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ABSTRACT 
 

Using a novel, adipose-liver, two-organ, human-on-a-chip system, the metabolic disease 

non-alcoholic fatty liver disease was modeled. This model was then used to test the effects of the 

gut microbiome on NAFLD progression. Two products of the gut microbiome, Trimethylamine-

n-oxide and butyrate, were selected as representatives of potentially harmful and potentially 

beneficial compounds. A dose response, adipocyte and hepatocyte monocultures controls, and 

HoaC systems were run for 14 days. Through this experimentation, it was found that a dysbiosis 

of the gut microbiome could be influencing NAFLD progression. Additionally, further 

development and discovery regarding adipose-liver systems was added to the ongoing 

conversation of HoaC systems and their usages.  
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CHAPTER 1: INTRODUCTION 

NAFLD and Its Progression 

 Non-alcoholic fatty liver disease (NAFLD) is a metabolic disease highly correlated with 

type 2 diabetes mellites and obesity. It is characterized by the accumulation of fat, in the form of 

triglycerides, in the liver (hepatic steatosis). NAFLD can progress to disease states such as non-

alcoholic Steatohepatitis (NASH), fibrosis, cirrhosis, and liver cancer [1, 2]. This is especially 

concerning considering that NAFLD is becoming more prevalent in the United States, with rates 

being reported as high as 46% [3]. NASH and cirrhosis due to NAFLD are increasing in 

frequency as indications for liver transplantation, with NASH already being the third most 

common indication in the United States [2-4].  

 A “multiple hit hypothesis” has been developed to describe NAFLD progression. This 

hypothesis asserts that excess free fatty acids (FFA), insulin resistance (IR), adipocyte 

dysfunction, and dysbiosis (an imbalance in the population of the gut microbiome (GM)), along 

with genetic, epigenetic, and dietary factors can all contribute to liver steatosis [1, 5].  

Triglycerides, which are formed by the esterification of FFAs, are normally stored briefly 

in the liver, but high-fat diets, obesity, and IR resistance can increase the FFA concentration and 

lead to lipotoxicity. IR resistance can increase the storage of triglycerides through two main 

mechanisms: in adipocytes, IR can lead to the impaired inhibition of lipolysis, and IR in 

hepatocytes increases hepatic de novo lipogenesis.  [1, 6, 7].  

In addition to increasing FFA levels, obesity and IR can lead to the dysfunction of 

adipokine secretion. Adipokines, such as leptin and adiponectin, are hormones secreted by 

adipose tissue. Leptin is an adipokine involved in the prevention of lipid storage in non-
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adipocyte tissue and has pro-inflammatory properties. Obesity leads to an upregulation in plasma 

leptin concentration, causing the body to grow resistant to leptin’s latter effects while still being 

susceptible to the former. Adiponectin is an anti-inflammatory adipokine which can also improve 

IR and has an anti-fibrotic effect. However, adiponectin is downregulated in obesity. Thus, the 

dysfunction of adipokine secretion, caused by disease states such as obesity, can play a major 

part in the development of hepatic steatosis and the progression of NAFLD [1, 7, 8].  

Hepatic inflammation through the JNK-AP-1 and IKK-NF-κB pathways can also drive 

NAFLD pathogenesis [9, 10]. Adipocytes contribute to low grade inflammation with the 

production of IL-6 and TNF-α [8, 9]. When there is adipocyte damage or an increase in adipose 

tissue volume, such as in obesity, the secretion of these compounds is upregulated [10].  

Similarly, hepatic tissue damage can increase the inflammatory response. Finally, endotoxins and 

other pathogen-associated molecular patterns (PAMPS) produced by the GM can make their way 

into the liver through a “leaky gut” and they can initiate inflammation through Toll-like receptors 

[1, 11].  

The Gut Microbiome 

  The gut microbiome consists of the fungi, viruses, and the roughly 3.9 x 1013 bacteria, 

belonging to thousands of operational taxonomic units, which live in the human colon [11, 12]. 

The GM plays an active role in the health of the host, producing many metabolic products and 

signaling molecules. These products include metabolites such as bile acids, choline derivatives, 

short chain fatty acids (SCFAs), alcohols, and endotoxins, which can have a range of effects on 

the host [1, 5, 13].  
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 In recent years, the effects of gut microbial compounds on humans has been an area of 

interest in the research community. There is strong evidence that GM can influence mental 

health and disorders such as major depressive disorder [14]. Similarly, higher concentrations of 

trimethylamine-n-oxide (TMAO), which is produced by the GM, has been identified as a risk 

factor for strokes, and the dysbiosis in the GM has been associated with cardiovascular disease 

development [15]. When it comes to NAFLD, problems with the GM is one of the main “hits” in 

the multiple hit hypothesis. While NAFLD and NASH are often associated with metabolic 

problems like obesity or high caloric diets, NAFLD is also present in patients who do not present 

with other diseases like obesity, and it is hypothesized that the GM could be responsible for these 

cases [16]. 

Although studies differ in exact results, they show that the microbial population is often 

different between healthy individuals and those with NAFLD, and they most commonly show 

differences in the population of Bacteroidetes and Firmicutes [17]. It has also been observed that 

healthy patients have more bacteria from the phyla Bacteroidetes and a more diverse gut 

population than individuals with NAFLD [18]. The change in gut population is one of the main 

reasons why dysbiosis of the GM is believed to be a major driver of NAFLD, especially in 

patients without other disease states [16]. 

 There are a number of ways in which dysbiosis could be influencing liver health. The 

first way is by the introduction of endotoxin and other compounds to the liver through a leaky 

gut. In a healthy colon, the epithelial cells form a tight barrier which bacteria and their products 

are unable to cross unless transported. However, in certain disease states such as chronic 

inflammation, or even high rates of alcohol production by microbes due to dysbiosis in the GM, 
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the gut enterocytes can become damaged and this barrier can become permeable to compounds 

such as endotoxin (lipopolysaccharide, LPS), which is produced by Gram negative bacteria as 

part of their cell walls. LPS, as well as other PAMPS, can then cause inflammation through 

activation of Toll-like receptors [1, 5, 11, 17]. 

