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ABSTRACT

The original research and development in this dissertation contributes to the field of building per-

formance by actively harnessing a wider spectrum of directional solar radiation for use in buildings.

Solar radiation (energy) is often grouped by wavelength measurement into the spectra ultraviolet

(UV), visible (light), and short and long-wave infrared (heat) on the electromagnetic spectrum.

While some of this energy is directly absorbed or deflected by our atmosphere, most of it passes

through, scatters about, and collides with our planet. Modern building performance simulations,

tools, and control systems often oversimplify this energy into scalar values for light and heat, when

in reality they are interrelated directional spectral quantities of energy that are diffused and atten-

uated by clouds before colliding with surfaces. In addition to this, live building monitoring and

control systems in-the-wild often do not track the location of the sun, separate direct sun energy

from scattered sky energy, account for overcast clouds, considering occluded energy, etc. The work

in this dissertation provides building energy simulations and control systems with finer-grain con-

trol over lighting and heating in order to optimize energy use and improve occupant well-being. We

first present a data-driven machine learned sky model for predicting spectral radiance, and show

how this technique can be used to produce spectral radiance maps for the entire hemispherical

sky. We then integrate these predicted spectral radiance maps and other validated predictions into

a custom radiosity engine in order to predict spectral daylighting and heating energy in building

interiors. Finally, we present the design and prototyping of a cyber-physical building control sys-

tem that monitors the sky and occupants in order to harness natural light and heat more effectively.

We present ongoing and future work recommendations, such as sky cover projections to help re-

duce cooling recovery costs, and the use of spectral radiance maps in physically-based rendering

engines.
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CHAPTER 1: INTRODUCTION

The research in this dissertation is motivated by one of the greatest challenges of our time: climate

change. For decades, researchers and practitioners across a myriad of disciplines have studied

contributing factors and proposed solutions to reduce global greenhouse gasses (GHG) (mostly

carbon). One major contributing factor is the production of electrical energy and its use. As-

suming that lower energy use results in less energy production, we focus on the use of energy in

buildings. The electricity consumed by buildings and building occupants accounts for more than

40% of GHG in the United States alone (45%+ globally) (The American Institute of Architects

(AIA), 2019; Butler, 2008). And unfortunately, a long-term global increase of GHG is expected as

more buildings are developed to support the expansion of developing nation infrastructure, world

population growth, and city renewal and planning efforts everywhere. This is compounded by dig-

ital design trends, smart home technology, healthcare improvements, and the “internet-of-things;”

all of which have granted us even longer, energy-consuming lifespans (Janda, 2011). Urban growth

in particular is a problem. By 2050, we expect two thirds of the world’s population to be living

in urban areas, a process known as urbanization, which when mismanaged can hinder the local

(and even global) climate through the unsustainable consumption and use of energy, heat island

effect, and general environmental degradation and pollution between urban and suburban environ-

ments (USDOE Energy Information Administration (EIA), 2021; United Nations and Social Af-

fairs, 2018; Sethi and de Oliveira, 2015). In other words, unplanned urbanization in undeveloped

countries spells more trouble for climate change. And despite a record drop in GHG emissions due

to the COVID-19 pandemic of 2020 and 2021, “...the world is far from doing enough to put them

into decisive decline...low economic growth is not a low-emissions strategy...Only faster structural

changes to the way we produce and consume energy can break the emissions trend for good.”

(Birol et al., 2020).
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In the past, electrical energy consumption in buildings was plagued by lighting (Boubekri, 2008).

But improvements to lighting technology (advanced light emitting diodes (LEDs), better control

software, etc.) and the increase in active harnessing of natural daylight have cut lighting energy

usage down to 12% in commercial buildings and 4% in residential buildings in the United States

(USDOE Energy Information Administration (EIA), 2021; Capuano et al., 2020). However, ther-

mal comfort (heating, ventilation and air-conditioning (HVAC)) in the US, accounts for roughly

70% of the electrical energy use in buildings (Mazria and Kershner, 2008), or 39% commercial

and 30% residential (USDOE Energy Information Administration (EIA), 2021). Even with insula-

tion and material improvements, HVAC remains a challenge. All of this implies that even a small

reduction in energy spent on thermal comfort, and to a lesser but still significant extent, lighting,

could make a difference in the GHG footprint.

Note there are also economic benefits to utilizing natural daylight for lighting and heating. Cost-

benefit analysis and economic impact research dates back to the 1970s (Griffith, 1978; Boyce et al.,

2003; Mayhoub and Carter, 2011; Bakshi and Jakubiec, 2011; Sapia, 2013). One recent case-study

showed that the implementation of a model-based predictive controller with adaptive blinds for a

mid-size 6-story building could save roughly 5000 CHF ( $5000 USD) a year (Sturzenegger et al.,

2015).

This dissertation contributes to the initiative of reducing energy use in buildings in the hopes of

reducing GHG by refining some of the methods used in building performance simulation (BPS), ar-

chitectural design tools, and building monitoring control systems, all of which estimate the amount

of actual solar energy (both light and heat) on the exterior and interior surfaces of buildings in order

to make decisions about energy use. Solar energy can be avoided or passively or actively harvested

for the benefit of occupants and our planet, but it is important that software does it accurately to

fully realize gains. Note that “building performance” is a very broad field covering factors such as:

2



energy efficiency, daylighting (the active harnessing of light), occupancy comfort and productivity,

material sustainability, water reclamation, acoustics and sound pollution, society and environment,

accessibility, etc. (American Society of Heating, Refrigerating and Air-Conditioning Engineers

(ASHRAE), 2021; The American Institute of Architects (AIA), 2019; Designing Buildings Ltd.,

2020; Lechner, 2014; Mallory-Hill et al., 2012) In this dissertation, we narrow our focus to energy

efficiency and occupant well-being.

Building energy simulations (BES) / building energy modeling (BEM) simulators often oversim-

plify solar energy into a limited collections of scalar values when in reality it is composed of

infinitesimal directional spectral quantities that are scattered, reflected and occluded before collid-

ing with and entering into buildings. Light versus heat in the solar energy spectrum, the location

of the sun, direct / indirect / ground reflected energy, sky conditions, and occlusions from sur-

rounding contributors (e.g. other buildings, large trees, etc.) are all important factors for accurate

building energy calculations. Spectral energy (i.e. a spectral breakdown of solar energy) is im-

portant because it helps us identify significant quantities of both light and heat separately (as well

as ultraviolet). These breakdowns of energy can serve different purposes, yet they overlap on the

electromagnetic spectrum and therefore should be preserved intact throughout the BES pipeline

for as long as possible. For example, daylighting studies often ignore the effects of heat, while

thermal studies often ignore daylighting strategies. The directional aspects of energy (radiance) is

even more important for several reasons, including: the fact that solar energy from a 10° circum-

solar region of a clear sky is dramatically higher than all of the diffuse energy from the rest of the

sky (Gueymard, 2010); that cloud cover is not uniform, changes constantly, and completely alters

the global energy profile by scattering or diffusing large amounts of energy; wavelength-dependent

energy scattering aerosols and particulates in the atmosphere can clump into unevenly distributed

pockets in the sky distorting expected energy predictions (Kocifaj, 2015); nearby trees and build-

ings occlude energy (Schumann and Greenberg, 2012; Li et al., 2017; Robledo et al., 2021); and

3



perhaps the most important (though obvious) reason is that the exterior surfaces of buildings face

separate directions and thus are subject to completely different amounts of energy. Because of

these directional considerations, solar energy must be measured or predicted from the ground ver-

sus remote sensing satellites in space, and is expensive to do accurately and continuously. BES

programs leverage atmospheric sky models, but often simple analytical ones that oversimplify en-

ergy. It is easier and more efficient to process solar energy as a collection of illuminance scalar

values versus the many vectors and matrices of values needed to account for directional spectral

energy for the entire hemispherical sky. In addition to this, the most commonly used, validated

BES programs today are all legacy systems (Crawley et al., 2008), and few if any are used dynam-

ically for building monitoring and control systems. There is also research that suggests that BES

programs themselves are still inaccurate when predicting financial costs associated with utilizing

daylight (Versage et al., 2010).

In this dissertation, we propose a sky and occupant aware building monitoring system that lever-

ages spectral radiant solar energy in order to harness natural light and heat more effectively exterior

facing zone. We first present our published research of a validated, data-driven machine learning

model for estimating directional spectral energy across entire hemispherical clear skies (Del Rocco

et al., 2020, 2018) and on-going work on scattered skies. We then present our published research

on integrating both our generated spectral radiance maps and other validated spectral energy skies

into a custom developed radiosity engine and plugin which can be used to estimate the accumulated

spectral energy (irradiance) per planar surface (interior and exterior) of a building per spectral bin

of interest (Del Rocco and Kider Jr., 2021), for both early-phase design and in a real-time setting.

Finally, we present the design and development of a cyber-physical prototype with adaptive kinetic

facade that could be controlled by such a building monitoring system.

Our data-driven machine learning approach for estimating spectral radiance across the entire sky
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uses regression models trained on high dynamic range (HDR) imagery and validated spectrora-

diometer measurements (Del Rocco et al., 2020, 2018; Kider et al., 2014). Our method is more

practical and efficient than a hardware-based sky scanning system and much more accurate than a

single scalar quantity used in many building performance simulations; it supplies spectral radiance

for every point in the hemispherical sky, accounts for seasonal and datetime variation, predicts a

wide, useful spectrum of energy (350-1780 nm) at 1 nm resolution, and is validated against li-

bRadtran, a modern atmospheric radiative transfer package (Emde et al., 2016). Although using

atmospheric measurements may improve the training and prediction accuracy, we also showed that

they were not necessary.

Our spectral irradiance work is an extension of the Transition Portal radiosity engine published by

Kider et al. (2019). The contributions in this dissertation allow for an early-phase or retrofit build-

ing performance engineer to define spectral bins of interest, load solar and sky spectral radiance

data from any sky model (ours, libRadtran, etc.), and then run relatively fast simulations to pro-

vide spectral irradiance estimations for visual and quantitative analysis (Del Rocco and Kider Jr.,

2021). This software is intended to be used by early-phase building designers and architects who

are considering different spectral filtering glazing materials as well as other interior layout and

design decisions. This modular engine can also be leveraged outside a 3D modeling environment,

e.g. by real-time building monitoring systems needing per planar surface estimations.

Our sky and occupant aware adaptive facade cyber-physical prototype is designed to take both day-

lighting and thermal factors into account (Moulton et al., 2018). Such factors include: directional

spectral energy from an appropriate sky model, local atmospheric parameters if required by the sky

model, a surrounding environment shadow mask, visual and thermal comfort limits, and occupant

overrides per exterior facing zone of interest. It also closes automatically for building occupant

privacy outside of daylighting hours. Given external temperature, if independent spectral filter-
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ing smart-glazing is available per zone, our building monitor control model can supply additional

inputs for actively harnessing or deflecting infrared energy.

Our contributions to the fields of atmospheric science and building performance include:

• (Del Rocco et al., 2020) A data-driven sky model that takes low resolution input (sky photo

and datetime) and predicts spectral energy (350-1780 nm) at 1 nm resolution across the entire

skydome for clear skies (and ongoing work with preliminary positive results on scattered

skies), which:

– was trained on the most comprehensive, curated dataset to date of multi-exposure high

resolution all-sky photos and spectral energy measurements captured from the ground

(and made available to the public (SENSEable Design Lab (2016)))

– does not require atmospheric measurements to predict spectral energy as opposed to

notable prior research (Kocifaj, 2015) (although atmospheric measurements can easily

be provided as training and prediction features if available and desired)

– accounts for fish-eye lens warp

– will ultimately require only 1 trained model per sky condition (clear, scattered, over-

cast) as opposed to notable prior research requiring many models (Tohsing et al., 2014)

– is validated against libRadtran (Emde et al., 2016)

• (Del Rocco and Kider Jr., 2021) A proof-of-concept for the integration of spectral energy

into building energy modeling and daylighting software for use in either design or control.

• (Moulton et al., 2018) A building monitor system design with adaptive facades that uses

spectral radiant solar energy in order to harness both natural light and heat.
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• An open-source tool (Spectral Sky Viewer) for visualizing, curating and exporting datasets

of correlating all-sky photos and spectral solar energy (Section A)

• An open-source tool (sradmap) for producing a file with spectral radiance of any resolution

given one of our models, a sky photo, and datetime of capture (Del Rocco et al., 2020)

• A novel fritted smart-film idea (Section 4)

The remainder of this dissertation is organized as follows. Some background and prior work rele-

vant to the work in this dissertation is presented in Section 2. Our data-driven method for estimating

whole sky spectral radiance and results are detailed in Section 3. Our work integrated spectral en-

ergy into a radiosity engine and plugin is presented in Section 4. And our sky and occupant aware

adaptive facade cyber-physical prototype is presented in Section 5. Finally we present our con-

clusions and suggest future work in Section 6. Appendices of our spectral sky data visualization

tool (Spectral Sky Viewer), supplementary spectral sky predictions, and supplementary daylight

analysis are provided as Appendix A, B, and C, respectively. Published works by the author of

this dissertation are listed in Appendix E, and any content from these works has been used with

permission (Appendix D).
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CHAPTER 2: BACKGROUND AND RELATED WORK

The research presented in this dissertation deals with the prediction and simulation of directional

spectral solar energy on the exterior and interior surfaces of buildings. This energy can be avoided

or harvested by buildings to reduce energy consumption and improve occupant comfort and well-

being. Therefore, some knowledge of atmospheric sky models and building performance simula-

tion is recommended. This background chapter serves to quickly bring the reader up to speed and

is divided into two primary sections. Section 2.1 explains the most relevant solar radiation theory,

remote sensing radiometry, atmospheric scattering, radiance versus irradiance, and the current state

of atmospheric sky models. Section 2.2 provides background on building performance simulation

(BPS), building energy modeling (BEM), “daylighting” (the active harnessing of daylight), and the

monitoring, control and automation of such efforts by building control systems (BCS).

2.1 Sun and Sky Solar Radiation

Sunlight and skylight have been formally studied for well over two hundred years (Young et al.,

1819; Strutt, 1871; Mie, 1908). Electromagnetic energy, black body radiation, and radiant flux

have also been studied for quite some time (Faraday, 1832; Stefan, 1891; Wien, 1894; Boltzmann,

1898; Planck, 1901). Within the last century, we have refined our understanding of how sunlight

becomes skylight and then collides with our planet. Note the terms radiation and energy are often

used interchangeably. Electromagnetic radiation from our sun (solar energy / sunlight), traveling

in a straight line from our sun to our planet, is denoted as extraterrestrial solar radiation before

it enters our planet’s atmosphere, and terrestrial solar radiation thereafter. On a clear day, a large

percentage of this terrestrial solar radiation passes directly through our planet’s atmosphere and

is therefore referred to as direct solar (or beam) radiation. During this process, atmospheric con-

ditions determine how much of this terrestrial solar radiation is absorbed, scattered and reflected
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by atmospheric molecules, clouds, aerosols (particulates suspended in gasses), etc. to produce the

attenuated solar energy we call indirect diffuse (or sky, or atmospheric) solar radiation (aka sky-

light). The exact amount of this direct solar energy (sunlight) that becomes indirect diffuse energy

(skylight) varies based on atmospheric conditions, which can attenuate direct energy by as little as

10% on clear, dry days, to as much as 100% on completely overcast days (U.S. DoE EERE, 2013).

The difference between direct and indirect solar radiation is shown in Figure 2.3.

For the purposes of modeling and harnessing solar energy, it is important to note that a non-

insignificant amount of this energy is also reflected from the ground before colliding with sur-

faces of interest; this is called albedo (or ground reflected) solar radiation. There are of course an

infinitesimal amount of additional reflections that occur between surface objects before colliding

with a surface of interest, but in most cases that energy is dwarfed by the main three contributions.

We call the total sum of this direct beam, indirect diffuse, and albedo solar energy that reaches a

surface of interest, global solar radiation (GSR) (Iqbal, 1983). The term "solar resource" refers

to the amount of potential GSR that can be harnessed by humans or buildings of interest (Stoffel

et al., 2010). All of these subsets of solar radiation can be measured over wavelengths of the elec-

tromagnetic spectrum and are thus often simply referred to as, spectral energy. Figure 2.1 depicts

the difference between extraterrestrial and terrestrial spectral energy after it has been attenuated by

molecules in our atmosphere. Figure 2.2 shows the energy that contributes to GSR on a surface

of interest and Equation 2.2 shows the actual calculation from EnergyPlus, the standard, validated

energy modeling software from the United States Department of Energy (Crawley et al., 2001).
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Figure 2.1: Extraterrestrial and terrestrial solar radiation plotted by Anthony Beck (2013) with
data from the American Society for Testing and Materials (ASTM) Terrestrial Reference Spectra.
This measurement includes direct and all indirect solar energy for a single sky. The red data is
spectral energy of interest to building performance simulations. The H2O and CO2 labels indi-
cate the molecular absorption of solar energy at the corresponding wavelengths. Note that these
measurements are being replaced by work by Gueymard (2018).
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Figure 2.2: This figure depicts global solar radiation (GSR), which is the sum of direct (beam)
radiation, indirect diffuse (sky) radiation, and reflected albedo (ground) radiation on a terrestrial
surface of interest (As) Equation 2.2. Direct beam solar radiation (Ib) is shown in yellow, indirect
sky (Is) in blue, and ground reflected (Ig) in green. Note that energy can be absorbed, scattered, or
occluded by molecules, clouds, trees, buildings, billboards, etc.
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(a) (b)

Figure 2.3: This figure shows what direct solar (beam) radiation looks like before (a) and after
it has scattered about the atmosphere (b). These sky photos were captured with a commercially
available digital camera with a fish-eye lens within just a few seconds of each other (Kider et al.,
2014). (a) is a 1/15 second exposure and (b) is a 1 second exposure.

