Mesenchymal stem cells with increased developmental potency by expressing Nanog

1-29-2013

Kiminobu Sugaya

Angel Alvarez

University of Central Florida

Find similar works at: https://stars.library.ucf.edu/patents

University of Central Florida Libraries http://library.ucf.edu

Recommended Citation

Sugaya, Kiminobu and Alvarez, Angel, "Mesenchymal stem cells with increased developmental potency by expressing Nanog" (2013).

UCF Patents. 755.

https://stars.library.ucf.edu/patents/755

This Patent is brought to you for free and open access by the Technology Transfer at STARS. It has been accepted for inclusion in UCF Patents by an authorized administrator of STARS. For more information, please contact lee.dotson@ucf.edu.
MESENCHYMAL STEM CELLS WITH INCREASED DEVELOPMENTAL POTENCY BY EXPRESSING NANOG

Inventors: Kiminobu Sugaya, Winter Park, FL; Angel Alvarez, Orlando, FL (US)
Assignee: University of Central Florida Research Foundation, Inc., Orlando, FL (US)

Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.

Related U.S. Application Data
Continuation of application No. 11/258,401, filed on Oct. 24, 2005, now Pat. No. 8,192,988.
Provisional application No. 60/621,901, filed on Oct. 22, 2004, provisional application No. 60/650,438, filed on Feb. 4, 2005.

References Cited
U.S. PATENT DOCUMENTS
6,833,269 B2 12/2004 Carpenter
7,635,467 B2 12/2009 Sugaya et al.

FOREIGN PATENT DOCUMENTS
WO WO 03/064463 A2 8/2003

OTHER PUBLICATIONS

Abstract
Disclosed herein are methods and materials for producing a more developmentally potent cell from a less developmentally potent cell. Specifically exemplified herein are methods that comprise introducing an expressible dedifferentiating polynucleotide sequence into a less developmentally potent cell, wherein the transfected less developmentally potent cell becomes a more developmentally potent cell capable of differentiating to a less developmentally potent cell of its lineage of origin or a different lineage.

1 Claim, 17 Drawing Sheets
PRIOR ART

FIG 1.
FIG. 2

[A] Mesenchymal stem cells pre-transfection
[B] Nanog-transfected mesenchymal stem cells 12 days post-transfection
[C] Nanog-transfected mesenchymal stem cells 4 weeks post-transfection
Green: βIII-tubulin, Red: GFAP, Blue: DAPI

