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ABSTRACT 

E-cigarette (e-cig) use is rising, but much is unknown about the effects of its vapor. This vapor 

contains chemicals such as propylene glycol, a known antimicrobial, and nicotine, whose 

derivatives are carcinogenic. Here, we study the effects of vaping on resident bacteria of the oral 

cavity and on oral cell inflammation. Oral streptococci are major residents in the oral cavity, 

with S. mutans the primary cause of dental caries. Growth and biofilm formation have been 

shown to be enhanced upon exposure to traditional cigarette smoke in vitro. In this study, we 

analyzed the effects of e-cig vapor on growth and biofilm formation in S. mutans, S. 

sanguinis, and S. gordonii. Organisms and oral epithelial cells were treated using nicotine-free 

and 3mg nicotine vapor, as well as double-shot menthol freeze flavored 3mg nicotine vapor in a 

vape chamber designed to phenocopy physiologically relevant exposure. Nicotine-independent 

inhibition of growth occurred upon exposure in all three bacterial species. Interestingly, biofilm 

formation was enhanced in the S. mutans while decreased in S. sanguinis and S. gordonii. 

Epithelial cells showed activation of survival pathways by Western Blot upon exposure to only 

e-cigarette vapor as well as co-culturing of bacterial and oral epithelial cells. The pioneer 

colonizers S. gordonii and S. sanguinis generally antagonize the pathogen S. mutans, which can 

become a predominant member of the community under appropriate conditions, leading to dental 

caries formation. The observed decrease in the biofilm formation of the commensals S. sanguinis 

and S. gordonii upon e-cig vapor exposure indicates the opportunistic colonization of S. mutans, 

whose biofilm-forming abilities increased. Following e-cig usage, dental caries, and cancer, in 

the oral epithelium may result from this dysbiosis of the microbiome.  
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INTRODUCTION 

In the span of a few years, the use of traditional cigarettes has fallen while the use of e-cigarettes 

continues to rise.1 The e-cigarette market has an advantage in the fact that it is variable and 

evolving, with an increase in teen use being evident.1, 2 Smoking has been shown to cause cancer, 

as well as enhance bacterial growth in streptococci species in vitro, specifically Streptococcus 

mutans and Streptococcus sanguinis.3 Tar is not found in e-cigarette vapor, but nicotine is, with 

the amount varying (typically 3mg/mL to 12 mg/mL) between different vape juices. While 

nicotine itself is not a carcinogen, its nitrosamine products, N-nitrosonornicotine (NNN) and 4-

(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), are. In addition to this, the propylene 

glycol present in vape juice, meant to act as a base for carrying flavor and nicotine, has 

antimicrobial properties. This leads one to question whether the oral microbiome is affected by 

the use of e-cigarettes. The most common cariogenic bacteria in the oral cavity streptococci and 

lactobacilli species.9 Changes in the composition and diversity of the oral microbiota contribute 

to disease etiology and progression through the allowance of organisms to spread outside their 

niche. Because cigarette smoke causes cancer and increases bacterial growth, one must ask if e-

cigarette use has a similar effect, and what implication it will have on the partaking youth.3 
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BACKGROUND AND SIGNIFICANCE 

In 2018 alone, it is estimated that 51,140 people will be diagnosed with oral cancer, and 10,030 

will die from it.12 Cigarette use has been shown to be a risk factor for oral cancers, and while the 

amount of cigarette users is declining, a new trend is rising: e-cigarettes.2, 11 Originally 

introduced as a cessation tool to stop smoking, e-cigarettes have become popular with youth, yet 

little is still known about the effects of e-cigarette usage, and what is known is disputed.45 Some 

studies suggest that e-cigarette use is safe for oral cells, while other studies raise the possibility 

that consumption of the vapor induces a toxicological effect.13, 14 This same study that suggests 

the toxicological response also breaks down what is in vape juice commonly consumed by users. 

Besides the well-known substances that are present, such as propylene glycol (PG), vegetable 

glycerin (VG), and nicotine, many compounds were found in the flavoring.14 Another study that 

analyzed the flavoring chemicals in multiple vape juices found different chemicals from the 

previously mentioned study.15 (Table 1) 

Table 1: Compounds Found Within E-cigarette Vapor 
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Tobacco users seeking help in quitting their usage of cigarettes have been turning to e-cigarettes 

as an alternative, without knowing exactly how these new products affect them. Studies have 

shown that PG and VG mixtures are relatively benign and have limited effects, but once 

combusted through an e-cigarette and nicotine is added, this changes.16, 17 As seen in Table 1, the 

chemicals found in flavoring can vary greatly, but PG, VG, and nicotine were constants 

throughout. These are the compounds that should be explored more thoroughly, as every e-

cigarette user consumes PG and VG, and those who opt for nicotine in their mixture will 

consume it as well. Not knowing much about the short and long-term effects of e-cigarette use 

means that the future is uncertain for all the young users who have taken up the habit. The 

research that is being proposed will shed light on this and give a clearer idea of exactly how this 

generation of users will be impacted. 

