
University of Central Florida University of Central Florida

STARS STARS

Honors Undergraduate Theses UCF Theses and Dissertations

2020

Ensuring Positive Definiteness in Linear Viscoelastic Material Ensuring Positive Definiteness in Linear Viscoelastic Material

Functions Based on Prony Series Functions Based on Prony Series

Christopher D. Rehberg
University of Central Florida

 Part of the Aerospace Engineering Commons

Find similar works at: https://stars.library.ucf.edu/honorstheses

University of Central Florida Libraries http://library.ucf.edu

This Open Access is brought to you for free and open access by the UCF Theses and Dissertations at STARS. It has

been accepted for inclusion in Honors Undergraduate Theses by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

Recommended Citation Recommended Citation
Rehberg, Christopher D., "Ensuring Positive Definiteness in Linear Viscoelastic Material Functions Based
on Prony Series" (2020). Honors Undergraduate Theses. 749.
https://stars.library.ucf.edu/honorstheses/749

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/honorstheses
https://stars.library.ucf.edu/thesesdissertations
https://network.bepress.com/hgg/discipline/218?utm_source=stars.library.ucf.edu%2Fhonorstheses%2F749&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/honorstheses
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/honorstheses/749?utm_source=stars.library.ucf.edu%2Fhonorstheses%2F749&utm_medium=PDF&utm_campaign=PDFCoverPages

ENSURING POSITIVE DEFINITENESS IN LINEAR VISCOELASTIC

MATERIAL FUNCTIONS BASED ON PRONY SERIES

by

CHRISTOPHER DANIEL REHBERG

A thesis submitted in partial fulfillment of the requirements

for the degree of Bachelor of Science

in the Department of Mechanical and Aerospace Engineering

in the College of Engineering and Computer Science

at the University of Central Florida

Orlando, Florida

Spring Term

2020

ii

ABSTRACT

This thesis presents a method to correct for non-positive-definiteness in linear viscoelastic material

functions. Viscoelastic material functions for anisotropic materials need to be interconverted in a

matrix coefficient prony series form, with a requirement of positive definiteness. Fitting is usually

done as a uniaxial prony series, resulting in scalar coefficients. When these uniaxial coefficients

are placed in a coefficient matrix, the required positive definiteness cannot be guaranteed. For

those matrices that do not meet this requirement, finding the nearest symmetric semi-positive

definite form of the matrix results in a viable prony series matrix coefficient with the required

positive definiteness. These corrected prony series coefficients allow for material functions to be

interconverted with minimal changes to experimental data.

iii

ACKNOWLEDGMENTS

I would like to show my deepest gratitude to my thesis chair, Dr. Kawai Kwok. All the time, effort,

and direction he has given to me in this thesis allowed me to grow as a student and complete this

monumental task.

I am also indebted to my wife, who not only supported me during this thesis but encouraged me

when I felt overwhelmed with the writing. Additionally, I must thank her for leading me to this

research.

iv

TABLE OF CONTENTS

Chapter 1: Introduction ... 1

1.1 Elastic Analysis ... 1

1.2 Viscoelastic Analysis .. 2

1.3 Interconversion .. 3

Chapter 2: Literature Review .. 6

Chapter 3: Problem Definition .. 8

3.1: Specific Problem .. 8

3.2: Proposed Solution .. 9

Chapter 4: Method Development .. 10

4.1 Matrix Properties ... 10

4.2 Assumptions .. 11

4.3 Fundamental Equation of Linear Viscoelastic Interconversion .. 11

4.4 Eigenvalues ... 14

4.5 Nearest Symmetric Positive Semidefinite Matrix ... 14

4.6 Interconversion of Viscoelastic Material Functions.. 15

4.6.1 Interconversion from D(t) to E(t) ... 16

4.6.2 Interconversion from E(t) to D(t) ... 17

v

4.7 Convolution Check .. 19

4.8 Model Steps ... 19

Chapter 5: Results ... 21

5.1 Eigenvalues ... 22

5.2 Fitted data vs. Corrected Data ... 24

5.2.1 R-squared .. 26

5.2.2 Absolute Error Over Time .. 27

5.3 Convolution ... 29

5.3.1 Relative Error of Convolution .. 32

Chapter 6: Conclusion... 35

Appendix ... 36

Appendix A: Pyhton Code .. 37

List of References ... 46

vi

LIST OF FIGURES

Figure 1: Comparative Creep Modulus over Time D11 ... 25

Figure 2: Comparative Creep Modulus over Time D21 ... 25

Figure 3: Comparative Creep Modulus over Time D22 ... 26

Figure 4: Comparative Creep Modulus Absolute Error over Time D11 28

Figure 5: Comparative Creep Modulus Absolute Error over Time D21 28

Figure 6: Comparative Creep Modulus Absolute Error over Time D22 29

Figure 7: Perfect Convolution vs. Thin Film Convolution D11 ... 30

Figure 8: Perfect Convolution vs. Thin Film Convolution D21 ... 31

Figure 9: Perfect Convolution vs. Thin Film Convolution D22 ... 31

Figure 10: Relative Convolution Error of Thin Film D11 .. 33

Figure 11: Relative Convolution Error of Thin Film D21 .. 33

Figure 12: Relative Convolution Error of Thin Film D22 .. 34

vii

LIST OF TABLES

Table 1: Eigenvalues for Fitted Data .. 22

Table 2: Fitted and Corrected Eigenvalues ... 23

Table 3: Fitted and Corrected Matrices .. 24

1

CHAPTER 1: INTRODUCTION

Viscoelastic materials have been growing in use, from polymers to polymer-based composites, to

new shape-memory materials. The ever-increasing use of viscoelastic materials has heightened the

demand for the ability to gather material properties to engineer and model these growing lists of

materials. Specific techniques are required to define and model these materials accurately.

1.1 Elastic Analysis

In order to understand viscoelastic materials, an overview of elastic material analysis will first be

undertaken. This will allow for an understanding of how viscoelastic material functions differ from

elastic material functions. These functions can be found using a simple uniaxial tension test. This

test uses a specimen designed to ensure a homogeneous state of stress and strain within the region

to be measured. With a known length and cross-section area, a set force may be applied, and then

stress, strain, and Young’s modulus may be found. Other properties may also be found, but for this

thesis, these properties are not being reviewed.

The first material quantity to be reviewed is that of engineering stress, which can be found by

dividing applied tensile force, F, by the cross-sectional area, 𝐴0 of our measured region.

𝜎𝑎𝑣 =

𝐹

𝐴0
 (1)

2

The second material quantity is engineering strain, which is determined by dividing the change of

length, 𝛥𝐿, of the measured region by the original length 𝐿0 of the same region.

