nitrogen content. This elemental composition 

behavior corroborates with the gas flow used, as an increase in hydrogen gas was achieved by 
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reducing the nitrogen gas in the deposition chamber. Boron content remained relatively constant 

with hydrogen process gas variation. Figure 4.14, 4.15 and 4.16 shows the XPS narrow scan 

spectra of B1s, C1s and N1s, respectively for films deposited with varying H2/N2 gas ratios.  
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Figure 4.14: XPS spectra of B1s scans for (a) BCN, (b) BCN:H10, (c) BCN:H20, (d) BCN:H30, (e) 

BCN:H40, and (f) BCN:H50.  



94 
 

The B1s, C1s and N1s spectra are broad and asymmetric, thus suggesting that there is more than 

one type of bonding scheme present between the elements in the thin films. The B1s spectra 

shown in figure 4.14 were deconvoluted into multiple peaks located at 187.7 eV, 188.7 eV, 189.6 

eV, 190 eV, 190.6 eV, and 192 eV. The peak at 187.7 eV is attributed to B-B bonds in the films 

[151]. The lower energy peaks located at 188.7 eV are attributed to B-C bonding in the B4C 

structure [152, 153]. A prominent shoulder peak at ~189.6 eV indicated the contribution of sp2 

B-C hybridization in BC3 structure frequently reported in the literature [30]. B-N bonds in 

hexagonal boron nitride were represented by peak centered at 190 eV [154]. The h-BCN peak 

position is commonly reported to fluctuate between 188 – 191.5 eV due to film elemental 

composition changes [155]. As a result, the peak located at 190.6 eV was attributed to h-BCN 

bonding. As boron is oxidation sensitive element, typically oxide-related species in the B1s 

spectra are observed at ~192 eV. Hence, the peaks centered at 192.1 eV implied the formation 

of B-C-O bonding in the BCO2 structure [156]. The peaks appearing at ~192.5 eV are attributed to 

the B-O bonds [156]. The XPS results confirmed that B atoms chemically bond with C and N atoms 

resulting in the B-C-N hybridization of films.   

Figure 4.15 shows the C1s spectra for BCN and BCN:H thin films. The C1s spectra were 

deconvoluted into multiple peaks located at 282.5 eV, 282.8 eV, 284 eV, 285.7 eV, 286.8 eV, 287 

eV and 288 eV. The dominant peak centered at ~282.8 and ~284 eV originates due to 

contributions from C-B and C-C/C-H bonds, respectively [61, 157, 158]. It can be observed that 

the C-C/C-H peak shifted to a higher energy level from 284 eV and 285 eV as the film composition 

changed from BCN to BCN:H. The C1s peak shift to higher energy levels is due to the higher 
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concentration of C as seen from XPS elemental composition analysis and more contribution from 

the C-H bonds. With the introduction of hydrogen in the BCN network, the C-C/C-H peak 

exhibited narrow intensity for BCN:H10 and BCN:H20 films, as shown in figure 4.15 b-c. However, 

with increase in hydrogen gas flow, the C-C/C-H peak intensity increased gradually for BCN:H30, 

BCN:H40 and BCN:H50 thin films. BCN:H50 exhibited the sharpest intensity of C-C/C-H peak as 

shown in figure 4.15 f, thus implying a larger number of C-C/C-H bond formation in the films with 

higher hydrogen gas flow. An apparent shoulder peak at 282.5 eV is attributed to C-B bonds 

consistently reported for B4C thin films in the literature [138, 159]. Distinctive peaks fitted at 

285.7, 286.8 and 287 eV are identified as C-N, sp2 trigonal C-N, and sp3 tetrahedral C-N bonds, 

respectively [26, 159, 160]. Some oxidation contamination was observed at a binding energy of 

288 eV, which is associated with C=O bonds [152].  
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Figure 4.15: XPS spectra of C1s scans for (a) BCN, (b) BCN:H10, (c) BCN:H20, (d) BCN:H30, (e) 

BCN:H40, and (f) BCN:H50.  
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The N1s spectra shown in figure 4.16 confirmed the interpretation of chemical bonding observed 

in B1s and C1s spectra of BCN and BCN:H thin films. The N1s spectra were deconvoluted into 

peaks centered at 396.4, 397.9 – 398.05, 398.3, and 399.7 eV. The deconvoluted peak located at 