It is well known that an imbalance in the oral microbiome can cause disease both in the oral 

cavity, as well as elsewhere in the body. For instance, Streptococcus pyogenes causes strep throat 

but can also cause rheumatic fever, which can damage the heart, as well as other tissues. 

Cariogenic bacteria are bacteria that cause dental caries, or cavities, in the mouth. Dental caries 

created by these bacteria can lead to gingivitis, which is gum inflammation, and periodontitis, 

which is chronic gum inflammation and loss of gum tissue, bone, and teeth. Periodontitis is 

associated with an increased risk for oral cancer, meaning the presence of the disease is a risk 

factor.24 Often, cariogenic bacteria have virulence factors: the ability to form biofilms, acid 

tolerance, synthesize water-insoluble glucan from sucrose, which aids in adherence, and 

acidogenicity, which is the ability to form acid.18, 19 Coincidentally, the most common sugar 

found within e-cigarette liquid is sucrose.33 The most common cariogenic bacteria are 
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streptococci and lactobacilli, with Streptococcus mutans being the most prevalent of all. 

Streptococcus mutans is a Gram-positive cocci that is present in the oral cavity.9  

While not currently being directly linked to oral cancers, the presence of dental caries and the 

bacteria that cause them are indicative of poor hygiene and lead to diseases that are associated 

with oral cancer.22, 24 Despite this, some studies suggest that these cariogenic bacteria are 

beneficial to the host, while other studies indicate that there is an association between the 

increased presence of these bacteria and oral cancers.4, 22 If bacterial growth is impacted in the 

presence of vapor, an associated change in the microbiome and subsequent disease may occur. 

This directly impacts the demographic of individuals who vape in another way besides just the 

oral epithelium. Our study aims to provide evidence regarding interactions between 

Streptococcus mutans, Streptococcus sanguinis, and Streptococcus gordonii and e-cig vapor 

individually. 

While S. mutans is the primary culprit of dental caries, S. sanguinis is associated with positive 

oral health25. S. mutans and S. sanguinis engage in constant warfare within dental plaques, with 

each secreting substances to inhibit the growth of the other. S. sanguinis secretes hydrogen 

peroxide to prevent the colonization of S. mutans, and S. mutans secretes mutacins I and IV to 

antagonize S. sanguinis.26 Additionally, S. gordonii antagonizes S. mutans using H2O2 and 

antagonizes S. sanguinis through preventing early colonization.27 Although H2O2 is a reactive 

oxygen species and harmful to most bacteria, including its creator S. sanguinis, S. sanguinis has 

Dps and TrxB to protect itself, while S. gordonii has SodA28. S. mutans form of defense against 

H2O2 is Dpr, which production is increased when in the presence of S. sanguinis and S. 

gordonii, and allows it to survive colonization alongside them.29  
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An imbalance between these organisms resulting from e-cigarette vapor could skew the makeup 

of dental plaques, allowing one organism to reign supreme. Previous studies have shown that 

whichever organism has the advantage of colonizing first will be able to outcompete the others in 

vivo.26 In vivo, this could mean an increased risk of caries and dysbiosis if S. mutans 

outcompetes the others in biofilm formation and colonization. The oral microbiome is 

extraordinarily heterogeneous and composed of many species of bacteria, so any disruption to 

the balance may lead to oral and systemic disease within the body.46 

This study analyzes how oral streptococci growth and biofilm formation are altered upon 

exposure to e-cigarette vapor with and without nicotine, and with or without flavoring. 

Additionally, we examine how this same exposure affects oral epithelial cell stress and 

inflammatory pathways. Finally, oral epithelial cells and S. mutans were co-cultured together at a 

and exposed to the same treatment to determine the induction of stress and apoptotic pathways. 
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MATERIALS AND METHODS 

Cell Culture 

OKF6 Oral Epithelial Cells 

Keratinocyte Serum-Free Medium (KSFM) containing 1 ng.ml Epidermal Growth Factor (EGF), 

0.05 mg/ml Bovine Pituitary Extract (BPE), and 1% penicillin streptomycin antibiotics 

(GibcoTM, for Life Technologies, Inc., Carlsbad, CA) were used to culture OKF6 human oral 

epithelial cells. Cells were incubated at 5.0% CO2 at 37 degrees Celsius. 

