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ABSTRACT

In power systems, monitoring, protection, and control are usually model based; an accurate dy-

namic model for either synchronous generators or power electronic converters is essential. Be-

sides, renewable energies, smart loads, energy storage, and new market behavior add new sources

of uncertainty to power systems. Therefore, planning in real-time and developing high-quality

models is crucial to adapt to uncertainties. In this thesis, we propose a framework for validating

and calibrating power system models using novel methods. At the first step, we developed the non-

linear sensitivity-based method to find the critical parameters. Then, we propose an Approximate

Bayesian Computation (ABC) based method which is a simulation-based method. By proposing

an adaptive kernel function and a threshold sequence, we reduce the computational complexity

of a ABC with a sequential Monte Carlo sampler (ABC-SMC). Using deep learning to improve

the estimation accuracy, we overcome the curse of dimensionality in our proposed method. Via

event playback, we build the simulations for training our model and using a parallel multi-modal

long short-term memory (PM LSTM), we improve the accuracy for the high dimensional cases,

but to build a model, we need to have a lot of samples. Our next proposal was a conditional varia-

tional autoencoder (CVAE), which has a great performance and requires a much smaller sample for

training. The proposed methods are comprehensively evaluated; all results show that the proposed

approaches have great performance in time and accuracy. We demonstrate the effectiveness of the

proposed models on a synchronous generator with its controllers, a DC-DC buck converter, and a

three-port inverter.
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CHAPTER 1: INTRODUCTION

In power systems, monitoring, protection, and control are usually model-based, an accurate dy-

namic model for either synchronous generators [14–16] or inverters [17] is thus essential. The

inaccuracy of the power system model has been witnessed in the blackout that occurred in the

Western U.S. in 1996 [1], in which model simulations showed a stable response while the system

became unstable [18, 19]. Following the outage, Western Systems Coordinating Council (WSCC)

required that all generators larger than 10 MW be tested for model data verification [1]. Besides,

reliability standards such as NERC MOD-033 in North America require dynamic models to be val-

idated with phasor measurement unit (PMU) data once every two years to verify the accuracy of the

planning models [20]. Dynamic models play an important role in predicting the system response

under contingencies. An accurate model for the synchronous generator is essential for a valid

evaluation of power systems’ dynamic performance and stability. The recent work on dynamic

state estimation also needs accurate enough parameters to be able to provide reliable estimations

of the dynamic states [21–23]. The synchronous generator is one of the most critical components

in power systems, and its accurate modeling is important for studying the dynamics of the system.

This is no trivial task because: 1) The models may not be available for all components; 2) Even

if the models are available, the parameters of the models may not be available; and 3) Even if the

models and the parameters are available, the parameters may have changed over time.

Power System Models

There are several categories of models that need to be developed for modeling a large power system

[14]:
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• Transmission System: This includes transmission lines, mechanically switched shunt capacitors

and reactors, power transformers, flexible AC transmission systems, phase-shifting transformers,

and high-voltage direct current transmission systems.

• Generating Units: This includes the entire spectrum of supply resources, hydro, steam, gas, and

geothermal generation, along with rapidly emerging wind and solar power plants.

• Load: This includes the electrical load in the system, which ranges from simple light-bulbs to

large industrial facilities.

• Power electronics components: This includes the inverters and other power electronics compo-

nents in the system.

Different types of the models

Based on the study’s goal, the different types of models are used in the power system analysis. The

different types of models in the power system are as follows:

• Steady-state Models: Each of the models in Section 1 can be represented in the steady-state

models. For developing the steady state models, different accurate calculations of the impedance

and rating are considered.

• Dynamics Models: Dynamical models of the component represent the dynamic of the compo-

nents. The dynamical models are usually used in stability studies, which have time constants in

the range of few tens of milliseconds to many seconds [1].

• Short circuit models: Short circuit studies are one of the critical studies in the power system.

The steady-state model can be used for this critical goal. The models which used in this type of

study include negative sequence and zero sequences.
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Importance of Model Validation

Power system simulations are used in grid planning and operating decisions. Models of power

systems are used to predict system performance under expected disturbance conditions. Under-

investment and unsafe operations might result from optimistic models. Pessimistic models can

also cause unnecessary capital investment, thereby making electric power more expensive. As a

result, we need realistic models for power system operation to ensure reliability and efficiency.

Therefore, periodically validating the power system models becomes critically important. In the

following section, we consider two occurred blackout cases where the models’ inaccuracy leads to

the outage.

� 2011 blackout in San Diego:

One of the most well-known blackouts is the 2011 blackout in San Diego. This blackout’s pri-

mary cause was attributed to significant weaknesses in the power industry models: Simulations

showed a well-dampened system response, but in reality, the system eventually collapsed be-

cause of critical contingencies [19, 24].

� 1996 Western Interconnection Outages:

Same as the San Diego blackout, the main reason for the 1996 western interconnection outages

is the deficiencies in the model were the industry used in their simulations. Figure 1.1 shows the

outputs of the simulated models and the system’s actual response. As it can be seen, simulations

showed a well-dampened system response, but in reality, the response is totally different and

eventually collapsed. Following the outage, Western Systems Coordinating Council (WSCC)

required that all generators larger than 10 MW be tested for model data verification [1].
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(a)

(b)

Figure 1.1: Simulated and the observed system real power during August 10, 1996 (a) Actual
response and (b) Simulated response [1].

Dissertation Overview and Contributions

This thesis organized as follow:

CHAPTER 2: We begin in this CHAPTER with a comprehensive review of research studies for

model validation in the power system and power electronic converters (PEC).

CHAPTER 3: We developed a black-box optimization based on a surrogate model. Then, a
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hydro generator with a governor and an exciter are modelled. The critical parameter is identified

with sensitivity analysis, and then a general framework for the black-box optimization is provided.

Finally, the proposed black-box optimization-based generator parameter calibration method based

on a stochastic radial basis function (RBF) surrogate model is being validated and demonstrated

through testing on a real hydro generator with eight critical parameters. The main contributions of

this CHAPTER are:

• Developed a black-box optimization-based generator parameter calibration method based on a

stochastic RBF surrogate model.

• Formulated the generator parameter estimation and provided numerical results for determining

an objective function which computationally and effectively works for the parameter estimation

problem.

CHAPTER 4: We provide an overview on Approximate Bayesian Computation (ABC)-based

method and then, we consider a hydro generator with an exciter, a governor, and a power system

stabilizer. Then, we provide a framework to identify the critical parameters of the power system

models. We propose a synchrophasor measurement-based generator parameter calibration method

by adaptive Approximate Bayesian Computation with Sequential Monte Carlo sampler (A-ABC-

SMC) that avoids directly dealing with likelihood functions. In this CHAPTER , we provided the

different case studies; we consider the different errors in the parameters’ initial values, and we also

compare our proposed method with the different methods. We also consider a high-dimensional

case with fourteen parameters. The main contributions of this CHAPTER are:

• Instead of using a sensitivity-based approach, an empirical Gramian based approach is proposed

directly for the nonlinear generator model to identify the critical parameters with the highest

identifiability more accurately.
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• We perform generator parameter calibration by A-ABC-SMC. This likelihood-free method does

not directly explore the parameters’ likelihood surface but instead estimates the posterior distri-

butions of the parameters by a simulation-based procedure.

• The proposed A-ABC-SMC approach significantly improves the computational efficiency of

ABC-SMC through adaptive threshold sequences and perturbation kernel function, and carefully

chosen distance function.

CHAPTER 5: Since the industrial generator has more parameters, the proposed A-ABC-SMC

has an acceptable performance when the prior distribution for the parameters lies in a narrow

range. Also, it suffers from the curse of dimensionality. To overcome the mentioned problems, we

proposed a deep-learning-based method in this CHAPTER . We developed a parallel multimodal

long short term memory (PM-LSTM) method, estimating a high dimensional case. The proposed

method has an acceptable accuracy for top eighteen critical parameters, even when the parameter

space is large enough.

CHAPTER 6: Training the PM-LSTM model need a lot of samples. Then, we proposed a condi-

tional variational autoencoder (CVAE) method in this CHAPTER . Instead of using a sensitivity-

based approach, an elementary effects (EE) approach is proposed directly for the nonlinear power

system models to identify the critical parameters with the highest identifiability. We then propose

a CVAE method. Compared to the existing methods, the characteristics of the CVAE method are

as follows:

1. Only a small number of samples is needed, and the computational efficiency is high.

2. It can provide accurate parameters when the generator model has significant model discrep-

ancies due to gross errors in the parameters and even when prior distribution does not support

the true values.
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3. It can estimate the high dimensional cases accurately even when the parameter space is large

enough.

4. The implementation is more straightforward and reliable without many complications as

compared to the existing reinforcement and deep learning methods.

5. The proposed method is simulation-based and does not need a likelihood function or state-

space model of the generator. As commercial software already has stability models, imple-

mentation is much easier, and it can be used in real-world applications.

Insightful case studies are presented and discussed in detail. The impact of the different prior dis-

tributions, different lower/upper bounds on the prior distributions, and the error in the parameters

initial values are analyzed. A specific case where the true values are not in support of the prior

distributions is studied. Finally, a high-dimensional case with eighteen critical parameters under

multiple events is presented.

CHAPTER 7: We have used the proposed A-ABC-SMC to calibrate a DC-DC buck converter.

The results of PEC calibration shows that even when the value of the parameters are so small, the

proposed method can find the accurate values of the parameters very well.

CHAPTER 8: In this CHAPTER we consider a Three Port Multilevel Inverter (TPMI). Based on

its model, we provide an event and generate the data for training a CVAE model. The results of

the calibration show that the well-train model can estimate the parameters of the model with high

accuracy.

CHAPTER 9: This CHAPTER concludes this thesis and identifies the key contributions and the

future directions.
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CHAPTER 2: PREVIOUS WORKS

Generator Parameter Estimation and Model Calibration

For traditional parameter calibration methods (offline methods or field tests), such as standstill

frequency response method [25], open-circuit frequency response method [26], and DC excita-

tion method [27], the generator has to be out of service, which is time-consuming and not eco-

nomically viable [28]. To overcome these deficiencies, online methods based on synchrophasor

measurements have been proposed [19]. Simple swing equations have been used to analyze the

dynamic response and estimate the generator moment of inertia in [29–31]. The proposed method

in [32] uses PMU measurements to estimate four parameters of the five-machine dynamic equiv-

alent electro-mechanical model of the Western Electricity Coordinating Council (WECC) power

system network. However, these methods may not be able to represent the actual dynamic response

of the generator. Online approaches based on linear and nonlinear curve fitting have also been pro-

posed for estimating parameters [33, 34], but multiple solutions may exist for the same model

performance [19, 33]. A particle swarm optimization (PSO) based approach is proposed in [35],

which has good performance in the case with small disturbances but does not work as well for

large disturbances. In [36], the amplitude and damping of oscillation are used as indicative factors

for the mismatch between measurements and simulation values. However, this method involves

extensive trial-and-error. Gradient-based optimization methods have been proposed in [37, 38],

which, however, have to calculate the gradient of the nonlinear objective function with respect to

the parameters based on the generator dynamic model in each iteration and may get stuck at the

local optima.

Kalman filter (KF) methods have been proposed for generator parameter calibration [30, 39, 40].

The extended KF (EKF) in [39, 40] maintains an elegant and computationally efficient recursive
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update. However, the high nonlinearity of the power system model may violate the local lin-

earity assumption and EKF estimation may become unreliable. The ensemble KF (EnKF) as a

Monte Carlo implementation of KF is applied to calibrate generator parameters in [19], which

avoids linearization but may suffer from slow convergence rate and Gaussian assumption of the

process and measurement errors [41]. To address these problems, a Bayesian inference method

with polynomial-chaos-expansion-based surrogate models is proposed [41]. However, under large

parameter errors, the reliability of the estimation may degrade. Then a two-stage hybrid Markov

chain Monte Carlo (MCMC) method is further developed to recover the posteriori distribution of

the parameters [42] and an importance sampling technique is introduced to more efficiently esti-

mate the posterior [43].

Besides, the multistage genetic algorithm optimization has been proposed in [44] to estimate the

generator parameters. However, there is no guarantee of finding global optima and the efficiency of

the algorithm still needs to be improved. To address these problems, in this CHAPTER we develop

a black-box optimization based generator parameter calibration method based on a stochastic radial

basis function (RBF) surrogate model [45]. The proposed method does not require an explicit

objective function, can solve non-convex problems by building a global model of the objective

function, and guarantees convergence to the global optimum from a theoretical standpoint if the

number of iterations is large enough [44].

Machine learning has been applied for parameter calibration [46–49]. The method in [46] generates

extensive simulation data to train a multi-output convolutional neural network model and predict

a small number of generator parameters. The q-learning-based method in [47] only works for

cases, where a few parameters need to be calibrated. The proposed deep q-learning-based method

in [48] performs well in low-dimensional cases under different events. However, the q-value affects

the policy significantly, and a small change in the q-value affects the policy a lot. Furthermore, its

implementation is complicated since a lot of efforts are needed to make the neural network function
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approximation work and the deep q-learning be stabilized. The Soft Actor-Critic-based method

proposed in [49] has a good performance for calibration but requires a lot of hyper-parameter

tuning to converge.

In the above section, we only focus on the generator parameter estimation. However, there are

parameter estimation problems in bulk power systems and also in the emerging power electron-

ics problems especially with the increasing penetration of power electronics interfaced renewable

generation. Then, having a unified approach that could be effective for both problems is needed.

In the following section, we focus on the previous works in the PEC area.

PEC Parameter Calibration

PEC are broadly used in different power electronics applications, including motor drives, com-

puters, portable electronics, domestic appliances, or in power conversion systems for renewable

generation, variable-speed ac machine drives, uninterruptible power supplies, aerospace power

systems among others [50–52]. Monitoring the conditions of the PEC and analyzing their outputs

in the system plays an important role in the operation and reliability of power system. Estimate the

parameters of PEC can improve the mathematical models of the converters which are based on the

linear analysis [53], and also to design a good controller, the exact model of the PEC is needed,

which relays on the exact parameters. On the other hand, the parameters of the PEC change with

age, manufacturing tolerance, parasitic elements, and load changes. Consequently, these uncer-

tainties must be considered during the modeling stage of the power converter. For example, it has

been reported in [54] that capacitors cause 30% of the failures in converter circuits [50, 55, 56].

In utility-scale photovoltaic (PV) systems, PV inverters are responsible for about 37% of unsched-

uled maintenance events [57]. Power electronics converters are responsible for about 13% of wind
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tower downtime and 18% of all failures in wind turbines under observation. Power semiconductor

switches and capacitors are the most vulnerable types of components of PECs [58]. Failures can

occur due to temperature stresses, mechanical vibrations, and humidity, in that order [59].

In particular, power electronic converters are used in active distribution grids consisting of

commercial-off-the-shelf converters that need to be modeled. Unfortunately, some field failure

reports reveal that power electronic converters represent one of the weakest points in the sys-

tems [59]. The converters usually do not come with a behavioral model, making it impossible

to conduct theoretical studies or simulations for interconnection and control purposes. One prob-

lem of the used converters in the system is that the converters which are used are usually made

by the different brands. Most of these converters can control power flow in the grid element, but

because of their high penetration in grid elements, they can be in conflict with conventional de-

vices installed in power networks. It is, therefore, necessary to develop comprehensive control

systems with which all operations can be coordinated. For the purpose of analyzing, designing,

and controlling active networks with high integration of electronic converters, the electronic power

converter model is indispensable [60]. Power electronic converter failures account for a large per-

centage of system failures, affecting system reliability [59]. Failure of the converter or other power

electronics component can even cause blackouts in the power system [18]. Then, the conditions of

the PEC should be monitored [61]. Besides, the limitations of statistical reliability prediction give

rise to the concept of prognostics and health management (PHM). The PHM approach determines

how well components or systems are performing by monitoring the operating conditions alone or

operation conditions plus key performance and degradation parameters. A huge amount of data

can also be produced by closely monitoring components and systems. Manufacturers can utilize

this data to figure out how best to handle new designs and products in the field.

