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ABSTRACT 

 There exists considerable research concerning how humans attribute fault to each other, 

both in cases of accidents and those instances of intentional harm. There also exist studies 

involving blame attribution towards robots, when such robots have caused harm through 

operational failure or lack of safety features. However, relatively little work has, to date, 

examined the ways in which fault is attributed to self-driving vehicles involved in collisions, 

despite many newspaper and popular articles which both report past incidents and warn of future 

risk. This dissertation examined fault attribution in collisions involving autonomous vehicles by 

conducting three separate experiments. The first experiment placed participants in the roles of 

witnesses to a collision, and compared fault attributed to an autonomous vehicle to fault 

attributed to a regular, manually-operated vehicle, when those cars were involved in identical 

collisions. The second, and third experiments explored the fault that operators attributed to both 

themselves and autonomous vehicles when involved in a collision, whether they were the 

operator of the autonomous vehicle or the operator of a regular car that shared the road with 

automated ones. Results showed that, across experiments, perceived avoidability of the collision 

was the largest predictor of fault regardless of whether the participant was a witness or a driver. 

Additionally, participants in all three experiments thought themselves in general to be better than 

average drivers.  
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CHAPTER 1: INTRODUCTION 

 Perhaps the first autonomous mode of human transportation was the horse. Trains, 

planes, and automobiles that have followed each proved faster and more efficient but lacked the 

horses’ ability to choose its own path, i.e., present a degree of self-determination. This is now 

changing (Hancock, 2020). More and more, companies are beginning to manufacture and test 

autonomous vehicles for private and commercial use. The cars of the future (and, in some more 

limited ways, the present) range from fully self-driving to semi intelligent with some 

autonomous features in the way of lane-assists, self-parking abilities, and other novel capacities. 

In giving drivers a supervisory, rather than active role in driving, many collisions can be 

circumvented. However, some accidents are bound to happen, whether due to environmental 

factors, other humans on the road, or even problems with the autonomous vehicle’s algorithmic 

control (Hancock, 2019). When these collisions happen, it is important to consider the question: 

who do people fault when autonomous vehicles crash? 

 Although self-driving cars are still relatively rare, some have already been involved in 

deadly collisions. In 2016, a former Navy Seal was killed in an accident while his Tesla Model X 

was in autopilot mode (MacRae, 2016). The Tesla collided with a truck broadside. This was 

thought to be due to the white, uniform side of the truck, which resembled open sky to the 

vehicle’s vision system. Later that same year, a driver in China was killed when his Tesla Model 

X rear-ended a road-cleaning truck shortly after engaging autopilot mode (Horowitz & 

Timmons, 2016). Two years later, a Tesla Model S was involved in a fatal accident, after the 

vehicle’s owner complained that its autopilot always steered towards the highway divider 

(Green, 2018). More recently, a pedestrian was struck and killed by a self-driving Uber in 
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Arizona. So far, the latter example is the only known case of a pedestrian death relating to an 

autonomous vehicle (Lubben, 2018). These deaths represent the most disastrous consequences of 

crashes involving self-driving vehicles. Many more minor incidents have occurred with 

relatively minimal damage to driver or vehicle (Hawkins, 2019).  

 The above examples of collisions have already happened with only a relatively limited 

number of autonomous vehicles on the road. As autonomous vehicles become more numerous, 

more collision situations are likely to occur. Those who design such vehicles have to consider 

what the vehicle’s response will be in these ambiguous but foreseeable situations. If a car stops 

short in front of an autonomous vehicle, while another car is following too closely behind, the 

programmer must decide, ahead of time, whether such circumstances will require the vehicle to 

stop, and thus risk being rear-ended; to swerve, and thus risk collision with traffic in another 

lane, or to strike the stopped car and thus risk injury (and see Hancock & De Ridder, 2003). With 

human drivers, these decisions are made in fractions of a second on the road, using a lifetime of 

real-world experience. True, they are often made incorrectly, a fact which is reflected in the 

record of damaging events in collision and accident databases. Those who program the 

algorithms of self-driving cars have the advantage of a longer period to consider the spectrum of 

all the possible outcomes. Yet at the same time this can be seen as a disadvantage in having to 

determine, well ahead of time, which course of action to take. This means potentially taking on 

both legal and ethical responsibility for the result of such events (Nyholm & Smids, 2016). After 

all, if a programmer has designed a vehicle to stop immediately behind a disabled car, they are 

certainly at least partially responsible for the outcome if rear-ended. Designing for such 

situations has often been compared to The Trolley Problem (Thomsen, 1985). The latter is an 
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ethical-dilemma posed as a thought exercise in which a trolley driver must choose between 

staying on-course and striking several people, or switching tracks and striking only one (Foot, 

1967).  Of course, as road vehicles are not on tracks, there are more than two discrete options. 

Thus the associated moral quandary becomes even more complex. That, and the fact that one’s 

choice in the hypothetical Trolley Problem does not lead to real-life lawsuits. However, the 

victims of collisions with self-driving vehicles can certainly seek litigation, and in some cases 

already have done so (O’Kane, 2019).   

 The fact that autonomous vehicles can, have, and will be involved in collisions 

underscores the need to consider where fault will be placed when these events occur. To date, 

perhaps the most well-publicized death has been that of Joshua Brown, who was allegedly 

watching a Harry Potter movie on a personal DVD player when his Tesla collided with the side 

of a truck (Macrae, 2016). In this incident, the Tesla’s camera was unable to distinguish the 

difference between the side of a white truck, and the sky. Thus, it did not recognize any need to 

stop and drove, without braking,  into the side of the truck’s trailer. Here, there is an obvious 

failure on the part of the automation in not recognizing a truck, which a human would easily 

notice.  It is, of course, important to note that human-driven “truck run-under” collisions are 

themselves relatively frequent at night-time and in the twilight hours. Here, the sensory 

capacities of human drivers frequently fail to register the dark-colored trailer in the low light 

conditions. In essence, both are similar events in which we witness failures of recognition due to 

issues of dynamic conspicuity (Hancock, 2019). In this particular case of autonomy’s failure, 

there is also a failure on the driver’s part to properly monitor the automation. Tesla’s autopilot 

putatively requires constant observation and the human driver is encouraged to take over at any 
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sign of danger. How exactly this can be done has yet to be adequately specified. As the driver did 

not survive the crash, we can only assume that he was too distracted by Harry Potter’s escapades 

to notice the truck. But it is also probable that he expected his Tesla would stop itself. And one 

can just as easily fault the insufficient camera as the distracted driver. When programming the 

cameras of an autonomous vehicle with examples of objects it may encounter on the road, and 

which it ought to avoid striking, ‘trucks’ is one of the first items to come to mind. In this case, 

the collision had an obvious cause (failing to notice an oncoming truck) but no obvious causer.  

Types of Autonomous Vehicles 

 There are several types of autonomous vehicle, and not all of them are fully self-driving. 

Both the National Highway Traffic Safety Administration (NHTSA: 2013) and the Society of 

Automotive Engineers (SAE: 2016) have developed rankings of levels of automation in vehicles. 

The Tesla involved in the previously described collision might well be identified as a level two 

(see Table 1). This means that it was not responsible for monitoring itself, a shortcoming which 

is supposedly fully communicated to consumers. 
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Table 1: SAE levels of automation in self-driving vehicles. 

SAE level Definition 

0 No automation; only the human driver is in control of the vehicle. 

1 The vehicle can assist the human driver with some aspects of driving. 

2 The vehicle can drive itself, with the human monitoring. The human must take 

over as needed, and must be the one to determine when such a takeover is 

needed. 

3 The vehicle can drive itself and monitor itself, but will request for the human to 

take over when needed. 

4 The vehicle can drive itself and monitor itself fully in some, but not all, 

conditions. 

5 The vehicle can drive and monitor itself fully, in all the same situations in which 

a human can do so. 

 The higher levels of automation may truly be considered “driverless” cars. In these cases, 

there is no classic driver, only a passenger. The passenger cannot then be faulted for any 

collision. The only choice that they make is whether or not to get into the vehicle. However, at 

levels 2 and 3, the driver continues to share control with the autonomous vehicle. Here, there is 

room for doubt as to who is responsible for preventing a collision and who is at fault when these 

events do occur. These levels are where current automation and the automation of the near future 

fall. Thus far we establish that collisions can happen, and that, at least currently, control of the 

vehicle is shared between the driver and the automation. Fault is therefore potentially shared 
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between these entities or skewed towards one or the other dependent upon circumstances. There 

are two main groups of people who may attribute fault. First are witnesses to the collision, 

whether they were involved or not. The other individuals are the drivers of the car(s), who may 

perhaps distribute fault between themselves and the vehicles involved. There are several factors 

which might serve to predict in which direction fault is attributed. Of course, other forensic and 

legal professionals seek to apportion blame or influence its apportionment during the 

investigative and legal proceedings which follow (Hancock, 2019). It is to these aspects of 

attribution that I now turn. 

The “Above Average” Effect 

People tend to rate themselves as being better than average, esecially when it comes to 

positive traits (Alicke, 1985; Alicke & Govorlin, 2005). Young people and adolescents in 

particular believe that they are unique and special, and that the consequences that affect other 

people do not always apply to themselves (Elkind, 1967). This is also true in the domain of 

operating motor vehicles. People are likely to describe their own driving skills as safer than the 

average motorist (Matthews & Moran, 1986). In general, people believe that they are better and 

safer drivers than others in their situation. For example, they believe they are better able to drive 

while impaired by alcohol or lack of sleep than their immediate peers (Wohleber & Matthews, 

2016). However, logically, not all drivers can be better than average, and this collective 

overconfidence can lead to poor decisions on the road. It appears that most are somewhat aware 

that they inflate their own abilities. In fact, people are able to understand that the rating they give 

their driving abilities is higher than the rating other people would give to them (Roy & Liersch, 

2013). However, this does not stop them from having high opinions of their own ability. It is 
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necessary to consider these beliefs in conjunction with the possibility that automated vehicles 

will require more ability and effort, not less, from drivers. At levels 2 and 3 of automation, the 

driver/operator is required to remain vigilant and be able to take over when and if necessary. 

Fault for any collisions can then fall entirely on the human operator of the vehicle, for failing to 

intervene properly. However, this is to misunderstand and misconceive the inherent human 

capacity for sustained attention (Hancock, 2013). Blame can also fall on the operations of the 

automated vehicle itself. Since most people believe themselves to be better drivers than they 

truly are, it stands to reason that, when they are the operator of the vehicle, they will fault the 

vehicle more than themselves especially when they are asked to judge another operator/machine 

pairing. They may also fault the other driver regardless of whether any specific automation errors 

led to the collision. There is, of course, the legal motivation to avoid responsibility which also 

feeds into this assessment. Prior to hypothesizing about aspects of fault attribution it is important 

to consider the cognitive biases that influence how people fault themselves, other people, and 

non-human entities for the course of any set of events. 

How People Fault Other People 

 Some disasters happen without any immediately identifiable cause. Yet, people still 

attempt to seek out causal factors. This is true of both large-scale tragedies (Veltfort & Lee, 

1943) as well as personal situations such as a child’s illness (Chodoff, Friedman, & Hamburg, 

1964). In general, it is quite common for people to seek to identify one causal influence in 

accidents rather than concede the fact that something horrible occurred purely from chance 

alone. Blame occurs when people identify a causal influence, and believe that the perpetrator will 

not take action to avoid future incident (Bucher, 1957).  
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Causal Attribution:  

Heider (1958) examined the ways in which people attempt to account for social behavior. 

These explanations can stem from external situational factors, or, alternatively internal factors. 

Heider argued that people’s biases can lead them to make incorrect assumptions about the nature 

of another person and therefore judge them inaccurately. People tend to assume that the bad actor 

is operating based on an internal characteristic. That is, they think that someone who behaved 

poorly did so because they are a bad person, and not because they were influenced by an outside 

circumstance. Of course, there are flaws associated with these forms of assumptions. 

Fundamental Attribution Error: 

 Attribution is the property via which one derives the perception of an individual’s 

motivations from their actions, either correctly or incorrectly (Kelley, 1973). There are many 

who believe that by simply witnessing the outcome of a situation, they can determine what 

motivated the actor in that situation to behave in the way they did. They believe they can also tell 

whether the outcome was intentional on the part of that individual. That is to say, a motorist who 

is cut off by another car, might assume that the offending driver acted intentionally.  Of course, 

this is not always the case. The other driver may have been distracted, or swerving to avoid an 

obstacle in the road, or had any number of motivations for their behavior that did not 

intentionally result in causing a near-collision (and see Lewin, 1936).  

Defensive Attribution:  

One influence which subsumes the need to assign fault, concerns the Defensive-

Attribution Hypothesis (Walster, 1966). This idea indicates that people assign fault in collisions 
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because they wish to believe that the such events are controllable, and thus preventable. If it was 

both controllable and preventable, and happened anyway, then it follows that someone was 

responsible for the failure in that controlling and preventing role, either unintentionally, 

maliciously, or through incompetence. Assigning fault, in this theory, allows individuals to feel 

that they are safe from recurrence of the same incident, since it is not the circumstances 

themselves which led to said incident but rather another person’s failure. According to Walster, 

“If he decides that someone was responsible for the unpleasant event, he should feel somewhat 

more able to avert such a disaster” (1966, pp. 74).” Walster found that that this assignment of 

fault was more common in severe accidents with serious consequences, but less likely in minor 

accidents. Though this was not replicated in subsequent studies (see Shaver, 1970), an overall 

meta-analysis has confirmed Walster’s proposition (Burger, 1981). 

Culpable Control:  

The Culpable Control Model has examined an individual’s volitional, and causal, 

responsibility in the actions leading to a negative outcome (Alicke, 2000; and see Figure 1). This 

model indicates that, when evaluating other individuals in order to potentially attribute fault for 

an event, people do not unconsciously assign fault but take into consideration the other person’s 

motivation, or mental affect, as well as their behavior. Thus, they use both of these elements to 

determine whether or not the other person is truly at fault. The Mind to Behavior link considers 

whether one’s actions or behaviors are intentional and whether they had any control over those  

actions. The Behavior to Consequence link examines whether a person’s behavior really led to 

the consequence, and if so, to what extent was it causal compared to other situational factors?  
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Figure 1: The link between one’s mental state, behavior, and subsequent outcomes. B= 

Behavior, M= Mental, C = Consequence (Alicke, 2000). 

 One may wonder how the culpable control model can be applied to automation. The link 

between behavior and consequence is clear; the automation’s behavior may have some role in 

causing an incident. However, machines lack agency in any current theory of “mind” that would 

give them any kind of volitional control over the outcome, or their behavior. In essence, 

automation is only an actor, and not a thinker. Whether this lack of control will exonerate them 

in a spectator’s mind, or rather deny them one element of the causal control model, remains to be 

seen. 

Just-World:  

The Just World Hypothesis, also called the Just World Fallacy, is the assumption that the 

consequences of a person’s actions are deserved (Lerner, 1980). According to this theory, people 

believe that good actions are rewarded and bad actions are punished (Kushner, 1981). The result 

of this concept is the idea that if something bad happened to a person, then that person must have 

somehow deserved it. This idea plays into attribution in the form of victim-blaming, or crediting 
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higher fault to the injured party than the situation calls for. This relies on the fallacious 

assumption that the injured person must be at least partly to fault.  

Theory of Social Conduct:  

Weiner (1995) notes that there is a difference between actions caused by one’s lack of 

effort, versus those from a lack of ability. That is, a person might be faulted for a collision that 

came about as a result of their own laziness or unwillingness to act appropriately (such as 

maintaining proper driving etiquette). The perpetrator in these cases, at some point, made a 

decision to not check their mirror or to engage in whatever action lead to the incident. This is a 

different situation from those who have caused collisions due to a lack of ability (such as not 

being able to react quickly enough in order to stop before rear-ending another car). If an 

individual lacks an inherent ability, they are perceived to have no control over the situation and 

thus cannot be blamed for the outcome.  

How People Fault Machines  

 The ways in which people attribute fault to non-human entities may or may not 

necessarily be influenced by the same inherent cognitive biases that they exhibit in relation to 

human attribution. There are many factors involved in interaction with machines which are not 

present in similar interactions between people. For instance, intelligent machines possess 

different levels of autonomy. Some machines may be entirely independent, while others rely on 

input from their operators (see Table 1). Thus, a non-autonomous machine may simply represent 

a blameless tool and any responsibility for an associated event would lie entirely with its human 

operator. A fully autonomous machine, however, can be seen as separate from its operator, and 
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in acting alone, can cause damage without any human input. In this case, responsibility lies with 

the machine to the extent that that is legally feasible. In the case of incidents involving machines 

with middling autonomy, any attribution of fault can be shared between the machine and its 

operator.  