𝜀𝑎𝑣 =

𝐿 − 𝐿0

𝐿0
=

𝐿

𝐿0
− 1 (2)

When elastic materials vary stress linearly with the strain, Young’s modulus, E, can be defined as

the slope of the stress-strain curve. This modulus allows for a direct relationship between stress

and strain, Hooke’s law. An important note: with elastic materials, the quantities reviewed are not

time-dependent.

 𝐸 =
𝜎𝑎𝑣

𝜀𝑎𝑣
 (3)

 𝜎𝑎𝑣 = 𝐸𝜀𝑎𝑣 (4)

1.2 Viscoelastic Analysis

The most significant difference between elastic and viscoelastic materials is the time-dependent

nature of the material functions. This requires different tests and analyses than used for elastic

material functions. These tests are the relaxation and creep tests and are used to measure the time-

dependent material functions.

For a relaxation test, a constant strain is applied quasi-statically to a uniaxial tensile bar. The bar

is then stretched to a new fixed length, with the stain applied as close to instantaneous as possible

3

without inertial or dynamic effects. In this test, it is assumed that no previous stress or strain history

exists in the test material. When the test material is loaded with this new strain, a stress response

happens, but over time this stress response lessens until a constant value is reached.

.

𝐸(𝑡) =

𝜎(𝑡)

𝜀0
 (5)

 𝜎(𝑡) = 𝜀0𝐸(𝑡) (6)

Equation 5 is known as the relaxation modulus and describes the uniaxial stress-strain relationship.

This is a viscoelastic analogous for Hooke’s law, found in equation 4.

The creep test, for uniaxial materials, is found using the same procedure as the relaxation test.

Rather than loading a strain, constant stress is loaded with an increasing strain response. After a

long time, the strain response reaches a constant value. Equation (7) is the creep compliance found

from the creep test.

𝐷(𝑡) =

𝜀(𝑡)

𝜎0
 (7)

 𝜀(𝑡) = 𝜎0𝐷(𝑡) (8)

1.3 Interconversion

4

The ever-increasing use of viscoelastic materials requires the ability to define creep and relaxation

material functions. While these material functions can be found experimentally, the relaxation and

creep tests can be expensive and time-consuming, usually requiring multiple runs with different

temperatures to capture the full range of time in a reasonable amount of time. This constraint,

together with either the creep or relaxation test being a challenge to find for the material function

encourages the need to find new ways to determine creep or relaxation. For linear viscoelastic

materials, the creep and relaxation material functions can be interconverted between each other,

allowing for only one material function to be experimentally found.

The interconversion of material functions has one of its necessities in the possible inaccessibility

of direct experimental results for one of these functions. An example of this can be found with the

use of a constant-strain relaxation test. Finding the response of a stiff material subjected to a

specified deformation can be problematic. (Park & Schapery, 1999); the same material could have

the creep function easily measured with a constant-stress creep test. The creep function becomes

the source function of an interconversion used to recreate the relaxation function as the target. This

interconversion is governed by the equation below.

 ∫ 𝑬(𝑡 − 𝜏) ⋅ 𝑫(𝑡)𝑑𝜏 = 𝑡𝑰
𝑡

0
 (9)

With the increased use of interconversion methods for linear viscoelastic materials, a need for

accurate approximations of the source and target functions has appeared. Presently the source

function is found with experimental data, fit into a prony series, equation (10) for relaxation, and

equation (11) for creep.

5

𝑬(𝑡) = 𝑬(0) + ∑ 𝑬(𝑛) exp(−𝑡𝜌𝑛)

𝑁

𝑛=1

(10)

𝑫(𝑡) = 𝑫(0) + ∑ 𝑫(𝑚)[1 − exp(−𝑡𝜆𝑚)]

𝑀

𝑚=1

(11)

The prony series is finally used in an interconversion for the target function uniaxially. This

approach is useful for isotropic materials but presents problems once anisotropic materials are to

be interconverted.

When material functions, for anisotropic materials, are experimentally found, the coefficients for

each material function curve must then be placed into unified matrix coefficients for an anisotropic

prony series. This approach does not consider the need for prony series coefficients to be

constrained positive definitely. This lack of constraint can keep useful interconversion algorithms

from being utilized, such as those presented by Levesque(Jacques Luk-Cyr et al., 2013).

6

CHAPTER 2: LITERATURE REVIEW

(Lee & Knauss, 2000) demonstrate a method for manipulating, with a recursion formula, data

gathered from an initial ramp. In laboratory environments, a ramp step, in stress or strain, is used

to gather material properties, instead of a unit step. This ramp step becomes approximately the

same as a unit step after a time interval around ten times the ramp-up time. While the

approximation is useful, the initial loss of accuracy of the ramp-up time can result in the loss of a

substantial portion of data. This recursion formula allows for the restoration of this lost data with

a good result.

(Knauss & Zhao, 2007) show a simple method to increase the range of data that is acquired from

a single test at a single temperature. Data acquired in laboratory experiments can be shorter than

desired because of equipment demand or stability. With the ten-times rule, this leaves a shortened

set of accurate data. With the addition of accelerating creep and relaxation, this leaves the

shortened data set with only a couple of decades of data. An extended amount of time, five or more

decades, is usually desired.

The use of computers and the commercially available Matlab code for the Trust Region Method,

has allowed the accurate interpretation of data past the recorded decade. This method allows for

the researcher’s choice of time constants or to have the Trust Region Method determine a set of

time constants. Further, it is shown that the use of only ten to fifteen data points and two time

constants per decade are needed for the results.

7

Luk-Cyr, Crochon, Li, and Levesque (Jacques Luk-Cyr et al., 2013) present a set of algorithms for

the interconversion of linear viscoelastic material functions of unidimensional and tridimensional

materials. Four algorithms are developed, with a set of two for unidimensional materials and a

second set for tridimensional materials. Each set has an interconversion from the creep to

relaxation and from relaxation to creep. These algorithms depend on the equations for the

thermodynamics of irreversible processes together with a prony series representation to achieve a

method for interconversion of material functions with a highly accurate analytical result.

8

CHAPTER 3: PROBLEM DEFINITION

In today’s aerospace environment, the increasing use of non-traditional materials are being used;

among these materials are viscoelastic materials. Viscoelastic materials have shown an increased

use in the aerospace industry, from carbon-fiber-reinforced polymers for plane shells and

deployable space structures, to thin-film polymers for superpressure balloons. The increase in the

dependence of viscoelastic materials results in an increased need to model.

The need to model viscoelastic materials requires either the creep compliance or the relaxation

modulus of a specific material. For sensible reasons, many materials have the creep compliance

measured from creep-recovery tests. This, however, presents a problem with the use of finite

element modeling, as packages require knowing the relaxation modulus for the software’s

implementation. Fortunately, the viscoelastic material functions can be interconverted, allowing

for the need to acquire only one function to have both.

