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ABSTRACT
 

Malaria is a vector borne disease that has been plaguing mankind since before recorded 

history. The disease is carried by three subspecies of mosquitoes Anopheles gambiae, Anopheles 

arabiensis and Anopheles funestu. These mosquitoes carry one of four type of Plasmodium 

specifically: P. falciparum, P. vivax, P. malariae or P. ovale.[1] The disease is a killer; the 

World Health Organization (WHO) estimates that about 40% of the world’s total populations 

live in areas where malaria is an endemic disease [2] and as global warming occurs, endemic 

malaria will spread to more areas. The malaria parasite kills a child every 30 seconds.[3]  In 

Africa alone, as many as one million children die annually from malaria before they reach the 

age of 5.[4]  The World Health Organization has an estimate of 100-200 million victims 

annually.[5] Malaria has many mathematical models and this paper will examine several 

different models in order to achieve a greater understanding of this disease. 
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CHAPTER ONE - MALARIA 

1.1 Introduction 

Malaria is a vector borne disease that has affected mankind since before recorded history.  

About 40% of the world’s total population lives in areas where malaria is endemic disease and as 

global warming occurs that percentage will increase as mosquitoes ranges will increase due to 

increasing rainfall. The numbers of malaria victims are growing in number every year due to 

increasing resistance of the parasite to the drugs that have been used in the past to treat malaria 

and also due to the mosquitoes increasing resistance to the pesticides that once killed them.   

The malaria parasite kills a child every 30 seconds.[6] In Africa alone, as many as one 

million children die annually from malaria before they reach the age of 5.[7]  The World Health 

Organization has an estimate of 350-500 million victims infected annually, and killing an 

estimated 1,000,000 people per year[8] world wide.   

The vector that spreads the parasite is the mosquito, but not just any mosquito, as only 

30-50 species of the more than 430 species of mosquito spread parasite.[9]  The major vectors 

for spreading the parasite are the mosquitoes: Anopheles gambiae, Anopheles arabiensis and 

Anopheles funestus.  The vector, like the parasite, is also growing a resistance to the insecticides 

that have been used in the past to treat mosquitoes’ breeding grounds.  The parasite itself is a 

protozoan of the genus Plasmodium specifically: P. falciparum, P. vivax, P. malariae or P. 

ovale.[10] Plasmodium falciparum is the most deadly of the four types of malaria. Infection with 

P. falciparum is a medical emergency, about 2% of the people so infected die because of delayed 

treatment.[11] 

Because of many factors, malaria is a disease that is in a resurgent phase. Due to an 

increase in air travel, a person who today is in Manus, Brazil tomorrow can be in Miami, Florida, 
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and while he or she may not be showing any symptoms of malaria he or she could easily be a 

carrier of the parasite. The only way to be sure of the person’s health status would be to perform 

a blood test for the parasite.  An act as simple as recycling of automobile tires can add to the 

spreading of malaria. How you ask? Tires when left outside will be rained on and the rain water 

will collect in the tire. A female mosquito looking for a place to lay eggs will see this tire as a 

perfect breeding ground. Now the tire is put into a ship’s hold and transported to another country 

for recycling. This act is how the Asia tiger mosquito made its way to the United States. While 

the tiger mosquito does not spread malaria it does spread other diseases. This method of 

movement could easily spread the Anopheles to areas were it currently does not exist. 

Poverty while not a disease itself is a contributing factor in not only malaria but also for 

almost all diseases that face mankind.  Because of poverty, communities may have poor 

sanitation and poor drainage and these two factors allow the mosquitoes to breed in greater and 

greater numbers. Poverty also means that the people will not be able to afford the simple 

protection of a mosquito net or even screens for their windows. A favorite hiding place for the 

Anopheles is in a dark moist room. With these increased numbers of vectors living with you 

comes an increased chance of being bitten by an infected mosquito which will in turn infect you 

with the parasite. 

1.2 Malaria in the United States 

 At this time, malaria is essentially non-existent in the United States but that has not 

always been the case. Malaria has been endemic in the Southeastern United States until the late 

1940’s. When at that time, the National Malaria Eradication Program was proposed by Dr. L. L. 

Williams. The program commenced operations on July 1, 1947.[12]  In the year 1914, there were 

an estimated 600,000 cases of malaria in the United States.[13]  The disease was primarily 
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confined to 13 Southeastern states, with the application of DDT in over 4,650,000 household 

sprays and the control of the Tennessee River by dams built by the Tennessee Valley Authority. 

The vector that spread the disease was reduced by a significant numbers. Also the people who 

were infected were treated by use of various treatments and with this double barrel approach 

reducing both the vector and the parasite malaria was eliminated. While the Anopheles 

mosquitoes remain seasonally present in all states except Hawaii the disease is all but non-

existent because of public health officials’ relentless pursuit of those infected with the parasite. 

 While the United States does not currently have endemic malaria, the US is not immune. 

The CDC received reports of 1,278 malaria cases in 2003 and reports of 1,324 cases in 2004[14]. 

Four of these cases in 2004 were fatal and of these cases two were cause by P. falciparum, one 

by P. vivax, and one of P. falciparum mixed with P. malariae. One of the jobs of the CDC is to 

monitor malaria by tracking reported cases not only the primary case but to follow up with any 

secondary cases, doing blood tests on all, requiring treatment of those afflicted and following up 

to make sure that the positives take medication.  

1.3 How malaria works in humans 

Malarial infection is cyclic so we could start the cycle anywhere. In this case, an infected 

female mosquito bites a human host and injects the human with some of her saliva. The saliva 

acts as a pain killer so that the human will not feel the bite and because the female mosquito is 

infected her saliva contains the sporozoite form of the malaria parasite.  

All blood in a human’s body is filtered by the liver and here the sporozoite will reproduce 

in an asexual manner and forming large quantities of the trophozoite forms of the parasite. These 

trophozoites are released into the bloodstream where the red blood cells are invaded. The 

parasite uses the red blood cell as an incubator and again reproduces producing the merozoite 
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form of the parasite in quantities large enough to cause the cell to rupture. This process is 

repeated several times until the merozoite stage of the parasite produces the gametocyte (the 

sexual form) form of the parasite. On average the incubation period for the P. falciparum is 

about 12 days in humans and about 10 days in mosquitoes; other strains are normally longer.[15] 

Again the female mosquito comes into play and bites the human and this time the 

mosquito’s blood meal is infected with the merozoite. The merozoite penetrate the stomach wall 

of the mosquito and form oocysts, which later rupture and release sporozoites and migrate to the 

mosquito salivary glands ready to be injected into the next victim repeating the process ad 

infinitum. This female mosquito may or may not already be infected by sporozoites.  If she is 

already infected this will lead to what is known as a superinfection,  infected with multiple 

broods at the same time. 

A detailed schematic for the complete life cycle of malaria can be found at: 

http://www.cdc.gov/malaria/biology/life_cycle.htm .  
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CHAPTER TWO - MODELS 

2.1 Types of models 

A math model is a mathematical description of a real world system or event.[16] Models 

provide the user with concise descriptions of complicated non-linear systems. The model also 

provides a method for relating the process of infection of the individual to the process of 

infection of a population.[17]  The modeler must have as much empirical data as possible and the 

only way to get that data is to have someone in the field collecting.  The data will allow the 

scientist to develop a more detailed and accurate model and also allow the model to be tested 

seeing if predictions are correct. The model will provide the scientist a framework to allow him 

to place new knowledge in its correct place and with the correct emphasis, thereby; delineating 

critical areas that will need new research and maybe showing that older data was insufficient or 

incorrectly analyzed again showing needs for new work.  

