
The current state of the art in enforcing collaboration in mobile ad hoc networks can be 

categorized into three groups, namely incentive motivation approaches, game theory based 

approaches, and misbehavior penalty approaches. 

We consider incentive motivation techniques first. The authors of [8] [9] [63] proposed to 

use virtual currency to stimulate incentives for nodes to cooperate with each other.  In their 

techniques, each node maintains a “wallet” of nuggets.  A node has to possess enough nuggets to 

reward other nodes for relaying its packets. The only way a node can gather enough nuggets is to 

forward packets for other nodes.  This technique relies on a tamper proof security module and 

cryptographic techniques to prevent possible abuse of the protocol.  The authors of [100] also 

propose a virtual currency technique that can stimulate node collaboration and defeat colluding 

malicious users without employment of the tamper resistant module.  This scheme requires that 

each node reports a signature of each packet it forwards to a Central Clearance Service.  The 

practicability and performance of this approach remains unclear.  

Another class of schemes ([19] [76] [97] [98]) utilizes game theory [57] to model the 

cooperation enforcement problem in MANETs.  Essentially, the purpose of these techniques is to 

derive strategies that consist of Nash equilibrium. Under the Nash equilibrium, no player (nodes) 

can benefit from violating the proposed strategy.  In [19], a virtual currency approach based on a 

mechanism design technique is presented.  The goal of a mechanism design technique is to 

define a game played by independent agents according to the rules set by the mechanism 

designer such that the desired outcome, called the social optimum, can be achieved.  This 

technique guarantees that nodes cannot gain anything through cheating during application data 

delivery.  In [97] [98], a similar technique is proposed to support multicast in MANETs.  In [76], 

an algorithm based on the Generous TIT-FOR-TAT (GTFT) strategy [2] is proposed.  The 

40 



authors prove the Nash equilibrium of the strategy.  In general, the game theory based 

approaches assume nodes are rational (i.e. their behaviors are determined by their self interests) 

and are usually not robust to malicious participants (i.e. nodes willing to sacrifice their own 

benefits to cause devastating results to MANETs).   

Our research, on the other hand, falls in the third category. The main idea is to detect, 

penalize, and avoid malicious and selfish hosts in MANETs.  In [96], the authors use intrusion 

detection techniques to locate misbehaving nodes.  A watchdog and a path rater approach is 

proposed in [52] to detect and circumvent selfish nodes.  The main drawback of this approach is 

that it does not punish malicious nodes.  This problem is addressed in [4] [5] [6] [7].  The 

approach, called CONFIDANT, introduces a reputation system whereby each node keeps a list 

of the reputations of others.  Malicious and selfish nodes are detected and reputation information 

is propagated to “friend” nodes, which update their reputation lists based on certain trust 

relationships.  During route discovery, nodes try to avoid routes that contain nodes with bad 

reputations.  Meanwhile, no data forwarding service is provided for low reputation nodes as a 

punishment. Another reputation-based technique, called CORE, is proposed in [53].  In this 

scheme, only positive reputations are disseminated.  A formal analysis of CORE is given in [56].  

A trust evaluation technique is proposed in [81]. In [1], the authors attack the problem of 

defending application data transmission against Byzantine errors. In their approach, each node 

maintains a weight list of other nodes.  Malicious nodes are located by an on-demand detection 

process and their weights are increased consequently.  A routing protocol is designed to select 

the least-weight path between two nodes.  This approach is also based on per-node reputation 

lists.  In addition, the detection process requires that each intermediate node transmit an 

acknowledgement packet to the source node.  In [28], reputation information is propagated 
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locally and one-way hash functions are employed to secure reputation propagation. In [89], the 

authors propose an approach that does not assume any a priori trust relationship between nodes 

in MANETS. Each node has to obtain a token jointly issued by its neighbors in order to be 

admitted to the network.   In [45], the authors propose to use “self-healing communities” to 

mitigate selfish nodes. The approach requires modification of underlying routing protocol and 

overhead to maintain the communities.  In [39], a finite-state-model technique is introduced. The 

technique requires that nodes install tamper-proof modules. Reputation packets are only 

broadcast locally.  

In general, most of existing detection and reaction techniques based on reputation 

dissemination mechanisms suffer from the following drawbacks: 

• Reputation-propagation-based schemes have low scalability.  Generally, quite a few 

reputation packets need to be propagated before “bad citizens” of MANETs can be 

captured, avoided, and punished. As a result, the cost of cooperation enforcement is 

quite high. 

• Reputation-propagation-based schemes offer incentives to various attacks. Most 

prominently, malicious users can “poison” the reputation lists by disseminating 

incorrect reputation information. Such packets can be spoofed with other nodes’ 

addresses to hide the identity of the attacker or to pretend to be a “friend” of the 

receiver. In [1], digital signatures and message authentication codes [102] are 

employed to defeat packet spoofing. However, if a host is possessed (or physically 

captured) by a malicious user, cryptographic information of the particular node can be 

extracted and reputation poison attacks can still be mounted.  In [7], the same authors 

of the CONFIDANT protocol present a scheme based on the Bayesian inference 
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model to reduce false accusations.  This scheme achieved significant reduction in 

false accusations for some types of reputation poisoning strategies but failed in some 

others. However, the scheme still relies on flooding reputation information and does 

not address the scalability concern. 
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CHAPTER THREE: THE FINITE STATE MODEL APPROACH 

 In this chapter, we introduce a technique based on a finite STAte Model.  Hereafter, we 

refer to this approach as the STAM approach.  

 

3.1. Node Configuration and Tamper Proof Module 

 Before presenting the proposed technique, we first describe the configuration of mobile 

ad hoc nodes in our scheme.   

 

3.1.1. Node Configuration 

The proposed technique is based on nodes with the following configurations. First, nodes 

are equipped with wireless interface cards that can be switched to promiscuous mode to “hear” 

data transmission in their proximities. Second, reactive routing protocols are employed in the 

network layer.  According to many studies [50] [40], reactive routing protocols are more suitable 

for MANETs than proactive protocols. We note currently there is no industry standard for 

MANET routing protocols. Without loss of generality, we base our discussion on the DSR. 

Nevertheless, the technique can be incorporated into any standard protocols to protect nodes 

against uncooperative behaviors. Third, reliable communication protocols such as TCP are 

employed in the transport layer. In reliable protocols, receivers acknowledge senders to confirm 
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the successful delivery of data packets. Most popular services such as TELNET, FTP, and HTTP 

are based on the TCP protocol. Finally, nodes employ a HELLO protocol to discover and 

establish shared secret keys with their neighbors. The HELLO protocol runs at the network layer 

and periodically generates heartbeat messages. We denote the heartbeat message transmission 

interval as τ . 

 

3.1.2. Tamper Proof Module 

Tamper proof modules are employed by various applications from credit cards to 

Subscriber Identity Module of mobile phones to achieve security. It is very likely that mobile ad 

hoc nodes will adopt the same approach, as pointed out in [5] [8] [9].  Like the technique 

presented in [8], we also equip each node with a tamper resistant module.  All other hardware 

and software components are susceptible to illicit modifications.  Our approach guarantees that 

as long as the tamper resistant module is not compromised, nodes cannot benefit from 

uncooperative behaviors. 

3.1.2.1. Protected Data 

Some mission critical data is stored in the tamper resistant module as follows: 

• Unique identifier. Each tamper proof module has a system-wide unique identifier, 

defined as , where A represents the node on which the tamper proof module is 

installed. 

AID
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• Public key/private keys. The tamper proof module is issued a public key and a 

corresponding private key. Since public key encryption and decryption are usually an 

order of magnitude slower than secret key schemes with similar security capability, they 

are only used rarely (during establishment of shared secret key for two neighboring 

nodes) in the proposed scheme. Of course, this requires a public key infrastructure (PKI) 

in MANETs. Several techniques [99] [36] have been proposed to address the problem.  

• Shared secret keys. When two nodes A and B become neighbors, their tamper resistant 

modules establish a shared secret key using public key cryptography [80].   

• Group communication key (GCK). Critical information originated by a node A is always 

protected by a unique group communication key (GCKA) of A. Once A has established a 

shared secret key with another node B, it will encrypt GCKA  using  and sends it 

to B and vice versa. This way, any packet encrypted with GCK of A can be interpreted 

by all its neighboring nodes.  We note that there are other group key distribution 

techniques such as [78] [37] [92]. However, this topic is beyond the scope of this 

dissertation and the naïve approach is adopted. 

ABK ABK

• Counters. A pair of counters is maintained by a node for each of its neighboring nodes to 

defeat message replay attacks. One of them is the sending counter and the other is the 

receiving counter. The counters are initialized during the exchange of Heartbeat 

messages.  

• Current node state. At any time, each node is in one of four states of a finite state model. 

The current state of the node is stored in the tamper proof module so that a malicious 

node cannot contaminate.  
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• Module Packet Queue (MPQ). State transition packets generated by the tamper proof 

module are stored in a queue. They will be transmitted together with heartbeat messages.  

• Neighboring node list. A list of neighboring nodes is maintained for each node by its 

tamper proof module. A misbehavior counter (MC) is associated with each neighboring 

node to facilitate misbehaving node detection. In addition, the tamper proof module of a 

node classifies neighboring nodes into different types to defeat various attempts to 

circumvent the proposed technique.  

Since the tamper proof module maintains information of the finite STAte Model, 

hereafter, we also refer to it as the STAM module. 
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3.1.2.2.  STAM Module Operations 

The STAM module provides the following important services.  