393.4 eV is associated with the N-B bonds. Due to the difference in peak positions with varying 

elemental composition, the peaK around 397.9 – 398.05 eV is typical characteristic of sp3 N-C 

binding energy [161]. The peak observed at 398.3 eV is attributed to sp2 N-B bonding as per 

reports in the literature [61]. Finally, the peak at 399.7 eV observed only for BCN and BCN:H thin 

films in figure 4.16 a-b is associated with N-C3 bonding [61]. This peak tends to disappear for 

BCN:H20, BCN:H30, BCN:H40 and BCN:H50. It can be concluded that the carbon elements which 

were binding with nitrogen now readily form hydrocarbons as the nitrogen in the film is replaced 

by hydrogen.  
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Figure 4.16: XPS spectra of N1s scans for (a) BCN, (b) BCN:H10, (c) BCN:H20, (d) BCN:H30, (e) 

BCN:H40, and (f) BCN:H50.  
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4.3.1 (b) Fourier Transform Infrared Spectroscopy 

FTIR transmittance was performed at room temperature to recognize the functional groups 

present in the films and confirm hydrogen doping. Background correction from the reference 

substrate of dual side polished Si was performed on all spectra. Figure 4.17 shows the FTIR 

transmittance spectra of BCN, BCN:H20 and BCN:H50 thin films. The transmittance spectra of 

only these three films are displayed to observe the peaks and its intensity variation. The peak 

observed at 1380 cm-1 is attributed to an in-plane sp2 B-N stretching bond [35, 162]. The peak at 

2950 cm-1 originates due to the C-H stretching vibrations in the films [163]. As expected, pure 

BCN film did not exhibit a peak at 2950 cm-1, whereas the hydrogen doped films of BCN:H20 and 

BCN:H50 displayed a distinctive peak belonging to C-H bonding. Thus, it can be concluded that 

hydrogen gas in the deposition chamber was successfully doped in the thin films. The hydrogen 

tends to bond only with carbon elements in the thin films. There was no evidence of B-H and N-

H bonds.  
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Figure 4.17: FTIR transmittance spectra of BCN and BCN:H thin films.  

The absorption coefficient was plotted for the C-H peak from the FTIR transmittance spectra to 

quantify the hydrogen concentration in the films. The absorption coefficient (α ) was calculated 

in the range of 2500-3200 cm-1 using: 

α = 
ln(

1

𝑇
)

𝑑
 

where T is the % transmittance, and d is the thickness of the film. Figure 4.18 shows the 

absorption coefficient of BCN and all BCN:H thin films deposited in this study.  
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Figure 4.18: The absorption coefficient of C-H band for BCN and BCN:H thin films. 

The concentration of H bonded with C was determined by integrating the absorption coefficient 

peak of C-H bond. Figure 4.19 shows the integrated absorption coefficient of C-H bonds in the 

films. It can be observed that BCN film showed no peak, and hence the lowest area under the 

curve. BCN:H10 displays a small area under the peak due to less hydrogen gas used during 

deposition. The total area under the curve increased by a factor of 9, with an increase in 

hydrogen gas from 10% to 20%. 
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Figure 4.19: Area under the C-H peak corresponding to the concentration of C-H bonds in the 

films obtained by integrating the absorption coefficient.  

With increasing H2 concentration in the gas mixture, the integrated area of the IR absorption peak 

associated with C-H bonding increased.  BCN:H50 demonstrated the sharpest absorbance peak 

intensity and largest area under the curve, thus implying a larger number of C-H formations. 

Hence, it can be concluded that with the increase in hydrogen gas flow, the number of C-H bonds 

in the film increased. 

4.3.2 Electrical Properties 

The dielectric constant (k) of BCN and BCN:H thin films were calculated as a function of the 

hydrogen gas incorporated during sputtering. Figure 4.20 shows the dielectric constant trend of 
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the deposited films. It can be observed that the dielectric constant followed a linearly decreasing 

trend with an increase in percentage hydrogen gas during sputtering. The dielectric constant of 

pure BCN films was 6.2. The k value reduced from 6.2 for pure BCN film with no hydrogen doping 

to 2 for BCN:H50. This reduction in the k value was associated with non-polar C-C and C-H bond 

formations, as confirmed from XPS and FTIR analysis. XPS verified that the C-C/C-H peak 

increased with a higher percentage of hydrogen gas. FTIR analysis corroborated this result by 

displaying a larger area under the absorption curve with an increasing percentage of hydrogen 

gas. Thus, a higher percentage of hydrogen gas resulted in a larger number of C-C and C-H bond 

formations in the deposited films. 