The white-box based method in [55] has good accuracy, but its computational time is high, and for

a complex system, its implementation is a big problem. The proposed methods in [62, 63] use a
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polynomial interpolation method with the least-squares (LS) algorithm to estimate the parameters

of the converter, but these methods can not find the global optimal, and under the different load

changes tests, the estimated parameters may be different from the true parameters. The subspace-

based method proposed in [64] has good accuracy, but its final solution needs heavy difficulties

to implement. In [65, 66] the parameters of the DC-DC converter are estimated based on the

LS technique, and finally, a non-linear black-box model of the converter proposed. But, in these

methods, the physical parameters do not have meaning, and based on these types of models, we

can not analyze the model correctly.

The measurement-based approaches which are based on acquiring the instantaneous values of the

input and output at the terminals of the power converters can be applied for parameter estimation

[63]. These approaches have an advantage being compatible with non-invasive online monitoring

of the input/output signals. Then, using these types of methods do not to conflict with the operation

of the converters.
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CHAPTER 3: PMU MEASUREMENT BASED GENERATOR

PARAMETER ESTIMATION PARAMETER CALIBRATION BY

BLACK-BOX OPTIMIZATION WITH A STOCHASTIC RADIAL BASIS

FUNCTION SURROGATE MODEL

Khazeiynasab, S. R., Qi, J. (2020). PMU measurement based generator parameter calibration by

black-box optimization with a stochastic radial basis function surrogate model. In 2020 North

American Power Symposium (NAPS).

Introduction

In this CHAPTER , we propose a synchrophasor measurement based generator parameter calibra-

tion method by a black-box optimization approach with a stochastic radial basis function (RBF)

surrogate model. Based on comparison between the outputs of the generator model with estimated

parameters and the phasor measurement unit (PMU) measurements, we define an objective func-

tion for the black-box optimization problem, which is approximated by a RBF surrogate model.

The prior information of the parameters is treated as constraints in the black-box optimization

problem. The formulated black-box optimization problem is then solved by a Stochastic Response

Surface Method (MSRSM). The effectiveness of the proposed method is tested and validated on

a hydro generator. The simulation results show that the proposed approach can accurately and

efficiently estimate the generator parameters subject to gross errors in the prior distributions of the

parameters.
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Generator Dynamic Model

The dynamical model of a synchronous generator can be written in a general form as:

{
ẋ = f(x,u,α) (3.1a)

y = h(x,u,α), (3.1b)

where f(·) and h(·) are the state transition and output functions, u ∈ Rv is the injected measured

signals (voltage magnitude, phase angle, and frequency), y ∈ Ro is the output variables (including

active and reactive power of the generator),α ∈ Rz is the parameter vector, and x ∈ Rn is the state

vector that could include rotor angle, rotor speed, transient or sub-transient voltages, and controller

states. The following state transition and observation equations are presented for a synchronous

generator and its controllers. In all of the following equations, df = ft − ft−1. The following

differential equations represent the GENTPJ synchronous machine model [3, 19]:

T ′do
dE ′q
dt

=Sd

E ′q,t−1(X
′′
d−Xd)+E ′′q,t−1(Xd−X ′d)

X ′d−X ′′d
+Efd,

T ′qo
dE ′d
dt

= Sq

E ′d,t−1(X
′′
q −Xq) + E ′′d,t−1(Xq −X ′q)

X ′q −X ′′q
,

T ′′do
dE ′′q
dt

= E ′q,t−1 − SdE
′′
q,t−1 − (X ′d −X ′′d)Id,t,

T ′′qo
dE ′′d
dt

= E ′d,t−1 − SqE
′′
d,t−1 + (X ′d −X ′′d)Iq,t,

2H
dω

dt
= Pme,t−1 −

E ′′t−1Vt
X ′d +Xtr

sin(δt−1 − θt)−D
dδ

dt
,

dδ

dt
= ωt−1 − ω0,

where Sd, Sq are the saturation coefficients for d-axis and q-axis, E ′d and E ′q are d- and q-axis

transient voltages, E ′′d and E ′′q are d- and q-axis sub-transient voltages, δ is rotor angle, and ω is

rotor speed, which are considered as state variables. Id and Iq are the d- and q-axis currents of the
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generator, Efd is the field voltage, and Pme is the mechanical power, and Vt and θt are the voltage

magnitude and phase angle at the high-voltage side of the step-up transformer, and are the injected

measured signals. T ′do is d-axis transient rotor time constant, H is inertia constant, Xq is q-axis

synchronous reactance, X ′d is d-axis transient reactance, X ′q is q-axis transient reactance. More

details of the generator model and its parameters can be found in [3, 19]. The IEEEG3 governor

model is represented by the following differential equations [2]:

Tp
dsg0
dt

= Pr − dω − sg1,t−1(RP −RT)− sg2,t−1 − sg0,t−1,

TG
dsg1
dt

= sg0,t−1,

TR
dsg2
dt

= −RTTRsg1,t−1 − sg2,t−1,

Tω
dsg3
dt

=
1

a11

(
a23(1 + a11)sg1,t − sg3,t−1),

where sg0, sg1, sg2, and sg3 are considered as state variables and Pr is the power reference. TG

is gate servo time constant, TP is pilot servo valve time constant, RP is permanent speed droop

coefficient, RT is transient speed droop coefficient, a23 is turbine coefficient, TR is time constant,

and Tw is water starting time. More details of the governor model and its parameters can be

found in [2]. The ESST1A exciter model is represented by the following differential and algebraic
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equations:

Tr
dse0
dt

= Vc,t−1 − se0,t−1,

Tb1
dse2
dt

= Tc1
dse1
dt

+ se1,t−1 − se2,t−1,

Tb
dse1
dt

= Tc
d

dt
(Vs,t + Vr,t + se0 − se4)− se0,t−1 − se3,t−1 − se1,t−1,

TA
dse3
dt

= KAse2,t−1 − se3,t−1,

Efd,t = se3,t−1 + Vs,t +Klr(Ilr − Ifd,t),

Tf
dse4
dt

= Kf
dEfd

dt
− se4,t−1,

where se0, se1, se2, se3, se4 are state variables. Vr and Vs are the voltage reference and control input

signal, respectively. Tc, Tc1, Tb, and Tb1 are exciter time constants, KA is AVR steady state gain.

More details of the exciter model and its parameters can be found in [2, 3].

Event Playback

Let z∗ = [P>meas Q
>
meas]

> be the measurements from PMU and z = [P>model Q
>
model]

> ∈ R2K

be the time-series outputs of model (3.1) where K is the number of time steps. In generator

model validation and parameter calibration, “event playback” illustrated in Figure 3.1 utilizes a

dynamic simulation with play-in signals to check the model performance against the actual PMU

measurements [19]. The PMU is installed at the subsystem point of common coupling (PCC) to

collect measurements of voltage magnitude and phase angle/frequency, and current phasors of the

branches connected to the PCC. Real and reactive power measurements can be obtained from the

voltage phasor and current phasor measurements. Voltage magnitude and phase angle/frequency

are used as inputs while real and reactive powers are the outputs. The external system is modeled

as a regulated voltage source and its voltage is equal to the quantity measured by PMU [19, 39].
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For an event captured by PMU, if large model deficiency is identified between model simulation

and PMU measurements, the parameters need to be calibrated. In real application, different events

can lead to different system responses. For the additional events, if the simulated response and

PMU measurements are significantly different, the calibration procedure should be repeated, or

multiple events can be used together for parameter calibration [49].

Figure 3.1: Framework of the playback event for model validation and calibration.

At time step k the output of the model is given by:

Pmodel,k =
E ′′kVk

X ′d +Xtr

sin(δk − θk) (3.2)

Qmodel,k =
V 2
k − E ′′kVk cos(δk − θk)

X ′d +Xtr

, (3.3)

where E ′′k and δk are, respectively, the generator sub-transient voltage and rotor angle at time step

k, X ′d is the d-axis transient reactance, Xtr is the reactance of the step-up transformer, and Vk and

θk are the voltage magnitude and phase angle at high-voltage side of the step-up transformer at
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time step k.

Identifying Critical Parameters

After a model deficiency has been revealed, the next step is to identify the problematic parameters.

A generating unit with its control can have many parameters. Calibrating all parameters could be

computationally challenging and also not every parameter is identifiable. Trajectory sensitivity has

been used to identify the most critical parameters [39]. Based on trajectory sensitivities, we can

have insights about how the changes in parameters influence the system response. If a parameter

exerts a large influence on the response, the corresponding sensitivity will be large.

Specifically, the sensitivity of the outputs P and Q with regard to parameter αi can be calculated

as [19]:

S(αi) =
K∑
k=1

|Pk(α+
i )− Pk(α−i )|+ |Qk(α

+
i )−Qk(α

−
i )|

K(α+
i − α−i )/αi

,

where K is the number of time steps, α+
i = αi + ∆αi and α−i = αi − ∆αi, and ∆αi is a small

perturbation of αi. After the sensitivity analysis, the parameters selected to be estimated are those

with a large sensitivity [19, 39].
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Black-Box Optimization for Parameter Estimation

A single-objective optimization problem for parameter estimation can be written in a general form

as:

min g(αc) (3.4a)

s.t. αc ∈ χ, (3.4b)

where αc is the critical parameter vector to be estimated and χ = {αc ∈ Rm ∩ [αL
c ,α

U
c ]}. Here m

is the number of critical parameters to be estimated andαL
c andαU

c are the lower and upper bounds

of the predefined prior distribution for αc. When the analytical expression of the objective func-

tion is not known, the problem is a black-box optimization problem. The black-box optimization

framework can be applied to the problem of generator parameter calibration. In our particular prob-

lem, αc is the vector of parameters of a generator model which can be defined within a reasonable

range.

Many approaches have been proposed for solving black-box optimization. Some methods rely on

metaheuristics, such as genetic algorithms [67], particle swarm [67], and simulated annealing [68].

However, these methods suffer from slow convergence in many applications [44]. Other methods

based on direct search or surrogate work faster than metaheuristics methods [45]. For approxi-

mating a function for g, several methods have been proposed. Trust regions method builds local

models for function g [69]. In contrast, Radial Basis Function (RBF) method [13] and stochastic

RBF method [70] build a global mode of the function g [44].
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Objective Function

By comparing z∗ with z, the parameters of the model can be estimated. In this CHAPTER , we

choose the following L1 norm based objective function:

ρ(z, z∗) =
1

2K
‖z − z∗‖1, (3.5)

where ‖·‖1 is the 1-norm of a vector.

Radial Basis Function Model

Given k distinct points α1
c, · · · ,αkc where their function values are known as g1, · · · , gk, in RBF

approximation we seek a function sk as follow to approximate g [13]

sk(αc) =
k∑
i=1

λiφ(‖αc −αic‖) + p(αc), (3.6)

where ‖·‖ is the Euclidean norm, λ ∈ Rk, and p(αc) is a polynomial of degree d. The polynomial

guarantees existence and uniqueness of an interpolant of the form (3.6), and its minimum degree

depends on the type of RBF φ [44]. Table 3.1 lists the common RBFs φ(r) and the corresponding

dmin. The parameter γ > 0 for multiquadric function can change the shape of the function, but is

usually set to be 1 [45, 71].

Algorithm for Solving the Black-Box Optimization Problem

1. Choosing Initial Points: Choose Initial Points: To guarantee existence of a unique interpolant

of the form (3.6), the algorithm needs at least m + 1 distinct interpolation points. Different

methods have been proposed to choose the initial points. One method is to pick the 2m
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Table 3.1: Common RBFs [13]

RBF φ(r) dmin

linear r 0

cubic r3 1

multiquadric
√
r2 + γ2 0

thin-plate spline r2 log(r) 1

points of the corner of the parameter space [72]. In [13] the m+1 points of the corner of

the parameter space are chosen. However, these methods only work for a small parameter

space. Another strategy is to use Latin Hypercube experimental design [73]. In this method,

different samples are built and the one that maximizes the minimum Euclidean distance

between the sample points is selected. In [44], fifty Latin Hypercube designs are built and

the one that has the maximum of minimum Euclidean distance is used for choosing the m+1

initial points. The chosen m+ 1 points comprise a set S .

2. Determine the Next Search Points: After choosing the initial points, in every iteration the

algorithm fits a surrogate model for g that interpolates the points in S and chooses the next

evaluation point αc according to two criteria. The first one is to minimize the Euclidean

distance fromαc to the points in S. The second one is to minimize the value of the surrogate

model at αc. In other words, the following two objective functions need to be minimized:

h1(αc) = mini=1,··· ,k‖αc −αic‖ (3.7)

h2(αc) = sk(αc), (3.8)
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where k is the cardinality of the S in the current iteration. During implementation, the

algorithm should make a tradeoff between exploration and exploitation. Exploration implies

trying to improve the surrogate model in the unknown parts of the parameter space, whereas

exploitation implies trying to find the best objective function value based on the current

surrogate model [20]. The algorithm uses a weight β ∈ [0, 1] that made a trade-off between

h1 and h2 and convert two objectives optimization problem to a single objective function. For

each point of the population P , a score is calculated based on the metric defined below [44]:

β
h1(αc)−minτ∈P h1(τ)

maxτ∈P h1(τ)−minτ∈P h1(τ)
+

h2(αc)−minτ∈P h2(τ)

maxτ∈P h2(τ)−minτ∈P h2(τ)
. (3.9)

The points in the population with a larger score retained and randomly mutated [44]. When

the point αc is determined, the function g is evaluated at αc, the point is added to S, and the

iteration is complete [74]. More details about the implementation of the trade-off between

the exploration and exploitation and its implementation can be found in [44, 45].

3. Algorithm: By defining the objective function and the prior of parameters, the Metric

Stochastic Response Surface Method (MSRSM) [44] is presented as Algorithm 1.

Simulation Results

We implement our method based on PSS/E and Python 2.7 and test it on the system used in [75].

All tests are carried out on a PC with Intel(R) Core(TM) i7-8700 and 8 GB RAM. A PMU is

installed at the 230-kV level of the substation. The sampling rate of the PMU is 30 sample/s.

We play-in voltage and frequency signals to the network and use the active and reactive power of

network as PMU measurements.
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Algorithm 1: MSRSM algorithm for estimating parameters and T is the maximum number of
iteration [13, 44].

1: Choose m+ 1 independent points α1
c, · · · ,αm+1

c based on Section IV-C1.
2: S ← {(α1

c , g(α1
c)), · · · , (αm+1

c , g(αm+1
c ))}

3: for 1 ≤ i ≤ T do
4: Compute the RBF interpolant sk to the points in S according to IV-C2.
5: Determine the trade-off between exploration and exploitation with β ∈ [0, 1] in Section

IV-C2.
6: Find a point αk+1

c that satisfies (3.7)–(3.8) and using the weight β to balance these two
criteria.