• It investigates all the packets (e.g. routing packets, data packets, heartbeat messages, etc.) 

exchanged between the network layer and the MAC layer. 

• It constructs STAM packets as depicted in Figure 8(b).  Each node propagates its current 

state to its neighboring nodes through the S1 field of a STAM packet. STAM packets are also 

sent to initiate state transition of specific neighboring nodes when necessary. The STAM 

module stores STAM packets in the MPQ.  Table 1 lists STAM packets and their definitions. 

• Once an outgoing HELLO packet is submitted to the STAM module from the network layer, 

the STAM module 1) pops up a STAM packet from the MPQ if the MPQ is not empty, or 

generates a dummy STAM packet (i.e. a STAM packet with its type field set to 0) otherwise; 

2) copies the sending counter to the counter field of the STAM packet; 3) encrypts the 

STAM packet using the GCK of the sender; and 4) attaches the encrypted packet to HELLO 

packets. Figure 8(a) depicts the resultant packet. We note that by storing cryptographic 

information on tamper proof modules, no STAM packet falsification can be performed by 

malicious users. Moreover, the counter field of the STAM packet can be utilized to defeat 

message replay attacks. 

• The STAM module classifies neighboring nodes according to the STAM packets it received.  

Details are presented in Section 0. 

The STAM module performs state transition upon decryption and authentication of STAM 

packets. 
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Table 1. STAM packets 

STAM Packet Acronym STAM packet Type field 

Penalize STAM packet PSP 0001 

Detecting STAM Packet DSP 0010 

Rejoin STAM Packet RSP 0011 

Welcome STAM packet WSP 0100 

 

 

STAM packetHELLO message  

 

(a) Heartbeat message coupled with STAM packet 
(encrypted using the GCK of the sender)  

 

 

 

 

 

 

 

 

IDSRC 

IDDST 

Counter 

Length Type S1 S2 Reserved 

32 Bits 

IDTARGET 

IDSRC: id of the sender.  
IDDST: id of the receiver. 
Counter: the counter of the sender, used to defeat replay 
attacks 
Length: the length of the packet (in number of words)  
S1: current state of the sender  
Type: type of the packet 
S2: the target state that the sender informs the receiver to 
transit to. 
Reserved: must be 0. 
IDTARGET: the target node to be detected. 

 (b) STAM packet  

Figure 8. STAM Packet 
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3.2. The Finite State Model Approach 

The proposed scheme is based on a finite state model.  At any time, a node is in one of 

the following four states: normal, detecting, penalized, and rejoin. The finite state model is 

depicted in Figure 9. The state of a node is beared on its own STAM module so that malicious 

users cannot contaminate it. 

 

 

Too many packets lost, or Detecting packet received, 
or next hop is a rejoin node, or RREQ (RREP) 
received 

 

 

 

 

 

 

 

 

 

Penalize packet  
received 

Normal 

Rejoin 

Detecting 

Penalized 

Penalize 
packet  
received 

timeout 

Random time, or selfish node 
detected 

Penalize packet received 

Enough packets 

forwarded (or timeout) 

Figure 9. Finite State Model 
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Before a node can start a data transmission session to another host, it relies on the routing 

protocol to find a route to the destination.  Intermediate nodes can act maliciously and selfishly 

during the route discovery stage. Hence, nodes are set to the detecting state to identify 

misbehaving nodes. Once a malicious node is identified, it is switched into the penalized state. 

The STAM modules “tag” routing packets to help source nodes select only the “clean route” (i.e. 

a route that does not contain any recognized malicious node) for data transmission. Therefore, 

after a TCP session begins, the source node assumes that all the intermediate nodes along the 

adopted route are benign and remains in normal state and no effort is made to detect 

uncooperative nodes. However, it is possible that some intermediate nodes become 

uncooperative during data transmission and discard packets that they should relay. In the 

proposed technique, nodes are switched into the detecting state hop by hop to locate the 

misbehaving node.  Again, once a selfish node is identified, it is switched into the penalized state 

and will remain in that state for a pre-determined period of time, during which all the other nodes 

refuse its service requests as a punishment. This way, nodes are given more incentive to act 

collaboratively. When a node has suffered enough from the penalized state, it will be switched 

into rejoin state, during which its neighboring nodes are informed and will monitor the rejoining 

node.  If the rejoining node has been observed to provide enough services, it will be turned back 

to normal state. We elaborate the above process in the following subsections. 

3.2.1.  Detection Mechanism 

We present the proposed detection mechanism in this subsection. We first discuss the 

attacks we attempt to defeat and then describe the detection mechanism under two different 
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stages. The detection mechanism can be implemented as a software application as proposed in 

[7] for lower cost. Alternatively, it can also be implemented as a built-in component of the 

tamper resistant module for better security.  Without loss of generality, we base our discussion 

on the latter option.  We note that users are motivated to cooperate during the detection process 

since successful identification of misbehaving nodes facilitates their data transmissions. 

3.2.1.1.  Considered Attacks 

The purpose of the STAM scheme is to detect attacks and uncooperative behaviors that 

result in disruption or degradation of data transmission. We focus on network layer attacks and 

do not address lower level threats such as physical layer jamming and MAC layer disruptions.  

The attacks contained by the proposed scheme are as follows. First, the detection mechanism 

identifies modification, fabrication or selectively dropping of routing packets during route 

discovery phase.  Second, the detection mechanism captures malicious users who deliberately 

discard data packets that they are obligated to forward either for selfish purposes or to mount 

denial of service attacks. 

3.2.1.2.  Route Discovery Misbehavior Detection 

During route discovery stage, the STAM module of a node switches itself into detecting 

state when it receives a RREQ (RREP) packet. We recall that the STAM module intercepts all 

the packets exchanged between the network layer and the MAC layer.  Hence, a STAM module 

has access to all the incoming and outgoing routing packets and data packets of its hosting node. 

The STAM module of a detecting node retains each promiscuously learned RREQ (RREP) 
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packet and the nodes that forward these packets in a buffer.  After the detecting node forwards a 

RREQ (RREP) packet, its STAM module verifies whether a set P of neighboring nodes 

conforms to the routing protocol by checking the recorded routing packets. In DSR and AODV, 

the set P consists of all neighboring nodes since each node should react upon receipt of a RREQ 

(RREP) packet by transmitting a routing packet at least once. The STAM module of the 

detecting node determines whether a specific node in P has dropped or illegally modified the 

RREQ (RREP) packet by verifying the retained routing packets. If any of the neighboring nodes 

are found to be discarding or tampering routing packets, the corresponding misbehavior counter 

will be incremented. If the MC of a node exceeds a predefined threshold, a Penalize STAM 

Packet (PSP) (i.e. a STAM packet with its type field set to 0001 and S2 field set to the penalized 

state) is constructed and will be sent to the misbehaving node. The STAM module of the 

misbehaving node will turn itself into penalized state upon receipt and authentication of the PSP. 

Once a detecting node has determined the states of all the nodes in P, it goes back to the normal 

state. 

3.2.1.3.  On-Demand Detection 

During a TCP data transmission session, some of the intermediate nodes may become 

selfish and drop packets.  As a result, the transport layer of the source node will have to 

retransmit the un-acknowledged packets.  If the number of un-acknowledged packets exceeds a 

predefined threshold, the source node of the TCP session invokes the detection mechanism to 

locate misbehaving nodes.  
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The detection mechanism works in a hop-by-hop style.  At first, the STAM module of the 

source node is switched to the detecting state and the network interface card of the source node is 

set to promiscuous mode. We refer to a node that is currently in the detecting state as the 

“detecting node”.  The immediate downstream node within the problematic TCP session of a 

detecting node is referred to as the “target node”. The STAM module of the detecting node stores 

each retransmitted packet. If the target node correctly forwards the packet, the detecting node 

will “sense” the packet due to the broadcast nature of the media and the STAM module will be 

able to obtain the packet from the MAC layer and match it with the stored packets; otherwise, if 

the STAM module fails to receive the packet for a certain amount of time, it increments the 

corresponding MC and verifies the counter as follows:  

1.   If MC exceeds a predefined threshold, the target node is identified as a misbehaving 

node. The STAM module issues a PSP to the target node, which marks itself as in the 

penalized state upon reception and authentication of the PSP.   

4. Otherwise, the target node is benign. In this case, the STAM module of the detecting 

node generates a Detecting STAM Packet (DSP) (i.e. a STAM packet with its type field 

set to 0010, S2 field set to the detecting state and the target id field set to the ID of the 

next node to be detected) and send it to the target node. The STAM module of the 

target node will consequently switch itself into the detecting state and trigger the 

detection mechanism to monitor the node specified in the target id field of the DSP. 

The current detecting node remains in the detecting state for a random amount of time 

before it finally returns to the normal state. This is to defeat the attempt of the target 

node to pretend to be collaborating in aware of the detection mechanism.  
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The consequence of the above scenarios is that the detecting state is gradually “propagated” 

from the source node to the intermediate nodes until it reaches the immediate upstream node of 

the misbehaving host.  Eventually either the misbehaving node will be identified and turned into 

the penalized state or the detecting phase will not identify any node as misbehaving. The latter 

case can be attributed to two possibilities.  First, packet loss is caused by a temporary congestion 

in the network.  No node will be penalized and data transmission will continue on the same 

route. Second, TCP acknowledgement packets might be sent to the source node through a 

different path from the one used for data transmission.  Hence, packet loss might be due to the 

existence of malicious nodes along the acknowledgement path. This problem is addressed in a 

similar way.  If TCP acknowledgements are discarded, the source node will have to repeatedly 

retransmit the unacknowledged packets. Consequently, the destination node will receive 

duplicate packets and will have to acknowledge them. If a certain number of duplicate packets 

are received, the destination node will initiate a “reverse” detection to capture the misbehaving 

node.   