 Additionally, the low choline levels in the liver, due to poor diet or microbial 

metabolization of choline into trimethylamine (TMA), can promote liver damage and NAFLD 

[17, 19]. Bile acids’ pool size and composition can influence liver health and is regulated in part 

by the GM [17, 20]. The digestion and metabolism of starch and non-starch polysaccharides by 

microbes into short chain fatty acids (SCFAs) account for a significant portion of energy 

adsorption by humans. It is hypothesized that a change in the population of the GM to favor the 

microbes that produce more SCFAs could increase this energy production and lead to obesity [1, 

21].  

  Changes in the microbial population could be causing the concentrations of other 

metabolites to be altered as well. Many of these metabolites, such as TMAO and butyrate, could 

have direct interactions with hepatic tissue, and thus an alteration in their concentration could be 

influencing hepatic health [13, 17].  

 TMAO is a derivative of choline. Humans consume choline and the gut microbes 

metabolize the dietary choline into trimethylamine (TMA) as well as other products [19]. TMA 

is then absorbed by the gut and is transported to the liver where it is further metabolized by 

hepatocytes into TMAO [15]. TMAO is a proinflammatory molecule previously associated with 

cardiovascular disease and NAFLD [13, 15, 22]. In addition to possibly inducing inflammation, 

TMAO has been shown to modulate reverse cholesterol transport and sterol metabolism [23].  
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 Butyrate is a SCFA produced by gut microbes shown to be absorbed by the 

gastrointestinal tract and transported to the liver [24]. In addition to affecting the health of 

intestinal epithelial cells, butyrate has anti-inflammatory properties through the inhibition of NF-

κB [25]. In mouse models, butyrate has also been shown to improve insulin signaling [26]. If 

dysbiosis of the GM can drive changes in the concentration of potentially beneficial compounds 

like butyrate or harmful compounds like TMAO, the pathogenesis of NAFLD could be 

promoted.  

Disease Models  

 Today, science relies heavily on animal models, primarily rodent models, to model 

human diseases. These animals act as surrogates for humans for the testing of new drugs or to 

model diseases. Although these models have made major advances in medicine possible, there 

are also limitations to their utility. Animal behavior and physiology can be impacted by 

laboratory conditions that result in stress for the animals including repeated handling. 

Additionally, the physiology and genetics of animal models as well as the pathology of animal 

disease models is not identical to humans and human diseases and thus presents differently 

between the species. The difference between animal models and humans is so great that around 

90 percent of drugs which pass in animal testing fail to be effective in humans due to toxicity 

issues [27, 28]. Another objection to the use of animal models is the question of ethics. Despite 

the limitations of animal models, as of 2005 more than 115 million animals were used annually 

in the biomedical industry [29].  

 As an alternative to traditional animal models, human-on-a-chip (HoaC) 

microphysiological systems have been developed. These systems consist of human primary or 
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stem cell-derived cells organized into functional “organs” which share feeding medium, dosed 

drugs, and metabolites through the microfluidic system housing. HoaC systems combine 

biomedical sciences with the fields of engineering and chemistry to create in vitro models which 

contain relevant human cell types, limited variability, and the ability to obtain both functional 

and molecular readouts of not only the target pathway but also the peripheral effects while 

avoiding animal testing and allowing for more complexity than traditional 2-D models would 

provide [30-33]. HoaC systems also allow for phenotypic drug discovery (PDD) as opposed to 

target-based drug discovery (TDD). While most drug testing today requires TDD, where 

knowledge or a hypothesis as to what effects a drug may have is needed beforehand, PDD offers 

the ability to determine the effects of a drug outside the limited predicted effects [34]. Already, 

HoaC systems have been created to emulate the blood brain barrier, lung, heart, intestine and 

many more organ systems including larger, more complex systems such as a four organ model 

containing cardiac, muscle, neuronal, and liver modules [30, 32]. 
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CHAPTER 2: MEDIA FORMULATION 
 

A serum free, defined medium, described in previous studies, was used as the base for 

each condition’s respective medium [32]. The Blood Memetic Medium (BMM) was modified for 

this study with a change in glucose and insulin concentrations. Additionally, Neurobasal-A 

medium -D-glucose, - sodium pyruvate (Life Technologies, A24775-01) 1x B27 – insulin (Life 

Technologies, A1895601), and 0.22mM sodium pyruvate (Sigma, S8636) were used. This 

change was used to create more physiologically relevant conditions to NAFLD so that the 

control medium (healthy, h, hBMM) contained significantly less glucose and insulin, while the 

diabetic condition (+d, dBMM) had a higher concentration of glucose and insulin. 

Since there are several disease states which have been shown to correlate if not contribute 

to the pathogenesis of NAFLD, multiple conditions were emulated through the addition of 

factors to the medium. These media formulations were designed to mimic the serum of a patient 

with the specified health condition. The healthy condition was the base BMM. The diabetic 

condition had higher concentrations of glucose and insulin.  The supplementation of the FFAs 

BSA-conjugated palmitate (Sigma, A8806) and oleate (Sigma, O3880) characterized the obese 

condition (+lipids, hBMMlipids). The condition emulating an inflamed state (+TNF-α, +TNF, 

hBMMTNF) was supplemented with the cytokine TNF-α (Sigma, T0157). The last condition 

was the diabetic, inflamed, and obese condition (dBMMTNFlipids). [35] 
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TABLE 1: BLOOD MEMETIC MEDIA CONDITION COMPOSITION 

Condition 
Condition 

Abbreviation 
Added Factors 

Concentration of 

Condition Factors 

Healthy 
h 

hBMM 

Glucose 5mM 

Insulin 1nM 

Palmitate 0M 

Oleate 0M 

TNF-α 0M 

Diabetic 
+d 

dBMM 

Glucose 25mM 

Insulin 69μM 

Palmitate 0M 

Oleate 0M 

TNF-α 0M 

Inflammation 

+TNF-α 

+TNF 

hBMMTNF 

Glucose 5mM 

Insulin 1nM 

Palmitate 0M 

Oleate 0M 

TNF-α 10μM 

Obese 
+lipids 

hBMMTNFlipids 

Glucose 5mM 

Insulin 1nM 

Palmitate 45μM 

Oleate 65μM 

TNF-α 0M 

Inflamed, Obese, and 

Diabetic 
dBMMTNFlipids 

Glucose 25mM 

Insulin 69μM 

Palmitate 45μM 

Oleate 65μM 

TNF-α 10μM 
TABLE 1: Blood Memetic Media Condition Composition 
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CHAPTER 3: DOSE RESPONSE 

Purpose 

 In an in vitro study, the physiological concentration of the chosen microbial metabolites, 

TMAO and butyrate, may not be significant enough to cause a measurable effect over the course 

of a 14 day dosing, and thus a dose response was performed to determine the appropriate 

concentration of TMAO and butyrate for in vitro testing. The goal was to find a concentration 

which would produce in vitro changes in steatosis but was not so concentrated as to lose 

physiological relevance or cause cell death.  