In support of this proposition, Kim and Hinds (2006) found that when working with a 

robot, participants were less likely to attribute either credit or fault to themselves and the other 

humans involved, and more likely to attribute those elements to the robot, when the robot was 

highly autonomous. However, knowing that an autonomous agent may be faulted for its actions, 

it is important to consider the differences between blaming a human and blaming an autonomous 

machine. For instance, even the most highly autonomous technology is, to some extent, 

dependent on its original designer and programmer for guidelines as to how to respond in new 

situations. Harkening back to Weiner’s (1995) theory of social conduct, if people believe that the 

robot does not have control over its own actions, then the consequences of such actions are due 

to a lack of ability, not a lack of effort, and thus not faultworthy. Van der Woerdt and Haselager 

(2017) demonstrated that when a robot failed at the task of putting away a toy, viewers attributed 

both greater agency and more responsibility to the robot whose failure was a lack of effort 

(throwing the toy on the floor) than to the robot whose failure resulted from lack of ability (being 

physically unable to pick up the toy). Bigman, Waytz, Alterovitz and Gray (2019) have also 

observed that people see robots as capable of having intentions but not desires. Robots are 

viewed as lacking free will, which makes it harder to attribute fault to them. The latter authors 

note that most people do not want machines to be responsible for making moral decisions, 

particularly not those that lead to life and death consequences.  
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Moral Decisions in Autonomous Driving 

Notwithstanding the above, autonomous vehicles must make decisions, and due to the 

nature of driving some of those decisions must eventually be life or death matters. Those 

situations have been likened to an applied trolley problem (Nyholm & Smids, 2016). There are 

times when collisions prove unavoidable, and consequently one must contend with the issue that 

a self-driving algorithm must bear both the benefit and the burden of precognition. Programmers 

do not know that a collision will occur, but they know that it might, and thus they have time to 

prepare for many eventualities (including, but not limited to, the vehicle’s choice in which 

hypothetical trolley track to take). Unlike the driver in the trolley problem, or drivers in real 

collision situations, there is no element of time constraint in making these decisions. In essence, 

an algorithm has already decided which direction the vehicle will take, long before the situation 

occurs. Thus, its response is more choice than chance. Automated vehicles must be equipped to 

make these sorts of decisions but in what fashion will they be blamed for any negative 

outcomes? The problem becomes progressively more complex as ever greater momentary 

information is loaded into that decision.  

In a study where automated vehicles were faced with an unavoidable collision and could 

hit one of two virtual pedestrians, participants were not happy to learn the inner workings of the 

algorithm used to determine which of these two would be hit, particularly as the algorithm’s 

utilitarian programming determined the worth of each human’s life based on their profession and 

gender (Wilson, Theodorou & Bryson, 2019). This is somewhat in contrast to a study which 

found participants blamed robots, more than people, for failing to take the “best” but utilitarian 

option in an applied trolley problem (Malle et al., 2015). These opposing findings beg the 
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question as to what degree do people want their automation to be pragmatic? For safety’s sake, 

this remains a problem only in controlled laboratory studies, and not in the real world. A national 

ethics committee has already decreed that, in the instance of unavoidable collision where the car 

must strike a person, the decision cannot be based on any attributes of the person such as age, 

gender, or physical status. It is legislatively forbidden (Ethics Commission Report, 2017). 

Whether this moral design imperative is ubiquitously adhered to remains to be seen (Hancock, 

2009). 

Knowing that drivers do not necessarily want to be privy to the processes behind the 

pragmatic decisions which must be taken by autonomous vehicles in incipient collision 

situations, and knowing also that, at level 2 or 3 automation, such vehicles share responsibility 

with the human operator (see Table 1), it is currently unclear how fault will be attributed in 

collisions involving self-driving vehicles. How will people attribute fault when there is both a 

driver and an algorithm controlling the steering wheel? And what biases will lead them to alter 

their attributions when they are either a witness to, or participant in, such events? 

Rationale for the Present Research  

 In light of the foregoing observations, the present work has examined the ways in which 

people attribute fault in cases of collisions involving self-driving vehicles. As automated vehicles 

become more common, so, too, will their involvement in collisions. It is important to consider 

exactly how people will fault both the driver, and the car itself, when such collisions do occur. 

Much theoretical work has been written about the morality of creating algorithms that induce life 

threatening events.  Relatively little empirical work has examined the ways in which people 
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respond to such collisions, both the real collisions which have occurred as well as the 

hypothetical ones which may be an issue in the future. It is also important to understand the ways 

in which people attribute fault to the vehicle and to themselves when they are the operator.  With 

most people believing themselves to be better drivers than average, it is possible that, as a whole, 

they will fault other operators who have accidents involving automated vehicles, and yet blame 

the vehicle when they themselves are the ones at the wheel.  

 To evaluate such propositions, Experiment 1 was designed to compare the ways in which 

people attribute fault to the driver of a regular vehicle involved in a collision with the ways they 

attribute fault to the driver of an automated vehicle, as well as the vehicle itself, involved in that 

same situation. Participants viewed collision scenarios with the information that one of the cars 

involved was either an automated vehicle, or a human-driven vehicle. They then viewed the 

collision scenario and judged the extent to which each player involved was at fault for said 

collision. Within the condition where participants viewed an automated vehicle, fault was 

subdivided into that shared between the driver and the vehicle’s algorithms. Additionally, 

participants were asked to what extent the collision was unavoidable.  If the collision was indeed 

unavoidable, then no one was truly at fault.  

 Experiment 2 placed the participants in the position of the controller of an autonomous 

vehicle. They were required to navigate complex driving situations with the help of a Safety 

Suggestion Algorithm, which gave them advice on what actions to take at each opportunity. 

Mainly, the algorithm made the correct recommendation, but occasionally, it was wrong. 

Participants had to correctly choose whether to agree or disagree with the algorithm at each step, 
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with the goal of always making the right choice. If they made the wrong choice, they were told 

that they their drive has ended in a collision.  They were also asked to rate their own driving 

abilities. It was anticipated that their confidence in their own abilities would be correlated with 

their attribution of fault to the vehicle rather than themselves.  

Experiment 3 had participants manually controlling an on-screen vehicle, navigating 

through a crowded scene full of other, moving vehicles. They had to maneuver their vehicle 

across the screen safely, without colliding with any of the other vehicles. They were told that the 

other vehicles moved only in relation to their own; that is, they were not playing against any 

other people. All of the obstacles which they might encounter were automated. Here, participants 

played the role of a driver of a manually controlled car, but ran the risk of being involved in a 

collision with a vehicle which was not controlled by another human. It was hypothesized that 

driver confidence in their own abilities would lead to placing higher fault on the other, non-

human controlled vehicles, and lower fault to themselves. The specific hypotheses for the overall 

study are shown below. 

Hypotheses 

H1: When collisions are perceived to be at medium or low avoidability levels, participants will 

attribute greater fault to manually-operated vehicles than to autonomous vehicles involved in 

identical collisions.  

Rationale: The reasoning for this hypothesis is founded on the Just-World Fallacy, which 

states that if something bad happens to someone, they must have done something to deserve it. 

Additionally, the idea of defensive attribution, where people assign blame because they want to 
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believe that an event is preventable, also supports this hypothesis. Both of these biases center 

around the idea of events with negative outcomes being controllable, and their results being 

deserved. These biases might lead participants to believe that a person who was currently in 

control of their vehicle is more at fault than someone in an identical situation who was not in 

control at the time of the collision. 

H2: Participants will attribute greater fault to a self-driving vehicle than to a human-driven 

vehicle when they believe that the accident was highly avoidable. 

Rationale: This hypothesis states that the previous hypothesized relationship will be 

moderated by perceived avoidability. In support of this hypothesis is the defensive attribution 

theory, which again focuses on the belief that events are controllable and preventable. Here, 

blame falls on whoever fails to control or prevent these outcomes. Also in support is the culpable 

control model, which states that people take motivations into account when apportioning out 

blame. Participants can likely judge the extent to which the actions of each vehicle led to the 

outcome, but with humans the additional “mind to behavior” link exists which, in most cases, 

will help an individual be exonerated of some blame as it is unlikely that they were motivated to 

cause a collision. With automated vehicles, only the behavior to consequence link exists, which 

leaves less room for doubt. Also in support of this hypothesis is the theory of social conduct 

which states that individuals differentiate between bad outcomes caused by one’s lack of effort, 

and those caused by their lack of ability. This is similar to the Van der Woerdt and Haselager 

(2017) findings where people judged a robot as being more responsible when the robot was 

meant to put away a toy and it demonstrated a lack of effort by throwing the toy, compared to 
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judging it less responsible when it demonstrated a lack of ability by being unable to pick up the 

toy. In both of these latter cases, the findings showed that people find more fault if one is capable 

of doing the right thing, but does not do so. An avoidable collision will appear to be a larger 

failure of effort, not of ability, and here people might find the automated vehicle at fault moreso 

than the human driver. 

H3: Participants higher in confidence in their own driving abilities will attribute greater fault 

towards human drivers – of both autonomous and regular vehicles - than those with low 

confidence in their driving abilities. 

 Rationale: Part of the rationale for this is the just-world hypothesis, which states that 

people deserve what happens to them. There is no way for algorithms to deserve consequences. 

Secondly, the above average effect also supports this hypothesis. If people believe themselves to 

be safer drivers than another person, then it stands to reason that they might think that if they 

themselves were in the identical situation, they could have avoided the collision.   

H4: Participants higher in confidence in their own driving abilities will attribute greater fault to a 

self-driving vehicle, compared to people with low confidence in their own driving abilities. 

 Rationale: This is hypothesis is supported by the above average effect. If someone 

believes themselves to be a better driver than most, but is still involved in a collision, then they 

most likely believe that almost any driver in that situation would experience the same outcome. 

Thus, it was not avoidable by human actions and therefore the one to blame would have to be the 

vehicle. Additionally, the causal attribution theory, where people tend to believe that actions are 
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driven by internal or external factors, supports this hypothesis. People tend to judge another by 

internal factors, but judge themselves by external factors such as luck. They are more likely to 

assign external factors to their own failures, and here the vehicle algorithms are one case of an 

external factor they can blame. 

H5: Participants with low confidence in their own driving abilities will attribute greater fault to 

themselves than people with high confidence in their own abilities, even when the collision was 

unavoidable.  

 Rationale: See rationale for hypothesis four. 

H6: The higher a participant rates themselves in their driving abilities compared to their peers, 

the higher their score will be on the Personal Fable Scale (Lapseley et al., 1989). 

 Rationale: The more that one believes themselves to be special, and unique from their 

peers, the more likely it is that these same beliefs about themselves will carry over into their 

driving abilities.   

H7: Those with higher automation complacency will have a higher blame for the driver of an 

automated vehicle than for that vehicle’s algorithms.  

 Rationale: If someone trust technology, they are more likely to believe that the 

technology is a safe alternative to human users, and will mitigate human error. Therefore, 

someone who finds automation in general to be trustworthy will place more blame on the human 

user than on the automation itself.  
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CHAPTER 2: EXPERIMENT ONE 

 Experiment 1 was designed to evaluate Hypotheses 1, 2, 3, 6, and 7. Participants viewed 

several scenarios of cars involved in collisions and were asked to rate to what extent each actor 

in the scenario was at fault for the events presented. Scenarios all involved minor collisions, but 

other than that were dissimilar with some showing collisions while moving (such as lane-

changing) and some showing collisions while one vehicle was stopped (such as a rear-ending at a 

traffic signal). In each case there was one car (Car 1) which was of interest. Half of the 

participants in each scenario were told that Car 1 was an autonomous vehicle, and that its driver 

was responsible for monitoring the situation and taking over when they deemed it necessary (i.e., 

levels 2 or 3 automation in the SAE hierarchy). In these cases, the drivers did not re-establish 

control. Participants judged the fault of the car in the collision (including its driver and 

programming, separately, in the autonomous condition). Each participant’s belief about their 

own driving skill, as well as their opinion on the extent to which the collision was avoidable, 

acted as covariates.  

Method 

Participants: 

 Two hundred and sixty-eight participants were drawn from the University of Central 

Florida (UCF) undergraduate student body. Two were rejected for failing to answer key questions, 

so a total of 266 responses were analyzed. Of these, 158 were females and 108 males. The average 

age was 20.79 years (sd = 5.70). They were rewarded with SONA credit for their participation. 

According to statistical power analysis program G*Power (Faul, Erdfelder, Lang & Buchner, 
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2007), for a multiple regression with seven predictors to reach a power level of .95, with alpha of 

.05 and an expected effect size of f2= .15 (which is a medium effect size) a total sample size of 153 

participants was required. However due to the online format, the number of participants was much 

larger to account for potential lack of engagement during online studies. All participants were 

required to possess a valid driver’s license and had to be over the age of 18. Additionally, since 

the experiment involves situations including car collisions, participants were excluded from the 

survey if they did not wish to view the driving scenarios or believed that doing so may cause them 

any degree of distress. 

Design 

 The experiment used five predictor variables. The type of car was a categorical variable 

which possessed two levels, i.e., whether participants were told Car 1 was a regular car, or a self-

driving vehicle. Participants were randomly assigned to one of the two conditions in each driving 

scenario. The other variables were continuous variables and were determined by the participant’s 

response to specific questions. One continuous ratio variable was the avoidability of the 

collision, which was determined by the participant for each driving scenario. Another continuous 

variable was the participant’s confidence in their own driving skills. This was measured once at 

the beginning of the experiment. Additionally, participant’s responses to a scale measuring 

automation complacency, and their response to a scale measuring their belief in themselves as 

being special or unique, were analyzed as predictors.  

Materials 

Surveys and Scales: 
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Driving Experience Survey: Participants were asked several questions about their experience 

driving, such as how long they had a valid driver’s license, how often they drove in a week, and 

how far they tended to drive in a day, as well as whether they had experience with minor car 

collisions or self-driving vehicles.  

Driving Confidence Survey: This survey measured a participant’s confidence in their driving 

skills and was adapted from Matthews and Moran (1986). Participants were asked to rate their 

vehicle handling skills, defined as their control over the car; their driving judgement, or their 

ability to make good decisions while driving, and their driving reflexes, or reaction speed. They 

rated these skills, as compared to their peers, on a scale of 1 (much worse than my peers) to 9 

(much better than my peers). They were also asked about their overall belief regarding their 

driving skills on a 9-point Likert scale (1 being very poor and 9 being excellent; and see Figure 

2). Their self-rated score on the four questions were averaged in order to determine one 

numerical value for their driving confidence. Here a score of 5 was average, values less than 5 

were below average, and anything greater than 5 was above average.

 

 Figure 2: Likert scale for rating driving abilities (Matthews & Moran, 1986). 

Personal Fable Scale: Participant evaluated themselves using Lapsley et al.’s (1989) New 

Personal Fable Scale. This scale measured participants’ beliefs about their own omnipotence, 
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invulnerability, and uniqueness. Participants were asked to rate their agreement with statements 

such as “I believe that I am unique” and “no one sees the world the way that I do.” Five-point 

Likert scales were used, ranging from 1(Strongly Disagree) to 5 (Strongly Agree).   

Automation Complacency: Since one’s pre-conceived notions about automation may influence 

how they attribute blame to vehicles they believe to be automated, a scale was used to assess 

participants’ complacency towards automation (Singh, Molloy, & Parasuraman, 1993). The scale 

measures confidence, trust, perceived safety, and reliance on automation by asking participants to 

agree or disagree with statements such as “Automated devices in medicine save time and money 

in the diagnosis and treatment of disease” and “ I would rather purchase an item using a computer 

than deal with a sales representative on the phone because my order is more likely to be correct 

using the computer.” Five-point Likert scales were used, ranging from 1 (Strongly Disagree) to 5 

(Strongly Agree).   

Avoidability Survey: The perceived avoidability of each incident was determined by the 

participant in every driving scenario, with regards to each separate car involved. They were 

asked how avoidable the collision was, if each car had aken different actions. This variable was 

measured on a sliding scale of 1-5 (one end, 1, being impossible to avoid, and the other, 5, 

labeled as being very easy to avoid), but participants could not see the numerical value and only 

the textual descriptor. In a case where two cars were involved in the collision, the participants 

would answer the question twice, once referring to the avoidability had Car 1 taken different 

actions, and once referring to avoidability in the case that Car 2 had behaved differently. The 
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actual objective avoidability of the collision (if such a thing exists) was not assessed, only the 

participant’s perceptions thereof.   

 

Figure 3: Likert-style question measuring perceived avoidability of the accident. 

Fault Surveys: Participants were asked to what extent each individual in the collision scenario 

was at fault. This included any pedestrians involved, any other cars involved, and Car 1. In the 

condition where participants were told that Car 1 was an autonomous vehicle, they were be asked 

to what extent the driver was at fault, and to what extent the car’s self-driving algorithm was at 

fault. They gave their answer on a sliding scale for each actor in the scenario, as seen in Figure 4. 

Scales ranged from 1, not at all at fault, to 5, fully at fault. However, participants could see only 

the descriptors and not the numerical value associated with each location on the sliding scale. For 

both fault and avoidability, participants responded to questions about all vehicles involved. 

However, the results that were of interest were only those relating to the vehicle that was called 

autonomous in certain conditions. Responses to questions relating to the other vehicles, were 

simply used as distractors so that participants could not as easily guess the purpose of the study.  
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Figure 4: Sliding scale assessing perceived culpability of Car 1. 