All resources are limited, therefore another need for a concise model is for correct 

placement of those limited recourses to minimize human suffering from this disease. The well 

tuned model will allow better evaluation of the impact of new strategies for controlling the 

disease learning more quickly what works and what doesn’t; therefore, the waste of valuable 

resources is minimized. 

There are many types of mathematical models of disease SI, SIS, SIR, SIRS, SEIR, 

SEIRS and MSEIRS just to mention a few.  Table one will define terms of the model types. 

 

 

 

 

 5



Table 1: Terms of different classical Model types 

Mother (Maternal Immunity)M

Recovered (Immune)R

Exposed (Infecteds)E

InfectiousI

SusceptibleS

Mother (Maternal Immunity)M

Recovered (Immune)R

Exposed (Infecteds)E

InfectiousI

SusceptibleS

 

 
 M This aspect of the model deals with the temporary immunity that a mother can 

pass on to her offspring via the placenta. 

 SI This model indicates that all individuals in a class are susceptible to the disease 

and after being exposed the individual is infectious.  This assumes that there is no 

incubation period and no recovery i.e. you stay infectious. 

 SIS This model is similar to the SI model but the individual will not stay infectious 

instead he (she) will recover from the disease but will not acquire any immunity and 

reenter the susceptible group. 

 SIR Again this model will use the base of the SI model but the individual will recover 

from the infection and gain immunity to the disease. 

 SIRS This model will follow the SIR model except that the immunity gained is only 

temporary and after a small period of time the individual will again enter the susceptible 

category. 

 SEIR In this model a person is susceptible to the infection and later exposed. There is a 

lag time between exposure and when you become infectious, but with time you recover 

and have immunity. 

 6



 SEIRS This model is the same as the SEIR model but the immunity is only a temporary 

phenomena. 

Hence the flow of the disease will follow the SEIRS model 

 

S E I R  

 

 

 

Figure 1: Example of SEIRS flow 
 

Stochastic models rely on the individual chance and chance variations of the individual. 

Are you exposed to the disease? How great was your exposure and did you get a sufficiently 

large amount of the germ or an amount to small too cause the disease? A stochastic model will 

require very difficult and time consuming collection of data. These models are very difficult to 

set up and mathematically very difficult and complex.  A deterministic model on the other hand 

is more related to explaining what happens to the general population.  Hence the data collection 

is not concerned with what happens to the individual but what happens to the population as a 

whole. A deterministic model is neither as difficult nor as complex mathematically, compared 

with a stochastic model. 

In general, a model will consist of a series of ordinary differential equations; these ODE’s 

will relate various factors needed by the modeler to make a coherent model.  The number of: 

humans, infected humans, mosquitoes, infected mosquitoes the rate of: mosquitoes biting 

infected humans, mosquitoes biting non infected humans, the birth rates of both, the death rates 
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of both, rainfall, drought, poverty are all elements that a modeler might take into consideration in 

his model.  

2.2 SIR models 

The classical SIR model by definition only has three classes if individuals: S-

susceptibles, I-infecteds and R-partial immunes[18]. The assumptions associated with this model 

are: all who come into contact with the disease may contract the disease, those who contract the 

disease are at first severely symptomatic and later they either die or become mildly symptomatic 

and then they enter the partial immunes where they can not be re-infected as long as their 

immunity lasts. If these stages are denoted as x, y and z respectively then the following equations 

are proposed.   Equation Section 2 

 

 

dx hx
dt
dy hx ry
dt
dz ry
dt

= −

= −

=

 (2.1) 

 
Where h is the infection rate and r is the acquired immunity rate. Hence 1/h is the mean time 

until infection and 1/r is the mean time until immunity. Initial conditions for these assumptions 

say that: 

(0) 1x = , and  and that (0) (0) 0y z= =

 
 ( ) ( ) ( ) 1 0x t y t z t t+ + = ≥  (2.2) 
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Figure 2: SIR Simulink plot of x values vs. time for equation 2.1 
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Figure 3: SIR Simulink plot of y values vs. time for equation 2.1 
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Figure 4: SIR Simulink plot of z values vs. time for equation 2.1 
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 Another SIR model proposed by Kermach and McKendrick in 1927 is as follows: 

 

 

dx hxy
dt
dy hxy ry
dt
dz ry
dt

= −

= −

=

 (2.3) 

 
Kermach and McKendrick based this model on the following assumptions: 

1. An average infective makes contact sufficient to transmit infection with hN other per 

unit of time, where N represents total population size. 

2. A fraction of infectives leave the infective class per unit of time. r

3. There is no entry into or departure from the population, except possibly through death 

from the disease.[19] 

Equation (2.3)is derived in the following manner. A susceptible must come into contact with an 

infective, who can transmit the infection to the susceptible. Then the steps needed to 

algebraically manipulate these equations would be ( )( )xhN y hxy
N

= where h is the rate of 

transmission. This is equivalent to the rate of change of the susceptibles, hence the first line in 

equation (2.3). The second line is a combination of the first line and subtracting the amount of 

people leaving the infected group hxy ry− where r is the rate of infectives leaving the group, 

hence line two in (2.3). Line 3 of (2.3) is simply the amount of the group entering the resistant 

group and from the previous lines of (2.3) that is ry . 

 The authors, Brauer and Chavez, use the model presented in equation (2.3) to model 

some plague data (this data can be seen at[20]). They used =254, =7, =83, r =2.73 and 0S 0I S∞
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h =0.0178 this data yields the following graphs. Equation (2.3) and this data will then be used to 

create the following plots. 

0 50 100 150 200 250 300
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50

100

150

200

250

x(t)

y(
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h increasing from top to bottom

 
Figure 5: Simulation of Equation (1.3) y(t) vs. x(t) for equation 2.3 
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Figure 6: Simulation of Equation (1.3) y(t) vs. z(t) for equation 2.3 
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Figure 7: Simulation of Equation (1.3) x(t) vs. time for equation 2.3 
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2.3 SIRS model 

 To generate the SIRS model the SIR model is changed by adding a return path yρ  from 

the partial immunes to the susceptibles. Also added is a function γ of h which shows that the 

greater the rate of spread of the disease the greater the immunity will be within the population.  

This fact implies that as h increases γ should decrease leads us to the following equations given 

by the author.[21] 

 

 ( )
1

h

h
heh

e

τ

τγ
−

−=
−

 (2.4) 

 
 The above changes combined with equation (2.1) yield the following equations to 

represent the classic SIRS model. 

 

 

( )

( )

dx hx y h z
dt
dy hx y ry
dt
dz ry h z
dt

ρ γ

ρ

γ

= − + +

= − −

= −

 (2.5) 

 
 ( ) ( ) ( ) 1 0x t y t z t t+ + = ≥  (2.6) 

 
 

2.4 Some other types of models 

The time dependent immunity (TDI) model [25] is a variation of the SIRS model that was 

reviewed earlier. In this model an assumption is made that a human can build up an immunity to 

malaria but that immunity is not immediate, as the immunity takes some time to develop. This 
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would mean that the immunity rate r is dependent on time ( )r r t=  and that  and the rate 

of exposure will be

(0) 0r =

σ , with these considerations the following can be expressed by:  

 

  (2.7) 
2

(1 )tr r e σ−
∞= −

 
The Shonkwiler gives the following plot of r versus t for various σ  

  

 

 
Figure 8: Shonkwiler Plot of equation (2.7) r vs. t for various sigma [26] 
 
 Adding the acquired immunity equations into the previous defined SIRS equations leads 

to this new TDI model. 