FIG. 7
FIG. 9: NanogP8 Sequence

```
M SVDPAC PQ SLP CFE S DCK
gatcttacattgctgtgcttttatgaatcgactgtta
E S PMP VIG CEY P N P L
ctttctgatgtagctacacagtctctctctctctctcccacatgtgtagctgctgtgatctgctgctgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctgtgctg...```
GATA-4

Key:
Lane 3: 100bp ladder
Lane 4: 10μM 5-aza-C
Lane 5: 3μM 5-aza-C
Lane 6: 1μM 5-aza-C
Electrophoresis 050101

hANP

Nanog primer set 1

MLC-2V

Nanog primer set 2

Troponin I

Key:
Lane 7: Negative control
Lane 8: Positive control 1x
Lane 9: Positive control 2x
Lane 10: 100bp ladder
Treatment with 10, 3 or 1μM of 5azaC for 21 days, 5 days coculture.
Electrophoresis 050115
Troponin I and hANP

Lane 2: ladder
Lane 3: Troponin I or GATA-4 low RNA of BrdU treatment
Lane 4: Troponin I or GATA-4 high RNA of BrdU treatment
Lane 5: Troponin I or GATA-4 low RNA of 5azaC treatment
Lane 6: Troponin I or GATA-4 high RNA of 5azaC treatment
Lane 7: ladder
Lane 8: hANP or MLC-2v low RNA of BrdU treatment
Lane 9: hANP or MLC-2v high RNA of BrdU treatment
Lane 10: hANP or MLC-2v low RNA of 5azaC treatment
Lane 11: hANP or MLC-2v high RNA of 5azaC treatment
Electrophoresis 050116
Troponin I and hANP

Lane 1: 100bp ladder
Lane 2: 3uM combined treatment 3 weeks
Lane 3: 1uM combined treatment 3 weeks
Lane 4: 3uM 5azaC 3 weeks
Lane 5: 3uM BrdU 3 weeks
Lane 6: 3uM Control (nt 12/27)
Lane 7: 3uM combined treatment 3 weeks
Lane 8: 1uM combined treatment 3 weeks
Lane 9: 3uM 5azaC 3 weeks
Lane 10: 3uM BrdU 3 weeks
Lane 11: 3uM Control (nt 12/27)
Lane 12: 100bp ladder
January 24, 2005

**GATA-4 and MLC-2v**

Lane 1: DNA ladder  
Lane 2: 10uM 5azaC treatment  
Lane 3: 5uM 5azaC treatment  
Lane 4: 1uM 5azaC treatment  
Lane 5: 3uM 5azaC treatment  
Lane 6: 3uM BrdU treatment  
Lane 7: 10uM 5azaC treatment  
Lane 8: 3uM 5azaC treatment  
Lane 9: 1uM 5azaC treatment  
Lane 10: 3uM 5azaC treatment  
Lane 11: 3uM BrdU treatment  
Lane 12: DNA ladder

**FIG. 13**

**Troponin I and hANP**

Lane 1: DNA ladder  
Lane 2: 10uM 5azaC treatment  
Lane 3: 5uM 5azaC treatment  
Lane 4: 1uM 5azaC treatment  
Lane 5: 3uM 5azaC treatment  
Lane 6: 3uM BrdU treatment  
Lane 7: 10uM 5azaC treatment  
Lane 8: 3uM 5azaC treatment  
Lane 9: 1uM 5azaC treatment  
Lane 10: 3uM 5azaC treatment  
Lane 11: 3uM BrdU treatment  
Lane 12: DNA ladder
FIG. 14
Nanog vector sequence analysis

FIG. 17
MESENCHYMAL STEM CELLS WITH INCREASED DEVELOPMENTAL POTENCY BY EXPRESSING NANOG

CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 11/258,401 filed Oct. 24, 2005 (Now U.S. Pat. No. 8,192,988), and claims priority to U.S. Provisional Application No. 60/621,901 filed Oct. 22, 2004 and 60/650,438 filed Feb. 4, 2005, both of which are incorporated herein in their entirety.

BACKGROUND OF THE INVENTION

The use of stem cells for the treatment of neurodegenerative conditions offers the hope of curing diseases like Alzheimer’s and Parkinson’s by means of transplantation [1]. However, major obstacles regarding cell procurement, directing cell fate and avoiding immune response hinder clinical development [2-4]. Research has focused on both adult and embryonic stem cells and attempted to balance limitations in regulating their development and preventing immune response. Increased potency of stem cells can be achieved by epigenetic modifications through nucleotide derivatives [5] and their lineage can be directed by gene transfection [6,7].

Patients currently suffering from neurodegenerative conditions have limited treatment options. Conventional drug therapy helps delay or reduce the symptoms of disease but is unable to restore complete functionality of the brain or repair damaged tissue. Through stem cell-based therapies, scientists aim to transplant cells in order to regenerate damaged tissue and restore proper function. However, the best source of stem cells for transplantation remains an unresolved issue; with debate focusing around embryonic or adult derived stem cells. Embryonic stem cells can be readily differentiated to multiple neuronal fates but pose the risk of tumor formation [25] and their lineage can be directed by gene transfection [6,7].

It is important to an understanding of the present invention to note that all technical and scientific terms used herein, unless stated otherwise, are intended to have the meaning commonly understood by a person skilled in the art. The techniques employed herein are also those that are known to one of ordinary skill in the art, unless stated otherwise. For purposes of more clearly facilitating an understanding the invention as disclosed and claimed herein, the following definitions are provided.

The differentiation of stem cells along multiple lineages has been intensely studied given their great therapeutic potential. However, the mechanisms that underlie proliferation, self-renewal and differentiation in cells with the capacity for further development remains poorly understood. A recently discovered gene, nanog, is required to sustain pluripotency in embryonic stem cells and acts concomitantly with embryonic transcription factor Oct-4, yet utilizes a STAT-3 independent mechanism. The subject invention is based on the inventor’s discovery that gene transfection of adult stem cells with nanog, an embryonic stem cell gene maintaining pluripotency [8,9], can allow for the production of neurons and astrocytes from bone marrow cells via a two-step process. First, mesenchymal stem cells are modified by nanog transfection, and the cells form embryoid-like bodies. Then cells are committed to neuronal lineage in a co-culture system with differentiated neural stem cells separated by a semi-permeable membrane. This technology may be a means of generating effective autologous stem cell transplants to improve neuroreplacement strategies. The inventors have discovered that adult stem cells can be dedifferentiated through introduction and expression of the nanog gene or other dedifferentiating genes.

DETAILED DESCRIPTION

In reviewing the detailed disclosure which follows, and the specification more generally, it should be borne in mind that all patents, patent applications, patent publications, technical publications, scientific publications, and other references referenced herein are hereby incorporated by reference in this application, in their entirety to the extent not inconsistent with the teachings herein.

Reference to particular buffers, media, reagents, cells, culture conditions and the like, or to some subclass of same, is not intended to be limiting, but should be read to include all such related materials that one of ordinary skill in the art would recognize as being of interest or value in the particular context in which that discussion is presented. For example, it is often possible to substitute one buffer system or culture medium for another, such that a different but known way is used to achieve the same goals as those to which the use of a suggested method, material or composition is directed.

FIG. 1 shows the vector system for cloning nanog according to the teachings in Example 1.

FIG. 2 shows images of cells before and after transfection with nanog: A: shows mesenchymal stem cells pre-transfection; B: shows nanog-transfected mesenchymal stem cells 12 days post-transfection; C: shows nanog-transfected mesenchymal stem cells 4 weeks post-transfection.

FIG. 3 shows images of transfected mesenchymal stem cells 9 days (A and B) and 2 months (C and D) post-transfection.

FIG. 4 shows images a co-culture system in accord with one embodiment of the subject invention.

FIG. 5 shows images of Co-culturing experiments which demonstrated that embryoid body-like clusters began differentiation within 48 hours (A). Control cells with empty vector treatments failed to show any signs of neural differentiation (B). Embryoid-like bodies adhered to membrane and differentiation occurred as neural cells migrated radially outward (C).

FIG. 6-7 show images of the clustering of nanog transfected cells.

FIG. 8 shows images of MeSC-derived neurons and astrocytes.

FIG. 9 shows sequence of Nanog encoding polypeptide and astrocytes.

FIGS. 10-13 show gel images of gene expression in cells subjected to various treatments demonstrating an ability to increase potency of mesenchymal stem cells and differentiation into cardiac cells.

FIGS. 14-16 show photographic images of cells subjected to various treatments.

FIG. 17 shows a schematic representation of the nanog sequence cloned inside a CMV mammalian promoter vector.
Thus, in one embodiment, the invention provides methods for making a more developmentally potent cell from a less developmentally potent cell. In a typical embodiment, the method comprises the step of introducing an expressible dedifferentiating vector into a less developmentally potent cell or a less developmentally potent cell capable of differentiating to a less developmentally potent cell of its lineage of origin or a different lineage. In certain embodiments, the inventive methods further comprise the step of co-culturing the transfected less developmentally potent cell with neural-lineage cells or media conditioned with neural-lineage cells, wherein the transfected cells become a more developmentally potent cell capable of differentiating to a less developmentally potent cells of its lineage of origin or a different lineage.

In the practice of one embodiment of the invention, the phenotype of the less developmentally potent cell is changed when it becomes a more developmentally potent cell. Thus, the invention provides methods for changing a first phenotype of a less developmentally potent cell into a second phenotype of a more developmentally potent cell. The change from a certain potency to a higher level of potency is considered "dedifferentiation" in accord with the teachings herein. In preferred embodiments, the less developmentally potent cell is a stem cell, more preferably a hematopoietic stem cell, a neural stem cell, an epithelial stem cell, an epidermal stem cell, a retinal stem cell, an adipose stem cell and a mesenchymal stem cell.