 Driving Scenarios: 

Driving scenarios were selected via a pilot study, in which 28 people viewed multiple videos of 

vehicular collisions, and rated the avoidability of each on a scale ranging from 0 (not avoidable 

at all) to 100 (very easily avoidable). An average rating below 30 was considered to be a very 

difficult collision to avoid, a rating from 30- 69 was considered to be of medium avoidability, 

and any rating of 70 or higher was considered to be an easily avoidable collision. Two scenarios 

of each avoidability level were selected for inclusion in the study. The six selected scenarios 

came from either dashboard cameras which show a view of the road from a windshield, as a 

driver would see; or from traffic cameras which show the road from a bird’s eye view.  

Additionally, participants were shown diagrams which included additional information not 

always visible in the video, such as construction cones, stop signs, road structure, pedestrians, 
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and other vehicles, and included any turn signals or pertinent facts. See Figure 5. Each 

participant viewed all of six different driving scenarios which were presented in random order. 

   

Figure 5: A diagram showing various factors of a car collision including other vehicles, 

pedestrians, signage, and intersection structure 

 

Procedure 

 The experiment took place via a computer screen using the Qualtrics survey engine. 

Participants were first required to list their age and gender and confirm that they possessed a 
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valid driver’s license. They then completed the driving experience, driving confidence, personal 

fable, and automation complacency surveys. Following the completion of the surveys, they were 

informed that they were about to witness six different driving scenarios, all ending in car 

collisions. Participants were also informed that some of the driving scenarios would feature  

collisions involving self-driving vehicles. They were given information about level two 

automation, in which a human driver must monitor the vehicle and take over as necessary. 

Following this, participants were presented with one of the six driving scenarios, and randomly 

assigned to the group which was told that the car in question was self-driving, or the group which 

was told that all cars in the scenario were regular manually-operated vehicles. After viewing the 

scenario, participants rated the avoidability of the collision, and completed the sliding scales 

attributing fault.  There was no maximum or minimum value set for overall fault: participants 

could say that no one was to fault at all, or that all parties were highly at fault. Then, they 

proceeded to the next scenario, which repeated the process.  

Results 

Descriptive Statistics 

Fault Attribution: The participants each rated fault in the six different scenarios. In each 

scenario, they were randomly and evenly split between the condition where they were told that 

the car in question was autonomous, or the condition where they were told that the car was a 

regular vehicle. Since most of the participants viewed 6 scenarios each, they collectively viewed 

791 scenes in which they were told the vehicles were autonomous, and 799 scenes in which they 

were told that all vehicles involved were regular cars. This difference was due to some 

participants failing to answer questions. Overall, the average rating of fault was 3.60, with a 
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standard deviation of 1.59. For autonomous vehicles, the average rating was 3.67 (1.57) and for 

regular vehicles the average rating was 3.54 (1.61). The difference between the two groups was 

not statistically significant t(1588) = -1.70, p = .09, but it was a level that encouraged further 

investigation. 

Avoidability: When participants rated the avoidability of each collision, based on the actions 

taken by each vehicle, they gave an average rating of 3.86 (1.49). For autonomous vehicles, the 

average rating of avoidability was 3.88 (1.46) and for regular vehicles, the average avoidability 

rating was 3.84 (1.52). The difference was not significant t(1588) = -0.57, p = .57. 

Driving Abilities Overall: Participants were asked to rate their driving abilities. The average 

rating for a participant’s vehicle handling skills was 7.57 (1.26). Their driving judgement was 

scored at 7.52 (1.46) and their driving reflexes were rated 7.55 (1.52). Overall, their average 

driving skills were perceived to be 7.55 (1.26). As this was a scale of 1-9, participants in general 

perceived themselves to be good drivers.  

Driving Abilities Compared to Peers: Participants were asked to rate their driving skills 

compared to their peers. Their vehicle handling skills were rated at 7.05 (1.56). Their driving 

judgement was 7.06 (1.68), and their driving reflexes were 7.07 (1.67). Overall, compared to 

their peers, participants rated their driving abilities at 7.06 (1.52), again considering themselves 

better than the average driver in their age group.  

Personal Fable: The Personal Fable Scale measured participants’ beliefs about their own 

omnipotence, invulnerability, and uniqueness on a scale of 1-5. For omnipotence, participants 
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rated themselves an average of 3.03 (0.51). On the invulnerability subscale, participants rated 

themselves at a 2.89 (0.50), and on the uniqueness subscale the average score was 3.40 (0.49).  

Automation Complacency: Automation complacency was measured on the subscales of 

confidence in automation, reliance on automation, trust in automation, and belief in the safety of 

automation. On the confidence subscale, participants scored an average 3.59 (1.06). For reliance, 

the average score was 3.32 (0.84) and for trust the average was 3.18 (0.77). For belief in the 

safety of automation, the average score was 3.15 (1.01). Overall, the average score for 

automation complacency was 3.31 (0.92).  

Overall Fault Attribution Model 

In order to determine the overall fault attribution model, a hierarchical regression was conducted. 

This analytic style was based somewhat on Wohleber and Matthews (2016). In the first step, 

automation condition (Auto) was considered. This variable measured whether the participant was 

told that the vehicle in question was autonomous or not. It was dummy coded with a score of 0 

meaning a regular vehicle and 1 indicating an autonomous vehicle. This was the first step as it 

was the primary focus of the experiment, and was an integral part of the most hypotheses. 

However, in this step, the value of R2 was only .002. In the second step, perceived avoidability of 

the collision (Avoidability) was entered. This was the logical next step as the extent to which a 

collision is avoidable directly impacts whether or not any fault can be attributed at all, and the 

scenarios were chosen specifically to have a range of potential perceived avoidability scores. 

This produced an R2 value of .584, accounting for around 58% of the variance in fault attributed 

to the vehicle of interest. For the third step, driver confidence was entered as well. This included 
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both driver confidence in general (Driving-General), and driver confidence compared to their 

peers (Driving-Peers). This was done because driver confidence, in terms of the Above Average 

Effect, has been examined previously in driving literature (Wohleber & Matthews, 2016) and 

because it was hypothesized to have a relationship with fault attribution. This produced a R2 

value of .585, only slightly increasing R2. In the last step, gender (dummy coded with 0=males 

and 1=females), scores on the Personal Fable Scale (PF) and Automation Complacency (Comp) 

were added but had no effect. See Table 2. A regression table including all main effects and two-

way interactions is included in Appendix D.  

Table 2: The regression model predicting fault attribution 

          Step 1           Step 2            Step 3           Step 4 

Variable b se B b se B b se B b se B 
Auto .130 .080 .041 .234 .144 .074 .231 .144 .073 .229 .144 .072 

Avoidability    .834 .024 .779* .834 .024 .779* .834 .024 .780* 
Auto*Avoidability    -.036 .035 -.050 -.036 .035 -.049 -.035 .035 -.048 

Driving-Peers       -.044 .023 -.042+ -.036 .024 -.034 
Driving-General       .013 .028 .010 .015 .028 .012 

PF          -.032 .024 -.023 

Comp          -.001 .009 -.002 

Gender          -.031 .054 -.010 

             

             

R2 .002   .584   .585   .585   

R2 change  .002   .582   .001   .000   

*indicates significance at p < .05 
+indicates significance at p <.10 

 

Avoidability was the single largest predictor of fault attribution. The more avoidable a 

participant perceived a collision to be, the higher their fault attribution to the vehicle involved. 

Automation condition alone was not significant, with slightly higher fault attribution when 

vehicles were autonomous. This is the opposite of what was expected in Hypothesis 1, which 
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stated that  participants would attribute higher fault to drivers of regular vehicles than to those of 

autonomous vehicles. The interaction between automation condition and avoidability was non-

significant. This is not what was predicted by Hypothesis 2, which predicted that higher 

avoidability would lead to higher fault in autonomous vehicles than in regular vehicles. Thus, the 

results failed to support Hypotheses 1 and 2. Driver confidence compared to one’s peers was a 

marginally significant predictor of fault attribution, but was actually a negative predictor and 

thus Hypothesis 3 was not supported. Driver confidence in general did not predict a significant 

amount of variance in fault attribution after the model had taken into account the effects of driver 

confidence compared to one’s peers. Additionally, there was multicollinearity between those two 

measures of driver confidence.  

Correlations 

Correlations between the variables were examined in order to find support for Hypotheses 6 and 

7. Table 3 shows the correlations between overall variables of fault attributed to the vehicle in 

question (Fault), perceived avoidability of the collision (Avoidability), whether or not the vehicle 

was automated (Autonomous), fault in the algorithms (Algorithms Fault), confidence in driving 

abilities compared to peers (Driving Peers), confidence in driving abilities in general (Driving 

General), score on the Automation Complacency Scale (Complacency), and score on the 

Personal Fable (Personal Fable). Whether or not the vehicle was autonomous was dummy coded 

with 0 indicating that the vehicle was a regular, manually operated car, and 1 indicating that it 

was autonomous. Gender was dummy-coded, with 1 indicating a female participant and 0 

indicating a male participant. Correlations that show the relationship between all of the subscales 

are found in Appendix A.  
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Table 3: Correlations between the overall variables in Study 1.  

 1 2 3 4 5 6 7 8 

1. Fault 1        

2. Avoidability .763* 1       

3. Autonomous .043 .014 1      

4. Algorithms Fault -.134** -.210** --- 1     

5. Driving Peers -.017 .029 -.002 -.101** 1    

6. Driving General .024 .056* .014 -.127** .665** 1   

7. Complacency .023 .032 .010 -.059 .052* .099** 1  

8. Personal Fable -.001 .042 -.017 -.074 .366** .286** .114* 1 

9. Gender -.023 -.026 .030 -.101** .008 .015 -.117** -.218** 

*indicates significance at p < .05 level, **indicates significance at the p < .01 level, a dash 

indicates a correlation that could not be determined because one of the variables is constant. 

 

Hypothesis 6 stated that participants who scored highly on the Personal Fable Scale 

(Lapsley et al., 1989) would also have a higher rating of their own driving skills compared to 

their peers. This was supported by a positive correlation (r = .366). While the correlation is not 

particularly large, it is statistically significant when taking into account that the majority of 

participants believed themselves to be much better drivers than their peers (with a mean score of 

7.06 out of 9), and shows that the scores on the Personal Fable Scale were related to participant’s 

confidence in their driving abilities compared to their peers. Additionally, participants who 

scored highly on Personal Fable also had confidence in their driving skills in general (r = .286). 
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Hypothesis 7 stated that participants who scored highly on the Automation Complacency Scale 

would be more likely to fault the human driver of an automated vehicle than to fault the 

algorithms. While the correlation between fault in algorithms and complacency with automation 

was in the expected, negative direction, it was not statistically significant (r = -.059, p > .05). 

Therefore, Hypothesis 7 was not supported by the data. 

The attribution of fault was positively and strongly correlated with perceived avoidability 

(r = .763). The more avoidable a collision appeared, the more fault was attributed to the car 

involved. Fault in algorithms was negatively related to perceived avoidability, indicating that 

participants blamed the human driver more than the algorithms, for an avoidable collision (r = -

.210). Fault in algorithms was also negatively related to fault in general (r = -.134), again 

suggesting that participants placed more blame on the human driver. A participant’s confidence 

in their driving abilities compared to their peers, and their driving skills in general, were both 

negatively correlated with their fault attributed to the algorithms (r = -.101 and r = -.127). This 

indicated that those with high confidence in their driving abilities placed more blame on the 

human driver than on the algorithms.  

There were small but significant correlations between automation complacency and 

driver confidence both compared to their peers, and in general (r = .052, and r = .099). There 

was also a relationship between scores on the Personal Fable Scale and one’s complacency with 

automation (r = .114). Those with higher automation complacency also had higher scores on 

Personal Fable. Women overall scored lower on the Personal Fable (r = -.218). They also had 
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lower automation complacency scores (r = -.117) but, paradoxically, attributed less fault to the 

algorithms of an automated vehicle (r = -.101). 

Fault of Autonomous Vehicles 

 The regression model for fault of the drivers of autonomous vehicles focused only on 

data from those participants who were told that Car 1 in the given driving scenario was 

autonomous. Again, a hierarchical regression was performed. In this case, automation condition 

was not entered as a variable as all vehicles in this sub-analysis were the ones that participants 

had been told were autonomous. The variables were entered in the same order as the previous 

analysis. In the first step, perceived avoidability accounted for an R2 of .550. In the next step, 

both types of driver confidence only accounted for a change in R2 of .006. Again, gender, scores 

on the Personal Fable, and scores on the Automation Complacency scales had little effect on R2, 

bringing it to .557. See Table 4.  

Table 4: Regression model predicting fault attribution in only the algorithms of autonomous 

vehicles 

          Step 1           Step 2            Step 3 

Variable b se B b se B b se B 

Avoidability .797 .026 .742* .798 .026 .742* .798 .026 .742* 

Driving-Peers    -.102 .034 -.098* -.105 .035 -.101* 

Driving-General    .054 .041 .043 .057 .041 .046 

PF       .007 .036 .006 

Comp       -.015 .013 -.028 

Gender       .004 .080 .001 

          

          

R2 .550   .556   .557   

R2 change  .550   .006   .001   

*indicates significance at p < .05 
+indicates significance at p <.10 
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Overall, the same factors that influenced fault attribution overall had effects of a similar 

magnitude, and in the same direction, as those exerting influence on fault attribution in 

autonomous vehicles. Again, the more avoidable a collision seemed to be, the higher the fault 

attributed. Additionally, higher driver confidence compared to one’s peers actually contributed to 

lower attributions of fault. It is possible that one’s confidence in their own driving abilities 

contributed to their belief that other drivers were not as competent, and thus at less fault. 

Fault of Algorithms 

 In cases where the participants were told that the vehicle of interest was autonomous, 

they were given the opportunity to divide fault between both the driver, and the algorithm, which 

shared control of the vehicle. This was evaluated on a bipolar sliding scale, so the lower the fault 

is to the algorithm, the higher it is to the human driver and vice versa. Variables were entered in 

the same order. In the first step, avoidability had the largest influence on fault attribution with R2 

of .044, which only accounted for 4.4% of the variance in fault attribution. In the next step, 

driver confidence increased R2 to .058, and finally in the last step, the scores on both the 

Personal Fable Scale and the scale measuring automation complacency, increased R2 to .071. 

Overall, the model did not predict much of the variation in fault attributed to the algorithms 

specifically.  
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Table 5: Fault attribution of algorithms 

          Step 1           Step 2            Step 3 

Variable b Se B b se B b se B 

Avoidability -.219 .039 -.210* -.214 .039 -.205* -.211 .039 -.202* 

Driving-Peers    -.041 .046 -.045 -.023 .047 -.025 

Driving-General    -.095 .057 -.083+ -.086 .057 -.075 

PF       -.081 .048 -.070+ 

Comp       -.025 .018 -.052 

Gender       -.294 .107 -.107* 

          

          

R2 .044   .058   .071   

R2 change  .044   .014   .003   

*indicates significance at p < .05 
+indicates significance at p <.10 

 

 The results here showed that avoidability negatively predicted the fault attributed to the 

algorithms. That is, the more avoidable a collision seemed, the less fault was placed on the 

algorithm and the more fault was placed on the human driver. Driving confidence was also 

negatively related to fault in the algorithms. The more confidence a driver had in their own 

ability, the more fault they placed on the human and the less on the algorithm, which partially 

supports Hypothesis 3. Gender was also a significant predictor of fault attribution, with males 

more likely to attribute fault to the algorithms, and females more likely to attribute fault to the 

human drivers. 

Gender Differences 

 Some of the variables were compared between genders. The fault attributed to the vehicle 

was similar, regardless of gender, with males giving an average rating of 3.65 (1.53) and females 

rating it at 3.57 (1.63). There was no significant difference in a t-test (p > .1). Similarly, there 

was no significant difference between scores on the driving confidence scales, neither the general 
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scale (males = 7.57 (1.32) and females = 7.53 (1.20)), nor the scale measuring confidence 

compared to their peers (males = 7.05 (1.60) and females = 7.07 (1.47)). However, there was a 

significant difference in the fault attributed to algorithms only, with males more likely to blame 

the algorithm (m = 2.44, sd = 1.85) than females (m = 2.21, sd = 1.06). This difference was 

significant (p < .05). 

Discussion of Experiment One 

Experiment One showed that perceived avoidability of a collision had the largest impact on fault 

attribution both in collisions involving autonomous vehicles, and overall. The second largest 

predictor of fault attribution was a participant’s confidence in their own driving abilities 

compared to their peers. Whether or not a vehicle was autonomous did not have a large effect on 

the factors that affected fault attribution. Overall, the two primary predictors of fault attribution 

accounted for approximately 50% of the variance.  

 There are several reasons the vehicle’s status as either a regular or autonomous car may 

not have been a significant predictor of fault. One reason is that the participants were largely 

unfamiliar with autonomous vehicles and their capabilities. In a pre-survey regarding their 

experience with autonomous vehicles, many reported no such prior experience. A few had been 

passengers in a Tesla, but none of the present sample owned an autonomous vehicle or had any 

extensive experience using one. The majority who did claim some knowledge of autonomous 

vehicles largely cited experience with lane assist. Although autonomous vehicles were described 

in the study, it is possible that some participants had pre-conceived notions of autonomous 

vehicles as simply regular vehicles with higher-quality automated technologies. Additionally, all 
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of the collisions illustrated were minor. This was done intentionally to prevent any unnecessary 

trauma to the participants. However, the minor collisions may not have warranted in-depth 

examination of who is to blame in the same way that a deadly accident may have done.  