 

2

2

(1 )

(1 )

t

t

dx hx y hz
dt
dy hx y r e y
dt
dz r e y hz
dt

σ

σ

ρ γ

ρ

γ

−
∞

−
∞

= − + +

= − − −

= − −

 (2.8) 
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 Another model that can be considered is the temporary immunes (extended model) [27]. 

This model differs by the introduction of another subclass, w, those who have temporary 

immunity. The individuals in this subclass are different from those with partial immunity 

because they are completely recovered from malaria yet they still have strict immunity. The 

transition from infecteds to partial immunity or temporary immunity depend on many factors, 

individual differences, type of parasite, density and strain type of parasite.  Starting with 

equation (2.2) and adding w with (0) 0w =   we now have the following equations for temporary 

immunes (extended model): 

 

 

( )

( )

dx hx y h z w
dt
dy hx y ry py
dt
dz ry h z sz
dt
dw py sz w
dt

ρ γ ν

ρ

γ

ν

= − + + +

= − − −

= − −

= + −

 (2.9) 

 
  (2.10) 

 
Yet another model that is in use is superinfection. This model starts with the TDI model 

and assumes that there are a large number of vectors present in the environment and that before 

an individual can recover from one infection another vector will bite and you will have two 

broods of parasites introduced into the body at the same time. Superinfection is not limited to 

only two broods the infecteds can and often do have multiples of broods at once. The equations 

for superinfection are again related to equation (2.8) with the following differences,

( ) ( ) ( ) ( ) 1, (0) 1x t y t z t w t x+ + + = =

 

1 2ρ ρ ρ= +  

and ∞1 2r r r∞ ∞= + . 
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2

2

2 2

1 2

' '1
1 1 1 2

' '2
1 2 2 2

1 1 2 1

( )

( (1 ))

( (1 ))

(1 ) (1 ) ( )

t

t

t t

dx hx y y h z
dt
dy hx h r e y y
dt

dy h y r e y
dt

dz r e y r e y h
dt

σ

σ

σ σ

ρ ρ γ

ρ ρ

ρ ρ

γ

−
∞

−
∞

− −
∞ ∞

= − + + +

= − + + − −

= − + + −

= − + − −

 

z

 (2.11) 

 
These are just a few of the many variations of SIR and SIRS models that can be used by 

any author for modeling a variety of diseases like for example malaria, these models can be use 

 modeling sm

 as a tool to perform some of the calculations and graphing use with 

some of the models in section 2.2. The d 

ulink and com

in allpox[28]. 

2.5 Simulink representation of different models     

 Simulink can be use

following figure was produces using Matlab an

Sim parison to figure 8 shows very similar results. 
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Figure 9: Matlab and Simulink version of Shonkwiler plot of equation (2.7) figure 14 
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CHAPTER THREE –SIR ROSS 

3.1 Historical look at Sir Ronald Ross 

The connection between mosquitoes and malaria was first made by Sir Ronald Ross.  He 

was born in India on May 13, 1857 to a British army captain in the Bengal Army.  Sir Ross was 

educated in England and then returned to India where he was commissioned into the Indian 

Medical Service.  He first became interested in mosquitoes during the time that he was stationed 

in Southern India, when he was the food source for a large number of female mosquitoes (the 

female need protein from blood to aid the production of eggs the male only ingests plants juices).  

He traced his blood suckers to a water container that was right outside his window.  His first 

attempt in mosquito control was to overturn that container of water.  He tried to get all the men at 

the station to eliminate breeding places for mosquitoes but his suggestion was ridiculed.  

Later he came down with malaria and after he recovered he decided that he needed to 

investigate more.  When one of his assistants showed him a new species of mosquito he 

dissected this insect after it had fed from an individual that had malaria and he found “nothing – 

until he got to the stomach he found a clear and almost perfectly circular outline before me of 

about 12 microns in diameter. The outline was much too sharp, the cell too small to be an 

ordinary stomach-cell of a mosquito.”[22] Sir Ross had found for the first time ever the malaria 

Plasmodium in a mosquito.  He took a 10 day leave to write a paper for the British Medical 

Journal and the paper was published three months later.  Equation Section 3 

Sir Ross was the first person to prepare a scientific mathematical model of malaria based 

on his discoveries.  He moved back to England in February 1899 and was later awarded a 

knighthood and the Nobel Prize for Medicine for his work with malaria. 
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3.2 Sir Ross’s model 

Sir Ross formulated his model for malaria in 1916.[23]  His model had a basic 

deterministic formula. Using t to represent time; below is, with some minor changes, Ross’s 

model for humans: 

Table 2: Terms use in the Ross model 
 

 

 

 

 

 

 

 biting rate of mosquitoes biting humans

death-rate for humans

birth-rate for humans

recovery-rate for humans

proportion of infected humans who are also infectious

total number of infected humans

total human population size at a given time η
y
f

γ
μ
ν

Vβ biting rate of mosquitoes biting humans

death-rate for humans

birth-rate for humans

recovery-rate for humans

proportion of infected humans who are also infectious

total number of infected humans

total human population size at a given time η
y
f

γ
μ
ν

Vβ biting rate of mosquitoes biting humans

death-rate for humans

birth-rate for humans

recovery-rate for humans

proportion of infected humans who are also infectious

total number of infected humans

total human population size at a given time η
y
f

γ
μ
ν

Vβ
 

The same notation is also used but with subscript V, i.e Vη ., Vy , Vf  , Vγ , Vμ   and Vν to denote 

the mosquito population. 

Assuming that mosquitoes have a rate of biting man of Vβ  then in time  we 

have

tΔ

Vβ Vf Vy tΔ  infectious bites. The infectious bites divided by the number of susceptible 

humans is Vβ Vy Vf  ( ) /yη η−   which would be the new human infection rate. The rate of 

recovery and the death rates added into the equation lead to the following differential equation: 

tΔ

 

 ( ) ( )V V Vdy y f y y
dt

β η γ ν
η

−
= − +  (3.1) 
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The same arguments could also be applied to the mosquito population and the following equation 

would result: 

 

 ( ) ( )V V V V
V V

dy fy y y
dt V

β η γ ν
η
−

= − +  (3.2) 

 
The two equations are not symmetrical because the transmission of the disease from mosquito to 

man and vice versa is controlled by the habits of mosquitoes to bite humans and not humans 

biting mosquitoes, because of this fact we have only a Vβ   and not aβ . 