3.1: Specific Problem

While present tests will work for isotropic materials, anisotropic materials present a different

challenge. While the multidimensional properties can be obtained, when each dimension is fitted

to a prony series with equal time constants, and placed in a coefficient matrix, shown below in a

general form,

9

𝐴 = 𝐴′ = [

𝑎1,1 ⋯ 𝑎1,𝑗

⋮ ⋱ ⋮
𝑎𝑖,1 ⋯ 𝑎𝑖,𝑗

]

(12)

 an important matrix property, or positive definiteness, is not guaranteed. This matrix property is

one found naturally in the coefficient matrix, arising with mechanically stability, if the stiffness

matrix maintains positive definiteness. This property is also necessary for the interconversion

algorithms, used in this thesis, to convert the anisotropic material functions.

3.2: Proposed Solution

The approach presented in this thesis is to correct the lack of positive definiteness obtained from

laboratory tests when individual dimensions are fitted into a prony series and then placed into a

coefficient matrix. This method allows the material properties to be measured and fitted using the

methods considered best for the materials and tests, with the constraint that each dimension must

use the same time constants. Next, each coefficient matrix is checked for positive definiteness and

if the property is not found, to adjust the offending matrix to its nearest positive definiteness state.

10

CHAPTER 4: METHOD DEVELOPMENT

This chapter will focus on the development of the method, starting with identifying matrix

properties and reviewing the assumption leading to this model. Next, the fundamental equation

governing linear viscoelastic material function interconversion will be derived, this equation will

not only allow for the interconversion, but becomes essential at the end of the model as a check

that the data provided to the model was useful, and an accurate conversion was performed. After

the fundamental equation, a look at the solution provided for the correction of matrix properties

will be reviewed. A review of the algorithms used, in this model, to interconvert the material

functions will be examined. Finally, an overview of the entire model, from start to finish, will be

conducted.

4.1 Matrix Properties

At present, many materials have their material functions experimentally found as a uniaxial prony

series. When these uniaxial series are placed in a multidimensional matrix form, no guarantee of

positive definiteness is provided. A new method is required for the fitting of multidimensional

material functions, in a prony series representation, in order to have these required properties of

symmetrical positive definiteness.

The goal of this model is to allow the interconversion of material functions, after correcting

problems in matrices that may arise from errors, such as noise from experimentation and

11

computational errors. This new model uses a numerical method approach for multidimensional

representation to ensure the required properties, accomplish interconversion, and verify the results.

For this thesis, MATLAB and Python have been utilized to ensure the method works, but to also

allow for automation of the process.

4.2 Assumptions

The matrix coefficients of the prony series must be positive definite. When unidimensional fittings

are placed in a tensor, this condition is not always met, because of experimental and numerical

errors. This thesis assumes that those negative eigenvalues should have been very close to zero

and positive. This, in turn, has led to the model used in this thesis, where coefficients that do not

meet requirements are then adjusted to become positive definite with the smallest changes

possible. Thankfully this process has been devised before for other problems.

4.3 Fundamental Equation of Linear Viscoelastic Interconversion

A key component of viscoelastic materials is the stress/strain relationship. Unlike elastic materials,

the stress/strain relationship of viscoelastic materials varies with time. This leads to two material

functions: a stress response called the relaxation modulus, and a strain response called the creep

compliance. When a viscoelastic material is placed under a constant strain, the stress response will

12

decrease with time; this is the relaxation modulus. When a constant stress is applied to a

viscoelastic material an increasing strain response is attained, the creep compliance. Equations

(13) and (14) show the material functions.

Relaxation Modulus: E(t) =
σ(t)

ε0
 (13)

𝐶𝑟𝑒𝑒𝑝 𝐶𝑜𝑚𝑝𝑙𝑖𝑎𝑛𝑐𝑒: 𝐷(𝑡) =
𝜀(𝑡)

𝜎0
 (14)

For linear viscoelastic materials, the creep and relaxation responses can be separated, and functions

can be shown to be connected, allowing for the interconversion of the material functions. The start

of these connections can be shown when the material function is rewritten to represent stress and

strain, respectively:

 𝜎(𝑡) = ∫ 𝐸(𝑡 − 𝜏) ⋅
𝑑𝜀(𝜏)

𝑑𝜏
𝑑𝜏

𝑡

0
 (15)

 𝜀(𝑡) = ∫ 𝐷(𝑡 − 𝜏) ⋅
𝑑𝜎(𝜏)

𝑑𝜏
𝑑𝜏

𝑡

0
 (16)

Then by taking the Laplace transform of equation (15) and (16), the material functions become:

 𝜀(̅𝑠) = 𝑆�̅�(𝑠)𝜎(𝑠) (17)

 𝜎(𝑠) = 𝑆�̅�(𝑠)𝜀(̅𝑠) (18)

Substituting equation (17) into equation (18),

13

 �̅�(𝑠)�̅�(𝑠) =
1

𝑠2
 (19)

By taking the inverse Laplace transformation of equation (19), we arrive at a Volterra equation of

the first kind and the fundamental equation for the interconversion of linear viscoelastic materials

 ∫ 𝐸(𝑡)𝐷(𝑡 − 𝜏)𝑑𝜏 = 𝑡
𝑡

0
 (20)

 ∫ 𝐸(𝑡 − 𝜏)𝐷(𝑡)𝑑𝜏 = 𝑡
𝑡

0
 (21)

The relationships are shown in equation (20) or (21) are used in the building of not only the

algorithms for the interconversion of material functions, but are also used as the basis of checking

the results of the model. When converting the material functions as matrices, the previous

governing equation is represented as the following, with tI being the t-multiplied identity matrix.

 ∫ 𝑬(𝑡 − 𝜏) ⋅ 𝑫(𝑡)𝑑𝜏 = 𝑡𝑰
𝑡

0
 (22)

Generally, and in this model, the creep compliance and relaxation modulus are represented as

prony series, shown in equation (23) and (24). With 𝑬(0) 𝑎𝑛𝑑 𝑫(0) being the equilibrium relaxation

and instantaneous creep moduli respectively and 𝜌𝑛 𝑎𝑛𝑑 𝜆𝑚 the inverted time constants.

 𝑬(𝑡) = 𝑬(0) + ∑ 𝑬(𝑛) exp(−𝑡𝜌𝑛)𝑁
𝑛=1

(23)

 𝑫(𝑡) = 𝑫(0) + ∑ 𝑫(𝑚)[1 − exp(−𝑡𝜆𝑚)]𝑀
𝑚=1

(24)

14

4.4 Eigenvalues

With all experimental data fitted as uniaxial prony series for the source function, and each

dimension has the same time constants, the next step of the model can be performed. All uniaxial

coefficients must be placed in a symmetric multidimensional prony series coefficient. This new

matrix form follows the same equation as seen in equations (23) or (24), but does not have a

guarantee of positive definiteness required. Each coefficient matrix must be checked for positive

definiteness, by calculation of eigenvalues. Each matrix that has any negative eigenvalues then

needs to be passed to the next step of this model, while those that do meet the requirements are left

alone.