Cell Culture 

 For the dose response, human hepatocellular carcinoma (HepG2/C3A) (ATCC® CRL-

10741™) cells were used. This line of cells was used for this preliminary data because of their 

ease of culture and low cost. HepG2 cells were plated on 15mm diameter round glass coverslips, 

sterilized in 70% isopropyl alcohol (IPA) and allowed to dry, at a plating density of 6 × 104 cells 

per coverslip in Dulbecco's Modified Eagle Medium (DMEM). The following day, the cells were 

moved to BMM +/- d and +/- lipids conditions and varying concentrations of TMAO or butyrate. 

The cultures were fed and dosed regularly over the course of 14 days. 

Steatosis 

 The cells were washed with phosphate buffered saline (PBS) and then fixed using 4% 

paraformaldehyde (PFA) for 10 minutes at room temperature. After another wash with PBS, the 

coverslips were covered with a 3:2 Oil Red O dye (Sigma, O1391) to deionized water (diH2O) 

solution for 30 minutes at room temperature. Additional washes with PBS were used to remove 

the excess dye and precipitate. The cells were then imaged at 100x using a phase microscope. Oil 
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Red O is a lipid soluble dye which stains lipids a deep red color. Thus, an increase of red in the 

images correlates to an increase in the fat being stored by the cells, an increase in steatosis. For 

the dose response, the steatosis was not quantified but was analyzed qualitatively along with the 

general health of the cultures.  

Results 

 As expected, the dBMM conditions had more steatosis than their respective hBMM 

controls. Similarly, the +lipids conditions had more steatosis than their respective -lipids 

controls. These results indicated that the hepatocytes do store different levels of lipids based on 

the condition. They also show that the +d and +lipids conditions induced an increase in steatosis 

as they theoretically should.  

The +1μM TMAO conditions did not appear to store more lipids than their respective 

controls. The +100µM TMAO conditions showed an increase in lipid storage compared to their 

respective controls. However, this concentration of TMAO seemed to cause some cell death. 

Based on these results and the concentration of TMAO found in the literature, the concentration 

of 10μM TMAO was chosen as the dosing concentration for the remainder of study.  

 Both the +1nM butyrate and +1µM butyrate conditions had less steatosis than their 

respective controls. The +1mM butyrate conditions had more steatosis than their respective 

controls. This switch from storing less lipids to storing more lipids with an increase in 

concentration of butyrate is most likely caused by the fact that butyrate both has anti-

inflammatory properties and can act as a source of energy. It is possible that the great excess of 

energy in the form of butyrate in the +1mM butyrate conditions caused a greater effect than the 

signaling of butyrate could. It was thus concluded that a dosing concentration closer to the lower 
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two was desired. Based on these results and the literature, a concentration of 10μM butyrate was 

chosen as the dosing concentration for the remainder of the study. 

 
FIGURE 1: Dose Response to TMAO and Butyrate. 

 (A) HepG2 cells were fed for 14 days with hBMM, hBMMlipids, dBMM, dBMMlipids, dBMM+1μM TMAO, 

dBMMlipids+1µM TMAO, dBMM+100μM TMAO, and dBMMlipids+100µM TMAO. The cells were fixed with 4% 

PFA and stained with Oil Red O dye. Images were taken at 100X on a phase microscope. (B) HepG2 cells were fed 

for 14 days with dBMM, dBMMlipids, dBMM+100nm butyrate, dBMMlipids+100nm butyrate, dBMM+1μM butyrate, 

dBMMlipids+1μM butyrate, dBMM+1mM butyrate, and dBMMlipids+1mM butyrate. The cells were fixed with 4% 

PFA and stained with Oil Red O dye. Images were taken at 100X on a phase microscope 
FIGURE 1: Dose Response to TMAO and Butyrate 

. TABLE 2: DOSE RESPONSE TO TMAO AND BUTYRATE SUMMARIZED 

 <10μM 10μM >10μM 

TMAO Limited Effect 
Visible Increase in 

Steatosis 
Cell Death 

Butyrate Limited Effect 
Visible Decrease in 

Steatosis 

Visible Increase in 

Steatosis 
TABLE 2: Dose Response to TMAO and Butyrate Summarized 
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CHAPTER 4: CELL CULTURE AND ASSAY METHODOLOGY 

Cell Culture 

 Primary hepatocytes from Massachusetts General Hospital (MGH) (Lot# 54.1) were 

plated on 15mm coverslips at a cell density of approximately 250,000 cells/cs in vendor 

recommended medium. The coverslips were prepared by sterilization in 70% IPA and then 

incubated with ECL Cell Attachment Matrix (Millipore Sigma, 08-110) diluted in PBS for 1 

hour, then washed with PBS. The cells were then allowed to recover, being fed regularly, for 5-9 

days. 

Primary human cardiac preadipocytes (Cell Applications, Sigma, No. 802H-05A) were 

plated on 15mm coverslips at a cell density of approximately 90,000 cells/cs. The cells were 

allowed to grow to confluency and recover for 24-48 hours. Human Preadipocyte Growth 

Medium (Cell Applications, Sigma, 811-500) was used for both the plating and the recovery. 

After the preadipocytes had grown confluent, they were moved to Human Adipocyte 

Differentiation Medium (Cell Applications, Sigma, 811D-250) and allowed to differentiate, 

being fed regularly, for 12-16 days.  

After the cells had recovered and differentiated, they were moved to BMM conditions +/- 

10μM TMAO or Butyrate. They were fed and dosed regularly for 14 days. Alternatively, the 

coverslips were assembled into adipose-liver (A-L) systems and allowed to recover in hBMM for 

16-24 hours before being dosed with BMM conditions +/- TMAO or Butyrate for 13-14 days.  

HoaC Systems 

 A two-organ HoaC system was used to model NAFLD in these experiments. The systems 

themselves consisted of a top and a bottom gasket between a top and a bottom housing fastened 
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with screws. The housings and gaskets were designed to form two wells for 15mm coverslips 

(one for the white adipose tissue (WAT) module and one for the liver module), two access ports, 

and a channel connecting the modules and access ports.  