 Based on both the similarities between the overall fault attribution model and the fault 

model for autonomous vehicles, and the non-significant effect of automation condition on fault 

attribution, it appears that people have similar attributions for both autonomous and regular 

vehicles. This may indicate that there will be little or no change in the way fault is attributed, in 

both legal and moral settings, even as the world begins to shift in the direction of autonomous 

vehicles. However, the present findings may only be relevant in this current, brief moment in 

time where participants are familiar with the concept of autonomous vehicles but do not yet have 

any extensive prior experience with them.  

 There was also a significant, positive relationship between a participant’s confidence in 

their driving skills compared to their peers, and their score on the Personal Fable scale. However, 

there was a negative, but non-significant relationship between their trust in automation and fault 

attributed to specifically the algorithms of an autonomous vehicle. These findings supported 

Hypothesis 6 and partially supported Hypothesis 7. It is possible that one’s complacency with 

automation in general, does not extend to the high-risk and new technology of autonomous 

vehicles.   
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CHAPTER 3: EXPERIMENT TWO 

 Having examined the factors that affect fault attribution when participants are witnesses 

to collisions involving autonomous vehicles, the next step was to examine whether those findings 

remained constant when participants played the role of the driver. The second experiment placed 

participants in the position of the operator/driver of an autonomous vehicle, and addressed 

Hypotheses 4 and 5. Participants completed a task that simulated using an automated decision 

aid in driving. In this task, they were faced with different driving situations and had to make the 

correct decisions with the help of a Safety Suggestion Algorithm that mimicked what some 

automated decision aids are capable of. Participants could choose to agree or disagree with the 

algorithm at each point. Again, participant confidence in their driving abilities, and their opinion 

about the avoidability of the collision, were examined as predictors of their fault in both 

themselves, and the automation. 

Method 

Participants 

 Participants were undergraduates at the University of Central Florida, and were given 

SONA credits in exchange for their participation. All were over the age of 18 and could not have 

any objection to being involved in simulated car collisions. A total of 188 participants were 

involved in the study. Of these, 123 were female, 63 were male, and 3 declined to state a gender. 

Their average age was 20.05 years with a standard deviation of 4.35 years. Again, statistical 

power analysis program G*Power (Faul, Erdfelder, Lang & Buchner, 2007) determined that for a 

multiple regression with nine predictors to reach a power level of .95, with alpha of .05 and an 
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expected effect size of f2= .15, a total sample size of 166 participants was required. This number 

was again inflated due to the online nature of the experiment. However, since engagement 

proved to be relatively high in the first experiment, n was not as drastically increased as in the 

prior study.  

Materials 

 Surveys and Scales:  

The same scales were given prior to this task, as were given in Experiment One. The 

Driver Confidence and Driver Experience Scales, as well as the Personal Fable and Automation 

Complacency scales were the same as the previous study. A similar fault survey was used, 

however in Experiment Two, rather than attributing fault to the various players in the accident 

scenario, the participant attributed fault to a) the vehicle that they were operating and b) 

themselves, and was measured on a scale of 1-10 (with 1 indicating not at all at fault, and 10 

indicating highly at fault). This was done to allow for greater variation in responses, and to give 

participants an option to not place any blame at all on themselves or the SSA.  The avoidability 

scale was also different here, asking participants how easily the incident could have been 

avoided on a scale of 1 (not easily at all) to 10 (very easily).  

 The Scenarios:  

Scenarios consisted of driving situations which a driver might experience in their 

commute. For example, coming across an obstacle in the road and having to decide between 

severe braking or swerving around the obstacle (and see Hancock & de Ridder, 2003). In each 
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case, participants were given two options (such as swerving, or using the brakes). The Safety 

Suggestion Algorithm indicated which option it recommended, and participants were free to 

choose to agree or disagree with it. They were given the option to choose between agreeing or 

disagreeing with the suggestions from the SSA, rather than given the choice between the two 

driving options, to ensure that they attended to the SSA’s suggestion. This task measured the 

cognitive aspects of driving, such as decision making and knowing the rules of the road. 

However, it did not examine the physical aspects of driving such as reaction time.  

 The Images:  

Scenarios were accompanied by images and videos which helped to show the situation 

more clearly. In every case, the participant’s car was yellow, and the other vehicles in the scene 

were white. Participants were informed that theirs was the yellow vehicle, and told to use the 

images to help guide them in their decision making if they were confused by the textual 

description of the scenario. 
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Figure 6: A diagram of a driving situation in which a yellow vehicle (the participant’s vehicle) 

drives in the far right lane alongside a white vehicle in the left lane. Ahead of the two vehicles, 

the right lane is blocked. 

Procedure 

 Participants read the informed consent, and agreed to take place in the experiment. Then, 

they filled out the driver experience, driver confidence, personal fable and automation 

complacency  surveys which were hosted via Qualtrics. Once those surveys were complete, they 

began the task. In the task, participants were given up to nine driving scenarios. The scenarios all 

occurred in the same order, and participants advanced to the next scenario by choosing the 
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correct course of action. In each scenario, a driving safety issue came up and the participants 

were given two options. The Safety Suggestion Algorithm would make a recommendation, and 

participants could choose to either agree, or disagree with the algorithm. In most cases, the 

algorithm was correct and agreeing with it was the appropriate course of action. In the third, 

sixth, and eighth scenarios, the algorithm was incorrect and disagreeing with it was the way to 

advance to the next step. When a participant made an incorrect choice, they were informed that 

their drive had ended and they were given the collision avoidability scale and the fault scales to 

fill out regarding the extent to which they faulted themselves, and the Safety Suggestion 

Algorithm, for any failure which occurred. They were also given scales to measure perceived 

avoidability of the failure, on both their part and the part of the algorithm. Those who 

successfully navigated the driving task were not given these additional surveys.  

Results  

The Driving Task 

 Participants, overall, did not complete the driving task successfully. Of the 188 total 

participants, only 5 got through all scenarios successfully. Most were thus incorrect in one of the 

preceding scenarios. Figure 7 shows the breakdown of which rounds were most difficult for the 

participants. While some were easy with very few failures, some rounds were more difficult. In 

97 cases, the participants agreed with the SSA’s incorrect advice, and failed at the task. In 86 

cases, the SSA was correct, but the participants disagreed with its suggestion and failed.  
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Figure 7: Graphical representation of the rounds in which participants failed, and the number 

who failed in each round. 

  Of the 5 participants who successfully managed to navigate the task, three were males 

and two were females. These participants did not attribute fault or avoidability, as there was no 

failure in regards to which they needed to attribute fault.  
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Descriptive Statistics 

Fault Attribution: Those 183 participants who did not successfully complete the task attributed 

fault to both themselves, and the Safety Suggestion Algorithm. When asked to attribute fault to 

the SSA, participants gave an average fault attribution of 3.75 (2.57). Surprisingly, a higher fault 

was attributed to the SSA when the driver’s mistake had been to disregard its advice (m = 4.07, 

sd = 2.61), compared to when the driver had followed incorrect advice (m = 3.66, sd = 2.45). 

However, the difference between these two groups was not statistically significant t(181) = 

1.095, p > .05.  

 Participants tended to place higher fault on themselves than on the SSA. The average 

fault that the participant attributed to themself was 5.21 (3.32). Again, the difference between 

fault attribution when the algorithm was wrong (m = 5.67, sd = 3.21), was not significantly 

different from when the algorithm made the right choice and the participant disagreed (m = 4.99, 

sd = 3.26; t(181) = -1.42, p > .05). This indicates that, regardless of whether the vehicle or the 

participant made the incorrect choice, fault was attributed similarly. 

Avoidability: Participants rated the avoidability of the incident which made them fail the task, by 

expressing the extent to which the incident was avoidable if different actions had been taken by 

themselves as the driver, and by the SSA. Overall, participants thought that the incident was 

more avoidable had different actions been taken by themselves as the driver (m = 7.04, sd = 

2.77) compared to how easily it could have been avoided if the SSA had taken different actions 

(m = 6.47, sd = 2.85) 
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Driving Abilities Overall: Participants were asked to rate their driving abilities. The average 

rating for a participant’s vehicle handling skills was 7.86 (1.35). Their driving judgement was 

scored at 7.70 (1.41) and their driving reflexes were rated 7.69 (1.38). Overall, their average 

driving skills were perceived to be 7.75 (1.26). These findings were similar to Study 1, in that 

participants overall believed themselves to be good drivers. Those 5 who successfully completed 

the driving task had similar perceptions regarding their driving ability, with an overall score of 

7.27.  

Driving Abilities Compared to Peers: Participants were asked to rate their driving skills 

compared to their peers. Their vehicle handling skills were rated at 7.23 (1.53). Their driving 

judgement was 7.32 (1.60), and their driving reflexes were 7.21 (1.64). Overall, compared to 

their peers, participants rated their driving abilities at 7.25 (1.47), again considering themselves 

better than the average driver in their age group. Interestingly, the five who successfully 

completed the driving task gave themselves a lower rating of 6.53.  

Personal Fable: The Personal Fable Scale measured participants’ beliefs about their own 

omnipotence, invulnerability, and uniqueness on a scale of 1-5. For omnipotence, participants 

rated themselves an average of 3.01 (0.47). On the invulnerability subscale, participants rated 

themselves at a 2.90 (0.58), and on the uniqueness subscale the average score was 3.34 (0.45). 

The average on the scale overall was 3.08 (0.33). Scores on all these subscales were very similar 

to those on the same scales as in Experiment 1. 

Automation Complacency: Automation complacency was measured on the subscales of 

confidence in automation, reliance on automation, trust in automation, and belief in the safety of 
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automation. On the confidence subscale, participants scored an average 3.33 (1.02). For reliance, 

the average score was 3.12 (0.79) and for trust the average was 3.03 (0.68). For belief in the 

safety of automation, the average score was 2.79 (1.14). Overall, the average score for 

automation complacency was 3.07 (0.61).  

Fault Attributed to the Vehicle 

 A hierarchical regression was conducted to determine the predictors of fault attributed to 

the vehicle—specifically the SSA. Based on the results of Experiment 1, here the first step 

included perceived avoidability due to actions of the SSA (SSA Avoidability) and the driver 

(Driver Avoidability). This accounted for 10.1% of the variance in fault attribution. In the second 

step, the round in which participants had failed was added as a variable. Additionally, the 

dummy-coded variable of whether the algorithm had made the wrong suggestion prior to the 

incident (SSA Wrong; dummy coded with 0 = the SSA was correct in the last round played, and 

1 = the SSA was wrong), was included in this step. This was because the algorithm’s suggestion 

being incorrect should have an effect on its perceived role in causing a collision. This increased 

predicted variance to 11 percent.  In the third step, both types of driver confidence were entered, 

and in the last step, again, gender, scores from the Personal Fable, and scores from the 

Automation Complacency scales were included as predictors. See Table 6. Overall, this model 

predicted only 16.7% of the variance in fault attribution.  
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Table 6: Regression for fault attributed to the SSA.  

          Step 1           Step 2            Step 3           Step 4 

Variable b se B b se B b se B b se B 
Driver Avoidability  -.263 .066 -.296* -.266 .067 -.299* -.274 .067 -.308* -.281 .066 -.381* 

SSA Avoidability .210 .068 .230* .216 .068 .236* .214 .068 .235* .228 .068 .250* 

SSA Wrong    -.434 .364 -.086 -.459 .364 -.091 -.261 .367 -.052 

Round Failed    .071 .102 .050 .084 .102 .059 .102 .101 .072 

Driving-Peers       .306 .168 .172+ .265 .169 .155 
Driving-General       -.290 .196 -.146 -.289 .193 -.146 

PF          .837 .576 .109 

Comp          -.061 .298 -.015 

Gender          -.818 .400 -.152* 

             

             

R2 .101   .110   .127   .167   

R2 change  .101   .009   .017   .040   

*indicates significance at p < .05 
+indicates significance at p <.10 

 

As shown in the results of Study 1, perceived avoidability was the largest predictor of 

fault attribution. Here, the less the participant felt that they as the driver could have avoided the 

incident, the more they blamed the SSA for the undesirable outcome. The opposite was true 

when it came to perceived avoidability by actions of the SSA, where participants felt that the 

more easily the SSA could have avoided the incident, the more the SSA was at fault. 

Participants’ confidence in their driving skills compared to their peers was significant in the third 

step, with those who had higher confidence finding higher fault in the algorithm. These results  

partially support Hypothesis 4. In the last step, gender was a significant predictor, with women 

faulting the vehicle less than men.  

Fault Attributed to Self 

 Participants were also asked to attribute fault to themselves for the collision which 

occurred. Again, a hierarchical regression was conducted with the same predictor variables as the 

model for fault in the SSA. However, this time the outcome variable was the fault that the 
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participant attributed to themselves, as the driver.  This time, the first step resulted in an R2 of 

.041, predicting 4.1% of the variance in fault attribution. In the next step, R2 increased to .057. In 

the next step, when driver confidence was taken into account as a predictor, the R2 value 

increased to .084. Finally, when the Personal Fable Scale, Automation Complacency Scale, and 

gender were entered as predictors, R2 increased to .087. See Table 7.  

Table 7: Model for fault that participants attributed to themselves. 

          Step 1           Step 2            Step 3           Step 4 

Variable b se B b se B b se B b se B 
Driver Avoidability  .099 .088 .087 .102 .088 .089 .109 .088 .096 .108 .089 .094 

SSA Avoidability -.248 .090 -.211* -.257 .090 -.220* -.237 .090 -.202* -.243 .091 -.207* 

SSA Wrong    .764 .481 .118 .669 .480 .103 .648 .494 .100 

Round Failed    -.094 .135 -.052 -.074 .134 -.041 -.080 .136 -.044 

Driving-Peers       -.168 .222 -.076 -.139 .227 -.064 
Driving-General       -.264 .258 -.104 -.263 .260 -.103 

PF          -.295 .775 -.030 

Comp          -.208 .401 -.039 

Gender          .102 .538 .015 

             

             

R2 .041   .057   .084   .087   

R2 change  .041   .016   .027   .003   

*indicates significance at p < .05 
+indicates significance at p <.10 

 

Results showed that, when the participant perceived the incident to be more avoidable by 

the actions of the SSA, they blamed themselves less than if the incident did not seem avoidable. 

That is, if the SSA could have, but failed to, prevent an incident then participants placed less 

fault in themselves as the driver.  

Correlations 

 Table 8 shows the correlations between the variables of fault attributed to the vehicle 

(SSA Fault), fault attributed to the driver (Driver Fault), avoidability by the actions of the vehicle 
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(SSA Avoidability), and by the actions of the driver (Driver Avoidability), whether the SSA was 

wrong last (SSA Wrong; dummy coded with 0 = the SSA was correct in the last round played, 

and 1 = the SSA was wrong), the participant’s perceived driving abilities compared to their peers 

(Driving-Peers), and in general (Driving-General), as well as score on the Automation 

Complacency Scale (Complacency), and the Personal Fable Scale (Fable). Gender was dummy 

coded with a 0 indicating a male participant and a 1 indicating a female participant. Further 

correlations are found in the Appendix.  

Table 8: Correlations between overall variables in Study 2. 

 1+ 2+ 3+ 4+ 5+ 6 7 8 9 

1. SSA Fault+ 1         

2. Driver Fault+ -.124 1        

3. SSA Avoidability+ .086 -.233** 1       

4. Driver Avoidability+ -.274** -.011 .314** 1      

5. SSA Wrong+ -.036 .144* .033 .009 1     

6. Driving-Peers .101 -.142 .084 .069 -.038 1    

7. Driving-General .015 -.163* .084 .038 -.084 .689** 1   

8. Complacency .004 -.068 -.050 -.081 .030 .108 .054 1  

9. Fable .147* -.034 -.038 .030 -.067 .245** .196** .052 1 

10. Gender -.144 .057 .062 .005 .218** .001 .014 -.034 -.231** 

*indicates significance at p < .05 level, **indicates significance at the p < .01 level.  

n = 188 
+indicates that n = 183 

 

A negative correlation was found between the fault attributed to the SSA, and the perceived 

avoidability of the incident based on actions by the driver (r = -.273). Thus, the less the driver 
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felt that the incident was avoidable based on their own actions, the more they blamed the SSA 

for the outcome. Additionally, participants who scored higher on the Personal Fable Scale 

blamed the SSA more for the negative outcome (r = .147). When it came to attributing fault to 

themselves, participants tended to place higher blame on themselves the less they felt that the 

SSA could have prevented the incident. This is shown by the negative correlation (r = -.233). 

Participants tended to blame themselves more when the SSA had been given wrong information 

prior to the collision, and they had fallen for the bad information (r = .144). The correlations 

showed a significant, negative relationship between the fault a driver attributed to themselves, 

and their confidence in their driving skills in general (r = -.163). This indicated that the higher 

their confidence in their driving skills, the less fault they attributed to themselves for the 

outcome. There was a positive correlation between avoidability due to the actions of the driver, 

and due to the actions of the SSA (r = .314), indicating that participants felt that some incidents 

were avoidable or inevitable regardless of who took action. Not surprisingly, those who had a 

higher level of confidence in their driving skills in general also felt that they drove better than 

their peers (r = .689). Those who scored highly on the Personal Fable Scale also felt that they 

were good drivers in general, as well as when compared to their peers (r = .245 and r = .196, 

respectively). 