 

Streptococcus mutans and Streptococcus gordonii 

Streptococcus mutans (ATCC® 25175™) and Streptococcus gordonii (ATCC® 51656™) were 

grown in the same culture conditions. Bacteria were grown overnight in 10 ml tryptic soy broth 

TSB at 37 degrees Celsius. It was then diluted and plated on Trypticase Soy Agar with 5% sheep 

blood (TSAII), BD 221261 and grown overnight. One optimal colony was then selected and 

grown overnight in 10 ml TSB at 37 degrees Celsius. The following day, this growth was 

resuspended and allocated into 1.5 ml tubes in amounts of 600 microliters, referred to as snaps. 

The tubes were then placed in liquid nitrogen for 24 hours, removed, and then stored at -80 

degrees Celsius. 

 

Streptococcus sanguinis 

Streptococcus sanguinis (ATCC® 10556™) was grown overnight in 10 ml TSB in 5.0% CO2 at 

37 degrees Celsius. It was then diluted and plated on Trypticase Soy Agar with 5% sheep blood 

(TSAII), BD 221261 and grown overnight. One optimal colony was then selected and grown 
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overnight in 10 ml TSB in 5.0% CO2 at 37 degrees Celsius. The following day, this growth was 

resuspended and allocated into 600 microliters snaps. The tubes were then placed in (insert liquid 

nitrogen specs) for 24 hours, removed, and then stored at -80 degrees Celsius in (insert freezer 

specs). 

 

Determining Bacterial Concentration in Snap 

Bacteria were plated on Trypticase Soy Agar with 5% sheep blood (TSAII), BD 221261 plates 

after being diluted from 600 microliter stocks to 10-4, 10-5, and 10-6. Plates were then incubated 

for 24 hours in proper conditions for the organism and colonies on each plate were counted, 

multiplied by their dilution factor, and then averaged to determine bacterial concentration of the 

snap. 

 

Co-Culturing OKF6 Epithelial Cells and Streptococcus mutans 

700,000 OKF6 epithelial cells were plated in 6 well plates containing 2 mL of KSFM with EGF, 

BPE, and antibiotics. After growing overnight, they were washed twice with 1 ml PBS and 

placed in 1 ml KSFM without penicillin streptomycin antibiotics. Following this, Streptococcus 

mutans was then introduced at a multiplicity of infection (MOI) of 1, making a ratio of one 

OKF6 cell per bacterial cell. Co-cultures were then grown for five hours and proteins were 

harvested using IP Lysis buffer (150 mM NaCl, 50 mM Tris, pH 8.0, 1% Triton x-100, 1% NP-

40) supplemented with cOmpleteTM EDTA-free protease Inhibitor Cocktail tablet. 
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Exposure to E-Cigarette Vapor 

Puff Delivery and Duration 

A vape chamber was created using a Intex Quick-Fill AC Electric Air Pump, tubing, Komax 

Biokips Extra Large Food Storage Container, and a SMOK® G-PRIV Baby e-cigarette. The e-

cigarette juice selected is a 70:30 mix of vegetable glycerin to propylene glycol as the base 

purchased from VAPORFI®. The nicotine free condition contains only the base. The 3mg 

nicotine condition contains 3mg/ml added to the base. The flavoring condition contains triple-

shot Menthol Freeze with 3mg/ml nicotine or Frutti Tutti with 6mg/ml nicotine as specified in 

the figure.  

 

Puffs lasted for 10 seconds, as measured by the vape’s feature to monitor puff length, at a 

wattage of 60.3 watts, a resistance of 0.42 ohms, a voltage of 5.01 volts, and a current of 11.8 

amps. For the air control conditions, only the pump was run for 10 seconds with no vapor. 

Following the 10 second puff, cells were incubated within the vape chamber for 5 minutes, and 

then returned to proper incubation conditions within an incubator. 

 

Bacterial Exposure to E-cigarette Vapor 

Bacteria were grown overnight in 10 mL of TSB in proper conditions for the organism. The 

following day, bacteria were diluted 1:10 in new TSB and 2ml of the dilution was placed into 

100 mm plates for each condition. Plates were then exposed as specified in Puff Delivery and 

Duration. Following exposure, a 96 well plate was inoculated with 100 microliters of treated 

bacteria per well and incubated in proper conditions. 
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Oral Epithelial Cell Exposure to E-cigarette Vapor 

Cells were counted and plated at a number of 500,000 cells per well in 100 mm plates and 

allowed to reach confluency overnight. Media was then removed, and cells were placed in 1 mL 

of KSFM and treated as specified in Puff Delivery and Duration. Cells were then washed with 

PBS and incubated for either 30 minutes or 24 hours. 

 

Co-Culture Exposure to E-cigarette Vapor 

Oral epithelial cells were plated at a number of 700,000 cells per well in a 6 well plate and 

allowed to reach confluency overnight. Media was removed and cells were washed with PBS and 

2 mL of antibiotic free KSFM was added. S. mutans was then added at a MOI of 1 to wells 

requiring organism. Wells were then treated as specified in Puff Delivery and Duration, with 

wells not requiring treatment being wrapped in parafilm. Co-cultures were then incubated for 5 

hours before protein was harvested. 