4.5 Nearest Symmetric Positive Semidefinite Matrix

Those matrices found not to be positive definite need to have this corrected. In this method, this is

accomplished by finding the nearest symmetric positive semidefinite form of the matrix. This

change is accomplished by an algorithm described by (Higham 1988).

This algorithm computationally finds the nearest symmetric positive semidefinite matrix to a real

matrix using a modification of Halmos’ formula. These changes are using a bisection method,

applied to the formula, to compute an upper and lower bound of the distance from the symmetric

positive matrix to the real matrix. From there, the formula is formulated as a zero-finding problem,

15

and a hybrid Newton-bisection algorithm is applied. The positive semidefinite property of the

formulated matrix is checked with a Cholesky decomposition.

Once this process has been accomplished, our corrected source function can then be passed to the

proper interconversion algorithm described by (J. Luk-Cyr et al., 2013) and shown in the next

section.

4.6 Interconversion of Viscoelastic Material Functions

Using equation (22), to interconvert the source function to the target function can be a problem;

this equation is a Volterra equation and is generally ill-posed, causing a problem for numerical

integration. The numerical solution can be convergent, though it does not always converge to the

proper solution (Sorvari & Malinen, 2007). This problem of ill-posed can be corrected by

representing our functions as prony series. This turns equation (22) into a well-posed problem and

allows for the solving of the target function coefficients.

As viscoelastic material functions are often obtained from creep-recovery tests, and finite element

software usually requires knowing the relaxation function, this thesis will display the algorithm

for converting creep to relaxation first (J. Luk-Cyr et al., 2013). The only change that can be found

in the implementation shown below is for more than the tridimensional cases presented by

Levesque and authors. This change is accomplished by replacing the hard coding of dimensions

of a six by six matrix to that of variable size. This variable size is represented by R and is the N or

M dimension size of the square matrices for the prony series coefficients.

16

4.6.1 Interconversion from D(t) to E(t)

The algorithm starts by computing the internal matrices for the creep compliance. Here, M is the

number of coefficient matrices in the data, 𝒸ℒ is the Cholesky decomposition, and 𝜆𝑚 are the creep

inverted time constants:

1: 𝑨[𝑅𝑥𝑅]
(1)

= 𝑫(0)

2: 𝑨[𝑅𝑥𝑅⋅𝑀]
(2)

= [𝒸ℒ(𝜆1𝑫(1))|𝒸ℒ(𝜆2𝑫(2))| … |𝒸ℒ(𝜆𝑀𝑫(𝑀))]

3: 𝑨[𝑅⋅𝑀𝑥𝑅⋅𝑀]
(3)

= [
[𝜆1]𝑅 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ [𝜆𝑀]𝑅

]

4: 𝑩[𝑅⋅𝑀𝑥𝑅⋅𝑀] 𝑖𝑠 𝑎𝑛 𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 𝑚𝑎𝑡𝑟𝑖𝑥

The second stage of the algorithm then computes the internal matrices of the relaxation modulus.

5: 𝑳(1) = (𝑨(1))
−1

6: (𝑳(2))
𝑇

= (𝑨(2))
𝑇

⋅ (𝑨(1))
−1

7: 𝑳(3) = 𝑨(3) + (𝑨(2))
𝑇

⋅ (𝑨(1))
−1

⋅ 𝑨(2)

Next, we calculate the eigenvectors P of 𝑳(3) with singular value decomposition and use this result

to computer two more matrices, we need to find the relaxation coefficients and inverted time

constants.

8: 𝑳(3∗) = 𝑷𝑇 ⋅ 𝑳(3) ⋅ 𝑷

9: (𝑳(2∗))
𝑇

= 𝑷𝑇 ⋅ (𝑳(2))
𝑇

17

Now we can obtain 𝑪(0), 𝑪(𝑛), 𝑎𝑛𝑑 𝜌𝑛.

10: 𝑬(0) = 𝑳(1) − ∑ 𝑬(𝑛)
𝑁

𝑛=1

11: 𝒇𝒐𝒓 𝑛 = 1 𝑡𝑜 𝑁 = 𝑅 ⋅ 𝑀 𝒅𝒐

12: 𝐸𝑖𝑗
(𝑛)

=
𝐿𝑖𝑛

(2∗)
𝐿𝑗𝑛

(2∗)

𝐿𝑛𝑛
(3∗)

13: 𝜌𝑛 =
𝐿𝑛𝑛

(3∗)

𝐵𝑛𝑛

14: 𝒆𝒏𝒅 𝒇𝒐𝒓

4.6.2 Interconversion from E(t) to D(t)

For the relaxation to creep algorithm, the same notations as before will be followed, including the

Cholesky decomposition. The only change is that M takes the place of N and the use of our

relaxation inverted time constants, 𝜌𝑛. Since the changes are nominal, all the steps will be

presented without comments.

1: 𝑳[𝑅𝑥𝑅]
(1)

= 𝑬(0) + ∑ 𝑬(𝑛)
𝑁

𝑛=1

 2: 𝐿[𝑅𝑥𝑅⋅𝑁]
(2)

= [𝒸ℒ(𝜌1𝑬(1))|𝒸ℒ(𝜌2𝑬(2))| … |𝒸ℒ(𝜌𝑁𝑬(𝑁))]

18

 3: 𝑳[𝑅⋅𝑁𝑥𝑅⋅𝑁]
(3)

= [
[𝜌1]𝑅 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ [𝜌𝑁]𝑅

]

 4: 𝑩[𝑅⋅𝑀𝑥𝑅⋅𝑀] 𝑖𝑠 𝑎𝑛 𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 𝑚𝑎𝑡𝑟𝑖𝑥

 5: 𝑨(1) = (𝑳(1))
−1

 6: (𝑨(2))
𝑇

= (𝑳(2))
𝑇

⋅ (𝑳(1))
−1

 7: 𝑨(3) = 𝑳(3) + (𝑳(2))
𝑇

⋅ (𝑳(1))
−1

⋅ 𝑳(2)

 8: 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑡ℎ𝑒 𝑒𝑖𝑔𝑒𝑛𝑣𝑒𝑐𝑡𝑜𝑟𝑠 𝑷 𝑜𝑓 𝑨(3) 𝑤𝑖𝑡ℎ 𝑠𝑖𝑛𝑔𝑢𝑙𝑎𝑟 𝑣𝑎𝑙𝑢𝑒 𝑑𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛

 9: 𝑨(3∗) = 𝑷𝑇 ⋅ 𝑨(3) ⋅ 𝑷

10: (𝑨(2∗))
𝑇

= 𝑷𝑇 ⋅ (𝑨(2))
𝑇

11: 𝑫(0) = 𝑨(1)