 Before assembly, the systems were cleaned with 1% tergazyme 48 hours prior to 

assembly and all components were sterilized in 70% IPA and dried fully. In response to toxicity 

issues, a more thorough cleaning was done by sonicating in 1% tergazyme 3x 30 minutes and in 

deionized water 3x 30 minutes followed by sterilization.  

 To assemble, 1ml of hBMM was added to the bottom housing+gasket. The coverslips 

were then transferred to their appropriate wells cell side up. The top housing+gasket was 

secured, and the access ports filled with hBMM so that total medium volume was roughly 1.5ml. 

The systems were stored on a rocker with a 1° tilt to allow the medium to flow between the 

modules. 

 
FIGURE 2: Adipose-Liver Systems Design.  

(A) Schematic of the two-organ adipose-liver systems. The systems consist of two access ports, two wells for the 

organ modules, and a channel connecting them. (B) The liver and white adipose tissue modules before system 

assembly and after 14 days. Images taken at 100X and 200X using a phase microscope.  
FIGURE 2: Adipose-Liver Systems Design 
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Hepatic Steatosis 

 To determine the amount of steatosis in each condition, the hepatocytes were stained with 

Oil Red O dye as done in the dose response. The coverslips were them imaged at 100X and 

200X using a phase microscope. Several 200X images were taken of each condition and then 

processed using the image processing software ImageJ [36]. Images were converted to 8-bit, the 

threshold was set so that background was removed, and the setting “Watershed” was turned on to 

separate particles. The setting “Black Background” under both the “Image>Adjust>Threshold” 

and “Process>Binary>Options” tabs was unselected. This produced images which were pixelated 

and binary with the red stain in black and the background in white. The %Area of the black in 

the images was then recorded. Places of low cell confluency or high debris were avoided for 

quantification. %Area was average for each condition and normalized to the Average %Area of 

the Healthy control condition.  

 
FIGURE 3: Quantification of Steatosis Using ImageJ.  

Hepatic cells stained with Oil Red O were imaged under a phase microscope at 200X. The image processing 

software, ImageJ, was used to convert the image into a pixelated, black and white version which could be quantified 

by taking the %Area.  
FIGURE 3: Quantification of Steatosis Using ImageJ 

Hepatic Enzyme Activity 

 The activity of the enzyme CYP3A4 was measured as an indicator of liver function. This 

was done with the P450-Glo™ CYP3A4 Assay and Screening System (Promega, V900). In the 
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first reaction of this assay the CYP3A4 enzyme in the hepatocytes metabolizes the Luciferin-IPA 

reagent into luciferin. In the second reaction, a luciferase enzyme metabolizes luciferin and 

produces light as one of the products.  

On the endpoint day of dosing, the hepatocytes were washed with PBS to remove the 

phenol red, and were moved to a 24 well plate. 180ul of a 12μM solution of the Lucifern-IPA 

diluted in DMEM -phenol red (ThermoFisher, 11054020) was added to each well. After an hour 

of incubation, the solution was removed and stored at -20°C. 50μL of each sample, standard, and 

blank were added to a white, opaque, 96 well plate. 50μL of the Luciferin Detection Reagent was 

added to each well and incubated for 20 minutes in the dark. The luminescence was measured 

using a plate reader.  

Adipocyte Cytokine Secretion 

 To determine the effects of the conditions on adipokine secretion, the production of leptin 

and adiponectin was measured using an enzyme-linked immunosorbent assay (ELIZA). At day 

14, the medium from each condition was collected and stored at -20°C. The Human Leptin 

ELISA Kit (Abcam, ab179884) and Human Adiponectin ELISA Kit (Abcam, ab9996) were then 

used to assay the collected medium. 

Adipocyte Insulin Resistance 

 The presence, or lack thereof, of GLUT-4 and insulin receptor were used as indications of 

insulin resistance. Immunocytochemistry (ICC) was used to measure the presence of these two 

markers. On day 14, the adipocyte coverslips were washed with PBS and fixed using 4% PFA 

for 10 minutes. After being washed twice more with PBS, the coverslips were incubated in 

blocking buffer consisting of PBS + 1% Bovine Serum Albumin (BSA) and 5% Fetal Bovine 
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Serum (FBS) for one hour. Rabbit anti-α-insulin receptor antibody, β subunit (Sigma, 07-724) 

was used to detect insulin receptor and mouse anti-GLUT4 antibody (Invitrogen, MA5-17176) 

was used for the detection of GLUT-4. A 1:1000 dilution of these antibodies in the blocking 

buffer was made and the adipocytes were incubated in this solution overnight at 4°C. They were 

then washed with PBS and incubated in the dark for 2 hours at room temperature in a 1:1000 

solution of the secondary antibodies, Donkey anti-Mouse IgG Alexa Fluor 488 (Invitrogen, 

A21202) and Goat anti-Rabbit IgG Alexa Fluor 568 (Invitrogen, A11036), and the blocking 

buffer. They were then washed 3x 5 minutes with PBS and stained with a solution of 4′,6-

diamidino-2-phenylindole (DAPI) for 5 minutes in the dark at room temperature. After another 

3x 5 minutes washes with PBS, the coverslips were mounted onto glass slides using ProLong 

Diamond Antifade Mountant (Invitrogen, P36970), set to dry in the dark overnight, and stored in 

the dark at 4°C until imaged at 200X on a confocal microscope.  

 To quantify the amount of GLUT-4 and insulin receptor being expressed, the images 

were processed using the ImageJ software. The images (in Tiff format) were separated using the 

“Images>Stacks>Stacks to Images” setting. The Mean Grey Values of 488 and 568 images 

(green and red, GLUT-4 and insulin receptor) were then measured.   
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CHAPTER 5: MONOCULTURE RESULTS 

Culture Health 

 Hepatocytes in the BMM proved to be viable up to 14 days in monoculture. The 

exception to this were the hBMMtnf conditions which showed significant cell death. The 

conditions using dBMM +/- other factors appeared to have more confluency. This is likely due to 

the energy source, glucose, having a higher concentration and thus being more readily available 

for the cells in these conditions.  