 

 

 

 

 

 



 

10 
 

Analysis 

Biofilm Analysis 

Following a 24 hour incubation after treatment, plates were taken out of the incubator, washed 3 

times, and placed back in the incubator to dry for 20 minutes. After the plate was dried, 100 

microliters of safranin were added to each well containing organism and allowed to stain the 

biofilm for 20 minutes. Plates were then washed 3 times and stored in the incubator for 20 

minutes to dry. Finally, biofilms were resuspended in 100 microliters of an 80:20 

ethanol:acetone mix and their absorbance measured at an OD of 490nm. Results were graphed 

and analyzed via Graphpad Prism using t-tests. 

 

S. mutans and S. gordonii Growth Analysis 

Immediately after treatment, 100 microliters of bacteria per well were plated in a 96 well plate 

and placed in a Biotek® Synergy Plate Reader. Readings were done every 5 minutes at 600 OD 

for 24 hours while incubated at 37⁰ C. Data was graphed and analyzed via Graphpad Prism using 

multiple t-tests. 

 

S. sanguinis Growth Analysis 

Immediately after treatment, 100 microliters of bacteria per well were plated in a 96 well plate, 

covered in 50 microliters of mineral oil, and placed in a Biotek® Synergy Plate Reader. 

Readings were done every 5 minutes at 600 OD for 24 hours while incubated at 37⁰ C. Data was 

graphed and analyzed via Graphpad Prism using multiple t-tests. 
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Trypan Blue Assay 

200,000 OKF6 oral epithelial cells per well were plated in a 6 well plate and grown overnight. 

Cells were then washed with PBS and 1 mL of antibiotic free KSFM was added. An MOI of 1 or 

5 of S. mutans was added to the wells, while a control well was kept. Cells were then incubated, 

with wells being harvested at the 3 hour, 5 hour, and 7 hour time points. To be harvested, cells 

were washed with PBS and 500 microliters of trypsin was added for 5 minutes. 1 mL of soybean 

trypsin inhibitor (STI) was then added to neutralize the trypsin, and cells were centrifuged for 5 

minutes. STI was then removed and 100 microliters of PBS was added. Cells suspended in PBS 

were then mixed with trypan blue in a 1:1 ratio and counted, using 4 different fields that were 

then averaged together. 

 

Western Blot 

Proteins were analyzed via SDS PAGE followed by Western Blotting. Protein concentration was 

quantified utilizing a Pierce™ BCA Protein Assay Kit (ThermoFisher Scientific, Waltham, MA), 

then separated using an acrylamide gel via SDS PAGE. Gels were then transferred to a PVDF 

membrane, and primary and secondary antibodies were used to visualize the membranes. The 

proteins analyzed are presented in table 2. 

 

 Table 2: Proteins Probed For During Western Blotting 
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RESULTS 

Development of an Optimal Vape Chamber 

Through vaping, e-cigarette liquid is heated to approximately 300 °C before inhalation, which 

may induce chemical transformations that could alter its toxicity. To deliver the e-cigarette vapor 

with and without nicotine and flavoring, we modified a vape chamber for the specific delivery of 

vapor to epithelial cells and bacteria, mimicking human inhalation of vaporized e-cig juice. 

The initial vape chamber designed and generously donated by the Moore lab utilized Arduino 

software to trigger a coil to ignite and utilize capillary action to suck vape juice to be ignited. 

Two shortcomings of this design were the lack of airflow necessary to mimic inhalation and the 

possibility of burned metals from the coil being introduced into the vapor. 

To improve on the existing design, an air pump was used to directly suck air through the vape 

and expel it into a chamber covered by an acrylic lid. However, in this iteration, clean air did not 

have a direct means of escape, resulting in air and vapor being blown out from the sides of the 

lid. This led an unspecified amount of air escaping. While functional, the design could still be 

improved. 

The final version is the one that utilizes an Intex Quick-Fill AC Electric Air Pump, 110-120 Volt, 

Max. Air Flow 21.2CFM and a SMOK® G-PRIV Baby e-cigarette. Liquid is combusted at 60.3 

watts, with a resistance of 0.42 ohms, a voltage of 5.01 volts, and a current of 11.8 amps. The 

chamber design allows air not containing vapor to leave through a pipe that may be closed once 

the duration of the puff has concluded. This prevents air escaping unnecessarily. Additionally, air 

no longer escapes from the sides of the lid, allowing the denser vapor to sit within the chamber. 
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This iteration allows the air in the chamber to be recycled once per second that the air pump is 

running. In conclusion, this design allows the chamber to closely mimic physiological 

conditions. (Figure 1)  

 

 
 

 

 

 

 
 

 

 

 

 

Figure 1: The Vape Chamber
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Oral Streptococci Growth is Significantly Decreased Upon 

Exposure to E-cigarette Vapor 

To determine the effects of e-cigarette vapor on the growth of select bacterial residents of the 

oral cavity, S. mutans, S. gordonii, and S. sanguinis were all treated individually with nicotine 

free, 3mg/ml nicotine, and flavored e-cigarette vapor, as specified in Puff Delivery and Duration. 