In yet further aspects of the invention are provided pharmaceutical compositions comprising said more developmentally potent cells prepared according to the methods of the invention and a pharmaceutically-acceptable carrier or excipient. The invention provides such pharmaceutical compositions comprising said more developmentally potent cells that are tissue stem cells for use in cell or tissue regeneration or for correcting a disease or disorder in a tissue or animal in need thereof.

Thus, the invention also provides methods for using the pharmaceutical compositions provided herein to treat an animal in need thereof by administering the more developmentally potent cells thereto. In certain preferred embodiments, the more developmentally potent cells comprise a cluster of two or more of the more developmentally potent cells. Preferably, the animal has a corporal or neurological deficit. The invention provides for treating one or more of more developmentally potent cells, which can be treated or ameliorated by administration of said more developmentally potent cells, as a deficit caused by a neurodegenerative disease, a traumatic injury, a neurotoxic injury, ischemia, a developmental disorder, a disorder affecting vision, an injury or disease of the spinal cord, a demyelinating disease, an autoimmune disease, an infection, an inflammatory disease, or a corporal disease, disorder, injury, trauma, malfunction, degeneration or loss. In preferred embodiments, the one or plurality of more developmentally potent cells are capable of migrating to an area of tissue damage, differentiating in a tissue-specific manner and functioning in a manner that reduces the neurological or corporal deficit. As provided by the methods of the invention herein, the cells are administered by injecting one or a plurality of more developmentally potent cells with a syringe, inserting the more developmentally potent cells with a catheter or surgically implanting the more developmentally potent cells. In certain embodiments, the more developmentally potent cells are injected with a syringe into a body cavity that is fluidly-connected to the area of neurological or corporal deficit. In certain preferred embodiments, the body cavity is a brain ventricle. In other embodiments, the more developmentally potent cells are inserted with a catheter into a body cavity that is fluidly-connected to the area of neurological or corporal deficit.

In yet another embodiment, the invention relates to treating a stem cell, excluding those of neural origin, such that it is converted into a more developmentally potent cell, which enables it to differentiate into the various cell types found in eye tissue, inter alia, choroid, Bruch and retinal pigment epithelium cells, rod and cone photoreceptor cells, horizontal cells, bipolar neurons, amacrine, ganglion and optic nerve cells. These non-limiting, exemplary cell types found in eye tissue are collectively referred to as retinal cells. The methods comprising the step of contacting more developmentally potent cells of the invention with an effective amount of one or a combination of growth factor selected from the group consisting of TGF-β3, IGF-1 and CNTF for an effective period such that the growth factor-contacted cells can differentiate into retinal cells.

As used herein, the terms "multipotent neural stem cells (MNSCs)," "neural stem cells (NSCs)" and "neural progeni-
tor cells (NPCs)" refer to undifferentiated, multipotent cells of the CNS. Such terms are commonly used in the scientific literature. MNSCs can differentiate into tissue-specific cell types, for example astrocytes, oligodendrocytes, and neurons when transplanted in the brain. MNSCs of the invention are distinguished from natural MNSCs by their adaptation for proliferation, migration and differentiation in mammalian host tissue when introduced thereto.

As used herein, a "less developmentally potent cell" is a cell that is capable of limited multi-lineage differentiation or capable of single-lineage, tissue-specific differentiation, for example, an untreated mesenchymal stem cell can differentiate into, inter alia, osteocytes and chondrocytes, i.e., cells of mesenchymal lineage, but has only limited ability to differentiate into cells of other lineages (e.g., neural lineage.). As used herein, a "more developmentally potent cell" is a cell that is readily capable of differentiating into a greater variety of cell types than its corresponding less developmentally potent cell. For example, a mesenchymal stem cell can readily differentiate into osteocytes and chondrocytes but has only limited ability to differentiate into neural or retinal lineage cells (i.e., it is a less developmentally potent cell in this context). Mesenchymal stem cells treated according to the methods of the invention become more developmentally potent because they can readily differentiate into, for example, mesenchymal-lineage and neural-lineage cell types; the plasticity of the cells is increased when treated according to the methods of the invention.

The invention provides methods of delivery and transplantation of the more developmentally potent cells of the invention to ameliorate the effects of age, physical and biological trauma and degenerative disease on the brain or central nervous system of an animal, as well as other tissues such as, for example, retinal tissue. It is well recognized in the art that transplantation of tissue into the CNS offers the potential for treatment of neurodegenerative disorders and CNS damage due to injury. Transplantation of new cells into the damaged CNS has the potential to repair damaged circuits and provide neurotransmitters thereby restoring neurological function. It is also recognized in the art that transplantation into other tissue, such as eye tissue, offers the potential for treatment of degenerative disorders and tissue damage due to injury. As disclosed herein, the invention provides methods for generating more developmentally potent cells adapted for proliferation, migration and differentiation in mammalian tissue when introduced thereto. The use of more developmentally potent cells in the treatment of neurological disorders and CNS damage, as well as the use of more developmentally potent cells in the treatment of other tissue damage or degeneration, can be demonstrated by the use of established animal models known in the art.

In one embodiment, differentiated cells or more developmentally potent cells of the invention can be administered to an animal with abnormal or degenerative symptoms obtained in any manner, including those obtained as a result of age, physical or biological trauma, or neurodegenerative disease and the like, or animal models created by man using recombinant genetic techniques, such as transgenic and "gene knockout" animals.

Recipients of the more developmentally potent cells of the invention can be immunosuppressed, either through the use of immunosuppressive drugs such as cyclosporin, or through local immunosuppression strategies employing locally applied immunosuppressants, but such immunosuppression need not necessarily be a prerequisite in certain immunoprivileged tissues such as, for example, brain and eye tissues. In certain embodiments, the delivery method of the invention can cause less localized tissue damage to the site of cell damage or malfunction than existing methods of delivery.

More developmentally potent cells of the invention can be prepared from the recipient's own tissue. In such instances, the progeny of the more developmentally potent cells can be generated from dissociated or isolated tissue and proliferated in vitro using the methods described herein. In the case of mesenchymal stem cells (MeSCs), progeny can be generated from MeSCs isolated from, for example, bone marrow. Upon suitable expansion of cell numbers, the stem cells of the invention can be harvested and readied for administration into the recipient's affected tissue.

There are significant differences in the method of delivery to the brain of the more developmentally potent cells compared to the prior art. One exemplary difference is as follows: the more developmentally potent cells of the invention are transplanted intraventricularly. Further, while the transplantation of one or more separate more developmentally potent cells is efficacious, the more developmentally potent cells of the invention are preferably transplanted in the form of clusters of two or more cells via a surgical procedure or injection using a syringe large enough to leave the clusters substantially intact. The results disclosed in the Examples below indicate that ventricular delivery of more developmentally potent cells of the invention in the form of a cluster of two or more cells can result in migration to the area of damage in the brain and proper neuronal differentiation. Another benefit of intraventricular injection is less tissue destruction, resulting in less localized recruitment of immune cells by the host. This is evidenced by the lack of ventricular distortion, tumor formation, and increased host astrocyte staining without any immunosuppression.

The method of delivery of the more developmentally potent cells of the invention to the brain can be essentially duplicated for other immunoprivileged tissue such as, for example, the eye. Delivery of one or more separate or two or more of the more developmentally potent cells in the form of a cluster via injection using a syringe large enough to leave the any cluster of two or more cells that is present substantially intact can result in migration to the area of damage in the eye and proper tissue-specific differentiation.

In the context of the present application, a polynucleotide sequence is "homologous" with the sequence according to the invention if at least 70%, preferably at least 80%, most preferably at least 90% of its base composition and base sequence corresponds to the sequence according to the invention. According to the invention, a "homologous protein" is to be understood to comprise proteins which contain an amino acid sequence at least 70% of which, preferably at least 80% of which, most preferably at least 90% of which, corresponds to the amino acid sequence shown in FIG. 9; wherein corresponds to be understood to mean that the corresponding amino acids are either identical or are mutually homologous amino acids. The expression "homologous amino acids" denotes those which have corresponding properties, particularly with regard to their charge, hydrophobic character, steric properties, etc. Thus, in one embodiment the protein may be from 70% up to less than 100% homologous to nanog. Homology, sequence similarity or sequence identity of nucleotide or amino acid sequences may be determined conventionally by using known software or computer programs such as the BestFit or Gap pairwise comparison programs (GGG Wisconsin Package, Genetics Computer Group, 575 Science Drive; Madison, Wis. 53711). BestFit uses the local homology algorithm of Smith and Waterman, Advances in Applied Mathematics 2: 482-489 (1981), to find the best segment of identity or similarity between two sequences. Gap
