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ABSTRACT 
 

This thesis presents a method to correct for non-positive-definiteness in linear viscoelastic material 

functions. Viscoelastic material functions for anisotropic materials need to be interconverted in a 

matrix coefficient prony series form, with a requirement of positive definiteness. Fitting is usually 

done as a uniaxial prony series, resulting in scalar coefficients. When these uniaxial coefficients 

are placed in a coefficient matrix, the required positive definiteness cannot be guaranteed. For 

those matrices that do not meet this requirement, finding the nearest symmetric semi-positive 

definite form of the matrix results in a viable prony series matrix coefficient with the required 

positive definiteness. These corrected prony series coefficients allow for material functions to be 

interconverted with minimal changes to experimental data.  



iii 

 

ACKNOWLEDGMENTS 
 

I would like to show my deepest gratitude to my thesis chair, Dr. Kawai Kwok. All the time, effort, 

and direction he has given to me in this thesis allowed me to grow as a student and complete this 

monumental task. 

 

I am also indebted to my wife, who not only supported me during this thesis but encouraged me 

when I felt overwhelmed with the writing. Additionally, I must thank her for leading me to this 

research.  



iv 

 

TABLE OF CONTENTS 
 

Chapter 1: Introduction ................................................................................................................... 1 

1.1 Elastic Analysis ..................................................................................................................... 1 

1.2 Viscoelastic Analysis ............................................................................................................ 2 

1.3 Interconversion ...................................................................................................................... 3 

Chapter 2: Literature Review .......................................................................................................... 6 

Chapter 3: Problem Definition ........................................................................................................ 8 

3.1: Specific Problem .................................................................................................................. 8 

3.2: Proposed Solution ................................................................................................................ 9 

Chapter 4: Method Development .................................................................................................. 10 

4.1 Matrix Properties ................................................................................................................. 10 

4.2 Assumptions ........................................................................................................................ 11 

4.3 Fundamental Equation of Linear Viscoelastic Interconversion .......................................... 11 

4.4 Eigenvalues ......................................................................................................................... 14 

4.5 Nearest Symmetric Positive Semidefinite Matrix ............................................................... 14 

4.6 Interconversion of Viscoelastic Material Functions............................................................ 15 

4.6.1 Interconversion from D(t) to E(t) ................................................................................. 16 

4.6.2 Interconversion from E(t) to D(t) ................................................................................. 17 



v 

 

4.7 Convolution Check .............................................................................................................. 19 

4.8 Model Steps ......................................................................................................................... 19 

Chapter 5: Results ......................................................................................................................... 21 

5.1 Eigenvalues ......................................................................................................................... 22 

5.2 Fitted data vs. Corrected Data ............................................................................................. 24 

5.2.1 R-squared ...................................................................................................................... 26 

5.2.2 Absolute Error Over Time ............................................................................................ 27 

5.3 Convolution ......................................................................................................................... 29 

5.3.1 Relative Error of Convolution ...................................................................................... 32 

Chapter 6: Conclusion................................................................................................................... 35 

Appendix ....................................................................................................................................... 36 

Appendix A: Pyhton Code ............................................................................................................ 37 

List of References ......................................................................................................................... 46 

 

  



vi 

 

 

LIST OF FIGURES 
 

Figure 1: Comparative Creep Modulus over Time D11 ............................................................... 25 

Figure 2: Comparative Creep Modulus over Time D21 ............................................................... 25 

Figure 3: Comparative Creep Modulus over Time D22 ............................................................... 26 

Figure 4: Comparative Creep Modulus Absolute Error over Time D11 ...................................... 28 

Figure 5: Comparative Creep Modulus Absolute Error over Time D21 ...................................... 28 

Figure 6: Comparative Creep Modulus Absolute Error over Time D22 ...................................... 29 

Figure 7: Perfect Convolution vs. Thin Film Convolution D11 ................................................... 30 

Figure 8: Perfect Convolution vs. Thin Film Convolution D21 ................................................... 31 

Figure 9: Perfect Convolution vs. Thin Film Convolution D22 ................................................... 31 

Figure 10: Relative Convolution Error of Thin Film D11 ............................................................ 33 

Figure 11: Relative Convolution Error of Thin Film D21 ............................................................ 33 

Figure 12: Relative Convolution Error of Thin Film D22 ............................................................ 34 

  



vii 

 

LIST OF TABLES 
 

Table 1: Eigenvalues for Fitted Data ............................................................................................ 22 

Table 2: Fitted and Corrected Eigenvalues ................................................................................... 23 

Table 3: Fitted and Corrected Matrices ........................................................................................ 24 



1 

 

CHAPTER 1: INTRODUCTION 
 

Viscoelastic materials have been growing in use, from polymers to polymer-based composites, to 

new shape-memory materials. The ever-increasing use of viscoelastic materials has heightened the 

demand for the ability to gather material properties to engineer and model these growing lists of 

materials. Specific techniques are required to define and model these materials accurately. 

 

1.1 Elastic Analysis 

 

In order to understand viscoelastic materials, an overview of elastic material analysis will first be 

undertaken. This will allow for an understanding of how viscoelastic material functions differ from 

elastic material functions. These functions can be found using a simple uniaxial tension test. This 

test uses a specimen designed to ensure a homogeneous state of stress and strain within the region 

to be measured. With a known length and cross-section area, a set force may be applied, and then 

stress, strain, and Young’s modulus may be found. Other properties may also be found, but for this 

thesis, these properties are not being reviewed. 

The first material quantity to be reviewed is that of engineering stress, which can be found by 

dividing applied tensile force, F, by the cross-sectional area, 𝐴0 of our measured region. 

 
𝜎𝑎𝑣 =

𝐹

𝐴0
 (1) 
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The second material quantity is engineering strain, which is determined by dividing the change of 

length, 𝛥𝐿, of the measured region by the original length 𝐿0 of the same region. 

 
𝜀𝑎𝑣 =

𝐿 − 𝐿0

𝐿0
=

𝐿

𝐿0
− 1 (2) 

 

When elastic materials vary stress linearly with the strain, Young’s modulus, E, can be defined as 

the slope of the stress-strain curve. This modulus allows for a direct relationship between stress 

and strain, Hooke’s law. An important note: with elastic materials, the quantities reviewed are not 

time-dependent.  

 𝐸 =
𝜎𝑎𝑣

𝜀𝑎𝑣
 (3) 

 𝜎𝑎𝑣 = 𝐸𝜀𝑎𝑣 (4) 

 

1.2 Viscoelastic Analysis 

 

The most significant difference between elastic and viscoelastic materials is the time-dependent 

nature of the material functions. This requires different tests and analyses than used for elastic 

material functions. These tests are the relaxation and creep tests and are used to measure the time-

dependent material functions. 