Bacteria were grown for 24 hours in vitro following exposure and had OD measured at 600nm 

for the duration of the growth, with only the first 12 hours shown in figure 2. Readings were 

performed every 5 minutes, with each condition for each organism containing four replicates 

Figure 2: Growth of oral 

streptococci following exposure to 

e-cigarette vapor. S. mutans (A), S. 

gordonii (B), and S. sanguinis (C) 

all experience decreased growth 

following exposure to nicotine free, 

3mg/mL nicotine, and flavored e-

cigarette vapor. 
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averaged together to provide the curves in figure 2. Only the first 12 hours are shown in figure 2 

due to the organism entering stationary phase for the rest of the growth study. 

Following a multiple t-test comparing each condition including vapor to the control, the 

timepoint that a growth began to significantly differ from the control for the rest of the study was 

identified, indicating a change due to exposure to e-cigarette vapor. P-values steadily decreased 

for the duration of the growth, with the time elapsed shown in figure 2 being the first 5 minute 

interval at which a p-value of less than 0.05 occurred. 

All conditions in which S. mutans, S. sanguinis, and S. gordonii were exposed to any form of e-

cigarette vapor resulted in significantly decreased growth. E-cigarette vapor therefore has an 

inhibitory role in the growth of oral streptococci in vitro, but it cannot be concluded whether it is 

bacteriostatic or bacteriostatic here. S. sanguinis, unlike S. mutans and S. gordonii, requires 5% 

CO2 to grow in healthy conditions as specified by the ATCC. This posed a unique challenge as 

the plate reader used for these growth studies did not support CO2 injection. The solution was to 

cover S. sanguinis wells in mineral oil to simulate the necessary conditions and allow it to grow 

outside of the incubator. 
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Oral Pathogen S. mutans Biofilm Formation is Significantly Enhanced Following Exposure to E-

cigarette Vapor, Not E-cigarette Liquid 

Human oral bacteria interact with their environment by attaching to surfaces such as tooth 

enamel. As each bacterial cell attaches, it forms a new surface to which other cells can adhere 

ultimately forming a biofilm that retains the bacteria in the oral cavity through binding to the 

tooth allowing colonization. This is the preferred method of colonization for species such as S. 

mutans, who may undergo both sucrose-dependent and independent forms of attachment to 

initiate biofilm formation. 

To determine the effects of e-cigarette vapor on the ability to form biofilms, S. mutans grown 

statically overnight then exposed to nicotine free, 3mg/ml nicotine, and menthol freeze e-

cigarette vapors as specified in Puff Delivery and Duration. Additionally, S. mutans was exposed 

to nicotine free, 3mg/ml nicotine, and flavored e-cigarette liquid. Bacteria was then allowed to 

grow overnight. The following day, biofilms were stained with safranin and the OD was 

measured at 490 nm (figure 3). 

Figure 3: S. mutans biofilm 

formation following exposure to e-

cigarette vapor and liquid. A: S. 

mutans biofilm formation is 

significantly enhanced in all 

conditions including e-cigarette 

vapor when compared to the 

control. B: There is no significant 

difference between the control and 

conditions including e-cigarette 

liquid when compared to the 

control. 
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Exposure to e-cigarette vapor, regardless of the presence of nicotine or flavor, resulted in a 

statistically significant increase in biofilm formation (figure 3A). The effect was dependent on a 

chemical transformation induced by a high temperature combustion of the e-cigarette liquid 

components into vapor. This is determined by the observation that enhanced biofilm formation 

was only shown in the vaping conditions, not upon the addition of e-cigarette liquid to the media 

(figure 3B). Each condition contained 8 replicates, with outliers identified and removed via the 

ROUT method. Each test has a duplicate. Statistical significance was determined utilizing a non-

parametric t-test. 
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Oral Commensals S. sanguinis and S. gordonii Experience Significantly Decreased Biofilm 

Formation Following Exposure to E-cigarette Vapor 

To identify if e-cigarette vapor has the same effect on commensal biofilm formation as it does on 

S. mutans, an oral pathogen, commensals S. sanguinis and S. gordonii were grown overnight in 

ATCC specified conditions, then exposed individually to nicotine free, 3mg/ml nicotine, and 

menthol freeze e-cigarette vapors as specified in Puff Delivery and Duration. Bacteria were then 

allowed to grow overnight, and biofilms were stained with safranin and the OD was measured at 

490nm (figure 4). 