performs global alignments: all of one sequence with all of another similar sequence using the method of Needleman and Wunsch, J. Mol. Biol. 48:443-453 (1970). When using a sequence alignment program such as BestFit, to determine the degree of sequence homology, similarity or identity, the default setting may be used, or an appropriate scoring matrix may be selected to optimize identity, similarity or homology scores. Similarly, when using a program such as BestFit to determine sequence identity, similarity or homology between two different amino acid sequences, the default settings may be used, or an appropriate scoring matrix, such as blosum45 or blosum80, may be selected to optimize identity, similarity or homology scores.

The term “isolated” means separated from its natural environment.

The term “polynucleotide” refers in general to polyribonucleotides and polydeoxyribonucleotides, and can denote an unmodified RNA or DNA or a modified RNA or DNA.

The term “polypeptides” is to be understood to mean peptides or proteins which contain two or more amino acids which are bound via peptide bonds.

The polypeptides for use in accord with the teachings herein include polypeptides corresponding to nanog, and also includes those, at least 70% of which, preferably at least 80% of which, are homologous with the polypeptide corresponding to nanog, and most preferably those which exhibit a homology of at least 90% to 95% with the polypeptide corresponding to nanog and which have dedifferentiating influence. See polypeptide sequence provided in FIG. 9. Thus, the polypeptides may have a homology of from 70% to up to 100% with respect to nanog.

As used herein, a “polypeptide sequence exhibiting dedifferentiating influence” is a polypeptide whose presence in the cell causes an increase in potency, or transformation from a dependent and will be different in different circumstances. By controlling the stringency of the hybridization and/or wash conditions can be adjusted to hybridize to sequences of the desired identity. For example, if sequences with approximately 90% identity are sought, the Tm can be decreased to 10°C. Generally, stringent conditions are selected to be about 5°C lower than the thermal melting point (Tm) for the specific sequence and its complement at a defined ionic strength and pH. However, severely stringent conditions can utilize a hybridization and/or wash at 6, 7, 8, 9, or 10°C lower than the thermal melting point (Tm); moderately stringent conditions can utilize a hybridization and/or wash at 6, 7, 8, 9, or 10°C lower than the thermal melting point (Tm); low stringency conditions can utilize a hybridization and/or wash at 11, 12, 13, 14, or 15°C lower than the thermal melting point (Tm). Using the equation, hybridization and wash compositions, and desired Tm, those of ordinary skill will understand that variations in the stringency of hybridization and/or wash solutions are inherently described. If the desired degree of mismatching results in a Tm of less than 45°C (aqueous solution) or 32°C (formamide solution) it is preferred to increase the SSC concentration so that a higher temperature can be used. An extensive guide to the hybridization of nucleic acids is found in Current Protocols in Molecular Biology, Chapter 2, Ausubel, et al., Eds., Greene Publishing and Wiley-Interscience, New York (2000).

Accordingly, polynucleotide sequences that hybridize to the complement of the sequence in FIG. 9 are contemplated for use in dedifferentiating cells as taught herein.

US Patent Application Nos. 2003/0219898, 2003/0148513, and 2003/0139410 are incorporated by reference to the extent they are not inconsistent with the teachings herein. These first two of these patent applications describe multiple uses of increased potency cells obtained from the taught methods, and in particular, the implantation of stem cells for different therapeutic treatments of neurological trauma and degenerative conditions. The third patent application is directed to the use of certain compounds to stimulate proliferation and migration of stem cells. Those skilled in the art will readily appreciate that the dedifferentiated cells of the subject invention could be substituted in place of the potent cells taught in the aforementioned patent applications, without undue experimentation. Also, the methods of the third patent may be combined with the present invention without undue experimentation.

According to another embodiment, the subject invention comprises a method of influencing transcription of an endogenous polynucleotide sequence comprising contacting a non-embryonic cell or cellular component comprising an endogenous polynucleotide sequence with a nanog protein or protein encoded by a polynucleotide sequence that hybridizes
to a complement of the sequence shown in FIG. 9 under stringent conditions (i.e. nanog-like protein). Such influence may further include, but is not limited to, demethylation of DNA and reversal histone acetylation. The nanog protein or nanog-like protein may be one expressed by a polynucleotide sequence introduced in the cell or cellular component, or protein delivered into the cell or cellular component, or protein expressed by an endogenous polynucleotide sequence that has been activated. Nanog expression may be activated by the provision of Oct 4 and/or Sox2, which typically form a dimer. In a specific embodiment, the cellular component is a nucleus, liposome, or mitochondria. Such endogenous polynucleotide sequence or cellular component contacted by nanog or nanog may be removed from a cell or cellular component and introduced into another cell or cellular component.

In another specific embodiment, the invention pertains to increasing the efficacy of nuclear transfer comprising transplanting a nucleus with a polynucleotide encoding nanog or nanog-like protein to obtain a treated nucleus and introducing the treated nucleus into a cell. The cell may be any suitable cell but would typically be an ovum with its nucleus removed.

EXAMPLE 1

Dedifferentiation of Mesenchymal Stem Cells

Introduction

Embryonic stem cells are derived during the blastocyst stage from the inner cell mass of prenatal mammalia; and possess the intrinsic properties of rapid self-renewal and pluripotency. Under the influence of endogenous and extracellular signals, these cells migrate and differentiate during the developmental process. Extracellular signals regulating self-renewal or differentiation have been demonstrated in vitro by differentiating embryonic stem cells into cell types comprising all three germ layers. These varieties include neuronal, pancreatic, cardiac and hematopoietic tissue using well-established culturing protocols. Embryonic stem cells form embryoid bodies, non-adherent proliferating clusters, in the presence of leukemia-inhibitory factor (LIF) and a feeder layer of typically fibroblast cells. Upon removal of LIF or transfer to non-feeder cell cultures, embryoid bodies undergo spontaneous differentiation. Early differentiation is characterized by loss of stem cell-specific surface antigens (SSEA-1) and alkaline phosphatase activity. Additionally, endogenous signals, including regulatory intracellular proteins, continually change throughout development. Numerous gene expression studies show distinct variations among different embryonic and adult stem cells, pointing toward underlying mechanisms responsible for the continual loss of potency corresponding with differentiation. Several key genes, namely Oct-3/4, LIF, DNMT3B and Nanog, are repeatedly shown to be almost exclusively expressed in embryonic stem cells that regulate pluripotency [10-14]. The immediate down-regulation of these genes may explain irreversible loss of potency, making embryonic stem cells an attractive source for clinical therapies. However, serious questions remain concerning the production of these cells in sufficient quantities for therapies, bioethical potential immune response and tumor formation [15].

The inventors believe that adult stem cells offer a practicable alternative to the use of embryonic tissue as they are easily harvested and potentially taken from autologous sources to preclude immune response. Stem cell populations have been found in several adult tissues including adipose [16], muscle [17], pancreas [18] and liver [19] and primarily bone marrow [20-23]; all potential sources for cellular transplants [24]. Previous in vitro studies with adult bone marrow-derived stem cells have demonstrated the ability to differentiate into brain [21], liver [23] and cardiac cells [22]. In vivo studies have shown evidence that adult stem cells can migrate and differentiate into various tissues, albeit at extremely low frequencies [20]. However, challenges have been raised over the plasticity of these cells given both the low frequencies of detected cells and new found evidence of cell fusion, in conjunction with false positives [25-27]. An ideal therapeutic alternative may exist if adult cells can be dedifferentiated to an embryonic-like state and reprogrammed to differentiate to a desired cell fate.