The monoculture hepatocytes dosed with +/- butyrate were cut off at 7 days to better 

reflect the+/- butyrate adipose-liver systems. All conditions appeared confluent and healthy at 7 

days. The cultures cut off at 7 days appeared to be more confluent than the 14-day cultures.  
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FIGURE 4: Cell Health of Hepatocytes in Monoculture.  

(A) MGH hepatocytes were fed for 14 days with hBMM, hBMMtnf, hBMMlipids, dBMM, dBMMtnflipids +/- 10μM 

TMAO. The condition dBMM was not included. The cells were imaged at 100X using a phase microscope. (B) MGH 

hepatocytes were fed for 14 days with hBMM, hBMMtnf, hBMMlipids, dBMM, dBMMtnflipids +/- 10μM butyrate. 

Images were taken at 100X on a phase microscope.   

FIGURE 4: Cell Health of Hepatocytes in Monoculture 

 Adipocytes in the BMM were viable and confluent through 14 days. This was 

independent of condition. All conditions also showed proper morphology and stored lipids. 

Qualitatively, the hBMMtnf +/- TMAO/Butyrate conditions stored less lipids than the other 

conditions, which may speak to the health of the cells.  



 19 
 

 
FIGURE 5: Cell Health of Adipocytes in Monoculture.  

(A) Adipocytes were fed for 14 days with hBMM, hBMMtnf, hBMMlipids, dBMM, dBMMtnflipids +/- 10μM TMAO. 

The cells were imaged at 100X using a phase microscope. (B) Adipocytes were fed for 14 days with hBMM, 

hBMMtnf, hBMMlipids, dBMM, dBMMtnflipids +/- 10μM butyrate. Images were taken at 100X on a phase 

microscope.   

FIGURE 5: Cell Health of Adipocytes in Monoculture 

Hepatic Steatosis 

 As expected, the hBMMlipids, dBMM, and dBMMtnflipids +/- TMAO conditions were 

all higher in steatosis than the hBMM +/- TMAO conditions in hepatocyte monoculture when 

dosed for 14 days. Because of the poor morphology of the hBMMtnf +/- TMAO conditions, they 

were not included in the quantification. Very little change was observed between the -TMAO 

and +TMAO conditions and results remain inconclusive at this time.  

 As expected, the hBMMlipids, dBMM, and dBMMtnflipids +/- Butyrate conditions were 

also higher than the hBMM +/- Butyrate conditions in the hepatocytes dosed for 7 days in 
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monoculture. Dosing with butyrate worsened the steatosis in hBMM and hBMMtnf while it 

improved steatosis in dBMM+/-lipids.   
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FIGURE 6: Steatosis of Hepatocytes in Monoculture.  

(A) MGH hepatocytes were fed for 14 days with hBMM, hBMMtnf, hBMMlipids, dBMM, dBMMtnflipids +/- 10μM 

TMAO. The condition dBMM was not included. The cells were fixed with 4% PFA and stain with Oil Red O dye. The 

cells were imaged at 100X and 200X using a phase microscope. (B) MGH hepatocytes were fed for 14 days with 

hBMM, hBMMtnf, hBMMlipids, dBMM, dBMMtnflipids +/- 10μM butyrate. The cells were fixed with 4% PFA and 

stain with Oil Red O dye. Images were taken at 100X and 200X on a phase microscope. (C) The steatosis expressed 

in monoculture hepatocytes +/- TMAO was quantified by taking the %Area of the 200X images using the ImageJ 

software. The %Area was normalized to the hBMM control. N=1 for all conditions except hBMMtnf +/- TMAO and 

dBMM which were not included. (D) The steatosis expressed in monoculture hepatocytes +/- Butyrate was 

quantified by taking the %Area of the 200X images using the ImageJ software. The %Area was normalized to the 

hBMM control. N=1 for all conditions.  

FIGURE 6: Steatosis of Hepatocytes in Monoculture 
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Hepatic Enzyme Activity 

 The most prominent result from the CYP3A4 assay was that the conditions with +TNF 

had almost no activity. In the conditions of hBMMtnf +/- TMAO, this was not surprising 

considering the poor health of the cells, but this result was seen in the other +TNF conditions as 

well. In the +/-TMAO cultures which were taken to 14 days, the hBMMlipids and dBMM +/- 

TMAO were higher than the hBMM conditions, while the +/- Butyrate conditions, which were 

cultured for 7 days, demonstrated the opposite pattern. It is also uncertain why the activity of the 

+/- Butyrate monocultures had such higher activity levels than any other culture with as high as 

60-fold+ more activity.  

 
FIGURE 7: CYP3A4 Activity of Hepatocytes in Monoculture.  

(A) Hepatocytes were fed for 14 days with hBMM, hBMMtnf, hBMMlipids, dBMM, dBMMtnflipids +/- 10μM 

TMAO. On day 14, the CYP3A4 activity of the cultures was measured. N=1 for all conditions except dBMM which 

was not included. (B) Hepatocytes were fed for 7 days with hBMM, hBMMtnf, hBMMlipids, dBMM, dBMMtnflipids 

+/- 10μM Butyrate. On day 7, the CYP3A4 activity of the cultures was measured. N=1 for all conditions. 

FIGURE 7: CYP3A4 Activity of Hepatocytes in Monoculture 

Adipocyte Cytokine Secretion and Insulin Resistance 

 Limited patterns were observed regarding the secretion of leptin and adiponectin in 

monoculture. Additional replicates are needed. GLUT-4 and insulin receptor expression was 

increased with the dosing of TMAO in monoculture in most conditions. The opposite was 

observed for butyrate which appeared to lower GLUT-4 and insulin receptor expression. In 
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monoculture the expression of GLUT-4 and insulin receptor was increased in the more diseased 

states when compared to hBMM control. 

 
FIGURE 8: Adipocyte Secretion of Cytokines in Monoculture.  

(A) Adipocytes were fed for 14 days with hBMM, hBMMtnf, hBMMlipids, dBMM, dBMMtnflipids +/- 10μM TMAO. 

On day 14, the concentration of Leptin of the culture supernatant was measured. N=1 for all conditions. (B) 

Adipocytes were fed for 14 days with hBMM, hBMMtnf, hBMMlipids, dBMM, dBMMtnflipids +/- 10μM TMAO. On 

day 14, the concentration of Adiponectin of the culture supernatant was measured. N=1 for all conditions. (C) 

Adipocytes were fed for 14 days with hBMM, hBMMtnf, hBMMlipids, dBMM, dBMMtnflipids +/- 10μM Butyrate. 