 Females scored lower on the Personal Fable (r = -.231). Additionally, there was a 

positive correlation between the SSA being wrong in the last round played, and gender (r = 

.218). This indicates that female participants were more likely to agree with the algorithm, even 

when it was incorrect.  
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Gender Differences 

 Women placed less fault on the SSA than men did, with an average fault score of 3.48 

(2.52) compared to men’s 4.26 (2.59). The difference was approaching significance (p = .051). 

There was no significant difference between the fault they placed on themselves, though women 

(m = 5.33, sd = 3.46) did have a higher score, on average, than men (m = 4.94, sd = 3.05). Scores 

on both measures of driver confidence were similar. There was, however, a significant difference 

in whether males or females were more likely to agree with the SSA’s wrong information. 

Women were more likely to fail by agreeing with the SSA even when it was wrong, whereas 

men were less likely to do so (p < .05).  

Discussion of Experiment Two 

 The hypotheses examined in this study were Hypothesis 4, which stated that those higher 

in their driving confidence would attribute more fault to the vehicle, and Hypothesis 5, which 

stated that participants with low driving confidence would attribute more fault to themselves. 

The correlations supported Hypothesis 5, but the regression models did not support either 

hypothesis, and no evidence was found to support Hypothesis 4. It is possible that the method 

involved in the driving task, which required decision making but no reflexes or physical driving 

skill, may have been different enough from actual driving that participant’s confidence in their 

driving abilities had little effect. It is possible they did not feel as though this exercise was 

applicable to their real-world driving skills.  

 Additionally, Hypothesis 6 was examined which stated that participants would rate their 

driving abilities higher, the higher they scored on the Personal Fable Scale. This hypothesis was 
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supported by the correlations. Hypothesis 7 proposed that those with higher automation 

complacency scores would attribute less fault to an autonomous vehicle. However, the results did 

not support this hypothesis. Similar to Study 1, it is possible that complacency and trust in 

automation in general does not yet (and perhaps never will) extend to autonomous vehicles. 
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CHAPTER 4: EXPERIMENT THREE 

The previous experiment examined the predictors of fault attribution when participants were the 

drivers of vehicles with autonomous qualities. The next, examined those predictors in a situation 

where participant was still a driver, but was controlling their own vehicle, and who had to 

encounter other autonomous vehicles and navigate a driving path without collision. The third 

experiment had participants play the role of the driver of a manually-operated vehicle, sharing 

the road with vehicles which were automated rather than controlled by other people. This 

experiment addressed Hypotheses Three and Four. Participants manipulated an on-screen vehicle 

by controlling it with the arrow keys on their computer keyboard. They had to drive their car 

from one side of the screen to the other, while avoiding any obstacles. If their vehicle collided 

with any others, or went offscreen, they failed at the task. The other vehicles onscreen moved 

only in relation to the participant’s car, and were not controlled by human players. If participants 

failed at the driving task, they were given a survey to complete in which they indicated who they 

felt was to blame for the collision. Additionally, participant personality, automation 

complacency, and confidence in their driving abilities were measured as covariates.  

 

Method 

Participants: 

 Participants were drawn from the UCF undergraduate student body, and from volunteers. 

If participants were from UCF, they were rewarded with SONA credit for their participation. All 

participants were required to possess a valid driver’s license and had to be over the age of 18. 
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Additionally, they had to use a computer with a keyboard, rather than a Smartphone. A total of 

137 participants took part in the study. Of those, data from 14 were rejected for failing to answer 

key questions. The remaining 123 participants were composed 75 females, 47 males, and one 

individual who declined to state their sex. The average age was 24.91 (sd = 11.57). G*Power (Faul, 

Erdfelder, Lang & Buchner, 2007) indicated that for a multiple regression with five predictors to 

reach a power level of .95, with alpha of .05 and an expected effect size of f2= .179 (which was 

calculated from the R2 value of Experiment 2, where the same outcome variable was measured) a 

total sample size of 117 participants was required. Again, this number was slightly increased to 

account for potential lack of engagement during the online study.  

Materials 

 Surveys and Scales:  

The same scales were included in this task, as were given prior to Experiment One and 

Experiment Two. The Driver Confidence and Driver Experience Scales, as well as the Personal 

Fable and Automation Complacency scales were the same as the previous study. Here, the Fault 

scale was different in that participants attributed fault to themselves as the driver of the manually 

operated vehicle, and the other non-manually controlled vehicles and, similarly to study 2, was 

on a scale of 1-10. The Avoidability scale, also, involved judging the avoidability if different 

actions had been taken by the participant, or by the other automated vehicles, and was the same 

as in Study 2. 

 The Driving Task:  
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The driving task required participants to steer a vehicle across the screen. There were other 

moving vehicles and obstacles shown onscreen, and the participant had to reach the other side of 

the screen without having a collision. The participant was informed that the other vehicles were 

not being controlled by anyone. That is, they were not playing against another person, and the 

vehicles were not being controlled by someone who wanted to cause or avoid a collision. The 

vehicles automatically moved in relation to the participant’s vehicle, and so it was up to the 

participant to avoid crashing.  

The participant’s vehicle was controlled by arrow keys. The motion was set to be as 

intuitive as possible, with the car moving upwards when the up key was pressed, downwards 

when the down arrow key was pressed, and left and right when the left or right arrow keys were 

pressed. The other vehicles each moved when an arrow key was pressed, but not in the same 

direction as the user-controlled vehicle. For instance, when the user pressed the up arrow key, 

their vehicle would move upwards, but an adjacent vehicle might move to the left, or move 

downwards and to the right diagonally. Figure 8 shows the screen that the participant viewed, 

and the directions in which each obstacle moved when each key was pressed. It was possible, but 

difficult, to complete the task successfully, and approximately 44.72 percent of participants were 

able to complete the driving task without a collision. This task measured some of the physical 

skills inherent to driving, such as reflex time and judgement of space. However, it did not 

examine the cognitive aspects of driving as some of the vehicles did not follow the rules of the 

road. 
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Figure 8: The driving task, and the directions in which each obstacle-vehicle moved when an 

arrow key was pressed.  

If participants were successful, they were taken to a screen which told them they had completed 

the driving task without a collision. If they were not successful, i.e., if their car went offscreen, 

or collided with another vehicle, they were taken to a page where they were informed that there 

had been a collision. The driving game was created using the Axure software, and was hosted via 

the Axure cloud. Participants reached the game via a link in the initial online survey. Once they 
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had completed the task, whether successful or not, they were redirected back to the survey on 

Qualtrics.  

Procedure 

 Participants read the informed consent, and agreed to take part in the experiment. 

Following this, they were directed to the instructions for the driving game, which explained how 

to steer the vehicle, and informed participants that the other vehicles moved automatically in 

relation to their own car, and that the latter were not actively being controlled by any other 

individual. When they had read the instructions, they followed a link to the driving task, which 

was hosted via the Axure cloud. They then completed the task by controlling the vehicle with the 

arrow keys, and attempting not to come into contact with any of the other moving vehicles. 

Following their completion of the driving task, they were redirected back to Qualtrics to 

complete the rest of the study. Participants who had been involved in a collision were directed to 

the Fault and Avoidability Surveys, where they attributed fault between both themselves, and the 

other vehicles, and rated the avoidability of the collision both based on actions they could have 

taken as the driver, and actions the other vehicles might have taken. Then, they completed the 

driver experience, driver confidence, personal fable and automation complacency surveys. 

Participants who had avoided a crash were directed straight to the follow-up surveys, skipping 

over the measures of Fault and Avoidability. 
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Results 

The Driving Task 

 Participants had to steer a virtual car by using the arrow keys, while avoiding collisions 

with other, non-human-controlled vehicles, which moved only in relation to their own. Of the 

123 participants who completed the entire study a total of 55, or 44.72 percent of the 

participants, managed to successfully complete the task. Sixty-eight were involved in a collision. 

Data from those 68 were used in the fault attribution models and descriptive statistics for fault 

and avoidability, while data from the entire set of 123 was used in the correlations and other 

descriptive statistics. There was no significant difference in any of the driving confidence 

measures between those who succeeded or failed on the task.  

Descriptive Statistics 

Fault Attribution: The 68 participants who did not successfully complete the driving task without 

collision attributed fault to both themselves, and the other vehicles. They provided a self-fault 

rating of 5.01 (2.62) on the 1-10 scale, and gave similar fault attributions to the other vehicles 

involved in the collision (m = 5.04, sd = 3.14). 

Avoidability: Participants who had been in a collision, rated the avoidability of that collision 

based on actions they could have taken, and actions the other vehicles could have taken. They 

rated the avoidability of the collisions based on their own actions a 4.94 (2.85), and believed the 

other vehicles had slightly more ability to avoid the collision (m = 5.82, sd = 3.07). 

Driving Abilities Overall: The means for driving abilities included all 123 participants. When 

asked to rate their vehicle handling skills, participants gave themselves a score of 7.62 (1.38). 
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Their driving judgement was scored at 7.46 (1.37) and their driving reflexes were rated 7.51 

(1.46). Overall, their average driving skills were perceived to be 7.53 (1.72).  

Driving Abilities Compared to Peers: Participants were asked to rate their driving skills 

compared to their peers. Their vehicle handling skills were rated at 7.11 (1.55). Their driving 

judgement was 7.02 (1.58), and their driving reflexes were 7.03 (1.68). Overall, compared to 

their peers, participants rated their driving abilities at 7.05 (1.49), considering themselves better 

than the average driver in their age group. This was, again, a common finding across all three 

experiments. 

Personal Fable: The Personal Fable Scale measured participants’ beliefs about their own 

omnipotence, invulnerability, and uniqueness on a scale of 1-5. For omnipotence, participants 

rated themselves an average of 2.95 (0.59). On the invulnerability subscale, participants rated 

themselves at a 2.92 (0.55), and on the uniqueness subscale the average score was 3.34 (0.49). 

The average on the scale overall was 3.07 (0.37). Scores on all these subscales were very similar 

to those on the same scales as reported in Experiment 1.  

Automation Complacency: Automation complacency was measured on the subscales of 

confidence in automation, reliance on automation, trust in automation, and belief in the safety of 

automation. On the confidence subscale, participants scored an average 3.53 (1.82). For reliance, 

the average score was 3.23 (1.99) and for trust the average was 2.88 (0.86). For belief in the 

safety of automation, the average score was 2.93 (1.74). Overall, the average score for 

automation complacency was 3.16 (1.30).  
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Fault Attributed to the Vehicles 

When participants were asked to attribute fault to the vehicles for the collision, the same 

variables were considered as in previous studies.  Again, a hierarchical regression was 

conducted. In the first step, avoidability due to the actions of the vehicles (Vehicle Avoidability) 

and the participant (Driver Avoidability) accounted for a R2 value of .111. When driver 

confidence was considered, that value increased to .129. Finally, scores on the Personal Fable 

and Automation Complacency scales, along with gender, only increased R2 to .137. See Table 9. 

Table 9: Participants’ fault attribution towards the vehicles 

          Step 1           Step 2            Step 3 

Variable b se B b se B b se B 

Vehicle Avoidability -.036 .120 -.036 -.020 .121 -.019 -.033 .130 -.033 

Driver Avoidability -.351 .129 -.326* -.366 .130 -.339* -.383 .140 -.355* 

Driving-Peers    -.337 .377 -.171 -.305 .396 -.154 

Driving-General    .487 .433 .214 .507 .466 .223 

PF       -.108 1.45 -.011 

Comp       .076 .601 .017 

Gender       .588 .863 .092 

          

          

R2 .111   .129   .137   

R2 change  .111   .018   .008   

*indicates significance at p < .05 
+indicates significance at p < .10 

 

 There was a negative relationship between perceived avoidability due to actions of the 

driver, and the fault attributed to the vehicles. That is, the less the participant felt that they could 

have had any control over the outcome, the more they blamed the vehicles for that outcome. 

While this is not a surprising finding, what is surprising is the fact that avoidability due to actions 

of the vehicles was not a significant predictor, and nor was driver confidence.  
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Fault Attributed to Self 

 A hierarchical regression was conducted to determine what variables predicted fault that 

participants attributed to themselves. In the first step, perceived avoidability due to actions of the 

participant (Driver Avoidability), and the vehicles (Vehicle Avoidability) were entered, based on 

results from the previous experiments. With these predictor variables, R2 was .083.  In the next 

step, both types of driver confidence changed R2 by .054, increasing it to a value of .137. In the 

third and final step, gender, as well as the scores from the Personal Fable and the Automation 

Complacency scale were added, bringing R2 to .158. See Table 10. 

Table 10: Regression predicting fault in self. 

          Step 1           Step 2            Step 3 

Variable b se B b se B b Se B 

Vehicle Avoidability .115 .104 .134 .139 .103 .162 .138 .109 .161 

Driver Avoidability .217 .110 .236+ .190 .111 .207+ .150 .118 .163 

Driving-Peers    -.591 .320 -.351+ -.536 .333 -.318 

Driving-General    .685 .367 .354+ .643 .375 .332+ 

PF       -.573 1.22 -.069 

Comp       .468 .506 .125 

Gender       .016 .726 .003 

          

          

          

R2 .083   .137   .158   

R2 change  .083   .054   .021   

*indicates significance at p < .05 
+indicates significance at p <.10 

  

There was a positive relationship between fault that participants attributed to themselves, 

and perceived avoidability due to actions of the participant. That is, participants felt that the 
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more power they personally had to avoid the collision, the more fault rested with themself. 

Surprisingly, avoidability due to actions of the vehicles did not prove to be a significant 

predictor. In the final step, driver confidence in their abilities in general, had a positive 

relationship with fault. Here, participants who felt that their driving skills were very good, tended 

to place higher blame on themselves for a collision. This is surprising, but in line with the idea 

that their own avoidability predicting the fault they attributed to themselves. 

Correlations 

 Correlations between the overall variables in this experiment are presented in Table 11. 

Variables include of fault attributed to the vehicles (Vehicle Fault), fault attributed to the driver 

(Driver Fault), avoidability by the actions of the vehicle (Vehicle Avoidability), and by the 

actions of the driver (Driver Avoidability), the participant’s perceived driving abilities compared 

to their peers (Driving-Peers), and in general (Driving-General), as well as score on the 

Automation Complacency Scale (Complacency), and the Personal Fable Scale (Fable). Gender 

was dummy coded with a 0 indicating a participant was male, and a 1 indicating they were a 

female. Further correlations are found in Appendix A. 
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Table 11: Correlations between overall variables in Study 3 

 1+ 2+ 3+ 4+ 5 6 7 8 

1. Vehicle Fault+ 1        

2. Driver Fault+ -.314** 1       

3. Vehicle Avoidability+ -.100 .173 1      

4. Driver Avoidability+ -.333* .257* .152 1     

5. Driving-Peers .053 -.060 -.049 -.122 1    

6. Driving-General .120 .055 -.086 -.035 .528** 1   

7. Complacency -.058 .193 -.089 .251* .165 -.472** 1  

8. Fable .056 -.189 -.251* -.211 .392** .446** -.245** 1 

9. Gender .020 .047 .142 .169 -.202* -.063 -.106 -.213* 

*indicates significance at p < .05 level, **indicates significance at the p < .01 level  

n = 123 
+indicates n = 68 

 

 There was a significant, negative correlation between fault attributed to the driver and 

fault attributed to the vehicles (r = -.314). This outcome indicated that participants tended to 

blame either themselves or the vehicles for the collision but not both. Additionally, there was a 

negative correlation between the perception that the collision was avoidable by the driver, and 

the fault attributed to the vehicle (r = -.333), which means, quite understandably, that the less the 
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driver felt they could have prevented the collision, the more they faulted the other vehicles. 

There was a logical and positive relationship between driver fault in themselves, and their 

perception that they could have avoided the collision (r = .257). The more the driver felt they had 

the ability to effect the outcome, the more they blamed themselves when that outcome proved to 

be aversive.   

The higher participants scored on the Personal Fable Scale, the less they felt that the other 

vehicles in the situation had any control over the collision outcome (r = -.251). The higher their 

complacency with automation, the more they felt that they themselves had the ability to control 

the collision (r = .251). Their confidence in their driving skills compared to their peers was, 

again, highly correlated with their confidence in their driving skills in general (r = .528) and their 

scores on the Personal Fable Scale (r = .392). Their confidence in their driving skills, in general, 

was negatively correlated with their automation complacency (r = -.472) but positively correlated 

with their Personal Fable score (r = .446). Their complacency with automation was also 

negatively correlated with their scores on the Personal Fable (r = -.245). Females scored lower 

on the Personal Fable (r = -.213), and were less likely to consider themselves better drivers than 

their peers (r = -.202). 