Nanog, also referred to as early embryonic specific NK (ENK) [28], is a recently discovered gene responsible for maintaining pluripotency in embryonic stem cells [8,9,28, 29]. This unique gene and its cousin, Nanog2, are genetically distinct members of the ANTP class of homeodomain proteins [30] and have at least twelve identified pseudogenes [31]. Structurally, Nanog contains three alpha helices encoded within the homeodomain division and can be divided into three regions with respect to the central homeodomain sequence [30]. The N-terminal region is rich in serine and threonine residues indicating phosphate-regulated transactivation, possibly through SMAD4 interactions, while the C-terminal domain is seven times as active with an unusual motif of equally spaced tryptophans separated by four amino acids, each flanked with serine or threonine residues. Gene expression studies have shown nanog to be active in embryonic stem cells, tumors and some adult tissue. Nanog expression precipitously decreases with differentiation and maintains self-renewal in embryonic stem cells by gene transfection. In culture, nanog guards against differentiation and acts conversely with Oct-4, Wnt and BMP-4, yet utilizes a STAT-3 independent mechanism to maintain an undifferentiated state. Inventors believe that the role of nanog in regulating pluripotency makes this gene a potential candidate for increasing the potency of adult stem cells.

Previous studies regulating gene expression in stem cell lines have provided valuable insight into underlying mechanisms of proliferation, self-renewal and differentiation. Gene manipulation experiments can either prevent or enhance differentiation. In particular, differentiation can be prevented in embryonic stem cell lines by over expression of Pem or nanog, genes that regulate pluripotency. Conversely, overexpression of lineage specific gene Nurrl promotes the differentiation of neuro 1 stem cell lines to produce dopamine-secreting cells. Taken together, gene vectors can maintain cells in a specific state or allow for lineage committed cells to develop into a specific subpopulation. In one embodiment, the subject invention pertains to a method of dedifferentiating adult stem cells by expressing genes regulating pluripotency to enhance transdifferentiation. This technology allows for adult cells to be used for autologous transplantation and thereby provide a greater understanding of stem cell biology.

FIG. 17 shows a schematic representation of the nanog sequence cloned inside a CMV mammalian promoter vector. The 5'UTR contains an Oct-4 and Sox2 binding region. The nanog protein coding sequence can be divided into an N-terminal, homeodomain and C-terminal region. The C-terminal region can be further subdivided into a C1, Cw and C2 domains. The 3' UTR contains an Alu sequence element.

Methods and Results

Human mesenchymal stem cells (hMeSC) are initially plated in 6-well plates, adhere to the surface and allowed to divide to varying degrees of confluence. They are cultured in serum-DMEM (Dulbecco's modified Eagle's medium) con-
Cloning of nanog was achieved by first performing polymerase chain reaction with primers corresponding to the nanog gene family (5'-tctcttcctctctcctta-3' and 5'-agtggatgatgatgatgat-3') against a human genomic DNA template. The PCR product was cloned into pcDNA Hismax TOPO TA cloning mammalian expression vector (Invitrogen) and inserted in E. coli. See FIG. 1. Bacterial cells were plated on agar plates containing LB agar and ampicillin and incubated overnight at 37°C. Isolated colonies were transferred to growth media an and grown overnight in a 37°C rotator at 200 rpm. Plasmid isolation was performed using endotoxin free maxi prep (Beckon Dickerson) or mini prep kits (Clonetech). Gene segment was then confirmed by gel electrophoresis through enzyme digestion and DNA sequencing. The gene product was approximately 1600 base pairs, consistent with the nanog gene. However, sequencing analysis matched nanog pseudogene 8 (NANOG8), a segment containing no introns and sharing 99 percent homology with nanog. See FIG. 2-4. Concentrations of Neuroporter and DNA (0.5 μg/ml to 40 μg/ml) were varied to achieve optimal results. Cells became non-adherent and began to multiply, forming spherical clusters; consistent with embryoid body formation. Thus, they achieved characteristics of embryonic stem cells.

To determine if nanog could restore pluripotency in adult cells rather than simply maintain the state in embryonic cells, the inventors developed a two-step process of dedifferentiation and development along an alternative lineage, discussed above in Example 2 below. Human mesenchymal stem cells were cultured in a six-well culture plate and were allowed to adhere and grow for at least 48 hours to achieve approximately 75% confluence. Cells were subsequently transfected with a mammalian cell vector or control vehicle, cultured and examined. Cells transfected with NANOG8 became non-adherent and proliferated in the presence of remaining adherent mesenchymal stem cells. To test whether cells can be dedifferentiated using nanog and committed to an alternate lineage we utilized a co-culture system of differentiated human neural stem cells and transformed mesenchymal cells. Neural stem cells were placed in 12 well plates and differentiated using serum-free basal media as previously described. Neuronal stem cells began to differentiate by becoming adherent and migrating radially outwards from the original neural sphere. Following neural stem cell differentiation, these cells were utilized as feeder cells in our co-culture system by placing modified cells inside co-culture chamber that separated modified stem cells from the feeder layer with a 0.2 µm semipermeable membrane. See FIG. 5. Within 48 hours, transferred cells began to display characteristics of differentiation marked by morphological alterations, membrane adherence and outward migration. FIG. 6. Immunohistochemical analysis revealed positive markers for β-III tubulin and GFAP, showing neuron and glial differentiation. Positive staining for mixed neuronal populations was observed in non-adherent clusters cultured for more than 48 hours, adherent cell masses and individual membrane bound cells.

Co-culturing experiments showed embryoid body-like clusters began differentiation within 48 hours. Control cells with our vector treatments failed to show any signs of neural differentiation. Immunohistochemical staining revealed nanog transfected samples intensely stained positive for β-III tubulin and GFAP, indicating neuron and astrocyte differentiation. See FIGS. 6-7. Original nanog-transformed cells remain in a cluster of differentiating neural cells that continually radiate outward (See FIGS. 6-7). FIG. 8 shows MeS C derived neurons and astrocytes.

EXAMPLE 3

Dedifferentiation of Cells Utilizing Genes Affecting Pluripotency

Following the transfection and evaluation protocol provided above in Example 1, PCR products of the genes in Table 1 are evaluated for their ability to dedifferentiate cells, particularly mesenchymal stem cells.

<table>
<thead>
<tr>
<th>Table 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>information about the</td>
</tr>
<tr>
<td>candidates for</td>
</tr>
<tr>
<td>pluripotent</td>
</tr>
<tr>
<td>cells</td>
</tr>
</tbody>
</table>

REFERENCES


**EXAMPLE 4**

Cardiac Differentiation of Human Mesenchymal Cells

Cardiac differentiation of human mesenchymal stem cells (MesSCs) is achieved through treatment with nucleotide
derivatives BrdU and 5-azaC and/or forced expression of embryonic stem cell gene nanog. Following treatment, cells were placed in a co-culture with cardiac cells (cardiomyocyte cell line H9c2). Human MeSCs plated in 6-well culture plates and expanded in serum-DMEM (Delbecco’s Modified Eagle’s Medium) containing 10% MeSC-formulated fetal bovine serum (FBS, Stem Cell, Inc) containing antibiotics/antimycotics. MeSCs were treated with varying concentrations (1-10 uM) of BrdU and/or 5-azaC for 3 weeks or transfected with mammalian expression vector containing a nanog encoding sequence. Cell media was changed every three days to environmental signals and cell to cell contacts.

To differentiate cardiac cells, serum media was transfected with mammalian expression vector containing a nanog derivative, known to exert a dedifferentiating influence on MeSCs (marked as cardiomyocytes). Each sample was co-cultured with rat cardiac cells and culturing in cardiac media. Following co-culture, cells were treated with TRizol and gene expression was assessed using RT-PCR and cardiac specific primers. Gel electrophoresis of samples revealed expression of cardiac specific genes following treatment.

The first (Electrophoresis 050101, FIG. 10) shows screens for each primer tested. The key shows which sample is in a given lane. Negative controls represent untreated mesenchymal stem cells and positive controls 1x and 2x are nanog transfected MeSCs (2x indicates that well received twice the number of rat cardiac cells, not twice the amount of nanog transfected cells). Each sample was co-cultured with rat cardiomyocytes and primers are human specific and represent markers of cardiomyocyte related gene expression.

The second data set (Electrophoresis 050115, FIG. 11) shows gene expression for each primer following 3 uM treatment of either BrdU or 5azaC. The high and low RNA is because we had low cell numbers and tested one well (low RNA) against combining two wells of equal treatment (high RNA). The third attachment (Electrophoresis 050116, FIG. 12) shows the effects of three weeks treatment of combined (3 uM or 1 uM of 5azaC and BrdU), 3 uM of either 5azaC or BrdU, or nanog transfected cells (marked “control”). The poor quality is the result of low cell numbers and the use of a different RT-PCR kit (BioRad instead of the usual Invitrogen). See also FIG. 13. FIGS. 14-16 pertain to photographic images of MeSCs treated with 3 uM of 5azaC (A050123 3 uM 5azaC 3weeks MSC.jpg, FIG. 14), of 3 uM of BrdU (A050123 3 uM BrdU 3 weeks MSC.jpg, FIG. 15) and of nanog transfected cells combined with rat cardiac cells in co-culture (A 41227 of ntMSC 1213 2.jpg, FIG. 16). The cell differentiation is due to environmental signals and cell to cell contacts.

The inventors demonstrate that treatment with nucleotide derivatives and/or nanog transfection provides for cardiac differentiation of mesenchymal stem cells. Accordingly, an embodiment of the invention pertains to a method of increasing the potency of a cell comprising introducing a gene comprising nanog activity, optionally in conjunction with treatment of such cell with a compound, such as a nucleotide derivative, known to exert a dedifferentiating influence on cells.

**SEQUENCE LISTING**