For a relaxation test, a constant strain is applied quasi-statically to a uniaxial tensile bar. The bar 

is then stretched to a new fixed length, with the stain applied as close to instantaneous as possible 
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without inertial or dynamic effects. In this test, it is assumed that no previous stress or strain history 

exists in the test material. When the test material is loaded with this new strain, a stress response 

happens, but over time this stress response lessens until a constant value is reached.  

.  

 
𝐸(𝑡) =

𝜎(𝑡)

𝜀0
 (5) 

 𝜎(𝑡) = 𝜀0𝐸(𝑡) (6) 

 

Equation 5 is known as the relaxation modulus and describes the uniaxial stress-strain relationship. 

This is a viscoelastic analogous for Hooke’s law, found in equation 4. 

The creep test, for uniaxial materials, is found using the same procedure as the relaxation test. 

Rather than loading a strain, constant stress is loaded with an increasing strain response. After a 

long time, the strain response reaches a constant value. Equation (7) is the creep compliance found 

from the creep test. 

 
𝐷(𝑡) =

𝜀(𝑡)

𝜎0
 (7) 

 𝜀(𝑡) = 𝜎0𝐷(𝑡) (8) 

 

 

1.3 Interconversion 
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The ever-increasing use of viscoelastic materials requires the ability to define creep and relaxation 

material functions. While these material functions can be found experimentally, the relaxation and 

creep tests can be expensive and time-consuming, usually requiring multiple runs with different 

temperatures to capture the full range of time in a reasonable amount of time. This constraint, 

together with either the creep or relaxation test being a challenge to find for the material function 

encourages the need to find new ways to determine creep or relaxation. For linear viscoelastic 

materials, the creep and relaxation material functions can be interconverted between each other, 

allowing for only one material function to be experimentally found. 

The interconversion of material functions has one of its necessities in the possible inaccessibility 

of direct experimental results for one of these functions. An example of this can be found with the 

use of a constant-strain relaxation test.  Finding the response of a stiff material subjected to a 

specified deformation can be problematic. (Park & Schapery, 1999); the same material could have 

the creep function easily measured with a constant-stress creep test. The creep function becomes 

the source function of an interconversion used to recreate the relaxation function as the target. This 

interconversion is governed by the equation below. 

 ∫ 𝑬(𝑡 − 𝜏) ⋅ 𝑫(𝑡)𝑑𝜏 = 𝑡𝑰
𝑡

0
  (9) 

 

With the increased use of interconversion methods for linear viscoelastic materials, a need for 

accurate approximations of the source and target functions has appeared. Presently the source 

function is found with experimental data, fit into a prony series, equation (10) for relaxation, and 

equation (11) for creep. 
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𝑬(𝑡) = 𝑬(0) + ∑ 𝑬(𝑛) exp(−𝑡𝜌𝑛)

𝑁

𝑛=1

 

(10) 

 

𝑫(𝑡) = 𝑫(0) + ∑ 𝑫(𝑚)[1 − exp(−𝑡𝜆𝑚)]

𝑀

𝑚=1

 

(11) 

 

The prony series is finally used in an interconversion for the target function uniaxially. This 

approach is useful for isotropic materials but presents problems once anisotropic materials are to 

be interconverted. 

When material functions, for anisotropic materials, are experimentally found, the coefficients for 

each material function curve must then be placed into unified matrix coefficients for an anisotropic 

prony series. This approach does not consider the need for prony series coefficients to be 

constrained positive definitely. This lack of constraint can keep useful interconversion algorithms 

from being utilized, such as those presented by Levesque(Jacques Luk-Cyr et al., 2013).  
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CHAPTER 2: LITERATURE REVIEW 
 

(Lee & Knauss, 2000) demonstrate a method for manipulating, with a recursion formula, data 

gathered from an initial ramp. In laboratory environments, a ramp step, in stress or strain, is used 

to gather material properties, instead of a unit step. This ramp step becomes approximately the 

same as a unit step after a time interval around ten times the ramp-up time. While the 

approximation is useful, the initial loss of accuracy of the ramp-up time can result in the loss of a 

substantial portion of data. This recursion formula allows for the restoration of this lost data with 

a good result.  

(Knauss & Zhao, 2007) show a simple method to increase the range of data that is acquired from 

a single test at a single temperature. Data acquired in laboratory experiments can be shorter than 

desired because of equipment demand or stability. With the ten-times rule, this leaves a shortened 

set of accurate data. With the addition of accelerating creep and relaxation, this leaves the 

shortened data set with only a couple of decades of data. An extended amount of time, five or more 

decades, is usually desired.  

The use of computers and the commercially available Matlab code for the Trust Region Method, 

has allowed the accurate interpretation of data past the recorded decade. This method allows for 

the researcher’s choice of time constants or to have the Trust Region Method determine a set of 

time constants. Further, it is shown that the use of only ten to fifteen data points and two time 

constants per decade are needed for the results. 
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Luk-Cyr, Crochon, Li, and Levesque (Jacques Luk-Cyr et al., 2013) present a set of algorithms for 

the interconversion of linear viscoelastic material functions of unidimensional and tridimensional 

materials. Four algorithms are developed, with a set of two for unidimensional materials and a 

second set for tridimensional materials. Each set has an interconversion from the creep to 

relaxation and from relaxation to creep. These algorithms depend on the equations for the 

thermodynamics of irreversible processes together with a prony series representation to achieve a 

method for interconversion of material functions with a highly accurate analytical result.  
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CHAPTER 3: PROBLEM DEFINITION 
 

In today’s aerospace environment, the increasing use of non-traditional materials are being used; 

among these materials are viscoelastic materials. Viscoelastic materials have shown an increased 

use in the aerospace industry, from carbon-fiber-reinforced polymers for plane shells and 

deployable space structures, to thin-film polymers for superpressure balloons.  The increase in the 

dependence of viscoelastic materials results in an increased need to model. 

The need to model viscoelastic materials requires either the creep compliance or the relaxation 

modulus of a specific material. For sensible reasons, many materials have the creep compliance 

measured from creep-recovery tests. This, however, presents a problem with the use of finite 

element modeling, as packages require knowing the relaxation modulus for the software’s 

implementation. Fortunately, the viscoelastic material functions can be interconverted, allowing 

for the need to acquire only one function to have both.  

 

3.1: Specific Problem 

 

While present tests will work for isotropic materials, anisotropic materials present a different 

challenge. While the multidimensional properties can be obtained, when each dimension is fitted 

to a prony series with equal time constants, and placed in a coefficient matrix, shown below in a 

general form, 
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𝐴 = 𝐴′ = [

𝑎1,1 ⋯ 𝑎1,𝑗

⋮ ⋱ ⋮
𝑎𝑖,1 ⋯ 𝑎𝑖,𝑗

] 

(12) 

 

 an important matrix property, or positive definiteness, is not guaranteed. This matrix property is 

one found naturally in the coefficient matrix, arising with mechanically stability, if the stiffness 

matrix maintains positive definiteness. This property is also necessary for the interconversion 

algorithms, used in this thesis, to convert the anisotropic material functions. 