Figure 10 depicts the on-demand detection algorithm.  Some important features of the 

detection mechanism are summarized as follows: 

1. By adopting an on-demand detection mechanism, the proposed technique can reduce 

power consumption. Descriptions of energy consumption issues can be found in [83] [89] 

[14][22].  

2. There is no need for a detecting node to report a malicious node to the source node or any 

other “friend” nodes. As a result, it is not necessary to maintain any complicated trust 

relationships between hosts as advocated in [1] [5] [6] [52] [53]. The overhead and 

security vulnerabilities introduced by the scheme are minimized. 
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3. The fact that a node is malicious is stored on its own STAM module and will be 

propagated to its neighboring nodes through periodical heartbeat messages. By restricting 

reputation information within neighborhoods, reputation synchronization can be achieved 

very efficiently. 
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handlePacket(P, Sender, nextHop) 

1.  IF State = Detecting THEN 

2. IF (P is submitted by Network layer) THEN 

3.  store(P, buffer[nextHop]); 

4.  forward P to the MAC layer; 

5.  Start a timer, which calls the Detect function; 

5. ELSE IF (P is promiscuously captured by the MAC layer) THEN 

6.  IF (match(P, buffer[Sender]) THEN 

7.   remove(P, buffer[Sender]); 

8.  END IF 

9. END IF 

10 END IF 

Detect(Target) 

1. MC = |buffer[Target]|; 

2.  IF (MC > DropThreshold) THEN 

3.  sendPSP(Target);  /* Switch Target into the penalized state */ 

4. ELSE 

5.  sendDSP(Target); /* Switch Target into the detecting state */ 

6. END IF; 

 

Figure 10.  The On-demand Detecting Algorithm 
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3.3. Malicious Node Punishment and Avoidance 

We employ several techniques for benign nodes to avoid and penalize misbehaving 

nodes.  First, a misbehaving node M manifests itself to its neighboring nodes through periodical 

HELLO packets.  Consequently, all the neighboring nodes will be able to avoid it.  In addition, 

neighboring nodes will reject each packet originated by M as a penalty.  We note that in Figure 9 

no transition is allowed from penalized state to detecting state.  In other words, a node cannot 

detect and penalize other nodes when it is being penalized.  This way, penalized hosts are not 

able to falsely accuse benign nodes.  

Second, we revise the route discovery process.  The revision helps benign nodes avoid 

misbehaving nodes.  Given the fact that each routing packet is wrapped by an IP header, we 

utilize the reserved bit (referred to as the “penalized bit of a RREQ (RREP) packet” hereafter) of 

the IP Header to ensure that 1) no data is forwarded for a malicious node, 2) the source node is 

able to avoid a route that contains nodes that are in penalized state, and 3) no modification of 

routing packets is necessary. We note that a malicious node can selectively discard routing 

packets.  However, this will be captured by the detection mechanism. Therefore, the following 

discussion is based on the scenario where all the nodes cooperate in forwarding routing packets.  

We define a RREQ (RREP) packet whose penalized bit is set as a penalized RREQ (RREP) 

packet. Correspondingly, a RREQ (RREP) packet whose penalized bit is not set is denoted as a 

non-penalized RREQ (RREP) packet. A penalized RREQ (RREP) packet has at least one of the 

intermediate nodes along its recorded route being recognized as a misbehaving node.  With the 

above definitions we present the following new route discovery mechanism: 
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1. A RREQ packet formed by the source node is submitted to its STAM module, which 

checks its current state. If it is currently in the penalized state, the RREQ packet is 

rejected to penalize the recognized misbehavior of the node.  Otherwise, the penalized 

bit is initialized to 0 and the packet is then flooded in the network. 

2. Suppose a node S receives a penalized RREQ packet.  If S has never forwarded any 

RREQ before, S cannot simply discard the packet since otherwise the upstream 

detecting node will recognize S as misbehaving.  Instead, S submits the RREQ packet 

to its STAM module, which verifies the recorded state of S.  If it is in penalized state, 

it marks the penalized bit of the RREQ packet.  Otherwise, nothing is done to the 

penalized bit and the packet is relayed. 

3. If S receives a non-penalized RREQ packet, it checks the following two conditions:  

• The same RREQ packet has not been relayed before. 

• S has relayed a RREQ before. However, the relayed RREQ packet is a 

penalized RREQ packet.  

If either of them is satisfied, the RREQ packet is delivered to the STAM module of S, 

which performs the same state verification as discussed above.  If neither of the 

conditions is satisfied, the RREQ packet is ignored.  

4. Suppose node S is about to send a RREP packet r. In other words, S has received a 

RREQ packet p and knows of a route to the intended destination (or S itself is the 

destination). In this case, S copies the penalized bit from p to r and delivers r to its 

STAM module, which tags the penalized bit if S is in penalized state. We note that a 

malicious user can deliberately set the penalized bit of r to 0 before r is conveyed to 
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the STAM module. However, such modification will be recognized by the upstream 

detecting node and will only cause the node to be penalized. 

5. The source node receives multiple routes, and will choose the best un-penalized one 

for data transmission.  

 

 

Figure 11. Penalized Bit Based Routing 
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Figure 11 depicts the misbehaving node avoidance mechanism.  Suppose node B is a 

selfish node and it is detected by node A.  In the STAM technique, node A will send a PSP to 

node B and switches B into the penalized state.   When node S initiates a route discovery process, 

it broadcasts RREQ packets as in DSR.  The RREQ will be propagated by intermediate nodes 

until it reaches node B.  The STAM module of node B will mark the penalize bit of the RREQ 

before it is relayed to the neighboring nodes.  When the destination node D receives the RREQ, 

it creates a RREP and copies the penalize bit from the RREQ to RREP.   The RREP will be 

delivered back to the source node S.  The same process takes place on node E and node F.   

Finally, the source node obtains two routes, {S, A, B, D} and {S, E, F, D}.  Since route {S, A, B, 

D} contains a misbehaving host, node S will choose {S, E, F, D} for data transmission. 

In Figure 11, the misbehaving node B will be penalized.  When node B intends to send 

data to some other node, its routing protocol (at the network layer) will construct a RREQ and 

delivers it to the lower network stack.  The RREQ packet will be captured by the STAM module, 

which realizes that it is in the penalize state and discarded accordingly.  Consequently, node B 

will fail to obtain any new route to the destination.  On the other hand, any attempt made by node 

B to transmit data using its cached routes will fail as the data packets will be dropped by 

neighboring nodes as a penalty.  In addition, the STAM module of node B periodically attaches 

its recorded state on HELLO messages so that all the neighboring nodes will be able to jointly 

penalize B. 

In the proposed approach, malicious nodes can be effectively avoided and penalized 

through periodical heartbeat packets as well as tallied routing packets. No matter where a 

malicious node goes, all the nodes in its proximity are able to avoid and penalize it even if they 

have no a priori knowledge of the node! 
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3.4. Rejoin of Penalized Nodes 

A penalized node is turned into the rejoin state after it has suffered from denial of service 

for a pre-determined time interval.  Once a node is in the rejoin state, it informs all its neighbors 

through Rejoin STAM packets (i.e. a STAM packet with its type field set to 0011 and S1 field set 

to the rejoin state). The neighboring nodes classify the rejoin node according to the Neighbor 

Classification Update Protocol (NCUP) introduced in the next section.  In addition, the STAM 

module of a rejoin node does not mark the penalized bit of RREQ and RREP packets.  Therefore, 

it becomes possible for a rejoin node to participate in data transmission between other nodes. 

Each time a benign node A transmits a data packet to the next hop B1, the STAM module of A 

verifies whether B is a rejoin node. If yes, A is switched into detecting state and monitors B’s 

behavior. Once B is observed to have correctly forwarded enough packets, the STAM module of 

A issues a WELCOME packet (i.e. a STAM packet with the type field set to 0100 and S2 field set 

to normal state) to switch the rejoining node to the normal state and conclude the rejoin process. 

Otherwise, if the rejoining node still discards packets, it will be detected and shifted back to 

penalized state.  We note that packets originated by a rejoin node will still be rejected by its 

neighboring nodes. The penalty will be lifted if and only if a rejoin node is observed to be 

collaborating and is reinstated to normal state. 

The rejoin of a malicious node is not fully addressed in most of existing techniques due to 

the necessity to contact all the nodes to update the reputation of the rejoin node. In our approach, 

rejoin is accomplished naturally with minimum cost. 

                                                 

1 This is performed by most of the routing protocols and should not be deemed as an overhead incurred by the 
proposed scheme. 
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3.5. Combat Evasive Attempts 

To avoid the curse of STAM packets, adversaries can modify their nodes to specifically 

discard or corrupt STAM packets. Our solution is to couple STAM packets with mission critical 

packets so that discarding or tampering STAM packets will jeopardize data transmission services 

offered to the offending node.  We first present the Neighbor Classification Update Protocol 

(NCUP) and then discuss the effectiveness of the proposed approach in defeating possible 

evasive attempts. 

3.5.1. Neighbor Classification Update Protocol (NCUP) 

The STAM module of a node classifies its neighboring nodes into four types, namely 

normal, penalized, rejoin and unreliable with the assistance of NCUP.  NCUP works as follows: 

1. When a node A encounters a neighboring node B through heartbeat messages, it classifies 

B as normal if it correctly receives GCKB. Otherwise, it classifies B as unreliable. 