The presence of non-polar bonds reduces the number of electric dipoles formed in the dielectric 

materials, thus reducing the polarization in the presence of an electric field [128, 164]. The 

dielectric constant of a material is a physical measure of electric polarization. Reducing 

polarization by means of non-polar bonds can thus reduce the dielectric value of films. A similar 

trend of decrease in the k value of dielectric thin film due to an increase in non-polar C-H bonds 

for BCN films deposited was reported by the PECVD technique [123, 165, 166].  The lowest 

dielectric constant value of 1.9 was recorded for BCN:H thin films synthesized using PECVD [29].  

The lowest k value of 2 obtained in this study by RF magnetron sputtering is very close to k=1.9 

achieved by PECVD. Additionally, RF magnetron sputtering does not demand toxic precursors and 

high-temperature synthesis required for the CVD technique.  
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Figure 4.20: The dielectric constant of BCN and BCN:H thin films with varying hydrogen gas 

flow.  

The electrical resistivity of BCN and BCN:H thin films was extracted from the I-V characteristics of 

the MIM device. Figure 4.21 shows the electrical resistivity trends of BCN and BCN:H thin films 

with varying percentages of hydrogen gas. Pure BCN film with no hydrogen doping displayed a 

maximum resistivity of 4.2×1011 ohm-cm. With hydrogen introduction in the sputtering chamber, 

the resistivity dropped to slightly lower values of 1.1×1011 ohm-cm. The films did not display 

strong dependence of resistivity on the percentage hydrogen gas flow. A similar trend was 

reported for BCN films with k=2.2 and ρ = 109-1011 ohm-cm deposited using PECVD [66, 167]. 
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Figure 4.21: Electrical resistivity trend of BCN and BCN:H thin films. 

4.3.3 Optical Properties 

Optical transmission measurement was done on all BCN and BCN:H thin films deposited on the 

glass substrates. The optical transmission spectra measured in the wavelength range of 350-800 

nm are shown in figure 4.22. High transmission (>88%) was observed for all films. BCN film 

deposited in the absence of hydrogen gas displayed transmission in the range of 88-94%. 

However, films deposited in the presence of hydrogen gas displayed a higher optical transmission 

value of 97-99%. This observation of an increase in transmission with the increase in hydrogen 

content is in accordance with other research studies on BCN:H [123] and similar dielectric 

materials such as SiC:H [168].  
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Figure 4.22: Optical transmission of BCN and BCN:H thin films measured on glass substrates.  

 4.4 BCN Nano-Coatings for Bacterial Inhibition 

 4.4.1 Surface Characterization of Nano-Coatings  

The surface morphology of BCN and TiO2  nano-coatings was evaluated using FESEM. Figure 4.23 

a-c shows the surface images of U-C, TiO2-C, and BCN-C. U-C demonstrated a smooth surface 

morphology. TiO2-C displayed only slight protrusions but overall a smooth morphology. 

Compared to U-C and TiO2-C, the BCN-C surface displayed significant nano protrusions. Owing to 

the differences between the two catheter surfaces, AFM was performed to evaluate the surface 

roughness of U-C and BCN-C. Figure 4.23 d-e shows the AFM scans of U-C and BCN-C conducted 

on the catheter surfaces. The surface roughness of U-C and BCN-C was recorded to be 41.7 nm 
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and 90.7 nm respectively using AFM. BCN-C displayed 15-fold higher peak gradient difference 

compared to U-C as recorded from separate 10µm2  surface area scans on the catheters.  

 

Figure 4.23: FESEM surface images showing smooth morphological features on (a) U-C, (b) TiO2-

C, and nano-protrusions on (c) BCN-C. AFM surface topology of (d) U-C and (e ) BCN-C. 