 

3.2: Proposed Solution 

 

The approach presented in this thesis is to correct the lack of positive definiteness obtained from 

laboratory tests when individual dimensions are fitted into a prony series and then placed into a 

coefficient matrix.  This method allows the material properties to be measured and fitted using the 

methods considered best for the materials and tests, with the constraint that each dimension must 

use the same time constants. Next, each coefficient matrix is checked for positive definiteness and 

if the property is not found, to adjust the offending matrix to its nearest positive definiteness state.   
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CHAPTER 4: METHOD DEVELOPMENT 
 

This chapter will focus on the development of the method, starting with identifying matrix 

properties and reviewing the assumption leading to this model. Next, the fundamental equation 

governing linear viscoelastic material function interconversion will be derived, this equation will 

not only allow for the interconversion, but becomes essential at the end of the model as a check 

that the data provided to the model was useful, and an accurate conversion was performed. After 

the fundamental equation, a look at the solution provided for the correction of matrix properties 

will be reviewed. A review of the algorithms used, in this model, to interconvert the material 

functions will be examined. Finally, an overview of the entire model, from start to finish, will be 

conducted.  

 

4.1 Matrix Properties 

 

At present, many materials have their material functions experimentally found as a uniaxial prony 

series. When these uniaxial series are placed in a multidimensional matrix form, no guarantee of 

positive definiteness is provided. A new method is required for the fitting of multidimensional 

material functions, in a prony series representation, in order to have these required properties of 

symmetrical positive definiteness.  

The goal of this model is to allow the interconversion of material functions, after correcting 

problems in matrices that may arise from errors, such as noise from experimentation and 
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computational errors. This new model uses a numerical method approach for multidimensional 

representation to ensure the required properties, accomplish interconversion, and verify the results. 

For this thesis, MATLAB and Python have been utilized to ensure the method works, but to also 

allow for automation of the process.    

 

4.2 Assumptions 

 

The matrix coefficients of the prony series must be positive definite. When unidimensional fittings 

are placed in a tensor, this condition is not always met, because of experimental and numerical 

errors. This thesis assumes that those negative eigenvalues should have been very close to zero 

and positive. This, in turn, has led to the model used in this thesis, where coefficients that do not 

meet requirements are then adjusted to become positive definite with the smallest changes 

possible. Thankfully this process has been devised before for other problems. 

 

4.3 Fundamental Equation of Linear Viscoelastic Interconversion 

 

A key component of viscoelastic materials is the stress/strain relationship. Unlike elastic materials, 

the stress/strain relationship of viscoelastic materials varies with time. This leads to two material 

functions: a stress response called the relaxation modulus, and a strain response called the creep 

compliance. When a viscoelastic material is placed under a constant strain, the stress response will 
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decrease with time; this is the relaxation modulus. When a constant stress is applied to a 

viscoelastic material an increasing strain response is attained, the creep compliance. Equations 

(13) and (14) show the material functions. 

Relaxation Modulus: E(t) =
σ(t)

ε0
  (13) 

𝐶𝑟𝑒𝑒𝑝 𝐶𝑜𝑚𝑝𝑙𝑖𝑎𝑛𝑐𝑒: 𝐷(𝑡) =
𝜀(𝑡)

𝜎0
  (14) 

 

For linear viscoelastic materials, the creep and relaxation responses can be separated, and functions 

can be shown to be connected, allowing for the interconversion of the material functions. The start 

of these connections can be shown when the material function is rewritten to represent stress and 

strain, respectively: 

 𝜎(𝑡) = ∫ 𝐸(𝑡 − 𝜏) ⋅
𝑑𝜀(𝜏)

𝑑𝜏
𝑑𝜏

𝑡

0
  (15) 

 𝜀(𝑡) = ∫ 𝐷(𝑡 − 𝜏) ⋅
𝑑𝜎(𝜏)

𝑑𝜏
𝑑𝜏 

𝑡

0
  (16) 

   

Then by taking the Laplace transform of equation (15) and (16), the material functions become: 

 𝜀(̅𝑠) = 𝑆𝐷̅(𝑠)𝜎(𝑠)  (17) 

 𝜎(𝑠) = 𝑆𝐸̅(𝑠)𝜀(̅𝑠) (18) 

 

Substituting equation (17) into equation (18), 
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 𝐸̅(𝑠)𝐷̅(𝑠) =
1

𝑠2
  (19) 

By taking the inverse Laplace transformation of equation (19), we arrive at a Volterra equation of 

the first kind and the fundamental equation for the interconversion of linear viscoelastic materials  

 ∫ 𝐸(𝑡)𝐷(𝑡 − 𝜏)𝑑𝜏 = 𝑡
𝑡

0
  (20) 

 ∫ 𝐸(𝑡 − 𝜏)𝐷(𝑡)𝑑𝜏 = 𝑡
𝑡

0
  (21) 

The relationships are shown in equation (20) or (21) are used in the building of not only the 

algorithms for the interconversion of material functions, but are also used as the basis of checking 

the results of the model. When converting the material functions as matrices, the previous 

governing equation is represented as the following, with tI being the t-multiplied identity matrix. 

 ∫ 𝑬(𝑡 − 𝜏) ⋅ 𝑫(𝑡)𝑑𝜏 = 𝑡𝑰
𝑡

0
  (22) 

 

Generally, and in this model, the creep compliance and relaxation modulus are represented as 

prony series, shown in equation (23) and (24). With 𝑬(0) 𝑎𝑛𝑑 𝑫(0) being the equilibrium relaxation 

and instantaneous creep moduli respectively and 𝜌𝑛 𝑎𝑛𝑑 𝜆𝑚 the inverted time constants. 

 𝑬(𝑡) = 𝑬(0) + ∑ 𝑬(𝑛) exp(−𝑡𝜌𝑛)𝑁
𝑛=1   

(23) 

 𝑫(𝑡) = 𝑫(0) + ∑ 𝑫(𝑚)[1 − exp(−𝑡𝜆𝑚)]𝑀
𝑚=1   

(24) 
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4.4 Eigenvalues 

 

With all experimental data fitted as uniaxial prony series for the source function, and each 

dimension has the same time constants, the next step of the model can be performed. All uniaxial 

coefficients must be placed in a symmetric multidimensional prony series coefficient. This new 

matrix form follows the same equation as seen in equations (23) or (24), but does not have a 

guarantee of positive definiteness required. Each coefficient matrix must be checked for positive 

definiteness, by calculation of eigenvalues. Each matrix that has any negative eigenvalues then 

needs to be passed to the next step of this model, while those that do meet the requirements are left 

alone. 