On day 14, the concentration of Leptin of the culture supernatant was measured. N=1 for all conditions except 

dBMMtnflipids+Butyrate, which was not included. (D) Adipocytes were fed for 14 days with hBMM, hBMMtnf, 

hBMMlipids, dBMM, dBMMtnflipids +/- 10μM Butyrate. On day 14, the concentration of Adiponectin of the culture 

supernatant was measured. N=1 for all conditions except dBMMtnflipids+Butyrate, which was not included. 

FIGURE 8: Adipocyte Secretion of Cytokine in Monoculture 
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FIGURE 9: Expression of GLUT-4 and Insulin Receptor in Monoculture  

(A) Adipocytes were fed for 14 days with hBMM, hBMMtnf, hBMMlipids, dBMM, dBMMtnflipids +/- 10μM TMAO. 

On day 14, the cells were fixed with 4% PFA. Antibodies were used to fluorescently stain for insulin receptor (red) 

and GLUT-4 (green). Images at 200X were taken using a confocal microscope. N=1 for all conditions. (B) 

Adipocytes were fed for 14 days with hBMM, hBMMtnf, hBMMlipids, dBMM, dBMMtnflipids +/- 10μM Butyrate. 

On day 14, the cells were fixed with 4% PFA. Antibodies were used to fluorescently stain for insulin receptor (red) 

and GLUT-4 (green). Images at 200X were taken using a confocal microscope. N=1 for all conditions. (C) The 

mean grey values of the +/- TMAO images were measured and normalized to hBMM control. (D) The mean grey 

values of the +/- Butyrate images were measured and normalized to hBMM control. 

FIGURE 9: Expression of GLUT-4 and Insulin Receptor in Monoculture 
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CHAPTER 6: HOAC SYSTEM RESULTS 

Culture Health 

 The MGH hepatocytes in the adipose-liver systems dosed with +/- TMAO were confluent 

and appeared healthy through 14 days. The adipocytes in the adipose-liver systems dosed with 

+/- TMAO for 14 days also appeared confluent and healthy. The adipocytes also demonstrated 

correct morphology, storing lipids. This was true of all three replicates.  

 
FIGURE 10: Cell Health of Adipose-Liver Systems, TMAO  

(A) Adipose-liver systems were fed for 14 days with hBMM, hBMMtnf, hBMMlipids, dBMM, dBMMtnflipids +/- 

10μM TMAO. The liver module, containing MGH hepatocytes, was imaged at 100X using a phase microscope. (B) 

Adipose-liver systems were fed for 14 days with hBMM, hBMMtnf, hBMMlipids, dBMM, dBMMtnflipids +/- 10μM 

TMAO. The WAT module, containing adipocytes, was imaged at 100X using a phase microscope. 

FIGURE 10: Cell Health of Adipose-Liver Systems, TMAO 
 The MGH hepatocytes of the adipose-liver systems dosed with +/- Butyrate were 

confluent through the endpoint of 7 days. The confluency and health of the cells did appear to 
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start to decline as day 7 approached. This can be seen most in conditions hBMMtnf and dBMM. 

The adipocytes of the adipose-liver systems +/- Butyrate were confluent but were not expressing 

the proper morphology of storing lipids. This suggests that the adipocytes did not differentiate 

properly for these systems.  

 The adipose-liver systems +/- Butyrate were cut off at 7 days after previous systems 

showed signs of toxicity disallowing the hepatocytes to be viable through the 14-day mark. 

Precautions and extra measures of additional cleaning, medium being remade, and similar efforts 

were taken to ensure the best health of the cells. The toxicity which was apparent in the previous 

batches was independent of any factor including butyrate. 
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FIGURE 11: Cell Health of Adipose-Liver Systems, Butyrate.  

(A) Adipose-liver systems were fed for 7 days with hBMM, hBMMtnf, hBMMlipids, dBMM, dBMMtnflipids +/- 

10μM Butyrate. The liver module, containing MGH hepatocytes, was imaged at 100X using a phase microscope. (B) 

Adipose-liver systems were fed for 7 days with hBMM, hBMMtnf, hBMMlipids, dBMM, dBMMtnflipids +/- 10μM 

Butyrate. The WAT module, containing adipocytes, was imaged at 100X using a phase microscope. 
FIGURE 11: Cell Health of Adipose-Liver Systems, Butyrate 

Hepatic Steatosis  

 The MGH hepatocytes in the adipose-liver systems expressed a higher level of steatosis 

in the hBMMlipids, dBMM, and dBMMtnflipids +/- TMAO conditions than the hBMM +/- 

TMAO. Additionally, steatosis appeared to worsen with TMAO dosing in all conditions 

excluding dBMM +/- TMAO.  
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 The hepatocytes in the adipose-liver systems +/- Butyrate expressed worsened steatosis in 

all conditions compared to the hBMM control through day 7. Butyrate also appeared to improve 

steatosis in all conditions except for hBMM.  
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FIGURE 12: Steatosis of Hepatocytes in Adipose-Liver Systems.  

(A) Adipose-liver systems were fed for 14 days with hBMM, hBMMtnf, hBMMlipids, dBMM, dBMMtnflipids +/- 

10μM TMAO. The liver module, containing MGH hepatocytes, was fixed with 4% PFA and stain with Oil Red O 

dye. The cells were imaged at 100X and 200X using a phase microscope. (B) Adipose-liver systems were fed for 7 

days with hBMM, hBMMtnf, hBMMlipids, dBMM, dBMMtnflipids +/- 10μM butyrate. The liver module, containing 

MGH hepatocytes, was fixed with 4% PFA and stain with Oil Red O dye. Images were taken at 100X and 200X on a 

phase microscope. (C) The steatosis expressed in the liver modules +/- TMAO was quantified by taking the %Area 

of the 200X images using the ImageJ software. The %Area was normalized to the hBMM control. N=3 for all 

conditions. (D) The steatosis expressed in monoculture hepatocytes +/- Butyrate was quantified by taking the %Area 

of the 200X images using the ImageJ software. The %Area was normalized to the hBMM control. N=1 for all 

conditions. 

FIGURE 12: Steatosis of Hepatocytes in Adipose-Liver Systems 
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Hepatic Enzyme Activity 

As was seen in monoculture, the MGH hepatocytes in the adipose-liver systems +/- 

TMAO did not show any CYP3A4 activity in +TNF conditions when measured at 14 days. 