```
<160> NUMBER OF SEQ ID NOS: 9
<210> SEQ ID NO 1
<211> LENGTH: 1628
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: CDS
<222> LOCATION: (28) .. (945)
<400> SEQUENCE: 1

tttttctccc tttttctctta ttaaaact atgg agtg gatt gatc gcca gctgt gcc cca ctaa

Met Ser Val Pro Ala Cys Pro Glu
1
5

age ttg cct tgc ttt gaa gaa tcc gag act tgg ttt cag gaa ttt cca cca agg
10 15 20 25

Ser Leu Pro Cys Phe Glu Glu Ser Asp Cys Lys Glu Ser Ser Pro Met

ctt gtt att tgt ggc ctt gaa gaa aac tat cca tgc tgc ctc cca agt tgc
30 35 40

Pro Val Ile Cys Gly Pro Glu Gly Tyr Pro Ser Leu Glu Met Ser

ttc gct gag atg cct cac aca gag act gtc tct ctt ctt ctc tcc Ser Ala Glu Met Pro His Thr Glu Thr Val Ser Pro Leu Ser Ser Ser
45 50 55

atg gat ctc ttt att cag gag acg cct gat ctt tcc acc act ctt cga aag
60 65 70

Met Asp Leu Leu Ile Glu Asp Ser Pro Asp Ser Thr Ser Pro Lys

ggc aac ccc act tct gca gag aat gtc gca aag gaa gag gly lys glu pro thr ser ala glu amn ser thr val ala lys glu am
75 80 85