 

4.5 Nearest Symmetric Positive Semidefinite Matrix 

 

Those matrices found not to be positive definite need to have this corrected. In this method, this is 

accomplished by finding the nearest symmetric positive semidefinite form of the matrix. This 

change is accomplished by an algorithm described by (Higham 1988). 

This algorithm computationally finds the nearest symmetric positive semidefinite matrix to a real 

matrix using a modification of Halmos’ formula. These changes are using a bisection method, 

applied to the formula, to compute an upper and lower bound of the distance from the symmetric 

positive matrix to the real matrix. From there, the formula is formulated as a zero-finding problem, 
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and a hybrid Newton-bisection algorithm is applied. The positive semidefinite property of the 

formulated matrix is checked with a Cholesky decomposition. 

Once this process has been accomplished, our corrected source function can then be passed to the 

proper interconversion algorithm described by (J. Luk-Cyr et al., 2013) and shown in the next 

section. 

4.6 Interconversion of Viscoelastic Material Functions 

 

Using equation (22), to interconvert the source function to the target function can be a problem; 

this equation is a Volterra equation and is generally ill-posed, causing a problem for numerical 

integration. The numerical solution can be convergent, though it does not always converge to the 

proper solution (Sorvari & Malinen, 2007). This problem of ill-posed can be corrected by 

representing our functions as prony series. This turns equation (22) into a well-posed problem and 

allows for the solving of the target function coefficients. 

As viscoelastic material functions are often obtained from creep-recovery tests, and finite element 

software usually requires knowing the relaxation function, this thesis will display the algorithm 

for converting creep to relaxation first (J. Luk-Cyr et al., 2013). The only change that can be found 

in the implementation shown below is for more than the tridimensional cases presented by 

Levesque and authors. This change is accomplished by replacing the hard coding of dimensions 

of a six by six matrix to that of variable size. This variable size is represented by R and is the N or 

M dimension size of the square matrices for the prony series coefficients.  
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4.6.1 Interconversion from D(t) to E(t) 

 

The algorithm starts by computing the internal matrices for the creep compliance. Here, M is the 

number of coefficient matrices in the data, 𝒸ℒ is the Cholesky decomposition, and 𝜆𝑚 are the creep 

inverted time constants: 

1: 𝑨[𝑅𝑥𝑅]
(1)

= 𝑫(0) 

2: 𝑨[𝑅𝑥𝑅⋅𝑀]
(2)

= [𝒸ℒ(𝜆1𝑫(1))|𝒸ℒ(𝜆2𝑫(2))| … |𝒸ℒ(𝜆𝑀𝑫(𝑀))] 

3: 𝑨[𝑅⋅𝑀𝑥𝑅⋅𝑀]
(3)

= [
[𝜆1]𝑅 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ [𝜆𝑀]𝑅

] 

4: 𝑩[𝑅⋅𝑀𝑥𝑅⋅𝑀] 𝑖𝑠 𝑎𝑛 𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 𝑚𝑎𝑡𝑟𝑖𝑥 

The second stage of the algorithm then computes the internal matrices of the relaxation modulus. 

5: 𝑳(1) = (𝑨(1))
−1

 

6: (𝑳(2))
𝑇

= (𝑨(2))
𝑇

⋅ (𝑨(1))
−1

 

7: 𝑳(3) = 𝑨(3) + (𝑨(2))
𝑇

⋅ (𝑨(1))
−1

⋅ 𝑨(2) 

Next, we calculate the eigenvectors P of 𝑳(3) with singular value decomposition and use this result 

to computer two more matrices, we need to find the relaxation coefficients and inverted time 

constants.  

8: 𝑳(3∗) = 𝑷𝑇 ⋅ 𝑳(3) ⋅ 𝑷 

9: (𝑳(2∗))
𝑇

= 𝑷𝑇 ⋅ (𝑳(2))
𝑇
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Now we can obtain 𝑪(0), 𝑪(𝑛), 𝑎𝑛𝑑 𝜌𝑛. 

10: 𝑬(0) = 𝑳(1) − ∑ 𝑬(𝑛)
𝑁

𝑛=1
 

11: 𝒇𝒐𝒓 𝑛 = 1 𝑡𝑜 𝑁 = 𝑅 ⋅ 𝑀 𝒅𝒐 

12: 𝐸𝑖𝑗
(𝑛)

=
𝐿𝑖𝑛

(2∗)
𝐿𝑗𝑛

(2∗)

𝐿𝑛𝑛
(3∗)

 

13: 𝜌𝑛 =
𝐿𝑛𝑛

(3∗)

𝐵𝑛𝑛
 

14: 𝒆𝒏𝒅 𝒇𝒐𝒓 

 

4.6.2 Interconversion from E(t) to D(t) 

 

For the relaxation to creep algorithm, the same notations as before will be followed, including the 

Cholesky decomposition. The only change is that M takes the place of N and the use of our 

relaxation inverted time constants, 𝜌𝑛. Since the changes are nominal, all the steps will be 

presented without comments. 

 

1: 𝑳[𝑅𝑥𝑅]
(1)

= 𝑬(0) + ∑ 𝑬(𝑛)
𝑁

𝑛=1
 

 2: 𝐿[𝑅𝑥𝑅⋅𝑁]
(2)

= [𝒸ℒ(𝜌1𝑬(1))|𝒸ℒ(𝜌2𝑬(2))| … |𝒸ℒ(𝜌𝑁𝑬(𝑁))]  
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 3: 𝑳[𝑅⋅𝑁𝑥𝑅⋅𝑁]
(3)

= [
[𝜌1]𝑅 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ [𝜌𝑁]𝑅

] 

 4: 𝑩[𝑅⋅𝑀𝑥𝑅⋅𝑀] 𝑖𝑠 𝑎𝑛 𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 𝑚𝑎𝑡𝑟𝑖𝑥 

 5: 𝑨(1) = (𝑳(1))
−1

 

 6: (𝑨(2))
𝑇

= (𝑳(2))
𝑇

⋅ (𝑳(1))
−1

 

 7: 𝑨(3) = 𝑳(3) + (𝑳(2))
𝑇

⋅ (𝑳(1))
−1

⋅ 𝑳(2) 

 8: 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑡ℎ𝑒 𝑒𝑖𝑔𝑒𝑛𝑣𝑒𝑐𝑡𝑜𝑟𝑠 𝑷 𝑜𝑓 𝑨(3) 𝑤𝑖𝑡ℎ 𝑠𝑖𝑛𝑔𝑢𝑙𝑎𝑟 𝑣𝑎𝑙𝑢𝑒 𝑑𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 