7: Evaluate g at αk+1
c to obtain g(αk+1

c )
8: S ← S ∪ {(βk+1

c , g(αk+1
c ))}

9: end for
10: Return the best solution among those in S

Critical Parameter Identification

From the trajectory sensitivity in Section 3, it is found that among 16 machine parameters only

three parameters, d-axis transient rotor time constant (Tpdo), inertia constant (H), and d-axis syn-

chronous reactance (Xd) have considerable effects on the model’s response. For the exciter with

18 parameters, only three parameters, exciter gain (KA), and time constants of the exciter (Tc and

Tb) and for the governor with 14 parameters, only two parameters, turbine coefficient (a23) and

dashpot time constant (TR) have considerable impacts on the model’s response. The top eight

parameters and their sensitivities are listed in Table 3.2.
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Table 3.2: Sensitivity Analysis of the Parameters

Parameter Sensitivity

KA 1.75

Tb 1.35

a23 1.13

Tpdo 1.11

Xd 0.85

Tc 0.67

H 0.62

TR 0.57

Setup of the Proposed Method

In addition to the objective function in (3.5), we also consider the following two objective func-

tions:

g1(z
∗, z) =

1

2K

2K∑
k=1

(zk − z∗k)2 (3.10)

g2(z
∗, z) =

√√√√ 1

2K

2K∑
k=1

(zk − z∗k)2. (3.11)

In Table 3.3 we compare the number of function evaluations which are needed to reach the esti-

mated values under different objective functions (g1 and g2). It can be seen that the chosen objective

function in (3.5) needs fewer number of simulations. Therefore, throughout this CHAPTER we

choose (3.5) as the objective function.

Based on [45], thin-plate spline performance is better than the other types of RBFs, then we use
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Table 3.3: Number of Function Evaluation which Required to Find the Estimated Parameter for
Different Objective Functions

Objective function g1 [76] g2 [6] g in (3.5)

Number of simulations 785 980 675

the thin-plate as RBF. We use the RBFOpt [45] and its parameters are left to their default values.

The details of the choosing β can be found at [45]. The maximum number of iterations is 200 and

800 for two- and eight-parameter, respectively.

Validation under Different Prior Distributions

The estimated parameters of the black box optimization are determined by the objective function

and the prior distribution. For the practice implementation, the prior distribution of the parameters

can be chosen using the data provided by the manufacturer, which is considered to be reasonable

in general. In this section, we analyze the estimation accuracy under different prior information.

We consider two parameters (the moment of inertia H for synchronous generator and the amplifier

gain KA for the exciter) with their original values as H = 5.4 and KA = 125. We choose the

prior distributions as uniform distribution with lower bound as 0 and upper bound as 100% and

300 % greater than the mean values to account for parameter uncertainties. The results of the

identification for the the different prior distributions are shown in Table 3.4. It can be seen that

proposed method can provide accurate estimation of parameters with different prior distributions.
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Table 3.4: Parameter Calibration Under Different Prior Distributions

H (HTrue = 5.40) KA (KATrue
= 125)

Prior Estimated (Error (%)) Prior Estimated (Error (%))

U(0 , 10.8) 5.40 (0) U(0, 250) 125 (0)

U(0, 16.2) 5.404 (0.08) U(0, 375) 124.95 (0.04)

Validation for High Dimension

In this section, we are demonstrating the performance of the proposed method with eight key

parameters that are known to influence the dynamic response of the system and can not be directly

measured easily. These are the gains in the exciter KA, time constant of exciter (Tb and Tc),

turbine coefficient (a23), d-axis transient rotor time constant (Tpdo), moment of inertia (H), d-axis

synchronous reactance (Xd), and dashpot time constant (TR). We assumed the parameters have

10% greater than their true values. The prior of these parameters are assumed to follow uniform

distributions. We choose the lower/upper bounds of the uniform prior distributions as 30% mean

values. Table 4.7 lists the estimated values. It can be seen the algorithm has good accuracy under

high dimension. Figure 3.2 shows the model validation results for real and reactive power for the

true and estimated parameters.

Validation Performance Under the Tolerance

Here we show the calibration in the presence of different deviations. We consider two parameters

{HTrue = 5.4, KATrue
= 125}. We consider the priors as a uniform distribution with considering

the true parameters at tail regions of the assumed prior distributions. As presented in Table 3.6,
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Table 3.5: Calibration of Eight Key Parameters

Parameter True value Estimated value Error (%)

KA 125 125.47 0.4

Tb 3.86 3.84 0.5

a23 1.102 1.110 0.7

Tpdo 5.40 5.45 0.9

Xd 0.57 0.575 0.6

Tc 0.90 0.90 0

H 5.40 5.38 0.4

TR 2.40 2.43 1.5
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Figure 3.2: Measurement and model’s output for the the model with the estimated parameters (a)
Real power and (b) Reactive power.
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even when the deviation is large, the proposed approach has a good accuracy.

For the highlighted first row in Table 3.6, the prior, the estimated and true values of the parameters

are shown in Figure 3.3. It is seen that even when the true values are at the tail regions of the

assumed prior distributions, the proposed algorithm still has very good accuracy.

Table 3.6: Parameter Calibration Under Different Deviations

H (HTrue = 5.40) KA (KATrue
= 125)

Prior Estimated (Error (%)) Prior Estimated (Error (%))

U(0 , 5.41) 5.39 (0.1) U(0, 125.01) 125 (0)

U(5.39, 10.8) 5.40 (0) U(124.99, 250) 125 (0)
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Figure 3.3: Prior distribution, true and estimated values for (a) H and (b) KA.
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Time Efficiency

The synchronous generator model used in this CHAPTER has 36 parameters. Running simulations

for the cases of two and eight keys parameters take around 30 seconds and 10 minutes, respectively.

Conclusion

This CHAPTER proposes a PMU measurement based generator parameter calibration approach

by black-box optimization with a stochastic radial basis function surrogate model. The proposed

algorithm is applied to calibrate the decentralized dynamic model of a generator. The simulation

results show that the proposed method can accurately and efficiently estimate the parameters. Even

when the true values are at the tail regions of the assumed prior distributions, the proposed algo-

rithm can still very accurately estimate the parameters. In our future work we will further improve

the proposed method as follows.

• In this CHAPTER critical parameters are identified based on trajectory sensitivity. Since the

generator model is highly nonlinear, a better approach to quantify the parameter-output behav-

ior from the perspective of nonlinear systems and further identify critical parameters will be

developed.

• Since the generator models used in the industry could have a large number of parameters, in

our future work we will further improve the time efficiency of the proposed method for high

dimensional cases.

• Improving the robustness and estimation accuracy of the proposed method when there exists an

extremely large deviation between the true parameters and the prior information will also be

studied in the future.
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CHAPTER 4: GENERATOR PARAMETER CALIBRATION BY

A-ABC-SMC

S. R. Khazeiynasab and J. Qi, ”Generator Parameter Calibration by Adaptive Approximate

Bayesian Computation With Sequential Monte Carlo Sampler,” in IEEE Transactions on Smart

Grid, vol. 12, no. 5, pp. 4327-4338, Sept. 2021, doi: 10.1109/TSG.2021.3077734.

Introduction

Secure power system operation relies on accurate steady-state and dynamic system models. It is

thus crucial to carefully validate the models in power systems, in particular the generator mod-

els. The phasor measurement unit (PMU) technologies provide a low-cost option for generator

model validation and parameter calibration without interfering with their operation. In this CHAP-

TER , we propose a synchrophasor measurement based generator parameter calibration method by

A-ABC-SMC that avoids directly dealing with likelihood functions. An empirical parameter sen-

sitivity Gramian based approach is developed to identify the critical parameters from a nonlinear

system perspective. We propose an ABC SMC approach for generator parameter calibration with

an adaptive threshold sequence scheme and perturbation kernel function for high computational

efficiency. The effectiveness of the proposed method is validated for a hydro generator against

multiple system events. The results show that the proposed approach can accurately and efficiently

estimate the full probabilistic posterior distributions of the generator parameters.

In this CHAPTER we focused on the Bayesian-based method. The Bayesian inference methods

in [41–43] still need to evaluate the likelihood function of the parameters. By contrast, Approxi-

mate Bayesian Computation (ABC) has been proposed to infer posterior distributions where like-
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lihood functions are computationally intractable or too costly to evaluate [12]. ABC exploits the

computational efficiency of modern simulation techniques by replacing the calculation of the like-

lihood function with a comparison between the observed and the simulated data. The simplest

ABC algorithm is ABC rejection sampler [77], which, however, could be very inefficient. Many

techniques have been proposed to improve the efficiency of ABC, such as ABC based on MCMC

(ABC MCMC) [78] and ABC with sequential Monte Carlo sampler (ABC SMC) [4, 5]. For ABC

MCMC the chain could be very long and a chain may get stuck in regions of low probability for a

very long time [79], which can be avoided by ABC SMC [4].

In this CHAPTER we propose an adaptive ABC SMC (A-ABC-SMC) based generator parameter

calibration approach and improve the efficiency of ABC SMC by developing systematic methods to

adaptively choose the threshold sequence and the perturbation kernel function. The contributions

of this CHAPTER are summarized as follows.

1. Instead of using a sensitivity-based approach, an empirical Gramian based approach is pro-

posed directly for the nonlinear generator model to more accurately identify the critical pa-

rameters with the highest identifiability.

2. We perform generator parameter calibration by A-ABC-SMC, a likelihood-free method that

does not directly explore the likelihood surface of the parameters but instead estimates the

posterior distributions of the parameters by a simulation-based procedure.

3. The proposed A-ABC-SMC approach significantly improves the computational efficiency

of ABC SMC through adaptive threshold sequences and perturbation kernel function, and

carefully chosen distance function.
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Generator Dynamic Model

The nonlinear dynamical model of a synchronous generator and its controls includes a genera-

tor (GENTPJ), an exciter (ESST1A), a governor (IEEEG3), and a power system stabilizer (PSS,

IEEEST) can be written as (3.1). The block diagram of the generator, exciter, governor, and PSS

are shown in Figs. 4.1–4.4.

Figure 4.1: GENTPJ generator model. H is inertia constant, D is damping factor, T ′do is d-axis
transient rotor time constant, T ′′do is d-axis sub-transient rotor time constant, Xd is d-axis syn-
chronous reactance, X ′d is d-axis transient reactance, X ′′d is d-axis sub-transient reactance, se is
saturation factor, Efd is excitation voltage, E ′q is q-axis transient voltage, and E ′′q is q-axis sub-
transient voltage [2, 3].

In model validation, the time-series real and reactive powers from the model, denoted by vectors

Pmodel and Qmodel, are compared with the time-series real and reactive power measurement vec-

tors, denoted by Pmeas andQmeas. If the outputs from the model do not match the PMU-measured

outputs, the generator parameters need to be calibrated [19].
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Figure 4.2: ESST1A exciter model. TR is voltage transducer time constant, VImax is maximum
voltage error, VImin is minimum voltage error, TC, TB, TC1, TB1 are time constants, KA is AVR
steady state gain, TA is rectifier bridge equivalent time constant, VAmax is maximum of AVR output,
VAmin is minimum of AVR output, VRmax is maximum rectifier bridge output, VRmin is minimum
rectifier bridge output, KC is commutation factor for rectifier bridge, KF is stabilizer feedback
gain, TF is stabilizer feedback time constant, KLR is field current limiter gain, ILR is field current
instantaneous limit, and Ifd is excitation current [2].

Identifiability of Parameters

A synchronous generator has many parameters. Calibrating all parameters could be computa-

tionally challenging and also not every parameter is identifiable. Therefore, the parameters with

highest identifiability should be first identified [19, 28].
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Figure 4.3: IEEEG3 governor model. TG is gate servo time constant, TP is pilot servo valve time
constant, Uo is opening gate rate limit, Uc is closing gate rate limit, Pmax is maximum gate position,
Pmin is minimum gate position, σ is permanent speed droop coefficient, δ is transient speed droop
coefficient, ω is velocity of the rotor, a11, a13, a21, a23 are turbine coefficients, TW is water starting
time, and TR is governor time constant [2].

Figure 4.4: IEEEST PSS model. A1, A2, A3, A4, A5, A6 are filter coefficients, T1, T2, T3,
T4, T5, T6 are lead/lag time constants, Ks is PSS gain, Lsmax is PSS output maximum limit, Lsmin

is PSS output minimum limit, and Vcl and Vcu are voltage cutoff limiters [2].

Sensitivity Based Approach

In [19], the sensitivity of P and Q with regard to parameter αi can be calculated to help identify

critical parameters:

S(αi) =
K∑
k=1

|Pk(α+
i )− Pk(α−i )|+ |Qk(α

+
i )−Qk(α

−
i )|

K(α+
i − α−i )/αi

,
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where K is the number of time steps, α+
i = αi + ∆αi and α−i = αi − ∆αi, and ∆αi is a small

perturbation of αi. The parameters with the largest sensitivities will be considered as having the

highest identifiability [19].

Empirical Gramian Based Approach

The sensitivity in Section 4 is only locally defined for one operating point and the nonlinear behav-

ior of the generator model is inevitably lost. Here we adapt the empirical Gramian approach [80,81]

to analyze the sensitivity of the outputs to parameters. Specifically, we define an empirical param-

eter sensitivity Gramian (EPSG) which perturbs the parameters to reveal the parameter-output

behavior [82]. Note that EPSG is defined for a reasonable region of the parameters directly for

the original nonlinear dynamical model and can thus better reflect the identifiability of the param-

eters [81]. The following sets are defined for EPSG:

T = {T 1, · · · ,T r; T j ∈ Rv×v, T j
>T j = Iv, j = 1, . . . , r}

M = {c1, · · · , cs; cm ∈ R, cm > 0, m = 1, . . . , s}

E = {e1, · · · , ev; standard unit vectors inRv},

where T defines the initial parameter perturbation direction, r is the number of matrices for pertur-

bation directions, M defines the perturbation sizes, s is the number of perturbation sizes for each

direction, Iv is an identity matrix with dimension v, and E defines the parameter to be perturbed.

For the ith parameter, αi, in the nonlinear system (3.1), with fixed initial states x0, EPSG can be

defined as

W con(αi) =
r∑
j=1

s∑
m=1

1

rsc2m

∫ ∞
0

Φjm(t) dt, (4.1)

where Φjm(t) ∈ Ro×o is given as Φjm(t) = (yjm(t) − yjm0 )(yjm(t) − yjm0 )>, yjm0 refers to the
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outputs corresponding to the unperturbed initial parameter α0, and yjm(t) is the output of the

nonlinear system under parameter αjm = α0(1 + cmT jei).

The discrete form of EPSG can be defined as [81]

W (αi) =
r∑
j=1

s∑
m=1

1

rsc2m

K∑
k=1

Φjm
k ∆tk, (4.2)

where Φjm
k ∈ Ro×o is given by Φjm

k = (yjmk − y
jm
0 )(yjmk − y

jm
0 )>, yjmk is the output of the

nonlinear system at time step k corresponding to the parameter αjm = α0(1 + cmT jei), and ∆tk

is the time step size. We choose ∆tk = 0.033 s since the reporting rate of PMU measurement is

assumed to be 30 samples/s. T is chosen as

T = {Iv,−Iv} (4.3)

so that we perturb each parameter in both positive and negative directions. We choose a linearly

scaled set M = {0.25, 0.5, 0.75} for the perturbation sizes.

The identifiability of the ith parameter can be indicated by the trace of W (αi), denoted by

tr
(
W (αi)

)
. Based on our numerical experiments, trace as a metric that measures the overall

identifiability of a parameter is a good choice among several available metrics [83, 84].