 4.4.2 Inhibitory Effects of BCN Nano Coated Catheters on Bacterial Growth 

Bacterial colony-forming units (CFUs) were manually counted for both E.coli and B.cereus after 

24 hours of incubation. Table 4.4 shows the CFUs of E.coli bacterial for U-C, TiO2-C, and BCN-C. 

The results of three individual experiments are displayed in the table. The uncoated catheters 

demonstrated the highest number of bacterial CFUs, as expected, which leads to CLABSIs among 
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patients. TiO2-C  demonstrated slightly lower CFUs compared to U-C, however, this difference 

was not significant. This implies that TiO2-C does not inhibit E.coli bacterial growth on catheters. 

It can be seen that the average CFUs of U-C was 29.7, which reduced to 24 for TiO2-C, and 5.6 for 

BCN-C. BCN-C demonstrated a substantial reduction in E.coli CFU’s thus establishing the anti-

bacterial activity of BCN nano-coatings.  While TiO2-C was only able to inhibit bacterial colonies 

by 19.19%, BCN-C displayed immense E.coli inhibitory effects up to 81.14%.   

Table 4.4: Number of colony forming units of E.coli bacteria on U-C, TiO2-C, and BCN-C. 

Trial Number of CFUs Average % Decrease in 

CFU 

U-C TiO2-C BCN-C TiO2-C BCN-C 

1 29 24 3  

19.19 

  

 

81.14 2 26 20 4 

3 34 28 10 

Average 29.7 24.0 5.6 

 

Table 4.5 shows the CFUs of B.cereus bacterial colonies recorded on U-C, TiO2-C, and BCN-C after 

incubation. Results are displayed as triplicates for the three individual experiments performed. 

The average number of B.cereus CFUs was 104.3 for U-C, which reduced to 84.3 for TiO2-C and 

only 3 for BCN-C. TiO2-C demonstrated only 19.17% decrease in bacterial colonies of B.cereus, 

similar to E.coli. BCN-C exhibited an excellent 97.12% decrease in B.cereus bacterial colonization.  

This outstanding reduction in the bacterial activity of E.coli and B.cereus on BCN-C is attributed 

to the surface distinctive surface roughness of BCN-C. When a surface is observed under 

magnification, it appears as a series of peaks and valleys with varying heights and spacing. Height 
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variation between the peaks and valleys determines the surface roughness of the material. It is 

commonly accepted that nano rough surfaces tend to have a lower probability of bacterial 

adhesion as compared to smoother surfaces [169]. A similar trend between bacterial adhesion 

and surface roughness of the nano-coating has been reported in the literature [170-174].  

Table 4.5: Number of colony forming units of B.cereus on U-C, TiO2-C and BCN-C. 

Trial Number of CFUs Average % decrease in 

CFUs 

U-C TiO2-C BCN-C TiO2-C BCN-C 

1 96 67 1  

19.17  

 

97.12 2 101 88 2 

3 116 98 6 

Average 104.3 84.3 3.0 

 

Figures 4.24 a-c show the bacterial colonies of E.coli after the catheter surfaces were rolled onto 

nutrient agar plate. Figures 4.24 d-f show the bacterial colonies of B.cereus after the catheter 

surfaces were rolled onto the surface of the blood agar plate. The average number of CFUs 

formed on U-C, TiO2-C, and BCN-C were examined for statistical significance, as shown in Figure 

4.24 g-h. One-tailed t-test analysis was used to determine the p-value. The lower the p-value, the 

higher is the significance of the data achieved. BCN-C successfully reduced bacterial CFUs formed 

by E.coli with p-value of 0.0008, thus confirming statistical significance. Similarly, BCN-C displayed 

an excellent reduction in bacterial CFUs for B.cereus with a highly significant p-value of 0.00004.  
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Figure 4.24: Microbial activity recorded for (a) U-C, (b) TiO2-C, and (c) BCN-C after rolling the 

catheters onto the surface of nutrient agar plate for E.coli. Microbial activity recorded for (d) U-

C, (e) TiO2-C, and (f) BCN-C after rolling the catheters onto the surface of blood agar plate for 

B.cereus. Bar graph demonstration of bacterial inhibition property of (g) E.coli and (h) B.cereus 

for all catheters. * Represents a statistically significant difference of p<0.05. ** represents 

p<0.01.  
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 4.4.3 Analysis of Biofilm Formation  