2.1.1 Radiance vs Irradiance

The study of light sources and their measurement is known as photometry and its scientific history

begins in the 18th century alongside the invention and industry of wide area gas lighting. Exper-

iments, treatises, essays, and formal scientific publications by Bouguer (1729), Lambert (1760),

Dibdin (1889) and others led to the standardization of early lighting measurement techniques,

equations, and units (Bertenshaw, 2020). With respect to sunlight, both direct and indirect ter-

restrial solar radiation are quantities of directional energy moving through atmospheric mediums

(e.g. water vapor, oxygen, nitrogen oxides, carbon oxides, hydrocarbons, halocarbons, etc.) (Iqbal,

1983; Solomon et al., 1999; Kocifaj, 2009). This directional energy is called radiance (aka lumi-

nance, radiant energy, specific intensity). Once this energy reaches a surface of interest, indeed

as all such directional energy quantities reach this same surface, the produced light on the surface

is known as irradiance (aka illuminance, radiant incidence). As depicted in Figure 2.4, radiance

is computed as the energy measured within a 3D conal angle (steradian) parallel to the direction
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Figure 2.4: The solar energy quantities radiance and irradiance depicted by Marasov (2019). Ra-
diance (L) is a directional quantity outgoing from some point to the surface of interest, while
irradiance (E) is the summation of all such radiance quantities converging on a surface. Both can
be scalar or spectral quantities.

of that energy, while irradiance is the sum of all such radiance vectors (covering all correspond-

ing steradians) converging on some surface area of interest. Units can vary, and historically have

corresponded to the amount of light given off by a “standard candle” (thus, candela), but today

spectral radiance is typically measured in watts per meter squared per nanometer per steradian

(W/m2/nm/sr) and spectral irradiance as (W/m2/nm). Therefore, irradiance on the surface of a

building can be modeled as the integration of incident radiance vectors coming from all directions

(Pharr et al., 2016). It is important to note that until recently, even accurate, single scalar irradiance

computations in BES software were often considered inefficient and unusable due to the complex-

ity of interior building geometry and the surrounding built environment of urban areas (Kider et al.,

2019; Jones et al., 2012; Schumann and Greenberg, 2012).

The radiant transfer equation (RTE) below, originally formulated by Chandrasekhar (1960) and

propagated by Iqbal (1983) among many others, is still in use today and models how radiant energy

moves through a medium and is altered by three interactions: emission, absorption, and scattering.

Solar radiation moves through the atmosphere and is either absorbed, scattered or ignored by dif-

ferent atmospheric molecules as well as particulate matter from dust, pollutants, forest fire ash, etc.
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The RTE formula isolates these interactions and computes the expected change in radiant energy.

For the purposes of solar radiation, emissive terms are purposely excluded as they do not apply.

Incoming spectral radiance Iλ (x←
−→
ω ) arriving at point x from the direction −→ω , is defined as:

Iλ (x←
−→
ω ) =

reduced transmitted radiance︷ ︸︸ ︷
T (x,xs)Iλ (xs→−→ω ) +

accumulated in-scattered radiance︷ ︸︸ ︷∫ s

0
T (x,xt)σs(xt)Iiλ (xt→−→ω )dt , (2.1)

where T (x,xs) is the transmittance between two points, x and xs, σs represents the scattering

coefficients, and emission is ignored. Equation 2.1 is used for both direct and indirect radiance

propagation.

As previously mentioned, global solar radiation (GSR) is the total sum of direct (beam) radiation,

indirect diffuse (sky / atmospheric) radiation, and reflected ground (albedo) radiation that even-

tually reaches a surface of interest. Traditional BES software, such as EnergyPlus, typically uses

irradiance for the sake of efficiency. In this dissertation, however, we argue that radiance quantities

should be made available and propagated as far down the pipeline as possible and then combined

to compute irradiance when necessary. Ultimately, irradiance is a function of directional radiance,

which can be occluded and scattered due to building geometry, surface materials, and large objects

in the surrounding environment.

Incident solar gain is the total sum of energy absorbed by an exterior surface of interest. This

calculation takes into account surface material properties and insulation. Here we show the com-

putation of incident solar gain from EnergyPlus. It begins with the calculation of GSR. Note that

the indirect diffuse sky intensity (Is) can be supplied as either a radiance or irradiance quantity, and

indeed is often still supplied as irradiance in most energy simulations today.

GSR = (Ib · cosθ · As

A
+ Is ·Fss + Ig ·Fsg) , (2.2)
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where,

θ = the angle of incidence (based on sun location)

As = the sunlit area of the surface

A = the total area of the surface

Ib = the intensity of direct solar (beam) radiation

Is = the intensity of indirect diffuse (sky) radiation

Ig = the intensity of albedo (ground) radiation

Fss = the angle factor between surface normal and sky

Fsg = the angle factor between surface normal and ground ,

and the intensity values Ib and Is are computed via Equation 2.1. Along with Ig, these values can

be radiance or irradiance quantities.

The incident solar radiation calculation is then coupled with building surface material properties

to compute the absorbed solar energy, or gain on a building wall (depicted in Figure 2.5). First we

compute the short wave radiant flux absorbed at the surface of the surface insulation QSM:

QSM = αINS ·GSR , (2.3)

where αINS is the solar absorption factor of the insulation. There are many types of insulation, and

these vary per climate locale.

To compute the radiant flux at the surface of the wall, we need two components, the amount of

energy transmitted through the insulation (T S), and the amount of energy aggregated / reflected
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Figure 2.5: Incident solar gain on a building surface exterior wall, as defined by EnergyPlus (Craw-
ley et al., 2001). GSR refers to global solar radiation reaching the surface of interest and is com-
puted by Equation 2.2. TS and RS are the energy transmitted and reflected through the insulating
material, respectively. QSM and QSO are the short wave radiant fluxes absorbed at the surface of
the exterior wall insulation and wall itself, respectively.

within the insulation (RS):

T S = (τINS ·GSR) · (αWALL) , (2.4)

RS = (τINS ·GSR) · (1−αWALL) ·αINS (2.5)

Thus, QSO is equal to:

QSO = (τINS ·GSR) · {αWALL +(1−αWALL) ·αINS}

= {τINS ·QSM
αINS

} · {αWALL +(1−αWALL) ·αINS}

= (τINS ·QSM) · {αWALL +(1−αWALL)}

(2.6)

where,
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QSM = short wave radiant flux absorbed at the surface of the INS

QSO = short wave radiant flux absorbed at the surface of the WALL

τINS = transmittance of INS

τWALL = transmittance of WALL

αINS = absorbance of INS

αWALL = absorbance of WALL

QSO is therefore the incident solar gain, or amount of solar radiation that reaches the surface

of an exterior wall of a building. This value should be computed per exterior surface of interest

for accurate building energy simulations. In Section 4 of this dissertation, we argue that these

equations in EnergyPlus should be modified with spectral variants to allow for dynamic spectral

filtering of UV and infrared energy based on various scenarios.

2.1.2 Sky Models

In order to compute with these aforementioned solar energy radiances and irradiances, hemispher-

ical sky measurements or accurate predictions are needed. It is extremely difficult and expensive

(both computationally and financially) to constantly measure solar and sky radiance coming in

from every unoccluded direction and then computing the downstream irradiance on every surface

of interest. Thus, throughout the past century, researchers of varying backgrounds have proffered

atmospheric (sky) models to estimate this energy. Sky models typically fall into one of three cat-

egories: analytical, physically-based, and data-driven. Early work often simplified solar and sky

models by simulating luminance distributions and salient color characteristics with simple analyti-

cal equations. Later, the atmospheric science and computer graphics communities proposed brute-

force physically-based simulations of energy or light transport throughout the atmosphere using

various techniques including ray-tracing, Monte Carlo stochastic sampling, and radiative trans-

fer. More recently, researchers have attempted to model skylight with data-driven approaches that
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measure, process, and quantify large sets of data and search for correlations and trends. Reviews

of varying sky models have been compiled by Badescu et al. (2012); Li et al. (2014); Bruneton

(2016); Antonanzas-Torres et al. (2019).

Analytical skylight models fit parametric functions to observations of the sky, such as work by

Pokrowski (1929); Steven and Unsworth (1977); Kittler (1994). Such models were standardized by

the International Commission on Illumination (CIE) to calculate the spatial distribution of skylight,

and are based on measurements of luminance, indirect sky irradiance, and direct solar radiance.

Early analytical approaches include the BRE average sky by Littlefair (1981), and the Intermediate

Sky by Nakamura et al. (1985). One of the most popular analytical models is the all-weather

model by Perez et al. (1993), which formulated a mathematical equation with five coefficients

to model sky luminance. This model was extended by Preetham et al. (1999) to calculate sky

color values by fitting equations to a brute-force physically-based simulation. Hosek and Wilkie

(2012a) made several improvements including ground albedo, more realistic turbidity, and the

handling of spectral components independently. Turbidity contributions also came from Rosen

(1992); Brunger and Hooper (1993); Igawa et al. (2004); Kocifaj and Kómar (2016) and others.

Yao et al. (2015) also improved the Perez all-sky model. Recent sky view radiance work has been

done by Ivanova and Gueymard (2019). Lee Jr (2008) studied overcast skies to find meridional

consistencies. Cordero et al. (2013) studied albedo effect on radiance distributions. CIE skies have

been used in many building performance simulation pipelines. The more recent of these analytical

models can be used to produce realistic looking graphics renderings of the sky and outdoor scenes,

but often suffer from inaccuracies (Zotti et al., 2007; Kider et al., 2014; Bruneton, 2016). Such

models were used to validate a branch of RADIANCE (Subsection 2.2.1) for building performance

research and is known as DaySim (Daysim, 2019).

Physically-based sky models produce the highest quality results in terms of simulated energy and
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downstream renderings. These models directly compute the transfer of solar radiation in the at-

mosphere through the radiative transfer equation (RTE) (2.1) (Chandrasekhar, 1960; Iqbal, 1983).

They also directly calculate the composition of the atmosphere through Rayleigh and Mie scat-

tering and polarization. The atmospheric research community developed programs such as 6SV

(Vermote et al., 2006), SMARTS (Gueymard et al., 1995; Gueymard, 2019), MODTRAN (Berk

et al., 2014), and SBDART (Ricchiazzi et al., 1998), which seem to produce accurate predictions,

but focus on irradiance rather than radiance throughout the sky dome and often require accurate

atmospheric measurements which can increase computational cost and may be unavailable for

standard commercial and residential buildings. As for real-time efficiency, SMARTS actually uses

parameterizations instead of rigorous RTE to obtain diffuse irradiance values. libRadtran (Mayer

and Kylling, 2005; Emde et al., 2016) seems to be one of the most comprehensive, configurable,

and validated software packages used by researchers today. It offers a variety of well-known RTE

solvers and configuration settings and can estimate direct and indirect radiance and irradiance en-

ergy to any wavelength and resolution of the electromagnetic spectrum. It can be configured with

many parameters, including datetime, site location data, atmospheric measurements such as aerosol

optical depth (AOD), regional and global climate data, etc. to enhance the accuracy of results (Hess

et al., 1998; Holben et al., 1998). We use it to validate our own data driven approach discussed

in Section 3. Advanced multi-scattering equations have been solved and demonstrated by Koci-

faj (2009, 2012, 2015). The computer graphics community has also developed numerous Monte

Carlo-based stochastic approaches (Nishita et al., 1993, 1996; Haber et al., 2005; Jarosz, 2008) to

solve radiative transfer with the rendering equation (Kajiya, 1986). These methods produce pleas-

ing visual renderings of skies and often approximate the complicated scattering calculations with

phase substitutions by Henyey and Greenstein (1941) or Cornette and Shanks (1992).

Data-driven sky model approaches systematically gather measurements of the sky and then search

for a relationship to model and simulate. This is motivated by the fact that modern atmospheric
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measuring stations installed at labs around the world are powerful and accurate, but often expen-

sive, slow, and not ubiquitous enough to provide the local atmospheric measurements needed for

building performance simulations / solutions at arbitrary locations. For example, the sky scanning

results of the new Mantis spectropolarimeter at the Navy Research Laboratory measures a limited

range of 400 - 1000 nm for only 72° of the sky, takes 10 minutes to complete, and no publicly-

available dataset was published (Foster et al., 2020). In Section 3 of this dissertation, we present a

data-driven machine learning solution using regression models trained on the dataset captured by

a custom sky scanning framework described in Kider et al. (2014) and depicted in Figure 3.1.

The closest work to our own is the work by Tohsing et al. (2014), who used 1143 separate ma-

chine learned regression models (one per color component (RGB) per wavelength of the visible

spectrum (380-760 nm)) to estimate whole sky radiance. The authors used only 113 samples from

a single clear sky day, with all skies being captured within a 12 day period. Whole sky scans took

12 minutes to complete and therefore a synthetic image was used for color sampling. Another

older data-driven solution included high-dynamic range (HDR) imagery and image-based light-

ing to produce luminance values for the sky directly from captured photographs (Stumpfel et al.,

2004). Saito et al. (2016) improved upon the work of Sigernes et al. (2008) to estimate sky radi-

ance specifically “without any training sets,” by using an equation of total ozone column and raw

sky image RGB counts. They focused on the zenith of the sky (i.e. a single point in the sky) and

estimated spectral radiance for a subset of visible wavelengths (430-680 nm). A notable contribu-

tion is the color matching functions, which took into account camera lens wavelength dependence,

vignetting, and CMOS noise, and were used for cloud detection in Saito and Iwabuchi (2016).

Artificial neural networks (ANN), genetic algorithms, and pseudoinverse linear regression models

were used in various projects by López-Álvarez et al. (2008); Cazorla et al. (2008a,b) often using

spot measurements or a custom sky scanner. Their models focused on visible spectra with a final

dataset of only 40 samples. More recently, Priya and Iqbal (2015) and Satỳlmỳs et al. (2016) used
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ANNs to model certain aspects of solar radiation. Chauvin et al. (2015) used a custom sky imaging

framework for irradiance and cloud detection for the purposes of concentrating solar plant technol-

ogy. A noted contribution was their observation of the importance of the circumsolar region (likely

due to influence from Gueymard (2010)), which is in opposition of many sky models that seems to

avoid it, and their use of the central angle between sun position and sky point of interest (denoted

SPA). Their research was used for intrahour forecasting to improve solar resource acquisition (Nou

et al., 2018).

Regardless of the sky model chosen, it is our intention that it provide spectral radiance predictions

for the entire hemispherical sky so that vectors of spectral energy can be occluded and scattered

properly during building daylighting and energy simulations. The interdisciplinary nature of this

research between sky model research and building performance led to interesting insight:

“... in Figs. 19-21 you compare measured and modelled spectral radiances. Such

comparisons are rare as most comparisons/validations of radiative transfer models have

been done for irradiances. It is thus interesting to see that libRadtran captures most of the

overall variability.”

Dr. Arve Kylling, co-author of libRadtran (Mayer and Kylling, 2005),

in email discussions on using libRadtran as input and validation for our research.
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2.2 Building Performance Simulation

Building performance simulation (BPS) is an active area of research involving the modeling and

simulation of buildings and their many possible performance evaluations, including: life cycle

energy and water consumption and costs, daylighting (Subsection 2.2.1), occupant comfort, oc-

cupancy load and queuing, air flow, visual and thermal comfort, heating, ventilation and air con-

ditioning (HVAC) loads and performance, hydronic loads (e.g. boilers, chillers), net-zero water

reclamation, estimate carbon impact, evaluating equipment, building materials and designs, ele-

vator scheduling, and many more. Most building simulations are unfortunately run only during

retrofit projects or code compliance certifications, but BPS software can also be run during the

early-phase design of buildings, well before the layout, materials and equipment have been final-

ized.

Building energy modeling (BEM) is the physically-based energy analysis of buildings. BEM soft-

ware takes building information models (BIM) which describe building measurements, materials,

lighting, HVAC, water heating and refrigeration, control systems, etc., along with occupant sched-

ules and equipment use behaviors, climate and local site data, and they compute thermal loads,

energy usage and costs, system impacts, condensation buildup, occupant comfort, etc. (U.S. DoE

EERE, 2016a). There have been a handful of influential BEM software packages from as early as

the 1970s, including the DOE, DOE-2, PowerDOE and eQUEST line by (James J. Hirsch & As-

sociates (JJH), 1999), BLAST, ESP-r and TRNSYS (Beckman et al., 1994; Beausoleil-Morrison

et al., 2014), and most notably, EnergyPlus (Crawley et al., 2001), the industry standard in the

United States. EnergyPlus open-source (on GitHub) and promoted and funded by the US De-

partment of Energy and the European Union. It has a long, rich history of development and is

composed of various sub-engines and plugin modules provided other years by many contributors.

Many other tools and frameworks work in concert with EnergyPlus to provide powerful building
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performance modeling and simulation, some more accurate and stable than others (Figure 2.6).

Some of these include the EnergyPlus wrapping software development kit (SDK), OpenStudio by

U.S. DoE EERE (2016b), which makes it easier for other BPS software to integrate with Energy-

Plus, Simergy, the SUSTAIN ecosystem by Greenberg et al. (2013), BEopt by Christensen et al.

(2006) at the National Renewable Energy Laboratory (NREL), Insight360, etc. Ladybug and Hon-

eybee by Roudsari et al. (2013) are also publicly-funded wrapping software (plugins) that enable

integration with BEM software, such as DaySim (Daysim, 2019), a branch of RADIANCE (Ward,

1994) that was validated with daylight coefficients by Reinhart and Walkenhorst (2001). BEM

software is actively and widely-used but is of course not perfect. Some of these tools have been

developed independently in a vacuum without regular updates. For example, the DaySim reposi-

tory hasn’t been updated for over 3 years and has been used by the MIT Sustainable Design Lab

more than by anyone else. Even the authors of EnergyPlus have declared that the BEM software

packages with the most extensive validation and capabilities are all legacy products (Crawley et al.,

2008). Finally, BEM software functions only as well as its inputs. Garbage in leads to garbage

out, which can lull clients into accepting false analysis. It is important for a user of BEM and BPS

software to fully understand and vouch for the inputs and configurations provided.
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Figure 2.6: Notable building energy modeling (BEM) software packages acknowledged by the
U.S. DoE EERE (2016a), some of which were used in this dissertation.
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2.2.1 Daylighting

Daylighting is the passive or active harnessing of daylight in buildings to simultaneously reduce

energy consumption and improve occupant quality of life. Some examples include additional and

clerestory windows, skylights and tubes, light shelves, glass bricks, etc. (Treado et al., 1984).

Prior to simulation, architects and engineers used protractors, a handful of sun locations for refer-

ence, and building window percentage to sketch crude predictions of where light patterns would

fall. These days, daylighting simulations are increasingly becoming part of the early-phase design

process of buildings and are used to provide all interested parties with visual and numeric anal-

ysis about natural light entering interior building spaces. Architects, builders, interior designers

and building performance experts are educated about daylighting and its benefits. There is even a

prestigious architecture award dedicated solely to daylighting (Velux Foundations, 2019).

During the day when weather allows, natural daylight is a free illuminate that can be utilized

because it has been shown to:

• reduce energy spent on artificial lighting (Ihm et al., 2009)

• reduce heating loads (for climates that need heat), especially if short-wave and long-wave

infrared is harvested (Bainbridge and Haggard, 2011)

• reduce distracting sounds (e.g. buzzing) from artificial lighting bulbs and ballasts

• reduce costs, manufacture and waste associated with light bulbs

• reduce time spent operating, adjusting, controlling artificial lighting

• improve physical and mental health (Potočnik et al., 2019; Ulrich, 1979)

• promote circadian rhythms (Konis, 2019; Rea et al., 2002)
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• lead to more interesting building architecture, facades, fenestration, and materials (Baker

et al., 2013)

There is a wealth of research about the benefits of harnessing daylight in general (Tzempelikos and

Athienitis, 2007; Olbina and Hu, 2012; Kim and Todorovic, 2013; Favoino et al., 2014; Hoffmann

et al., 2016; Reinhart and Davila, 2016), and a wealth of physiological and human factors research

that seems to indicate that daylight and natural landscapes are beneficial to physical and mental

health (Ulrich, 1979; Berman et al., 2008; Kaplan and Kaplan, 1989; Kaplan, 1995).