12: 𝒇𝒐𝒓 𝑚 = 1 𝑡𝑜 𝑀 = 𝑅 ⋅ 𝑁 𝒅𝒐

13: 𝐷𝑖𝑗
(𝑚)

=
𝐴𝑖𝑚

(2∗)
𝐴𝑗𝑚

(2∗)

𝐴𝑚𝑚
(3∗)

14: 𝜆𝑚 =
𝐴𝑚𝑚

(3∗)

𝐵𝑚𝑚

15: 𝒆𝒏𝒅 𝒇𝒐𝒓

19

4.7 Convolution Check

Once the material source function has been interconverted to the desired target function, a check

for validity of the interconversion needs to be performed. In this model, this check is carried out

using the convolution integral (20) in the time domain. This check ensures that only proper data

was converted. When incorrect data or assumptions are used, the correction algorithm will create

a symmetric positive semidefinite matrix. This matrix can be converted by the algorithms designed

by Levesque and team. The matrix produced by this interconversion will not provide values close

to those expected from the convolution integral. This integration also provides the range of

acceptable values that the interconversion algorithm produced.

4.8 Model Steps

The steps of this model to allow for the interconversion of material functions with the required

properties are as follows: This process will start with the collection of experimental data for the

source function. This multidimensional material data can then be fitted as a uniaxial prony series,

with any method desired as long as the time constants are maintained in each dimension. After the

fitting, the uniaxial prony series are then placed in symmetric matrix coefficients. The coefficient

matrices are then checked for positive definiteness; those that do not meet this requirement are

then fed to an algorithm to find the nearest semi-positive definiteness matrix. Now that all matrices

20

have the required properties, the proper interconversion algorithm can be applied. Finally, a check

of source and target functions is conducted with the convolution integral.

21

CHAPTER 5: RESULTS

The data employed in the results section is from a linear low-density polyethylene employed in

high altitude balloons found in the paper, Thermoviscoelastic Models for Polyethylene Thin Films

(Li et al., 2016). This paper found the creep compliances were found utilizing three different tests.

Uniaxial tension creep tests determined the linear in-plane creep compliance master curves. The

uniaxial tension test at a constant strain rate was used to simulate the nonlinear behavior at larger

strains. Finally, a biaxial bubble test was employed to characterize the behavior under stress

conditions that more represent those found for a balloon in operational conditions. The transformed

nominal stress and strains from these experimental tests were utilized to calculate the master creep

compliance curves.

This paper presented twenty prony series coefficients for the creep compliance curves of D11,

D13, D21, D22, D23, and D66. Initially, this thesis utilized these coefficients for a three by three

matrix, but without the D33 compliance curve, the data was unable to be appropriately corrected.

Therefore, the coefficients for the compliance curves for D11, D21, and D22 were placed in two

by two matrix coefficients for an anisotropic prony series. This anisotropic creep matrix became

the source function to be checked, corrected and interconverted.

22

5.1 Eigenvalues

With the source function placed in a prony series with matrix coefficients, the next step in the

model can proceed, the checking of eigenvalues. Table 1 shows all the eigenvalues for the fitted

data, with three of the matrices not having the required positive definiteness, with each matrix

having one negative eigenvalue.

Table 1: Eigenvalues for Fitted Data

Coefficient Matrix Eigenvalue 1 Eigenvalue 2

𝐷0 0.00045 0.00015

𝐷1 1.74857485e-04 1.09392515e-04

𝑫𝟐 -5.23719140e-06 7.03970914e-05

𝑫𝟑 9.86870394e-05 -1.17010394e-05

𝐷4 1.41011072e-04 8.74692808e-06

𝐷5 5.76576346e-05 1.51549365e-04

𝑫𝟔 2.60431459e-04 -9.25845891e-06

𝐷7 4.67931334e-04 7.62586665e-05

𝐷8 6.94166790e-04 2.08773210e-04

𝐷9 9.62506308e-04 1.62973692e-04

𝐷10 1.28266095e-03 1.78289055e-04

𝐷11 1.58297224e-03 1.85547765e-04

𝐷12 5.34614336e-04 1.82288566e-03

23

𝐷13 5.90493210e-04 1.75980679e-03

𝐷14 1.40788479e-03 9.86452121e-05

𝐷15 1.56928357e-03 3.14616428e-04

𝐷16 1.66932398e-03 4.23766021e-04

𝐷17 5.15584982e-04 2.64101502e-03

𝐷18 1.38879234e-03 3.17217656e-04

𝐷19 1.88468891e-04 4.59991093e-05

These three matrices were then run through the algorithm to find the nearest symmetric positive

semidefinite version of the matrix, this results in the change of the negative eigenvalues and

making each matrix conform to all properties that are required. Table 2 shows in bold those

eigenvalues that have been changed by the model truncated to the fourth decimal.

Table 2: Fitted and Corrected Eigenvalues

Coefficient

Matrix

Fitted Eigenvalues Corrected Eigenvalues

𝐷2 -5.2371e-06 7.0397e-05 1.3552e-20 7.0397e-05

𝐷3 9.8687e-05 -1.1701e-05 9.8687e-05 2.0328e-20

𝐷6 2.6043e-04 -9.2584e-06 2.6043e-04 1.3552e-20

24

Table 3 shows the original matrices and the corrected forms for the three coefficient matrices that

were corrected in the model. While each location was changed, the shift in each dimension was

small. This small shift, along with the minimal change in eigenvalues, reinforces the notation that

errors cause the lack of positive definiteness, and not another source.

Table 3: Fitted and Corrected Matrices

𝐷2 Original 𝐷2 Corrected

[
6.5109e − 06 −2.7396e − 05

−2.7396e − 05 5.8649e − 05
] [

1.0934e − 05 −2.5499e − 05
−2.5499e − 05 5.9462e − 05

]

𝐷3 Original 𝐷3 Corrected

[
6.2843e − 05 −5.1691e − 05

−5.1691e − 05 2.4143e − 05
] [

6.6642e − 5 −4.6211e − 05
−4.6211e − 05 3.2044e − 05

]

𝐷6 Original 𝐷6 Corrected

[
1.5508e − 04 −1.3158e − 04

−1.3158e − 04 9.6093e − 05
] [

1.587e − 04 −1.2706e − 04
−1.2706e − 04 10.173e − 5

]

5.2 Fitted data vs. Corrected Data

After correcting coefficient matrices, a check of the new creep compliance modulus over time can

be done. This new correct compliance modulus can be compared to the compliance modulus

produced from the experimental data. When this comparison is made, a small variance, in all

dimensions, from the experimental data is found. This variance increases with time, becoming the

greatest difference at the most extreme times. These variances are shown in Figure 1: Comparative

25

Creep Modulus over Time D11, Figure 2: Comparative Creep Modulus over Time D21, and Figure

3: Comparative Creep Modulus over Time D, for the D11, D21, and D22 dimensions.