Note that some parameters do not change much during the generator lifetime based on engineering

experience. If that is the case we can either choose not to calibrate those parameters even if they

are identified as critical parameters or we can utilize this information to help properly assign prior

distributions for those parameters (for uniform prior distribution we can reduce the width of the

interval and for normal prior distribution we can reduce the standard deviation).
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ABC for Parameter Estimation

In many areas there is either no closed-form likelihood function or it is computationally too ex-

pensive to calculate such a function [79]. Particularly for the parameter calibration problem, the

computational expense for having explicit likelihood function is the major challenge. For this rea-

son, some papers such as [41,42] approximate the likelihood function by using a polynomial chaos

expansion (PCE)-based response surface to represent system response. However, when the number

of parameters increases, the number of terms involved in PCE will also increase which will reduce

the efficiency.

A more straightforward approach is to perform simulations for the model using different parame-

ters, compare the simulated results with the observed data, and estimate the likelihood of a given

parameter set to generate outputs that match the observed data. However, in real applications the

probability of an exact match is very low [79]. ABC based approaches provide a framework to

generate approximations to the true posterior distribution by systematic comparisons between real

and simulated data instead of directly evaluating the likelihood function [5, 10].

ABC SMC

Let z∗ be the measurements and z(αc) the outputs of the model where αc ∈ Rv′ is the vector of

the v′ critical parameters to be estimated. Assuming the prior distribution forαc as π(αc), Bayes’s

theorem allows us to write its posterior distribution p(αc|z∗) in terms of the prior distribution and

the likelihood of the observed data z∗ for given parameter αc, l(z∗|αc), as [10, 85]

p(αc|z∗) ∝ l(z∗|αc)π(αc). (4.4)
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The posterior distribution represents the most updated information/knowledge regarding the pa-

rameters given the available data. ABC compares the simulated data z with the real data z∗ and

accepts only the simulations for which the distance between z∗ and z, ρ(z, z∗), is less than a

predefined tolerance ε. The goal is to determine the approximate posteriors as [86]

p(αc|z∗) ≈ pε(αc|z∗) ∝
∫
R2K

l(z|αc)1
(
ρ(z, z∗) ≤ ε

)
π(αc)dz, (4.5)

where pε(αc|z∗) is an approximation of the posterior p(αc|z∗), l(z|αc) is the probability density

of data z given model parameters αc, and 1(x) is equal to one when condition x is true.

If ε is sufficiently small, the distribution pε(αc|z∗) will be a good approximation of the posterior

distribution. ABC SMC samples from a sequence of distributions that increasingly resemble the

target posterior. They are constructed by estimating the intermediate distributions pεt(αc|z) for

a decreasing sequence of {εt}1≤t≤NT where NT is the maximum number of iterations [87]. The

algorithm first generates an initial pool of N particles that satisfy ρ(z, z∗) ≤ ε1 by randomly

sampling from the prior π(αc) and all particles are assigned an equal weight as 1/N . In the fol-

lowing iterations, successive distributions are randomly constructed by sampling from the previous

population with probabilities {w(i,t−1)}{1≤i≤N} where w(i,t−1) is the weight for the ith particle in

iteration t− 1. A perturbation kernel κt is used to perturb them and find α(i,t)
c ’s. The new particle

α
(i,t)
c is used to simulate z and if ρ(z, z∗) ≤ εt is satisfied, the particle is accepted. The process is

repeated until N particles are accepted.

At each iteration, new weights are assigned to the particles, and in the next iteration the particles

with larger weights become better represented in the population. The importance weights associ-
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ated with an accepted population {α(i,t)
c }{1≤i≤N} are calculated as [5]:

w(i,t) ∝
π
(
α

(i,t)
c

)
∑N

j=1w
(j,t−1)κt

(
α

(i,t)
c

∣∣α(j,t−1)
c

) . (4.6)

The efficiency of ABC SMC heavily relies on a proper choice of the distance function, the threshold

sequence {εt}1≤t≤NT , and the perturbation kernel function κt(·|·) [10].

Existing Threshold Sequences

To balance the computational efficiency and the accuracy of the posterior distribution, a threshold

sequence is defined as:

E = {ε1, ε2, · · · , εNT }, (4.7)

where ε1 > ε2 > · · · > εNT . If the threshold is too large, too many proposed particles are accepted;

if it is too small, the ABC algorithm is not efficient since many proposed particles will be rejected

[88]. The threshold sequence also influences the convergence towards the global mode [10], [8].

It can be chosen in advance [4, 79], which, however, may cause the algorithm to be stuck in local

modes or the final ABC posterior to be very different from the true posterior [87]. By contrast,

selecting it adaptively based on some quantile of the threshold in the previous iteration has better

performance [89].

1. In [4], ε1 = 1, εNT = 0.0025, and ε2:NT−1 is chosen as

εt+1 =
1

2
(εt − εNT ). (4.8)

39



2. In [5,6], ε1 and εNT are predefined (ε1 = 2, εNT = 0.01 in [6]), and εt+1 is the qth-percentile

of the sorted particle distances in last iteration. However, the optimal q is problem-specific

and is decided case by case [89].

3. In [7], for an appropriate k ∈ Z+, ε1 is calculated by sampling Ninit = kN particles from

the prior as:

ε1 = max(ρmin
1 , · · · , ρmin

N ), (4.9)

where ρmin
1 , · · · , ρmin

N are the N smallest distances of the Ninit sampled particles. Then

ε2:NT−1 is determined as the 25th percentile of the accepted distances from the previous

iteration. However, ε1 tends to be small and many proposed parameters will be rejected, and

the choice of ε2:NT−1 has similar problems as in [5, 6].

4. In [8], ε1 is also chosen by (4.9) and εt+1 is updated as

εt+1 = qtεt, (4.10)

where qt = 1/ĉt with

ĉt = sup
αc

pεt(αc)

pεt−1(αc)
. (4.11)

Here the density ratio can be calculated by the method in [90]. Note that the next threshold

is adjusted based on how rapidly the posteriors are changing. However, when calculating qt

based on (4.11) only the last iteration is considered, which may be inefficient as the estimated

posteriors will change only very slowly in later iterations.

40



Existing Perturbation Kernels

A perturbation kernel defines the distribution of the random variables that will be added to the

particles to move them around in the parameter space. A local perturbation kernel generates new

particles that are more possible to be accepted, while a widely spread kernel can explore larger

parameter spaces with a lower acceptance rate [79].

1. A component-wise Uniform kernel is used in [9]. However, it cannot provide a good approx-

imation of the posterior and the algorithm is thus inefficient [10].

2. The component-wise Normal kernel in [5] minimizes the Kullback-Leibler distance between

the desired posterior and the proposal distribution by a Gaussian distribution with mean

α
(t−1)
c,j and variance (σtj)

2 [5]. However, it does not consider the correlations between pa-

rameters, and thus cannot reflect the structure of the posterior and may search in the space

with low probabilities.

3. The multivariate Normal kernel in [10] considers the correlations between parameters, and

uses a covariance matrix obtained based on a subset of the particles from the previous iter-

ation whose distances are smaller than εt of the current iteration. However, if any particles

are far from the mean of all particles, the algorithm will spend considerable time to find a

new particle acceptable for the next iteration.

4. The multivariate Normal kernel with Kn-nearest neighbors in [10] perturbs α(i,t−1)
c based

on a Gaussian distribution with meanα(i,t−1)
c and the empirical covariance of theKn-nearest

particles of α(i,t−1)
c . However, too large Kn does not have obvious advantage compared with

using the whole population while too small Kn may lead to a lack of exploration of the

parameter space.
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Parameter Calibration by A-ABC-SMC

By comparing the simulated z with PMU-measured z∗, the parameters of the model can be esti-

mated. In this CHAPTER we perform generator parameter calibration by adapting the ABC SMC

algorithm in Section 4.

In this CHAPTER , we develop systematic methods to choose proper distance function, the thresh-

old sequence, and the perturbation kernel function in order to greatly improve the computational

efficiency, which will be discussed below.

Distance Function

The distance function measures the degree to which the model outputs match the observed data.

L1 distance [91], Euclidean distance [10], chi-squared distance function [92], root mean square

(RMS) distance [6] are popular distance functions. In this CHAPTER we choose the following L1

distance function based on numerical experiments:

ρ(z, z∗) =
1

2K
‖z − z∗‖1, (4.12)

where ‖·‖1 is the 1-norm of a vector.

Adaptive Threshold Sequence

Since dynamic simulation is the most computationally expensive part of the A-ABC-SMC algo-

rithm, a properly chosen threshold sequence should reduce the total number of dynamic simula-

tions. This requires a careful balance between the number of simulations in each iteration and
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a good approximation of the posterior distribution. Then, it is better to adaptively determine the

threshold sequences. We propose the following threshold sequence scheme to achieve this goal:

1. We choose ε1 as

ε1 = min(ρmax
1 , · · · , ρmax

N ), (4.13)

where ρmax
1 , · · · , ρmax

N are the N largest distances of the Ninit sampled particles. This avoids

the drawback of the too small ε1 in (4.9) that leads to many proposed parameters to be

rejected.

2. Let c0 = 1, for iteration t > 1 we calculate qt as

qt =

∑t
i=1 ĉi−1∑t
i=1 ĉi

. (4.14)

Different from [8], we consider the impact of all previous iterations when calculating qt.

Since qt ≤ 1, there is εt+1 ≤ εt. If εt is less than the predefined smallest threshold, the

algorithm will stop. This addresses the inefficiency issue for the method in (4.10)–(4.11)

especially for later iterations and greatly improves the efficiency.

Adaptive Perturbation Kernel

All the kernels in Section 4 use α(i,t−1)
c as the mean. Utilizing these kernels ABC SMC may waste

a lot of time in sampling the areas of low likelihood. The acceptance rate could be very low and

the algorithm may be stuck in local modes. Therefore, we propose to choose the mean of the

Gaussian kernel as a function of the distance between αic and the mean of all particles, ᾱc. For
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αc = [αc,1, · · · , αc,v′ ]
>, the range of the particles for the jth parameter is

Rj = max{dij}1≤i≤N −min{dij}1≤i≤N , (4.15)

where dij is the distance between particle i and the mean of the particles for the jth parameter. The

mean of the kernel for the jth parameter of particle i is chosen as

α̃ic,j =
dij
Rj

ᾱc,j +
Rj − dij
Rj

αic,j, (4.16)

where ᾱc,j is the mean of the jth parameter for all particles. For 1 ≤ i ≤ N , αic is perturbed

independently according to a Gaussian distribution with mean α̃ic.

Figure 4.5 illustrates the populations of two parameters, αc1 and αc2, generated by using the ex-

isting kernels and the proposed kernel from two consecutive iterations in our simulations. For the

population at iteration t−1 shown in Figure 4.5a, an example is given for the existing and proposed

kernels for one particle. For the existing kernels α(i,t−1)
c is the mean, while for the proposed kernel

the mean is chosen as (4.16). For existing kernels the algorithm will search around the particles

located in low densities. By contrast, for the proposed kernel the focus is more on the space with

higher densities, thus improving time efficiency. Figure 4.5b shows the population at iteration t

with the existing and the proposed kernels. It is clear that using the proposed kernel the generated

population will be more concentrated with higher efficiency.

The joint distribution first samples a particle from the last population αt−1c ∼ pεt−1(·|z∗) and

obtains a new particle by using the kernel κt(αtc|αt−1c ) as:

pεt−1,εt(α
t−1
c ,αtc|z) ∝ pεt−1(α

t−1
c |z)κt(αtc|αt−1c )

∫
f(z∗|αtc)1(ρ(z∗, z) ≤ εt)dz,

where κt(αtc|αt−1c ) should minimize the following Kullback-Leibler divergence C between
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Figure 4.5: The population at two consecutive iterations for the existing and proposed kernels: (a)
Population at iteration t− 1 with the existing and proposed kernels illustrated for one particle; (b)
Populations at iteration t using the existing and proposed kernels.

pεt−1,εt(α
t−1
c ,αtc|z) and the desired distribution pdesire [5, 93]:

C
(
pdesire ‖ pεt−1,εt(α

t−1
c ,αtc|z)

)
=

∫
pdesire log

(
pdesire

pεt−1(α
t−1
c |z)κt(αtc|αt−1c )

)
dαc. (4.17)

It has been proved that minimizing (4.17) is equivalent to maximizing∫
pdesire log

(
κt(αtc|αt−1c )

)
dαc [94]. Presumably, pdesire should be similar to the joint distri-

bution that picks two particles independently [5], i.e.

pdesire = pεt−1(α
t−1
c |z)pεt(α

t
c|z). (4.18)

For a multivariate Gaussian kernel, we assume that all particles in iteration t − 1 only satisfy
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ρ(z, z∗) ≤ εt−1 but not ρ(z, z∗) ≤ εt. Then Γt can be written as [5]:

Γt ≈
N∑
i=1

w(i,t−1)(αic − α̃c

)(
αic − α̃c

)>
. (4.19)

Algorithm 2: A-ABC-SMC algorithm for estimating the posterior distribution of parameters
αc using N particles, the prior distribution π(αc). α(i,t)

c is the parameter set for particle i at
iteration t.

1: Set maximum number of iterations NT and set ε1 by (4.13)
2: At iteration t = 1
3: for 1 ≤ i ≤ N do
4: while ρ(z, z∗) > ε1 do
5: Sample α∗c from the prior: α∗c ∼ π(αc)
6: Generate data z from α∗c : z ∼ Model(α∗c)
7: Calculate discrepancy ρ(z, z∗) based on (4.12)
8: end while
9: Set α(i,1)

c ← α∗c and w(i,1) ← 1
N

10: end for
11: Generate Gaussian perturbation kernel κ2 = N (α̃1

c ,Γ
1) based on (4.19)

12: Determine ε2 based on (4.10) and (4.14)
13: At iteration t > 1
14: for 2 ≤ t ≤ NT do
15: for 1 ≤ i ≤ N do
16: while ρ(z, z∗) > εt do
17: Sample α∗c from the previous population {α(i,t−1)

c }{1≤i≤N} with probabilities
{w(i,t−1)}{1≤i≤N} and perturb them to obtain α∗∗c ∼ κt(α̃t−1c ,Γt−1)

18: Generate data z from α∗∗c : z ∼ Model(α∗∗c )
19: Calculate discrepancy ρ(z, z∗) based on (4.12)
20: end while
21: Set αtc ← α∗∗c

22: Set w(i,t) ← π
(
α
(i,∗∗)
c

)
∑N
j=1 w

(j,t−1)κt
(
α
(i,∗∗)
c

∣∣α̃(j,t−1)
c

)
23: end for
24: Generate Gaussian perturbation kernel κt+1 = N (α̃tc,Γ

t) based on (4.19)
25: Determine εt+1 based on (4.10) and (4.14)
26: end for
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Proposed A-ABC-SMC Algorithm

The A-ABC-SMC algorithm with the proposed adaptive threshold sequence and perturbation ker-

nel function is presented in Algorithm 2. When the threshold sequence is adaptive the algorithm

will stop when a maximum number of NT iterations has been performed [4, 5]. Alternatively,

where the user defines a lowest threshold (εmin), the A-ABC-SMC algorithm can be modified so

that it will stop when the lowest threshold criteria is met.

The proposed A-ABC-SMC provides the posterior distribution of the parameters based on the N

particles in the last iteration, not just one point estimation. The maximum-a-posteriori (MAP), the

mean of theN particles in the last iteration for each parameter is chosen as the estimated parameter.