 9: 𝑨(3∗) = 𝑷𝑇 ⋅ 𝑨(3) ⋅ 𝑷 

10: (𝑨(2∗))
𝑇

= 𝑷𝑇 ⋅ (𝑨(2))
𝑇

 

11: 𝑫(0) = 𝑨(1) 

12: 𝒇𝒐𝒓 𝑚 = 1 𝑡𝑜 𝑀 = 𝑅 ⋅ 𝑁 𝒅𝒐 

13: 𝐷𝑖𝑗
(𝑚)

=
𝐴𝑖𝑚

(2∗)
𝐴𝑗𝑚

(2∗)

𝐴𝑚𝑚
(3∗)

 

14: 𝜆𝑚 =
𝐴𝑚𝑚

(3∗)

𝐵𝑚𝑚
 

15: 𝒆𝒏𝒅 𝒇𝒐𝒓 
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4.7 Convolution Check  

 

Once the material source function has been interconverted to the desired target function, a check 

for validity of the interconversion needs to be performed. In this model, this check is carried out 

using the convolution integral (20) in the time domain. This check ensures that only proper data 

was converted. When incorrect data or assumptions are used, the correction algorithm will create 

a symmetric positive semidefinite matrix. This matrix can be converted by the algorithms designed 

by Levesque and team. The matrix produced by this interconversion will not provide values close 

to those expected from the convolution integral. This integration also provides the range of 

acceptable values that the interconversion algorithm produced.  

 

4.8 Model Steps 

 

The steps of this model to allow for the interconversion of material functions with the required 

properties are as follows: This process will start with the collection of experimental data for the 

source function. This multidimensional material data can then be fitted as a uniaxial prony series, 

with any method desired as long as the time constants are maintained in each dimension. After the 

fitting, the uniaxial prony series are then placed in symmetric matrix coefficients. The coefficient 

matrices are then checked for positive definiteness; those that do not meet this requirement are 

then fed to an algorithm to find the nearest semi-positive definiteness matrix. Now that all matrices 
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have the required properties, the proper interconversion algorithm can be applied. Finally, a check 

of source and target functions is conducted with the convolution integral.  
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CHAPTER 5: RESULTS 
 

The data employed in the results section is from a linear low-density polyethylene employed in 

high altitude balloons found in the paper, Thermoviscoelastic Models for Polyethylene Thin Films 

(Li et al., 2016). This paper found the creep compliances were found utilizing three different tests. 

Uniaxial tension creep tests determined the linear in-plane creep compliance master curves. The 

uniaxial tension test at a constant strain rate was used to simulate the nonlinear behavior at larger 

strains. Finally, a biaxial bubble test was employed to characterize the behavior under stress 

conditions that more represent those found for a balloon in operational conditions. The transformed 

nominal stress and strains from these experimental tests were utilized to calculate the master creep 

compliance curves. 

This paper presented twenty prony series coefficients for the creep compliance curves of D11, 

D13, D21, D22, D23, and D66. Initially, this thesis utilized these coefficients for a three by three 

matrix, but without the D33 compliance curve, the data was unable to be appropriately corrected. 

Therefore, the coefficients for the compliance curves for D11, D21, and D22 were placed in two 

by two matrix coefficients for an anisotropic prony series. This anisotropic creep matrix became 

the source function to be checked, corrected and interconverted.  
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5.1 Eigenvalues 

 

With the source function placed in a prony series with matrix coefficients, the next step in the 

model can proceed, the checking of eigenvalues. Table 1 shows all the eigenvalues for the fitted 

data, with three of the matrices not having the required positive definiteness, with each matrix 

having one negative eigenvalue.  

Table 1: Eigenvalues for Fitted Data 

Coefficient Matrix Eigenvalue 1  Eigenvalue 2 

𝐷0 0.00045 0.00015 

𝐷1 1.74857485e-04  1.09392515e-04 

𝑫𝟐 -5.23719140e-06 7.03970914e-05 

𝑫𝟑 9.86870394e-05  -1.17010394e-05 

𝐷4 1.41011072e-04 8.74692808e-06 

𝐷5 5.76576346e-05  1.51549365e-04 

𝑫𝟔 2.60431459e-04 -9.25845891e-06 

𝐷7 4.67931334e-04 7.62586665e-05 

𝐷8 6.94166790e-04 2.08773210e-04 

𝐷9 9.62506308e-04 1.62973692e-04 

𝐷10 1.28266095e-03 1.78289055e-04 

𝐷11 1.58297224e-03 1.85547765e-04 

𝐷12 5.34614336e-04 1.82288566e-03 
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𝐷13 5.90493210e-04 1.75980679e-03 

𝐷14 1.40788479e-03 9.86452121e-05 

𝐷15 1.56928357e-03 3.14616428e-04 

𝐷16 1.66932398e-03 4.23766021e-04 

𝐷17 5.15584982e-04 2.64101502e-03 

𝐷18 1.38879234e-03 3.17217656e-04 

𝐷19 1.88468891e-04 4.59991093e-05 

 

These three matrices were then run through the algorithm to find the nearest symmetric positive 

semidefinite version of the matrix, this results in the change of the negative eigenvalues and 

making each matrix conform to all properties that are required. Table 2 shows in bold those 

eigenvalues that have been changed by the model truncated to the fourth decimal. 

 

 

Table 2: Fitted and Corrected Eigenvalues 

 

 

 

 

 

Coefficient 

Matrix 

Fitted Eigenvalues Corrected Eigenvalues 

𝐷2 -5.2371e-06 7.0397e-05 1.3552e-20 7.0397e-05 

𝐷3 9.8687e-05 -1.1701e-05 9.8687e-05 2.0328e-20 

𝐷6 2.6043e-04 -9.2584e-06 2.6043e-04 1.3552e-20 
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Table 3 shows the original matrices and the corrected forms for the three coefficient matrices that 

were corrected in the model. While each location was changed, the shift in each dimension was 

small. This small shift, along with the minimal change in eigenvalues, reinforces the notation that 

errors cause the lack of positive definiteness, and not another source. 

Table 3: Fitted and Corrected Matrices 

𝐷2 Original 𝐷2 Corrected 

[
6.5109e − 06 −2.7396e − 05

−2.7396e − 05 5.8649e − 05
] [

1.0934e − 05 −2.5499e − 05
−2.5499e − 05 5.9462e − 05

] 

𝐷3 Original 𝐷3 Corrected 

[
6.2843e − 05 −5.1691e − 05

−5.1691e − 05 2.4143e − 05
] [

6.6642e − 5 −4.6211e − 05
−4.6211e − 05 3.2044e − 05

] 

𝐷6 Original 𝐷6 Corrected 

[
1.5508e − 04 −1.3158e − 04

−1.3158e − 04 9.6093e − 05
] [

1.587e − 04 −1.2706e − 04
−1.2706e − 04 10.173e − 5

] 

 

 

5.2 Fitted data vs. Corrected Data 

 

After correcting coefficient matrices, a check of the new creep compliance modulus over time can 

be done. This new correct compliance modulus can be compared to the compliance modulus 

produced from the experimental data. When this comparison is made, a small variance, in all 

dimensions, from the experimental data is found. This variance increases with time, becoming the 

greatest difference at the most extreme times. These variances are shown in Figure 1: Comparative 
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Creep Modulus over Time D11, Figure 2: Comparative Creep Modulus over Time D21, and Figure 

3: Comparative Creep Modulus over Time D, for the D11, D21, and D22 dimensions.  