Ross made several assumptions in order to simplify and solve his equations. He 

concluded that in man ν  (death-rate) was negligible compared with γ  (recovery-rate) and that in 

the mosquito Vγ  was negligible compared to Vν . He also let the birth rate of the mosquito equal 

the death rate i.e. Vμ  = Vν . Using these approximations he rewrote the equations to: 

 

 ( )V V Vdy y f y y
dt

β η γ
η

−
= −  (3.3) 

 
and  

 ( )V V V V
V V

dy fy y y
dt

β η μ
η
−

= −  (3.4) 

 
Now Ross again rewrote his equations in terms to malaria-rate in man, defined as /m y η=  and 

the density of infected mosquitoes per human as /Vu y η=  leading to: 
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 (1 )V V
dm f u m
dt

mβ γ= − −  (3.5) 

 
And 

 

 ( )V
du

Vfm a u u
dt

β μ= − +  (3.6) 

  

Where Va η
η

≡ . The trivial solution is 0m u= =   and is of little interest. A more interesting 

solution is found by dividing both equations by mu and solving the resulting. This gives: 

 

 
2

( )
V V V

V V

a ffm
Vf a f

β γμ
β γ β

−
=

+
 (3.7) 

and  
  

 
2

( )
V V V

V V V V

a ffu
f f
β γμ

β μ β
−

=
+

 (3.8) 

 

Lotka[24] studies of the stability of this solution. He found that 
2

1V V

V

a ffβ
γμ

≤  is stable and means 

that if a few malaria cases are introduced into a malaria-free population no epidemic will begin 

the disease will soon disappear. But if 
2

1V V

V

a ffβ
γμ

≥  then the introduction of a few cases will 

result in an epidemic and cases will continue to increase till a secondary equilibrium is achieved. 
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CHAPTER FOUR – NGWA AND SHU 

4.1 The model of Ngwa and Shu 

 The size and complexity of today models are staggering, as evidenced by the model that 

Gideon A. Ngwa came up with in his 1999 model. [29] The following terms are used in the 

Ngwa’s model.  Equation Section 4 

Table 3: Terms used in Ngwa and Shu's model 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Number of bites per 
human per unit of time

The total mosquito 
population

Average num ber of 
mosquito bite per unit 
time

The total human 
population 

Infected humans who 
die from  the disease

Infectious m osquitoes

Per capita m osquito 
death rate

Incubating m osquitoes

Per capita hum an 
death rate

Susceptib le 
mosquitoes

Human recovery rateIm mune hum ans

Mosquito during 
incubating period

Infectious hum ans

Human during 
incubating period

Incubating hum ans

Rate a hum an loses 
his immunity

Susceptib le hum ans

Per capita m osquito 
birth rate

The m an biting rate of 
the mosquito

Per capita hum an birth 
rate

The infectivity of the 
mosquito

time
respective infectivity of 
an infectious non-
imm une and partially 
imm une human

Number of bites per 
human per unit of time

The total mosquito 
population

Average num ber of 
mosquito bite per unit 
time

The total human 
population 

Infected humans who 
die from  the disease

Infectious m osquitoes

Per capita m osquito 
death rate

Incubating m osquitoes

Per capita hum an 
death rate

Susceptib le 
mosquitoes

Human recovery rateIm mune hum ans

Mosquito during 
incubating period

Infectious hum ans

Human during 
incubating period

Incubating hum ans

Rate a hum an loses 
his immunity

Susceptib le hum ans

Per capita m osquito 
birth rate

The m an biting rate of 
the mosquito

Per capita hum an birth 
rate

The infectivity of the 
mosquito

time
respective infectivity of 
an infectious non-
imm une and partially 
imm une human

va

hS

hE

hI

hR

vS

hvc

vhc

vE

vI
hN

vN

t

hλ

vλ

hβ

hν

vν

hr

)( hh Nf

)( vv Nf

hγ

va
v v

h

a N
N
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Thus with the above definitions the authors derived the following few basic equations: 

Humans infected per unit time is: 

 

 ( )vh v v
h

h

c a I S
N

 (4.1) 

 
   
Mosquitoes infected per unit time is: 

 

 ( ) (hv v h hv v h
v

h h

c a I c a RS
N N

+ ) hS  (4.2) 

 
Similarly the authors said that following equations will describe the spread of the disease: 

 

 

( )

( )

( ))

( ( ))

( ( ))

( )

h vh v vh h h h h h h h h h
h

h vh v v h h h h h
h

h
h h h h h h h h

h
h h h h h h

hv v h hv v h
v v v v v v v

h h

dS c a IN R r I f N S SNdt
dE c a I S v f N ENdt
dI v E r f N I
dt
dR I f N R
dt

dSv c a I c a RN f N S S S
dt N N

dEv
d

λ β

α γ

α β

λ

⎛ ⎞
⎜ ⎟+ + − ⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟ −⎜ ⎟
⎝ ⎠

= −

= −

= − + + −

= − +

⎛ ⎞ ⎛ ⎞= − − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

( ( ))

( )

hv v h hv v h
v v v v v

h h

v
v v v v v

c a I c a RS S v f N
t N N

dI v E f N I
dt

+ −
⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= −

vE

 (4.3) 

and 
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( )

( )

h
h h h h h h h

v v v v v

dN N f N N I
dt

dNv N f N N
dt

λ γ

λ

= − −

= −
 (4.4) 

 

All parameters in the model are assumed to be positive,  >0 withhN 0 , ,h

h h h

S Ih Rh
N N N

≤ ≤1. 

Ngwa also assumed that at  with0t = (0) (0) (0) (0) (0)h h h h hS E I R N+ + + = , that there was a 

unique solution satisfying there initial conditions for all  with 

 for all . Similar arguments could be made for the other 

expressions. Thus the system is well posed from a mathematical standpoint. 

0t ≥

( ) ( ) ( ) ( ) ( )h h h h hS t E t I t R t N t+ + + = 0t ≥

These equations describing the total vector population have at least two steady state 

solutions, the trivial solution of  and* 0vN = * v
v

v

N
f
λ

= . Linearization about  yields the 

linear approximation

* 0vN =

( (0))v
v v

dN
vf N

dt
λ= − . The linear death rate for mosquitoes  is 

assumed to be 

(0)vf

(0) 0v vfλ ≥ ≥  which implies that v

vf
λ  exists and is nonnegative. Similar reasoning 

can be applied to human death rates.  Now Ngwa considers the non-diseased populations 

with 2( )v v v v vf N Nμ μ= +  and 2( )h h h h hf N Nμ μ= + . To simplify calculations the following change 

of variables is made , , , , , ,h h h h v v

h h h h v v

S E I R S Eu v w R x y z
N N N N N N

= = = = = = =
v

v

I
N

 and this yields 

1 1 , 1 1u v w R v u w R x y z y x y+ + + = ⇒ = − − − + + = ⇒ = − − . Ngwa now introduced a 

rescaling of t with the quantity of1/ vμ   by setting vtτ μ= . The carrying capacities were 
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calculated as *

2

( )h h
h

h

N hNλ μ
μ
−

= . A similar equation would relate to the vector. Dropping all of 

the * the following dimensionless variables are introduced: 

 

 2

2

, , , , ,

( ), , ( , )
( )

, , ,

h h h h
v

v v v v

h h vh v h v v
h v

v v v v h h

v hv v hv v v

v v v v

v rt v

c a NN N
N

c a c a va b c e

,

,

h

v

v

h

rλ β γτ μ λ β γ
μ μ μ μ μ

α μ μ λ μα ε ξ
μ μ μ μ λ μ
λ
μ μ μ μ

= = = = = =

−
= = =

−

= = = =

 (4.5) 

 

Using these definitions the equations of (4.3) become: 

 

 

2

(1 )

(1 ) ( )

( )

(1 )

(1 ) ( )

du u R rw wu uz
d
dw v u R w r v
d
dR w wR R
d
dx a x bxw cxR
d
dz e x a e z
d

λ β γ ξ
τ

γ α γ λ
τ

α γ β λ
τ

τ

w

τ

= − + + + −

= − − + − + + + +

= + − +

= − − −

= − − +

 (4.6) 

   
Note that Greek letters are reserved for human parameters. 