Generator parameter calibration usually only deals with one generator and only a small number of

its parameters with high identifiability will be calibrated. If many parameters have to be calibrated

at the same time, the ABC SMC algorithm may face curse of dimensionality issue, in which case

methods such as the one in [95] may be implemented in order to alleviate this issue and improve

the scalability of the proposed approach.

Simulation Results

The proposed method is implemented based on PSS/E and Python 2.7. We use the same hydro-

generator model and PMU data in [75]. A PMU is installed at the 230-kV side of the substa-

tion with a sampling rate of 30 sample/s. All tests are performed on a desktop PC with Intel(R)

Core(TM) i7-8700 and 8-GB RAM.
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Critical Parameter Identification

For sensitivity analysis, a small perturbation ∆αi = 5%|αi| is applied to each parameter. Table 4.1

lists the top fourteen critical parameters identified by the EPSG and sensitivity based approaches,

in which the corresponding tr
(
W (αi)

)
and S(αi) are presented. It is seen that the EPSG based

approach identifies H as a critical parameter while the sensitivity based approach does not, with

tr
(
W (H)

)
= 3210 � tr

(
W (T3)

)
= 1470. Meanwhile, the sensitivity based approach identifies

T3 as a critical parameter while the EPSG based approach does not, with S(T3) = 0.85 slightly

greater than S(H) = 0.6.

Figure 4.6 shows the real power under small perturbation (5%) and large perturbation (50%) of H

or T3. For small perturbation, real power is a little more sensitive to T3 than to H . However, as

shown in Figure 4.6b, under large perturbation, real power is much more sensitive to H , which is

consistent with the result of the EPSG based approach.
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Figure 4.6: Real power under small and large perturbations of H or T3.
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Table 4.1: Top Fourteen Critical Parameters Identified by Gramian-Based and Sensitivity-Based
Approaches

EPSG Sensitivity

Parameter tr
(
W (αi)

)
Parameter S(αi)

KS 1270745 T6 26.39

T6 1270731 KS 26.11

T5 314231 T5 22.23

KA 4441 KA 1.75

H 3210 Tb 1.35

a23 2254 a23 1.13

T ′do 2247 T ′do 1.11

Tb 2240 T3 0.85

T3 1269 T1 0.83

T1 1258 Xd 0.72

Tc 1044 Tc 0.67

Xd 988 H 0.61

X ′d 531 RT 0.57

RT 422 X ′q 0.52

Particle Population Size

A large N is desirable for high accuracy, but will increase the computational burden. It is reason-

able to estimate the parameters of different dimensions using different numbers of particles. Figure

4.7 shows the maximum error for two and fourteen critical parameters under different particle num-

bers, in which the threshold sequence and kernel function in [5] are used. For two-parameter case,
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we set acceptable error to be 1%. Based on Figure 4.7a N = 30 satisfies this error criterion. For

fourteen parameter case, we set acceptable error to be 2%. Based on Figure 4.7b, N = 75 satisfies

this error criterion.
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Figure 4.7: Maximum error of the estimated parameters for different number of particles.

Distance Function

We compare different distance functions including the L1 distance in (4.12). The threshold se-

quence and kernel function are set as the same in [5]. Table 4.2 lists the average number of sim-

ulations in ten independent runs under different distance functions. It is seen that the L1 distance

function in (4.12) requires the smallest number of simulations.

Adaptive Threshold Sequence and Perturbation Kernel

We evaluate the performance of different threshold sequence schemes and perturbation kernel func-

tions for the calibration of the moment of inertia H and the amplifier gain of the exciter KA by the
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Table 4.2: Average Number of Simulations for Different Distance Functions Over Ten Independent
Runs

Euclidean [10] chi-squared [92] RMS [6] (4.12)

1556 1486 1515 1448

acceptance rate [10]. We consider the priors of the parameters as a Gaussian distribution whose

mean has 10% deviation from the true values and whose standard deviation is 30% of the mean.

For all simulations, we use N = 30 particles, the acceptable error is set as 1%, and the maximum

number of iterations NT is set to be 15.

In Figure 4.8, we show the acceptance rates for different threshold sequences and perturbation

kernel functions. In Figure 4.8a, we set the perturbation kernel as the one in [5] and compare the

acceptance rate for existing threshold sequence schemes and our proposed threshold sequence over

ten independent runs. The proposed method has the highest acceptance rate. Similarly, we set the

threshold sequence as the one in [5] and provide the acceptance rates in Figure 4.8b for existing

perturbation kernel functions and our proposed kernel function. For the multivariate normal kernel

with Kn nearest neighbors in [10], we choose Kn = 5. It is seen that the proposed kernel has a

significantly higher acceptance rate than the other methods.

We set the perturbation kernel as the one in [5] and show the threshold sequences and the number

of simulations at each iteration in Figure 4.9. Although the proposed threshold sequence requires

four more iterations than the methods in [4] and [7], the number of simulations in each iteration for

the proposed threshold sequence is much smaller, leading to overall higher efficiency. Similarly

in Figure 4.10, we set the threshold as the one in [5] and show the threshold sequence and the

number of simulations in each iteration under different perturbation kernel functions. Since the

same threshold sequence scheme is used, each case has very similar threshold sequences. As in

51



Figure 4.10b, the ABC SMC using the proposed perturbation kernel function has significantly

smaller number of simulations compared with the existing kernels.

In Table 4.3, we compare the average number of simulations for different threshold sequences

and perturbation kernels over ten independent runs. The proposed threshold sequence and kernel

function require the least number of simulations to reach posterior distributions. When we consider

the proposed threshold sequence and the perturbation kernel function at the same time, it only

needs 320 simulations to reach the posterior distributions, achieving a speed-up of 1879/320 ≈

5.87 compared with the case with the lowest efficiency.
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Figure 4.8: Average acceptance rate over ten independent runs for (a) different threshold sequences
and (b) different perturbation kernel functions. In Figure 4.8a: � Method in [4], ? Method in
[5], [6], + Method in [7], ∗ Method in [8], ◦ Proposed threshold sequence. In Figure 4.8b /
Component-wise Uniform [9], � Component-wise Normal [5], × Multivariate normal [10], O
Multivariate normal with Kn nearest neighbors [10], . Proposed kernel.
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Figure 4.9: Threshold sequences and number of simulations in each iteration with fixed pertur-
bation kernel: (a) Threshold sequences; (b) Number of simulations. � Method in [4], ? Method
in [5], [6], + Method in [7], ∗Method in [8], ◦ Proposed threshold sequence.
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Figure 4.10: Threshold sequences and number of simulations in each iteration with fixed thresh-
old sequence scheme and different perturbation kernels: (a) Threshold sequences; (b) Number
of simulations. / Component-wise Uniform [9], � Component-wise Normal [5], × Multivariate
normal [10], OMultivariate normal with Kn nearest neighbors [10], . Proposed kernel.
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Table 4.3: Average Number of Simulations for Different Threshold Sequences and Perturbation
Kernel Functions Over Ten Independent Runs

Threshold Simulations Kernel Simulations

Method in [7] 1879 Component-wise Uniform [9] 1634

Methods in [5, 6] 1448 Component-wise Normal [5] 1448

Method in [4] 1260 Kn nearest neighbours [10] 1125

Method in [8] 1044 Multivariate normal [10] 1014

Proposed threshold 615 Proposed kernel 547

Calibration of Two Parameters

We calibrate H and KA whose true values are Ht = 5.4 and Kt
A = 125. The mean values of the

prior distributions of these parameters are set as 10% greater than their true values to account for

parameter uncertainties. We choose the lower/upper bounds of the uniform prior distributions as

50%, 70%, or 90% less/greater than the mean values. The standard deviations of the Gaussian prior

distributions are set as 10%, 20%, or 30% of the mean value. The results for parameter calibration

are given in Table 4.4. It is seen that the proposed method can accurately estimate the parameters

under different prior distributions, and the largest errors for H and KA are, respectively, 1.1% and

1.2%.

We then consider more extreme cases in which the prior is a Gaussian distribution whose mean

has 20%, 30%, and 40% deviation from the true values and whose standard deviation is 10%,

30%, and 60% of the mean values. As in Table 4.5, even when the mean of the priors have very

large deviations from the true values and the standard deviations of the priors are relatively small,

the proposed approach still has high accuracy. For the highlighted first row in Table 4.5, the
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Table 4.4: Parameter Calibration under Different Prior Distributions

Uniform prior

H(Ht = 5.40) KA(Kt
A = 125)

Prior Estimated (% Error) Prior Estimated (% Error)

U(2.9, 8.9) 5.39 (0.1) U(68.8, 206.3) 125.5 (0.4)

U(1.8, 10.1) 5.43 (0.5) U(41.2, 233.8) 124.6 (0.3)

U(0.6, 11.3) 5.47 (1.1) U(13.8, 261.2) 123.5 (1.2)

Gaussian prior

Prior Estimated (% Error) Prior Estimated (% Error)

N (5.94, 0.62) 5.40 (0) N (137.5, 13.82 ) 125.1 (0.1)

N (5.94, 1.22) 5.38 (0.3) N (137.5, 27.52) 125.2 (0.1)

N (5.94, 1.82) 5.41 (0.2) N (137.5, 41.32) 124.1 (0.8)

prior/posterior distributions, and the estimated/true values of the parameters are shown in Figure

4.11. It is seen that even when the true values are at the tail of the assumed prior distributions

the proposed algorithm can still very accurately estimate the parameters. In contrast, the proposed

algorithm in [41] has an error greater than 25% for the same deviations and priors.

To compare our proposed method with that in [43], we consider a case similar to the test B in [43].

Specifically, we set the mean value of the prior distribution for H as 61% less than the true value

and that for KA as 225% greater than the true value, and choose the lower/upper bounds of the

uniform prior distributions as 90% less/greater than the mean values. We show the performance

of the proposed method in Table 4.6. It can be seen that our algorithm can find very accurate

parameters. The estimation error of the proposed approach for H is 0.01% and for KA is 0.05%,

which are less than the corresponding errors, 0.08% and 0.5% respectively, in [43]. We also show

the posterior distributions of the parameters in Figure 4.12. Note that the standard deviations of
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the posterior distributions obtained by our approach are much smaller than those in [43].

Table 4.5: Calibration of H and KA for Different Deviations and Prior Distributions

Standard Deviation (10%)

Deviation
H KA

Prior Estimated Error (%) Prior Estimated Error (%)

40 % 7.56 5.61 3.8 175 124.1 0.8

30 % 7.02 5.31 1.5 162.5 124.1 0.7

20 % 6.48 5.38 0.4 150 125.2 0.2

Standard Deviation (30 %)

Deviation
H KA

Prior Estimated Error ( %) Prior Estimated Error ( %)

40 % 7.56 5.31 1.6 175 123.6 1.1

30 % 7.02 5.34 1 162.5 125.7 0.6

20 % 6.48 5.39 0.2 150 125.3 0.2

Standard Deviation (60 %)

Deviation
H KA

Prior Estimated Error ( %) Prior Estimated Error ( %)

40 % 7.56 5.4 0 175 125.3 0.3

30 % 7.02 5.41 0.2 162.5 125.2 0.2

20 % 6.48 5.40 0 150 125.2 0.2

Calibration of Fourteen Parameters

We calibrate the fourteen critical parameters identified from the Gramian based approach using the

proposed ABC-SMC approach. The priors of these parameters are assumed to follow Gaussian
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Figure 4.11: Prior and posterior distributions, and the true and estimated values for (a) H and (b)
KA.

Table 4.6: Parameter Calibration Under Bad Prior Distribution

H(Ht = 5.40) KA(Kt
A = 125)

Prior Estimated ( % Error) Prior Estimated ( % Error)

U(0.9, 17.2) 5.401 (0.01) U(28.1, 534.4) 125.07 (0.05)

distributions whose means are 10% greater than their true values and whose standard deviations

are 20% of the mean values. Table 4.7 lists the estimated values. It can be seen that the algorithm

has good accuracy under high dimension.

In real application, true model parameters are never known. It is possible that for different events

the algorithm may provide different parameters. In addition to engineering judgment and experi-

ence that can help choose reasonable parameters [19, 48], techniques can also be developed based

on the available multiple events to help select the best parameters. For example, one can consider

one event to estimate the parameters and use the other events to cross-validate the estimated pa-
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Figure 4.12: Posterior distributions, and the true and estimated values for (a) H and (b) KA. �
Estimated values, • True values, – posterior distribution.

rameters. Here we assume PMU measurements for three events are available. We estimate the

parameters with each one of the three events and calculate the 1-norm error defined in (4.12) for

all three events. The parameter set with the smallest average 1-norm error is selected. Figure

4.13 shows the model validation results under three events with the original parameters and the

estimated best parameters. It is seen that the mismatch between model outputs and PMU mea-

surements is significant under original parameters while the model outputs from the estimated

parameters can match the PMU measurements very well for all three events.

Time Efficiency

The generator model has 60 parameters. Dynamic simulation is solved by PSS/E which is called

from Python 2.7. The calibration of two and fourteen critical parameters takes 1 and 10 min-

utes, respectively. By contrast, it takes at least 20 minutes for the two-parameter case and more

than 2 hours for the fourteen-parameter case if using the existing threshold sequence schemes and
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Figure 4.13: Model outputs before and after parameter calibration: (a) Event 1; (b) Event 2; (c)
Event 3. — PMU measurements; - - model ouputs before calibration; . model outputs after
calibration.

59



Table 4.7: Calibration of Fourteen Key Parameters

Parameter True value Estimated value Error ( %)

KS 20 20.176 0.9

T6 10 10.081 0.8

T5 10 10.124 1.24

KA 125 123.12 1.5

H 5.40 5.332 1.3

a23 1.102 1.101 0.1

T ′do 5.40 5.352 0.9

Tb 3.86 3.970 2.9

T3 0.15 0.150 0

T1 0.15 0.151 0.6

Tc 0.90 0.909 1

Xd 0.57 0.566 0.7

X ′d 0.25 0.24 4

RT 0.42 0.428 1.9

perturbation kernel functions.

Conclusion

This CHAPTER proposes a novel method for generator parameter calibration using PMU mea-

surements. The critical parameters are identified by an empirical Gramian based method and are

estimated by an adaptive ABC SMC approach. For speeding up the algorithm, we propose adaptive

threshold sequence and perturbation kernel. The proposed approach has been successfully applied
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to calibrate the parameters of a generator. The simulation results reveal that the proposed method

can accurately and efficiently estimate the parameters.
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CHAPTER 5: GENERATOR PARAMETER CALIBRATION USING A

DEEP LEARNING MEASUREMENTS

Khazeiynasab, S. R., Zhao, J., Batarseh. I. (2021). A Parallel Multi-Modal LSTM for Power

System Model Calibration. International Journal of Electrical Power & Energy Systems (under

review).

Introduction

Renewable energies, smart loads, energy storage, and new market behavior are adding new sources

of uncertainty to power systems. Therefore, planning in real-time and developing high-quality

models is crucial to adapt to uncertainties. Model validation based on actual measurements is

necessary for obtaining accurate representations of power systems dynamics with system uncer-

tainties. This CHAPTER presents a new measurement-based method to calibrate the parameters of

a synchronous generator by deep learning method based on the long-short term memory (LSTM)

network. First, critical parameters are determined regarding the active/reactive behavior of the

generator. Then, a parallel multimodal LSTM (PM-LSTM) is designed with flexible input time

steps to capture important features of temporal patterns from time-series measurements. The ex-

tracted features are then fed into a dense layer to capture the joint representation of inputs. The

simulations conducted for a hydro generator under different events show that the proposed method

can estimate the model parameters accurately and efficiently even in the presence of gross errors

in the prior distributions of the parameters.