Figure 1: Comparative Creep Modulus over Time D11 

 

Figure 2: Comparative Creep Modulus over Time D21 
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Figure 3: Comparative Creep Modulus over Time D22 

 

 

 

5.2.1 R-squared 

 

When looking for accuracy of the fit for the corrected compliance modulus compared to the 

experimental modulus, we can check the R squared values. With the D11 dimension, there is an R 

squared value of 0.9994. This is the best fit for all three dimensions. The shear D21 dimension has 

the worse fit with an R squared of 0.9982. Finally, the D22 dimension R squared was found to be 

0.9992. These R squared show an extremely good fit for the corrected data when compared to the 
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experimental data. This helps to show that the model maintains accuracy while adding the required 

matrix properties.  

 

5.2.2 Absolute Error Over Time 

 

A final check of the accuracy of the corrected creep compliance modulus can be seen with graphing 

of absolute error over time for each dimension. Each of these graphs shows a small absolute error 

over the time range, with a consistent error, and a small amount of overestimating for each 

dimension. 

We can also look at the global view of the absolute error, with the absolute percent error. For the 

D11 dimension, the percent error was found to be 0.2135%, with the D21 and D22 to be 0.3627% 

and 0.2954%, respectively. These minimal percent errors continue to show the model creates only 

minimal changes to moduli. This shows that the method developed in this thesis is a viable means 

to correct prony series coefficient matrices.  
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Figure 4: Comparative Creep Modulus Absolute Error over Time D11 

 

Figure 5: Comparative Creep Modulus Absolute Error over Time D21 
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Figure 6: Comparative Creep Modulus Absolute Error over Time D22 

 

 

5.3 Convolution 

 

With the corrected data being shown to produce an acute representation of the modulus, the rest 

of the model can be followed. After correcting the matrices, the source function of creep 

compliance is converted to the relaxation function using the Levesque algorithm shown in section 

4.6.1. As Levesque had already shown this algorithm to be accurate, this thesis does not show an 

account of accuracy. Instead, a check of the final conversion using the convolution integral and 

the errors found from the convolution are shown as the final check of the model. 

Since we know, the convolution integral should have a solution of tI, which is the identity matrix 

multiplied by the scalar time applied to the convolution integral. This shows that over time, the in-
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plane solutions for D11 and D22 should be shown to be the time given to the integral, while the 

shear D21 should be zero at all times. The solution of the convolution integral for each dimension 

from the model was then plotted against time to demonstrate if there was a departure of the answer 

at any time. All three dimensions were found to be close to the answer, with the extreme time 

range showing to have the furthest departure. This departure showed an increasing amount, from 

the expected value, at around 10e6 seconds. 

This departure is to be expected, as the corrected creep compliance was shown to be furthest from 

the experimental data at the greater time range. This result was also expected numerically, as the 

implementation of the convolution integral was found to be more unstable and less accurate the 

greater the time variable.  

 

Figure 7: Perfect Convolution vs. Thin Film Convolution D11 
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Figure 8: Perfect Convolution vs. Thin Film Convolution D21 

 

Figure 9: Perfect Convolution vs. Thin Film Convolution D22 
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5.3.1 Relative Error of Convolution 

 

A final check of the convolution can be done with the relative error over time. This check is the 

normalization of the absolute error of the convolution normalized by the time step. These graphs 

show a negligible error until around 10e6 seconds, at which point each graph gains an error of no 

greater than the absolute value of 0.45, with the D22 coefficient showing a reduction in relative 

error at the end of the graph. This increase in error is from two separate sources. First, the corrected 

creep compliance modulus started to show the most significant difference at the same time frame 

as the relative error increases. Second, the numerical methods to check the convolution integral 

accumulates errors with larger time inputs. This is supported by each dimension showing the same 

shape and location of the accelerating error. 
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Figure 10: Relative Convolution Error of Thin Film D11 

 

Figure 11: Relative Convolution Error of Thin Film D21 
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Figure 12: Relative Convolution Error of Thin Film D22 
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CHAPTER 6: CONCLUSION 
 

This thesis has shown how uniaxially fitted prony series coefficients can be fitted into a matrix 

form to allow for the interconversion of linear viscoelastic material functions. The model presented 

in this paper corrects matrix coefficient eigenvalues, correcting the lack of positive definiteness, 

regardless of the method used to fit experimental data, if all time constants are maintained across 

dimensions. With minimal changes to experimental data, the presented model allows for 

interconversion of material functions while presenting minimal errors. This model also allows for 

either material function to serve as the source function for interconversion.  



36 

 

 

APPENDIX  
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APPENDIX A: PYTHON CODE 
 

""" 

Name: anisotropic-interconversion 

Description: Python library to interconvert anisotropic relaxation and creep 

prony series 

Author: Christopher Rehberg 

Email: christopher.rehberg@knights.ucf.edu 

""" 

 

# External libaries to run the viscoelastic interconversion library 

import numpy as np 

import pandas as pd 

import scipy.integrate as integrate 

import scipy.linalg as linalg 

from numpy import linalg as la 

 

def import_properties_excel(excel_file, coeff_size=None, invert=False): 

    """Import matrices and creep/relaxation times from an excel 

       format with a specific format for this library 

 

    Parameters 

    ---------- 

    excel_file : xlsx 

        Excel file 

    coeff_size : None or int 

        sets the size of the matrix to be read, default to none 

    invert : Bool 

        flag if time consts need to be inverted 

 

    Returns 

    ------- 

    mat0 : numpy.array 

        Instantaneous modulus 

    matrix_coeff : numpy.array 

        Modulus coefficients 

    time_consts : numpy.array 

        inverted time constants 

    coeff_size : int 

        Number of coefficent matrices 

    """ 

 

    # Open the excel file with viscoelastic material properties 

    with open(excel_file, 'br') as excel_loc: 

 

        # Read in the number of matrix coefficients, and set as an integer 

        num_coeff = pd.read_excel(excel_loc, header=None, usecols=[1], nrows=

1) 

        num_coeff = int(num_coeff.values) 

 

        # Check to see if a matrix size has been set, default to none 
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        if coeff_size is None: 