 

To understand the mechanism of strong bacterial inhibition property demonstrated by BCN-C, 

biofilm formation was quantified using absorbance spectrophotometry. Table 4.6 shows the 

optical density values recorded for the crystal violet-stained biofilms formed by E.coli and 

B.cereus. The average OD of E.coli stained biofilms for three experimental measurements 

reduced from 0.4851 for U-C to 0.1837 for BCN-C. The average OD of B.cereus stained biofilms 

reduced from 0.5880 for U-C to 0.1439 for BCN-C. Thus, BCN-C evidently reduced the biofilm 

formation by 62.13% for E.coli and 75.52% for B.cereus. The surface roughness property of BCN 

nano-coatings impacts the surface topography, which results in biofilm inhibition [100]. BCN-C 

surface topographic features are in the nanometric range, which is much smaller than the 

microbial cell size.  As a result, there is a significant decrease in the contact area between the 

bacterial cell and the nanocoated surface. This may determine the activation of bacterial 

adhesion genes and genes that secrete extracellular matrix, thereby impacting cell attachment 

and subsequent biofilm formation on BCN-C. Multiple studies have reported that surface 

topography plays a crucial role in bacterial adhesion and subsequent biofilm formation [170, 175, 

176].  These results indicate the antibiofilm activity of BCN nano-coatings. Antibiofilm and 

bacterial inhibitory effect of BCN-C reduced colonization rate of CVCs and could potentially 

reduce the incidences of CLABSIs. This will be beneficial towards reduction in the use of 

antibiotics and deter the development of antibiotic-resistant organisms. Excellent bacterial 

inhibition property of BCN nano-coatings should be further explored for other medical device 

associated infections.  
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Table 4.6: Optical density (OD) of E.coli and B.cereus of U-C and BCN-C.  

Trial OD of E. coli 

stained catheters 

 % 

decrease 

in E. coli 

OD 

OD of B. cereus 

stained catheters 

% 

decrease 

in B. 

cereus OD 
U-C BCN-C U-C BCN-C 

1 0.4868 0.1839  

62.13 

0.6398 0.1451  

   75.52 2 0.5006 0.1613 0.5308 0.1271 

3 0.4680 0.2070 0.5964 0.1589 

Average 0.4851 0.1837 0.5880 0.1439 
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CHAPTER FIVE: CONCLUSION 

Dissertation Remarks 

Advancing towards the search for new dielectric materials, hydrogenation was performed on the 

materials in the boron-carbon-nitrogen triangle elements.  Boron carbide and boron carbon 

nitride are popular for their low dielectric values. Hydrogenation was performed on BC and BCN 

thin films to study the investigation of hydrogen gas flow and other process parameters on 

electrical, optical, mechanical, photoluminescence properties of thin films. BC and BCN films 

were deposited in presence of H2, N2, and argon gas at different substrate temperatures using RF 

magnetron sputtering of B4C and BN targets.  

Amorphous BC:H films were grown using RF magnetron sputtering of B4C target in presence of 

3% H2Ar gas at different substrate temperatures. These films incorporated higher elemental C 

content with substrate temperature. XPS revealed an increase in sp2 bonded C content in the 

films with increasing substrate temperature. The increase in C content was accompanied by a 

corresponding decrease in the B/C ratio. REELS analysis confirmed the presence of hydrogen in 

the films. These carbon enriched films of a-BC:H exhibited reduced dielectric constant values of 

3.5 and electrical resistivity in the order of 108 ohm-cm. Hydrogenation reduced the k-value of 

BC thin films by 56%. Optical transmission were achieved between 75-82% and optical bandgap 

between 2.25 and 2.6 eV by varying substrate temperature. Amorphous BC:H thin films deposited 

by RF magnetron sputtering are promising as insulating materials for low dielectric applications.  
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As hydrogenation of boron carbide showed promising electrical results, next hydrogenation of 

BCN thin films and its impact on mechanical properties and photoluminescence studies was 

investigated. BCN:H thin films were successfully deposited using dual-target RF magnetron 

sputtering from B4C and BN. The mechanical properties such as hardness and Young’s modulus 

were investigated using nanoindentation measurements. Photoluminescence studies were 

performed at RT and 77 K. The hydrogen/argon to nitrogen gas ratio was varied during deposition 

while the substrate temperature was maintained constant at room temperature to obtain films 

with wide elemental composition. The influence of substrate temperature was also studied by 

varying deposition substrate temperature at a constant gas flow ratio. The films demonstrated 

distinct properties with the deposition conditions. The boron content in the films increased with 

a higher hydrogen/argon gas ratio. The maximum boron was recorded as 35% at a gas ratio of 1. 