With the rapid development of the learning methods, it is possible to use learning techniques to

represent the complicated nonlinear relationship of the outputs of the generator with its parameters
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[96]. Among these recent developments, long-short term memory (LSTM)-based methods are

powerful techniques for representing complex nonlinear relationships. To calculate the generator

model parameters more efficiently and more accurately, the LSTM technique is developed. The

PMU measurement time series are captured with powerful temporal patterns by means of an LSTM

network with a flexible number of temporal states. Further, the extracted features are fed into a

linear regression model to estimate the full probability distributions of the generator parameters.

This CHAPTER proposes a generator parameter calibration approach based on LSTM and present

a parallel multimodal LSTM (PM-LSTM) to further improve the efficiency. Compared to the

existing methods, the advantages and improvements of the proposed method are as follows.

1. It can provide the full distributions of the parameters even when the generator model has

significant model discrepancies due to gross errors in the parameters.

2. It can estimate the high dimensional cases accurately even when the parameter space is large

enough.

3. The implementation is more straightforward and reliable compared to existing reinforcement

and deep learning methods.

4. The proposed method is simulation-based and does not require a likelihood function or state-

space model of the generator. Since commercial software already has stability models, its

implementation is much easier and can be used very easily in real-world applications.

The contributions are summarized as follows.

1. To better understand the effects of the parameters on the outputs of the generator (ac-

tive/reactive power), a trajectory-sensitivity analysis is performed and critical parameters

are identified. Then, a generator parameter calibration was conducted with LSTM, a deep
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learning-based method, that estimated the full probability distribution of parameters of a

power system with numerous parameters.

2. To enhance computational efficiency and accuracy of a single LSTM (S-LSTM) model, a

PM-LSTM approach has been proposed to find the optimal values of the parameters.

3. The PM-LSTM method has been applied to the different case studies with different prior

distributions to find the optimal time steps for the time-series active/reactive power of the

generator to estimate the parameters.

Generator Dynamic Model

The model under study consist of a synchronous generator with its controller. The block diagram

of the models are shown in Fig. 4.1–4.4.

Proposed Framework

Fig. 5.1 illustrates the main flowchart for the proposed framework, which consists of two key mod-

ules, model validation, and model calibration. Multiple events are used to check the performance

of the system under study. If any model deficiency is identified, the parameter calibration module

is used to identify and update inaccurate parameter values. The calibration module includes two

main steps: (1) identify the critical parameters (2) automatic parameter calibration based on the

PM-LSTM model. If a model deficiency is detected for every additional event, the calibration

process will be repeated until it is verified that the model matched the observed data well. More

details of each module in Fig. 5.1 are provided in the following sections.
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Figure 5.1: Proposed framework for model validation and parameter calibration.
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Identifying Critical Parameters

The sensitivity of the outputs Pm and Qm with regard to parameter αi can be calculated as [19]:

SP (αi) =
K∑
k=1

|Pm,k(α
+
i )− Pm,k(α

−
i )|

K(α+
i − α−i )/αi

(5.1)

SQ(αi) =
K∑
k=1

|Qm,k(α
+
i )−Qm,k(α

−
i )|

K(α+
i − α−i )/αi

, (5.2)

where K is the number of time steps, α+
i = αi + ∆αi and α−i = αi − ∆αi, and ∆αi is a small

perturbation of αi. After the sensitivity analysis, the parameters selected to be estimated are those

with a large sensitivity [19, 39].

LSTM Based Parameter Estimation

Generator parameter estimation based on PMUs is a mathematical representation of the highly

nonlinear relationship between parameters and outputs. Based on the generator model in Section

3, one can define the complex nonlinear relationship of the generator model parameters and the

measurements using the generalized recursion computed by

αtc = F
(
FP(ρt−1, · · · , ρt−tp),FQ(σt−1, · · · , σt−tq)

)
, (5.3)

where, ρ is the tp × η-dimensional vector of real power features, and σ is the tq × ζ-dimensional

vector of reactive power features. As shown in (5.3), the generator parameters at time step t is

a nonlinear function F of the temporal features extracted by FP from active power and FQ from

reactive power. Generator parameter estimation is to estimate the αtc by learning the optimal

F [97, 98]. However, this function can not be formulated analytically, and the generator param-
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eters can not be estimated. By incorporating a hidden layer of memory cells into the recurrent

neural network, LSTM can establish the temporal correlation between previous information and

the current conditions [99]. This property can help estimate the parameters of the generator from

its captured dynamics.

LSTM has three special multiplicative computational units named as the input, output, and forget

gate. The input gate is responsible for controlling the portion of the current state information, and

the current input should be saved to the memory cells [100]. The forget gate controls the value

of the last time cell, which will be saved, and the output gate controls the output of the cell. The

structure of the LSTM network is shown in Fig. 5.2. The formulations of the different gates in an

LSTM will be discussed below. The forget gate is as follow:

%t = κ(Wf ∗ [ht−1, xt] + bf ),

where ht−1 is the short-memory state transmitted by the previous LSTM unit, xt is the input, %t is

the forget gate, and κ(·) is a nonlinear smooth and differentiable activation function and usually

considered as a sigmoid function, whose output is a value between zero and one. Which, zero

means “let nothing pass” and one means “let everything pass” [101]. The forget gate output tells

the cell state which information to forget by multiplying zero or one. The input gate controlled by

the following equation

It = κ(Wi ∗ [ht−1, xt] + bi),

where Wi and bi are the weight and the bias of the input gate, respectively. The new candidate
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value c̃t and the future cell state ct are obtained by the following equations

c̃t = κ̃(Wc ∗ [ht−1, xt] + bc),

ct = %t ◦ ct−1 + it ◦ c̃t,

where Wc, and bc are the weight and the bias of the candidate layer, and κ̃(·) is a tanh function for

the memory content update value. The output gate unit is updated as following

ot = κ(Wo ∗ [ht−1, xt] + bo),

whereWo and bo are the weight and bias of the output layer. The final output of short term memory

ht is obtained by the following equation

ht = ot ◦ κ̃(ct).

Where [·, ·] is the concatenation operator that merges two tensors, while ∗ is the matrix multipli-

cation operator and ◦ is the Hadamard (element-wise) product [99]. The latent variable vector

obtained from the LSTM at the tth round of network update is denoted by ht, which is the tth ele-

ment of the parameter temporal feature tensor h. The full set of the LSTM parameters is updated

by performing stochastic gradient descent at each time step t.

Let real and reactive power of the model for αc,i be Pm,i = [p1, p2,· · ·, pK ]>, and Qm,i =

[q1, q2,· · ·, qK ]>. To use the LSTM, the inputs and outputs should be the time series data. Then,

in parameter estimation, a vector of parameters should be provided. For this reason, the following

vector is constructed αc,i, with a size of K. Since the parameters of the generator are constant

during the estimation, in this CHAPTER , it is assume that for zi(αc,i), the parameter vectors is

αc,i = [α1
c,i, α

2
c,i,· · ·, αKc,i]>, and the values of that are constant, i.e, α1

c,i = α2
c,i = · · · = αKc,i. A
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Figure 5.2: Structure of the LSTM block.

time-series parameter vector for the model under study, in addition to the time series of real power

and reactive power, can be used to estimate its parameters.

Based on (5.1) and (5.2), some parameters have more impacts on the real power, denoted

by αp
c , and some of them have more effects on the reactive power, denoted αq

c . With

having N dynamic simulations, let define Pm which contains N model real power, i.e

Pm = [Pm,1,Pm,2,· · ·,Pm,N ]>, and Qm which contains N model reactive power, i.e Qm =

[Qm,1,Qm,2,· · ·,Qm,N ]>, and and the parameter as Θc = [αc,1, αc,2,· · ·, αc,N ]>. Based on the

engineering experience [102], the steady-state mismatch can be determined strongly by the tur-

bine governor model. Some parameters such as T6 and T5 only shift the total waveform of

the generator outputs. Then, in this project, another feature extracted from the PMU measure-

ments is used, which only reflects the impacts of these parameters to help the algorithm iden-

tify the parameters more accurately. This feature is derived as follows. Let define Pmd,i =

[p1, p2− p1, p3− p2,· · ·,pK − pK−1]>, andQmd,i = [q1, q2− q1, q3− q2,· · ·, qK− qK−1]>, then two

additional features, Pmd andQmd are used as the inputs for training the model which are defined
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as follows. Pmd = [Pmd,1, Pmd,2,· · ·, Pmd,N ]>,Qmd = [Qmd,1, Qmd,2,· · ·, Qmd,N ]>. Two par-

allel multimodal LSTMs (M-LSTM) were built to build a comprehensive model. One M-LSTM

is for active power, LSTM-A, and one M-LSTM for reactive power, LSTM-R. The outputs of the

LSTM-A are the parameters of the system that have more effects on the active power, whereas

those of the LSTM-R are the parameters that have more effects on the reactive power.

The inputs tensors for LSTM-A considered as PA = [Pm,Pmd]> ∈ RN∗K , and QR =

[Qm,Qmd]> ∈ RN∗K as inputs for LSTM-R. The maximum lag values for the time series ac-

tive and reactive power are considered as tp and tq. At each training time step t, LSTM-A observes

ρtp×η which is from PA and includes ρtp to ρ1; and ith LSTM input is a tensor with size 1 ∗ η and

the corresponding output is hρi . Similarly, LSTM-R observes σtq×ζ from QR that includes σtq to

σ1 and ith LSTM input is a tensor with size 1 ∗ ζ and the corresponding output is hσi . When all the

input vectors in LSTM-A and LSTM-R are observed, the average temporal latent variables at time

step t is computed as follows [97]:

ψρt =
1

tp

tp∑
k=0

hρk , (5.4)

ψσt =
1

tq

tq∑
k=0

hσk , (5.5)

where hρk and hσk are the latent variable vectors for active/reactive power obtained from the LSTM-

A and LSTM-R at the kth round of network update. At each time step t, the temporal averages of

the parameters set are fed into the linear regression models, φρ(·) and φζ(·), and the parameters at t

are estimated. The structure of PM-LSTM is shown in Fig. 5.3. Note that in the PM-LSTM model,

the number of LSTM layers in LSTM-A is tp, and the number of LSTM layers in LSTM-R is tq.

With having the tp and tq and defining the maximum number of the epoch Tmax and the number

of training step Ts to tune the proposed model, the algorithm of the PM-LSTM can be written as
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Algorithm 4.

Figure 5.3: The proposed PM-LSTM for generator parameter estimation.

Simulation Results

The proposed method is tested based on power system models, which are implemented in PSS/E

software. The same hydro-generator model and PMU data in [75] are used. A PMU is installed

at the 230-kV side of the substation with a sampling rate of 30 samples/s. Two metrics are used

to evaluate the performance of different methods, including: mean absolute error (MAE), mean

squared error (MSE).
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Algorithm 3: Proposed PM-LSTM model for generator parameter estimation.

1 Set the hyper parameters; number of epoch = Tmax, number of training step = Ts
2 Find αp

c and αq
c based on (5.1) and (5.2)

3 Vectorize the training data
4 Extract the input features
5 Set the time steps tp and tq for the real and reactive power based on (27)
6 Set the training step t = 1, round steps k, k′ = 1, and training epoch i = 1
7 while i ≤ Tmax do
8 while t ≤ Ts do
9 do in parallel

10 while k ≤ tp do
11 Feed ρk to the LSTM-A block
12 Obtain the hρk
13 k ← k + 1

14 end while
15 while k′ ≤ tq do
16 Feed σk′ to the LSTM-R block
17 Obtain the hσk′
18 k′ ← k′ + 1

19 end while
20 end
21 Compute the ψρt , ψσt based on (5.4) and (5.5)
22 Compute the estimated parameter with linear regression, φ(ψρt ) and φ(ψσt )
23 Update the weight matrices
24 t← t+ 1

25 end while
26 i← i+ 1

27 end while

Critical Parameter Identification

For sensitivity analysis, a small perturbation ∆αi = 5 %|αi| is applied to each parameter. From the

trajectory sensitivity, it is found that only the parameters shown in Table 5.1 are the problematic

parameters for the system among all the synchronous generator parameters. The top eighteen

critical parameters and their active and reactive power sensitivities are listed in Table 5.1. Based

on Table 5.1, for the two parameters case, H is the output of LSTM-A, and KA is the output of

LSTM-R. For the eighteen parameters case, the parameter set {T6, Ks, T5, KA, Tb, T
′
do, T3, T1, Xd}
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is the output of LSTM-R, and {a23, H, Tc, RT, X
′
d, X

′
q, TR, RP, A1} set is estimated with LSTM-A.

Table 5.1: Top Eighteen Critical Parameters of the Model

Parameter SP(αi) SQ(αi) Parameter SP(αi) SQ(αi)

T6 0.13 26.26 Xd 0.02 0.70

Ks 0.11 26.25 Tc 0.60 0.20

T5 0.12 22.11 H 0.58 0.05

KA 0.1 1.68 RT 0.53 0.02

Tb 0.07 1.23 X ′d 0.21 0.45

a23 1.01 0.05 X ′q 0.41 0.13

T ′do 0.14 0.94 TR 0.40 0.02

T3 0.12 0.77 RP 0.30 0.01

T1 0.1 0.77 A1 0.04 0.03

Dataset

To collect the training and test data for the two-parameter case, a case similar to the test B in [42,43]

is considered. Specifically, the mean values, µπ(αc), of the prior distributions, π(αc), is set as 10 %

greater than the true values and choose the lower/upper bounds of the uniform prior distributions

as 90 % less/greater than the µπ(αc) to account for the parameter uncertainties. For eighteen

parameter case, the µπ(αc) is set as 10 % greater than the true values and the lower/upper bounds

of the π(αc) are set as 50 % less/greater than the µπ(αc). Multiple parameters are independent,

identically distributed random chosen, and with event playback, dynamic generator data generated

automatically respective to the critical parameters. Based on the test cases, different simulations

number for training the network are used. In this CHAPTER , for two parameters case, 3×103,

and for eighteen parameters, 3×104 dynamic simulations are collected to train, validate, and test
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the model. 90 % of the available data is used for training and cross-validation, and 10 % is used for

testing. For each simulation, the time horizon is set as 20 s. The sampling time is set as 0.033 s,

since the reporting rate of PMU measurement is assumed to be 30 samples/s.

Hyper-parameter Setting

In this project, a grid search optimization method via scikit-learn [103] is used to find the network

hyper-parameters such as batch size, hidden neurons, learning rate, etc. The learning rate is set to

10−3. Besides, to avoid over-fitting, L2 regularization with the regularization coefficient λ = 2 is

used for the dense layers. All the LSTM layers have 100 neurons with the tanh and linear activation

function. The values of the η and ζ are equal to 2. The proposed model is implemented in Python

3.8 and all case studies using the deep learning technique are carried out using a high-level neural

networks API, Keras [104]. In this CHAPTER , a supervised learning algorithm is used to find the

time lags’ optimal values tp and tq which will be explained in the following section.