            # Read in the size of the matrix coefficients, and set as an int 

            coeff_size = pd.read_excel( 

                excel_loc, header=None, usecols=[3], nrows=1) 

            coeff_size = int(coeff_size.values) 

 

        # Read in the instantious coefficient as a size of 6x6 

        mat0 = pd.read_excel(excel_loc, header=None, 

                             usecols=[0, 1, 2, 3, 4, 5], nrows=6, skiprows=5) 

        # Change from dataframe to a numpy array 

        mat0 = mat0.to_numpy() 

        # Select only the required coefficients 

        mat0 = mat0[:coeff_size, 0:coeff_size] 

 

        # Create an empy array to store coefficients 

        matrix_coeff = np.empty((num_coeff, coeff_size, coeff_size)) 

 

        for i in range(num_coeff): 

 

            # Read a coefficient matrix from excel 

            temp_coeff = pd.read_excel(excel_loc, header=None, 

                                       usecols=[j+(6*i) for j in range(6)], 

                                       nrows=6, skiprows=13) 

 

            # Convert to a numpy array and select required coefficients 

            temp_coeff = temp_coeff.to_numpy() 

 

            matrix_coeff[i, :, :] = temp_coeff[0:coeff_size, 0:coeff_size] 

 

        # Read in the time constants 

        time_consts = pd.read_excel(excel_loc, header=None, 

                                    usecols=[1+i for i in range(num_coeff)], 

                                    nrows=1, skiprows=2) 

 

        # Convert to a numpy array and reshape to a 1D array 

        time_consts = time_consts.to_numpy() 

        time_consts = np.reshape(time_consts, num_coeff) 

 

        # Invert time consts if required 

        if(invert): 

            time_consts = 1 / time_consts 

 

    return mat0, matrix_coeff, time_consts, coeff_size 

 

def StoC(S0, S_mats, lambdas, coeff_size): 

    """Converts prony series creep complance to relaxtion modulus 

       using Cholesky decomposition. Using algorithm 4 of "Interconversion of 

       linearly viscoelastic material functions expressed as Prony series" 

 

    Parameters 

    ---------- 

    S0 : numpy.array 

        Instantaneous creep modulus 

    S_mats : numpy.array 
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        Creep modulus coefficient 

    lambdas : numpy.array 

        Creep time constants 

    coeff_size : int 

        The size dim of the the matrix i.e. 6 if 6x6 

 

    Returns 

    ------- 

    C0 : numpy.array 

        Equilibrium relaxation 

    C_mats : numpy.array 

        Relaxtion modulus coefficient 

    rhos : numpy.array 

        Relaxation time constants 

    """ 

 

    # Number of coefficents 

    num_coeff = len(S_mats) 

 

    # Final amount of coefficents returned, used to size different variables 

    final_num_coeff = coeff_size * num_coeff 

 

    # Following the step by step formula given by the paper 

    A1 = S0 

 

    A2 = np.linalg.cholesky(lambdas[0] * S_mats[0]) 

 

    for i in range(1, num_coeff): 

        temp_mat = lambdas[i] * S_mats[i] 

        temp_mat = np.linalg.cholesky(temp_mat) 

        A2 = np.concatenate((A2, temp_mat), 1) 

 

    A3 = np.identity(coeff_size, dtype=np.float64) 

    A3 = lambdas[0]*A3 

 

    if num_coeff >= 2: 

        for i in range(1, num_coeff): 

            A3 = linalg.block_diag(A3, (lambdas[i]*np.identity(coeff_size))) 

 

    B_idnet = np.identity(final_num_coeff) 

 

    L1 = np.linalg.inv(A1) 

    L2 = A2.T @ L1 

    L2 = L2.T 

    L3 = A3 + A2.T @ L1 @ A2 

 

    L3_star, PT = np.linalg.svd(L3)[1:] 

    L3_star = np.diag(L3_star) 

 

    L2_star = PT @ L2.T 

    L2_star = L2_star.T 

 

    # Preallocate a 3d numpy array for the coefficent matrices 

    C_mats = np.empty((final_num_coeff, coeff_size, coeff_size)) 
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    # Preallocate a numpy array for the time consts 

    rhos = np.zeros(final_num_coeff) 

 

    for m in range(0, final_num_coeff): 

        for i in range(0, coeff_size): 

            for j in range(0, coeff_size): 

                C_mats[m, i, j] = ( 

                    (L2_star[i, m]*L2_star[j, m]) / L3_star[m, m]) 

 

        rhos[m] = L3_star[m, m] / B_idnet[m, m] 

 

    C0 = L1 

 

    for i in range(len(C_mats)): 

        C0 = C0 - C_mats[i] 

 

    return (C0, C_mats, rhos) 

 

def CtoS(C0, C_mats, rhos, coeff_size): 

    """Converts prony series relaxtion modulus to creep complance 

       using Cholesky decomposition. Using algorithm 3 of "Interconversion of 

       linearly viscoelastic material functions expressed as Prony series" 

 

    Parameters 

    ---------- 

    C0 : numpy.array 

        Equilibrium relaxation 

    C_mats : numpy.array 

        Relaxtion modulus coefficient 

    rhos : numpy.array 

        Relaxtion time constants 

    coeff_size : int 

        The size dim of the the matrix i.e. 6 if 6x6 

 

    Returns 

    ------- 

    S0 : numpy.array 

        Instantaneous creep modulus 

    S_mats : numpy.array 

        Creep modulus coefficient 

    lambdas : numpy.array 

        Creep time constants 

    """ 

 

    # Number of coefficents 

    num_coeff = len(C_mats) 

 

    # Final amount of coefficents returned, used to size different variables 

    final_num_coeff = coeff_size * num_coeff 

 

    # Following the step by step formula given by the paper 

    L1 = C0 

 



41 

 

    for i in range(num_coeff): 

        L1 = L1 + C_mats[i] 

 

    L2 = np.linalg.cholesky(rhos[0] * C_mats[0]) 

 

    for i in range(1, num_coeff): 

        temp_mat = np.linalg.cholesky(rhos[i] * C_mats[i]) 

        L2 = np.concatenate((L2, temp_mat), 1) 

 

    L3 = np.identity(coeff_size, dtype=np.float64) 

    L3 = rhos[0]*L3 

 

    if num_coeff >= 2: 

        for i in range(1, num_coeff): 

            L3 = linalg.block_diag(L3, (rhos[i]*np.identity(coeff_size))) 

 

    B_idnet = np.identity(final_num_coeff) 

 

    A1 = np.linalg.inv(L1) 

    A2 = L2.T @ A1 

    A2 = A2.T 

    A3 = L3 - L2.T @ A1 @ L2 

 

    A3_star, PT = np.linalg.svd(A3)[1:] 

    A3_star = np.diag(A3_star) 

 

    A2_star = PT @ A2.T 

    A2_star = A2_star.T 

 