An interesting note is that now the equations are with respect to dτ , this means that the 

unit of time measurement is with respect to the life span of a mosquito which is about 21 

days[30]. The equations for the total population now take on the following form:  
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( )(1 )

( 1)(1 )

h
h h h

v
v v

dN N N N w
d
dN a N N
d

λ ε γ
τ

τ

= − − −

= − −
 (4.7) 

 
The variables now satisfy: 

 

  (4.8) { , , , : 0 , , , , 1,0 1,0 1}u w R z U w R x z u w R x zΩ = ≤ ≤ ≤ + + ≤ ≤ = ≤

 

 
 
Figure 10: Ngwa and Shu's graph showing long term behavior of equation (4.6) 
 

Note that the behavior shown for  in figure 10 is in error. The equilibrium is in error 

as  is not an equilibrium solution of equation (4.7) unless w=0. The correct value for  

is shown in figure 11. and that value is about .3. 

hN

1hN = hN
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 This graph shows the projected behavior of , w, R, and u. Please recall that  is the 

total number of humans, 

hN hN

h

h

Iw
N

≡ , h

h

RR
N

≡ and h

h

Su
N

≡ . Therefore this graph says that at about 

two to three thousand time units the respective values will rise or dip as shown and then at about 

seven thousand time units the values reach their steady state values. 
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Figure 11: Simulink solution for Ngwa and Shu's equation (4.6) 
 

The graph shown as figure 11 is a Simulink depiction of Ngwa and Shu’s equation (4.6).  

While this graph differs from the graph presented earlier, we do get a similar shape in that we get 

a rise or fall of respective values of R, w and u. The value of  does not track with the original 

graph. We get an initial rise but then the values on  falls and reaches a steady state of about .3 

not the value of 1 as in the original graph. 

hN

hN
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Figure 12: Ngwa and Shu's graph for long term vector populations 
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Figure 13: Simulink graph for solution of equation (4.6) long term vector populations 
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Figures 12 and 13 track each other well in shape. The graph shows similar deflections for 

x and z . The  values in both graphs go to 1 and stay there.  vN

 

4.2   Steady-State Solutions and Threshold Parameter 

At this point Ngwa introduces the existence of steady state in his model and to do this he 

introduces the concept of threshold parameter 0R . Threshold parameter is also called basic 

reproductive number in other papers.[31] 0R  is defined as equation (4.9) below. 

Proposition 1. Formulating the model in terms of proportions means that it has least one 

equilibrium solution  with , , * * * * *: ( , , , , ) ( , , , , )E u w R x a u w R x z= *u *w *R , *x , *z  nonnegative 

because of how they were defined and their existence and properties are determined by the 

threshold parameter 0R .[32]    

 

 0
( ( ))

( )( )( )(
e c bR

a a e r )
ξ ν α β λ
β λ λ ν α γ λ

+ +
=

+ + + + + +
 (4.9) 

 
Equation (4.9) is found by taking equation (4.6) and setting its left hand side to 0 

(because all transients disappear with sufficient passage of time) and then solving the resultant 

equations for the * solutions (i.e. steady state).  
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*
* *

*

* *
* * *

* 2

*
* *

* *2

* *
* *

* *2

* * * * * * *

* * *

( )( )

( ) ( ( ) (( ) 1
( )

( )( )
( ( ) )

( ( ) )( ) ( )
( ( ) )

( ) 1 ( ) ( )
( ) 1 (

Rw R
R

*))R R M Ru R R
R

a Rx R
a c b a R c R

e c b c R Rz R
a e a c b a R c R

v R u R w R R
y R x R

β λ
α λ

β λ λ β λ α γ
α λ ν

α λ
α α β λ γ γ

α β λ γ
α α β λ γ γ

+
=

+
+ + − +

= − +
+

+
=

+ + + + +

+ + +
=

+ + + + + +

= − − −

= − * * *) ( )z R−

 (4.10) 

 
Equation (4.10) is the steady state variable solution for equation (4.6). Substituting the 

values of , and *u *w *z  from equation (4.10) we get *R  is found by using the expressions of 

equation(4.9) in the first equation of (4.6), resulting in a sixth order equation (4.11).  

 

  (4.11) * *5 *4 *3 *2 *
5 4 3 2 1 0( )R A R A R A R A R A R A+ + + + + = 0

 
where 
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4 2
5 0

3
4 0

2
0

2
3

2 2
0 0

,

( ( )( ( ) ) ( )

( ( ) (2 ) ) )

( ( )( ( ( ) )
( ( ( )) ( )( ) ( ) ))

( ( ( ) ) (2 (2 )

A acDR

A Ac B a a AD c aR

cDR B a a

A A A B a a
B c a a a c a c a

D A AR B a A c a R R

γ ν ξ

γ ν β λ β β λ αν ξ

β λ α γ ν ξ

γ β λ β β λ αν
ν α γ β λ βγ αλ α α γ ν

β λ α α γ γ

=

= + − + + + + +

+ − + + −

= + − + + +
+ − + + + − + +

+ − + + + + −
2

0

2
2 2 2 2

0

0 0 0
2

1
2

0

)

(2 ( ) ( 3 ) )) )
( ( )( ( ( ( ) ))

( 2 ( 2 ))) (2 (2 ( ) )

(( ) 3 ( 1) ) ( 3 )) )

( ( ( ) ( ( ) ))

( 3

cR B a a
A A A B a a

a B a D A AR B a

A c aR a R cR B a

A aA B a a

D A ABR aA

ν

αν β λ α γ ν ξ
αγ β λ λ β λ αν

0

γν β λ αν β

α γ ν αν γν ξ

α γ β λ ν λ β λ αν

− + + −
= + − + + −

+ − + − + + + − +

+ + − − + −

= − + + + −

+ − 2
0 0

3
0 0

( 1) ) )

(1 )

R acR

A aAD R

γν αγν ξ

α ξ

− −

= −

λ

 (4.12) 

 
and with A, B, D and M defined as: 
 

 

( ( )), ( ( )),

( )( ( ) ),

A c b B a M
aD r M

M r

ν α β λ αν β λ

β λ ν α γ λ
ξ
α γ ν λ

= + + = + +

= + + + +

= + + + +

 (4.13) 

While there is a trivial solution of * 0R = , this solution is of little interest in the 

investigation of threshold parameters. The more important solutions to this problem are shown in 

equation (4.11) with  thru  representing the various coefficients of 5A 0A *R  . 

As noted prior all variables in the model are positive therefore 5A  is positive and the sign 

of 0A depends on the sign of 0(1 )R− , if then 0 1R > 0 0A < signifying at least one sign change in 

the coefficients of *R . Descartes Rule of signs indicates that there will exist at least one positive 

real root for equation (4.11), whenever . 0 1R >

 32



All that is required is that there is a solution  satisfying equation (4.11). When 

such a solution exists, the system is called realistic and the values for other steady states are 

given by equation (4.12).  When 

* [0,1]R ∈

* 0R =  the steady state proposed by Proposition 1 is the 

solution , this is called the disease-free equilibrium (DFE).  In 

other word when   the disease will increase till a steady state is encountered, if on the 

other h 0 1R <  the disease will quickly fade away to obscu

0 : ( , , , , ) (1,0,0,1,0)E u w R x z =

0 1R >

and rity.  