The carbon content varied only slightly with change in the gas ratio. The nitrogen content 

displayed an overall decreasing trend, except for the increase in the N content to 25% at gas ratio 

of 0.8. The films demonstrated a different elemental composition with variations in substrate 

temperature. Carbon and nitrogen content increased at higher substrate temperatures. Higher 

substrate temperature produced boron-rich BCN:H thin films. Oxygen contamination was less 

than 10%. The presence of B-N-B, C-N, C≡N, B–H, and C=O bonds were revealed from the FTIR 

transmittance spectrum.  

The Young’s modulus of the films displayed a decreasing trend with gas ratio variation. The 

Young’s modulus reduced from 140 GPa for the film deposited at gas ratio of 0.2 to 126 GPa for 

the film deposited at gas ratio of 0.6. The reduction in Young’s modulus was attributed to the 
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phase transitions from sp2 to sp3 when H atoms are bonded with B/C/N atoms. As a function of 

substrate temperature, Young’s modulus showed an overall increasing trend from 132 GPa for 

the film deposited at RT to 140 GPa for the film deposited at 400 °C. 

The BCN:H thin films exhibited an interesting hardness trend with variation in hydrogen/argon to 

nitrogen gas flow ratios and substrate temperatures. The BCN:H thin films exhibited decreasing 

hardness values for gas ratios of 0, 0.2, and 0.4, with the lowest hardness recorded at 6 GPa. 

However, for the film deposited at gas ratio of 1, the films demonstrated an increased hardness 

of 18 GPa. This increase in hardness values was attributed to phase transitions in the films as 

observed in the FTIR transmittance spectra. The hardness of BCN:H thin films increased from 18 

GPa for the film deposited at RT to 22 GPa for the film deposited at 400 °C. 

The PL peaks of BCN:H thin films can be tuned based on the varying gas flow ratio and substrate 

deposition temperatures during RF magnetron sputtering. BCN and BCN:H films exhibited two 

sharp PL peaks. Increasing the hydrogen gas flow ratio helped attain tunable films with PL peaks 

varying from 490 nm to 515 nm (green shift) and 591 nm to 621 nm (red shift). With an increase 

in the substrate temperature, the PL peaks shifted to longer wavelengths. BCN:H thin film 

deposited at RT exhibited a peak at 490 nm and 591 nm. As the substrate temperature increased, 

the peaks shifted to 521 nm and 627 nm for the film G deposited at 100 °C, 521 nm and 627 nm 

for the film H deposited at 200 °C, 544 nm and 655 nm for the film I deposited at 300 °C. The 

origin of PL peak shift to longer wavelength was associated with higher C content in the films, 

which causes a reduction in the bandgap. BCN-based phosphors up to 655 nm sharp red emission 
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were reported for the first time through this study. PL peak intensity increased with higher 

hydrogen gas ratio in the deposited BNC:H thin films by ~10,000 units. This increment in the PL 

peak intensity with hydrogen gas shows potential for hydrogen sensing application of BCN:H thin 

films.  

Hydrogenation of BCN thin films also produced a rare phenomenon of NTQ. The occurrence of 

this phenomenon was related to the radiation recombination of localized states related to H and 

N bonding in the BCN:H thin films. BCN:H films emitting bright and stable red, green and blue 

(RGB) luminescence under the single excitation of 365 nm wavelength can be potentially 

applicable in LEDs, optoelectronics, bioimaging, and optical thermometry devices.  