Gender Differences 

 There were no significant differences between the level of fault that the different genders 

attributed either to themselves, or to the vehicles. Additionally, there was no significant 

difference between the scores the participants gave themselves for their driving abilities in 

general. However, when asked to rate their driving abilities compared to their peers, there was a 
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significant difference (p < .05) between how males and females rated themselves. Males gave 

themselves an average rating of 7.44 (1.27), while females rated themselves at 6.82 (1.58). 

Participants who Failed at the Driving Task Compared to those who Succeeded 

 The 68 participants who failed at the driving task were compared to the 55 who 

succeeded, in terms of their driver confidence. When ranking their driving skills in general, those 

who succeeded gave themselves a 7.19 (2.09) while those who failed rated their driving skills at 

7.37 (1.37). There was no significant difference. Compared to their peers, those who succeeded 

rated themselves 7.18 (1.54), while those who failed rated themselves slightly lower at 6.95 

(1.45) but not significantly so. 

Discussion of Experiment Three 

 The findings in the correlational examination supported Hypothesis 6, which stated that 

participants who scored highly on the Personal Fable Scale would have a higher confidence in 

their own driving abilities. The only significant predictor of either fault attributed to the vehicles 

or to the driver, was perceived avoidability due to actions of the driver and, in the third step of 

the model predicting fault in the self, driver confidence, which was positively related to fault in 

the self. 

 In general, the more participants believed that they, themselves, had the ability to avoid 

collision, the more fault they attributed to themselves and the less they attributed to the other 

vehicles. Rationally, this makes sense, as if they could have avoided a collision but failed to do 

so, they were aware that the blame lay largely with themselves. If they felt their actions could not 
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have prevented a collision, and yet a collision still occurred, then it stands to reason that they 

would attribute fault to the other vehicles involved.  

Perceived avoidability due to actions of the vehicle was not a significant predictor of 

fault. This may be due to the fact that participants were aware that the non-controlled vehicles 

moved only in relation to their own. Additionally, it was anticipated that complacency with 

automation may have exerted an influence on fault attribution, but this was not the case here. 

Perhaps participants’ feelings towards automation, in general, do not extend to automated 

vehicles because of the familiarity factor at this time. Perhaps also, the stakes of an online 

driving game were not of sufficient importance to elicit a response, and perhaps the task was 

dissimilar enough from actual driving. 

 The correlational results showed that, again, those high on the Personal Fable Scale also 

thought highly of their own driving abilities. This is unsurprising, as the Personal Fable Scale 

measures one’s feelings that they are special in some way, and it is reasonable that they would 

feel their abilities in many fields-including driving-may be above average (Lapsley et al., 1989). 

It was fairly unexpected that participants’ confidence in their driving skills in general was 

negatively related to their complacency with automation. It is possible that, knowing the study 

involved autonomous vehicles, they were primed prior to completing the scale of automation 

complacency. This awaits further investigation. 
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CHAPTER 5: GENERAL DISCUSSION 

 As self-driving cars become more common and begin to share the road with regular 

drivers not as rare novelties, but everyday vehicles, the number of collisions in which they are 

involved will only increase. Therefore, it is necessary to understand the differences between how 

people attribute fault to these vehicles compared to non-autonomous, manually-operated cars. A 

thorough identification of the way different factors affect fault in autonomous vehicles will have 

implications for the operators of those vehicles, the victims of collisions, and any jury involved 

in legal cases concerning such events.  

 Perhaps of interest is that the predictor variables mainly examined here (perceived 

avoidability of the accident and driver confidence, among other personality factors) are not easily 

manipulated. That is, unlike anthropomorphism, transparency, or other factors relating to the 

automation, they cannot be tweaked for the direct purpose of mitigating fault or altering 

perceptions. This is intentional in that the rationale of the present work was to make an 

observation, and not a suggestion. The work is not directed as to examine how a manufacturer 

might be able to avoid fault for any collisions their product is involved in, but merely to help 

explain the ways in which a person may attribute fault differently when a vehicle is powered by 

an algorithm rather than controlled by a human. 

 Results of from the first experiment examined the extent to which the fault attributed to 

autonomous vehicles, as well as their operators, was influenced by driver confidence and 

collision avoidability. Additionally, results of that study examined whether autonomous vehicles 

were judged more harshly than regular cars, for their involvement in identical accidents. The 
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second experiment showed how people react when they are in the driver’s seat of an autonomous 

vehicle which is involved in a collision, and the ways in which their own confidence and 

perception of collision avoidability influenced the fault they placed on both themselves, and the 

vehicle. Experiment Three approximated the experience of being a regular driver of a manually 

controlled vehicle, while other vehicles on the road were not directly controlled by a human 

driver and move only in relation to one’s own vehicle.   

The Hypotheses 

 Hypothesis 1: The first hypothesis stated that “when accidents are perceived to be at 

medium or low avoidability, participants will attribute greater fault to manually-operated 

vehicles than to autonomous vehicles involved in identical collisions.” This hypothesis asserted 

that a more avoidable collision would lead to higher fault attributed to the autonomous vehicles, 

or autonomous aspects of the vehicles in question. This proposition was not supported  by the 

results of Experiment 1, where the fault model showed no significant interaction between 

perceived avoidability and automation condition. However, avoidability did predict fault 

attribution, so Hypothesis 1 was partially supported in the sense that the more avoidable the 

collisions, the greater the fault attribution. Experiment 2 showed that the less avoidable a 

participant thought the collision was, based on their own actions, the more fault they attributed to 

the SSA. So a collision with low avoidability did contribute to fault attribution in the SSA. 

However the opposite was also true, when a collision appeared to be difficult to avoid due to the 

actions of the SSA, the driver attributed more fault to themselves. Findings from Experiment 3 

were similar with higher fault attributed to the vehicles when the driver did not believe they 

could have taken action to avoid the collision, and higher fault attributed to the driver when they 
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believed that they could have avoided the collision. Overall, Hypothesis 1 was only partially 

supported. 

 Hypothesis 2: Hypothesis 2 stated “participants will attribute greater fault to a self-

driving vehicle than to a regular vehicle when they believe that the accident was highly 

avoidable.” This hypothesis was not supported in Experiment 1. While there was evidence of a 

significant interaction between avoidability and automation condition, it was not in the expected 

direction. However, avoidability did predict fault in general. The correlations showed a negative 

relationship between avoidability and fault attributed specifically to the algorithms, meaning that 

the more avoidable a collision seemed, the less fault was attributed to the algorithms. This was 

the opposite of what was predicted in Hypothesis 2. In Experiment 2, fault in the SSA was 

positively predicted by perceived avoidability on the part of the vehicle, and negatively predicted 

by the driver’s ability to avoid the collision. So participants here believed that the more the 

algorithms had a chance to avoid the collision, the more at fault it was for any resulting 

incidents. Experiment 3 showed that fault in the vehicles was negatively predicted by the driver’s 

ability to avoid a collision, meaning that when involved in a highly avoidable collision, the 

algorithms received less blame than a human driver. Overall, Hypothesis 2 was not supported. 

Hypothesis 3: Hypothesis 3 proposed that “participants higher in confidence in their own 

driving abilities will attribute greater fault towards human drivers – of both autonomous and 

regular vehicles - than those with low confidence in their driving abilities.” This hypothesis 

asserted that driver confidence would be a predictor of fault attribution. Experiment 1 actually 

found the opposite in the overall fault model, showing that high driver confidence negatively 
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predicted fault attribution overall. However, when it came to just the drivers of autonomous 

vehicles, driver confidence predicted lower fault attributed to the algorithms and more attributed 

to the human driver. Hypothesis 3 was also partially supported.  

Hypothesis 4: This hypothesis stated that “participants higher in confidence in their own 

driving abilities will attribute greater fault to a self-driving vehicle, compared to people with low 

confidence in their own driving abilities.” This was not supported by the results of Experiment 1. 

Results from Experiment 3 also failed to support this hypothesis. However, in Experiment 2, 

participants with higher levels of confidence in their driving abilities proved more likely to 

attribute fault to the SSA. Hypothesis 4 was partially supported.  

Hypothesis 5: This hypothesis stated that “participants with low confidence in their own 

driving abilities will attribute greater fault to themselves than people with high confidence in 

their own abilities, even when the collision was unavoidable.” The proposition was examined in 

Experiments 2 and 3, where the participant was a driver. In Experiment 2, confidence was 

negatively correlated with fault that the participants attributed to themselves as a driver. In 

Experiment 3, driver confidence compared to peers had a negative relationship with fault in the 

self, meaning that those with high driver confidence attributed less fault to themselves, however 

driving confidence in general had a positive relationship where those with higher confidence in 

their driving skills, in general, attributed more fault to themselves. These findings partially 

support Hypothesis 5. 

Hypothesis 6: This hypothesis predicted “the higher a participant rates themselves in their 

driving abilities compared to their peers, the higher their score will be on the Personal Fable 
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Scale (Lapseley et al., 1989).” This was supported by the correlational results in all three 

experiments. There were positive relationships between the Personal Fable score and driver 

confidence both overall, and compared to one’s peers. 

Hypothesis 7: Hypothesis 7 stated “those with higher automation complacency will have 

a higher blame for the driver of an automated vehicle than for that vehicle’s algorithms.” The 

only significant finding relating to automation complacency was in Experiment 3, where it was 

positively related to the extent to which the driver, rather than the vehicles, could have avoided 

the collision. While this may indirectly support Hypothesis 7, overall the hypothesis was not 

supported by the data presented here.  

Predictors of Fault 

 The variables that were significant predictors of fault attribution varied slightly between 

experiments. In Experiment 1, where participants were witnesses to collisions, perceived 

avoidability was a positive predictor, and driver confidence was a negative predictor. Those who 

had high confidence in their own driving abilities actually attributed less fault to others, 

compared to those who did not have high confidence in that regard. This may be a form of 

empathetic pity. Additionally, the more avoidable a collision appeared, the more fault was 

attributed to both autonomous and regular vehicles.  

 In Experiment 2, participants adopted the role of the driver of a vehicle with an 

autonomous algorithm that made safety suggestions. Here, if they were involved in a collision, 

they attributed fault to both themselves and the algorithm. For the model predicting fault in the 

algorithm, perceived avoidability based on actions of the driver negatively predicted fault. This 
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meant that the less the driver could have avoided the collision, the more fault was placed on the 

algorithms. Avoidability by the algorithms was a positive predictor, meaning that if the 

algorithm could have easily prevented the collision, it was perceived as more at fault for any 

collisions that did occur. One aspect of driving confidence was a positive predictor, with 

participants who had high confidence in their driving skills compared to their peers, placing 

more blame on the algorithm. Additionally, participants who scored higher on the Personal Fable 

Scale attributed more fault to the vehicle, meaning that the more unique and invulnerable they 

thought they were, the more fault for a collision (even one caused by a shared decision) was 

attributed to the vehicle. When participants judged the fault that they themselves deserved as the 

driver, fault was negatively predicted by avoidability based on the algorithm, meaning that the 

less the algorithm could have helped prevent the collision, the more the driver blamed themself 

for the outcome. Additionally, attributed fault was higher when the SSA had made a wrong 

suggestion prior to the incident. The participants faulted themselves higher for failing to spot bad 

information. This pattern may result from the way that agency is still not granted to non-living 

beings.  

 Experiment 3 had the participant driving a vehicle across a screen where the other 

vehicles were not manually controlled, mimicking the situation of sharing the road with 

autonomous vehicles. Here, fault in the other vehicles was negatively predicted by the extent to 

which the participant believed they could have avoided the collision, meaning that if they could 

have easily avoided the collision themselves, they attributed less fault to the automated vehicles 

involved. Fault in themselves was positively predicted by the same variable, where they blamed 

themselves more when they believed they could have easily avoided the collision. Additionally, 
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fault that participants attributed to themselves was positively predicted by their driving 

confidence, where those with a higher opinion of their own driving skills accepted more blame.  

 Overall, the results from the three experiments showed that the level of perceived 

avoidability was a consistent predictor of fault attribution. Patterns were similar, whether the 

fault was being attributed to autonomous or human-controlled vehicles. While it may be 

surprising that fault attribution towards both human drivers and algorithms were similar, there 

are many reasons why this may be so. It is possible that participants attribute fault abstractly, 

without knowing anything about other party involved in the collision. They may attribute fault to 

the other party similarly regardless of whether that party is a fellow student, a neighbor, a 

stranger, or an autonomous vehicle. It is possible that participants viewed strangers and 

autonomous objects fairly similarly, since neither one was a part of their daily experience.   

Real-World Implications 

 There are many ways in which fault attribution plays an important role in modern society. 

Perceived fault for any negative outcomes may serve to influence trust. While trust in some 

forms of automation, such as robotics, has many antecedents, fault has not been explored as a 

precursor to trust (Hancock et al., 2020). However, it is quite possible that fault is one of the 

many trust predictors that determine how much someone will subsequently trust, and ultimately 

use, a technological advancement.  

 Autonomous vehicles are one such advancement. If they are not deemed to be 

trustworthy, then there may be relatively few who will risk the very-real consequences of relying 

on such technology. However, if they are deemed trustworthy, and do become more common, 
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the potential for a collision-and thus a decrease in trust-only increases. This may be thought of as 

a ‘trust conundrum.’ For this reason it is necessary to understand where one will place fault when 

a collision occurs with an autonomous vehicle. The findings presented here indicate that fault 

attribution is similar between human drivers and automation. The factors that made participants 

more likely to fault drivers also applied to their fault attributed to autonomous vehicles, and 

largely, the difference in the magnitude of fault attributed was not significant. In short, fault is 

perceived as similar regardless of whether or not a vehicle was autonomous. This may be 

because people tend to be unable to distinguish between autonomous and regular vehicles based 

solely on the vehicle’s maneuvers while driving (Stanton et al., 2020).  

 I several ways, this is an encouraging finding. Collisions-even deadly ones-have been an 

accepted part of the transportation industry for a long time. Though people may fault each other 

in collisions, there has not yet been a time when groups of people have been banned from 

driving, or when roads have closed due to the inherent risk of their utilization. The potential for a 

collision has been considered an acceptable risk in transportation, and though strategies exist to 

mitigate potential dangers, every driver gets behind the wheel with the knowledge that one 

inherent aspect of driving is the chance of collision. Since this has not stopped people from 

driving before, and the factors affecting fault attribution for autonomous vehicles are similar to 

those affecting the blame of other drivers, it stands to reason that the risk of collision with an 

autonomous vehicle will be considered another such acceptable risk. Of course, the objective risk 

and the perception of that risk will remain influential. 
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 Though the experiments presented here focused on autonomous vehicles, the findings 

may well apply to other technological domains such as aviation, boating, or non-transportation 

areas such as medicine. Every instance where a human may be replaced by automation carries 

with it some of the risk of failure that existed when a human was involved and may involve new 

sorts of risk also. Whereas before, human error was a known component of these processes, 

automation error is less commonly understood. If the findings here apply to other operational 

realms, it is possible that any scenario where autonomous technology causes an incident will be 

perceived as being similar to, and as acceptable as, the same outcome when caused by a human.  

 Even if the findings apply only to the domain of road transportation, the implications will 

have effects in several ways. For instance, legal defenses will necessarily be different when it is 

someone’s technology, and not their own client’s error, that causes a collision. Whether the 

driver of an autonomous car can be blamed for failing to appropriately monitor their vehicle, 

remains to be seen. However, the results of Experiment 1 imply that defense attorneys will not 

have to alter their tactics as technology becomes more advanced. The same precursors of fault 

that affected their case when human drivers cause collisions, will still be relevant when the 

incident is the result of a poor choice by automation. The fact that individuals blamed human 

drivers more than the automation with which they shared control, indicates that the future of 

legal defenses in this field will remain very similar to its past.  

 Policy-making, too, will be most likely be affected by any increase in autonomous 

vehicles. However, policy-makers will most likely base their decisions upon their own 

attributions relating to new technology. If they blame automation more than humans for an 



77 

 

incident, then associated laws will reflect that fact. However, if the findings expressed here can 

be extended, it is likely that future blame for collisions will not be far different from that which 

exists currently, and whether one’s vehicle is autonomous or manual will not have a large impact 

on any potential repercussions of a collision, if the present attribution profile holds. 

 Driver training currently helps novice drivers to become aware of the potential future 

actions of others on the road. By anticipating where another driver may turn, one can potentially 

avoid a collision. With an autonomous vehicle, such anticipation may be difficult. When 

predicting whether a human driver will turn left, one can see that driver’s eyes and body 

language, and so be able to determine in which direction they are looking. This is not possible 

with autonomous vehicles, which have sensor cameras surrounding them (Hancock, 2018). 

However, the principal issue in predicting a driver’s actions based on their gaze is not where the 

driver is looking, but actually where they are looking away from. Autonomous vehicles do not 

have this problem, as they can ‘look’ in more than one direction at a time. When viewed from a 

bird’s eye view, the perceived avoidability of a collision where a driver pulls out and hits a 

pedestrian may seem extremely high, as the pedestrian is obvious to witnesses. What witnesses 

do not know, however, is in which direction the driver was looking.  For a high-avoidability 

collision, fault attribution will likewise be high. Autonomous vehicles can avoid this sort of high-

avoidability collision through the use of their sensors. Therefore, any collision in which 

automation is involved is more likely to have low avoidability. As perceived avoidability is the 

main predictor of fault attribution, it is likely that in general there will be little blame attributed 

to autonomous vehicles not for identical collisions, but because the type of collision in which 

they are involved will appear to witnesses to be less avoidable.  
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Consistent Findings 

 In all three studies, females scored lower on the Personal Fable Scale (Lapsley et al., 

1989). This was shown in the correlations. As this scale measured one’s feelings of 

invulnerability and uniqueness, it is possible that the male participants did indeed feel that they 

were more special and unique, but it is also possible that the difference lay in how participants 

chose to answer the questions, and not in their true opinions of themselves. 