Figure 1: Comparative Creep Modulus over Time D11

Figure 2: Comparative Creep Modulus over Time D21

26

Figure 3: Comparative Creep Modulus over Time D22

5.2.1 R-squared

When looking for accuracy of the fit for the corrected compliance modulus compared to the

experimental modulus, we can check the R squared values. With the D11 dimension, there is an R

squared value of 0.9994. This is the best fit for all three dimensions. The shear D21 dimension has

the worse fit with an R squared of 0.9982. Finally, the D22 dimension R squared was found to be

0.9992. These R squared show an extremely good fit for the corrected data when compared to the

27

experimental data. This helps to show that the model maintains accuracy while adding the required

matrix properties.

5.2.2 Absolute Error Over Time

A final check of the accuracy of the corrected creep compliance modulus can be seen with graphing

of absolute error over time for each dimension. Each of these graphs shows a small absolute error

over the time range, with a consistent error, and a small amount of overestimating for each

dimension.

We can also look at the global view of the absolute error, with the absolute percent error. For the

D11 dimension, the percent error was found to be 0.2135%, with the D21 and D22 to be 0.3627%

and 0.2954%, respectively. These minimal percent errors continue to show the model creates only

minimal changes to moduli. This shows that the method developed in this thesis is a viable means

to correct prony series coefficient matrices.

28

Figure 4: Comparative Creep Modulus Absolute Error over Time D11

Figure 5: Comparative Creep Modulus Absolute Error over Time D21

29

Figure 6: Comparative Creep Modulus Absolute Error over Time D22

5.3 Convolution

With the corrected data being shown to produce an acute representation of the modulus, the rest

of the model can be followed. After correcting the matrices, the source function of creep

compliance is converted to the relaxation function using the Levesque algorithm shown in section

4.6.1. As Levesque had already shown this algorithm to be accurate, this thesis does not show an

account of accuracy. Instead, a check of the final conversion using the convolution integral and

the errors found from the convolution are shown as the final check of the model.

Since we know, the convolution integral should have a solution of tI, which is the identity matrix

multiplied by the scalar time applied to the convolution integral. This shows that over time, the in-

30

plane solutions for D11 and D22 should be shown to be the time given to the integral, while the

shear D21 should be zero at all times. The solution of the convolution integral for each dimension

from the model was then plotted against time to demonstrate if there was a departure of the answer

at any time. All three dimensions were found to be close to the answer, with the extreme time

range showing to have the furthest departure. This departure showed an increasing amount, from

the expected value, at around 10e6 seconds.

This departure is to be expected, as the corrected creep compliance was shown to be furthest from

the experimental data at the greater time range. This result was also expected numerically, as the

implementation of the convolution integral was found to be more unstable and less accurate the

greater the time variable.

Figure 7: Perfect Convolution vs. Thin Film Convolution D11

31

Figure 8: Perfect Convolution vs. Thin Film Convolution D21

Figure 9: Perfect Convolution vs. Thin Film Convolution D22

32

5.3.1 Relative Error of Convolution

A final check of the convolution can be done with the relative error over time. This check is the

normalization of the absolute error of the convolution normalized by the time step. These graphs

show a negligible error until around 10e6 seconds, at which point each graph gains an error of no

greater than the absolute value of 0.45, with the D22 coefficient showing a reduction in relative

error at the end of the graph. This increase in error is from two separate sources. First, the corrected

creep compliance modulus started to show the most significant difference at the same time frame

as the relative error increases. Second, the numerical methods to check the convolution integral

accumulates errors with larger time inputs. This is supported by each dimension showing the same

shape and location of the accelerating error.

33

Figure 10: Relative Convolution Error of Thin Film D11

Figure 11: Relative Convolution Error of Thin Film D21

34

Figure 12: Relative Convolution Error of Thin Film D22

35

CHAPTER 6: CONCLUSION

This thesis has shown how uniaxially fitted prony series coefficients can be fitted into a matrix

form to allow for the interconversion of linear viscoelastic material functions. The model presented

in this paper corrects matrix coefficient eigenvalues, correcting the lack of positive definiteness,

regardless of the method used to fit experimental data, if all time constants are maintained across

dimensions. With minimal changes to experimental data, the presented model allows for

interconversion of material functions while presenting minimal errors. This model also allows for

either material function to serve as the source function for interconversion.

36

APPENDIX

37

APPENDIX A: PYTHON CODE

"""

Name: anisotropic-interconversion

Description: Python library to interconvert anisotropic relaxation and creep

prony series

Author: Christopher Rehberg

Email: christopher.rehberg@knights.ucf.edu

"""

External libaries to run the viscoelastic interconversion library

import numpy as np

import pandas as pd

import scipy.integrate as integrate

import scipy.linalg as linalg

from numpy import linalg as la

def import_properties_excel(excel_file, coeff_size=None, invert=False):

 """Import matrices and creep/relaxation times from an excel

 format with a specific format for this library

 Parameters

 excel_file : xlsx

 Excel file

 coeff_size : None or int

 sets the size of the matrix to be read, default to none

 invert : Bool

 flag if time consts need to be inverted

 Returns

 mat0 : numpy.array

 Instantaneous modulus

 matrix_coeff : numpy.array

 Modulus coefficients

 time_consts : numpy.array

 inverted time constants

 coeff_size : int

 Number of coefficent matrices

 """

 # Open the excel file with viscoelastic material properties

 with open(excel_file, 'br') as excel_loc:

 # Read in the number of matrix coefficients, and set as an integer

 num_coeff = pd.read_excel(excel_loc, header=None, usecols=[1], nrows=

1)

 num_coeff = int(num_coeff.values)

 # Check to see if a matrix size has been set, default to none

38

 if coeff_size is None:

 # Read in the size of the matrix coefficients, and set as an int

 coeff_size = pd.read_excel(

 excel_loc, header=None, usecols=[3], nrows=1)

 coeff_size = int(coeff_size.values)

 # Read in the instantious coefficient as a size of 6x6

 mat0 = pd.read_excel(excel_loc, header=None,

 usecols=[0, 1, 2, 3, 4, 5], nrows=6, skiprows=5)

 # Change from dataframe to a numpy array

 mat0 = mat0.to_numpy()

 # Select only the required coefficients

 mat0 = mat0[:coeff_size, 0:coeff_size]

 # Create an empy array to store coefficients

 matrix_coeff = np.empty((num_coeff, coeff_size, coeff_size))

 for i in range(num_coeff):

 # Read a coefficient matrix from excel

 temp_coeff = pd.read_excel(excel_loc, header=None,

 usecols=[j+(6*i) for j in range(6)],

 nrows=6, skiprows=13)

