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An empirical potential for silicon under conditions of strong electronic
excitation

Lalit Shokeen and Patrick K. Schellinga�

Department of Physics, Advanced Material Processing and Analysis Center, University of Central Florida,
4000 Central Florida Blvd., Orlando, Florida 32816, USA

�Received 13 July 2010; accepted 15 September 2010; published online 13 October 2010�

We present an empirical potential developed for silicon under conditions of strong electronic
excitation. We show the essentially athermal nature of the melting transition when the electronic
temperature is extremely high. The resulting liquid is shown to be distinct from ordinary liquid
silicon. For less intense excitations, we determine the thermal melting temperature and demonstrate
the possible existence of a regime where ordinary thermodynamic melting can occur but at a
reduced temperature Tm. We show laser-induced softening of the lattice can lead to lattice cooling
for very short time scales ��100 fs�, an effect never before recognized. © 2010 American Institute
of Physics. �doi:10.1063/1.3499296�

For some time now there has been a great deal of atten-
tion given to the processing of materials using laser pulses.
Recent advances have enabled the generation of ultrashort
�100 fs or less� laser pulses that can generate local carrier
densities high enough ��1022 cm−3� to cause a destabiliza-
tion of the lattice. The rapid production of liquid by athermal
transitions has been directly observed by several groups, and
in situ x-ray diffraction has provided direct visualization of
the atomic motion in indium antimonide.1 While the experi-
mental evidence for the role of athermal processes is quite
strong, there are many unanswered fundamental questions
relating to the details of the structural evolution and the rel-
evant time scales. For example, one interesting possibility is
that a regime exists where thermal melting transitions occur
at a temperature lower than the ordinary melting transition
due to softening of the lattice. It might therefore be possible
to observe a gradual transition from thermal transitions to
purely athermal transitions.

At present, the available theoretical tools are unable to
completely resolve these questions. Approaches based on
finite-temperature density-functional theory �DFT� �Refs. 2
and 3� and tight-binding4 have shown that electronic excita-
tion in silicon leads to melting and a resultant liquid with
properties quite distinct from ordinary liquid silicon. Re-
cently it has been shown that electronic excitation in silicon
can lead to lattice instabilities as exhibited by transverse
acoustic �TA� phonon modes with imaginary frequencies.5

However, DFT approaches are limited in their ability to di-
rectly model annealing, melting, or ablation. Instead,
molecular-dynamics simulation with empirical potentials is
often applied to study laser processing and ablation.6 How-
ever, empirical potentials have not been developed to capture
the effect of lattice instabilities due to electronic excitation.

In this letter, we present an empirical potential used to
model silicon when the electrons are in a highly excited
state. This same basic approach has been applied to metals.7

The parameters of the potential are determined by fitting to
finite-temperature DFT calculations. This potential is then
used to explore the dynamics of silicon after the excitation to
very high electronic temperatures Te.

To provide a database for the empirical potential, we
performed finite-temperature DFT calculations using the
ABINIT code.8 The conditions for our calculations were quite
close to that given in Ref. 5. In particular, the local-density
approximation was used, with the 3s, 3p, and 3d orbitals
included for the valence electrons. The energy cutoff for
the plane-wave expansion was taken to be 544 eV, and an
8�8�8 Monkhorst–Pack mesh of k-points was used. Re-
sult were obtained for diamond, fcc, bcc, and simple-cubic
lattices at seven different volumes each. Calculations were
performed for electronic temperatures between kBTe=0 eV
and kBTe=2.50 eV. Starting at kBTe=0.2 eV, the calcula-
tions were performed in increments of 0.05 eV, thereby gen-
erating results for 48 different temperatures. We obtain in
each case the cohesive free energy. For the diamond lattice,
we obtained results that are in good agreement with prior
DFT calculations.2,3,5

The empirical potential is based on a recently published
modified Tersoff formalism �called the MOD potential here
and in Ref. 9�, which has been shown to provide an excellent
description of the phase behavior and kinetics.9,10 For kBTe
=0, we use the original formulation except with larger cut-
offs �R1=3.1 Å and R2=3.4 Å� and �=1.90 chosen to give
a melting temperature Tm=1688 K close to experiment. For

a�Electronic mail: pschell@mail.ucf.edu.

TABLE I. Parameters used for the empirical potential for different values of
Te. The notation follows Ref. 9. Parameters not given in the table are un-
changed from the original potential. The constant term F0 is the free-energy
of an isolated silicon atom at finite Te. We also include the phonon fre-
quency at the X-point �in cm−1� with the lattice parameter a=5.429 Å and
the DFT value in parenthesis for comparison.

kBTe �eV� 0.50 1.30 2.15 2.50
A �eV� 2 944.068 5 2 179.984 4 1 827.473 1 1 761.681 2
B �eV� 92.323 2 53.836 9 35.786 8 31.868 6
�2 �Å−1� 1.223 828 0.769 646 0.370 933 0.243 576
��� 0.610 977 0.785 708 0.867 687 0.906 381
� 1.679 913 1.328 494 3 1.081 435 1.027 233
c1 0.214 947 0.637 945 1.068 782 1.155 003
c2 533 198.46 172 192.94 164 461.57 160 964.28
c4 1.090 1.234 1.387 1.450
F0 �eV� 0.000 2 0.137 48 0.892 8 1.340 0
�TA�X� 235 �135� 63 �69� �101 ��97� �124 ��108�
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finite Te, the parameters were fit to reproduce the DFT cohe-
sive energies for the fcc, bcc, simple cubic, and diamond
structures at several different volumes. Some parameters
were found to not be critical, and hence were held fixed.
Because the potential for kBTe=0 was not fit to the DFT, we
fit instead to changes in the free energy curves as a function
of electronic temperature Te. Also, the DFT energies were
shifted to give the experimental value Ecoh=4.63 eV in the
equilibrium structure. In Table I, we present the parameters
used in the calculations described here. We include in Table
I, a constant F0 that is added to the empirical potential to
take into account the fact that the free energy of an isolated
silicon atom will also depend on Te. In Fig. 1 we show a
comparison of the cohesive free energies predicted by DFT
and the empirical potential.