    S0 = A1 

 

    # Preallocate a 3d numpy array for the coefficent matrices 

    S_mats = np.empty((final_num_coeff, coeff_size, coeff_size)) 

 

    # Preallocate a numpy array for the time consts 

    lambdas = np.zeros(final_num_coeff) 

 

    for m in range(0, final_num_coeff): 

        for i in range(0, coeff_size): 

            for j in range(0, coeff_size): 

                S_mats[m, i, j] = ( 

                    (A2_star[i, m] * A2_star[j, m]) / A3_star[m, m]) 

 

        lambdas[m] = A3_star[m, m] / B_idnet[m, m] 

 

    lambdas = np.flip(lambdas) 

 

    return (S0, S_mats, lambdas) 

 

def modulus_at_time(M0, M_mats, time_const, time, property): 

    """Gives the matrix of creep or relaxation at a given time 

     

    Parameters 

    ---------- 
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    M0 : numpy.array 

        Instantaneous/Equilibrium modulus 

    M_mats : numpy.array 

        Coefficient moduli 

    time_const : numpy.array 

        Time constants 

    time : float 

        Time at which to calculate property 

    property : string 

        Switch for creep or relaxation calculations (relax or creep) 

     

    Returns 

    ------- 

    mod_time : numpy.array 

        Modulus at a given time 

    """     

 

    # Number of coefficient matrices 

    num_coeff = len(M_mats) 

 

    # Funtion for matrix relaxation modulus at given time 

    def relax_time(M_mats, rhos, time): return M_mats * \ 

        (np.exp(-1 * time * rhos.reshape(num_coeff, 1, 1))) 

    # Funtion for matrix creep modulus at given time 

    def creep_time(M_mats, lambdas, time): return M_mats * \ 

        (1 - np.exp(-1 * time * lambdas.reshape(num_coeff, 1, 1))) 

 

    # Sets the proper relax or creep function to the variable time_func 

    if property == "relax": 

        time_func = relax_time 

    elif property == "creep": 

        time_func = creep_time 

    else: 

        raise Exception('Expected "relax" or "creep" proptery') 

 

    # Caluclates the modulus at the given time for each matrix 

    mod_time = time_func(M_mats, time_const, time) 

    # Sums each matrix together 

    mod_time = np.sum(mod_time, axis=0) 

    # Adds the Instantaneous/Equilibrium modulus 

    mod_time = mod_time + M0 

 

    return mod_time 

 

def nearestPD(A): 

    """Find the nearest positive-definite matrix to input 

 

    A Python/Numpy port of John D'Errico's `nearestSPD` MATLAB code [1], whic

h 

    credits [2]. 

 

    [1] https://www.mathworks.com/matlabcentral/fileexchange/42885-nearestspd 

 

    [2] N.J. Higham, "Computing a nearest symmetric positive semidefinite 
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    matrix" (1988): https://doi.org/10.1016/0024-3795(88)90223-6 

     

    Parameters 

    ---------- 

    A : numpy.array 

        Matrix 

 

    Returns 

    ------- 

    A3: numpy.array 

        Pos def matrix 

    """ 

 

    B = (A + A.T) / 2 

    _, s, V = la.svd(B) 

 

    H = np.dot(V.T, np.dot(np.diag(s), V)) 

 

    A2 = (B + H) / 2 

 

    A3 = (A2 + A2.T) / 2 

 

    if isPD(A3): 

        return A3 

 

    spacing = np.spacing(la.norm(A)) 

 

    Ident = np.eye(A.shape[0], dtype=np.float64) 

    k = 1 

    while not isPD(A3): 

        mineig = np.min(np.real(la.eigvals(A3))) 

        A3 += Ident * (-mineig * k**2 + spacing) 

        k += 1 

 

    return A3 

 

def isPD(B): 

    """Returns true when input is positive-definite, via Cholesky 

 

    Parameters 

    ---------- 

    B : numpy.array 

        Matrix 

 

    Returns 

    ------- 

    Bool : Bool 

        Returns True or False 

    """ 

 

    try: 

        _ = la.cholesky(B) 

        return True 

    except la.LinAlgError: 
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        return False 

 

def pos_def_update(M0, M_mats): 

    """Checks a matrices for positive-definitness. If matrix is not  

    positive-definite, finds nearest positive-definite matrix and replaces 

 

    Parameters 

    ---------- 

    M0 : numpy.array 

        Instantaneous/Equilibrium modulus 

    M_mats : numpy.array 

        Coefficient moduli 

 

    Returns 

    ------- 

    M0 : numpy.array 

        Positive-definite Instantaneous/Equilibrium modulus 

    M_mats : numpy.array 

        Positive-definite Coefficient moduli 

    """ 

 

    def is_pos_def(matrix): 

        if isPD(matrix): 

            return matrix 

        else: 

            return nearestPD(matrix) 

 

    M0 = is_pos_def(M0) 

 

    for i in range(len(M_mats)): 

        M_mats[i] = is_pos_def(M_mats[i]) 

 

    return (M0, M_mats) 

 

def convolution_check_mat(C0, C_mats, rhos, S0, S_mats, lambdas, t): 

    """Checks the convolution intergral of the C(t) and S(t) matrices. 

       Should be the identiy matrix of t*I 

       Also returns the errors from scipy.quad intergration 

 

    Parameters 

    ---------- 

    C0 : numpy.array 

        Equilibrium relaxation 

    C_mats : numpy.array 

        Relaxtion modulus coefficient 

    rhos : numpy.array 

        Relaxation time constants 

    S0 : numpy.array 

        Instantaneous creep modulus 

    S_mats : numpy.array 

        Creep modulus coefficient 

    lambdas : numpy.array 

        Creep time constants 

    t : float 
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        time 

 

    Returns 

    ------- 

    convolution : numpy.array 

        Numpy array of the convolution matrix for C(t) and S(t) 

    error : numpy.array 

        Numpy array of the errors for each element of the convolution matrix 

    """ 

 

    dim = max(C0.shape) 

 

    convolution = np.empty(C0.shape) 

    error = np.empty(C0.shape) 

 

    def f(C0, C_mats, S0, S_mats, lambdas, rhos, t): 

        def g(tau): 

 

            C_converted = modulus_at_time( 

                C0, C_mats, rhos, t - tau, "relax") 

 

            S_converted = modulus_at_time( 

                S0, S_mats, lambdas, tau, "creep") 

 

            return np.dot(C_converted, S_converted)[i, j] 

        return g 

 

    u = f(C0, C_mats, S0, S_mats, lambdas, rhos, t) 

 

    for i in range(dim): 

        for j in range(dim): 

 

            convolution[i, j], error[i, j] = integrate.quad( 

                u, 0, t, epsabs=1e-12, epsrel=1e-12, limit=1000) 

 

    return convolution, error 
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