2. When the MAC layer of a node A receives a HELLO packet sent by node B, it delivers 

the packet to its STAM module, which processes the packet as follows: 

• The STAM module verifies whether the HELLO message is associated with a 

STAM packet. If not, the packet is discarded. 

• Otherwise, the STAM module decouples the STAM packet and then decrypts and 

authenticates using the GCK of the sender. A tampered STAM packet will fail the 

authentication verification and the entire heartbeat message will be discarded 

without further processing. We note that symmetric key algorithms are employed 
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to encrypt and decrypt STAM packets, which makes the whole process very 

efficient. 

• The STAM module classifies node B according to the STAM packet as follows:  

a) The S1 field of a STAM packet indicates the current state of the sender.  If S1 

indicates that the sender B is in penalized state, A classifies B as penalized.  

b) If A overhears a PSP to penalize B, A classifies B as penalized. 

c) If A receives a REJOIN packet from B, A classifies B as rejoin. 

d) Otherwise, B is classified as normal. 

e) If A either does not receive heartbeat messages from B or cannot properly 

authenticate STAM packets from B for more than a predefined number of 

times, A removes B from its neighboring node list with all its relevant 

information. 

Periodically, routing protocol of a node updates its route cache according to the types of 

neighboring nodes. Routes with penalized or unreliable nodes will be removed to avoid 

misbehaving nodes. Furthermore, a STAM module rejects all outgoing non-routing protocol 

packets if it is isolated (i.e. it is not aware of any normal neighboring node). 
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3.5.2. Countermeasures to Evasive Attempts 

The possible evasive attempts and their corresponding countermeasures are as follows.  

1. A malicious user can attempt to avoid penalty by silently discarding incoming PSPs at the 

physical or MAC layer. Since all STAM packets are encrypted, the adversary will not be 

able to distinguish between different types of STAM packets. As a result, a node has to 

discard all incoming STAM packets from all its neighboring nodes to avoid being 

penalized. Eventually, the node will become isolated and will not be able to transmit any 

data to other nodes.   

2. A malicious node can choose to discard outgoing HELLO packets to prevent its state 

from being propagated to neighboring nodes. This, however, has very limited effect since 

most of its neighboring nodes have already learned its state by overhearing PSP packets. 

3. A malicious node can reset the penalized bit of RREQ (RREP) packets to avoid being 

excluded by other nodes. For DSR, we addressed this issue by making the STAM module 

to set the penalized bit of a RREQ (RREP) packet if the embedded route contains 

penalized neighboring nodes. Since a malicious node generally has no control of its 

neighboring nodes, clearing penalized bit will not bring any benefit. Similar 

countermeasures can be derived for other routing protocols. 
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3.6. Experimental Study 

We conducted various experiments to verify the effectiveness of the proposed scheme in 

enhancing performance of mobile ad hoc networks.  In this section, we first introduce the 

simulation setup and parameters. We then study the proposed technique based on various 

performance metrics. 

3.6.1. Schemes Implemented 

We implemented three schemes, namely the reference scheme, the defenseless scheme 

and the proposed STAM scheme, for performance evaluation. In the reference scheme, all the 

nodes act collaboratively and relay data for each other. The defenseless scheme was 

implemented similar to those in [52] and [6]. A certain fraction of nodes are misbehaving as they 

promise to forward data for other nodes but fail to do so. In other words, these nodes forward 

routing packets, but discard any data packet not destined at them. No detection or prevention 

mechanism is implemented so that the network is totally “defenseless”. Finally, in the 

implementation of the STAM technique, a source node of a TCP session is switched into 

detecting state when at least 2 packets are lost for the particular TCP session. A detecting node S 

identifies a target node T as a malicious node if at least 50% of the packets forwarded by S to T 

are lost over a time period of 15 seconds. In our experiments, we set the heartbeat interval τ  to 

be 8 seconds. For fairness, the rejoin mechanism was not invoked in current experiments even 

though it can further improve network performance. 
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3.6.2. Simulation Setup 

All the experiments were based on GlomoSim [89], a packet-level simulation package for 

wireless ad hoc networks. The simulations were executed on a Pentium-4 2.5GHz PC with 1GB 

memory.  

Table 2. Simulation Parameters 

 Parameter Value 

Number of nodes 30 

Area 700 meter * 700 meter 

Speed Between 0m/s and 20m/s 

Radio Range 250m 

Placement Uniform 

Movement Random waypoint model 

MAC 802.11 

Sending capacity 2Mbps 

Application FTP 

Number of applications 10 

Simulation time 10 minutes 
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Our experiments were based on a mobile ad hoc network with 50 nodes within a 700 by 

700 meter two dimensional space. The total simulation duration for each run was 10 minutes 

(600 seconds).  All the nodes employ 802.11 at the MAC layer. At the beginning of each 

simulation run, nodes were uniformly placed in the area. The random waypoint model was used 

to model the mobility of hosts. In this model, each node moves in a straight line towards a 

randomly selected destination location at a speed uniformly distributed between 0 m/s and some 

maximum speed. After the node reaches the destination location, it pauses for a specified period 

of time and repeats the aforementioned movement. In our experiments, the maximum speed of a 

node was limited to 20m/s, resulting in an average speed of 10m/s for each node. We 

experimented with 0, 5, 10, and 20 malicious nodes, accounting for 0%, 10%, 20% and 40% of 

total number of nodes respectively. The number of misbehaving nodes is denoted as m.   For 

each value of m, we tested four mobility scenarios, with pause time 0 second, 120 second, 300 

second and 600 second.  Each configuration was executed under 10 different random seeds and 

the average values of the metric variables were calculated. FTP was chosen to be the application 

running on various nodes. The reason of using FTP is because the proposed detection mechanism 

relies on the TCP protocol. For each simulation run, a total of 10 FTP client/server sessions were 

generated. The server and client nodes were randomly selected from benign nodes. For each FTP 

session, 50 randomly generated data packets were transmitted from client to server. Table 1 lists 

all the simulation parameters. 
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3.6.3. Metrics 

In the experiments, we evaluated the proposed scheme based on the following metrics: 

• Network throughput (T): we denote the total number of bytes successfully received by FTP 

server applications as B and the simulation time as Ts. Then 

sTBT = . 

This measures the rate at which effective data transmission is performed.  It is also a good indicator of 

the degree of collaboration among the nodes.  An undetected misbehaving node would affect the FTP 

performance, and therefore the overall network throughput. 

• Misbehaving node detection ratio (D): The ratio between the number of misbehaving nodes 

that were correctly identified and the total number of misbehaving nodes that have actually 

acted un-cooperatively during the simulation.  

• False accusation ratio (F): The ratio between the number of PSP’s that incorrectly accused 

benign hosts and the overall number of PSP’s transmitted during the simulation. 

• Overhead (H): The overhead of the approach is measured as the ratio between the total 

number of bytes contributed by all the encrypted STAM packets and the total number of 

bytes contributed by “useful” network layer data (i.e. routing packets and data packets that 

are successfully delivered to destination nodes) within the network (denoted as P).  From 

Figure 8, we observe that the size of a STAM packet is 20 bytes. We denote the total number 

of nodes as n and the size of an encrypted STAM packet as AS. Suppose the total simulation 

time is Ts. Each node originates τsT  STAM packets throughout the simulation. The 

overhead can be computed as: 
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We set according to symmetric key encryption techniques such as the Advanced 

Encryption Standard (AES) [18] (256 bit key). 

bytesAS 32=
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3.6.4.  Experimental Results 

We present the simulation results of various network configurations in this section. 

3.6.4.1.  Network Throughput 

Figure 12 through Figure 15 depict the network throughput when the number of 

misbehaving nodes is 0, 5, 10 and 20, respectively.  In most of cases, the proposed technique 

improves network throughput by 20% to 40%. 
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Figure 12.  Network throughput for m=0 
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Figure 13. Network throughput for m=5 
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Figure 14. Network throughput for m=10 
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Figure 15. Network throughput for m=20 
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From Figure 13 to Figure 15, we observe that the network throughput in a defenseless 

network drops significantly with the introduction of misbehaving nodes.  For example, in Figure 

12 (5 malicious nodes), when the node pause time is 300, the network throughput suffers a 40% 

degradation.  Furthermore, the higher the number of misbehaving nodes, the sharper the network 

throughput degrades. In Figure 15, when there are 20 (40%) misbehaving nodes and the pause 

time is 300 seconds, the throughput drops by approximately 60%. 

From Figure 12 we notice that when there is no malicious node, the overall performance 

of a network within which nodes are equipped with our technique is very close to a fully 

collaborative network. This implies that the proposed approach incurs negligible overhead during 

normal operation.  

By employing the proposed scheme, significantly more data can be successfully delivered 

to the destinations since nodes always select clean routes for data transmission. As a result, the 

overall network throughput is greatly enhanced.  Figure 13 and Figure 14 depict the practical 

scenarios where the number of malicious node is 10% and 20% of the total nodes. We observe in 

most of the cases (pause time greater than or equal to 120 seconds), the system achieves very 

high throughput improvement.  For example, when there are 5 malicious nodes and the pause 

time is set to 300 seconds and 600 seconds, the throughput of the proposed technique is very 

close to the reference network. In both cases, the proposed technique improves network 

throughput by more than 30%.  As another example, when there are 10 malicious nodes, the 

throughput improvement achieved by the proposed scheme is between 25% and 40%.  In Figure 

15, even in a very unlikely case where 40% of the nodes become malicious, the STAM system 

still lifted the overall throughput by at least 25% when pause time is greater than or equal to 120 
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seconds. Such performance enhancement is quite significant since it becomes increasingly 

difficult for nodes to find clean routes when surrounded by large number of malicious hosts.   