 # Convert to a numpy array and select required coefficients

 temp_coeff = temp_coeff.to_numpy()

 matrix_coeff[i, :, :] = temp_coeff[0:coeff_size, 0:coeff_size]

 # Read in the time constants

 time_consts = pd.read_excel(excel_loc, header=None,

 usecols=[1+i for i in range(num_coeff)],

 nrows=1, skiprows=2)

 # Convert to a numpy array and reshape to a 1D array

 time_consts = time_consts.to_numpy()

 time_consts = np.reshape(time_consts, num_coeff)

 # Invert time consts if required

 if(invert):

 time_consts = 1 / time_consts

 return mat0, matrix_coeff, time_consts, coeff_size

def StoC(S0, S_mats, lambdas, coeff_size):

 """Converts prony series creep complance to relaxtion modulus

 using Cholesky decomposition. Using algorithm 4 of "Interconversion of

 linearly viscoelastic material functions expressed as Prony series"

 Parameters

 S0 : numpy.array

 Instantaneous creep modulus

 S_mats : numpy.array

39

 Creep modulus coefficient

 lambdas : numpy.array

 Creep time constants

 coeff_size : int

 The size dim of the the matrix i.e. 6 if 6x6

 Returns

 C0 : numpy.array

 Equilibrium relaxation

 C_mats : numpy.array

 Relaxtion modulus coefficient

 rhos : numpy.array

 Relaxation time constants

 """

 # Number of coefficents

 num_coeff = len(S_mats)

 # Final amount of coefficents returned, used to size different variables

 final_num_coeff = coeff_size * num_coeff

 # Following the step by step formula given by the paper

 A1 = S0

 A2 = np.linalg.cholesky(lambdas[0] * S_mats[0])

 for i in range(1, num_coeff):

 temp_mat = lambdas[i] * S_mats[i]

 temp_mat = np.linalg.cholesky(temp_mat)

 A2 = np.concatenate((A2, temp_mat), 1)

 A3 = np.identity(coeff_size, dtype=np.float64)

 A3 = lambdas[0]*A3

 if num_coeff >= 2:

 for i in range(1, num_coeff):

 A3 = linalg.block_diag(A3, (lambdas[i]*np.identity(coeff_size)))

 B_idnet = np.identity(final_num_coeff)

 L1 = np.linalg.inv(A1)

 L2 = A2.T @ L1

 L2 = L2.T

 L3 = A3 + A2.T @ L1 @ A2

 L3_star, PT = np.linalg.svd(L3)[1:]

 L3_star = np.diag(L3_star)

 L2_star = PT @ L2.T

 L2_star = L2_star.T

 # Preallocate a 3d numpy array for the coefficent matrices

 C_mats = np.empty((final_num_coeff, coeff_size, coeff_size))

40

 # Preallocate a numpy array for the time consts

 rhos = np.zeros(final_num_coeff)

 for m in range(0, final_num_coeff):

 for i in range(0, coeff_size):

 for j in range(0, coeff_size):

 C_mats[m, i, j] = (

 (L2_star[i, m]*L2_star[j, m]) / L3_star[m, m])

 rhos[m] = L3_star[m, m] / B_idnet[m, m]

 C0 = L1

 for i in range(len(C_mats)):

 C0 = C0 - C_mats[i]

 return (C0, C_mats, rhos)

def CtoS(C0, C_mats, rhos, coeff_size):

 """Converts prony series relaxtion modulus to creep complance

 using Cholesky decomposition. Using algorithm 3 of "Interconversion of

 linearly viscoelastic material functions expressed as Prony series"

 Parameters

 C0 : numpy.array

 Equilibrium relaxation

 C_mats : numpy.array

 Relaxtion modulus coefficient

 rhos : numpy.array

 Relaxtion time constants

 coeff_size : int

 The size dim of the the matrix i.e. 6 if 6x6

 Returns

 S0 : numpy.array

 Instantaneous creep modulus

 S_mats : numpy.array

 Creep modulus coefficient

 lambdas : numpy.array

 Creep time constants

 """

 # Number of coefficents

 num_coeff = len(C_mats)

 # Final amount of coefficents returned, used to size different variables

 final_num_coeff = coeff_size * num_coeff

 # Following the step by step formula given by the paper

 L1 = C0

41

 for i in range(num_coeff):

 L1 = L1 + C_mats[i]

 L2 = np.linalg.cholesky(rhos[0] * C_mats[0])

 for i in range(1, num_coeff):

 temp_mat = np.linalg.cholesky(rhos[i] * C_mats[i])

 L2 = np.concatenate((L2, temp_mat), 1)

 L3 = np.identity(coeff_size, dtype=np.float64)

 L3 = rhos[0]*L3

 if num_coeff >= 2:

 for i in range(1, num_coeff):

 L3 = linalg.block_diag(L3, (rhos[i]*np.identity(coeff_size)))

 B_idnet = np.identity(final_num_coeff)

 A1 = np.linalg.inv(L1)

 A2 = L2.T @ A1

 A2 = A2.T

 A3 = L3 - L2.T @ A1 @ L2

 A3_star, PT = np.linalg.svd(A3)[1:]

 A3_star = np.diag(A3_star)

 A2_star = PT @ A2.T

 A2_star = A2_star.T

 S0 = A1

 # Preallocate a 3d numpy array for the coefficent matrices

 S_mats = np.empty((final_num_coeff, coeff_size, coeff_size))

 # Preallocate a numpy array for the time consts

 lambdas = np.zeros(final_num_coeff)

 for m in range(0, final_num_coeff):

 for i in range(0, coeff_size):

 for j in range(0, coeff_size):

 S_mats[m, i, j] = (

 (A2_star[i, m] * A2_star[j, m]) / A3_star[m, m])

 lambdas[m] = A3_star[m, m] / B_idnet[m, m]

 lambdas = np.flip(lambdas)

 return (S0, S_mats, lambdas)

def modulus_at_time(M0, M_mats, time_const, time, property):

 """Gives the matrix of creep or relaxation at a given time

 Parameters

42

 M0 : numpy.array

 Instantaneous/Equilibrium modulus

 M_mats : numpy.array

 Coefficient moduli

 time_const : numpy.array

 Time constants

 time : float

 Time at which to calculate property

 property : string

 Switch for creep or relaxation calculations (relax or creep)

 Returns

 mod_time : numpy.array

 Modulus at a given time

 """

 # Number of coefficient matrices

 num_coeff = len(M_mats)

 # Funtion for matrix relaxation modulus at given time

 def relax_time(M_mats, rhos, time): return M_mats * \

 (np.exp(-1 * time * rhos.reshape(num_coeff, 1, 1)))

 # Funtion for matrix creep modulus at given time

 def creep_time(M_mats, lambdas, time): return M_mats * \

 (1 - np.exp(-1 * time * lambdas.reshape(num_coeff, 1, 1)))

 # Sets the proper relax or creep function to the variable time_func

 if property == "relax":

 time_func = relax_time

 elif property == "creep":

 time_func = creep_time

 else:

 raise Exception('Expected "relax" or "creep" proptery')

 # Caluclates the modulus at the given time for each matrix

 mod_time = time_func(M_mats, time_const, time)

 # Sums each matrix together

 mod_time = np.sum(mod_time, axis=0)

 # Adds the Instantaneous/Equilibrium modulus

 mod_time = mod_time + M0

 return mod_time

def nearestPD(A):

 """Find the nearest positive-definite matrix to input

 A Python/Numpy port of John D'Errico's `nearestSPD` MATLAB code [1], whic

h

 credits [2].