Proposition 2.  If (the number of mosquitoes is zero) or any of 0vN = ν , , or e ξ  is zero 

then the only possible solution for *R  of equation (4.11) is zero and the model that has been 

formulated in terms of proportions has only the disease-free equilibrium of 

 as a constant solution. [33] Proof.  If 0 : ( , , , , ) (1,0,0,1,0)E u w R x z = 0vN = then from equation 

(4.5), 0ξ =  and the first line of equation (4.6) shows that the only possible nonnegative solution 

for the system is . 0E

Remark (i). Proposition 2 gives some conditions under which 0R  can vanish. The 

parameter ξ  is a large grouping of several variables including the total vector and host 

populations, the condition that 0ξ =  can be interpreted several ways. First 0ξ =  could mean 

that the transmission rate from vector to host or host to vector is zero. Second 0ξ =  could mean 

that the vector or the host populations have dropped to zero. Equation (4.11) shows that the DFE 

always exists.  When , a second equilibrium different from the DFE is created, and is seen 

in Proposition 3.3. 

0 1R >
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Remark (ii). It is obvious that this makes sense even without mathematical backup 

because without the vector to spread the disease the disease can not exist hence the population is 

disease free. 

Proposition 3.  If , then the condition of  0 1R >

 

 0αλ βγ− ≥  (4.14) 

 
is a sufficient condition to guarantee the existence of at least one value  that solves 

equation (4.11).  When , the model formulated in terms of proportions has at least one 

realistic equilibrium solution different from the DFE, called the endemic equilibrium. When 

* (0,1)R ∈

0 1R >

0γ = , this new equilibrium, 0Eγ =  is unique and is expressed in terms of 0R .[34] 

Proof.  The function  defined by  :g R R→

  * *5 *4 *3 *2 *1
5 4 3 2 1( ) ,g R A R A R A R A R A R A= + + + + + 0

where the coefficients , , , , ,  are those of equation (4.11).  It is easy to show 

that 

5A 4A 3A 2A 1A 0A
2 3

0
0

0

1(0) ( )ea A Rg A
a e R
ν α −

= =
+

.  It follows that since all values are positive that (0) 0g <  

when .  Now solving for  yields 0 1R > (1)g
   

 

0

2
0 0 0 0

2
0 0 0 0

(1) ( )( ( ) ( )( () ) ( ))( ( ) ( )
( ( ) ( ))(( )( ( ))( ( ) ( ))

( )( ( ( ) ( ( 1 2 ) ) )

( ( )) ( 2 ) ) ( )( (

g aMR c M
M c b c b

a c R r rR R R

c R r R r R b R r

)β λ α γ λ β λ α γ β λ α γ γ β λ
α γ γ β λ βγ αλ α β λ α γ β λ

α γ β α α α γ γ

α α α γ λ λ β λ

= + + + + + + + − +
+ + − + − + + + + + +

+ + + + + − + +

+ + + + + + + +

0 0
2 2

)

( 1 ) ( ( )) )))

( ) ( )( ( ))(( )( ) ( )) )

R R r

r c b a c b

α β

βγ α α γ λ ν

α γ α γ α β λ α γ β λ ν

+

+ − + + + + +

+ + + + + + + + + +
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As stated before all variable values are positive, therefore when equation (4.14) is true, 

 when . The root  exists and this fact is bourn out by the intermediate 

value theorem.  When 

(1) 0g ≥ 0 1R > * (0,1)R ∈

0γ =  equation (4.11) reduces to a first order equation in *R  and 

combining that fact with equations (4.12, 4.13) allow us to establish the new equilibriums of: 

 

 

* * 0

0 0

0* * 0

0 0

* 0

( )(,

( 1) ,
( )

( 1) ,

A B a Ru w
A BR A BR

a R A BRR x
A BR A B R

D Rz

1)

A B

ν β λ

να

+ + −
= =

+ +

− +
= =

+ +

−
=

+

 (4.15) 

 
which are realistic only when  with 0 1R > 0 1R =  giving the DFE. 
 

The constant solutions proposed in Proposition 1 are only realistic if and only if they lie 

in the interval [0,1]. Calculations have shown that * 1R =  can not happen because that would 

require  to be negative and that violates our basic assumption that all values are positive.  We 

shall assume that . This also requires that 

*u

*0 R≤ < 1 * 1w =  not be allowed, thus restricting 

. When we use these requirements in equation (4.10) the following results. *0 w≤ <1

 

 
*

* *
*

( )0 1 0 1 0Rw R
R

β λ α
α γ β λ γ
+

≤ < ⇒ ≤ < ⇒ ≤ ≤ <
+

1
+ −

 (4.16) 

 
The steady-state solutions for which the total human and vector populations are zero are 

unrealistic. You can see from equation (4.7) that when λ ε<  the human population tends to zero 

as t . We will only consider the case of →∞ λ ε>  and again looking at equation (4.7) shows 
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that in the absence of disease , there is exponential growth in both populations near 0hN =  and 

 and almost no growth when 0vN = 1hN =  and 1vN = . As the disease causes deaths a new 

equilibrium for the total human population occurs. This equilibrium is set in part by the 

magnitude of γ . This equilibrium is derived by substituting the steady-state value of  into the 

right part of equation (4.7).  Notice that if the 

*w

γ (disease rate) is large enough the (number of 

humans) gets very small. 

hN

 * 1hN *wγ
λ ε

= −
−

 (4.17) 

 
Using from equation (4.10) yields: *w
 
 

 * * ( )0 1 0
(hN R

)
λ ε α
γ β ε

−
≤ ≤ ⇒ ≤ ≤

+
 (4.18) 

Thus the endemic equilibrium *R exists and is a root of equation (4.11) and must satisfy 
 
 

 * ( )0 min{1, ,
( )

R }λ ε α α
γ β ε β λ γ

−
≤ <

+ + −
 (4.19) 

 
This minimum exists when λ ε≥  since β λ γ+ > . 
 

The disease can be considered under control in two ways. First the reservoir of infection 

is removed that is the  and the  populations are reduced to zero. The second way is for the 

proportions of , and 

hI vI

w z R  are reduced to zero.  

The parameter 0R  is called the basic reproduction ratio and is usually defined as the 

expected number of secondary cases produced, in a susceptible population, by an infected 

individual during his entire period of infectiousness. 
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4.3 Stability of the system 

The local stability of the system is found by taking equation (4.6) and using the steady 

state solutions of . These values used with equation (4.6) yield the Jacobian 

matrix shown as equation (4.20) below. 

* * * *, , , ,u w R x z*

 

 

* * *

*

* *

* *
*

0
2 0

0 0

0 0

0 0 0 (

E

w z r u u
w M

R wJ
abx cx
x
e a e

λ λ ξ γ β ξ
ν γ ν

α γ γ β λ

⎛ ⎞− − + −
⎜ ⎟− − −⎜ ⎟
⎜ ⎟+ − −= ⎜ ⎟
⎜ ⎟− − −
⎜ ⎟
⎜ ⎟− − +⎝ ⎠

*

0
0

)

 (4.20) 

 
Taking the determinant of equation (4.20) yields the fifth order equation (4.21).  