Finally, in all the experimental scenarios, when pause time is 0 (i.e. all the nodes are 

constantly moving), the performance improvement accomplished by the proposed technique is 

marginal. This is largely due to the high mobility of nodes. In this scenario, frequent link 

breakage is the dominant factor. Even if clean routes are identified, they quickly become 

outdated. 
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3.6.4.2.  Misbehaving Node Detection Ratio 

We list the results of misbehaving node detection ratio for various simulation scenarios in 

Table 3.  They indicate that the proposed misbehaving node detection mechanism is very 

effective. In most cases, the detection ratio is about 90%.  The results demonstrate that on-

demand misbehaving node detection is applicable. Since this approach incurs less energy 

consumption, it is ideal for MANETs. 

Table 3. Detection Ratio 

           Pause time 0 120 300 600 

5 misbehaving 
nodes 

85% 87% 88% 88% 

10 misbehaving 
nodes 

87% 90% 88% 85% 

20 misbehaving 
nodes 

87% 83% 85% 92% 
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3.6.4.3.  False Accusation Ratio 

We report the false accusation ratios of the proposed scheme under various scenarios in 

Table 4.  We conclude that in all node mobility scenarios the false accusation ratio is very low.  

We observe that this ratio is higher when nodes tend to move a lot.  This is due to the fact that 

some of the benign nodes were forced to drop packets due to link breaks and were thus 

incorrectly classified by the detection mechanism as misbehaving nodes, thereby lifting the false 

accusation ratio.  Nevertheless, further investigation of simulation log files shows that under all 

simulation configurations, on average less than one benign node was incorrectly accused. This, 

in tandem with the detection ratio results presented in the previous sub-section, indicates that the 

proposed detection mechanism is able to detect most of the in-cooperative nodes with very low 

false accusation ratio. 

 

Table 4. False Accusation Ratio 

           Pause time 0 120 300 600 

5 misbehaving 
nodes 

6.3% 3.5% 2% 2.4%

10 misbehaving 
nodes 

6.8% 0% 2% 2% 

20 misbehaving 
nodes 

5.4% 2.5% 0% 0% 

 

 

78 



3.6.4.4.  Overhead 

We present the overhead H of the proposed approach under different number of 

misbehaving nodes in Figure 17. 
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Figure 17. Overhead 
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We make the following observations.  First, in all scenarios, the overhead of our 

approach never exceeded 2%, essentially negligible.  Second, H approximately lessened with the 

decreases in node mobility. We recall that the overhead H is defined as the ratio between the 

number of bytes of encrypted STAM packets and the “useful” data (i.e. overall bytes of both 

routing packets and data packets that are successfully delivered to their destinations). When 

nodes tend to be more stable, relatively less routing packets are emitted. However, this is 

effectively compensated by the increases in the number of data packets successfully delivered to 

their destination hosts. As a result, the overall number of “useful” data bytes rises and the 

overhead drops accordingly.  Finally, indicates that the overhead rises with the increase in the 

number of misbehaving nodes. We note that when there are more misbehaving nodes, fewer data 

packets can make their way to their destinations. Although it generally requires more routing 

effort to find clean routes, the degradation of data delivery becomes the dominant factor and it 

lifts the overhead. 
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CHAPTER FOUR: LOCAL REPUTATION APPROACH 

 The STAM approach is very efficient and secure in enforcing collaboration of MANET 

nodes.  However, it requires each node to install a security module.  In addition, the on-demand 

detection mechanism is designed to protect applications based on the TCP protocol, but not other 

transport layer protocols such as UDP.  This causes some practical concerns.  In this chapter, we 

introduce a local-reputation approach that addressed all the concerns.  Our approach is based on 

the following fundamental characteristics of MANETs: 

• Each packet transmitted by a node A to a destination node more than one hop away 

must go through one of A’s neighboring nodes.  

• A’s neighboring nodes can overhear its packet transmission. 

Given a selfish node M, its un-collaborative behavior can be captured by most, if not all, 

of its neighboring nodes.  Each of these nodes will then penalize M by rejecting all its packets.  

As a result, M will not be able to send any data to nodes more than one hop away. For a benign 

node B, if B is relaying packets for a source node S and is aware that the next hop node H is a 

selfish node, B can redirect the packets to avoid H.  Note that the rerouting operation requires 

collaboration from B for S. We also present techniques to enforce such collaboration. 

Besides selfish nodes, our technique can also detect malicious nodes mounting denial of 

service attacks by disrupting link-level packet delivery.  Only some of these problems have been 

studied in the literature [54]. Such attacks are immune to many existing collaboration 

enforcement techniques such as the Watchdog module proposed in [52] and the CONFIDANT 

protocol presented in [5][6][7]. 
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4.1. The Detection Mechanism 

In this section, we first present the detection mechanism. We illustrate through examples 

that the proposed detection mechanism can not only identify the second type of selfish behavior 

(i.e. discarding data packets of other users), but also capture many malicious attacks. 

4.1.1. Selfish Node Detection 

Each node maintains a list of its neighboring nodes and tracks their actions.  Nodes make 

no assumption of other hosts beyond their direct observable regions.  We note that users are 

motivated to monitor their locality as they will benefit from identifying and circumventing 

selfish neighboring nodes.  Furthermore, our detection mechanism fits naturally into DSR since 

in DSR nodes constantly sense the media and extract routes from overheard packets. 
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Figure 18.  Detection Mechanism 
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We present the detection mechanism through an example depicted in Figure 18.  It shows 

a node S transmitting data to a node D using a route {S, A, B, D}.  Suppose node A is a selfish 

node and does not forward data packets to save energy.  Assume nodes H and G are neighboring 

to both S and A, and Nodes K and J are neighboring nodes of both A and B.  Each node allocates 

a memory buffer to store packets transmitted by its neighboring nodes.  Let us consider node S 

first.  After S transmits a data packet to A, it  

1) records the packet in its local buffer, 

2) waits for a certain time interval, and  

3) validates whether A has properly forwarded the packet by checking the memory buffer. 

Whenever S observes a packet dropped by A (say, at time t), it checks a set  of all the packets 

it has transmitted through node A over a time window defined by 

Ω

[ ]LOWERUPPER WtWt −− , .  If the 

cardinality of  is greater than a threshold TSUM, S computes the packet drop ratio for node A on 

.  If this ratio is beyond a given threshold TSELFISH, S tallies A as a selfish node; otherwise, S 

deems A as benign.  The purpose of the WLOWER parameter is to make a detecting node ignore 

packets dropped most recently (perhaps due to link breakage or unexpected network congestion).  

On the other hand, appropriate WUPPER and TSUM parameters ensure that a detecting node bases its 

decision on a large enough number of packets and a long enough timeframe.  Essentially, selfish 

intention is sustained if and only if a node has been observed to drop a significant number of 

packets over a long enough timeframe. With this mechanism, our detection procedure can 

distinguish link breakage and temporary network congestion from deliberate packet discarding, 

and effectively reduces false classifications.     

Ω

Ω
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In our technique, data transmission is monitored by not only the source and intermediate 

nodes (i.e, nodes on the selected route), but also their neighboring nodes.  Consider nodes G and 

H in Figure 18.  They, as neighboring nodes of S, overhear all data packets sent by S. Moreover, 

both G and H learn about the next hop (A in this example) of each data packet p by extracting the 

source route option field of p’s IP header.  As G and H are both neighboring to A, they will 

further detect whether A relays the packet using the aforementioned detection technique. In this 

example, both G and H will eventually identify A as a selfish node based on their own 

observations.  On the other hand, although K and J are also neighbors of node A, they will not be 

able to detect A’s misbehavior since they have no access to the packets sent by the previous hop 

to A (S in this example).  We refer to this scenario as “asymmetric sensing”.  Our experimental 

results show that the effect of asymmetric sensing is limited.  In most of cases selfish nodes 

suffer much lower performance than benign nodes.  Figure 19  illustrates the detecting algorithm. 
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HandlePacket(P, Sender, nextHop) 

1. IF (Sender = Myself) THEN 

2.  buffer[nextHop][P].matched = FALSE; 

3.  Start a timer, which invokes the Detect(P, nextHop) function; 

4. ELSE 

5.  IF (match(P, buffer[Sender]) THEN 

6.   buffer[Sender][P].matched = TRUE; 

7.  END IF 

8. END IF 

Detect(P, Target) 

1. IF (buffer[Target][P] = FALSE) THEN   

2.  Ω = getPackets(buffer[Target], T-Wupper,  T-Wlower);  

3.  IF ( ≥Ω  TSUM  AND dropRatio(Ω) > dropThreshold) THEN 

4.   Mark(Target, MALICIOUS); 

5.  END IF 

6. END IF 

 

Figure 19. Detection Algorithm 
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4.1.2. Denial of Service Attack Detection 