 [1] https://www.mathworks.com/matlabcentral/fileexchange/42885-nearestspd

 [2] N.J. Higham, "Computing a nearest symmetric positive semidefinite

43

 matrix" (1988): https://doi.org/10.1016/0024-3795(88)90223-6

 Parameters

 A : numpy.array

 Matrix

 Returns

 A3: numpy.array

 Pos def matrix

 """

 B = (A + A.T) / 2

 _, s, V = la.svd(B)

 H = np.dot(V.T, np.dot(np.diag(s), V))

 A2 = (B + H) / 2

 A3 = (A2 + A2.T) / 2

 if isPD(A3):

 return A3

 spacing = np.spacing(la.norm(A))

 Ident = np.eye(A.shape[0], dtype=np.float64)

 k = 1

 while not isPD(A3):

 mineig = np.min(np.real(la.eigvals(A3)))

 A3 += Ident * (-mineig * k**2 + spacing)

 k += 1

 return A3

def isPD(B):

 """Returns true when input is positive-definite, via Cholesky

 Parameters

 B : numpy.array

 Matrix

 Returns

 Bool : Bool

 Returns True or False

 """

 try:

 _ = la.cholesky(B)

 return True

 except la.LinAlgError:

44

 return False

def pos_def_update(M0, M_mats):

 """Checks a matrices for positive-definitness. If matrix is not

 positive-definite, finds nearest positive-definite matrix and replaces

 Parameters

 M0 : numpy.array

 Instantaneous/Equilibrium modulus

 M_mats : numpy.array

 Coefficient moduli

 Returns

 M0 : numpy.array

 Positive-definite Instantaneous/Equilibrium modulus

 M_mats : numpy.array

 Positive-definite Coefficient moduli

 """

 def is_pos_def(matrix):

 if isPD(matrix):

 return matrix

 else:

 return nearestPD(matrix)

 M0 = is_pos_def(M0)

 for i in range(len(M_mats)):

 M_mats[i] = is_pos_def(M_mats[i])

 return (M0, M_mats)

def convolution_check_mat(C0, C_mats, rhos, S0, S_mats, lambdas, t):

 """Checks the convolution intergral of the C(t) and S(t) matrices.

 Should be the identiy matrix of t*I

 Also returns the errors from scipy.quad intergration

 Parameters

 C0 : numpy.array

 Equilibrium relaxation

 C_mats : numpy.array

 Relaxtion modulus coefficient

 rhos : numpy.array

 Relaxation time constants

 S0 : numpy.array

 Instantaneous creep modulus

 S_mats : numpy.array

 Creep modulus coefficient

 lambdas : numpy.array

 Creep time constants

 t : float

45

 time

 Returns

 convolution : numpy.array

 Numpy array of the convolution matrix for C(t) and S(t)

 error : numpy.array

 Numpy array of the errors for each element of the convolution matrix

 """

 dim = max(C0.shape)

 convolution = np.empty(C0.shape)

 error = np.empty(C0.shape)

 def f(C0, C_mats, S0, S_mats, lambdas, rhos, t):

 def g(tau):

 C_converted = modulus_at_time(

 C0, C_mats, rhos, t - tau, "relax")

 S_converted = modulus_at_time(

 S0, S_mats, lambdas, tau, "creep")

 return np.dot(C_converted, S_converted)[i, j]

 return g

 u = f(C0, C_mats, S0, S_mats, lambdas, rhos, t)

 for i in range(dim):

 for j in range(dim):

 convolution[i, j], error[i, j] = integrate.quad(

 u, 0, t, epsabs=1e-12, epsrel=1e-12, limit=1000)

 return convolution, error

46

LIST OF REFERENCES

Higham, N. J. (1988). COMPUTING A NEAREST SYMMETRIC POSITIVE SEMIDEFINITE

MATRIX. In Linear Algebra and Its Applications (Vol. 103, pp. 103–118).

https://doi.org/10.1016/0024-3795(88)90223-6

Knauss, W. G., & Zhao, J. (2007). Improved relaxation time coverage in ramp-strain histories.

Mechanics of Time-Dependent Materials, 11(3), 199–216. https://doi.org/10.1007/s11043-007-

9035-4

Lee, S., & Knauss, W. G. (2000). A Note on the Determination of Relaxation and Creep Data from

Ramp Tests. Mechanics of Time-Dependent Materials, 4(1), 1–7.

https://doi.org/10.1023/A:1009827622426

Li, J., Kwok, K., & Pellegrino, S. (2016). Thermoviscoelastic models for polyethylene thin films.

In Mechanics of Time-Dependent Materials (Vol. 20, Issue 1, pp. 13–43).

https://doi.org/10.1007/s11043-015-9282-8

Luk-Cyr, J., Crochon, T., Li, C., & Levesque, M. (2013). Interconversion of linearly viscoelastic

material functions expressed as Prony series: A closure. In Mechanics of Time-Dependent

Materials (Vol. 17, Issue 1, pp. 53–82). https://doi.org/10.1007/s11043-012-9176-y

Luk-Cyr, Jacques, Crochon, T., Li, C., & Lévesque, M. (2013). Interconversion of linearly

viscoelastic material functions expressed as Prony series: A closure. Mechanics of Time-

Dependent Materials, 17(1), 53–82. https://doi.org/10.1007/s11043-012-9176-y

47

Park, S. W., & Schapery, R. A. (1999). Methods of interconversion between linear viscoelastic

material functions. Part I—a numerical method based on Prony series. International Journal of

Solids and Structures, 36(11), 1653–1675. https://doi.org/10.1016/S0020-7683(98)00055-9

Sorvari, J., & Malinen, M. (2007). Numerical interconversion between linear viscoelastic material

functions with regularization. In International Journal of Solids and Structures (Vol. 44, Issues 3–

4, pp. 1291–1303). https://doi.org/10.1016/j.ijsolstr.2006.06.029

	Ensuring Positive Definiteness in Linear Viscoelastic Material Functions Based on Prony Series
	Recommended Citation

	tmp.1587580188.pdf.aHq0j