Time Steps for the Input Features

In each time step, the PM-LSTM uses predefined values for tp and tq. Generally, time lags can not

be too large since the value of the current input have strong relationships with those in a short-term

due to the time series characteristics. The model is evaluated on the testing dataset to assess the

performance of model with the chosen tp and tq in terms of MAE and MSE metrics. Fig. 5.4 shows

the MAE and MSE values of PM-LSTM for the model with two parameters, as a function of the

number of the time steps tp and tq, respectively. The deeper colors mean, smaller MAE and MSE

values and better performance of the time steps accordingly. As it can be seen, for two parameters

case, the optimal values for tp and tq are 6 and 4.
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Fig. 5.5 shows the MAE and MSE values of PM-LSTM for the model with eighteen key parameters

as a function of the number of the time steps tp and tq. As it can be seen, for this case, the optimal

values for tp and tq is 8. In this project, these values for the time lag of real and reactive power are

considered.
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Figure 5.4: Validation of metrics for two parameters for different time lags; (a) MSE; (b) MAE.

Calibration of Two Parameters

The moment of inertia H and the amplifier gain of the exciter KA are chosen to validate the

proposed methods, same as [41, 42]. It is evident from Table 5.1 that KA has more impacts on the

reactive power, while H influences more the active power. Table 5.2 shows the prior distributions,

true values, and mean of the posterior distributions as the estimated values for a two parameters

case with the true values, Ht = 5.4 and Kt
A = 125. As it can be seen, the well-trained model can

effectively estimate the parameters. For the sake of clarity, ten different samples for time series

active/reactive power with the estimated and the true values of the parameters for one specific event
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Figure 5.5: Validation of metrics for eighteen key parameters for different time lags; (a) MSE; (b)
MAE.

are provided in Fig. 5.6.

Table 5.2: Comparison of the Estimated Values with True Values for Two Parameters Case

H (Ht = 5.40) KA (Kt
A = 125)

π(H) Estimated (Error (%)) π(KA) Estimated (Error (%))

U(0.59, 11.28) 5.41 (0.1) U(13.75, 261.25) 124.9 (0.08)

Higher-Dimensional Case

This case study demonstrates the performance of the trained model in a higher-dimensional case

with eighteen critical parameters. The prior distributions for these parameters for training the

model are assumed to have a µπ(αc) with 10 % deviation from the true values and follow a uniform

distribution as U
(
µπ(αc)−µπ(αc) · 50 %, µπ(αc) +µπ(αc) · 50 %

)
. Table 5.3 lists the true and
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Figure 5.6: Time domain curves of (a) active power; (b) reactive power; (c) H; and (d) KA.

estimated values and the estimation errors verifies the well-trained model has acceptable accuracy

for high dimensional parameters.

In real application, true model parameters are never known. It is possible that for different events,

the algorithm may bring different parameter packs. In addition to engineering judgment and ex-

perience that can help choose reasonable parameters [19, 105], techniques can also be developed

based on the available multiple events to help select the best parameters. For example, one can

consider one event to estimate the parameters and use the other events to cross-validate the esti-
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Table 5.3: Calibration of Eighteen Key Parameters

Parameter True value Estimated (% Error) Parameter True value Estimated (% Error)

T6 10 9.99 (0.1) Xd 0.57 0.57 (0)

Ks 20 20.09 (0.4) Tc 0.90 0.89 (0.6)

T5 10 10.03 (0.3) H 5.4 5.41 (0.1)

KA 125 124.83 (0.1) RT 0.42 0.42 (0)

Tb 3.86 3.86 (0) X ′d 0.25 0.25 (0)

a23 1.102 1.101 (0.2) X ′q 0.32 0.32 (0)

T ′do 5.4 5.41 (0.1) TR 1 1 (0)

T3 0.15 0.15 (0) RP 0.01 0.01 (0)

T1 0.15 0.154 (2.6) A1 0.035 0.0345 (1.4)

mated parameters. In this project, it assumes that measurements for four events are available and

trained the model with two different events. The remaining two events, were used to estimate the

system parameters. The parameters are estimated with each one of the two events and calculate

the MSE metric for the other two events. The parameter set with the smallest MSE is selected as

the estimated parameters. Fig. 5.7 shows the model validation results under two events with the

original parameters and the estimated best parameters and µπ(αc). It is seen that the mismatch be-

tween model outputs and PMU measurements is significant with µπ(αc), while the model outputs

with the selected estimated parameters can match the PMU measurements very well for the two

events.
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Figure 5.7: Model outputs before and after parameter calibration: (a) Event 1; (b) Event 2. — PMU measurements;
- - model ouputs before calibration; . model outputs after calibration.

Tolerance Test and Performance Comparison

In this section, the proposed method will be tested under different deviations in the parameters, and

its performance will be compared with the benchmark methods. For this purpose, more extreme

cases are considered in which the prior distribution is a Gaussian distribution whose mean has a

ϑ% deviation from the true values and whose standard deviation is 10 %, 30 %, and 60 % of the

79



mean values. All the other settings are the same for all simulations. Table 5.4 shows the results for

ϑ equal to 20 %, 30 %, and 40 %, in which the mean of the prior distribution is shown by µπ(αc).

This table shows that, even when the mean of the priors have considerable deviations from the true

values and the standard deviations of the priors are relatively small, the proposed approach still has

high accuracy. For the first highlighted row in Table 5.4, the prior/posterior distributions, and the

estimated/true values of the parameters are shown in Fig. 5.8. It is seen that even when the true

values are at the tail of the assumed prior distributions, the proposed method can still accurately

estimate the parameters. In contrast, the proposed algorithm in [41] has an error greater than 25 %

for the same deviations and priors. Moreover, the proposed method in [41] for the case where the

standard deviation is large and the parameters are in support of the prior distribution has an error

greater than 18 %. In contrast, the proposed method has an error less than 1 % as shown in the

second highlighted row.
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Figure 5.8: Prior and posterior distributions, and the true and estimated values for (a) H and (b)
KA. - - Prior distribution, – posterior distribution, � estimated values, • true values.

To compare the proposed method with the method in [43], which considers the gross error in the

prior distributions, a case similar to the test B in [43] is considered. Specifically, the mean value
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Table 5.4: Calibration of H and KA for Different ϑ and µπ(·)

Standard Deviation (10%)

ϑ
H KA

µπ(H) Estimated Error (%) µπ(KA) Estimated Error (%)

40 % 7.56 5.42 0.4 175 126.1 0.8

30 % 7.02 5.39 0.2 162.5 126.1 0.4

20 % 6.48 5.39 0.2 150 125.4 0.3

Standard Deviation (30 %)

ϑ
H KA

µπ(H) Estimated Error ( %) µπ(KA) Estimated Error ( %)

40 % 7.56 5.38 0.3 175 124.1 0.7

30 % 7.02 5.38 0.3 162.5 124.6 0.3

20 % 6.48 5.41 0.2 150 124.7 0.2

Standard Deviation (60 %)

ϑ
H KA

µπ(H) Estimated Error ( %) µπ(KA) Estimated Error ( %)

40 % 7.56 5.42 0.4 175 125.3 0.2

30 % 7.02 5.39 0.2 162.5 124.8 0.2

20 % 6.48 5.42 0.3 150 124.7 0.2

of the prior distribution for H is considered as 61 % less than the true value and that for KA as

225 % greater than the true value, and the lower/upper bounds of the uniform prior distributions is

considered as 90 % less/greater than the mean values. The performance of the proposed method in

Table 4.6. The performance of the proposed method in Table 4.6 shows that the proposed model

can estimate the parameters with high accuracy. The estimation error of the proposed approach for

H is 0.05 % and for KA is 0.3 %, which are less than the corresponding errors, 0.08 % and 0.5 %
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respectively, in [43].

Table 5.5: Parameter Calibration Under Bad Prior Distribution

H(Ht = 5.40) KA(Kt
A = 125)

π(H) Estimated ( % Error) π(KA) Estimated ( % Error)

U(0.9, 17.2) 5.403 (0.05) U(28.1, 534.4) 125.44 (0.3)

To compare the proposed method with the Q-learning method in [47], the following settings are

considered. The mean value of the prior distribution is set as 10 percent greater than the true

values, and the lower/upper bounds of the uniform prior distributions are set as 70% less/greater

than the mean values. Table 5.6 shows the performance of the proposed method. It can be seen

that the proposed method can estimate parameters with high accuracy. The estimation error of the

proposed approach for H is 0% and for KA is 0.2%, which are less than the corresponding errors,

0.6% and 0.9% reported in [47].

Table 5.6: Parameter Calibration under Uniform prior Distribution

H(Ht = 5.40) KA(Kt
A = 125)

π(H) Estimated (% Error) π(KA) Estimated (% Error)

U(1.8, 10.1) 5.40 (0) U(41.2, 233.8) 125.3 (0.2)

A similar case to [48] is used here to compare the proposed method with the deep Q-learning

method. The same parameters with the same prior distributions are considered as well. Table 5.7

shows that maximum estimation error of the proposed method is 0.4%, which is much less than

the 8% error value reported for the deep Q-learning method [48].
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Table 5.7: Calibration of Five Parameters under Uniform prior Distribution

Parameter True value Prior distribution Estimated (% Error)

H 5.4 U(0.86, 8.58) 5.40 (0)

X ′d 0.25 U(0, 0.71) 0.249 (0.8)

X ′q 0.32 U(0, 0.58) 0.318 (0)

KA 125 U(75, 175) 124.5 (0.4)

TA 0.02 U(0, 1) 0.02 (0)

To compare the proposed method with the A-ABC-SMC in [11], a high dimensional case with

eighteen critical parameters is considered. For the prior distribution, the mean value is set as

10 percent greater than true values and the lower/upper bounds of the uniform prior distributions

are set as 50 % less/greater than the mean values. The real and reactive power for the parameter

estimated by the A-ABC-SMC approach and the outputs for the true values of the parameters

are shown in Fig. 5.9. It can be seen that the outputs of the proposed approach have smaller

discrepancies than the outputs of the A-ABC-SMC approach [11].

The performance and accuracy of the proposed PM-LSTM model is compared with different meth-

ods. Table 5.8 shows the normalized MSE and MAE metrics for gated recurrent unit (GRU) [106],

single LSTM (S-LSTM), multimodal LSTM (M-LSTM), and parallel single LSTM (P-LSTM)

methods. The dataset and the hyper-parameters for all the methods are the same. The estimation

error shows that the proposed PM-LSTM has the smallest metrics between all the methods and

can significantly increase the estimation procedure accuracy. Fig. 5.10 shows the model valida-

tion results for the estimated parameters with different methods and the original parameters for
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Figure 5.9: Model outputs from [11] method and the proposed method; (a) Real power and (b)
reactive power. -. Measurements, – Calibration with method in [11], − Calibration with the
proposed method.

one specific event. It is seen that the mismatch between model outputs and PMU measurements

significantly decreases with the proposed model. Moreover, due to the high sensitivity values of

the reactive power parameters, the mismatches between the reactive power curves are much more

apparent than the active power curves in Fig. 5.10.

Table 5.8: Error Metrics of the Different Methods for High-Dimensional Case

Metric GRU S-LSTM M-LSTM P-LSTM PM-LSTM

MAE (%) 4.52 5.13 4.55 4.73 1.11

MSE (%) 5.82 7.65 5.24 5.46 1.93
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Figure 5.10: Model outputs for the different methods: (a) Real power; (b) Reactive power. −
PMU Measurement; −. GRU −− S-LSTM; −. P-LSTM; −−M-LSTM; and −. PM-LSTM.

Time Efficiency

A Windows server with Intel(R) Core(TM) i7-8700 and 16 GB memory was used to generate the

simulation data and training the model. Offline training of the PM-LSTM model took 2 hours for

two parameters and around 18 hours for eighteen parameters. Online testing of the well-trained

model with the new measurements take less than 5 seconds for each test case.

Conclusions

This CHAPTER presents a method to validate stability models, identify critical model parameters,

and calibrate them using PMU measurements. With a sensitivity approach, critical parameters

of the generator are identified. A PM-LSTM model is trained based on the event playback using

different dynamic simulations. The robustness of the proposed model is tested on two and eighteen

critical parameter cases. Simulation results indicate that the proposed method can accurately and

85



efficiently estimate the full distributions of the parameters.
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CHAPTER 6: POWER PLANT MODEL PARAMETER CALIBRATION

USING CONDITIONAL VARIATIONAL AUTOENCODER

S. R. Khazeiynasab, J. Zhao, I. Batarseh and B. Tan, ”Power Plant Model Parameter Calibra-

tion Using Conditional Variational Autoencoder,” in IEEE Transactions on Power Systems, doi:

10.1109/TPWRS.2021.3107515.

Introduction

Accurate models of power plants play an important role in maintaining the reliable and secure grid

operations. In this CHAPTER , we propose a synchrophasor measurement-based generator param-

eter calibration method by a novel deep learning method with high computational efficiency. An

elementary effects-based approach is developed to identify the critical parameters from a nonlin-

ear system with much better performance than the widely used trajectory sensitivity-based method.

Then, synchrophasor measurement-based conditional variational autoencoder is developed to es-

timate the parameter posterior distributions even in the presence of a high-dimensional case with

eighteen critical parameters to be calibrated. The effectiveness of the proposed method is validated

for a hydro generator with very detailed model. The results show that the proposed approach can

accurately and efficiently estimate the generator parameter posterior distributions even when the

parameters true values are not in support of the prior distribution.

This CHAPTER proposes a conditional variational autoencoder (CVAE) framework for power sys-

tem model calibration. CVAE defines a set of nonlinear latent variables to describe the probability

distribution function (PDF) of the model parameters using an encoding-decoding architecture. Ac-

cording to the real/reactive power measurements through Artificial Neural Networks (ANNs), the
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encoder estimates the PDF of latent variables. The decoder maps the latent variables PDFs into

actual model parameter PDFs using a Rectified Linear Unit (ReLU) ANN.

Compared to the existing methods, the characteristics of the proposed method are as follows. 1)

Only a small number of samples is needed and the computational efficiency is high; 2) It can

provide accurate parameters when the generator model has significant model discrepancies due to

gross errors in the parameters, and even when prior distribution does not support the true values;

3) It can estimate the high dimensional cases accurately even when the parameter space is large

enough; 4) The implementation is more straightforward and reliable without many complications

as compared to the existing reinforcement and deep learning methods; 5) The proposed method

is simulation-based and does not need a likelihood function or state-space model of the generator.

As commercial software already has stability models, implementation is much easier and it can be

used in real-world applications. The contributions are summarized as follows:

1. Instead of using a sensitivity-based approach, an elementary effects approach is proposed

directly for the nonlinear power system models to more accurately identify the critical pa-

rameters with the highest identifiability.

2. We formulated a CVAE inference framework to estimate the full posterior distributions of a

decentralized generator model parameters.

3. Insightful case studies are presented and discussed in detail. The impact of the different

prior distributions, different lower/upper bounds on the prior distributions, and the error in

the parameters initial values are analyzed. A specific case, where the true values are not in

support of the prior distributions is studied. Finally, a high-dimensional case with eighteen

critical parameters under multiple events is presented.
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Proposed Framework

Fig.6.1 illustrates the main flowchart for the proposed framework, which consists of two key mod-

ules, model validation/verification, and model calibration. Multiple events are used to check the

performance of the system under study. If any model deficiency is identified, the parameter cali-

bration module is used to identify and update inaccurate parameter values. The calibration module

includes two main steps: (1) identify the critical parameters (2) automatic parameter calibration

based on the CVAE model. In a real application, true model parameters are never known. In ad-

dition to engineering judgment and experience that can help choose reasonable parameters, tech-

niques can also be developed based on the available multiple events to help select the best parame-

ters. If a model deficiency is detected again for every additional event, the calibration process will

be repeated until it is verified that the model matched the observed data well. More details of each

module in Fig. 6.1 are provided in the following sections.