The simulation of daylighting has grown over the last few decades in large part because of the

highly influential rendering software package known as RADIANCE by Ward (1994); Larson and

Shakespeare (1998). RADIANCE has been (and still is) behind the scenes of major building de-

signs, modeling and simulation tool-chains (Figure 2.7), and has been funded by the US Depart-

ment of Energy since 1985 (and at one point the Swiss government). RADIANCE is a physically-

based approach to rendering, provides luminance calculations, and supports the rendering of com-

plicated internal geometry, fenestration, natural and artificial electric lighting, light bulb IES pro-

files, etc. (Larson and Shakespeare, 1998; Bourgeois et al., 2008; Saxena et al., 2010; Ward et al.,

2011) It was later branched, modified and validated against daylighting coefficients from Perez

et al. (1993) by the MIT Sustainable Design Lab group to provide better justification and daylight

metrics for the illumination it provides (Reinhart and Walkenhorst, 2001; Daysim, 2019; Jakubiec

and Reinhart, 2011).

RADIANCE provides relatively accurate illuminance renderings and analysis with a recursive ray-

tracing algorithm that casts rays into the scene from the camera, takes into account surface material

radiance scattering functions, and implements the standard rendering equation by Kajiya (1986).
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Here is the core rendering equation of RADIANCE by Ward (1994):

Lr(θr,φr) = Le(θr,φr)+

∫ 2π

0

∫
π

0
Li(θi,φi)ρbd(θi,φi;θr,φr)|cosθi|sinθidθidφi (2.7)

where all light rays are in (polar, azimuth) angles from surface normal, and reflected radiance Lr is

equal to emitted radiance of the surface Le plus the integration of all incoming radiance rays over

the surface hemisphere. Each incoming incident radiance Li is multiplied by the cosine of its angle

with the normal of the surface and the bidirectional reflectance-transmittance distribution (BRTD)

function of the surface material, ρ .

The efficient implementation of RADIANCE made it very feasible (and very popular) to use. Vari-

ous optimizations include: hierarchical spatial partition of geometry, user directed pre-processing

of additional light sources, pre-processing of light volumes, adaptive sampling of light sources,

caching in various places, utilization of parallel processing for various algorithms, animation pre-

optimizations, etc. The RADIANCE pipeline consists of over a 100 separate programs that perform

various separate focused jobs, much like a UNIX operating system. One interesting historical aside

is that RADIANCE was first created to model artificial electrical lighting specifically (not daylight-

ing). Over the years, daylighting was integrated to support difficult-to-render scenes, such as atria,

large windowed areas, complex fenestration, and combinations of natural and electric lighting. In

Subsection 3.2.4, we suggest integrating our sradmap tool into the RADIANCE pipeline.
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Figure 2.7: (Top) Examples of using RADIANCE (Ward, 1994) and DaySim (Reinhart and Walken-
horst, 2001) for daylight simulation. (Bottom) Building performance software packages that inter-
face with RADIANCE, some of which were used in this dissertation (U.S. DoE EERE, 2014).
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2.2.2 Building Automation Systems

Automation (control) systems for industrial and mechanical processes have been studied for roughly

a century, though increasingly so in recent decades. The standard proportional–integral–derivative

(PID) controller was developed in the 1920s and is still in use today. It is typically a single-input

single-output feedback controller (think thermostat with temperature setpoint and single temper-

ature sensor) and is widely used in a variety of industries (Bennett, 1993). More complex PID

controllers do exist with nested feedback loops, in parallel or in series with one another, or even

coupled with additional behaviors to handle multivariable problems, though such cases tend to be

the exception rather than the rule. Some limitations with PID controllers include difficulty with

non-linear references (moving setpoints), difficulty with slow or intermittent process updates, and

their tendency to overshoot and oscillate until convergence.

Rule-based control (RBC) strategies have also been used in research and industry, are still in use

today, and often heralded for their “simplicity” compared to more complex controllers, particularly

in commercial building HVAC systems (Nesler, 1986; Schein et al., 2005; Salpakari and Lund,

2016; Hu et al., 2021). Rule-based strategies have also been adopted to mimic decision making

experts (termed “expert systems”) (Feigenbaum et al., 1970; Shortliffe et al., 1975; Campbell et al.,

2002; Liao, 2005; Thompson et al., 2015). RBC systems employ a software engine that processes

rules manually written or generated by engineers in either a backward chaining or forward chaining

(“production system”) processing method until completion. Somewhat alongside and intertwined

with rule-based systems is fuzzy logic (Zadeh, 1973), a method for non-Boolean (many valued)

logic reasoning intended to be used for “poorly-defined processes.”

Complex multi-variable dynamical systems are now often controlled with model-based predictive

controllers (MPC or even “MPC controller”). MPC controllers, sometimes called dynamic ma-

trix controllers (DMC), are continuous, iterative finite-horizon optimization programs that utilize
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a model of a system to predict future behavior over some short time horizon in real-time and de-

termine which control action(s) to take to meet desired reference target setpoints (Figure 2.8).

The benefits of MPC mainly include: multi-input multi-output variables which allow for fast

linear algebra solvers and account for complex relationships between variables, “look-ahead” /

predictive behavior (similar to feedforward control), and constraints on inputs to prevent unreal-

istic input drivers (Rawlings, 2000; Qin and Badgwell, 2003; Rossiter, 2017). They are therefore

sometimes referred to as “feedforward-feedback controllers with constraints.” MPC controllers

derive from optimal control theory by Kalman et al. (1960); Kalman (1960) (particular their linear

quadratic Gaussian (LQG) controller), culminating in two separate papers in the late 1970s by au-

thors Richalet et al. (1978) (MPC) and Cutler and Ramaker (1980) (DMC). They have been used in

research and industry across a myriad of fields, including building performance, all sorts of indus-

trial plants, metallurgy, power generation and distribution, food processing, automated vehicles,

aerospace, and even secure contracts with BitCoin. (Bruijn and Verbruggen, 1984; Harrold and

Lush, 1988; Bemporad and Morari, 1999; Tzempelikos and Athienitis, 2007; Kennel et al., 2012;

Camacho and Bordons, 2015; Gutjahr et al., 2016; Aste et al., 2017; Guo et al., 2018; Jahanbin and

Haghighi, 2021). There is even research on optimizing MPC controllers themselves, particularly

those employed by building HVAC systems (Ferreira et al., 2012; Kusiak et al., 2014; Asadi et al.,

2014; Garnier et al., 2015; Huang et al., 2015; Zhao et al., 2015; Kim et al., 2016; Sturzenegger

et al., 2015; Afram et al., 2017; Carrascal-Lekunberri et al., 2017).

Two drawbacks to real-time MPC controllers compared to more traditional PID and rule-based

controllers, are their complexity and intensive computational load. A computer with a fast CPU

and abundant RAM is often required to run the models (or sometimes entire simulations executed

stochastically) and optimization functions being solved at each timestep. It is possible to run MPC

controllers on embedded systems and micro-controllers, but real-time processing constraints often

limit performance (Forgione et al., 2020). Despite these limitations, we believe the adaptive facade
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Figure 2.8: A high-level diagram of a typical model-based predictive controller (MPC).

cyber-physical building monitor prototype we propose in Section 5 should utilize a MPC controller

running on a performant PC, as the cost savings realized by daylighting and thermal improvments

should outweigh the cost of a single high-end computer. Also, the timestep duration would likely

be in the minutes as opposed to more demanding systems like automated vehicle systems which

need to make decisions within millisecond windows.

Of additional interest to the work in this dissertation is the automated control of daylighting blinds.

Although automation of artificial electrical lighting systems have been around for decades, Rein-

hart (2004) and later the MIT Sustainability Lab were one of the first to publish on the topic of

automating daylighting with blinds. Much downstream work has followed this line of research

as well, including work by Olbina and Hu (2012), van den Wymelenberg (2012), Mettanant and

Chaiwiwatworakul (2014), Eltaweel and Su (2017), and Gunay et al. (2017). And there is recent
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research with building occupant comfort in mind, as well as occupancy schedules, behaviors, and

preferences surrounding building automation systems in general, for example work by Yan et al.

(2015), Ahmadi-Karvigh et al. (2017), Stazi et al. (2017), and Sun and Hong (2017). Note many

of these methods do not detail their control systems so much as their models, which seem to be

rule-based and/or probabilistic, and thus suggest a PID or rule-based controller.

2.3 Background Summary

In short, this dissertation focuses on building performance simulation (BPS) only as far as building

energy modeling (BEM) and occupant comfort is concerned, and it does so by proposing changes

to existing BPS and control pipelines in order to produce more accurate results that take into

account radiant spectral energy. Use of a modern radiant energy predicting sky model is necessary

to ensure BEM software accounts for occluded and cloud-refracted energy (radiance rather than

irradiance), while spectral energy gives simulations and control systems a single “wide” input with

both light and heat, which in turn allows for dynamic harnessing and filtering of both, provides for

a simplified, unified daylighting and thermal modeling pipeline. In the following three chapters

we detail our work on: (1) a data-driven radiant, spectral energy sky model, (2) a radiant, spectral

energy bin simulator for early-phase building design, and (3) a cyber-physical prototype of an

adaptive facade concept that considers radiant, spectral energy for visual and thermal comfort,

season, time of day, and occupant overrides.
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CHAPTER 3: WHOLE SKY SPECTRAL RADIANCE ESTIMATION

Much of the research in this chapter appears in the following publications:

• Del Rocco, J., Bourke, P. D., Patterson, C. B., and Kider, J. T. (2020). Real-time spectral

radiance estimation of hemispherical clear skies with machine learned regression models.

Solar Energy, 204:48–63. https://doi.org/10.1016/j.solener.2020.04.006

• Del Rocco, J., Patterson, C. B., Dhrif, H., and Kider, J. T. (2018). Learning and estimating

whole sky visible, VNIR, SWIR radiance distributions from a commercial camera. In Optics

and Photonics for Information Processing XII, volume 10751, page 107510F. SPIE. https:

//doi.org/10.1117/12.2321295

Full sky atmospheric spectral radiance distributions (UV, IR and visible spectra) are complicated

to model and difficult or expensive to measure in real-time because spectral radiance is directional

and must be calculated throughout the skydome at some resolution. This complexity often results

in these distributions being simplified into a single downwelling irradiance measurement. Yet sim-

ulation accuracy is greatly affected by such directional measurements, so an optimal means of cal-

culating these distributions is needed for real-time applications of building performance (Hensen

and Lamberts, 2012; Jakica, 2017), environmental science (López-Álvarez et al., 2008), PV align-

ment (Smith et al., 2016), and physically based rendering (Nimier-David et al., 2019; Hosek and

Wilkie, 2012a; Satỳlmỳs et al., 2016).

Here we present our data-driven, machine learning approach to estimate spectral radiance for any

point in a clear sky to within acceptable tolerances for simulations and real-time controls. The

primary contribution of our research is the reconstruction of high-dimensional atmospheric spec-
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tral radiance for the entire sky, including non-visible spectra, UV and near IR, given only a low-

dimensional RGB photograph of the sky and its capture time. The overall process is depicted in

Figure 3.1 and we give an overview here. Step I: prior to our work, multiple skies were measured

over an entire year with a digital camera and spectroradiometer measurements at discrete points

in the sky (Figure 3.2) (Kider et al., 2014). Step II: we then took this resulting data (used for

various research projects) and cleaned, correlated, visualized and exported known good quality

measurements to be used for training our sky models. Step III: exploratory data analysis, feature

selection, and many machine learning models were investigated, resulting in 4 final models that

could be used for experiments and eventually trained on capture date and time, look of sky, and

corresponding spectral energy (350-1780 nm). The predictions by these models on holdout skies

were then validated by our own measurements and later against libRadtran (Emde et al., 2016).

Step IV: all 4 models (although only the best performing is needed) were used to predict spectral

energy for every single pixel of 4 holdout test skies to produce spectral radiance “maps” (files of

spectral radiance predictions per point in the sky).

Prior data-driven skylight models include work by Tohsing et al. (2014), Saito et al. (2016), and

López-Álvarez et al. (2008); Cazorla et al. (2008a,b). Tohsing et. al leveraged ground-based sky

radiance photographs and a non-linear regression model per wavelength to reconstruct the visible

spectrum. Saito et. al used total ozone column readings, camera color matching functions, and a

linear algebra approach. Cazorla et al. used neural networks, genetic algorithms, and regression

models. Our proposed approach considers and estimates a much wider spectral range, and does so

for the entire sky. In contrast to more traditional atmospheric science models, we purposely omit

aerosol particulate and trace gas measurements to test viability of our method for real-time ap-

plications (e.g. commodity building monitoring systems, residential solar installations, rendering

pipelines, etc.), which may not have access to such data to compute a physically-based approach.

Also, we note that Steven and Unsworth (1977) found “departures due to variation in atmospheric

34



turbidity [. . . ] to be small,” and that Willers (2013) states that “aerosol attenuation in the atmo-

sphere has a relatively weak spectral variation.”

Note the work presented here focuses on clear skies specifically. Some prior work (Del Rocco et al.,

2018), and ongoing work, include preliminary predictions of cloudy skies. Work by Chauvin et al.

(2015); Nou et al. (2018) and others show that it is possible to separate clouds from clear skies

and handle the areas separately when estimating radiance or irradiance. Four separate regression

models are developed with a machine learning approach by feeding a combination of measured and

engineered features from correlated sky imagery and spectral radiance. A series of experiments

are performed to test model effectiveness and efficiency with regards to changes in exposure, sky

sample color model, and spectrum resolution. A tool is developed using a model to predict spectral

radiance distributions for the entire sky, at 1 nm resolution, to within 7.5% RMSD overall. Results

are validated against libRadtran (Emde et al., 2016).

Throughout this work, hemispherical coordinates are used for both sun and sky samples, and are

specified as (azimuth, altitude), where azimuth is an angle Eastward from North, and altitude is

(90°− zenith). Zenith is perpendicular to ground normal. Note that sky imagery is vertically

flipped due to capture orientation Figure 3.3.
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Final 4 Regression Models Produced:
 · (ETR) Extra Trees Regressor
 · (RFR) Random Forest Regressor
 · (KNR) K-Nearest-Neighbor Regressor
 · (LNR) Linear Regressor

“Binning” was performed on datetime of captures to 
engineer additional features. Exploratory data   
analysis was done on all input features: quarter, 
month, week, day, hour, sun and point azimuth and 
altitude, sun-point angle, RGB. 10+ regression 
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(a) Spectroradiometer (350–2500nm)
(b) Pyranometer for irradiance reference
(c) Digital camera + 8mm fish-eye lens
(d) 1° steridian measurements
(e) 81 point sky sampling pattern

(e)

(d)

Prediction (Real-Time)Machine Learning (Offline)

Visualize, Verify, Correlate DataMeasure Data (Visible + Spectral)
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Figure 3.1: This figure serves as an overview of our whole sky spectral radiance estimation work.
(I) sky data is measured by Kider et al. (2014); (II) sky data is curated, correlated, visualized, and
exported via Spectral Sky Viewer (Section A); (III) EDA and machine learning methods applied to
create models Section 3; (IV) models are used to produce spectral radiance maps (Figure 3.18).
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Figure 3.2: A single sky capture consisted of 8 photos (8 exposures to account for HDR) and 81
spectral radiance measurements between 350-2500 nm (350-1780 nm used in this work). This
figure shows a single 1 s exposure of a sky along with the correlating spectral radiance mea-
surements plotted in Spectral Sky Viewer (Section A). The colors here merely correlate radiance
measurement with sky location. Sun location and path have been computed and overlaid (Reda
and Andreas, 2004).
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Figure 3.3: This figure depicts a typical radiometry coordinate system when measuring solar radi-
ation from the ground. A single (direct or indirect) spectral radiance measurement (LeΩλ ) is mea-
sured at sky coordinates (Pθ ,Pφ) (azimuth, altitude). The sun is located at coordinates (Sθ ,Sφ),
and the central angle between sun and sky point of interest is denoted as SPA (Chauvin et al.,
2015). Zenith is perpendicular the ground normal.
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3.1 Measurements and Data

Measurements in this work come from the sky scanner discussed in detail by Kider et al. (2014).

This framework captured high-resolution HDR imagery of the sky (8 exposures), along with atmo-

spheric spectral radiance distributions (350-2500 nm) from 81 sample points in concentric circle

patterns across the sky (Figure 3.2). Measurements were taken from the ground. The spectral ra-

diance distributions were measured in W / m2 / nm with an ASD FieldSpec Pro spectroradiometer

through a 1° solid angle fore-optic (Malthus and MacLellan, 2010), and were validated against

NASA data sets (Kider et al., 2014). The multiple exposure photographs of the sky were captured

in both CR2 (raw) and JPG formats consecutively at 4368 x 2912 pixels with a commodity Canon

5D digital single-lens reflex (DSLR) full-frame camera, with Sigma 8 mm f/3.5 EX DG circular

fisheye lens, and Kodak Wratten neutral density filter. JPG quality level was set to 100. We au-

tomated the process with libgphoto2, which took approximately 40 s to capture all exposures and

formats of photographs of the sky. Irradiance was also measured, but is ignored for this work.

All measurements were taken at a single site location, (42.44344, -76.48163) decimal degrees,

rooftop of Frank Rhodes Hall, Cornell University, Ithaca, New York, USA. 453 total captures were

taken over 16 days between 2012-2013, covering all four seasons, dawn to dusk, and various sky

covers. About 25% of those captures consisted of full clear skies (0 octas), from which 6006

individual clear sky samples were used for this work. Scattered and overcast skies were ignored

for this work. A complete table listing of all usable captures is shown in Table 3.1. The final

curated dataset is available to the public through our lab website SENSEable Design Lab (2016).

3.1.1 Lens Linearity

Because our work involved mapping hemispherical sky coordinates to 2D pixel coordinates, and

vice versa, it was important to accurately model the behavior of the fisheye lens employed. In
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Table 3.1: List of observed sky data captures, which include correlated HDR imagery and spectral
radiance distributions. There are 81 such radiance measurements per capture. A sky “sample” is a
radiance measurement coupled with the color of the sky at that location.