 
As 3% hydrogenation reduced the dielectric constant of BCN films by 56%, the impact of 99.99% 

hydrogen gas on BCN thin films was analyzed on electrical and optical properties. Hydrogenated 

BCN thin films were deposited using dual-target RF magnetron sputtering for potential low-k 

dielectric applications. The H2/N2 gas ratio was varied while maintaining constant Ar gas flow for 

all depositions to achieve a wide range of hydrogen doping. The films demonstrated varying 

elemental composition with process gas flow. All films exhibited B-C-N atomic hybridization 

observed in XPS studies. The carbon elemental composition increased with a corresponding 

decrease in nitrogen as a function of hydrogen gas flow. The number of non-polar C-H bonds was 

found to increase with hydrogen process gas flow during deposition. A 67.74% reduction in k-

value was achieved from 6.2 to 2 due to non-polar C-C and C-H bonds which reduced polarization 

in thin films. A dielectric constant as low as 2 has been achieved for the first time for BCN:H thin 
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films deposited using RF magnetron sputtering technique. BCN:H thin films demonstrated high 

electrical resistivity of 1011 ohm-cm. The BCN:H thin films with low dielectric constant (k=2) and 

high resistivity (1011 ohm-cm) are promising candidates as insulating materials for low-k dielectric 

applications.  

BCN nano-coatings were investigated for the first time for their bacterial inhibition property on 

central venous catheters. BCN nano-coatings were synthesized using RF magnetron sputtering 

from B4C target in the presence of nitrogen/argon gas.  BCN-C reduced the bacterial CFU’s by 

81.14% for E.coli and 97.12% for B.cereus. TiO2-C was also investigated for comparison purposes, 

and it reduced bacterial CFU’s by only 19% for both E.coli and B.cereus. BCN nanocoatings 

suppressed the biofilm formation for E.coli by 62.13% and B.cereus by 75.52%. The excellent 

bacterial inhibition and antibiofilm property of was attributed to the surface roughness of BCN 

nanocoated central venous catheters.  

Future Prospects 

Hydrogenation of BC and BCN thin films have displayed a reduction in the k value by 56% and 

67%, respectively. The influence of 3% hydrogen gas and 99.99% hydrogen gas on BCN thin films 

was investigated. The incorporation of 99.99% hydrogen gas has shown promising results in the 

electrical properties of BCN thin films. Higher gas flow (> 10 sccm) of 99.99% hydrogen gas flow 

to the deposition chamber should be explored further. Some of the other crucial properties which 

can be studied include mechanical properties and photoluminescence studies. 3% hydrogenation 

of BCN exhibited tunable photoluminescence properties with process deposition parameters. 
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BCN-based phosphors have been synthesized using various techniques such as solid-state 

reaction, molten salt growth, and microwave method, to name a few. Due to the wide range of 

excitation and emission spectra, BCN and BCN:H have great potential in white LEDs, DNA labeling, 

optoelectronic devices, and biological imaging applications. However, BCN and BCN:H based 

phosphors deposited by RF magnetron sputtering remain much less explored and hence require 

further investigation.  

Hydrogenated BCN is emerging as a potential low-dielectric candidate material displaying a low 

k value of 2. Many materials researched in the past showed low-k dielectric values but poor 

mechanical properties. However, BCN is well known for its high hardness and Young’s modulus 

values and low dielectric constant and hence is a promising candidate for ILDs. Integrating the 

film into the semiconductor device manufacturing process is one of the crucial challenges. Post 

deposition patterning by etching of BCN and hydrogenated BCN materials to architect the desired 

patterns as a viable interlayer material in the semiconductor devices needs to be explored. There 

are very few studies on the etching of BCN and BCN:H thin films. Detailed etching experiments 

need to be investigated to find the feasibility of using BCN as ILD in semiconductor devices.  

BCN nanomaterials are popular for their strong adsorption properties. Literature also reports the 

great hydrogen uptake capacity of BCN, making them prominent as a clean energy alternative 

material. The hydrogen uptake capacity of BCN deposited with RF magnetron sputtering must be 

investigated by allowing the thin films to soak the hydrogen gas in the deposition chamber. 
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Detailed investigations on adsorptive properties need to be pursued for future clean energy 

demands.  

BCN nano-coatings inhibiting bacterial growth and biofilm formation were reported for the first 

time in this dissertation. These studies were performed on central venous catheters. These 

unique surface properties of BCN nano-coatings for bacterial inhibition should be explored 

further to reduce other medical device-associated infections. Multilayers of BCN and other anti-

bacterial coatings such as Ag can be explored for coatings on medical devices.  
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