Additionally, the dBMM +/- TMAO conditions had more activity than the rest. +TMAO 

conditions impaired CYP3A4 activity in all conditions. The hepatocytes from the adipose-liver 

systems +/- Butyrate showed limited CYP3A4 activity on day 7. In conditions that had activity, 

butyrate appeared to increase activity compared to controls.   

 

FIGURE 13: CYP3A4 Activity of Hepatocytes in Adipose-Liver Systems.  

(A) Adipose-liver systems were fed for 14 days with hBMM, hBMMtnf, hBMMlipids, dBMM, dBMMtnflipids +/- 

10μM TMAO. On day 14, the liver module was moved to a 24 well plate and the CYP3A4 activity of the hepatocytes 

was measured. N=3 for all conditions. (B) Adipose-liver systems were fed for 7 days with hBMM, hBMMtnf, 

hBMMlipids, dBMM, dBMMtnflipids +/- 10μM Butyrate. On day 7, the liver module was moved to a 24 well plate 

and the CYP3A4 activity of the hepatocytes was measured. N=1 for all conditions. 

FIGURE 13: CYP3A4 Activity of Hepatocytes in Adipose-Liver Systems 

Adipocyte Cytokine Secretion and Insulin Resistance 

 Dosing with TMAO increased the secretion of leptin in adipose-liver systems in most 

conditions. The opposite was observed for adiponectin secretion. The expression of GLUT-4 and 

insulin receptor in adipose-liver systems decreased in the conditions hBMMlipids +/- TMAO, 

dBMM +/- TMAO, and dBMMtnflipids +/- TMAO compared to hBMM control.  
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FIGURE 14: Adipocyte Secretion of Cytokines in Adipose-Liver Systems.  

(A) Adipose-liver systems were fed for 14 days with hBMM, hBMMtnf, hBMMlipids, dBMM, dBMMtnflipids +/- 

10μM TMAO. On day 14, the concentration of Leptin of the culture supernatant was measured. N=3 for all 

conditions. (B) Adipose-liver systems were fed for 14 days with hBMM, hBMMtnf, hBMMlipids, dBMM, 

dBMMtnflipids +/- 10μM TMAO. On day 14, the concentration of Adiponectin of the culture supernatant was 

measured. N=3 for all conditions. (C) Adipose-liver systems were fed for 7 days with hBMM, hBMMtnf, 

hBMMlipids, dBMM, dBMMtnflipids +/- 10μM Butyrate. On day 7, the concentration of Leptin of the culture 

supernatant was measured. N=1 for all conditions. (D) Adipose-liver systems were fed for 7 days with hBMM, 

hBMMtnf, hBMMlipids, dBMM, dBMMtnflipids +/- 10μM Butyrate. On day 7, the concentration of Adiponectin of 

the culture supernatant was measured. N=1 for all conditions. 

FIGURE 14: Adipocyte Secretion of Cytokines in Adipose-Liver Systems 
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FIGURE 15: Expression of GLUT-4 and Insulin Receptor in Adipose-Liver Systems, TMAO.  

(A) Adipose-liver systems were fed for 14 days with hBMM, hBMMtnf, hBMMlipids, dBMM, dBMMtnflipids +/- 

10μM TMAO. On day 14, the adipocytes were fixed with 4% PFA. Antibodies were used to fluorescently stain for 

insulin receptor (red) and GLUT-4 (green). Images at 200X were taken using a confocal microscope. N=2 for all 

conditions except dBMM+TMAO and dBMMtnflipids+TMAO. (B) The mean grey values of the images were 

measured and normalized to hBMM control. 

FIGURE 15: Expression of GLUT-4 and Insulin Receptor in Adipose-Liver Systems, TMAO 
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CHAPTER 7: DISCUSSION AND CONCLUSION 

Adipose-Liver HoaC Systems and NAFLD  

 A two-organ, adipose-liver, human-on-a-chip, in vitro system was used to create a model 

for non-alcoholic fatty liver disease. This was done using defined medium and human cells; the 

liver module using primary hepatocytes and the white adipose tissue module using mesenchymal 

preadipocyte stem cells. By using this kind of novel system, the effects of disease states, the 

influence of peripheral organs, and impacts of drugs and other compounds can be observed under 

tightly controlled parameters. Additionally, these systems allow for multiple assays and assay 

types to be run on the same system.  

 The potential and utility of these systems is best seen in the adipose-liver systems +/- 

TMAO. These systems yielded relatively consistent data in several different assays. Although 

these experiments have not been done in enough replicates to yield statistically significant data at 

this point, this data and previous data of the characterization of these two-organ systems suggest 

that a higher throughput study with more replications would have success in testing the effects of 

various drugs on NAFLD [35]. 

 The main readout for this experiment was the quantification of steatosis. With the 

exception of the hBMMtnf +/-TMAO conditions, all conditions displayed higher amounts of 

steatosis than the hBMM control (Figure 12). Since the disease states of obesity and diabetes are 

correlated with NAFLD, it not surprising that the same would be true in adipose-liver systems. It 

is important to note that this trend was seen in not only the adipose-liver systems +/- TMAO, but 

in the adipose-liver systems +/- Butyrate and the two monocultures as well (Figures 6, 12). 
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 Another important observation is the effect that TNF-α had on the cultures. In the 

adipose-liver systems +/- TMAO, the hBMMtnf +/- TMAO stored less lipids than the hBMM 

control. Similarly, the dBMMtnflipids +/- TMAO conditions were lower in steatosis than the 

dBMM condition, which was unexpected (Figure 12). The most likely explanation for this is that 

the TNF-α was causing cell death and thus the cultures themselves were less confluent and so the 

overall steatosis was less while the steatosis per cell could have potentially been higher. This 

explanation is supported qualitatively by the images and quantitatively by the CYP3A4 activity. 

In the +/- TMAO systems, the +/- Butyrate systems, and both monocultures, the hBMMtnf +/- 

TMAO/Butyrate and dBMMtnflipids +/- TMAO/Butyrate conditions had almost no CYP3A4 

activity (Figures, 7, 13). This indicates that the hepatocytes’ functionality was greatly reduced 

when dosed with TNF-α. There are two potential reasons behind this: the first is that the 

concentration dosage was too high and thus was toxic to the cells. The other option is that the 

TNF- α was causing the hepatocytes to progress in the NAFLD disease spectrum. As was 

mentioned before, NAFLD can progress to disease states such as NASH, fibrosis, and eventually 

cancer. TNF-α could be causing the damage necessary for the progression to disease states such 

as fibrosis which cannot be modeled in this specific HoaC system. 