Date Time Captures Samples Sky Cover(s)

11/06/2012 12:26 - 16:21 41 3321 SCT

11/15/2012 11:15 - 16:26 56 4536 CLR, SCT

04/13/2013 09:55 - 10:01 2 162 OVC

04/14/2013 10:42 - 18:36 46 3726 SCT, OVC

04/15/2013 07:38 - 08:03 8 648 SCT, OVC

05/12/2013 10:30 - 13:45 14 1134 SCT, OVC

05/26/2013 10:30 - 17:30 29 2349 CLR, SCT

05/27/2013 09:30 - 18:30 37 2997 CLR, SCT

05/30/2013 09:30 - 12:45 14 1134 SCT

05/31/2013 09:00 - 15:00 25 2025 SCT

06/15/2013 07:45 - 18:30 44 3564 CLR, SCT

07/26/2013 11:00 - 14:45 16 1296 CLR, SCT

07/29/2013 09:00 - 14:00 21 1701 SCT, OVC

08/30/2013 09:15 - 14:00 18 1458 SCT, OVC

09/24/2013 06:49 - 18:09 38 3078 CLR

09/26/2013 08:30 - 15:40 44 3564 SCT

16 Days 453 36693

a perfect circular fisheye lens, often called a "tru-theta" lens, equal increments in radius on the

fisheye image correspond to equal angle increments of the respective field rays. Actual fisheye

lenses typically exhibit some form of non-linearity, even those lenses designed to be linear (Bourke,

2016). Although more important with variegated skies (scattered, overcast, etc.), a measurement

difference of even a single degree can result in sampling pixels in or out of the sun’s corona.

The standard ideal lens equation for mapping hemispherical sky coordinates to 2D center offset
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Figure 3.4: (a) shows the visual difference in linearity of actual lens (pink) vs ideal lens (white).
Sun path and position after lens correction is overlaid (orange). (b) shows the actual lens sample
points (solid) vs ideal (dashed), used to fit Equation 3.2.

coordinates can be written as:

(x, y) =
2 · zenith
fisheyefov

· (cos(azimuth), sin(azimuth)). (3.1)

The following procedure measured the relationship between field angle and position in images:

1. A close and distant vertical feature in the fisheye image was chosen. The zero parallax

position of the lens is the position along the lens axis where those features stay aligned

despite rotations perpendicular to the lens axis.

2. A narrow object in the image was aligned as reference with the center of fisheye image.

3. The lens is rotated in 5° steps from 0 to 90°, and a photograph taken.

4. For each photograph, the distance of the reference point from the center was measured.
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For our Sigma 8 mm f/3.5 fisheye lens, this resulted in the following non-linear curve (plotted in

Figure 3.4), which was then used to alter zenith of sky coordinates (r = zenith):

r′ = 0.7230r+0.0252r2−0.0499r3−0.0004325r4. (3.2)

3.1.2 Sky Color

Color at a particular location in the sky is a fairly subjective measure. What our eyes detect,

what instruments measure, and how that data is processed, differs dramatically. Nevertheless, our

research investigates the relationship between sky color and energy distribution, and thus a metric

must be used.

To obtain sky color at specific points in the sky, we projected the bounds of a 1° solid angle (same

as fore-optic we used when measuring radiance) onto the 2D sky images captured with our digi-

tal camera (multiple images for the HDR experiment), and then sampled the pixels with a square

convolution of similar width to the radius (Figure 3.5). In image processing, a convolution is an

algorithm that involves sliding a matrix of weights or values (the kernel) over a set of pixels, and

performing some calculation in order to produce a new set of pixels (Parker, 2010). Such con-

volutions are used to implement a wide variety of image filters like blurring, edge highlighting,

etc. We used a Gaussian convolution, in particular, to blend the pixel colors together, weighting

pixels closer to the center higher than pixels near the edges of the projected bounds. We are aware

that a square convolution does not account for all pixels in a projected circular area exactly (in

fact the projected circle becomes an increasingly oblong ellipse as altitude decreases). A rectangu-

lar convolution kernel would likely provide better coverage of the pixels in the projected bounds.

Our kernel was chosen for real-time efficiency and overlap with existing image processing tech-

niques and libraries, most of which use a square kernel. The weights of our Gaussian kernels were
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(a)

(b)

Figure 3.5: (a) illustrates a steridian capture area projected onto a sky image, the bounds of which
contain the sky color pixels of interest. (b) shows the weights of a 5x5 Gaussian convolution matrix
applied to the pixels in those bounds.

generated with the following equation (Fisher et al., 1996):

kernel(x,y) =
1

2πσ2 · e
− x2+y2

2σ2 , (3.3)

with kernel dimensions relative to the bounds of the convolution, and a standard deviation (σ ) of

half the radius.

3.1.3 Raw vs. Digital Positive

As mentioned, we captured photographs in two formats, Canon CR2 (raw) and a traditional camera-

processed compressed JPG format. Raw images contain much more capture information in a pre-

interpolated format, before debayering, noise filtering, color space conversions, gamma correction,

etc. In our previous work, we worked with the compressed JPG captures, which were smaller and

faster to process (Del Rocco et al., 2018). For this work, we strove for accuracy of recorded color
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Figure 3.6: 05/27/2013 09:00 1s exposure of sky as a more traditional, camera processed, com-
pressed JPG (a), and as a minimally processed, uncompressed TIFF (b). (a) is closer to what
humans see when looking at the sky; (b) is a more accurate representation of what the sensor
detects.

values and interpolated the raw photographs as uncompressed TIFFs, using camera white balance,

but no other post-processing options that digital cameras use to produce images closer to what

humans see (e.g. gamma correction, additive brightness, exposure shift, etc.). We used rawpy to

read and process the raw images (Riechert, 2018; LibRaw, 2018). Figure 3.6 shows the difference.

Our previous work already showed that it is possible to infer a relationship between look of sky

and spectral radiance using compressed imagery. The consistency of raw photograph interpolation

may be more crucial than the specific parameters used.

3.1.4 Spectral Sky Viewer

Measurements culled from our final datasets are due to careful examination of the data. We de-

veloped an open-source, cross-platform application called Spectral Sky Viewer to load, visualize,

curate, and export our measurements (Figure 3.7). The application was written in Python with the

use of modules PyQT, PIL, colormath, etc. Although it was developed on Windows 10, PyQT
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is a cross-platform graphical user interface API, and no OS specific routines were used. Some

functionality includes: ability to view NREL SPA computed sun location and hourly path, a rich

exporter for constructing various datasets, EXIF image meta-data viewer, user-specified sampling

patterns and lens linearity curves, and persistent system and user settings. Although using this tool

to curate our data was a supervised process, it allowed us to navigate the abundance of data and

identify dropped, locked, missing, occluded, and over-saturated measurements.

We also used Spectral Sky Viewer to separate clear, scattered, and overcast skies for various re-

search projects. Although procedural assessment is certainly possible (Yamashita et al., 2004; Li

et al., 2011; Tohsing et al., 2014; Saito and Iwabuchi, 2016), we manually assessed our data to

ensure accuracy. Efficient algorithms can and should be used to automatically assess sky cover

during real-time application of this work. Like Lee Jr (2008), we used the standard categorization

of sky conditions provided by the US National Oceanic and Atmospheric Administration (NOAA)

(Office Of The Federal Coordinator For Meteorological Services And Supporting Research, 2017).

We used the following three distinctions: clear (CLR), scattered (SCT), and overcast (OVC), where

CLR and OVC represent 0 and 8 oktas of cloud cover, respectively. SCT was used to describe skies

with any cloud coverage between 1-7 oktas. We ignored the distinction of few (FEW) and broken

(BKN) skies. As mentioned, this research focused only on clear sky datasets. In theory, our models

can be trained on skies of any condition, and in practice, both clear and cloudy models are often

used in concert (Xie et al., 2016).
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Figure 3.7: Capturing data in the wild is a challenging process. Inconsistent processes and en-
vironmental conditions often contribute to measuring error. And errors in data may vastly affect
machine learning algorithms. Spectral Sky Viewer was written to help us visualize sky data and
identify anomalies, including dropped, locked, missing, occluded, and over-saturated measure-
ments. More screenshots and description of Spectral Sky Viewer can be found in Section A.
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3.2 Spectral Shape Estimation

The research question for this part of our work asks whether it is possible (or not) to estimate the

atmospheric radiance distribution of a clear sky given only a picture of the sky and its capture

timestamp. In other words, is there a relationship between the time of day, what a commodity

camera sees in the sky, and its underlying spectral energy, despite the fact that we know solar radi-

ation is absorbed and scattered by atmospheric particles at certain wavelengths? We used machine

learning to help us search for such a relationship, but given the sheer magnitude of machine learn-

ing approaches (statistical models, artificial neural networks, support vector machines, etc.), we

limited the scope of this research to regression models. Predicting a curve is more of a regression

rather than a classification or clustering problem. More than 10 separate regression models were

trained and tested, including: linear, Ridge (Hoerl and Kennard, 1970), Lasso (Tibshirani, 1996),

ElasticNet (Zou and Hastie, 2005), Lars, KNN, RandomForest (Kocev et al., 2013), ExtraTrees

(Geurts et al., 2006), etc. WEKA toolkit (Hall et al., 2009) was used to discover possible can-

didate models, but ultimately all machine learning models were configured and processed with

scikit-learn in Python (Pedregosa et al., 2011).

Imperative to all machine learning algorithms is the quality and organization of training and testing

data. Our data was distilled down to 6006 sky samples, each representing a single point in a

clear sky along with corresponding spectral radiance measurement and capture timestamp. Our

collection of sky samples was randomized and divided into an 80:20 train:test ratio. 10-fold cross-

validation was used during training to dampen the effects of outliers (Picard and Cook, 1984;

Kohavi et al., 1995). The samples from four arbitrary skies, selected at random, served as absolute

hold-outs (Table 3.2); i.e., no samples from these skies were ever used for training or preliminary

testing. These techniques are often employed to help minimize overfitting through data leakage.
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Figure 3.8: A single sky sample consists of 12 input features and 1430 output features (350-1780
nm radiance). Capture timestamp is binned for seasonal and daily variation. Sun coordinates are
computed with NREL SPA. Sample azimuth and altitude are inherent to sky scanning logic yet
insignificant according to EDA.

“Easily the most important factor [for success or failure of machine learning]

is the features used.” (Domingos, 2012)

Each sky sample was engineered into an array of input and output features. Assuming a relation-

ship between time of day, sky color, and radiance distribution, one of our goals was to discover

the minimum set of features needed to show that relationship. From the raw measurements of

capture timestamp, sample azimuth and altitude, sky color, and corresponding spectral radiance

measurement, we engineered the additional features: sun azimuth and altitude, sun-point-angle

(SPA), quarter, month, week, day and hour. The capture timestamp was “binned” into these dis-

crete groupings to help the models internally correlate data throughout the year, as opposed to

treating the timestamp as a single number or string (Macskassy and Hirsh, 2003). Sun position

was computed with the solar position algorithm provided by NREL (Reda and Andreas, 2004).
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(a) (b) (c) (d)

Figure 3.9: Histograms of input features: sun azimuth (a), sun altitude (b), sample azimuth (c),
and SPA (d). (d) was much more significant than (c), likely because it combined the positions of
both sun and sample points into a single feature.

SPA comes from the insights of Chauvin et al. (2015), in contrast to our initial approach of culling

all samples within a 20° circumsolar region (Del Rocco et al., 2018), like authors Saito et al.

(2016) and Tohsing et al. (2014). The final input and output features of each sky sample are shown

in Figure 3.8.

Various exploratory data analysis (EDA) techniques were employed to gauge the significance of

each possible input feature, including: histograms, correlation matrix, feature importance, etc. (Yu,

1977). While sky colors were found to be the most significant features, sample azimuth was found

to be the least. As Figure 3.9 shows, 81 samples per capture evenly distributed across the sky

resulted in a nearly flat distribution of sample azimuth values. The SPA feature was a combination

of both sun and sample locations in a single feature, and was much more significant.

Preliminary results encouraged us to focus on the following regression models: linear regres-

sion (LNR) (provided only as a baseline), k-nearest-neighbors (KNR), random forest (RFR), and

extra-trees (ETR). Although the performance of RFR and ETR are often comparable, in prior ex-

periments we found that RFR performed significantly better on scattered cloudy skies (Del Rocco

et al., 2018). RFR and ETR are ensemble (decision tree) regression models, which implement a

set of “if-then-else” rules internally for both training and prediction. This is why the model file
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sizes are so large. For all four of our models, tuning was done automatically with scikit-learn’s

GridSearch algorithm, though some hyperparameters were tuned manually, including the number

of trees and maximum tree depth of ensemble models.

Four separate error metrics were used to evaluate performance, including: coefficient of determi-

nation score (R2), mean bias deviation (MBD), root mean squared deviation (RMSD), and ratio of

measured and predicted radiance curves. MBD and RMSD come from Iqbal (1983). Prior authors

used MBD for single wavelength results (Tohsing et al., 2014; Cazorla et al., 2008a), but we found

RMSD to be more appropriate for a spectrum of wavelengths. The R2 metric from scikit-learn is

calculated as follows:

R2(t, p) = 1− ∑
N
i=1(ti− pi)

2

∑
N
i=1(ti− t̄i)2

, (3.4)

where (t, p) is a (truth, prediction) pair, N is the number of radiance distributions, and t̄ = 1
N ∑

N
i=1 ti .

Note that this metric can be negative, despite the name R2.

Along with a useful tool for viewing and exporting correlated sky data with many options, we

developed a framework of Python scripts to send datasets through our machine learning pipeline

of training, testing and plotting. The main script takes parameters such as: model type, dataset of

sky samples, pseudo-random number seed, number of cpu cores to use, cross-validation amount,

and model specific hyperparameters like polynomial expansion, maximum tree depth, etc. All of

our code is 100% cross-platform, open-source and freely available to the public through our lab

website SENSEable Design Lab (2016).

3.2.1 High-Dynamic Range Imagery

Simultaneously capturing the sun and sky with photography is difficult due to the range of illumi-

nation and intensity of the sun vs. sky, as well as the temporal changes that occur. Our dataset
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Table 3.2: The four holdout test skies selected at random and used for final evaluation. These skies
were selected randomly with no prior knowledge about them, and were excluded from all training
and testing until final evaluation of the machine learned models.

Date Time Part of Day Season Sky Cover

05/26/2013 15:15 Afternoon Spring CLR
05/27/2013 10:15 Morning Spring CLR
07/26/2013 13:15 Midday Summer CLR
09/24/2013 15:39 Afternoon Fall CLR

of sky imagery followed the capture approach proposed by Stumpfel et al. (2004). We took eight

to nine photographs (depending on the time of day) to capture ∼17 stops of dynamic range. Fig-

ure 3.10 shows the difference in exposures captured. The top row (f/16 f-stop) accounts for the

solar region and intensity of the sun. The bottom row (f/4 f-stop) captures the indirect skylight.

This experiment was designed to test the differences and effectiveness of using HDR imagery

vs. a single exposure. For each sky sample’s color feature, we used the RGB color values from

exposures 5-8 (f/4 f-stop) as input features for model training and prediction. Exposures 1-4 were

ignored for this experiment. Although there are algorithms to merge multiple exposures into a

single image for sampling, we simply sampled each exposure separately and used each sampled

color as a separate input feature.

3.2.2 Color Model

Colors are qualia for combinations of electromagnetic energy within the range of wavelengths

visible to humans (the visible spectrum). The human eye detects energy with the use of retinal rods

and cones and the brain merges the results into what we call a color (Kinney, 1958). Modeling

the values of these colors is a field of research in and of itself (Koenderink, 2010). And yet, we

are attempting to estimate spectral radiance using color values as a primary feature. This begs
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(1) (2) (3) (4)

(5) (6) (7) (8)

f/16 f/16 f/16 f/16

f/4 f/4 f/4 f/4

1/8000s 1/1000s 1/250s 1/15s

1/32s 1/4s 1s 2s

Figure 3.10: 8 exposures were taken to account for high dynamic range of sun + sky photography.
F-stop f/4 captures (5-8) were used for this work, where as f/16 captures were used for prior work
by Kider et al. (2014). The 1 s exposures (7) specifically were used for non-HDR experiments
during this work. Yellow squares highlight sun location.

the research question: which color model best represents the underlying energy? Digital all-sky

cameras typically store measurements with trichromatic RGB color models (e.g. sRGB, Adobe

RGB, ProPhotoRGB, etc.), but do so mostly for historical reasons relating to technology. There

are a variety of other tristimulus color models that attempt to capture more of the color space

detectable by the average human (Poynton, 1995; Stone, 2015), many of which derive from the

CIE 1931 RGB and XYZ color space definitions (Wright, 1929). However, it is unclear which

model is most beneficial for machine learning algorithms processing sky images.

For this experiment, we compared the overall training and predictive effectiveness of our models

while only changing the color model used for each sky sample’s color feature. Four separate color

models were tested: sRGB (Stokes et al., 1996) (the default), HSV (Smith, 1978), HSL (Joblove

and Greenberg, 1978), and LAB (Robertson et al., 1977). All other features were fixed. Because

our commercial digital camera captured skies in an sRGB format, we then converted to the other
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color models using algorithms provided by the Python colormath module. The resulting datasets

were fed through our machine learning pipeline separately.

3.2.3 Spectral Resolution

This work is intended to be used in a real-time setting, both simulated and cyber-physical, therefore

model size and processing speed is important. For applications that predict a general quantity of

energy in certain parts of the spectrum, it may be reasonable to limit the resolution of spectral

data used during model training and prediction. Certainly the visual difference and area under the

curve (amount of energy) between a 1 nm and 10 nm resolution curve is not significant. A spectral

resolution experiment was designed to find the smallest model and dataset that still predicted with

acceptable accuracy, by training and testing models using spectral resolutions of 1, 5, 10, 15 and

(1)

(5)

(10)

(15)

(20)

Figure 3.11: 05/26/2013 15:15 sample 24 (90° azimuth, 12.12° altitude) plotted at 5 different
resolutions, 1, 5, 10, 15 and 20 nm, labeled accordingly. Note that the general shape of the spectral
curve is retained even at lower resolutions.
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20 nm. Note that some pure spectral colors exist entirely within a 15 nm range, and therefore

resolution should not be diminished too much if color information is important. Figure 3.11 shows

the visual difference of the five resolutions for a single measured radiance distribution. Depending

on the downstream application, there is still plenty of useful information at lower resolutions.

This experiment was run on a Dell XPS 8920 PC with Intel 4 Core i7-7700K 4.20 GHz CPU and 16

GB of RAM. The operating system was x64-bit Microsoft Windows 10 Enterprise. All manually

executable applications (i.e. ignoring OS services) were closed at the time of the experiment. Five

runs were executed per resolution size and the timings averaged.

3.2.4 sradmap

Ideally our models should be able to generalize across the space between the sky samples used

for machine learning. The same input features shown in Figure 3.8 can be collected for any pixel

of a sky image, and then fed through our models to produce a lookup file (map) with spectral

radiance predictions per pixel. We call the resulting file of this process a spectral radiance map

(sradmap). Although the primary purpose is to provide spectral radiation predictions per pixel

location, they can also be summed, normalized, and plotted against a false-color map to help

visualize the predicted energy for the whole hemispherical sky.