The above mechanism can also detect denial of service attacks mounted by malicious 

nodes using techniques discussed in [52].  In Figure 18, a malicious node A does relay data 

packets. However, it either controls its transmission power to prevent data packets from reaching 

its next hop, B, or intentionally causes collisions at node B to achieve the same effect.  In either 

case, nodes S, G, and H will consider node A as a collaborative node whereas B never 

successfully receives any packet.  The watchdog approach [52] fails under these situations.  In 

our approach, however, nodes K and J can detect such attacks by examining the MAC-layer 

frames.  In 802.11, the MAC layer of a node acknowledges the sender for each data frame 

successfully received.  In our example, nodes K and J will not observe acknowledgement frames 

from B and will thus mark A as malicious instead of falsely accusing B. We note that malicious 

users can exploit this mechanism to cause false penalties.  In Figure 18, suppose node A is 

benign and node B is malicious. Node B intentionally refrains from acknowledging packets 

received from node A, hoping to trick neighboring nodes such as J and K to falsely recognize 

node A as a selfish node.  A key observation to defeat such attacks is that a collaborative node A 

will retransmit the pending packets if it does not receive acknowledgements from B; whereas no 

retransmission attempts will be made by a selfish node.  Thus, by verifying whether a node 

conforms to the MAC layer protocol, we can successfully avoid false accusation of node A. 
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4.1.3. Collusion 

We compare our technique with existing techniques regarding collusion robustness.  In 

money-incentive models, significant effort needs to be invested (i.e. tamper-proof module) to 

prevent participants from gaining monetary benefit through colluding.  In reputation-based 

schemes, colluding is attractive to both selfish and malicious users.  On one hand, colluding 

selfish users can successfully cover each other and escape penalty.  On the other hand, malicious 

participants can collaboratively cause various undesirable effects to benign users.  In our 

technique, each node determines the reputation of its neighboring nodes through first-hand 

experiences, not through “rumor” or “propagated information”. As a result, colluding becomes 

much harder in this new environment. 

4.1.4. IP/MAC Address Spoof Detection 

A more sophisticated malicious node might seek to spoof its own IP address and/or MAC 

address to impersonate a neighboring node to either bypass the detection mechanism or cause 

false penalty. Such address spoofing can be detected by considering the sequence control values 

of the MAC frames, as pointed out in [86].  The basic idea is that each node in the network keeps 

track of i) the MAC addresses and ii) the sequence control field of the 802.11 frames sent by all 

its neighboring nodes.  We assume that adversaries are not able to compromise the firmware of 

network interface cards to manipulate the sequence control field.  

A malicious node M can instantiate the following attacks.  First, it spoofs its own 

IP/MAC address to mimic a benign node (say node A) and drop data packets.  The purpose is to 

cause neighboring nodes to falsely accuse A.  Suppose the latest sequence control number of A is 
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cA and the latest sequence control number of M is cM. We note that in general .  cA is 

maintained on most of A’s neighboring nodes.  Since M cannot manipulate its own firmware, it 

cannot put the correct sequence control number in its own data frames.  Thus, neighboring nodes 

of A will not be tricked to penalize A.  Second, M might want to spoof its IP/MAC address to 

circumvent the penalty imposed on it.  With the above technique, we can detect either IP address 

or MAC address spoofing.  However, if M changes both its IP and MAC address, it can 

successfully escape penalty.  It is very difficult to detect such behavior.  Nevertheless, if M 

continues its selfish/malicious behavior, it will soon be captured again.  Consequently, M has to 

keep changing its IP and MAC addresses.  This might result in losses of session data and failure 

of the applications running on M. 

MA cc ≠
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4.2. The Penalty Mechanism 

Punishment of selfish/malicious nodes is achieved as follows. A node dedicates a 

detection_time field for each of its neighboring nodes.  Suppose a node H identifies a selfish or 

malicious node A at time t.  It records t in the detection_time field corresponding to A.  

Meanwhile, H keeps monitoring A and updates the detection_time field if A does not cease its 

misbehavior.  H drops packets originated by A as a penalty. More specifically, H’s decision on 

whether to forward a data packet p for node A is based on  

∆ = tp - A.detection_time; where tp is the time H receives p and A.detection_time is the 

detection_time field corresponding to node A on H.   

If ∆  falls within a threshold defined as penalty interval τ , H will reject the packet.  

Consequently, the penalty will last as long as A continues to misbehave. In other words, the 

actual penalty time is proportional to the length of A’s misbehavior.   

One concern of the penalty mechanism is that a benign node might be misclassified when 

it is penalizing its neighboring misbehaving nodes.  We address the problem by slightly 

modifying the detection mechanism.  In particular, a detecting node does not count packets 

dropped by its neighboring nodes due to selfish node penalty.  In Figure 18, suppose node A is a 

selfish node and it discards data packets from node S.  As explained before, A will be detected by 

nodes S, H, and G.  Consequently, node H and node G will not penalize node S when S rejects 

packets originated by node A and vice versa.  Moreover, we recall that in the detection 

mechanism, a detecting node forms its decision based on a long enough time window and 
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sufficient packet count.  Since a benign node always relays packets for other (benign) nodes, it is 

unlikely that its packet drop ratio within a reasonable time window will exceed the TSELFISH 

threshold.  Therefore, the chance of false accusation is slim. Our experimental results also 

confirm that benign nodes in general do not suffer from false penalties. 
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4.3. Dynamic Redirection 

In reputation-based mechanism, two scenarios will cause a source node to reroute data 

packets over a particular node. First, when an intermediate node detects a selfish or malicious 

node, it informs other nodes (including the source node of the session) through reputation 

packets so that they can choose a “clean” route to circumvent the selfish node.  Second, Route 

Error (RERR) packets are transmitted to the source node when broken links are encountered2.  In 

both cases, source nodes are responsible for rerouting the data.  In the STAM approach, the 

RREQ and RREP packets are tagged to help the source node avoid misbehaving nodes.  In the 

proposed technique, we allow neither reputation packets nor RERR packets to be propagated.  

An obvious question is: who should reroute the data packets to bypass both irresponsible nodes 

and broken links?   

 

 

 

 

                                                 

2 Selfish nodes can falsely claim broken links in order to be excluded from packet transmission sessions. 
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Figure 20. Adaptive Redirection 
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Our solution is that each node shares the responsibility of rerouting packets.  We use 

Figure 20 to illustrate the idea.  We assume that node S is sending data to node D through a path 

{S, A, B, D}. Suppose the link between node A and node B is a malfunction link (i.e. either 

broken or node B is selfish).  Without loss of generality, we assume that node B is a selfish node.  

After relaying a certain number of packets, node A will realize that B is a selfish node.  We refer 

to node A as a proxy of source node S3. In our approach, A first purges all paths containing node 

B as an intermediate node from its route cache. Next, when A receives subsequent data packets 

from S, it broadcasts a Route Redirect (RRDIR) packet, indicating node B as a bypassing target.  

We note that a RRDIR packet serves as an indication of the beginning of the reroute process and 

the target node to be bypassed.  It is by no means a reputation broadcast.  In other words, 

neighboring nodes will not update their views of other nodes based on the RRDIR packets they 

receive. Continue the above discussion, the proxy node A then reroutes the packets by obtaining 

an alternative clean route to node D from its route cache. If such a route does not exist in its 

cache, A will buffer the data packets and instantiate a route discovery process to locate a clean 

path to D.  In Figure 1, A will discover a new clean route {K, P, D}, revise the embedded route 

of each data packet and relay them to the destination.  In this case, the actual route data packets 

traverse from S to D is {S, A, K, P, D}.  It is possible for several proxy nodes to adaptively 

reroute data packets to avoid multiple selfish nodes along the chosen route.  If A cannot find a 

route to D after a certain number of retries, it informs S through a RERR packet.  

The proper functioning of the proposed selfish and malicious node circumvention scheme 

relies on the collaboration of proxy nodes. Unfortunately, proxy nodes can act maliciously to 

                                                 

3 The proxy of a source node can be the source node itself when its next hop is selfish. 
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either avoid the reroute task or mount denial of service attacks. Continue the above example. 

When node A receives a data packet from S, it has the following options. 

• Node A can mount a denial of service attack to S by deliberately forwarding packets to B 

even though it is aware that B is a selfish node.  Nodes K and J will detect such attack as 

follows. First, both nodes will identify node B as a misbehaving node and they will 

assume that A has reached the same conclusion. Next, as A makes no effort to bypass B, 

both K and J will mark A as a malicious node and starts to penalize it.  

• A does not reroute the packet and simply reports a RERR back to the source.  In this case, 

all its neighboring nodes (S, G, H, J, and K) hear the RERR packets whereas none of 

them is aware of any route discovery attempt made by A. Thus, all of them will deem A 

as a selfish node.  

• A broadcasts a RRDIR packet and then starts a route discovery process. Nevertheless, A 

reports a RERR to the source regardless of whether it receives RREP packets from the 

destination. The countermeasure we design involves utilizing some context information.  

After A sends a RREQ packet to look for a route to D, all its neighboring nodes will wait 

for the RREP packet to come back.  Suppose node K relays the replying RREP packet to 

A and assume node H also hears the packet.  Both H and K will expect to see node A 

transmit data to node D.  However, as A sends a RERR packet, both nodes will recognize 

A as misbehaving. Furthermore, other neighboring nodes (S, G, and J) will deduct certain 

number of points for node A (say, equivalent to one third of those deducted for packet 

dropping).  In other words, failure to reroute data packets is deemed as low-weight 

misbehavior.  The purpose of this design is to discourage un-collaborative behavior.  

Benign nodes always relay data packets and will not suffer from such deduction.  
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• A broadcasts a RRDIR packet and reroutes data through a fabricated path.  This attack 

has very limited effect in that benign nodes along the faked route will reroute the data 

packets and node A still has to relay data.   