 In the CYP3A4 assay, the conditions of dBMM+/- TMAO displayed more activity than 

the hBMM control (Figure 13). This was originally unexpected but can be explained by the fact 

that the additional glucose, although worsening the steatosis, could be acutely making the cells 

more metabolically active.   

    Although there are some patterns emerging in the quantification of leptin and 

adiponectin, with the limited data set, it is difficult to make any conclusions as to the role of the 
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various conditions in adipose health (Figures 8, 14). Similarly, it is not possible at this time to 

determine the adipocytes’ role in NAFLD progression in the liver until further monoculture and 

adipose-liver system replicates are completed.  

 In most conditions in the adipose-liver systems, there was less expression of GLUT-4 and 

insulin receptor compared to the hBMM control (Figure 15). This is an expected result and 

further demonstrates that in the adipose-liver HoaC model the expected phenotypes of NAFLD 

can be emulated. The adipose-liver HoaC systems show a promising start to the modeling of 

NAFLD. Each batch of these systems can yield a great deal of data. HoaC systems, specifically 

the adipose-liver two organ systems, are new and cutting-edge innovations. As with any novel 

technology, it is inevitable that there will be hurdles to overcome.  

An example of this was the occurrence of toxicity in some of the systems. The reason 

why the adipose-liver systems +/-Butyrate were limited to 7 days instead of the intended 14 was 

that previous +/-Butyrate systems had some toxicity. The toxicity was remedied by a change in 

the cleaning protocol of the housings, but a shorter dosing was used due to time limitations and 

to ensure the systems’ success.  

The cells themselves offer a challenge. Eukaryotic, specifically human, cells tend to take 

a long time to culture and can be difficult to work with. These systems each represent a month, 

from the plating of the adipocytes to the disassembly of the systems. In a high throughput, 

standardized study, with the human and physical resources to tightly overlap batches, this is not a 

significant hurdle. However, this does speak to the limitations of these systems; their 

physiological relevance, controlled parameters, and versatility of assays comes with a higher cost 

of failure. But it is important to note, that as these systems are used more, with unsuccessful 
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batches occurring periodically, they and their usage will be better characterized and altered 

towards a reliable, physiologically relevant, in vitro model for disease which could redefine drug 

testing.  

The Gut Microbiome’s Role in NAFLD 

 There were a couple of notable trends observed regarding the gut microbiome’s role in 

NAFLD. The first of which was that TMAO does appear to worsen steatosis in the liver in the 

adipose-liver systems. This was seen in all conditions except dBMM. The opposite was true of 

butyrate which lowered steatosis in the adipose-liver systems in all conditions except hBMM 

(Figure 12). These results, that TMAO would increase steatosis while butyrate would decrease it, 

were the expected results based on the literature. However, these results were not seen in 

monoculture (Figure 6). It is unclear at this time whether this is due to the adipocytes’ influence 

in the HoaC systems or if it is due to the limited number of replicates. The hypothesis that 

TMAO would worsen disease states was also supported by the CYP3A4 activity. In each 

condition, TMAO decreased CYP3A4 activity in the HoaC systems (Figure 13). Butyrate 

increased CYP3A4 activity in the adipose-liver systems, which would suggest that butyrate 

improves liver function (Figure 13).  

 As was mentioned previously, although NAFLD is highly correlated with obesity and 

type II diabetes, there are still cases of NAFLD in otherwise healthy individuals. The hypothesis 

was thus put forward that a dysbiosis of the gut microbiome could account for this subset of the 

population. TMAO’s effects in hBMM adipose-liver systems supports this idea. TMAO in 

hBMM adipose-liver systems both increases steatosis and decreases CYP3A4 activity (Figures 
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12, 13). It is thus possible that an increase in choline metabolizing microbiota would induce 

NAFLD in otherwise healthy individuals.  

 Similarly, butyrate increased steatosis in hBMM, in both monoculture and adipose-liver 

systems, while decreasing steatosis in most other conditions (Figures 6, 12). If this pattern 

continues in additional replicates, it would highlight another potential mechanism by which the 

GM can influence NAFLD in otherwise healthy patients. While butyrate’s beneficial anti-

inflammatory properties normally operate to decrease steatosis in disease states, butyrate can 

also function as an energy source. If butyrate levels in the liver were increased, due to dysbiosis 

or leaky gut syndrome, the liver could end up storing this excess energy source as lipids.  

Increased leptin and decreased adiponectin were observed in the hBMMtnf, hBMMlipids, 

dBMM conditions when dosed with TMAO in the adipose-liver systems. The opposite was seen 

for the hBMM and dBMMtnflipids conditions (Figure 14). It is possible that the change in 

cytokine secretion was a response to the stimulus of TMAO by the adipose module to protect the 

liver module from the inflammatory properties of TMAO. If this is true, it would highlight 

adipocytes protective function in disease progression. Further replicates would allow for this 

hypothesis to be more fully explored. At this point, there is not enough data to determine the 

effects of the gut microbiome on adipocyte expression of GLUT-4 and insulin receptor. 

Further experimentation is necessary to solidify and identify by what mechanisms the 

GM may be impacting liver health. Future experiments could take the direction of additional 

replicates but could also be expanded to allow an even more holistic model of the GM and 

NAFLD. In the current experiments, the cultures were dosed with singular compounds. In future 

experiments, supernatant from live bacteria, cultured in different conditions, could be used to 
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dose the systems instead. Colon health and permeability is a major factor in the transport of 

compounds to the liver. Therefore, an additional module for the colon would incorporate another 

important aspect of NAFLD progression.  

Conclusion 

 Using the HoaC systems, the effects of the gut microbiome have started to be elucidated. 

This initial data is supportive of the hypothesis that a dysbiosis of the GM can influence the 

pathogenesis of NAFLD. More importantly, these experiments have added to the utility and 

development of human-on-a-chip systems. Despite some difficulty in early experiments, the 

adipose-liver, two-organ systems have significant potential in the testing of drugs and for the 

modeling of disease.  
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