The name sradmap is an homage to radmap by Anselmo and Lauritano (2003), a supplementary

tool for the daylight simulator RADIANCE (Ward, 1994). In the building performance space, our

sradmap generator can be integrated into daylight simulators, energy modelers, and parametric

design tools like RADIANCE, EnergyPlus (Crawley et al., 2001), SUSTAIN (Greenberg et al.,

2013), and Ladybug Tools (Roudsari et al., 2013). In the rendering space, sradmaps can be sampled

from renderers like Mitsuba (Nimier-David et al., 2019) and Hyperion (Burley et al., 2018), for use

in scenes with natural daylight.
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3.3 Results

Three of the four final regression models (ETR, RFR, KNR) resulted in very high R2 scores and

acceptably low RMSD error on all holdout test skies listed in Table 3.2. As expected, the baseline

LNR model resulted in relatively poor predictions across all test skies, with an overall error of

14-24% RMSD. By contrast, ETR resulted in 4-7.5% RMSD. For test sky 07/26/2013 13:15, three

of the four models predicted within 4% RMSD. In general, the tree-based models (ETR and RFR)

perform better than the nearest-neighbor model (KNN). RMSD results for all models on each test

sky are shown in Figure 3.12.

Figure 3.13 shows a comparison of all 81 measured and ETR predicted radiance distributions,

their standard deviations, and overall averaged ratio between measured and predicted on test sky

05/27/2013 10:15. The standard deviations of measured and predicted are nearly identical, and the

averaged ratio is nearly 1.0. Note the noisy error in the ratio graph resides within an H2O and CO2

absorption band, where atmospheric radiance is extremely small (Lacis and Hansen, 1974), and

measurements are susceptible to noise.

For the same holdout test sky (05/27/2013 10:15), Figure 3.14 shows ETR prediction error across

the entire hemispherical sky, and highlights the two worst spectral radiance predictions (23.63%

and 21% RMSD). Two other predictions selected at random are shown for comparison. A vast

majority of the 81 samples are predicted to within 1% RMSD. Note that even with “high” error,

predicted curves align with ground truth measurements in terms of shape. The models therefore

have learned the wavelength relative intensities of the sky in accordance with capture time, sun

location, etc. This is consistent with nearly all predicted results; while the magnitudes per wave-

length sometimes deviate, the general shapes each predicted curve is accurate.
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Figure 3.12: Model results on each of the four holdout test skies listed in Table 3.2. ETR performed
the best, with an error of 4-7.5% RMSD. LNR was by far the worst performing.
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Figure 3.13: Whole sky results for holdout sky 05/27/2013 10:15 with ETR model; no ground truth
sky samples from this capture were used for training. (a) and (b) show the measured and predicted
spectral radiance distributions; (c) shows the standard deviation from mean for both measured and
predicted distributions; and (d) is the overall ratio between the two. Note the error in the ratio is
within the absorption band near 1350 nm, where radiance is extremely small.

57



350 550 750 950 1150 1350 1550 1750
Wavelength (nm)

0.00

0.05

0.10

0.15

0.20

Ra
di

an
ce

 (W
/m

2 /s
r/n

m
)

Sample 11 (236.25°, 12.12°) (05/27/2013 10:15)
measured
predicted

350 550 750 950 1150 1350 1550 1750
Wavelength (nm)

0.00

0.05

0.10

0.15

0.20

Ra
di

an
ce

 (W
/m

2 /s
r/n

m
)

Sample 56 (0.00°, 53.37°) (05/27/2013 10:15)
measured
predicted

350 550 750 950 1150 1350 1550 1750
Wavelength (nm)

0.00

0.05

0.10

0.15

0.20

Ra
di

an
ce

 (W
/m

2 /s
r/n

m
)

Sample 39 (120.00°, 33.75°) (05/27/2013 10:15)
measured
predicted

350 550 750 950 1150 1350 1550 1750
Wavelength (nm)

0.00

0.05

0.10

0.15

0.20

Ra
di

an
ce

 (W
/m

2 /s
r/n

m
)

Sample 74 (135.00°, 71.92°) (05/27/2013 10:15)
measured
predicted

(11)

(56)

(39)

(74)

(a)

(b)

Figure 3.14: ETR results of four radiance predictions on holdout test sky 05/27/2013 10:15. (a)
shows the camera processed JPG sky capture for convenience (the model was trained on TIFF
data). (b) shows RMSD error across the entire sky. Radiance for samples (11), (56), (39) and (74)
are pinpointed at their location in the sky. Samples (39) and (74) were the two worst predictions,
with RMSD errors of 23.63% and 21% respectively.

Although we were expecting some insight from providing multiple exposures of sky images, results

seem to indicate that HDR data, at least for clear skies, does not improve model prediction. All

HDR runs resulted in similar error to non-HDR runs. This may be because clear sky color changes

are so “uniform” throughout the day, that multiple exposures lack significance. In other words, all

provided exposures may have had the same color change trends. We suspect that HDR data will

be more significant in predicting scattered and overcast skies, as the color variations of clouds are

less uniform across exposures.

Results of our color experiment (Figure 3.15) seem to indicate that color model is irrelevant to
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Figure 3.15: Sky sample color model made little to no difference in training and prediction results.
(a) and (b) show RMSD results on 07/26/2013 13:15 and 09/24/2013 13:15 respectively.

our method. This implies that our method can be used with any representation of color, as the

trends in color across the sky are similar regardless of format. It is unclear if using color data

initially captured in an sRGB format somehow restricted the range of the other color models after

conversion. In other words, would initially capturing the sky in a color model that maps to a larger

color space be better?

The results of the spectral resolution experiment (Figure 3.16) show the benefits of decreasing

spectral resolution from 1 to 5 nm. Not only does prediction accuracy improve, but model sizes

(particularly the large ensemble models), as well as model training and prediction times, decrease

significantly. The improvements in prediction accuracy are likely due to several factors: less noise

in the spectral radiance distribution, and an overall simpler prediction problem (fewer outputs

to predict). Dataset size also decreases with reduced resolution, but is eclipsed by the largest

model sizes. Beyond 5 nm resolution, further reductions result in diminishing returns. This is an

important find for real-time applications, which may operate on limited embedded hardware.
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Figure 3.16: Limiting resolution to 5 nm drastically decreases model size, improves computa-
tion speed, and even increases prediction success, likely because the radiance curve is less noisy.
Further reductions yield diminishing returns.

We note here that results between the minimally processed, uncompressed TIFF sky images and

traditional, camera processed, compressed JPG sky images, were roughly the same. TIFF color

data resulted in slightly better results (∼1%) on some skies, though this may be within the standard

deviation of prediction error and machine learning random fluctuation. Since the TIFF images

(∼35 MB) are at least 1000% larger than the JPG images (∼2.5 MB) compressed with quality level

100, and the results are similar, we recommend the use of JPG images in real-time applications of

our method.

Spectral radiance files (sradmaps) are the culminating output of our method. They are generated

by extracting and engineering features per pixel of test skies (Table 3.2) and feeding them through

one of our models. Linear scale false-color visualizations of ETR model predicted sradmaps are

shown in Figure 3.18 and Figure 3.17. Test sky images were first scaled down to a resolution
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Figure 3.17: False-colored sradmap visualizations for holdout test sky 07/26/2013 13:15. Each
pixel plotted is a summation of an entire spectral radiance distribution (350-1780 nm).

of 333x333 pixels, to anticipate real-time processing speeds. sradmap generation, visualization,

and logged output took ∼20 s to complete on the same machine specified in Subsection 3.2.3;

embedded hardware would likely take longer, though various optimizations can be made to the

process. The sradmaps demonstrate that our models have the ability to generalize across the entire

hemisphere (i.e. predict spectral radiance for every point in the sky) even when trained on a mere

skeleton of samples (81 concentric 1° steridians). Note that most of the sky is unaccounted for by

the skeleton, including points beyond the variance of sun and sky coordinates. sradmaps contain

predictions for the entire sky.
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Figure 3.18: Columns (1-4) are the holdout test skies in Table 3.2, in respective order. Rows (a) and
(b) show traditional, camera processed JPG and minimally processed TIFF captures, respectively.
Row (c) shows the sradmaps generated for skies in row (b); we predict spectral radiance (350-1780
nm) for each pixel of each image, sum the distribution, and visualize with false-color map.
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3.4 Validation

Our results are validated 2 separate ways: (1) by holdout measurements unseen by our models, and

(2) by libRadtran, a validated, atmospheric radiative transfer software package.

Our holdout test sky measurements (Table 3.2) were chosen at random and kept from training

or preliminary testing of any model. Machine learning projects often use this method to vali-

date a model’s ability to generalize over unforeseen data. The results presented in Figure 3.12,

Figure 3.13, and Figure 3.14 show the results of comparing predictions against these holdout mea-

surements for the 81 sky samples per sky. The results of our additional experiments show that our

method is robust against implementation details such as image compression, exposure, and color

model.

Finally, we compare our ETR model predictions with ground truth measurements and the atmo-

spheric spectral radiance distributions computed by libRadtran (Emde et al., 2016). libRadtran

was configured the same for all four holdout test skies. In other words, no sky-specific data (atmo-

spheric measurements, parameters, or ranges) were specified per test sky (Hess et al., 1998; Holben

et al., 1998). For example, the O2 band around 750 nm is represented in our results but not by the

libRadtran predictions because we did not include the REPTRAN absorption parameters. Because

of the framework we were using, only visible wavelength energy was available from libRadtran.

Nevertheless, Figure 3.19 and Figure 3.20 show that visible spectral radiance from libRadtran for

three of our four holdout test skies were in alignment with both ETR model predictions and ground

truth measurements. However, for test sky 07/26/2013 13:15, libRadtran deviates from both ETR

predictions and ground truth measurements (Figure 3.21). All tested samples for this sky show

similar deviations in magnitude, but not curve shape. As mentioned, libRadtran requires accurate

atmospheric data for its calculations. Because such data was not configured, and because our pre-

dictions are closer to ground truth measurements, it is possible that our ETR model learned the sky
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Figure 3.19: Spectral radiance at (33.75° azimuth, 12.12° altitude), circled, for two of the holdout
test skies in Table 3.2. Spectroradiometer measurement, ETR model prediction, and libRadtran
estimation plotted.

specific atmospheric conditions libRadtran needed in order to compute accurately. In particular,

we note the high-level cirrus clouds along the horizon, which might indicate ice crystals in the at-

mosphere, and account for deviations between data-driven predictions and physically-based model

calculations.
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Figure 3.20: Spectral radiance for two sky samples of holdout test sky 05/27/2013 10:15. Spectro-
radiometer measurement, ETR model prediction, and libRadtran estimation plotted.
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Figure 3.21: Spectral radiance for two sky samples of holdout test sky 07/26/2013 13:15. Spec-
troradiometer measurement, ETR model prediction, and libRadtran estimation plotted. libRadtran
computed radiance deviates from both ETR predictions and measured ground truth data, likely
because of the lack of needed atmospheric configuration data.
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3.5 Ongoing Work

Early in our sky model research, we tested models on all sky covers: clear, scattered and overcast

(Table 3.1, Del Rocco et al. (2018)). However, preliminary results indicated that the regression

models could not learn enough from unclear skies (Figure 3.22). We have recently trained and

tested on scattered sky data with a deep-neural-network (DNN), and the results seem to be compa-

rable or even slightly better than our regression models on clear sky data Figure 3.23. The DNN

model is currently configured with 3 layers, 300 x 800 x 500 neurons, and trained for 400 epochs

before convergence. We trained on 10000 sky samples, tested with 3000, and left an additional

3000 holdout samples for further testing. Whole sky error results on one of our test skies is 3.63%

RMSD (slightly better than our ETR regression model on clear sky data (Figure 3.12)). We are

further tuning the DNN model and experimenting with using entire pixel subsets of skies instead

of a single Gaussian weighted color per sky sample. We will also test our model on mixed and

separate sky cover datasets in attempts to train a unified model.
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Figure 3.22: This figure shows the early results of our regression models on all sky covers.
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Figure 3.23: This figure shows preliminary whole sky results on test sky 11/06/2012 12:32 with
a deep-neural-network (DNN) model. (a) shows a 1 s exposure of the sky, (b) shows the whole
sky RMSD normalized, (c) shows the standard deviation range of measured and predicted spectral
radiance across the whole sky, and (d) shows the results of a single sky sample.
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CHAPTER 4: RADIANT SPECTRAL ENERGY FOR SIMULATION

Much of the research in this chapter appears in the following published paper:

Del Rocco, J. and Kider Jr., J. T. (2021). Radiant spectral energy for simulation in the built envi-

ronment. In Proceedings, Building Simulation 2021: 17th Conference of IBPSA. IBPSA

Modern building performance simulations (BPS) have largely ignored spectral energy for a variety

of reasons. One reason is that BPS algorithms have been developed and validated incrementally

over decades (Crawley et al., 2008). In that time, the models and algorithms have relied mostly on

irradiance approximations to simplify daylighting and energy calculations already in need of op-

timization, especially for increasingly complex building geometry and surrounding environments

(Kider et al., 2019; Nguyen et al., 2014; Jones et al., 2012). In addition to this, most sky model

research is limited to subsets of the visible range (Kocifaj, 2015; Tohsing et al., 2014). The push

for BPS in early-stage design also demands real-time solutions. It is only natural to assume that

spectral data (input, output, or both) might further slow down the simulation pipeline (Hong et al.,

2008). The data needs to be transformed and marshaled through a variety of legacy and modern

software systems: plugins for architectural modeling packages e.g. Rhino 3D (Robert McNeel &

Associates, 1980), critical energy analysis engines and interfaces e.g. EnergyPlus (Crawley et al.,

2000) and OpenStudio (Guglielmetti et al., 2011), fenestration software, automation tools (e.g.

Ladybug Tools (Roudsari et al., 2013)), Radiance (Ward, 1994), not to mention the coordination

effort involved between tool providers.

Yet real-time BPS pipelines must eventually use full-spectrum energy to provide the most accurate

results for daylighting and energy analysis, and a “spectral revolution” is already underway. Spec-

tral ray-tracing renderers have recently been developed (Nimier-David et al., 2019; Balakrishnan
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and Jakubiec, 2019). The spectral composition of artificial and natural light sources in the built

environment is increasingly being studied to support circadian rhythms and melatonin production

in building occupants (Potočnik et al., 2019; Konis, 2019; Hraška et al., 2014), even using recently

developed specialty BPS tools (Solemma, 2019; Inanici and ZGF Architects, 2015).

It is our belief that a single spectral input for BPS will simplify the pipeline of specialized file for-

mats and processes, as both daylighting and thermal analysis are possible from the same spectrum

of energy. We have anticipated this and worked towards a solution for BPS to use both light and

heat from the same spectral inputs. Here, we present a plugin for Rhino 3D which accepts whole

sky spectral energy sources and interfaces with the Transition Portal radiosity engine (Kider et al.,

2019) to visualize any number and size of spectral bins of interest. To demonstrate our system

under varied times of day and sky conditions, we use both measured and predicted spectral energy.

The measured energy comes from the Kider et al. (2014) dataset, and the validated predicted en-

ergy comes from both real-world skydome photographs passed through a machine-learned model

by Del Rocco et al. (2020), as well as predictions from libRadtran (Emde et al., 2016). We propose

and simulate an adaptive smart spectrally-varying glazing solution that filters heat during warm

climates but allows it during cool climates to maximize energy performance with natural heating.

4.1 Methods

This work presents a novel interactive method for early-phase design and retrofitting BPS that

takes advantage of radiant spectral energy to visualize natural daylighting and thermal potential.

We have modified our Transition Portal radiosity engine to compute a full-global illumination

solution across user-defined spectral bins of interest. We summarize the process in three steps: (1)

spectral solar and sky radiance energy is computed given an appropriately configured sky model

and required input, (2) facade and glazing Transition Portals modulate user-defined bins of spectral

energy that can enter the building, and (3) the radiosity-based rendering engine accelerates the

69



global illumination solution. Overall this approach provides real-time daylighting and thermal

potential feedback for any site location and time of year provided a model can produce the spectral

energy.

4.1.1 Radiant Spectral Energy

Terrestrial (atmosphere-attenuated) solar radiation typically measures between 350 to 2500 nm

with a spectrometer (Figure 2.1), although this can vary. This includes the spectral ranges ultravio-

let (UV) (350-400 nm in this case), visible / light (VIS) (350-780 nm), and most near-infrared en-

ergy (NIR) (780-2500 nm), although the literature reveals that spectral ranges are loosely defined.

The traditional term for visible-near-infrared (VNIR) refers to VIS and NIR spectra combined

(Meseguer et al., 2012). NIR is often split into two separate ranges called VNIR (780-1000 nm)

and SWIR (1000-2500 nm), although we don’t differentiate in this work. Note that some humans

(and many animals) can detect visible energy as low as the 310 nm wavelength (Yokoyama et al.,

2014), and that plants can utilize UV energy as low as 280 nm, although some of this is naturally

filtered by the ozone layer (Stapleton, 1992).

Any number or range of spectra (disparate or overlapping) can be visualized with our method.

Throughout this paper, we refer to 3 spectral bins of interest, VNIR (“full-spectrum” for our

dataset, 350-1780), VIS (350-780 nm), and IR* (780-1780 nm). Figure 4.1 shows measured and

model-predicted spectral curves plotted with ranges of interest, VIS and IR*. These measurements

and predictions come from Del Rocco et al. (2020) and Kider et al. (2014). These full-sky spectral

radiance predictions as well as predictions from libRadtran (Emde et al., 2016) were used in this

work.
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Figure 4.1: Sky captures 7/26/2013 13:15 EST (top) and 9/24/2013 15:39 EST (bottom) from
dataset by Kider et al. (2014). Points (A) (B) and (C) each represent the spectral radiance from a
1circ steradian. (A) and (B) were measured, while (C) was predicted.
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A A′ B B′

C C′ D D′

Figure 4.2: Skies 7/26/2013 13:15 EST and 9/24/2013 15:39 EST (A, B) from all-sky captures
by Kider et al. (2014) and machine-learned model predicted radiant spectral energy (A′, B′) from
Del Rocco et al. (2020). Skies at the same location and datetime were generated with physically-
based radiative transfer software package libRadtran (C, D) along with luminance and spectral
energy (C′, D′). Radiant spectral energy from skies such as these were used during simulations.