aaag gtc cgc gtc aag aca cgg aag acc aga act gtt ttc ttc tcc acc
90 95 100 105

lys val pro val lys glu lys thr arg thr val phe ser ser thr
```
cag cag tgt gta ctc aat gat aga ttt cag aga cag aaa tac ctc agc
Gln Leu Cys Val Leu Asn Arg Phe Gln Arg Gln Lys Tyr Leu Ser
110 115 120

tct cag cag atg caa gaa ctc tcc aac atc ctg aac ctc agc tac aaa
Leu Gln Gln Met Gln Gln Leu Leu Ser 11e Leu Leu Ser Leu Tyr Lys
125 130 135

cag gtg aag acc tgg ttc cag cag acc aga atg aat tcc acc aga tgg
Gln Val Lys Thr Trp Phe Gln Asn Met Gln Met Ser Arg Trp
140 145 150

cag aaa aac acc cgg cag aag aat aat ggt gtg aag cag aag gcc
Gln Lys Asn Arg Pro Lys Ser Ser Asn Tyr Leu Gln
155 160 165

tca gca cct acc tac ccc agc ctc tac tct ccc tac cag gga tgc
Ser Ala Pro Thr Tyr Pro Ser Tyr Ser Tyr Asn Gly Cys
170 175 180 185

cgt gtc aag ccc act ggg aac cct cca agt tgg agc aac cag acc tgg
Leu Val Pro Thr Gly Asn Pro Phe Asn Asn Tyr Gln Gln Cys
190 195 200

aac aat tca acc cgg aag cag acc cag aac atc cag tcc tgg agc
Asn Asn Thr Thr Gln Gln Leu Ser Leu Ser Ser
205 210 215

aac cac tcc tgg aac act cag acc cag cag aac tcc tgg aac aat
Asn His Ser Thr Thr Gln Gln Ser Ser Leu Ser
220 225 230

cag gcc cgg aac aat ccc ttc tat aac ttt gga gag gaa tct ctg cag
Gln Ala Thr Asn Pro Phe Tyr Asn Gln Gln Lys Ser Leu Gln
235 240 245

tcc tgc atg ctc cag ccc aat tat cct gcc aat gag tct gct aat
cct Ser Cys Met His Phe Pro Asn Pro Ala Ser Asp Ala
250 255 260 265

gcc ttc gaa gtt ggc aag ggg ctt aat gta ata cag cag acc act
Glu Leu Ala Ala Gly Glu Leu Asn Ser Thr Thr Thr
270 275 280

agg tat ttt aat cca cag aac atg gat tta ttc ata cag tac tcc
Arg Tyr Phe Ser Thr Pro Thr Met Asp Leu Phe Leu Asn Thr
285 290 295

atg aac atg cca cct gaa gac gtt cga agatgagtaa aacctgatatt
Met Met Met Gln Pro Glu Asp Val
300 305

actacacttoc gctgctgaat ccttccttc cctctctcc atctctcata
1025

ggtgttctt tgggttgaat cccggtgttc tgggtttcat gttgctcatc cgtctacct
1085

catggcggtt ggggtatgtg tggagctaa tcacagagtt tttttttttttttttctata
1145

ttggatcttc ctggagaaaa ttaaattaaaaa aaaaagaaaagaaagaaagtttattctt
1205

gccagagctt ggcgtgtgttc ggcgtgtttc aggctcgcgc tcccgggttt
1265

eacctcttc tctggacctg cctgtggttc acgtggtct acgcggcgcc gcacacacgcc
1325

cggctaatca tttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt
<213> ORGANISM: Homo sapiens

<240> SEQUENCE: 2

Met Ser Val Asp Pro Ala Cys Pro Gln Ser Leu Pro Cys Phe Glu Glu
1  5  10  15
Ser Asp Cys Lys Glu Ser Ser Pro Met Pro Val Ile Cys Gly Pro Glu
20  25  30
Glu Asn Tyr Pro Ser Leu Gln Met Ser Ser Ala Glu Met Pro His Thr
35  40  45
Glu Thr Val Ser Pro Leu Pro Ser Ser Met Asp Leu Leu Ile Gln Asp
50  55  60
Ser Pro Asp Ser Ser Thr Ser Pro Lys Gly Lys Gln Pro Thr Ser Ala
65  70  75  80
Glu Asn Ser Val Ala Lys Asp Lys Val Pro Val Lys Lys Gln
85  90
Lys Thr Arg Thr Val Phe Ser Ser Thr Gin Leu Cys Val Leu Asn Asp
100 105 110
Arg Phe Gln Arg Gln Tyr Leu Ser Leu Gin Met Gin Glu Leu
115 120 125
Ser Asp Ser Asp Ser Thr Gln Leu Val Asp Thr Phe Gin
130 135 140
Asn Glu Arg Met Lys Ser Ser Gin Arg Gin Gin Gin Gin Gin Gin Gin
146 150 155 160
Asn Ser Asn Gly Val Thr Gin Lys Ala Ser Ala Pro Thr Tyr Pro Ser
165 170 175
Leu Tyr Ser Ser Tyr His Gin Gin Gin Gin Gin Gin Gin Gin Gin Gin
180 185 190
Leu Pro Met Trp Ser Asn Gin Thr Trp Asn Ser Thr Thr Trp Ser Asn
195 200 205
Gln Thr Gin Asn Ile Gin Ser Trp Ser Asn His Ser Trp Asn Thr Gin
210 215 220
Thr Trp Cys Thr Gin Ser Gin Gin Gin Gin Gin Gin Gin Gin Gin Gin
225 230 235 240
Tyr Asn Cys Gly Glu Ser Leu Gin Gin Gin Gin Gin Gin Gin Gin Gin
245 250 255
Asn Ser Pro Ala Ser Asp Leu Glu Ala Ala Leu Glu Ala Ala Gly Glu
260 265 270
Gly Leu Asn Val Ile Gin Gin Thr Arg Tyr Phe Ser Thr Pro Gin
275 280 285
Thr Met Asp Leu Phe Leu Asn Tyr Ser Met Asn Met Gin Pro Glu Asp
290 295 300
Val
305

<210> SEQ ID NO 3
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic primer

<240> SEQUENCE: 3

ttttttcatcc ttttctcctta
TYPE: DNA
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Description of Artificial Sequence: Synthetic primer

SEQUENCE: 4
attggtgatg aagatgtatt

SEQ ID NO 5
LENGTH: 6
TYPE: PRT
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Description of Artificial Sequence: Synthetic 6 His Tag

SEQUENCE: 5
His His His His His His

SEQ ID NO 6
LENGTH: 1417
TYPE: DNA
ORGANISM: Homo sapiens
FEATURE:
OTHER INFORMATION: Description of Artificial Sequence: Synthetic 6 His Tag

SEQUENCE: 4
tccttcgcag acgcctcaat tcaccagcgc ccggttcggg gcgcctcctc ttccccatgg
cggcaggcct gcggcgtccg tcgctctctct cggccacctt acggtcgggg ccgggttgcgg
caggcgttac ccgtgctctc gcctcttctt caggctctct ccgctctctc ctgctctctc
tccggttcgg gcgcgcgtcgg gccgcgttcgg tcgcgttccgt cgcgttcggtg
atcaccagcct cgcgtgcttc ggcttgccttc cgcgtgcttc ggcttgccttc cgcgtgcttc
ccggtgcgcgc gcgcgcgccc gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc
gccgcgcgc gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc
ggcgggggg ccgggggcgg gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc
ggggggggg gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Met Ala Gly His Leu Ala Ser Asp Phe Ala Phe Ser Pro Pro Pro Gly
1  5  10  15
Gly Gly Gly Asp Gly Pro Gly Gly Pro Glu Pro Gly Trp Val Asp Pro
20  25  30
Arg Thr Trp Leu Ser Phe Glu Gly Pro Pro Gly Pro Gly Gly Pro Ile Gly
35  40  45
Pro Gly Val Gly Pro Gly Ser Glu Val Trp Gly Ile Pro Pro Cys Pro
50  55  60
Pro Pro Tyr Glu Phe Cys Gly Gly Met Ala Tyr Cys Gly Pro Gln Val
66  70  75  80
Gly Val Gly Leu Val Pro Gln Gly Gly Leu Glu Thr Ser Gln Pro Glu
85  90  95
Gly Glu Ala Gly Val Gly Val Glu Ser Asn Ser Asp Gly Ala Ser Pro
100 105 110
Glu Pro Cys Thr Val Thr Pro Gly Ala Val Lys Leu Glu Lys Glu Lys
115 120 125
Leu Glu Gln Asn Pro Glu Ser Gln Asp Ile Lys Ala Leu Gln Lys
130 135 140
Glu Leu Glu Gln Phe Ala Lys Leu Leu Gln Gly Lys Arg Ile Thr Leu
146 150 155 160
Gly Tyr Thr Gln Ala Asp Val Gly Leu Thr Leu Gly Val Leu Phe Gly
165 170 175