 Another strong, consistent finding was that people considered themselves better drivers 

than average.  In all three experiments, participants gave high ratings of their driving abilities 

both overall, and compared to their peers. This is not surprising as it is in line with previous 

research (for example, see Wohleber & Matthews, 2016), but serves as additional support for the 

theory that most people rate their driving skills as being above average.  

Limitations 

 There were several limitations which could affect the experiments reported here. Due to a 

global pandemic of the novel coronavirus 2019 (COVID-19), planned experiments in a driving 

simulator had to be moved to an online format for safety reasons. This led to several potential 

concerns. First, the online format may have led participants to take the study less seriously. 

While there were questions intended to determine whether participants were paying attention and 

reading each question carefully, there was no way to determine the extent to which each 

participant put thought into their answer. Being in an online format, removed from any 

researcher, it is possible that they did not put sufficient effort into the survey. However, results in 
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general were in-line with a priori expectations, and results were fairly consistent between 

studies. Thus it appears likely that participants did attempt to fill out all surveys accurately. 

Additionally, the driving tasks were somewhat removed from the everyday reality of 

driving that the participants were used to. Perhaps a participant’s confidence in their driving 

ability does not translate to their confidence in their abilities to control a vehicle via keyboard, as 

in Experiment 3, or to make good decisions with the help of the SSA, as in Experiment 2. These 

factors may have affected the hypothesized relationships between driving confidence and fault 

attribution.  

One more aspect of autonomous vehicles that was difficult to examine empirically was 

the fact that a single autonomous vehicle does not act alone, in the same way that a single driver 

does. The algorithms that power these vehicles are constantly interacting with other information, 

be it stored in a cloud or in one’s personal cell phone. To judge a single vehicle is ignoring a 

large part of the network of algorithms that all interact in order to make autonomous driving 

possible. However, the experiments presented here only examine the fault attributed to individual 

vehicles, and not to the conglomerate. This was necessary for comparative purposes, as an 

individual is generally judged in a more favorable light than is the aggregate (see Giladi & Klar, 

2002). That is to say, asking participants to judge the fault of an individual autonomous vehicle 

is fundamentally different than asking them to judge the fault of the aggregate of autonomous 

vehicles, even though the vehicles do not behave or make decisions on an individual basis. The 

results of the scale measuring fault attribution were meant to be compared to those same ratings 

for individual human drivers, and thus the only direct comparison could be a rating of individual 
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autonomous vehicles. This is a potential flaw of the data, as it is not an entirely realistic view of 

autonomous vehicles.  

Future Work 

 Future work will include a driving-simulator study in order to confirm the results of 

Experiments 2 and 3. Since both experiments took place on a computer, a simulator will lend a 

stronger degree of real-world credibility to the experience and will determine whether the 

experiments did in fact capture the experience of driving an autonomous vehicles or sharing the 

road with such vehicles. Additionally, further examination may include a wider variety of 

personality measures such as the Big Five personality traits of Openness, Extroversion, 

Conscientiousness, Agreeableness, and Neuroticism (Goldberg, 1993). It has already been shown 

that extroversion increases one’s tendency to anthropomorphize, and to like, a robot (Kaplan, 

Sanders, & Hancock, 2019). It is possible that this same effect extends to autonomous vehicles. 

Future work will tell what other factors may influence acceptance of, and fault attribution to, 

autonomous vehicles.  

Conclusion 

 In the early stages of development of self-driving vehicles, there was great hope that such 

automation would eliminate human error and thereby greatly reduce the number of traffic 

accidents. This will certainly be closer to the truth at level five automation, where vehicles can 

monitor themselves in nearly all situations and can indeed be said to be ‘driverless.” However, 

most automated vehicles on the road currently contain level two automation, requiring a great 

deal of human intervention and tasking the operator with remaining vigilant during the drive. If 
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such self-driving vehicles become more common before they become more autonomous, there 

may even be an increase in the number of collisions as humans struggle to adapt. Perhaps in a 

more distant future, there will be less opportunity for fault in general. In the immediate coming 

interval, however, fault attribution in vehicular collisions remains of critical concern and 

importance.    
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APPENDIX A: CORRELATIONS 
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Correlations for Experiment One 

Variables are fault attributed to the vehicle in question (Fault), perceived avoidability of the 

collision (PA), whether or not the vehicle was automated (Auto; dummy coded as 0=regular, 1= 

autonomous), fault in the algorithms (Alg), confidence in driving abilities compared to peers 

(Peers), vehicle handling skills compared to peers (VHP), driving judgement compared to peers 

(DJP), driving reflexes compared to peers (DRP), confidence in driving abilities in general 

(Driving), vehicle handling skills in general (VHG), driving judgement in general (DJG), driving 

reflexes in general (DRG), score on the Automation Complacency Scale (AC), with the 

subscales on that Scale of confidence, reliance, trust, and safety (ACC; ACR; ACT; and ACS), 

and score on the Personal Fable (PF) with subscales of Omnipotence, Invulnerability, and 

Uniqueness (PFO; PFI; and PFU).  
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Correlations for Experiment Two 

Variables are fault attributed to the SSA in the vehicle (FV), fault that the participant attributed 

to themselves as the driver (FD), perceived avoidability of the collision due to actions of the 

vehicle (PAV), and the driver (PAD), whether or not the algorithm was wrong last (wrong; 

dummy coded as 0=the driver was wrong last, 1= the SSA was wrong last), confidence in driving 

abilities compared to peers (Peers), vehicle handling skills compared to peers (VHP), driving 

judgement compared to peers (DJP), driving reflexes compared to peers (DRP), confidence in 

driving abilities in general (Driving), vehicle handling skills in general (VHG), driving 

judgement in general (DJG), driving reflexes in general (DRG), score on the Automation 

Complacency Scale (AC), with the subscales on that Scale of confidence, reliance, trust, and 

safety (ACC; ACR; ACT; and ACS), and score on the Personal Fable (PF) with subscales of 

Omnipotence, Invulnerability, and Uniqueness (PFO; PFI; and PFU).  
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Correlations for Experiment Three 

Variables are fault attributed to the vehicles (FV), fault that the participant attributed to 

themselves as the driver (FD), perceived avoidability of the collision due to actions of the vehicle 

(PAV), and the driver (PAD), confidence in driving abilities compared to peers (Peers), vehicle 

handling skills compared to peers (VHP), driving judgement compared to peers (DJP), driving 

reflexes compared to peers (DRP), confidence in driving abilities in general (Driving), vehicle 

handling skills in general (VHG), driving judgement in general (DJG), driving reflexes in 

general (DRG), score on the Automation Complacency Scale (AC), with the subscales on that 

Scale of confidence, reliance, trust, and safety (ACC; ACR; ACT; and ACS), and score on the 

Personal Fable (PF) with subscales of Omnipotence, Invulnerability, and Uniqueness (PFO; PFI; 

and PFU)
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APPENDIX B: SURVEYS AND SCALES 
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New Personal Fable Scale (Lapsley et al., 1989) 

How well do the following statements describe you?  

 

1 I believe I can do anything I set my mind to.  

2 Nothing seems to really bother me.  

3 No one has the same thoughts and feelings I have. 

4 I think that I am more persuasive than my friends.  

5 I believe that no one can stop me if I really want to do something.  

6 I’m somehow different from everyone else.  

7 It often seems like everything I do turns out great.  

8 I don’t think anything will stand in the way of my goals.  

9 I’m the only one than can really understand me.  

10 I believe that other people control my life. 

11 I don’t believe in taking chances.  

12 I believe that I am unique.  

13 I think that I can be anything I want to be. 

14 I’m a fragile person.  

15 I think that deep down everybody is the same.  

16 I believe that everything I do is important. 

17 I believe in knowing how something will turn out before I try it.  

18 I’m just like everyone else.  

19 I think I’m a powerful person.  

20 I believe in taking risks.  

21 Everybody goes through the same things that I am going through. 

22 I think that I am better than my friends at just about anything.  

23 I tend to doubt myself a lot.  

24 It’s hard for me to tell if I am different from my friends. 

25 I often feel that I am insignificant and that I don’t really matter.  

26 Other people have no influence on me.  

27 There isn’t anything special about me.  

28 I often think that people don’t listen to what I have to say.  

29 There are times when I think that I am indestructible.  

30 I honestly think I can do things that no one else can.  

31 I can get away with things that other people can’t.  

32 Everyone knows that I am a leader.  

33 Nobody will ever know what I am really like.  

34 No one sees the world the way that I do.  

35 It is impossible for people to hurt my feelings.  

36 People always do what I tell them to do. 

37 People usually wait to hear my opinion before making a decision. 
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38 I usually let my friends decide what we are going to do.  

39 My feelings are easily hurt.  

40 The problems that some people get into could never happen to me. 

41 I enjoy taking risks. 

42 It is easy for me to take risks because I never get hurt or caught. 

43 I don’t take chances because I usually get in trouble. 

44 I am always in control. 

45 I am not afraid to do dangerous things.  

46 Sometimes I think that no one really understands me. 

Reverse-score: 10 23 28 38 11 14 17 39 43 15 18 21 24 25 27  

Omnipotence: 1, 4 5 7 8 10 13 16 19 22 23 26 28 30 32 36 37 38 44  

Invulnerability: 2 11 14 17 20 29 31 35 39 40 41 42 43 45  

Personal Uniqueness: 3 6 9 12 15 18 21 24 25 27 33 34 46 

 

 

Automation Complacency Scale 

Complacency- trust in automation scale (Singh, Molloy, & Parasuraman, 1993) 

 

Confidence: 

1. I think that automated devices used in medicine, such as CT scans and ultrasound, provide 

very reliable medical diagnosis.  

2. Automated devices in medicine save time and money in the diagnosis and treatment of 

disease.  

3. If I need to have a tumor in my body removed, I would choose to undergo computer-aided 

surgery using laser technology because it is more reliable and safer than manual surgery.  

4. Automated systems used in modern aircraft, such as the automatic landing system, have made 

air journeys safer.  

 

Reliance: 

1. ATMs provide a safeguard against the inappropriate use of an individual's bank account by 

dishonest people.  

2. Automated devices used in aviation and banking have made work easier for both employees 

and customers.  

3. Even though the automatic cruise control in my car is set at a speed below the speed limit, I 

worry when I pass a police radar speed trap in case the automatic control is not working 

properly.  

 

Trust: 

1. Manually sorting through card catalogues is more reliable than computer-aided searches for 

finding items in a library.  
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2. I would rather purchase an item using a computer than have to deal with a sales representative 

on the phone because my order is more likely to be correct using the computer.  

3. Bank transactions have become safer with the introduction of computer technology for the 

transfer of funds.  

 

Safety: 

1. I feel safer depositing my money at an ATM than with a human teller.  

 

Confidence in Driving Skills 

Driver abilities scale (Matthews & Moran, 1986) 

 

Rate your: 

 

Vehicle handling skills (the ability to maneuver a vehicle and control its path) 

Driving judgement (the ability to make safe vehicle-handling decisions) 

Driving reflexes (the speed at which you can react to important driving events) 

 

1=very poor, 9 = excellent 

 

Rate in comparison to your peers (people in your age group)  

 

Vehicle handling skills (the ability to maneuver a vehicle and control its path) 

Driving judgement (the ability to make safe vehicle-handling decisions) 

Driving reflexes (the speed at which you can react to important driving events) 

 

1= much worse than my peers, 9= much better than my peers 

 

Fault Attribution and Perceived Avoidability Scales 

To what extent was [Car 1/The Safety Suggestion Algorithm/The non-human controlled, 

driverless vehicles] at fault for making the incorrect driving choice? 

 

To what extent were you, as the driver, at fault for making the incorrect driving choice? 

 

How easily could the collision have been prevented, if different actions were taken by [Car 1/The 

Safety Suggestion Algorithm in your car/ The non-human controlled, driverless vehicles]? 

 

How easily could the collision have been prevented, if different actions were taken by you, as the 

driver? 
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Script for Experiment Two 

You are going to be playing a game called a “Choose your own Adventure.” At each page, you 

will be given two options. You should try to pick the correct option to advance in the game. If 

you pick the wrong option, the game is over and you will be given a survey to fill out.  

In this scenario, you are getting ready to drive to work at an office building in Orlando, Florida. 

Your car has a new technology called the Safety Suggestion Algorithm. This algorithm uses 

sensors to take in information about the surrounding road conditions, traffic, and weather, and 

makes a suggestion based on factors such as obstacles in the road or other vehicles. However, 

sometimes the Safety Suggestion Algorithm is incorrect. In these cases, it will make the wrong 

suggestion. Your job now is to get to work quickly and safely by agreeing or disagreeing with 

each of the Safety Suggestion Algorithm’s recommendations. If you get all the way to work on 

time and safely, you win! If not, you lose and the game ends.  

Let’s try an example! Pick whichever answer you want, because this one doesn’t count.  

*** 

 

Practice round: You are getting ready to begin your commute to work. It is still dark outside. 

Will you turn your headlights on? 

The Safety Suggestion Algorithm says: Yes, turn your headlights on.  

Do you….. Agree/Disagree 

Agree: Great job! Let’s move to the next scenario. It’s another practice round! 

Disagree: Oops! Wrong answer. In this case, the Safety Suggestion Algorithm was correct. You 

should use your headlights when it’s dark outside. Let’s move on to another practice round! 

*** 

Practice round: You are stopped at a red light, but no other cars are around. The coast seems 

clear and you don’t want to be late. Do you run the red light? 

The Safety Suggestion Algorithm says: Yes, run the light. 

Do you….. Agree/Disagree 
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Agree: Oops! The Safety Suggestion Algorithm was wrong here. You should not run red lights. 

Let’s move on now to the real game! 

Disagree: Great job! The Safety Suggestion Algorithm was wrong here. You should not run red 

lights. Let’s move on now to the real game! 

*** 

Round 1: You are driving down the road when you come across a barrel in the road! You cannot 

safely continue your course. There is a large vehicle following you very closely at a high speed. 

You can either slam on the brakes, or swerve to avoid the obstacle. See the image and video 

below. In this image, your car is the yellow car. 

 

The Safety Suggestion Algorithm says: Swerve to avoid the obstacle. 

Do you….. Agree/Disagree 

Agree: Great job! The vehicle behind you would not have stopped in time. Move on to the next 

round.  

Disagree: Oops! The vehicle behind you could not stop in time. You have lost. Move on to the 

final survey.  

*** 
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Round 2: You come to the train tracks. The crossing arm is lowered, but the train is not there yet. 

You might be late if you wait for the train to pass. You can wait for the train, or you can try to 

cross the tracks before it arrives. 

 

The Safety Suggestion Algorithm says: Wait for the train to pass 

Do you….. Agree/Disagree 

Agree: Great job! You should not cross train tracks while the train is approaching. Move on to 

the next round.  

Disagree: Oops! You should not cross train tracks while the train is approaching. You have lost. 

Move on to the final survey.  

*** 

Round 3: You are on a two lane road, and there is a bicycle traveling slowly in your lane. You 

are separated from oncoming traffic by a dashed line in the road, not a solid line, so you know it 

is legal to overtake by moving into the lane of oncoming traffic. You do not see any other cars 

coming. Do you overtake the bicycle, or wait? See the video below. 
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The Safety Suggestion Algorithm says: Wait. Do not pass a bicycle. 

Do you….. Agree/Disagree 

Agree: Oops! You are allowed to pass a bicycle if it is safe. You have lost. Move on to the final 

survey. 

Disagree: Great job! You are allowed to pass a bicycle if it is safe. Move on to the next round. 

*** 

Round 4: You are on the highway, and are driving in the middle lane behind a very slow car. 

You know you need to overtake or you will be late to work. Do you move into the left-hand lane 

and overtake the slow car, or move into the right-hand lane and overtake the car? See the image 

below. In this image, you are in the yellow car. 

 

The Safety Suggestion Algorithm says: Move into the left land. 

Do you….. Agree/Disagree 

Agree: Great job! You should always pass on the left. Move on to the next round.  
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Disagree: Oops! You should always pass on the left. You have lost. Move on to the final survey.  

*** 

Round 5: You are still driving on the highway. Now you are in the right lane. You notice that up 

ahead, your lane ends. You will need to move into the left lane. However, there is a car directly 

next to you, blocking you from moving. Do you speed up to merge in front of them, or slow 

down to merge behind them? See the image below. In this image you are driving the yellow car. 

 

The Safety Suggestion Algorithm says: Slow down and merge behind the other car 

Do you….. Agree/Disagree 

Agree: Great job! People in the right-hand lane should allow those in the left-hand lane to pass. 

Move on to the next round.  
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Disagree: Oops! People in the right-hand lane should allow those in the left-hand lane to pass. 