Spectral radiance across the skydome may come from any appropriate, properly configured sky

model. There has been a wealth of research into sky models over the past few decades, roughly

grouped into three categories: analytical, physically-based, and data-driven. Analytical models

use sky observations to derive parametric functions (Hosek and Wilkie, 2012b; Preetham et al.,

1999). Physically-based models are the most accurate as they utilize the radiative transfer equation

(RTE) to compute the transfer of solar radiation and composition of the atmosphere resulting from

Rayleigh and Mie scattering and polarization (Emde et al., 2016; Kocifaj, 2015). Data-driven

models take advantage of massive training datasets and machine learning methods to find parallels

between sky features and spectral energy (Del Rocco et al., 2020; Chauvin et al., 2015; Tohsing

et al., 2014). Although most skylight models calculate radiance and irradiance, many produce

only a single combined irradiance value, RGB color, or limited visible spectrum range. While
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these models are indeed useful for BPS, spectral energy is needed for spectral-varying glazing and

materials to differentiate light from heat. Our approach requires a skylight model that provides a

wide range of spectral energy.

Note that spectral radiance from discretized points across the skydome (versus global irradiance)

is what allows BPS to account for occlusion from nearby buildings and trees as well as cloud diffu-

sion which produce complex energy scattering scenarios that absolutely affect global illumination,

daylighting, and thermal analysis (Schumann and Greenberg, 2012).

4.1.2 Transition Portal Radiosity Engine

The first step of our pipeline computes solar and sky energy for the input forcing function of our

radiosity engine (Figure 4.1). Figure 4.3 shows an example of a sun path and sky patches that

contribute spectral energy to our simulations. The sky patches and their form factors are pre-

calculated only once. And only when sky condition input changes (due to a date/time change) is

the appropriate spectral energy recollected and radiosity recomputed.

We use a finite elements radiosity based approach (Goral et al., 1984) to determine the illuminance

A B

Figure 4.3: Spectral energy is gathered for the (A) solar sun path and the (B) sky patch locations
given input sky capture or site location and sky conditions.
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Figure 4.4: Preliminary result of an office showing direct incident solar emission and sky patch
indirect contributions discussed in Figure 4.3.

E in the building (Greenberg et al., 1986). This computes the full global illuminations lighting

solution in the space. First, the space is discretized into a set of discrete patches to calculate

this illuminance. The direct light from the sun, sky, and additional light sources (D) and the

indirect light being reflected (ρ) is added to compute the final global illuminance Ei on a patch i

mathematically as:

Ei = Di +∑
j

Fi j ρ j E j (4.1)

The form factor Fi j expresses the quantity of light that moves between patch j to fall on patch i.

This is expressed by a double integral equation between the two patches as follows:

Fi j = R
∫

Ai

∫
A j

(
n̂(xi)· ω̂i j

)+ (
n̂(x j)· ω̂ ji

)+
‖xi−x j‖2 V (xi,x j)dx j dxi (4.2)

where,

ω̂i j =
x j−xi

‖x j−xi‖
and R =

1
πAi

(4.3)

We use a Monte Carlo ray casting method to calculate the form factors similar to Jones et al. (2013)

74



to approximate the integral.

To calculate the final building illuminance we express this term in a simple matrix equation:

Aλ Eλ = Dλ where Aλ = I−FPλ (4.4)

where F is the form factor matrix, D is a vector of the forcing function from the sun/sky illumi-

nances from the transition portal, P is a diagonal matrix containing the patch reflectivities, the

identity matrix I and E is the unknown vector of total illuminances which we solve for. λ repre-

sents the number of wavelength bins we solve for. F remains constant across the different λ bins.

There are numerous ways to solve this radiosity equation. We utilize an LU factorization approach

similar to Kider et al. (2019).

The spectral Transition Portal engine accelerates the calculation of different facades and shading

devices by accounting for these in the radiosity forcing function calculation. This can be modu-

lated differently for the different spectral wavelength bins (λ ) allowing complex spectral facades,

glazing, and shading devices to be accurately simulated. This direct illuminance can be calculated

by pixel counting (Jones et al., 2012) or ray tracing (Kider et al., 2019). Both methods estimate the

fraction that each patch is unoccluded by shading devices or attenuated by glazing. Both the solar

shading materials and attenuation glazing transmission can operate differently between visible and

infrared wavelength having different effects on daylighting and thermal properties.

4.1.3 Adaptive Smart Spectrally-varying Glazing

In addition to more traditional static or kinetic shading devices, smart (switchable) glazing solu-

tions (marketed as “smart glass,” “e-glass,” / “smart film,” “e-film”) have already been proposed for

building performance (Ardakan et al., 2017; Wong and Chan, 2014) and are commercially avail-

able (Market Research Explore, 2019). These glazing solutions are generally produced in one of
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Figure 4.5: This figure shows some older, standard glazing options (LEFT) and spectral transmit-
tance of specific products offered by Metro Performance Glass Ltd. (2021) (RIGHT).

three ways: electrochromic substrate, liquid or gel suspended particle, or polymer-dispersed liquid

crystal (PDLC), which are manufactured quite differently but function in a very similar manner.

All of these solutions can toggle (transmit or reflect) or even dim visible spectrum energy given

a low voltage charge. One rather important difference is that electrochromic solutions are trans-

parent when no voltage is applied, unlike suspended particles or PDLC which require a charge to

maintain transparency. Building usage and occupancy factors into the performance of smart glazed

buildings (Ghosh and Mallick, 2018).

Two older, non-smart, non-adaptive, yet very prevalent technologies often applied to glazing as

an alternative (or in addition to) other shading solutions are tinting and low emissivity (Low-E)

coatings. Both of these well-known, abundant solutions are ideally transparent to visible spectrum

energy and reflective to non-visible spectrum energy, although most literature shows this is not yet

the case (Wang and Shi, 2017). Most existing products also ignore long-wave infrared radiation for

the most part (Zhao et al., 2018). Tinting involves mixing materials into the glass itself whereas

Low-E coatings are applied to glazing surfaces, inside or outside, and to any number of panes.

Unlike Low-E glass, tinted glass often changes color with glass thickness. These solutions often

partially occlude visible spectrum energy (Yuste et al., 2011). Tinting often reduces visibility more
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(A) (B)

Figure 4.6: This figure depicts the “ideal” (if simplified) glazing scenarios for summer months (A)
and winter months (B). VLT stands for visible light transmittance. IR and LWIR are infrared and
long-wave infrared, respectively. Typically, buildings want to reject (and dissipate) heat energy
during summer months and allow (and retain) heat during winter months.

than the heat gain coefficient, and multiple Low-E coatings (Low-E2, Low-E3) incrementally affect

parts of the visible spectrum. Tinted or Low-E glazing commonly has a visible transmittance (τvis)

of only 50-90% (Yuste et al., 2011). Some of these solutions are depicted in Figure 4.5.

Adaptive smart spectrally-varying visibly-transparent glazing solutions can improve natural day-

lighting, heating and cooling automatically by responding to environmental conditions. Often

building daylighting scenarios are configured to shade direct (beam) energy but allow indirect (sky)

energy as it does not produce glare scenarios (Boubekri, 2008). Assuming this configuration, we

would then allow all visible energy to maximize the amount of light in the interior space (although

slight reductions could be made to reduce some of the heat if desired). Adaptive smart glaz-

ing could then automatically allow non-visible spectral energy for natural heating during winter

months versus summer months instead of requiring climate specific glazing products (Figure 4.6).

In summer months, building glazing could then spectrally filter infrared energy from entering while

simultaneously allowing long-wave infrared that builds up to escape. Doing so would reduce the

amount of recovery cooling required, and therefore the associated energy use and costs. In winter
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Figure 4.7: The Transition Portal spectral radiosity engine supports facades which filter or allow
certain wavelengths during global irradiance calculations.

months, however, we want the opposite to help reduce energy and costs associated with heating,

especially in temperate and sub-polar climate regions. The more free heat we can actively capture,

the better.

Note that visible energy filtering of Low-E coatings and tint can affect building occupants (Potočnik

et al., 2019). Light shelves or indoor greenhouse spaces could selectively allow small amounts of

UV-A or UV-B spectrum energy for plants (Turnbull et al., 2013) and indoor birds, while still be-

ing energy efficient. Finally, given the chemical substrate voltage propagation of smart glazing,

it should be possible to displace discretized patches or patterns throughout the glazing to produce

non-smart “fritted” areas that are unaffected by the voltage. Since most smart glazing is charged

from the sides, these fritted patterns would provide the inverse shading of traditional patterns.

A few mechanically-adaptive fritted glazing solutions have also been proposed (Drozdowski and

Gupta, 2009), but we believe our non-mechanical fritted smart glazing proposal is novel (Fig-

ure 4.8).

With our spectrally-aware Transition Portal radiosity engine we simulate the direct solar emissiv-

ity and radiosity of a local office space built to scale with 4 different glazing solutions applied:
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fritting holes

Figure 4.8: This figure shows our novel fritted smart-film concept, which removes uniform seg-
ments (holes) at any resolution from any smart-film, and allows for all energy to pass through
unfiltered at the hole locations. The smart-film is depicted in blue only to distinguish between
fritted and non-fritted areas.

traditional non-shaded glazing, commercially available Low-E coated, spectrally-varying smart

glazing, and our fritted smart glazing proposal (Table 4.1). The baseline non-shaded glazing has

100% transmittance across all wavelengths VIS and IR* (VNIR); the Low-E coated glazing has

85% visible transmittance (τvis = 85%) (VIS spectra) and completely reflects IR* wavelengths

(Yuste et al., 2011); the smart glazing has τvis = 100% and also completely reflects IR*; the fritted

smart glazing has a τvis = 100% but allows roughly 30% IR* spectra. Since the last two glazing

solutions are switchable, they can be toggled on and off (and theoretically dimmed) for parts of the

year when computing daylighting and energy summaries. Ultimately these transmittance and filter

properties can be configured for simulation (Figure 4.7).
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Table 4.1: The 4 glazing solutions tested in simulations. The transmittance (τ) filters for VIS and
IR* spectra are denoted, whether or not the glazing is powered, and whether or not it is commer-
cially available.

Type τvis τIR∗ Powered Available

non-shaded 100% 100% no yes
Low-E 85% 0% no yes
Smart 100% 0% yes yes

Smart Fritted 100% 30% yes no

4.1.4 Rhino 3D 6 Plugin

Our previously published Transition Portal radiosity engine code is written and optimized for the

GPU in C++ using standard graphics libraries (Kider et al., 2019). This work modified the engine

to support spectral radiance values so that separate bins of spectra could be visualized separately

for various purposes. We also wrapped the radiosity engine with a 64-bit Rhino 3D 6 plugin

written in C# with an interfacing managed-C++ layer. The plugin supports: (1) defining layers

of geometry and glazing with material properties for transmittance, (2) defining spectral bins and

false-colors for visualization, and (3) loading files with direct sun and indirect sky spectral radiance

vectors. The number of sky patches is configurable so that any granularity can be defined. This

gives downstream or future work contributions the ability to occlude diffuse radiation as necessary

from neighboring objects. Although our plugin is intended for early phase building designers /

architects, some of the functionality is currently still executed through Rhino commands, not the

GUI interface. A screenshot of the plugin being used in Rhino 6 is shown in Figure 4.9.
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Figure 4.9: A screenshot of the Transition Portal radiosity engine running in our 64-bit plugin in
Rhino 3D 6, visualizing spectral energy bins VIS, IR*, and VNIR. Note the panel for specifying
the names, wavelengths and colors of the spectral bins of interest.
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4.2 Results

We ran different spectral visualization studies with typical office space model geometry in the

Southeastern United States, although the spectral radiance sky data comes from the dataset mea-

sured, validated, and modeled by (Kider et al., 2014; Del Rocco et al., 2020). The purpose of the

study was to demonstrate how different bins of wavelengths of the solar radiation spectrum could

be visualized individually and as combinations to produce illuminance and irradiance metrics. Our

office was constructed with a patch size of 6′′ and a total of 3451 patches. Simulations were run

from our Rhino 3D plugin interfacing with the Transition Portal spectral radiosity engine on a

Windows 10 PC with Intel Core i7-7700K CPU 4.2GHz. Direct incident solar emission was com-

puted for visible energy (VIS), near-infrared (IR*) and the “full-spectrum” (VNIR) in∼2 minutes,

form factors in∼30 seconds, and final spectral radiosity in∼1 minute, with a complete simulation

time of roughly 3.5 minutes. If only the final radiosity visualizations are desired, the direct solar

emission visualizations can be omitted to improve processing performance.
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Figure 4.10: False colored (yellow) spectral renders for various bins separated into direct incident
solar emission (A) and radiosity (B). The colorbar correlates with the radiant spectral energy input
from sky capture 9/24/2013 15:39 EST (Figure 4.1). Any number of spectral bins (down to 1nm
resolution) can be visualized in any color.
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Figure 4.11 shows one of the main target use cases for our Transition Portal spectral radiosity

engine - the ability to simulate spectrally. We demonstrate the baseline office with typical 100%

transmittance glazing and support mullions for our three spectral simulation bins (VIS, IR*, and

VNIR) Figure 4.11(A). We then vary the facade type to simulate a low-e coated spectral glazing,

spectral-filtering smart glazing, and fritting. These results have similar global illumination illu-

minance in the VIS bin with the baseline office simulation. The spectral-varying facade materials

affect the IR* bin. The Transition Portal spectral radiosity engine allows architects to test a wider

class of facade options and breaks out the simulation so they can visualize the effects of a facade on

daylighting and thermal outputs. This provides insight and balance between design requirements

and constraints.

Figure 4.10 shows the breakdown between direct incident solar radiation versus indirect illumina-

tion as both are computed and visualized. Figure 4.10 also demonstrates that any spectral bin of

interest can be visualized, including per wavelength. This method can be further refined and op-

timized to produce spectral outputs for building-control algorithms which can then be utilized by

the RCS of state-of-the-art building monitoring systems that take into account spectrally-varying

parameters. It is still infeasible to equip buildings with radiance (not irradiance) measuring equip-

ment to produce full skydome radiant spectral energy for such a system. And modern atmospheric

models have become increasingly complex requiring many local measurements including aerosol

optical depth (AOD), cloud fraction, reflectance, altitude, ground albedo, scale height, gamma, etc.

(Kocifaj, 2015). Thus we propose the use of a commercially available all-sky camera to monitor

the sky along with other cheap, readily available sensor data and regularly pass them to a modern

skylight model that can produce approximate radiant spectral energy with low-resolution inputs.

Such a system is feasible and affordable now and has the ability to drive RCS of spectrally-aware

building monitor systems. Such a system will have finer-grain control.
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Figure 4.11: False colored spectral radiosity renders with radiant spectral energy for visible
spectrum (VIS) (350-780nm), near-infrared (IR*) (780-1780nm), and combined visible and near-
infrared (VNIR) energy with simulated spectral energy from libRadtran on sky 7/26/2013 13:15
EST with Table 4.1 glazing solutions. IR* wavelengths are filtered out completely by (B) and
(C) glazing solutions while fritted glazing (D) allows ∼30% IR* transmittance. Note the higher
intensity of smart glazing (C) in VIS spectrum over Low-E (B).
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CHAPTER 5: SKY AND OCCUPANT AWARE ADAPTIVE FACADE

Some of the research in this chapter appears in the following publication:

Moulton, N., Del Rocco, J., Kider Jr, J. T., and Fiore, S. M. (2018). An affective kinetic building

façade system: Mood Swing. In Proceedings, 13th Conference on Advanced Building Skins, pages

417–426. Advanced Building Skins GmbH. ISBN: 978-3-9524883-4-8. https://abs.green/

files/pdf/content-2018.pdf

Although many downstream applications of our research are possible, one immediately viable op-

tion is a building monitoring system equipped with all-sky camera that automates kinetic facades

and/or smart-glazing in response to spectral radiant energy predictions. Such a system could au-

tomatically harness (or attenuate) light and heat with more fine-grain control and accuracy than

one that operates on a single downwelling measurement, and is much more affordable and efficient

than a live sky scanning system. Ideally it would also provide support for spectrally filtering smart-

glazing to filter short and long-wave infrared energy during certain scenarios, and should allow for

occupant overrides. In this chapter we discuss existing designs and then present an adaptive build-

ing facade prototype system of our own, from concept, design, and simulated case study analysis,

to constructed cyber-physical prototype.

Figure 5.1 gives a high-level overview of a sky and occupant aware cyber-physical building mon-

itoring system that could be leveraged by buildings today. We explain the steps denoted with

numbers in the figure. First (1), an all-sky camera is mounted to the top of the building to capture

the sky at some desired interval (e.g. every 1 - 10 minutes) and feed those images, along with any

available atmospheric readings from regional measuring stations, to a modern sky model (2) which

produces a spectral radiance map (sradmap) of the sky (Del Rocco et al., 2020). The surrounding
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(1) (2)

(3) (4)

(5) (6)

(7)

Figure 5.1: A cyber-physical building monitoring concept with adaptive facades. Steps (1) through
(7) are detailed in the paragraph text and involve: (1) monitoring the sky, (2) predicting spectral
radiance, (3) surveying the surrounding environment, (4) occluding the energy that doesn’t reach
the building, (5) building energy modeling, (6) occupant overrides, and (7) driving kinetic facades.

environment is surveyed occasionally (3) (i.e. once per year or as needed) with fed into shadow

mask software (Roudsari et al., 2013) (4) to produce a skydome mask which is then applied to

the sradmap to find the remaining spectral radiance energy that actually reaches the building. The

remaining spectral radiance vectors are fed into any desired (but real-time capable) BEM software

with spectral radiance support (5) to predict final light and heat in zones with glazing. These pre-

dictions are then combined with occupant schedules, overrides, and any other desired factors (6)

and fed into a model-based predictive controller (MPC) that drives the hardware which automates

the kinetic facades and/or smart-glazing (7).
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5.1 Facade Concept

Adaptive building facades employ sensor-based automation systems to respond to external envi-

ronmental conditions. This allows buildings to react to exterior environmental conditions in order

to: implement daylighting (the active harnessing of natural daylight), reduce energy spent on artifi-

cial lighting, encourage occupant well-being with circadian lighting and natural vistas, attenuate or

capture short-wavelength infrared energy for heat, etc. Daylight is important for physical and men-

tal health, from the sunlight’s ability to increase vitamin D, to the alleviation of Seasonal Affective

Disorder (SAD). Research has shown that daylighting and nature may have positive impacts on

well-being (Ulrich, 1979); benefit cognitive processes (Berman et al., 2008); and renew attention

(Kaplan, 1995). Adaptive facades are also growing in popularity due to parametric design tools to

quickly design, simulate and mechanically control them (Velasco et al., 2015). One notable design

even incorporates photovoltaic panels as facade units (Nagy et al., 2016). Figure 5.2 illustrates

various famous adaptive building facades that have the ability to adapt to their environment.

Figure 5.2: Famous adaptive facades found around the world: (A) Musée de L’Institut du Monde
Arabe (Jean Nouvel, Architecture-Studio, Pierre Soria and Gilbert Lezenes, 1987); (B) SDU Cam-
pus Kolding (Henning Larsen Architects, 2014); (C) Q1 Building, ThyssenKrupp Quarter (SWD
Architekten + Chaix & Morel et Associés, 2010); (D) Al Bahar Towers (Aedas Architects, 2012).
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Our kinetic facade design consists of an interlocking array of equilateral triangular units supported

by framing hardware, and is intended to be mounted over any exterior facing glazing surface.