 

  (4.21) 5 4 3 2
1 2 3 4 5 0a a a a aς ς ς ς ς+ + + + + =

 
Where  thru  of (4.21) are defined in equation (4.22): 1a 5a
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and with  thru  defined as: 1B 5B

 

* * * * * *
1 2

* * *
3 4

* *
5

( ) ( ), 2 ( )

( ), ,

( )

,B z R w R B M w R

B w R B R

B r u R

λ ξ γ γ

β λ γ α γ

γ

= + − = −

= + − = +

= +

 (4.23) 

 
 

Now stability is shown if there exists a ς  such that there is a solution to (4.21) with 

( ) 0e ς > . If such a ς  exists, then the equilibrium solution is locally unstable to small 

perturbations else it is locally and asymptotically stable. Using the steady-state solutions from 

equation (4.10) to generate new values of ,  and 1B 2B
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,  

since equation (4.14)   0αλ βγ− ≥  and * * *0 , ,w R x 1≤ < . Therefore all coefficients are positive. 

Coefficients , and  are always positive and  and  could be negative or positive 

depending on the size of their negative parts. However given equations (4.14) and (4.16) and the 

original expression of 

1a 2a 3a 4a 5a

0R  in equation (4.9) it can be shown that whenever , both  and 

 are positive. Since there is no sign change there are no positive real roots of equation (4.21). 

0 1R > 4a

5a

 Proposition 4. The disease-free equilibrium is locally and asymptotically stable when 

. When 0 1R < 0γ =  and  , the unique endemic equilibrium 0 1R > 0Eγ = , given by Proposition 3.3 

is also locally and asymptotically stable.[35] 

 Proof.  Substituting the value * 0R =  into equation (4.21) will allow us to check the 

stability of the disease free equilibrium.  As stated and shown prior coefficients , and  are 

always positive  and  could be negative or positive.  Now we want to investigate more 

closely the values of  and  showing that they are positive when 

1a 2a 3a

4a 5a

4a 5a 0 1R <  and . These 

coefficients can be shown to be positive by taking the value of 

* 0R =

ξ  from equation (4.9) and then 

using this value and   in  and .  Now having shown that all of the coefficients are 

positive and applying these values into a Routh-Hurwitz matrix[36] shows that the system has 

local stability. 

* 0R = 4a 5a
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 Proposition 5:  The disease free equilibrium is globally and asymptotically stable if 

.[37] 0 1R ≤

 Proof: Consider the function : [0, )xΩ ∞ →  defined by 

 

 ( ) (1 ) (1a e ).R w u z
a e a e

xλ ν
λ ν ν λ

= + + − + + −
+ + + +

 (4.24) 

 

Since all of the values in (4.24) are positive and u and x are defined as proportionals 

being less that one, \{ }  where 0 ( , , , , )u w R x z> ∀ ∈Ω 0E Ω  is as defined by equation (4.8) and 

{ } is the singleton {(1,0,0,1,0)}∈Ω . Taking the first derivative of   with respect to 0E τ yields: 

 

 

( ( )) ( ( ))

( ) ( )

( ) (

d eb ecr w R
d a e a e

eca z Ru w Rz
a e

eb eb ecwz z w R y
a e a e a e

λ β λ
τ
ξν γλ ξνγ ν
λ ν λ ν λ ν
ξν ξν ν )
λ ν λ ν

= − + + − +
+ +

+ − − − − +
+ + +

− + − − +
+ + + + +

+
 (4.25) 

 
Solving equation (4.25)  for b, c and ξ  to show that the derivative if is non-positive whenever 

 

 ( )( ) ( )( ) (, ,r a e a e ab c
e e

)λ β λ λ νξ
ν

+ + + + +
≤ ≤ ≤  (4.26) 

 
 is a Liapunov function for the system and from the definition of the Liapunov function  

assures us stability.[38]  All paths in 0\ { }EΩ  approach the largest positively invariant subset 
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Ω⊂Ω  where 0d
dτ

= .  is the set {(Ω 0, 0, 0w R z= = = )}.  Therefore  as ( , , ) (0, 0, 0)w R z →

τ →∞ . 

Propositions 4 and 5 show that there are two equilibrium points: one where the disease 

has died out the DFE implying  and the other is the endemic equilibrium where .  0 1R < 0 1R >

0R  is the unique threshold parameter that determines the behavior of the system and may we 

always live in an area where   therefore all diseases will not establish themselves and will 

quickly fade away. 

0 1R <
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CHAPTER FIVE - CONCLUSION 

 
Malaria is a disease that is constantly changing. The parasite and the vector are adapting 

to the treatments use in the past. As global warming occurs new areas will become endemic 

requiring change to confront the new conditions. Therefore, a model that accurately predicts 

what results new treatments will produce would be an invaluable tool for the proper allocation of 

resources.   

A major problem with all models is that the model is not real time. Data used within a 

model must always be historical data and conditions could have changed from the time the data 

was gathered and the time the data is used. 

The Ngwa and Shu model that was examined within this paper has a problem that should 

be addressed. The value of  is not an equilibrium solution of equation (4.7) unless w=0 

and that is not always the case. The equilibrium value of equation (4.7) should be evaluated and 

a correction to the Ngwa and Shu paper should be submitted to the original publisher of the 

paper. 

1hN =

Current research into vector mosquitoes is one area that modeling could investigate. 

There have been found (see appendix g) Anopheles mosquitoes that are immune to Plasmodium. 

Modeling what the release of massive quantities of these resistance mosquitoes into the 

environment could predict whether or not the expense of such a program would be worth the 

expense involved.  Another area of modeling that could be investigated is increase rainfall due to 

global warming. Increased rain could mean areas for mosquitoes to breed hence more 

mosquitoes and more malaria. Modeling could be applied to these and other new problems to 

predict where resources should be spent to best handle these new situations. 
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APPENDIX A 

SIMULINK OF NGWA AND SHU’S EQUATIONS 
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Figure 14: Simulink of Ngwa and Shu equations 
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APPENDIX B 

 MATLAB OF NWGA AND SHU’S EQUATIONS 
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clear all 
close all 
clc 
% This set of data will product figure 1 from Ngwa and Shu's paper 
% for beta=0.01:0.01:0.05 
beta=0.35; 
  
gamma=0.01; 
  
%Initial conditions 
u_initial=.01; 
w_initial=.5; 
R_initial=.4; 
x_initial=.999999; 
z_initial=.000001; 
Nh_initial=.05; 
Nv_initial=.05; 
  
%Stop time for simulation 
stop_time=10000; 
  
xi=.5; 
% for xi=.4:.1:3 
  
alpha=.3; 
% for alpha=.1:.1:.3 
     
r=.2; 
% for r=.01:.05:.2 
  
lamda=.00184; 
% for lamda=.0001:.0005:.00184 
  
  
v=2; 
% for v=.1:.5:3 
  
b=10; 
% for b=1:1:10 
  
c=b/10; 
epsilon=lamda-.005; 
a=1.002; 
% for a=.1:.5:2 
  
e=2.4; 
% for e=.1:.5:3 
  
% gamma=.001; 
  
zzz=lamda-epsilon-gamma; 
  