 

 

 

 

 

 

 

Both commensals S. sanguinis and S. gordonii showed a distinct difference in biofilm formation 

compared to the pathogen S. mutans in the presence of e-cig vapor. For both bacterial strains, we 

observed decreased biofilm formation, indicating that S. mutans could have an advantage in 

colonizing the oral cavity of an e-cigarette user. Factors that may contribute to this include the 

decrease in the innate ability to attach in S. sanguinis and S. gordonii compared to S. mutans, due 

to the preference for sucrose-independent attachment within each. Each condition contained 8 

Figure 4: S. sanguinis and S. 

gordonii biofilm formation 

following exposure to e-cigarette 

vapor. A: S. sanguinis biofilm 

formation is significantly decreased 

following exposure to nicotine free, 

3mg/ml nicotine, and flavored e-

cigarette vapor. B: S. gordonii 

biofilm formation is significantly 

decreased following exposure to 

nicotine free and 3mg/ml nicotine e-

cigarette vapor. 
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replicates, with outliers identified and removed via the ROUT method. S. sanguinis was done in 

triplicate, while S. gordonii was done in duplicate. Statistical significance was determined 

utilizing a non-parametric t-test. 
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A Multiplicity of Infection of 1 is Optimal for Co-Cultures Between S. mutans and OKF6 Oral 

Epithelial Cells 

The purpose of infecting oral epithelial cells (OKF6) at different multiplicity of infection was to 

determine a viable ratio of bacterial to epithelial cells for pro-longed co-culturing. OKF6 oral 

epithelial cells were exposed to an MOI of 1 and MOI of 5 of S. mutans over the course of 7 

hours. At the 0, 3, 5 and 7 hour timepoints, cells were harvested and exposed to trypan blue to 

determine cell death (figure 5). 5 hours was determined as the point at which an MOI of 1 and an 

MOI of 5 resulted in differences in terms of OKF6 viability. While non-infected control OKF6 

cells continued upon exponential growth to enter the stationary/stagnant phase, MOI 1 and 5 

reduced epithelial cell viability over time, especially after the 5 hour time point. This experiment 

was performed in duplicate. 

 

 

Figure 5: Oral epithelial cell trypan 

blue assay. At 5 hours, there is 

greater cell death when epithelial 

cells are cultured with an MOI of 5 

of S. mutans than an MOI of 1, 

allowing this time point and 

multiplicity of infection to be 

chosen. The starting percentages 

differ because of the inherent 

drawbacks of cell culture, which is 

placing the same number of cells in 

exactly the same conditions. 
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Oral Epithelial Cells Experience a Stress Response 30 Minutes Following Exposure to E-

cigarette Vapor 

The ERK (extracellular-signal-regulated kinase) signaling pathway controls several cellular 

processes such as cell growth, proliferation, differentiation and apoptosis. The starting point of 

the ERK cascade is binding of a ligand (a growth factor or cytokine), known as a mitogen, to a 

tyrosine kinase receptor mediating downstream phosphorylation events that lead to activation of 

the pathway. Multiple kinases including mitogen-activated protein kinase kinase (MAPKK) and 

others will phosphorylate subsequent kinases in the cascade ending with the final enzyme, a 

mitogen-activated protein kinase called ERK in this event.  Activation of ERK is measured by its 

phosphorylation upon which it is translocated to the nucleus where it activates transcription. A 

simplified version of this pathway is depicted in figure 6. Also depicted is the production of 

downstream product COX-2, which promotes inflammation, proliferation, and prevents 

apoptosis.  

Figure 6: COX-2 Signaling Pathway 
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The observation of p-ERK 1/2 indicates a stress response within epithelial cells following a 

stimulus, in this case e-cigarette vapor. At 30 minutes following exposure to nicotine free, 

3mg/ml nicotine, and flavored e-cigarette vapor, OKF6 oral cells protein was harvested. Western 

Blotting was used to compare expression and activation of p-ERK ½ and t-ERK 1/2 , using α-

tubulin as a loading control to ensure equal loading of wells. (Figure 7) 

 

 

OKF6 oral epithelial cells experience an average 31.46 fold increase in p-ERK 1/2 30 minutes 

after exposure to nicotine free, 3mg/ml nicotine, and flavored e-cigarette vapor. This indicates 

that e-cigarette vapor, regardless of nicotine or flavoring, promotes an immediate stress response 

within oral epithelial cells. Samples were harvested and stored at -80⁰ C prior to protein 

concentrations being determined and SDS PAGE. ImageJ was used to standardize band intensity 

to the loading control for comparison. Western Blots were performed in triplicate. 