Lys Val Phe Ser Gln Thr Thr Ile Cys Arg Phe Glu Ala Leu Gln Leu
180 185 190
Ser Phe Lys Asn Met Cys Lys Leu Arg Pro Leu Leu Gln Lys Trp Val
195 200 205
Glu Ala Asp Asn Glu Asn Leu Gln Glu Ile Cys Lys Ala Glu
210 215 220
Thr Leu Val Gln Ala Arg Lys Arg Lys Arg Ser Ile Glu Asn Arg
226 230 235 240
Val Arg Gly Asn Leu Glu Asn Leu Phe Leu Glu Gln Cys Pro Lys Pro Thr
245 250 255
Leu Gln Gln Ile Ser His Ile Ala Glu Leu Gly Leu Gln Leu Glu Asp
260 265 270
Val Val Arg Val Trp Phe Cys Asn Arg Asp Glu Gly Lys Arg Ser
276 280 285
Ser Ser Asp Tyr Ala Gln Arg Glu Asp Phe Glu Ala Ala Gly Ser Pro
296 300
Phe Ser Gly Gly Pro Val Ser Phe Pro Leu Ala Pro Gly Pro His Phe
305 310 315 320
Gly Thr Pro Gly Tyr Gly Ser Pro His Phe Thr Ala Leu Tyr Ser
325 330 335
Val Pro Phe Pro Glu Gly Glu Ala Phe Pro Pro Val Ser Val Thr Thr
340 345 350
Leu Gly Ser Pro Met His Ser Asn
355 360

<210> SEQ ID NO 8
<211> LENGTH: 2518
<212>  TYPE: DNA
<213>  ORGANISM: Homo sapiens
<400>  SEQUENCE: 8

ctattacct gttcataaaa gtaacaggag tggtaaggg gcagaaagaa gagaagagag 60
aagggggaaa ataagggtgt gcctcaagga gaagtaggact gaagagaaaaga aagagagaga 120
gaaagaaagc agagagagat ggggccccag gcttaaagct tcctaaaaaaa tataataa 180
aatcatgegg ggcggccagag cggagagggag gggagagagag tggcttttttc tgtgtttgtat 240
tccagtggc ctctctctcttt tttttctccccaa aattcttttt cctcctttcgagga 300
gctctgctg ccgcagaccc cccgcccgct ccctctctct cctctctctct ctctctctct 360
cgcacacgc tggagctggt ccgccggagcc ccgcggagcc ccggagagct ccggagagct 420
cgcacacgc tggagctggt ccgccggagcc ccgcggagcc ccggagagct ccggagagct 480
gggggggccc ggggccccgg ccggagagct ccggagagct ccggagagct ccggagagct 540
ggtgagagcc cggagagagc aagagagagc cggagagagc aagagagagc cggagagagc 600
gattgccccg gagaaagaccag agatgagaaaa tccgccagtc gtagagagagc 660
gtggccaccc tgcagagaccc tgcagagaccc tgcagagaccc tgcagagaccc tgcagagaccc 720
gcgcgagag cggagagagc aagagagagc cggagagagc aagagagagc cggagagagc 780
gtgcctgaag aaggataagg gagaagagag cggagagagc aagagagagc cggagagagc 840
cgccgctgcc tgggggtgcc cggagagagc cggagagagc cggagagagc cggagagagc 900
cagttacgcc ggcggcccag ggcgagagag cggagagagc cggagagagc cggagagagc 960
gggtgagagcc ggggccccgg gcggagagag cggagagagc cggagagagc cggagagagc 1020
gcgcgagag cggagagagc aagagagagc cggagagagc aagagagagc cggagagagc 1080
cgcgcgagag cggagagagc aagagagagc cggagagagc aagagagagc cggagagagc 1140
cgcgcgagag cggagagagc aagagagagc cggagagagc aagagagagc cggagagagc 1200
cgcgcgagag cggagagagc aagagagagc cggagagagc aagagagagc cggagagagc 1260
cgcgcgagag cggagagagc aagagagagc cggagagagc aagagagagc cggagagagc 1320
cgcgcgagag cggagagagc aagagagagc cggagagagc aagagagagc cggagagagc 1380
cgcgcgagag cggagagagc aagagagagc cggagagagc aagagagagc cggagagagc 1440
cgcgcgagag cggagagagc aagagagagc cggagagagc aagagagagc cggagagagc 1500
cgcgcgagag cggagagagc aagagagagc cggagagagc aagagagagc cggagagagc 1560
cgcgcgagag cggagagagc aagagagagc cggagagagc aagagagagc cggagagagc 1620
cgcgcgagag cggagagagc aagagagagc cggagagagc aagagagagc cggagagagc 1680
cgcgcgagag cggagagagc aagagagagc cggagagagc aagagagagc cggagagagc 1740
cgcgcgagag cggagagagc aagagagagc cggagagagc aagagagagc cggagagagc 1800
cgcgcgagag cggagagagc aagagagagc cggagagagc aagagagagc cggagagagc 1860
cgcgcgagag cggagagagc aagagagagc cggagagagc aagagagagc cggagagagc 1920
cgcgcgagag cggagagagc aagagagagc cggagagagc aagagagagc cggagagagc 1980
cgcgcgagag cggagagagc aagagagagc cggagagagc aagagagagc cggagagagc 2040
cgcgcgagag cggagagagc aagagagagc cggagagagc aagagagagc cggagagagc 2100
cgcgcgagag cggagagagc aagagagagc cggagagagc aagagagagc cggagagagc 2160
cgcgcgagag cggagagagc aagagagagc cggagagagc aagagagagc cggagagagc 2220
cgcgcgagag cggagagagc aagagagagc cggagagagc aagagagagc cggagagagc 2280
tatttctgta aatctattgt gatatatatcc ccttatttt ccgtagttgt atttttaaaag attcggctct gtattatttg aatcagtctg ccgagaatcc atgtatatat ttgaactaat atcatcctta taacaggtac attttcaact taagttttta ctccattatg cacagtttga gataaataaa ttttgaat atggacactg aaaaaaaaa aaaaaaaa 2510

<210> SEQ ID NO 9
<211> LENGTH: 317
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 9

Met Tyr Asn Met Met Glu Thr Glu Leu Lys Pro Pro Gly Pro Gln Gln 1 5 10 15
Thr Ser Gly Gly Gly Gly Asn Ser Thr Ala Ala Ala Ala Gly Gly 20 25 30
Asn Gln Lys Asn Ser Pro Asp Arg Val Lys Arg Pro Met Asn Ala Phe 35 40 45
Met Val Trp Ser Arg Gly Gin Arg Arg Lys Met Ala Gin Glu Asn Pro 50 55 60
Lys Met His Asn Ser Glu Ile Ser Lys Arg Leu Gly Ala Glu Trp Lys 65 70 75 80
Leu Leu Ser Glu Thr Glu Lys Arg Pro Phe Ile Asp Glu Ala Lys Arg 85 90 95
Leu Arg Ala Leu His Met Lys Glu His Pro Asp Tyr Lys Tyr Arg Pro 100 105 110
Arg Arg Lys Thr Lys Thr Leu Met Lys Lys Tyr Thr Leu Pro 115 120 125
Gly Gly Leu Leu Ala Pro Gly Gly Asn Ser Met Ala Ser Gly Val Gly 130 135 140
Val Gly Ala Gly Leu Gly Ala Val Asn Gin Arg Met Asp Ser Tyr 145 150 155 160
Ala His Met Asn Gly Trp Ser Asn Gly Ser Tyr Ser Met Gin Asp 165 170 175
Gln Leu Gln Tyr Pro Gin His Pro Gln Leu Asn His Gly Ala Ala 180 185 190
Gln Met Gin Pro Met His Arg Tyr Asp Val Ser Ala Leu Gin Tyr Asn 195 200 205
Ser Met Thr Ser Ser Gin Thr Tyr Met Asn Gin Gly Ser Gin Thr Ser 210 215 220
Met Ser Tyr Ser Gin Gin Gly Thr Pro Gly Gin Met Ala Leu Gly Ser Met 225 230 235 240
Gly Ser Val Val Lys Ser Glu Ala Ser Ser Pro Ser Val Val Thr 245 250 255
Ser Ser His Ser Arg Ala Pro Cys Gin Ala Gly Asp Leu Arg Gin 260 265 270
Met Ile Ser Met Tyr Leu Pro Gin Ala Glu Val Pro Gin Pro Ala Ala 275 280 285
Pro Ser Arg Leu His Met Ser Gin His Tyr Gin Ser Gin Pro Val Pro 290 295 300
Gly Thr Ala Ile Asn Gly Thr Leu Pro Leu Ser His Met 305 310 315
What is claimed is:

1. A mesenchymal stem cell possessing increased developmental potency, said mesenchymal stem cell produced by introducing into said mesenchymal stem cell a nanog gene under conditions to allow expression of said nanog gene, wherein said expression results in higher developmental potency of said mesenchymal stem cell.