You have lost. Move on to the final survey.  

*** 

Round 6: It is raining very hard. You know that in the heavy rain, your car might not be visible 

to other drivers. See the video below. Will you put on your hazard lights to be more visible, or 

will you just use the headlights and windscreen wipers? 

The Safety Suggestion Algorithm says: Put on your hazard lights. 

Do you….. Agree/Disagree 

Agree: Oops! Even though it makes you easier to see, using hazard lights while driving is 

actually illegal in Florida. You have lost. Move on to the final survey. 

Disagree: Great job! Even though it makes you easier to see, using hazard lights while driving is 

actually illegal in Florida. Move on to the next round. 

*** 

Round 7: You are driving along a crowded stretch of the highway when you notice that two 

traffic cones have been left behind by construction workers who had finished their work. There 

are cars in the other lane and a car following closely behind you. You can either slam on the 

brakes, or run over the traffic cone. See image below. In this image, you are in the yellow car. 
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The Safety Suggestion Algorithm says: Run over the traffic cone. 

Do you….. Agree/Disagree 

Agree: Great job! Traffic cones can be run over, and doing so is safer than causing a collision. 

Move on to the next round.  

Disagree: Oops! Traffic cones can be run over, and doing so is safer than causing a collision. 

You have lost. Move on to the final survey.  

*** 

Round 8: You come to a construction zone and a sign that tells you the speed limit is 45 miles 

per hour when workers are present. See the image below. The normal speed limit on this stretch 

of road is 65. You do not see any workers. Do you keep going 65 miles per hour, or do you slow 

to 45 mph? 
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The Safety Suggestion Algorithm says: Slow down to 45. 

Do you….. Agree/Disagree 

Agree: Oops! The reduced speed limit only applies when workers are present. You should 

always follow the correct speed limit- don’t go to fast or too slow. You have lost. Move on to the 

final survey. 

Disagree: Great job! The reduced speed limit only applies when workers are present. You should 

always follow the correct speed limit- don’t go to fast or too slow. Move on to the next round. 

*** 

Round 9: You are almost at work. You need to turn left into the parking lot, but in order to do so, 

you must cut across traffic. There are a lot of cars present. See image below. In this image, you 

are in the yellow car. You can either wait for a gap and make an unprotected left turn into the 

parking lot, or drive further down the road and use a traffic light to make a legal U-turn.  
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The Safety Suggestion Algorithm says: Go to the light and make a U-tun. 

Do you….. Agree/Disagree 

Agree: Great job! It is always safer to use a traffic light to turn, when you have the option. Move 

on. 

Disagree: Oops! It is always safer to use a traffic light to turn, when you have the option. You 

have lost. Move on to the final survey.  

*** 
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Congratulations! You have safely made it to work.  
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APPENDIX C: INSTITUTIONAL REVIEW BOARD APPROVAL 
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APPENDIX D: ALL MAIN EFFECTS AND TWO-WAY INTERACTIONS 

IN THE REGRESSION MODELS 
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Experiment One: Overall Fault Attribution Model 

Variable b se B 
Auto .31 .51 .10 
Avoidability 1.13 .16 1.05** 
Driving-Peers -.25 .24 -.23 
Driving-General .24 .27 .19 
Comp .14 .08 .25+ 

PF .35 .17 .26* 

Auto*Avoidability -.04 .04 -.05 

Auto* Driving-Peers -.13 .05 -.30** 

Auto*Driving-General .08 .06 .18 

Auto*PF .08 .05 .22 

Auto*Comp -.03 .02 -.14+ 

Avoidability*Driving-Peers -.02 .02 -.12 

Avoidability*Driving-General .01 .02 .09 

Avoidability*PF -.02 .02 -.14 

Avoidability*Comp -.01 .01 -.14 

Driving-Peers*General .02 .01 .25* 

Driving-Peers*PF .02 .02 .22 

Driving-Peers*Comp -.00 .01 -.01 

Driving-General*PF -.05 .02 -.50* 

Driving-General*Comp .00 .01 .01 

PF*Comp -.01 .01 -.19 

R2 = .592; Adjusted R2 = .586 

**indicates significance at p < .01; *indicates significance at p < .05; +indicates significance at p 

< .10 

 

Experiment One: Fault of Autonomous Vehicles 

Variable b se B 

Avoidability 1.35 .24 1.26** 

Driving-Peers -.15 .36 -.14 

Driving-General .26 .39 .21 

Comp .02 .12 .04 

PF .44 .26 .32+ 

Avoidability*Driving-Peers -.03 .03 -.23 

Avoidability*Driving-General .02 .03 .16 
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Avoidability*PF -.04 .02 -.40+ 

Avoidability*Comp -.01 .01 -.12 

Driving-Peers*General .01 .02 .06 

Driving-Peers*PF .01 .03 .16 

Driving-Peers*Comp -.00 .01 -.02 

Driving-General*PF -.04 .04 -.42 

Driving-General*Comp .00 .02 .08 

PF*Comp -.00 .01 -.08 

R2 = .562; Adjusted R2 = .554 

**indicates significance at p < .01; *indicates significance at p < .05; +indicates significance at p 

< .10 

 

Experiment One: Fault in Regular Vehicles 

Variable b se B 

Avoidability .89 .22 .84** 

Driving-Peers -.54 .32 -.51+ 

Driving-General .34 .36 .26 

Comp .26 .11 .48* 

PF .34 .24 .25 

Avoidability*Driving-Peers -.00 .02 -.01 

Avoidability*Driving-General .00 .03 .03 

Avoidability*PF .01 .02 .07 

Avoidability*Comp -.01 .01 -.17 

Driving-Peers*General .04 .02 .47** 

Driving-Peers*PF .03 .03 .31 

Driving-Peers*Comp .00 .01 .00 

Driving-General*PF -.06 .03 -.58+ 

Driving-General*Comp -.01 .02 -.15 

PF*Comp -.02 .01 -.32 

R2 = .624; Adjusted R2 = .617 

**indicates significance at p < .01; *indicates significance at p < .05; +indicates significance at p 

< .10 

 

Experiment One: Fault in Algorithms 

Variable b se B 

Avoidability -.30 .39 -.29 

Driving-Peers -.85 .50 -.92+ 
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Driving-General .87 .57 .76 

Comp -.06 .17 -.12 

PF .35 .37 .30 

Avoidability*Driving-Peers -.03 .04 -.27 

Avoidability*Driving-General .08 .04 .70+ 

Avoidability*PF -.05 .04 -.51 

Avoidability*Comp .01 .01 .20 

Driving-Peers*General -.02 .02 -.24 

Driving-Peers*PF .04 .04 .47 

Driving-Peers*Comp .06 .02 1.26** 

Driving-General*PF -.05 .05 -.62 

Driving-General*Comp -.05 .02 -1.12* 

PF*Comp -.00 .01 -.06 

R2 = .083; Adjusted R2 = .063 

**indicates significance at p < .01; *indicates significance at p < .05; +indicates significance at p 

< .10 

 

Experiment Two: Fault in Vehicle 

 

Variable b se B 

Avoidability-SSA -1.08 1.01 -1.16 

Avoidability-Driver 1.14 .83 1.26 

SSA Wrong 10.88 4.49 2.11* 

Driving-General -4.97 3.05 -2.42 

Driving-Peers 5.24 2.63 2.98* 

Comp -2.67 4.40 -.63 

PF -10.14 5.71 -1.29+ 

Avoidability-SSA*Driver -.01 .02 -.12 

Avoidability-SSA*SSA Wrong -.08 .14 -.12 

Avoidability-SSA*Driving-General .04 .08 .37 

Avoidability-SSA*Driving-Peers -.07 .07 -.58 

Avoidability-SSA*PF .39 .28 1.3 

Avoidability-SSA*Comp .10 .13 .38 

Avoidability-Driver*SSA Wrong .10 .14 .16 

Avoidability-Driver*Driving-General -.03 .08 -.32 

Avoidability-Driver*Driving-Peers -.06 .06 -.51 

Avoidability-Driver*PF -.20 .22 -.69 

Avoidability-Driver*Comp -.06 .12 -.22 

SSA Wrong*Driving-General -.59 .45 -.91 

SSA Wrong*Driving-Peers -.37 .38 -.54 
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SSA Wrong*PF -.65 1.19 -.39 

SSA Wrong*Comp -.56 .66 -.35 

Driving-General*Peers -.00 .07 -.02 

Driving-General*PF 1.44 .81 2.82+ 

Driving-General*Comp .26 .42 .62 

Driving-Peers*Comp -.51 .35 -1.33 

Driving-Peers*PF -.80 .72 -1.75 

Comp*PF 1.49 1.08 1.26 

R2 = .274; Adjusted R2 = .145 

**indicates significance at p < .01; *indicates significance at p < .05; +indicates significance at p 

< .10 

 

Experiment Two: Fault in Self 

 

Variable b se B 

Avoidability-SSA 1.30 1.30 1.09 

Avoidability-Driver -1.31 1.07 -1.13 

SSA Wrong 1.13 5.79 .171 

Driving-General 5.04 3.93 1.91 

Driving-Peers -2.40 3.39 1.06 

Comp -4.93 5.67 -.90 

PF 17.52 7.35 1.73* 

Avoidability-SSA*Driver -.07 .03 -.62* 

Avoidability-SSA*SSA Wrong .34 .18 .39+ 

Avoidability-SSA*Driving-General -.06 .10 -.43 

Avoidability-SSA*Driving-Peers .04 .09 .27 

Avoidability-SSA*PF -.09 .37 -.25 

Avoidability-SSA*Comp -.27 .16 -.76 

Avoidability-Driver*SSA Wrong -.16 .18 -.19 

Avoidability-Driver*Driving-General -.11 .11 -.77 

Avoidability-Driver*Driving-Peers .06 .08 .44 

Avoidability-Driver*PF .22 .29 .61 

Avoidability-Driver*Comp .50 .16 1.48** 

SSA Wrong*Driving-General .21 .58 .26 

SSA Wrong*Driving-Peers .80 .49 .91 

SSA Wrong*PF -3.13 1.53 -1.47* 

SSA Wrong*Comp .25 .84 .122 

Driving-General*Peers -.05 .09 -.26 

Driving-General*PF -1.71 1.04 -2.61 
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Driving-General*Comp .35 .53 .65 

Driving-Peers*Comp .44 .45 .88 

Driving-Peers*PF .11 .92 1.90 

Comp*PF -1.15 1.39 -.75 

R2 = .270; Adjusted R2 = .140 

**indicates significance at p < .01; *indicates significance at p < .05; +indicates significance at p 

< .10 

 

 

Experiment Three: Fault in Vehicles 

 

Variable b se B 

Avoidability-Vehicles .89 1.54 .87 

Avoidability-Driver -2.56 1.96 -2.33 

Driving-General -2.57 5.19 -1.12 

Driving-Peers 1.91 4.75 .95 

PF 11.24 12.14 1.13 

Comp 14.92 7.23 3.34* 

Avoidability-Vehicles*Driver -.01 .06 -.10 

Avoidability-Vehicles*Driving-General .27 .18 2.11 

Avoidability-Vehicles*Driving-Peers .10 .15 .72 

Avoidability-Vehicles*PF -.38 .37 -1.13 

Avoidability-Vehicles*Comp -.78 .19 -2.55** 

Avoidability- Driver*Driving-General -.07 .16 -.52 

Avoidability- Driver*Driving-Peers .01 .15 .05 

Avoidability- Driver*PF .90 .46 2.46+ 

Avoidability- Driver*Comp .045 .28 .15 

Driving-General*Peers -.38 .22 -2.29+ 

Driving-General*PF 1.22 1.38 2.11 

Driving-General*Comp .12 .71 .26 

Driving-Peers*PF -.68 1.3 -1.29 

Driving-Peers*Comp .71 .48 1.65 

Comp*PF -5.52 2.35 -3.85* 

R2 = .599; Adjusted R2 = .415 

**indicates significance at p < .01; *indicates significance at p < .05; +indicates significance at p 

< .10 
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Experiment Three: Fault in Self 

 

Variable b se B 

Avoidability-Vehicles -.32 1.39 -.38 

Avoidability-Driver -.30 1.78 -.32 

Driving-General .78 4.70 .41 

Driving-Peers 1.80 4.30 1.07 

PF 4.05 10.99 .49 

Comp -7.44 6.54 -1.99 

Avoidability-Vehicles*Driver -.06 .05 -.63 

Avoidability-Vehicles*Driving-General .04 .16 .35 

Avoidability-Vehicles*Driving-Peers -.01 .13 -.13 

Avoidability-Vehicles*PF -.09 .33 -.32 

Avoidability-Vehicles*Comp .26 .17 1.00 

Avoidability- Driver*Driving-General .45 .14 3.83** 

Avoidability- Driver*Driving-Peers -.21 .13 -1.68 

Avoidability- Driver*PF .33 .41 -1.07 

Avoidability- Driver*Comp -.02 .25 -.08 

Driving-General*Peers .45 .20 3.22* 

Driving-General*PF -1.16 1.25 -2.39 

Driving-General*Comp -.68 .64 -1.84 

Driving-Peers*PF -1.07 1.19 -2.42 

Driving-Peers*Comp -.37 .44 -1.01 

Comp*PF 4.74 2.13 3.96* 

R2 = .530; Adjusted R2 = .315 

**indicates significance at p < .01; *indicates significance at p < .05; +indicates significance at p 

< .10 
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APPENDIX E: TABLE OF DESCRIPTIVE STATISTICS 

Experiment n Variable Mean sd 

1 266 Fault Attribution 3.60 1.59 

1 266 Fault in Autonomous Vehicles 3.67 1.57 

1 266 Fault in Regular Vehicles 3.54 1.61 

1 266 Collision Avoidability 3.86 1.49 

1 266 Collision Avoidability for Autonomous Vehicles 3.88 1.46 

1 266 Collision Avoidability for Regular Vehicles 3.84 1.52 

1 266 Driving Abilities Overall 7.55 1.26 

1 266 Vehicle Handling Skills Overall 7.57 1.26 

1 266 Driving Judgement Overall 7.52 1.46 

1 266 Driving Reflexes Overall 7.55 1.52 

1 266 Driving Abilities Compared to Peers 7.06 1.22 

1 266 Vehicle Handling Skills Compared to Peers 7.05 1.56 

1 266 Driving Judgement Compared to Peers 7.06 1.68 

1 266 Driving Reflexes Compared to Peers 7.07 1.67 

1 266 Omnipotence 3.03 0.51 

1 266 Invulnerability 2.89 0.50 

1 266 Uniqueness 3.40 0.49 

1 266 Automation Complacency Overall 3.31 0.92 

1 266 Confidence in Automation 3.59 1.06 

1 266 Reliance on Automation 3.32 0.84 

1 266 Trust in Automation 3.18 0.77 

1 266 Perceived Safety of Automation 3.15 1.01 

2 183 Fault in the SSA 3.75  2.57 

2 183 Fault in Self 5.21 3.32 

2 183 Avoidability by SSA 7.04 2.77 

2 183 Avoidability by Self 6.47 2.85 

2 188 Driving Abilities Overall 7.75 1.26 

2 188 Vehicle Handling Skills Overall 7.86 1.35 

2 188 Driving Judgement Overall 7.70 1.41 

2 188 Driving Reflexes Overall 7.69 1.38 

2 188 Driving Abilities Compared to Peers 7.25 1.47 

2 188 Vehicle Handling Skills Compared to Peers 7.23 1.53 

2 188 Driving Judgement Compared to Peers 7.32 1.60 

2 188 Driving Reflexes Compared to Peers 7.21 1.64 

2 188 Omnipotence 3.01 0.47 

2 188 Invulnerability 2.90 0.58 

2 188 Uniqueness 3.34 0.45 

2 188 Automation Complacency Overall 3.07 0.61 

2 188 Confidence in Automation 3.33 1.02 

2 188 Reliance on Automation 3.12 0.79 

2 188 Trust in Automation 3.03 0.68 
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2 188 Perceived Safety of Automation 2.79 1.14 

3 68 Fault in Self 5.01  2.62 

3 68 Fault in Vehicles 5.04 3.14 

3 68 Avoidability by Self 4.94 2.85 

3 68 Avoidability by Other Vehicles 5.82 3.07 

3 123 Driving Abilities Overall 7.53 1.72 

3 123 Vehicle Handling Skills Overall 7.62 1.38 

3 123 Driving Judgement Overall 7.46 1.37 

3 123 Driving Reflexes Overall 7.51 1.46 

3 123 Driving Abilities Compared to Peers 7.05 1.49 

3 123 Vehicle Handling Skills Compared to Peers 7.11 1.55 

3 123 Driving Judgement Compared to Peers 7.02 1.58 

3 123 Driving Reflexes Compared to Peers 7.03 1.68 

3 123 Omnipotence 2.95  0.59 

3 123 Invulnerability 2.92 0.55 

3 123 Uniqueness 3.34 0.49 

3 123 Automation Complacency Overall 3.16 1.30 

3 123 Confidence in Automation 3.53 1.82 

3 123 Reliance on Automation 3.23 1.99 

3 123 Trust in Automation 2.88 0.86 

3 123 Perceived Safety of Automation 2.93 1.74 
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