 

Figure 7: Oral epithelial cell stress 

response 30 minutes after exposure 

to e-cigarette vapor. OKF6 oral 

epithelial cells experience an 

average 31.46 fold increase in p-

ERK 1/2 30 minutes after exposure 

to nicotine free, 3mg/ml nicotine, 

and flavored e-cigarette vapor. 
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Oral Epithelial Cells Experience a Stress Response at 5 Hours Following Exposure to E-

cigarette, However Co-Culturing Does Not Alter Stress Response 

At 5 hours, ERK ½ phosphorylation in OKF6 cells was measured following exposure to 

nicotine free, 3mg/ml nicotine, and flavored e-cigarette vapor to determine whether a 

prolonged stress response was present. Conditions include a control, cells exposed to a 10 

second puff of air with no vapor, an MOI of 1 of S. mutans, cells exposed to the various e-

cigarette vapors, and cells exposed to the various e-cigarette vapors along with an MOI of 1 

of S. mutans. Western Blotting was used to compare expression and activation of p-ERK ½ 

and t-ERK 1/2 , using α-tubulin as a loading control to ensure equal loading of wells.  

(Figure 8)  

 

Cells experienced a stress response in the presence of e-cigarette vapor regardless of the presence 

of S. mutans. The addition of S. mutans provided no compounded effect to the stress response in 

epithelial cells exposed to e-cigarette vapor, and the presence of S. mutans alone did not promote 

Figure 8: Oral epithelial cell stress 

response 5 hours after exposure to 

e-cigarette vapor and co-culturing. 

OKF6 oral epithelial cells 

experience an increase in p-ERK 1 

and 2  5 hours after exposure to 

nicotine free, 3mg/ml nicotine, and 

flavored e-cigarette vapor. Co-

culturing with S. mutans has no 

compounding effect on whether a 

stress response occurs in response 

to e-cigarette vapor. 
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a stress response. Heat killed S. mutans did not trigger a stress response as well. Samples were 

harvested and stored at -80⁰ C prior to protein concentrations being determined and SDS PAGE. 

ImageJ was used to standardize band intensity to the loading control for comparison. Western 

Blots were performed in triplicate. 
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Oral Epithelial Cells Experience an Inflammatory Response 24 Hours Following Exposure to E-

cigarette Vapor 

MAPK signaling has been shown to regulate the expression of a prominent mediator of 

inflammation, COX-2. It has been shown that aerosols in vaping products alter the host response, 

prompting gum inflammation and making epithelial cells in the mouth susceptible to infection.47 

This provided a rational to assess if COX-2 is activated as a potential downstream target of ERK 

in the context of e-cig vapor-mediated inflammation. 

At 24 hours following exposure to nicotine free, 3mg/ml nicotine, and flavored e-cigarette vapor, 

OKF6 oral cells protein was harvested. Western Blotting was used to compare expression of 

COX-2, using α-tubulin as a loading control to ensure equal loading of wells. (Figure 9) 

 

 

The expression of the inflammatory protein COX-2 was increased in OKF6 oral epithelial cells 

upon exposure to nicotine free, 3mg/ml nicotine, and flavored e-cigarette vapor indicating that 

even in the absence of nicotine, an inflammatory signaling is induced. The increased signal of 

Figure 9: Oral epithelial cell 

inflammatory response 24 hours 

after exposure to e-cigarette vapor. 

OKF6 oral epithelial cells 

experience increased expression of 

the inflammatory protein COX-2 24 

hours after exposure to nicotine 

free, 3mg/ml nicotine, and flavored 

e-cigarette vapor. 
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COX-2 in flavored vape suggest the strongest host-response to the insult of the additional 

chemicals present due to the flavoring. Samples were harvested and stored at -80⁰ C prior to 

protein concentrations being determined and SDS PAGE. ImageJ was used to standardize band 

intensity to the loading control for comparison. Western Blots were performed in triplicate. 
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DISCUSSION 

Biofilms in the oral cavity are made of excreted polymeric compounds (EPS), microbes, DNA, 

RNA, and proteins, with only 5% of the biofilm being composed of microorganisms.30 Oral 

pathogen S. mutans has the ability for sucrose-dependent attachment, using glucan-binding 

proteins and glucosyltransferases, as well as sucrose-independent attachment, using antigen 

I/II.31 Conversely, sucrose-dependent adherence is difficult for S. sanguinis and S. gordonii. 