Ro_num=(xi*e*v)*(alpha*c+b*(beta+lamda)); 
Ro_dem=a*(a+e)*(beta+lamda)*(lamda+v)*(alpha+r+gamma+lamda); 
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Ro=Ro_num/Ro_dem 
  
% w_star=(((beta+lamda))/(alpha+(gamma*Ro))); 
  
  
  
% sim('equation_9_10') 
sim('equation_9_10_Nv_divide_Nh') 
t=u(:,1); 
u1=u(:,2); 
w1=w(:,2); 
R1=R(:,2); 
x1=x(:,2); 
z1=z(:,2); 
Nh1=Nh(:,2); 
Nv1=Nv(:,2); 
  
figure(1) 
plot(t,u1,'r') 
hold on 
plot(t,w1,'b') 
plot(t,R1,'c') 
plot(t,Nh1,'g') 
  
xlabel('Time') 
ylabel('u,w,R,Nh') 
title('Graph of u, w, R,Nh') 
legend('u','w', 'R','Nh') 
  
figure(2) 
plot(t,x1,'g') 
hold on 
plot(t,z1,'b') 
% plot(t,Nh1,'r') 
plot(t,Nv1,'c') 
xlabel('Time') 
ylabel('z, x, Nv') 
title('Graph of x, z, Nv') 
legend('x','z', 'Nv') 
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APPENDIX C 

SIMULINK OF KERMACK AND MCKENDRICK SIR MODEL  
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Figure 15: Simulink model of Kermack and McKendrick SIR Equation (1.3) 
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APPENDIX D 

MATLAB CODE OF KERMACK AND MCKENDRICK SIR MODEL 
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clc 
clear all 
close all 
x_initial=254; 
y_initial=7; 
% r=2.73; 
for r=.1:.5:3 
h=.0178; 
  
sim('kermach_mckendrick_SIR') 
  
t=x(:,1); 
x1=x(:,2); 
y1=y(:,2); 
z1=z(:,2); 
figure (1) 
hold on 
plot(x1,y1) 
% axis([0 250 0 35]) 
xlabel('x(t)') 
ylabel('y(t)') 
legend('h increasing from top to bottom') 
  
figure (2) 
hold on 
plot(t,x1) 
xlabel('Time') 
ylabel('x(t)') 
legend('h decreasing from top to bottom') 
  
figure(3) 
hold on 
plot(t,y1) 
xlabel('Time') 
ylabel('y(t)') 
legend('h decreasing from top to bottom') 
  
figure(4) 
hold on 
plot(x1,z1) 
% axis([0 250 0 35]) 
xlabel('x(t)') 
ylabel('z(t)') 
legend('h increasing from top to bottom') 
  
figure(5) 
hold on 
plot(z1,y1) 
% axis([0 250 0 35]) 
xlabel('z(t)') 
ylabel('y(t)') 
legend('h increasing from top to bottom') 
end 
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APPENDIX E 

CLASSICAL SIR MATLAB CODE  
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clear all 
close all 
clc 
for h=.1:.1:.9 
% h=.5; 
r=.5; 
sim('SIR') 
t=x(:,1); 
x1=x(:,2); 
y1=y(:,2); 
z1=z(:,2); 
 
figure(1) 
plot(t,x1) 
axis([0 50 0 1]) 
xlabel('Time') 
ylabel('x values') 
title('Values of x vs time as h varies') 
legend('h decreasing from .9 to .1 left to right') 
hold on 
 
figure(2) 
plot(t,y1) 
axis ([0 50 0 .5]) 
xlabel('Time') 
ylabel('y values') 
title('Values of y vs time as h varies') 
legend('h increasing from .1 to .9 bottom to top') 
hold on 
 
figure(3) 
plot(t,z1) 
axis([0 50 0 1]) 
xlabel('Time') 
ylabel('z values') 
title('Values of z vs time as h varies') 
legend('h decreasing from .9 to .1 left to right','Location','south') 
hold on 
 
figure(4) 
plot (x1,y1) 
axis([0 1 0 .5]) 
xlabel('x values') 
ylabel('y values') 
title('Values of x vs y as h varies') 
legend('h increasing from .1 to .9 bottom to top') 
hold on 
  
figure(5) 
plot(x1,z1) 
axis([0 1 0 1]) 
xlabel('x values') 
ylabel('z values') 
title('Values of x vs z as h varies') 
legend('h decreasing from .9 to .1 left to right') 
hold on 

 53



  
figure(6) 
plot(y1,z1) 
axis ([0 .5 0 1]) 
xlabel('y values') 
ylabel('z values') 
title('Values of y vs z as h varies') 
legend('h increasing from .1 to .9 left to right') 
hold on 
 
end 
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APPENDIX F 

CLASSICAL SIR SIMULINK  
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Figure 16: Classical SIR model 
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APPENDIX G 

PREVENTION ON MALARIA 
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There is no vaccine available today to prevent malaria, therefore the best way to prevent 

catching malaria is by taking proscribed anti-malaria drugs when in areas that have malaria. Also 

all people in malaria ridden areas should protect themselves by using anti-mosquito measures. 

Avoid being out at night because that is when the Anopheles mosquito is most actively feeding. 

When you are outside wear long sleeved shirts and pants and treat your clothing with permethrin. 

Use an insect repellant that contains 35% DEET (N,N-diethylmethyltoluamide). You should 

make sure that the room that you are staying in has screens and if possible spray with an 

insecticide before you sleep. If the room you are sleeping is not air conditioned or screened sleep 

under a bednet that has been treated with permethrin.  

 The anti-malaria drugs, atovaquone/proguanil, doxcycline, mefloquine, primaquine [39], 

should be taken as proscribed by your doctor and the full dosage should be taken. Normally the 

drug treatment is started before you leave on your trip and the dosage is continued for several 

days after you return from your trip.  If you were bitten by a mosquito carrying malaria during 

your trip the drugs will need several days to insure that all of the parasites injected by the 

mosquito are killed.  Also remember that there are drug resistant strains of malaria so if you 

become sick after your trip seek medical help as soon as possible. Tell the doctor that you have 

been exposed to malaria and ask for a malaria blood test, because a blood test to the only positive 

means of diagnosis of malaria. 

Another avenue that is being investigated as means of prevention of malaria is genetic 

manipulation of the mosquito.  Biotechnologists have plans to introduce a gene into Anopheles 

that will confer resistance to the malaria parasite, Plasmodium falciparum [40]. After the 

researchers started an investigation into this line of research, it was found that nature might have 

already beaten man to the punch. Anopheles gambiae were collected from huts in Mali then their 
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offspring were allowed to feed on blood infected with Plasmodium, of the 101 different 

pedigrees 22 showed no trace of Plasmodium upon dissection. So another possible means of 

suppressing the spread of malaria is breeding massive amounts of the 22 pedigrees and releasing 

them in malaria prone areas and by their numbers suppress the Anopheles that carry Plasmodium.  

Yet another new area of investigation for controlling the spread of malaria has been 

found by Simon Blanford. Mr. Blanford has found that mosquitoes infected by Plasmodium and 

then exposed to a new strain of fungi have a >90% mortality rate.[41] The rates of mortality peak 

around the time of sporozoite maturation, and infected mosquitoes showed reduced need to feed 

on blood. With mortality rates this high this fungus could be used in conjunction with chemical 

insecticides or as a replacement for those insecticides. Especially in areas where insecticides 

have lost much of their killing power due to high resistance on the part of the mosquitoes. 
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