A last concern is that malicious nodes might attempt to disrupt data transmission by 

rerouting data packets. For instance, in Figure 20, suppose A is a malicious node. When it 

receives a data packet from S that it should forward to a benign node B, it redirects the packet to 

a different (fabricated) route, hoping that other nodes along the redirected route will drop the 

packet. We note that this problem also exists in other schemes and is not introduced by our 

technique.  More importantly, our technique facilitates the detection of such attacks. With our 

redirection mechanism, A has to broadcast a RRDIR packet to announce the rerouting operation. 

Otherwise its neighboring nodes (S, H, and G) will identify it as a malicious node.  In the RRDIR 

packet, A has to declare the correct next hop (B in this case) that it intends to bypass. Otherwise, 

it will be captured by S, H, and G.  After receiving A’s RRDIR packet, node B will be aware of 

A’s attempt to deviate packets from a valid route and penalize A.  Nodes K and J will also 

penalize A as they both recognize B as a benign node through their own observations. Finally, 

nodes that reroute packets for an excessive number of sessions within a certain time period will 

be considered as malicious and penalized by their neighbors. 
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4.4. Experimental Results 

We conducted various experiments to evaluate the effectiveness of the proposed 

technique in enforcing collaboration for MANETs.  In this section, we first introduce the 

simulation setup and parameters. We then discuss the proposed technique based on various 

performance metrics. 

4.4.1. Schemes Implemented 

We implemented four schemes, namely the reference scheme, the defenseless scheme, 

the reputation-based scheme and the proposed experience-based scheme, for performance 

evaluation.  In the reference scheme, all the nodes act collaboratively and relay data for each 

other.  The defenseless scheme was implemented similar to those in [52] and [6].  A certain 

fraction of nodes are selfish as they promise to forward data for other nodes but fail to do so.  In 

other words, these nodes forward routing packets, but discard any data packet not destined at 

them. No detection or prevention mechanism is implemented so that the network is totally 

“defenseless.” Next, we implemented a reputation-based system.  In this scheme, each node 

maintains global reputation of other nodes.  Nodes update reputation of others as follows.  First, 

nodes monitor and form their opinion about the reputation of neighboring nodes using the same 

detection mechanism as presented in Section 3.4.  Nodes always trust their first-hand experiences 

with other nodes and ignore any reputation information against their own belief.  Next, when a 

node detects a selfish node, it informs the source node of the communication session through a 

reputation packet. In response, the source node selects a “clean” route to transmit the remaining 
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data if necessary.  Nodes also update reputation of other nodes based on promiscuously learned 

reputation packets. Finally, each node periodically broadcasts reputation of other nodes in its 

locality. We implemented three types of nodes in this scheme, namely benign node, selfish node, 

and cheating node. A benign node always truthfully broadcasts the reputation information it has 

observed first hand, and honestly forwards the reputation information from neighboring nodes.  

A selfish node does not participate in data packet forwarding but cooperates in disseminating 

reputation information (i.e. it generates and relays reputation packets and never lies about other 

nodes).  A cheating node relays both data and reputation packets for others.  During reputation 

broadcast, however, it always lies about the reputation of nodes that it has direct experiences 

with.  For all other nodes it is aware of, the cheating node simply reports them as selfish.   
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4.4.2. Simulation Setup 

All the experiments were based on GlomoSim [89], a packet-level simulation package for 

wireless ad hoc networks.  The simulations were run on a Pentium-4 2.5GHz PC with 1GB of 

memory. 

Table 5. Fixed Detection Parameters 

 Parameter    Value 

TSUM 8 packets 

TSELFISH 0.8 

Penalty interval τ  180 seconds 

Detection buffer size 2MB 

 

 

 

 

 

 

Our experiments were based on a MANET of 50 nodes within a 700x700-square-meter 2-

dimensional space.  The simulation duration for each run was 10 minutes.  All the nodes employ 

802.11[101] at the MAC layer.  At the beginning of each simulation run, nodes were uniformly 

placed in the area.  The random waypoint model was used to model host mobility.  In this model, 

each node moves in a straight line towards a randomly selected destination location at a speed 

uniformly distributed between 0 m/s and some maximum speed.  After the node reaches the 

destination location, it pauses for a specified period of time and then repeats the movement.  In 

our experiments, the maximum speed of a node was limited to 20m/s.  We experimented with 0, 

5, and 10 selfish nodes, accounting for 0%, 10%, and 20% of total number of nodes, 

respectively.  Selfish nodes are randomly generated for all the simulation schemes.  The number 
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of selfish nodes is denoted as m.  For each value of m, we tested two mobility scenarios, with 

pause times (denoted as p) of 120 second and 300 second, respectively.  We employed the selfish 

node detection algorithm discussed in Section 3.4 for both the proposed scheme and the 

reputation-based scheme, with different WLOWER and WUPPER values. We picked 0, 4 second, and 

8 second for WLOWER and 15 second, 30 second, and 60 second for WUPPER, resulting in a total of 

9 different [WLOWER, WUPPER] pairs.  Each node allocates a buffer to store packets forwarded by 

its neighboring nodes in order to detect selfish nodes.  A node can handle a maximum of 50 

neighboring nodes and for each neighboring node a maximum of 20 packets are stored.  The size 

of an 802.11 frame is limited to around 2KB. Therefore, the size of the detection buffer is about 

2MB for each node. Table 1 lists parameters fixed throughout the experiments. We tested the 

reputation-based system with 0 and 5 randomly selected cheating nodes. In the experiments, the 

reputation broadcast interval was set to 10 seconds.  Each configuration was executed under 5 

different random seeds and the average values of the metric variables are reported.  Constant Bit 

Rate (CBR) applications were used in this study.  For each simulation run, we randomly 

generated a total of 10 CBR client/server sessions.  In particular, we generated three selfish 

sessions (i.e. sessions originated by selfish nodes) and seven benign sessions (i.e. sessions started 

by benign nodes).  The data packet size of each CBR session was chosen to be 552 bytes and 

packet transmission interval was set to 0.2 second.  Table 5 lists all the simulation parameters. 
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Table 6. Simulation Parameters 
 Parameter Value 

Number of nodes 50 

Area 700 meter * 700 meter 

Speed Between 0m/s and 20m/s 

Radio Range 250m 

Placement Uniform 

Movement Random waypoint model 

MAC 802.11 

Sending capacity 2Mbps 

Application CBR 

Number of applications 10 

Simulation time 10 minutes 

 

 

 

 

 

 

 

 

 

 

101 



4.4.3. Metrics 

In the experiments, we evaluated the proposed scheme based on the following metrics: 

• Goodput of benign sessions (GB):  For benign sessions, we denote the total number of 

bytes successfully received by CBR server applications as BS and the overall bytes sent 

by CBR client applications as BC. Then, 

CSB BBG = . 

This metric is a good indicator of the degree of collaboration among the nodes.  

Successful detection and circumvention of selfish nodes will result in significantly higher 

goodput.  

• Goodput of selfish sessions (GS):  For malicious sessions, we denote the overall bytes 

sent by selfish source nodes as CB ′  and the total number of bytes successfully received by 

the corresponding CBR server nodes as SB ′ .  Then, 

CSS BBG ′′= . 

This measures the effectiveness of the proposed technique in terms of penalizing 

misbehaving nodes.  A good collaboration enforcement technique should ensure a low GS 

to discourage misbehaviors. 

• Communication cost: The communication cost (hereafter also referred to as “cost” in 

short) of the proposed scheme OE is calculated as the ratio between the number of all the 

control packets (i.e., RREQ, RREP, RERR, RRDIR) originated and forwarded by nodes 

in the network and the total number of data packets successfully delivered to the 
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destination nodes. More specifically, 
E

E
E D

C
O = , where CE is the number of control packets 

originated and forwarded by nodes in the network and DE is the number of data packets 

received by destination nodes.  Similarly, the communication cost of the reputation-based 

scheme is computed as 
R

R
R D

C
O = , where CR is the number of control packets (i.e., RREQ, 

RREP, RERR, and reputation packets4) originated and forwarded by nodes in the 

network, and DR is the number of data packets successfully received by destination 

nodes.  We note that the size of a data packet is generally much larger than the size of a 

control packet. Nevertheless, the ratio measures the average cost it takes the target 

scheme to successfully transmit a data packet. 

                                                 

4 The reputation packets include packets originated by a node that detects a misbehaving node and periodical 
reputation broadcast transmitted by each node. 
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4.4.4. Experimental Results 

We present simulation results of various network configurations in this section.  We 

observe that in general, the goodput of both benign sessions and selfish sessions is not affected 

by WUPPER whenever WLOWER is fixed. This suggests that under all experimental scenarios, there 

are always enough packets falling in the detecting timeframe for nodes to detect selfish 

neighbors.   Given this observation, in this section, we only present the average goodput of both 

benign and selfish sessions for a specific WLOWER value for the proposed scheme. These results 

are always compared with the best performance result pair <GB, GS> achieved by the reputation-

based scheme using the same detection mechanism, and under the same mobility pattern and 

number of selfish nodes. More specifically, for a particular configuration of the reputation-based 

scheme, a performance result pair SB GG , achieved under a UPPERLOWER WW , is considered better 

than another performance pair SB GG ′′ , achieved under another UPPERLOWER WW ′′ ,  iff 

. Ties are broken by selecting a SBSB GGGG ′−′>− SB GG ,  pair with higher GB. 

In all the figures, we refer to the proposed scheme as “Experience-lX”, where X 

represents the WLOWER value and the reputation-based scheme as “Reputation-cY”, where Y 

indicates the number of cheating nodes. 