Opting to use sucrose-independent adherence, S. sanguinis does so through SrpA, and S. gordonii 

does so through GspB and Hsa, all of which are siaglycan-binding adhesins.32 

E-cigarette liquids have been found to contain high amounts of sucrose.33 Because of this, it is 

possible S. mutans, who may easily undergo both sucrose-dependent and independent attachment 

to smooth surfaces, such as the bottom of a 96 well plate, may have more biofilm forming 

prowess than S. sanguinis and S. gordonii.31 In addition, previous studies have shown that S. 

mutans has more effective adherence strategies, in general, than S. sanguinis, even going so far 

as to bind more of its synthesized glucosyltransferases. The end result is that adherence of S. 

mutans is 3 times as effective as that of S. sanguinis to smooth surfaces.34  

Regarding why the biofilm forming abilities of S. mutans are enhanced upon exposure to e-

cigarette vapor, while S. sanguinis and S. gordonii biofilm forming abilities are decreased, the 

answer may lie within components of the e-cigarette vapor and the nature of biofilms. 

Formaldehyde results from the combustion of propylene glycol and glycerol in e-cigarette 

vapors.35 Formaldehyde is also a known antimicrobial agent, being used as a disinfectant 

clinically.36 A previous study has shown that formaldehyde, in larger quantities, will inhibit 

biofilm formation and decrease biomass.37 This may explain why S. sanguinis and S. gordonii 
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experience decreased biofilm following exposure to e-cigarette vapor, along with their less 

efficient surface adherence. 

As for S. mutans, because of its increased ability to adhere to surfaces, it can begin establishing a 

biofilm sooner. The biofilm acts as protection, allowing optimal growth conditions for the 

organism, as well a quorum sensing and transformation rates 10-600 times higher than 

planktonic cells.38 Therefore, within the biofilm, S. mutans may respond to environmental 

hazards quicker, and alter its biofilm to survive the environment. Additionally, if the conditions 

created by exposure to e-cigarette vapor are harsher than normal, biofilm formation may be 

encouraged further compared to regular conditions, leading to an increase in colonization. 

Future studies could focus on interspecies interactions in response to e-cigarette vapor. Studies 

have shown S. mutans or S. sanguinis dominance in vitro is dependent on which organism is 

inoculated first.39 It would be interesting to replicate this after the organisms have been exposed 

to e-cigarette vapors. Future experiments could also include examining the ratio of live and dead 

bacterial cells following exposure to e-cigarette vapor, both planktonically and within the 

biofilm. Finally, gene expression of sucrose-independent and dependent factors could be 

analyzed in each organism to better understand which is being utilized following exposure. 

If S. mutans manages to outcompete pioneer colonizers S. sanguinis and S. gordonii in vivo 

following exposure to e-cigarette vapor, it could occupy a much larger niche. This would allow 

more acid production, destroying the enamel of the tooth, and eventually leading to an increased 

presence of dental caries.  

Within the oral epithelium, infection by bacteria can lead to the phosphorylation of ERK. p-ERK 

½ expression is often associated with a stress response that mediates inflammation through the 
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activation of transcription factors that produce pro-inflammatory proteins.40 One of these 

inflammatory proteins is COX-2, which induces inflammation after being induced itself by 

cytokines and growth factors.41 The presence and activation of these proteins at the 30 minute, 5 

hour, and 24 hour timepoints seen in the results indicates an acute and prolonged inflammatory 

response following exposure to e-cigarette vapors. 

Oral inflammation, as seen in periodontitis, has far reaching consequences within the body. 

Aside from increasing the risk of the development of oral cancers if prolonged, oral 

inflammation may contribute to other diseases such as obesity, rheumatoid arthritis, Alzheimer’s 

disease, and inflammatory bowel syndrome due to leakage of pro-inflammatory cytokines.42,43 

One study identified that the average number of puffs during a vaping session would be more 

than 20 puffs per 10 minutes.44 This type of exposure could allow acute responses to become 

chronic responses within the oral epithelium, further increasing the risk of oral cancer 

development. 

Chronic inflammation, as seen in the case of infection, can induce the creation of mutagens by 

immune cells that induce DNA damage in epithelial.48 This could mean devastating 

consequences in vivo if e-cigarette vapor weakens epithelial cells enough for bacterial invasion 

and a subsequent prolonged immune response. Inflammatory diseases, such as inflammatory 

bowel disease and gingivitis which may result from poor oral health and oral inflammation, lead 

to colorectal carcinoma and oral squamous cell carcinoma respectively.43,49 Additionally, 

bacterial colonization outside of its niche may lead to cancer, as seen in the case of H. pylori and 

gastric adenocarcinoma.49 In the case of oral pathogen S. mutans, should it invade epithelial 
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tissues after e-cigarette allows it to dominate biofilms, it could have a similar effect on the ability 

for oral cancers to develop. 

Those who partake in e-cigarettes may not only be damaging oral health by inducing dysbiosis 

within the oral microbiome, but also increasing the chance of cancers, such as oral squamous cell 

carcinoma, to develop. Furthermore, the inflammatory nature of e-cigarette usage may have far-

reaching consequences within the body in the form of exacerbating systemic issues linked to 

inflammation and oral health.  
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