We show the dependence of the Tion=0 K bulk modulus
�Fig. 2� and lattice parameter �Fig. 3� on the electronic tem-
perature Te. To obtain the lattice parameter and bulk modulus
from the DFT calculations, we fit the data to the Birch–
Murnaghan equation of state. Another important characteris-
tic is the dependence of the phonon frequencies on Te. It has
previously been shown that the TA branch in diamond silicon
is unstable at kBTe=2.15 eV.5 We give in Table I the TA
phonon frequencies �TA at the X-point with a comparison to
the DFT predictions. In each case, the lattice parameter is
fixed at the value a=5.429 Å. While the values of �TA are
significantly larger than the DFT results for low Te, the over-

all qualitative agreement with DFT is quite good and in fact
improves for higher Te.

To simulate the effect of an intense laser pulse, we first
equilibrate an 8�8�8 cell with 4096 Si atoms at Tion
=300 K with the empirical potential for kBTe=0 for 11.05
ps. After this step, we instantaneously change the empirical
potential to correspond to strong excitation and continue the
simulation at constant energy and volume. We chose constant
volume boundary conditions to compare with existing DFT
results with the same boundary conditions.2,3 As a result of
the excitation, the temperature evolves away from Tion
=300 K. In Fig. 4 we show the evolution of Tion with time
after the excitation. We find that for kBTe=2.15 eV and
kBTe=2.50 eV, the lattice melts and Tion strongly increases
within about �100 fs. We find final temperature Tion
�580 K when kBTe=2.15 eV, significantly lower than
Tion�1700 K found in previous DFT calculations.2,3 We be-
lieve that the difference with the DFT results is due to the
fact that the starting MOD potential over predicts the energy
difference between diamond and the highly coordinated fcc
and bcc lattices. Since the fits at finite Te are done to repro-
duce the changes with Te, we have a similar error at all
values of Te. Hence we predict a smaller change in energy
�by less than 0.1 eV per atom� when the system transitions to
the highly coordinated liquid, and hence the increase in Tion
is somewhat smaller. However, we find that at kBTe
=2.50 eV that Tion�950 K. Interestingly, we find that for
kBTe=1.30 eV, the system does not melt and in fact Tion
slightly decreases to Tion�230 K. At kBTe=1.30 eV, there
is no lattice instability but instead a significant softening of
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FIG. 1. �Color online� Cohesive free energy per Si atom determined by
finite-temperature DFT and the fit empirical potential at two values of Te.
The DFT results are indicated by symbols �diamonds: diamond; triangles:
simple-cubic; squares: bcc; and circles: fcc�, and the empirical potential is
shown by lines �solid line: diamond; dotted line: simple-cubic; dashed line:
bcc; and broken line: fcc�.
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FIG. 2. �Color online� Bulk modulus of the diamond structure computed for
the empirical potential �red squares� and DFT �black circles�.
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FIG. 3. �Color online� Lattice parameter of the diamond structure computed
for the empirical potential �red squares� and DFT �black circles�.
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FIG. 4. �Color online� Ionic temperature Tion plotted as a function of time
after electronic excitation to kBTe=1.30 eV, kBTe=2.15 eV, and kBTe

=2.50 eV.
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all phonon modes. Hence, the atomic displacements become
larger but the average kinetic energy decreases due to weaker
restoring forces. However, the excited system is under fairly
high stress and we expect the temperature to rise somewhat
in a constant pressure simulation.

For the liquid resulting from the excitation, we find a
distinct structure compared to ordinary liquid silicon. In Fig.
5 we show the radial distribution function g�r� for the kBTe

=2.15 eV simulation in comparison to a simulation with
kBTe=0 and Tion=1700 K. The first peak in g�r� occurs at
2.55 Å in the excited silicon, compared to 2.42 Å in the
ordinary liquid. In contrast to DFT predictions,2,3 we see a
sharp minimum at 3.13 Å. Using this minimum as a cutoff,
we find a coordination number of 5.31. However, if we in-
crease the temperature to Tion=1700 K, Fig. 6 shows that
this minimum largely goes away. In this case, using 4.0 Å as
a cutoff, the coordination number is 12.71, which compares
quite well with the DFT value in the range 11–13.2,3

Finally we obtain the melting temperature Tm=1278 K
for the kBTe=0.5 eV case. To determine Tm, we simulate
coexistence of liquid and crystal.10 This demonstrates that
electronic excitation might lead to a thermal transition at a
strongly modified temperature.

In summary, we have developed an empirical potential
for silicon that depends on the electronic temperature Te. We

have elucidated some aspects of melting in conditions of
strong laser excitation. For relatively weak excitation, we
find that cooling can occur for short time scales.

This work was supported a grant from the National Sci-
ence Foundation �Grant No. 0809015�.
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FIG. 5. �Color online� Radial distribution function for melted silicon after
excitation at kBTe=2.15 eV �solid red line�. For comparison we show ordi-
nary liquid Si �kBTe=0� at T=1700 K �dotted black line�.
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FIG. 6. �Color online� Radial distribution function for kBTe=2.15 eV �solid
red line� and kBTe=0 �black dotted line� both computed at Tion=1700 K.
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