Each triangular unit is subdivided by an inner equilateral triangle, denoting its center and primary

shading surface, and the remaining space resulting from the subdivision of the outer and center

triangles is then filled by three triangular, adjustable shading surfaces we call “wings.” Each wing

is controlled by a servo motor, either directly or in drive train, that rotates it toward the center of

its unit. The units can be controlled both globally and independently of each other. This allows

the facade to respond to a variety of situations. This facade concept also provides architects with

an interesting exterior building “skin” design. Figure 5.3 depicts various configurations of a unit,

while Figure 5.4 illustrates the facade concept as a whole with multiple units side-by-side.

To give building designers more options, the center equilateral shading triangle of each facade

unit can be configured to any ratio of its outer triangle bounds, provided all facade units maintain

the same ratio. This allows for numerous interesting design and natural lighting configurations.

Consider a center shading triangle that bisects its outer bounds by half on each side. We call

this the Sierpinski design because it mimics the famous fractal by Sierpinski (1988). We call the

design where the center shading triangle bisects its bounds at a ratio of 1
φ

, the Golden design, for the

golden ratio. This architectural concept allows for a variety of different dynamic configurations

for daylighting. For individual unit control, two options are possible: (1) a single servo with

drive train that lifts all three “wings” uniformly at the same rate and limits, and (2) a servo per

wing, which allows for a much greater range of configurations, including more traditional shading

devices, light shelves, and non-uniform patterns. These tiled triangular units are not confined to any

predetermined number or size, and many complex shading and daylighting patterns are possible.

We can design this building facade concept to respond to various external environmental conditions

and interior occupancy scenarios. Figure 5.5 and Figure 5.6 illustrate the facade under global and

individual unit control at various angles.
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Sierpinski

(a) 0° (b) 30° (c) max

Golden

(d) 0° (e) 30° (f) max

Figure 5.3: Individual facade units of Sierpinski and Golden configuration with wings opened and
closed. (a), (b), and (c) are of Sierpinski design open at angles 0°, 30°, and maximum, respectively,
while (d), (e), and (f) are of Golden design at the same angles.

(a) (b) (c)

Figure 5.4: Our adaptive facade design concept. (a) and (b) show the Sierpinski configuration fully
closed and opened, respectively. (c) shows a 30° open Golden configuration.
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Sierpinski

Closed 30° 60° Max Open

Golden

Figure 5.5: Our adaptive facade concept at various global control actuation. The center shading
triangular surface is depicted in light gray, while the kinetic “wings” are dark gray. Each of the
facade unit bounds / frame is depicted in blue.

Figure 5.6: Theoretically, each facade unit could be controlled individually. Each wing of each
facade unit could have its own servo or similar mechanism. Such a design would allow for a much
greater range of open configurations, including those similar to more traditional shading devices,
light shelves, and non-uniform patterns.
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5.2 Numerical Analysis

Recent developments in computational modeling and simulation tools bridge the gap between ar-

chitecture and engineering. Energy modeling software EnergyPlus (Crawley et al., 2001), com-

bined with daylighting and automation tools like RADIANCE (Ward, 1994), DIVA-for-Rhino,

and Ladybug Tools (Roudsari et al., 2013) provide ways to test and analyze a wide variety of para-

metric designs and configurations. In this work, we utilize Ladybug Tools which computes with

DaySim, a branched validated version of Radiance (Daysim, 2019; Ward, 1994), to numerically

simulate and measure the actively harnessed daylight from our facade concept. We first looked

at the range of lighting levels that our design produced under different configurations (Figure 5.4,

Figure 5.5, Figure 5.6), and as expected, the level of light varied depending upon the configura-

tion. Figure 5.7 depicts the daylighting analysis for the Sierpinski design at a 1 m working height

in the built space during Spring Equinox at 09:00. We then ran this simulation on a few different

important days and times throughout the year (Figure 5.8). Figure 5.9 shows a yearly temporal

map we generated to get a better feel for the lighting in the space year round. Averaged temporal

maps (Reinhart and Wienold, 2011) have now become common in daylighting studies.

Although simulations were run with both Sierpinski and Golden designs, we focus on the Sierpin-

ski design for the remainder of this dissertation. Figure 5.9 visualizes three design configurations,

Sierpinski 30°, 60°, and maximum angle of opening, and their effect on daylighting throughout

the year. The importance of this analysis is to account for an average year of weather data for

the site location, which is available through local monitoring stations and the National Center for

Environmental Information (NCEI, 2019).
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Figure 5.7: Daylight analysis of Sierpinski design, 30°, 60°, and max actuation during Spring
Equinox at 09:00. The irradiance planes are situated at the standard working height of 1 m (i.e. the
height of a desk surface).
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Figure 5.8: Daylighting analysis of Sierpinski design, 30°, 60°, and max actuation, during the
spring equinox at 09:00 and 15:00. More daylighting analysis can be found in Section C.
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Figure 5.9: Daylighting temporal map analysis of Sierpinski design, 60° and max actuation,
throughout the year, accounting for average annual weather, plotted hourly for all days of the
year. Mini-plots of the space show continuous daylight autonomy (CDA) >= 200 lux. CDA is
useful to gauge how well lit the space is over time (Reinhart and Wienold, 2011).
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Figure 5.10: The site location for this case study is a typical office space at the Institute for Sim-
ulation and Training (IST) at the University of Central Florida (UCF) in Orlando, Florida, United
States. The office faces northeast. We model and simulate our kinetic facade over the exterior
window frame.

5.3 Case Study

The purpose of our case study is to evaluate the facade design for a single room before building

and deploying a prototype. Our case study site location is Institute for Simulation and Training,

Partnership II, located near the University of Central Florida, in Orlando, Florida, United States,

DMS coordinates (28° 35’09.8”N, 81° 11’57.6”W). This building is representative of typical office

working environments in North America. Figure 5.10 shows the building, solar path, and office we

modeled and simulated with our adaptive facade concept. The case study site was approximately

18 ft x 16 ft, with roughly one-fourth of the space being floor to ceiling glazing where the facade

was tested. The reflectivity of the different materials in the office was measured and set to simulate

realistic conditions at the site. Figure 5.11 and Figure 5.12 demonstrate what the room will look

like at 08:00 near the summer solstice. Figure 5.13 and Figure 5.14 show the case study office

space modeled in Rhino 3D 6 and parts of the Grasshopper script logic used to create and drive the

kinetic facade, respectively.
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Figure 5.11: Daylighting render of our case study office at site location on 07/01/2017 at 08:00
with and without facade.
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Figure 5.12: Daylighting and lux false color render of our case study office at site location on
07/01/2017 at 08:00 with facade units set to max open.
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Figure 5.13: This figure shows various views of the office geometry modeled in Rhino 3D 6.
The facade geometry was built and manipulated with Grasshopper logic scripting. The surface
materials of the inside geometry and mullions were configured with realistic material properties
for the purposes of reflection. The color of the glazing and facade do not effect lighting simulations.
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Figure 5.14: This figure shows parts of the Grasshopper script logic used to create the facade.
Everything is configurable, from the dimensions of the facade units, to the number of units tiled
horizontally and vertically, to the surrounding frame details. Constraints were applied so the facade
units couldn’t be opened beyond realistic angles.
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5.4 Facade MPC Model

The sky and occupant aware building monitoring system proposed in Figure 5.1 calls for a model-

based predictive controller (MPC). One benefit of an MPC control system is the support for multi-

ple input and output control variables between the controller and the controlled system (Rawlings,

2000; Qin and Badgwell, 2003). Our design requires separate control inputs for kinetic facade

units (for light) and smart-glazing (for heat). Another benefit is smoother control by providing

constraints / limits on control variables to prevent unrealistic movement which can be too fast and

potentially dangerous to system hardware and/or occupants (Rossiter, 2017). But the biggest dis-

tinctive advantage MPC provides over other control systems is the ability to model the physical

system as a whole, which allows the controller to keep up with complex relationships between

system variables. For example, increasing the amount of daylight into a space also heats the space.

Figure 5.15 provides more details into the required pieces of an MPC controller for our sky and

occupant aware building monitoring system. The “real-time” timestep is configurable but rec-

ommended between 1-5 minutes to adapt to cloud movement. Each timestep, an all-sky camera

provides a photo of the sky which is passed (along with any required atmospheric measurements)

to a sky model capable of providing spectral energy across the whole sky (Del Rocco et al., 2020).

The resulting spectral energy is then filtered (occluded) by a pre-computed shadow map (Roudsari

et al., 2013) and passed (along with a pre-configured building information model (BIM)) to BEM

software capable of computing spectral irradiance per room at any desired patch resolution, al-

though a single spectral metric may be sufficient (Del Rocco and Kider Jr., 2021). Finally, control

logic with access to setpoints, occupant overrides, datetime, and schedules makes control deci-

sions per room / zone equipped with kinetic facade and smart-glazing, e.g. whether or not (and

how much) to actuate the facade to allow for the most amount of indirect light but also block direct

beam light shining into a space which might cause visually discomforting glare.

100



Optimizer

Illuminance and Temperature
Setpoints (reference)

Cost function

Control Constraints / Limits

MPC Controller

Predictive Model

Capture Sky

Sky Model

Spectral BEM

Decider

Measured Outputs

Room 1 Room 2 Room n

Schedules

BIM Model

Commercial All-Sky Camera

Facade + Glazing Control Inputs

. . .

O
ccupant O

verrides

Atmospheric Measurements
(if required by sky model)

sradmap +
Filter Energy

Shadow Map

Figure 5.15: This figure highlights the design and inputs of our MPC control system.
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Here we present a list of the high-level factors that the system MPC controller’s predictive model

should take into account. Some of these factors could be figured / computed once for the entire

building, while others require control variables and outputs per zone. For example, given a spectral

radiance sky model that provides energy across the skydome, daylighting and energy modeling

could be computed just once for the entire building (each timestep) providing illuminance and

visual and thermal comfort metrics for all zones with glazing. But then the MPC optimizer should

solve for control variables per zone individually and transmit them accordingly. Some of these

factors can be precomputed sparingly, but most of them should be considered per timestep of the

controller. Note the controller real-time constrained timestep could be as slow as 3 to 10 minutes

if desired, as building daylighting and energy simulations are still time consuming (as discussed in

previous chapters) and intra-minute predictions are unnecessary for a building monitoring system

that adapts to changes in the sky.

The following factors should be computed offline once (or at most once a year) and used as input

into the model:

• Shadow masks of the hemispherical sky should be computed occasionally to account for

neighboring buildings, billboards, trees, large permanent shrubbery, etc. These masks should

be captured / computed from the center top of the building and provided as input to the model

so that it can apply them to (filter) the spectral radiant energy provided by the sky model.

• Sunrise and sunset times should be provided as inputs for each day of the year so that daylight

hours are known in advance. Tables of such data are easy to obtain and/or compute with the

NREL SPA algorithm (Reda and Andreas, 2004) for years in advance. The building facade

system MPC model should ensure that control timestep updates occur only during daylight

hours, and simply close all wings to prevent seeing building occupants from the outside of

the building.
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• Default visual comfort limits should be predetermined offline, either loaded from standard

recommendations or configured and done so for daylight hours only. This includes both

minimum and maximum levels which the model will use to harness more daylight or deflect

incoming beam radiation to reduce glare as necessary per zone.

• Actuation angular limits and movement speed constraints should be predetermined offline

and loaded as constraints into the optimizing solver to limit angular movement and prevent

fast movements by the facade units, which could by visually jarring and/or damage the units

themselves and/or passers-by.

• Site location, elevation, albedo, climate zone, and general (non-sky specific) atmospheric

parameters should be acquired to improve the accuracy of any sky model.

The following factors should be computed once per MPC controller timestep for the entire build-

ing:

• Daylighting and building energy modeling simulations capable of processing spectral ra-

diance throughout the sky at some configurable resolution should be run per timestep to

provide accurate spectral irradiance vectors with both light and heat for each zone. Zone

compute grid resolution could be pre-configured or defaulted to a single irradiance vector

per zone.

• If local atmospheric parameters are required by the sky model, and they are available from a

public database of local measuring station through an API, acquire them. Local atmospheric

parameters could include: outdoor temperature, humidity, barometric pressure, active pre-

cipitation including ground snow (changes albedo), wind speed and direction, aerosol optical

depth (AOD), cloud height, cloud cover octas or percentage, types of clouds, ash, pollutants,

etc.
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The following factors should be considered per MPC controller timestep for each zone:

• Visual comfort setpoints should be used by the model to provide both an optimal level of illu-

mination of visible energy per zone, and reduce excessive illumination as the result of direct

beam solar radiation. Given metrics provided by the daylighting simulation per timestep, the

MPC will control within these setpoints. In general, per zone, we should see facades fully

open when only indirect sky radiation is available, and they should fluctuate slowly between

partially closed to fully open as clouds move in front of the sun. On a clear day with direct

beam solar hitting the zone and no occluders nearby, the facades should block a majority of

incoming radiation to prevent visual discomfort (glare).

• Occupants can override (set) the facade angles to any desired (possible) configuration if

they desire to do so regardless if the decision results in visual and/or thermal discomfort.

Occupants have the right to increase or decrease natural daylight as they see fit, and to view

the outside for piece of mind, safety, and curiosity.

• Thermal comfort limits and external temperature could be used by the model to control for

infrared filtering with smart-glazing. If external temperature is below the minimum limit

the controller can allow incoming infrared energy; if above the maximum limit, it can filter

infrared. This behavior will generally follow the seasons, but updates per timestep allow for

temperature fluctuations throughout the day, such as days that start off cold and warm up or

vice versa.

5.5 Facade Physical Prototype

Here we detail the process and materials used to construct the physical portion of our facade

prototype. Translation from design to physical prototype in this case was conceptually simple,

at first involving nothing more than a servo and some pliable material for the unit center and
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wings, but became physically challenging due to gravity pulling on the “wings” of the units. In

other words, a “top-down” prototype on a horizontal plane was much easier to build than one

mounted to a vertical plane. Various designs were considered, from a complex drive train of gears

and pulleys, to a “string and spring” concept that pulled the wings with a continuous servo against

tension from springs. Eventually we settled on a central “pulley” disc that lifted the wings with

static rods. Various triangular unit prototype versions are shown in Figure 5.16 and Figure 5.17.

The final triangular unit prototype is shown in Figure 5.18.

Early on in the process, an outer frame composed of 2 in x 4 in wood was built to the dimensions

of the window frame we would be using during testing (originally the same office simulated in

Figure 5.10). A “cart” with casters was added to make it easier to move around, and bolts for easy

mounting and removal. As the triangular units are equilateral by design, only simple calculations

were needed to find the best array layout (rows and columns) of units sized appropriately to fill

the space. A final count of 6 rows of 7 units, each with triangular sides of 6.5 inches in length,

would fill most of the space. Various ideas were proposed for mounting the triangular units to this

frame, including mounting rods and tracks, but in the end we decided to have a large piece of clear

acrylic cut to the frame size that we would attach the triangular units directly to. This decision was

made to remove the complications of mounting and to keep the incoming light patterns as similar

to the simulation results as possible. It also allows us to reuse this structure as new facade designs

are tested in the future. The large, heavy, clear piece of acrylic was both epoxied and screwed to

the frame to distribute the weight as evenly as possible and ensure it did not crack or split due to

gravity pressure. As for screwing the acrylic to the frame, a special drill bit was needed to drill

through the acrylic without cracking it, and for each screw, both a neoprene and metal washer were

used to dampen pressure, while flexible silicone was filled into the remaining space around each

screw. Thus if the epoxy weakened due to gravity and movement over time, this would relieve

some of the eventual pressure on the acrylic. See Figure 5.19.
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Figure 5.16: This figure shows various early triangular unit prototype designs, including a servo per
wing, turnbuckle bolts and galvanized wire rods. Other more complex (non working) prototypes
are not shown.

Figure 5.17: This figure demonstrates the second prototype in Figure 5.16 opening against gravity.

Figure 5.18: The final triangular unit prototype working horizontally and vertically against gravity.
The vertical test is mounted with the same material as the final intended facade prototype.
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Figure 5.19: Here we show the 2 x 4 frame with mounted acrylic. The acrylic was both epoxied
and screwed with star-drive deck screws pulling against neoprene and metal washers.

Throughout the prototyping process, various lightweight materials were tested for the unit center

and “wings,” including: cardboard, acrylic, balsa wood, and lauan plywood. These were taped

together with strips of non-reflective Gaffer tape for a smooth, bendable, yet strong binding that

could eventually be removed. The center pulley disc also moved from plastic to wood. The con-

necting rods were the most diverse, constructed from galvanized wire, wood, 3D printed plastic,

and acrylic. We also needed to consider how the rods would be mounted to the pulley disc and

triangular wings. This design evolved the most because of the angular movement that occurs

between rod and mounting point. Most of these materials were purchased from local hardware
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or surplus shops like Skycraft Surplus Ltd. (1974). We were constantly considering the weight,

stress, and angular movement of rods and joints while looking for and trying pieces. Sometimes

what worked well horizontally, didn’t work as well vertically, or vice versa. And if building a

single well-designed and durable triangular unit wasn’t challenging enough, we then needed to

consider how all of the units would be produced as uniformly as possible. For example, galvanized

wire for the rods, while strong and cheap, were difficult to cut and bend (and ultimately reproduce)

to the exact lengths and hooks needed. 3D designed and printed rods, while lightweight, perfectly

rounded unlike laser-cut materials, and flexible for snapping into place, were too expensive to pro-

duce en masse because of the cost of the ink required (Figure 5.20). Sometimes what we found

locally, couldn’t be found (affordably) over the Internet to complete our project, while other times

we needed to wait for materials to come in, simply to try them and realize they wouldn’t work as

originally thought. The final triangular unit prototype is shown in Figure 5.18.

We utilized the Texas Instruments Innovation Lab on campus at the University of Central Florida

(Figure 5.22), which offers a 75-watt laser-cutter with 2 ft x 4 ft bed, metal shop and various

high quality 3D printers. Finally, we settled on laser-cutting all triangular unit wings, backings,

and pulley discs out of lauan plywood and laser-cutting the rods out of acrylic. The materials at

connection points between rods, discs and wings would be leveraged from local hardware stores.

We designed all of the wood and acrylic pieces for laser-cutting in Rhino 3D 6 and exported

flat vector graphics files (PDFs) for the software to work with. Sometimes this involved setting

certain “layers” of curves to different colors so the laser could switch between marking and cutting

(Figure 5.21). Despite all of our planning, several trips were needed to the Innovation Lab over a

period of a few months.