104 



4.4.4.1. Benign Session Goodput 

Figure 21 and the column “benign” of Figure 22 through Figure 25 depict the goodput of 

benign sessions when the number of selfish nodes is 0, 5, and 10. 
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Figure 21. Goodput when m=0
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Figure 21 illustrates the results when there is no selfish node. For the proposed scheme, 

as results are very similar for all the UPPERLOWER WW ,  pairs, we only present the average results. 

We observe that the overall performance of the proposed technique is very close to that of the 

fully collaborative network.  This implies that the proposed approach incurs negligible overhead. 

By employing the proposed scheme, significantly more data are successfully delivered to 

the destination nodes than the defenseless scheme since proxy nodes proactively detect and 

reroute data around misbehaving nodes.  We can observe this effect in both Figure 22 and Figure 

24, where there are 5 selfish nodes.  The goodput of the experience-based scheme is always 

around 0.93 in both scenarios. The improvement over a defenseless network is about 12%.  As 

another example, in Figure 23 and Figure 25, where there are 10 malicious nodes, the proposed 

technique lifted the goodput from around 0.6 in a defenseless network to higher than 0.85, an 

improvement of more than 40%.  Moreover, the performance is similar under all WLOWER values 

although  achieved slightly higher goodput in most of the cases. In general, a lower 

WLOWER will cause higher false penalties due to temporary link breakage whereas the detection 

algorithm with a larger WLOWER tends to ignore many of the recently dropped packets and thus 

unnecessarily delays the reroute and penalty reaction.  In addition, the high average goodput 

confirms that the benign nodes were in general experiencing almost no false accusation caused 

by penalizing misbehaving nodes. 

4=LOWERW
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Figure 23. Goodput when p=120, m=10 
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We also notice from Figure 22 to Figure 25 that the goodput of benign sessions of both the 

proposed scheme and the liar free reputation-based scheme consistently exceeds the one in a 

totally collaborative network. Our explanations are as follows. In both approaches, data packets 

originated by selfish nodes are rejected by their benign neighbors as a penalty. Consequently, 

such benign neighboring nodes are left with more bandwidth to serve other well-behaved 

participants, thereby lifting the goodput of benign sessions. 

We now compare the performance of the proposed technique with the reputation-based 

scheme.  First, similar performance in terms of benign session goodput is observed for our 

technique and a liar free reputation-based system. This suggests that prompt packet reroute 

within the locality of intermediate nodes is in general as efficient as rerouting by source nodes. 

As a result, reputation propagation becomes unnecessary.  In all the experiments, the reputation-

based scheme suffered from significant performance loss (more than 50%) when only a few 

cheating nodes were present.  In our simulation, as cheating nodes cooperate in data delivery, 

they will be deemed as benign nodes and their neighboring nodes will readily accept reputation 

advertisements from the cheating nodes provided that the recipients have no direct experience 

with the advertised nodes.  As a result, the reputation mechanism was corrupted by inaccurate 

information and denial of service was experienced by most of the participants. The proposed 

experience-based approach has none of these problems and is therefore more robust in 

maintaining good performance. 
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4.4.4.2.  Goodput of Selfish Sessions 

We present the simulation results of goodput of selfish sessions in the “selfish” column of 

Figure 22 to Figure 25. 

First, we observe that in most of the cases the goodput of selfish sessions for either the 

experience-based scheme or the liar free reputation-based scheme is higher than in a completely 

defenseless configuration. Such improvement is due to the fact that selfish nodes, while not 

recognized, also detect and actively avoid other uncooperative nodes and therefore also benefit 

from either the reroute functions in the case of experience-based technique or shared reputation 

information in the case of reputation-based method. 

The experience-based scheme exhibited different behaviors under different WLOWER 

settings.  In general, performed better in terms of penalizing selfish participants as it 

more effectively detects selfish nodes.  

4=LOWERW

In all cases, the goodput experienced by selfish users is lower than what collaborative 

users enjoy for the experience-based scheme.  As an example, in Figure 26, the goodput of 

benign sessions is higher than 0.93 (left column) as opposed to around 0.81 in the case of selfish 

sessions.  Same phenomenon can be observed in other figures.  Thus, selfishness will incur 

service downgrade and becomes less attractive.   

In most of scenarios, the penalty capability of the liar free reputation-based scheme is 

slightly better than the experience-based approach, as selfish nodes become known to more 

participating nodes through reputation propagation.  We now consider the case when a few 

cheating nodes exist in the reputation-based system. In practice, cheating nodes will most likely 

propagate negative reputation of others. As a result, liars actually contribute to the penalty of 
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selfish nodes since the reputation they propagate with regard to selfish nodes is true.  This effect 

is clearly presented in the experiments.  However, such penalty is in the cost of benign nodes.  

As depicted in Figure 22 to Figure 25, the goodput of benign nodes is significantly hurt.   We 

thus conclude that experience-based scheme is more suitable for MANETs due to its resilience to 

performance degradation caused by reputation poisoning behaviors. 
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4.4.4.3.  Communication Cost 

Figure 26 and Figure 27 illustrate the communication cost of the proposed scheme and 

the cheat free reputation-based scheme. For our approach, we show the results when WLOWER = 4 

and WUPPER = 60.  We also compare results of both schemes with the reference scheme. 
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Figure 26. Communication cost when m=5 
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Figure 27. Communication cost when m=10 
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From the figures we can make the following observations.  First, the cost of both our 

approach and the reputation-based scheme is higher than the cost of a completely attacker free 

environment.  This is because both schemes are aware of misbehaving participants and 

proactively avoid such nodes, thereby incurring higher routing overhead; whereas the total 

number of successfully delivered data packets is similar.  Second, the cost of the reputation-

based mechanism is much higher than our scheme (higher than 67% in most cases).  This is 

because our approach requires no reputation propagation; whereas the reputation-based scheme 

has to flood reputation information throughout the network.  Although both schemes can achieve 

similar goodput for benign sessions (as illustrated by Figure 21 through Figure 25), our scheme 

is significantly more scalable and is thus more desirable for MANETs.  Next, consider a fixed 

number of malicious nodes: the lower the node mobility, the lower the cost of both schemes.  

Obviously, when mobility is low, less routing packets are initiated. On the other hand, more 

packets are successfully delivered to the destination nodes, hence the lower communication cost.  

Finally, for a fixed mobility configuration, the higher the number of misbehaving nodes, the 

higher the communication cost.  This also fits the intuition as nodes have to work more diligently 

when more un-collaborative participants are present. 
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CHAPTER FIVE: CONCLUSION 

In mobile ad hoc networks, there is no fixed infrastructure readily available to relay 

packets.  Instead, nodes are obligated to cooperate in routing and forwarding packets.  However, 

it might be advantageous for some nodes not to collaborate for reasons such as saving power and 

launching denial of service attacks. Therefore, enforcing collaboration is essential in mobile ad 

hoc networks.  

In most existing techniques, collaboration enforcement is achieved by a detect-and-react 

mechanism. In which, each node maintains global reputation of others in order to avoid and 

penalize misbehaving nodes. Propagation of reputation information is accomplished through 

complicated trust relationships.  Such techniques incur scalability problems and are vulnerable to 

various reputation poisoning attacks. 

In this dissertation, we make the following contributions to enforcing collaboration and 

security in mobile ad hoc networks: 

1. We propose a novel approach to protect MANETs against selfish nodes.  In our 

approach, nodes keep local reputation of their neighboring nodes through direct 

observation.  Nodes trust only their first-hand observations and will not be misled by 

other malicious nodes.  In addition, the scalability of MANETs is greatly improved since 

we do not rely on propagating reputation information throughout the network. 

2. We propose two schemes.  In the first scheme, a finite state model is designed.  Nodes 

switch between states based on their observed behaviors.  In addition, each node is 

equipped with a tamper-proof module, namely, the STAM module.  The STAM module 
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stores mission-critical information such as public/private keys and node states.  It is also 

responsible for detecting selfish neighbors by investigating packets exchanging between 

the network and MAC layer.   Furthermore, during route discovery, the STAM module 

marks routes contaminated by misbehaving nodes to assist source nodes to avoid 

misbehaving nodes.  In the second scheme, we do not assume any security module.  No 

reputation advertisement is initiated or accepted.  A detection mechanism is provisioned 

to identify various attacks as well as differentiating selfish behavior from temporary link 

breakage.  We also design an adaptive rerouting mechanism, where nodes dynamically 

redirect data packets to bypass recognized adversaries in their proximities.  The redirect 

operation is also guarded against various evasive attempts.   

The advantages of our approach are many.  First, since it does not rely on propagated 

reputation information, there is no need to maintain complex trust relationships.  Second, since 

the misbehavior detection mechanism is based on first-hand experience at individual nodes, 

denial of service attacks are much more difficult to achieve.  Colluding among nodes to secretly 

carry out fraudulent actions becomes much more difficult.  In the STAM scheme, detection is 

performed only if it is necessary, thereby improving the energy efficiency of the nodes.  In 

addition, the STAM module carries the state of a node.  Therefore, a selfish node will be 

recognized and avoided instantly.   The second scheme does not rely on tamper-proof modules.  

Nevertheless, it retains most of the advantages of the STAM scheme.  With the adaptive redirect 

mechanism, MANET nodes can bypass misbehaving nodes instantly.  It greatly improves 

network throughput.  

We conducted various experiments to investigate the effectiveness and efficiency of the 

proposed schemes.  Simulation results, based on GlomoSim, indicate that both schemes are very 
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effective in improving network performance.  They also work well in disciplining defecting 

hosts.    More importantly, the success of the proposed technique does not rely on reputation 

exchange and is thus both scalable and robust. 
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