To actuate the kinetic triangular units, we originally started with Longrunner LKY62 continuous

servos, but because the current required to spin the servos was dependant upon the lift weight (a
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Figure 5.20: Here we show the 3D printing of triangular unit rods, which were perfect for the
prototype because of their round shape and flexibility, but were too expensive to produce en masse.

changing variable during prototyping), and because there was no feedback sensor to determine

how far the servos had moved, we abandoned these servos for TowerPro SG92R micro servos

with a standard range of 0-180°(Figure 5.23). These micro servos are only 23 x 11 x 29 mm and

weigh only 9 grams, yet have 2.5 kg-cm of torque and can turn their full range of motion in just

0.3 seconds. We purchased them through Adafruit Industries (2005). We initially mounted one of

these servos per wing, but for cost reasons simplified the design to a single servo per unit. This

decision removed the ability to control unit wings individually, a desirable but expensive feature
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Figure 5.21: Here we show various photos of the laser-cutter at work on sheets of lauan plywood
and acrylic. All triangular unit centers, backs, “wings,” discs, and connecting rods were cut with a
Universal Laser Systems ILS12.150D laser-cutter. Our Rhino designs provided holes in the discs
and centering markings per wing to save us time during assembly.
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Figure 5.22: We utilized the Texas Instruments Innovation Lab in the Engineering II building on
UCF campus for all laser-cutting and 3D printing. The lab offers a “maker space” complete with
75 watt laser-cutter, a wide variety of 3D printers, workbenches, electronic lab bench, soldering
stations, general tools, etc.
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Figure 5.23: Here we show the Longrunner LKY62 continuous servo and the TowerPro SG92R
standard servo experimented with, both of which came from Adafruit Industries (2005). The Tow-
erPro servos were ultimately used for this work. The rightmost image shows available horns that
were used to connect the servos to the triangular unit facade discs.

during prototyping. We considered screwing or gluing the servos to the units, but decided on using

strong Scotch Mount 3M double sided tape in case servos had to be replaced or eventually reused.

This also allows us to reuse the facade frame acrylic in the future.

Assembly, mounting, wiring, and row-by-row testing of all triangular units alone took months

(part-time). Each unit required: wings to be taped, backing to be glued, rod connecting point tabs

to be pre-drilled with eye hooks screwed in, cotter pins and washers to be installed on the discs

along with servo horns to be screwed on, rods to be hooked into place, servos to be mounted,

wires to be cut and stripped soldered and heat-shrink wrapped, etc. Sometimes the glue curing

would limit what else could be done or altogether put a stop to assembly for that day. Only some

of the rods could be hooked into place as wiring and soldering required movement of the wings

to access the wires. Therefore the process was interleaved with some of the assembly occurring

before wiring and mounting and some after. During this assembly, mounting and wiring phase,

the entire facade frame was brought up and down as needed to access all of the units and their

wires (Figure 5.24). The final step involved taping any remaining areas of the facade that were not

covered by the triangular units. We did this with Gaffer tape so that it could be easily removed in
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the future if additional rows or designs were desired. Throughout the process of constructing the

physical facade prototype, we strove to preserve the acrylic frame for use in future projects.

We used an Arduino MEGA2560 for the micro-controller because it can control up to 54 separate

digital I/O lines along with 16 analog inputs. Our design would have either 42 or 49 triangular

units (6 or 7 rows) and feature a potentiometer for manual control. The required amperage needed

to power so many triangular units was discussed and computed along with the required gauge of

wire (this included a discussion about solid versus stranded wire). The Arduino itself would not

be able to power so many servos because of the required current, so a Letour 5 volt 30 ampere

AC to DC external power supply converter was used to provide the power. The decision was

made to run the wires from the units to the end of each row, joining the power and ground lines

because only the control wires needed to be unique, and then run the wires down the frame to the

micro-controller and external power supply. We used 3 component 22 AWG stranded wire for the

servos with control sent directly to the Arduino and joined the power and ground with a power

distribution block per row. Each row of power and ground was run to the external power supply

via 2 component 14 AWG stranded wire. All 6 rows of power and ground were then joined to

10 AWG wire which was then connected to the external power supply. To complete the circuit a

ground wire was run from the Arduino to the external power supply as well (Figure 5.25).

To connect each servo to the Arduino, the wires would have to run alongside the triangular units

somehow without interfering with the incoming light or preventing the wings from fully opening.

Among many other things, this was not considered during design and simulation, and therefore had

to be figured out during prototyping. We arranged the triangular units various ways and discussed

how the wires could best be hidden while still maintaining the original orientation and light pattern

results of the our simulations for best comparisons. We eventually decided upon adding a backing

piece to each unit which when mounted creates a channel between the triangular units and the
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Figure 5.24: This figure shows several snapshots during assembly. In truth, assembly and wiring
stages were somewhat interleaved.
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Figure 5.25: This figure shows several snapshots during wiring. In truth, assembly and wiring
stages were somewhat interleaved.
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acrylic backing to run the wires without interfering with the light or the unit wings. These backing

pieces were cut at the lab relatively late in the prototyping process. Once mounted, we soldered

each of the 3 wires per servo of 42 triangular units for a total of 126 soldering points. Each stranded

wire connection was made with a “lineman’s” (or “Western Union’s”) splice and wrapped with

heat-shrink tubing. The control wires were also numbered to make it easier to track down servos if

they failed. Because we used stranded wire, which is more flexible and malleable, we also had to

solder stiff tips to each control wire so that they could be properly inserted into the Arduino digital

input ports, as stranded wire would often bend when inserted.

The facade physical prototype was tested row by row of triangular units as it was wired and as-

sembled (Figure 5.26). Once a row was working, it was easier to add additional rows to the

programming. The default program was to simply “sweep” the servos, or in this case, actuate the

triangular facade units from fully closed to fully open and back gently. It also brings the units back

to a closed position if started in an already open position.

Finally, a proof of concept experiment (field test) (Figure 5.27) was performed in a conference

room within the same site location, identical window size and glazing as was used in our simula-

tions (Figure 5.10). The experiment was performed on Saturday, 10/09/2021 between 13:15 and

13:30 EST. As the site location faces Northeast, all incoming energy was indirect diffuse sky and

ground reflected energy (i.e. no direct beam sunlight reached our facade in this particular field

test). Our facade was designed to be mounted on the outside of a building, and so testing must

comply, but to avoid actually mounting the facade to the exterior of the building at that time, it

was simply held in place and powered by a nearby exterior power receptacle. There were other

windows in the conference room which had to be covered to not interfere with the incoming light

harnessed by our facade. Thankfully, a light blocking phantom screen covered most of the win-

dows, while the remaining window were covered with curtains. Interior lighting was disabled for
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the experiment. Photos were taken of the facade while it was manually controlled (occupant over-

ride) to various angles: 30°, 60°, and 90°. A photo of the sky and surrounding environment are

shown in Figure 5.28.

Figure 5.26: This figure demonstrates testing of the physical prototype in a lab space, which was
accomplished one row at a time. Because the frame is larger than a typical doorway, it requires
multiple people to move it to an actual experiment.
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30°

outside inside room

60°

90°

Figure 5.27: This figure shows the results of testing our kinetic facade physical prototype over a
window in a conference room at the same site location as our simulations in Figure 5.10. Three de-
grees of opening were tested, 30°, 60°, and 90°(max open for this design). Although environmental
conditions were not perfectly controlled, we can still see the increase and decrease in harnessed
light in the space.
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Figure 5.28: A photo of the sky on Saturday, 10/09/2021 at 13:15 EST when the physical facade
prototype was tested in a real setting. Note the shadow of the building and lack of direct beam
solar because the site location faces Northeast.
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CHAPTER 6: CONCLUSIONS

Buildings contribute to climate change and the global greenhouse gas (GHG) footprint indirectly

through the use and thus production of electrical energy. Heating, ventilation, air-conditioning

(HVAC) and artificial lighting contribute significantly toward building energy use and therefore

reductions can help curb GHG emissions. This dissertation contributes by refining some of the

methods used in building performance simulation (BPS), architectural design tools, and building

monitoring control systems, all of which can leverage solar energy (both light and heat) to reduce

artificial lighting and HVAC energy use. Building energy modeling (BEM) and daylighting studies

often oversimplify the actual solar energy resulting from the sky and the surrounding environment

as well as ignore the fact that it contains both light and heat. This radiant spectral solar energy can

be avoided or passively or actively harvested, but it is important that simulations and buildings do

it accurately to maximize gains.

Whole sky spectral radiance distributions are needed for accurate computations in a variety of ap-

plications. Real-time capable models are needed to estimate them to within acceptable tolerances.

We presented a solution for this that: (1) collated and processed photographs of the entire hemi-

spherical sky along with radiance measurements throughout the sky, (2) used those measurements

and modern machine learning methods to train regression models, and (3) used the downstream

models to predict atmospheric spectral radiance (350-1780 nm) at 1 nm resolution for entire skies,

given a photo of a clear sky and its capture timestamp. The whole sky RMSD error of our pre-

dicted results for all four holdout test skies, none of which were used for training, was below 7.5%

RMSD, and most of the predicted spectral radiance distributions were in line with libRadtran’s.

Our data-driven sky model results show that image compression, color model, and exposure of

clear sky imagery have little to no effect on our method. This implies that our solution is robust
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and less likely to be affected by implementation details. We also showed that our regression mod-

els have the ability to generalize across the hemispherical space between measured sky samples,

allowing for atmospheric spectral radiance predictions for every point in a sky image. Our regres-

sion models can be used, as-is, with similarly exposed and oriented sky photos, and our methods

can be reproduced to train models using new datasets. Various sky scanning systems exist which

can be employed to provide more training data for this approach.

We developed and presented a spectral energy solution for early design BPS and real-time control

systems in the built environment by modifying a custom radiosity engine for radiant spectral energy

and providing a plugin interface from a modeling software package often used by architects. With

this process, we ran spectral energy simulations through four separate glazing options on a realistic,

sufficiently complex model of an existing office. We demonstrated that our proposed adaptive

smart glazing solutions could filter or allow visible and/or thermal energy, or indeed any spectral

range of interest, and in general be used for natural daylighting and heating solutions. Our results

imply that such a spectral energy modeling system is fast enough to be used in early-phase design

by building designers utilizing parametric design for interiors, shading devices, materials, etc.

Also, a more refined and modular version of this system could be packaged and used by building

monitoring systems to drive real-time control systems.

Finally, we designed, modeled, simulated, and constructed most of an adaptive facade cyber-

physical prototype building monitoring system, which has the potential to monitor the sky and

occupants and then drive kinetic facades and smart glazing appropriately. A more refined version

of this system could be constructed and made available for buildings with high HVAC and/or in-

terior lighting costs to help actively harness light and heat more efficiently. Such a system is not

limited to the exterior facade we designed and built; any kinetic facade could be controlled by

such a system and could be coupled with, de-coupled, or replaced by smart glazing solutions for
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independent spectral modulation.

The work we have done contributes to the fields of atmospheric science, building performance, and

smart architecture by detailing a new data-driven sky model, proposing changes to daylighting and

energy modeling and simulation pipelines, and by cyber-physical experimentation, respectively.

Much of the research presented in this dissertation has been published in relevant, peer-reviewed

conferences and journals. We are confident that our contributions are valuable to the building

performance community because some of our work has already been cited in recent literature.

We hope we have motivated the community to improve upon our methods to further realize more

fine-grain, sky and occupant aware building control systems. Such systems need to account for

radiant energy to properly handle occlusion, as well as for energy that is diffused in specific cloud

formations. A spectral energy pipeline would ultimately simplify lighting and heating simula-

tions, give building monitor control systems the ability to filter or allow infrared (given the glazing

technology), and give early-phase building designers the ability to simulate and compare glazing

options. Accounting for these factors will improve the accuracy of building performance simula-

tions and strengthen real-time building control, which in turn can reduce energy needs, greenhouse

gas emissions, and save money.

6.1 Ongoing and Future Work

Work on predicting spectral radiance from scattered and overcast skies using our dataset is cur-

rently underway. We have already seen promising results (Figure 3.23). Scattered skies account

for the bulk of our training data as well as the more interesting energy scattering scenarios. More

modern machine learning techniques (e.g. deep-learning with Google TensorFlow) are already

being leveraged. Once scattered sky research is complete, we will attempt to train a single unified

model that handles skies of all conditions: clear, scattered and overcast. Ideally, two separate mod-

els per sky condition should be trained, one that includes regional atmospheric measurements, and
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one that does not, to account for situations where atmospheric measurements are not available.

We believe it to be worthwhile to produce a single (or multiple) merged dataset(s) of existing

ground-to-sky measurements, normalized, from different locations around the world. Existing

correlated sky imagery and spectral radiance datasets from around the world can be used by all

data-driven approaches. We imagine an open, standardised, searchable dataset for skies measured

from the ground. The greatest challenge would be normalization (rotation, file formats, lens lin-

earity, camera calibration, etc.), which could be done during an upload process or more likely as a

separate pre-process before being uploaded. Once normalized, such comprehensive datasets could

lead to even more robust machine-learned models (e.g. more variations of skies, turbidity, pol-

lution, etc.), especially if coupled with atmospheric input features from triangulated atmospheric

measuring station data. Site location coordinates and/or elevation could also be investigated as

input features themselves when using multi-site data to help the machine learning algorithms learn

location-specific variations. Even if all datasets cannot be merged into a single dataset, merging a

few at a time can still help prevent machine learning algorithms from over-fitting region-specific

nuances.

It is possible to combine our proposed whole sky aware building monitor prototype with projec-

tions of upcoming skies. Cloud formations can be predicted in upcoming skies to within intrahour

estimates (Nou et al., 2018; Chacon-Murguia and Ramirez-Alonso, 2015; Chen and Mied, 2013;

Song and Ra, 2000; Skowronski, 1999). If such skies were fed to a whole sky aware building mon-

itoring system, preemptive changes could be made per zone to account for expected increases and

decreases in solar radiation. Doing so could help reduce HVAC recovery time and operating cost.

Abrupt increases in direct beam solar radiation, for example as clouds block and reveal the sun,

can cause zones to heat up quickly beyond set point and require an HVAC system to spend more

time (and cost) in recovery. Intrahour sky predictions could drive preemptive control modifications
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to HVAC cold deck temperature and flow set points in order to reduce this recovery time. Such

feedforward control of HVAC systems is already done for anticipated occupant loads and outside

temperatures, but could also be done for expected increases in direct beam solar radiation through

cloudy sky predictions.

The renderings produced by the Transition Portal radiosity engine by Kider et al. (2019) as well

as our spectral bin renderings (Del Rocco and Kider Jr., 2021) should be validated with measure-

ments. Spectral pyronometers should be used to measure spectral irradiance on surfaces after it

passes through various glazing configurations and then compared with simulation results. Doing

so will either validate our engine or give us a direction for improvement. We believe our fritted

smart-film concept to be novel and recommend that it be explored. We are not experts in material

science or glazing development, so we leave it to the appropriate communities to explore this idea

further. We do believe that fritted smart-film is a viable solution to attenuating spectral energy

without compromising visible light transmission.

During the construction of our physical prototype, we mounted the triangular units directly to an

acrylic support “window” merely to simplify the work needed to test our facade. However, this

approach inspired the idea of a new configuration of shading devices that attach directly to glazing

and are powered by a low-voltage charge given off or inducted through the glazing itself (e.g.

PDLC). Such shading devices could be: (1) easily applied in all manner of ad-hoc or predetermined

patterns, (2) controlled wirelessly, either manually or by a building control system, and (3) could

remove the hurdles associated with mounting, wiring and retrofitting a building with an adaptive

facade system. Monitoring and control programming could be downloaded and run locally by

zones that have them installed even if a building monitoring system is not in place. If cheap and

made commercially available, such units could be applied to the interior of glazing of buildings

by residents that want smart facades in their rooms despite the state of their building, essentially
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crowd-sourcing adaptive daylighting and heating in residential buildings.

Finally, it is our hope that our spectral radiance maps (sradmaps) contribute to not only the BPS

community but also the modern computer graphics community. The rendering of naturally-lit in-

door scenes can be improved with accurate spectral radiance whole sky models that give rendering

engines the ability to occlude energy and utilize spectral input. Spectral rendering pipelines already

exist, and though still new to the graphics community, they will eventually be at the forefront in the

not-so-distant future. We believe that accurate spectral energy predictions are pertinent to accurate

daylight rendering.
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APPENDIX A: SPECTRAL SKY VIEWER
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Spectral Sky Viewer can be used to: easily browse multiple exposure sky photography alongside

correlating spectral radiance measurements, view NREL solar positioning algorithm (SPA) sun

path and location, inspect EXIF meta-data of digital photographs, customize and visualize sky

sampling patterns, use any custom fisheye lens linearity equation for transforming sky coordinates

to image coordinates (and vice versa), and export any collection of sky samples with any correlating

set of features. It was developed in Python and is open-source, cross-platform, and freely available

from the UCF SENSEable Design Lab.
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The exporter extracts Gaussian weighted pixel colors from multiple exposures of any provided im-

age format for any sampling pattern locations, along with any subset and resolution of correlating

spectral radiance measurements. Coordinates can be exported in various spaces, colors in various

color models, weighting from various algorithms, etc. The export functionality take the parsing

work out of spectral sky data and are useful for machine learning training datasets and other sci-

entific analysis. Such exported datasets were requested and used by a handful of international

scientists not involved with this dissertation.
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APPENDIX B: SUPPLEMENTARY SKY RESULTS
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Whole sky ETR model predicted atmospheric spectral radiance distributions for holdout test sky
05/26/2013 15:15, discussed in Section 3.
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15 of 81 consecutive ETR spectral radiance predictions for holdout test sky 05/26/2013 15:15.
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Whole sky ETR model predicted atmospheric spectral radiance distributions for holdout test sky
05/27/2013 10:15, discussed in Section 3.
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15 of 81 consecutive ETR spectral radiance predictions for holdout test sky 05/27/2013 10:15.
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Whole sky ETR model predicted atmospheric spectral radiance distributions for holdout test sky
07/26/2013 13:15, discussed in Section 3.
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15 of 81 consecutive ETR spectral radiance predictions for holdout test sky 07/26/2013 13:15.
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Whole sky ETR model predicted atmospheric spectral radiance distributions for holdout test sky
09/24/2013 15:39, discussed in Section 3.
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15 of 81 consecutive ETR spectral radiance predictions for holdout test sky 09/24/2013 15:39.
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APPENDIX C: SUPPLEMENTARY DAYLIGHTING ANALYSIS
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Daylighting analysis of Sierpinski design, 30°, 60°, and max actuation, during the fall equinox at
09:00 and 15:00.
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Daylighting analysis of Sierpinski design, 30°, 60°, and max actuation, during the summer solstice
at 09:00 and 1500.
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Daylighting analysis of Sierpinski design, 30°, 60°, and max actuation, during the winter solstice
at 09:00 and 15:00.
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