Identifiability of Parameters

A synchronous generator has many parameters. Calibrating all parameters could be computa-

tionally challenging, and also not every parameter is identifiable. Therefore, the parameters with

the highest identifiability should be first identified [19]. To find the critical parameters, some re-

searchers use the traditional trajectory sensitivity of each parameter (e.g., [19,39]) which is defined

as follows:
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Sensitivity Based Approach

The sensitivity of Pm and Qm with regard to parameter αi can be calculated as follows:

S(αi)=
K∑
k=1

|Pm,k(α
+
i )−Pm,k(α

−
i )|+|Qm,k(α

+
i )−Qm,k(α

−
i )|

K(α+
i −α−i )/αi

,

where α+
i = αi + ∆αi and α−i = αi−∆αi, and ∆αi is a small perturbation of αi. The parameters

with the largest sensitivities will be considered as having the highest identifiability [19].

Elementary Effects Based Approach

The sensitivity analysis is only locally defined for one operating point, and the nonlinear behavior

of the generator model is inevitably lost. The variance-based method requires a high number of

model simulations [107]. Here we adapt the elementary effects (EE) method [107, 108] to analyze

the sensitivity of the outputs to parameters. The following sets are defined for EE:

T = {T 1,· · ·,T r;T j ∈ Rv×v, T j
>T j =Iv, j=1,. . ., r},

M = {c1,· · ·, cG; cm ∈ R, cm > 0, m = 1,. . ., G},

O = {o1,· · ·,ov;oi ∈ Rv},

where T defines the initial parameter perturbation direction, r is the number of matrices for pertur-

bation directions, M defines the perturbation sizes, l is the number of perturbation sizes for each

direction, Iv is an identity matrix with dimension v, O defines the parameter to be perturbed, and

oi is a zeros but with a unit as ith component. For the ith parameter αi with fixed initial states x0,
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EE can be defined as

EE(αi)=
K∑
k=1

|Pm,k(α
′)−Pm,k(α0)|+|Qm,k(α

′)−Qm,k(α0)|
Kcm

,

where cm is a value which is defined based on l-level, α0 is the selected paramater from the prior

parameter space distribution, such that the new valueα′ = α0(1+T joicm) is still in the parameter

space, and T is chosen as

T ={Iv,−Iv},

where Iv is an identity matrix with dimension v and based on T , we perturb each parameter in both

positive and negative directions.

The EE method is based on the construction of finite paths in the prior parameter space. The design

is based on generating random starting points for each trajectory, then moving one parameter at

a time in random order. Then, the distribution of EE corresponding to the ith parameter, Fi, is

determined by randomly sampling different α from the parameter space. In this method, we use

the Latin Hypercube sampling method [73] to determine the starting points.

Two sensitivity indices are used to determine the critical parameter based on the EE method; the

mean and standard deviation of the distribution Fi are denoted by µ̂, and σ̂ respectively. The µ̂

indicates the overall influence of the parameter on the output, and σ̂ estimates the ensemble of

effects of the factor [109]. In this method, based on our numerical experiments, the mean index µ̂

defined in [107] is used as a metric to measure the overall identifiability of a parameter.

Based on engineering experience, some parameters do not change much during the lifetime of the

generator. If that is the case, we can either use this information to assign prior distributions to those

parameters properly or avoid calibrating them even if they are identified as critical parameters.

91



Proposed CVAE Method for Parameter Estimation

Assuming the prior distribution for parameter αc as π(αc). Bayes’s theorem allows us to write

its posterior distribution p(αc|z) in terms of the prior distribution and the observation distribution

p(z|αc) [85]. The form of this posterior is

p(αc|z)=
l(z|αc)π(αc)

p(z)
, (6.1)

where l(z|αc) is the data likelihood, which describes the observation process. p(z) is the distri-

bution of all possible measurements and is p(z) =
∫
π(αc)l(z|αc)dαc. Note that a closed-form

likelihood function is typically unavailable or computationally prohibitively expensive. For the

parameter calibration problem, the computational cost of having an explicit likelihood function is

a major challenge.

A more straightforward approach is to perform simulations for the model using different parame-

ters, compare the simulated results with the observed data, and estimate the likelihood of a given

parameter set to generate outputs that match the observed data. Therefore, some approximate in-

ference approaches have been proposed. Inference through MCMC processes has been proposed

as a popular method [110], but these methods are expensive and suffer from slow convergence. Re-

cently, the variational inference methods have been proposed. These techniques are more efficient

and have been explored using optimization techniques in various fields [111]. In this CHAPTER ,

we use the variational approach whose goal is to learn an approximation to the posterior distribu-

tion of (6.1) for a new measurement. We call this parametric distribution as pap(αc|z).
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Variational Autoencoder

Variational autoencoders (VAE) are directed models with latent variables [112]. The genera-

tive process in variational autoencoder is as follows: first, a latent variable G is generated from

the prior distribution π(αc), and then the data αc are generated from the generative distribution

pΘvae(αc|G). In VAE, the pΘvae(αc|G) modeled by a neural network with parameters Θvae. A

variational lower bound can be optimized efficiently using backpropagation and stochastic gradi-

ent descent, and Θvae is tuned by maximizing the likelihood of the training data points [113]. We

do not have control over the process of VAE data generation. Unlike VAE, CVAE models both

latent variables and data directly, both conditioned to some random variables.

CVAE for Parameter Estimation

Generator parameter estimation based on measurements is a mathematical representation of the

highly nonlinear relationship between parameters and outputs. However, this function cannot

be formulated analytically, and the generator parameters cannot be estimated. The CVAE-based

method is a powerful technique for representing complex nonlinear relationships. To this end, the

CVAE technique is developed to characterize the parameter estimation. Let us define the simula-

tion data as Ξ={zi}Ni=1, Π={αc,i}Ni=1, and Υ=[Ξ,Π]. The goal of CVAE is to fit a model of the

conditional probability distribution pap(αc|z) [114].

CVAE contains three important modules, an encoder, latent space, and a decoder. An encoder with

parameter θen gets the input z and produces a Gaussian distribution pθen(G|z). Before generating

the posterior distributions, CVAE first projects the inputs into a lower dimensional space G, called

the latent space [115]. The latent space acts as a bottleneck to encourage the model to uncover the

salient features [116]. A decoder, parameterized with θde uses z and samples from latent space to
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produce pθde(αc|z,G). The distribution of p(αc|z) is given as follow

p(αc|z) ≈ pap(αc|z)=

∫
G
pθen(G|z)pθde(αc|z,G)dG. (6.2)

To produce pap(αc|z), the samples from the G only should produce αc, i.e pθen(G|z) ≈ 0. How-

ever, as shown in [115], this is an intractable problem due to the integral over the latent space

variable G and a network cannot be trained directly to do this [116]. To this end, we introduce a

recognition network κθre(G|z,αc), modelled by an additional neural network and governed by the

trainable network parameters θre, which is a proposal distribution. This function can help select

values of G, which are likely producing αc. Then (6.2) can be written as follows:

pap(αc|z)=

∫
G

pθen(G|z)pθde(αc|z,G)

κθre(G|z,αc)
κθre(G|z,αc)dG=Eκθre (G|z,αc)

(pθen(G|z)pθde(αc|z,G)

κθre(G|z,αc)

)
.

The goal is to find the parameters of the network to maximize the log-likelihood of pap(αc|z) over

the dataset, i.e

argmax
Θcvae

log pap(αc|z)=argmax
Θcvae

logEκθre (G|z,αc)

(pθen(G|z)pθde(αc|z,G)

κθre(G|z,αc)

)
.

where Θcvae is the CVAE model parameter, which is Θcvae = θen ∪ θde ∪ θre. By using Jensen’s

inequality, the evidence lower bound (ELBO) is given as

log pap(αc|z)= −Eκθre (G|z,αc)

[
pθde(αc|z,G)

]
+C(κθre(G|z,αc) ‖ pθen(G|z)),

where C(· ‖ ·) is the Kullback-Leibler divergence between two distributions and cannot be nega-

tive. Then, we get

log pap(αc|z) ≥ ELBO.

94



Now, the ELBO can be optimized via stochastic gradient descent algorithm [114, 117]. The loss

function for the network is composed of two terms, the ”reconstruction” loss that is a measure of

how well the decoder network with distribution pθde(αc|z,G) predicts the true parameters αc. The

Kullback-Leibler distance that measures the similarity between the two distributions, pθen(G|z)

from the encoder and κθre(G|z,αc) from recognition network. The total loss for sample i is as

follows:

L(αc,i, zi)=−Eκθre (G|zi,αc)

[
pθde(αc,i|zi,G)

]
+ C

(
κθre(G|zi,αc,i) ‖ pθen(G|zi)

)
. (6.3)

Fig. 6.2 illustrates the graphical model of a CVAE during the training and test phases. In Fig. 6.2b,

Θc are the posterior distributions of the estimated parameters which are drawn from the distribution

pap(αc|z). The proposed algorithm for training the CVAE model is presented in Algorithm 5.

Simulation Results

The proposed method is tested using PSS/E software. We use the same hydro-generator model,

and PMU data in [75]. A PMU is installed at the 230-kV side of the substation with a sampling

rate of 30 samples/s.

Critical Parameter Identification

For sensitivity analysis, a small perturbation ∆αi = 5 %|αi| is applied to each parameter. For the

EE method, the uncertainty in the parameters is modelled by assuming that each αi has a uniform

distribution as U
(
αi−αi ·50 %, αi+αi ·50 %

)
. We set the number of paths as 100 andG = 5. Table

6.1 lists the top eighteen critical parameters identified by EE and sensitivity based approaches for

the same event, in which the normalized corresponding EE(αi) and S(αi) are presented.
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Algorithm 4: Training the proposed CVAE model for generator parameter estimation.

1 Set the hyper parameters; number of iteration = Tmax, learning rate, latent space dimension, batch size
(Bs)

2 Find αc based on Section (6)
3 Generate training data with the dynamic model regarding the αc

4 Initialised Θcvae

5 while k ≤ Tmax do
6 while t ≤ Bs do
7 do in parallel
8 Feed the encoder with batch t of Ξ, and compute pθken(G|Ξt)
9 Feed the reconstruction encoder with batch t of Υ, and compute κθkre(G|Ξt,Πt)

10 end
11 do in parallel
12 Encode the output of the encoder into a multivariate Gaussian distribution in the latent

space as N (µen,
∑

en)
13 Encode the output of the reconstruction encoder into a multivariate Gaussian distribution

in the latent space as N (µre,
∑

re)
14 Calculate the Kullback-Leibler distance between two distributions, N (µre,

∑
re) and

N (µen,
∑

en)

15 end
16 do in parallel
17 Draw a sample from the distribution N (µen,

∑
en)

18 Feed the decoder with a batch t from Ξ, and the chosen sample and compute
pθkde

(Πt|Ξt,G)

19 Calculate the reconstruction loss
20 end
21 t← t+ 1

22 end while
23 Calculate the total loss based on (6.3)
24 Update the Θcvae

25 k ← k + 1

26 end while

According to the sensitivity analysis results, X ′d is more critical than Xd, Tc, and H . Table 6.2

shows the total change of the real/reactive power for these parameters under small (5 %) and large

(50 %) perturbations. It is observed that the total changes regarding the parameter X ′d under the

large perturbation are less than others, while the corresponding change for small perturbation is

greater than other parameters. This means that this parameter is not more critical than others. The

EE method also confirms this, and it is clear from the Table 6.1 that X ′d is less critical than the
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mentioned parameters.

Table 6.1: Top Eighteen Critical Parameters Identified by Elementary Effects and Sensitivity-Based
Approaches

No.
Elementary Effects Sensitivity

Parameter EE(αi) Parameter S(αi)

01 KS 1 T5 1

02 T5 0.99 KS 0.99

03 T6 0.91 T6 0.71

04 KA 0.59 a23 0.48

05 T ′do 0.48 KA 0.45

06 H 0.41 Tb 0.43

07 Tb 0.37 T ′do 0.41

08 a23 0.33 X ′d 0.38

09 Tc 0.32 H 0.37

10 Xd 0.31 Tc 0.33

11 T1 0.18 A1 0.33

12 T3 0.17 X ′q 0.33

13 A1 0.08 T3 0.32

14 X ′d 0.07 T1 0.31

15 X ′q 0.07 T2 0.30

16 RT 0.04 X ′′d 0.29

17 RP 0.01 Xd 0.29

18 TR 0.01 T ′′d0 0.28
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Table 6.2: Four Chosen Parameters Effect on the Outputs Under the Small and Large Disturbances

Parameter
Total change of real and reactive power

Small perturbation Large perturbation

X ′d 383.5 493.8

Xd 377.5 505.8

Tc 373.5 515.5

H 380.1 587.6

Choice of Number of Simulations

It is desirable to have as many simulations as possible for high accuracy, however, it will impose a

greater computational burden. It is reasonable to estimate the parameters of different dimensions

with different numbers of simulations. Fig. 6.3 shows the maximum error for two and eighteen

critical parameters under different numbers of simulations. For the two-parameter case, we set

the maximum acceptable error to be 0.3%. Based on Fig. 6.3a when the number of simulations

is equal to 500, this error criterion will be satisfactory. For eighteen parameters case, we set the

maximum acceptable error to be 4%. From Fig. 6.3b, a number of simulations equal to 2×103

satisfies this error criterion.

Generation of Dataset and Parameter Settings

Based on the test cases, we use different prior distributions and different simulations for training

the network. Multiple critical parameters are randomly chosen and we automatically generate

dynamic generator data with respect to them by injecting the voltage and frequency to the system

under study. In this CHAPTER , for two parameters case, we generate 500 dynamic simulations,
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and for eighteen parameters, we generate 2×103 dynamic simulations for training the model. We

choose 90 % of the available data for training and cross-validation, and 10 % for testing. The

sampling time is set as 0.033 s since the reporting rate of PMU measurement is assumed to be 30

samples/s. For each simulation, the time horizon for getting the whole dynamic responses is set

as 25 s. We calculate the loss value in relation to the different time series lengths for choosing the

optimal values of the time series length for real and reactive power, which will be explained in the

next section.

The selection of appropriate Hyper-parameters is often necessary for satisfactory performance in

the deep learning-based methods. In this CHAPTER , we use the Bayesian process method [118]

via scikit-learn [103] to find the network hyper-parameters such as max-pool size, stride length,

the size of the latent space, and etc. The learning rate is set to 3×10−3. We set the dimension of

the latent space as 20. We use the different activation functions for our model, such as Sigmoid

and ReLU. For the fully connected layers, we use a dropout of 0.2. The max-pooling layers have

a pool size of 20 and stride length of 20. All the case studies using Python 3.8 and deep learning

were carried out using a neural networks API, Pytorch [119].

Since some parameters do not have the same impact on the dynamic behavior of the real and

reactive power, we choose different time series lengths for the inputs. For training the CVAE

model, the time series Pm with length tP and Qm with length tQ are feed into the encoder and

reconstruction network. Fig. 6.4 shows the normalized loss function for two and eighteen critical

parameters under different time series lengths. For two parameters case, the optimal value for tP

and tQ are 4 s and 4 s. For the eighteen parameters case, the optimal values for tP and tQ are 4 s,

and 7 s. Then, we will consider these values for the tP, and tQ.
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Calibration of Two Parameters

For the two parameters case, we consider a case similar to the test B in [42,43]. We calibrateH and

KA, whose true values are Ht = 5.4 and Kt
A = 125. The mean values of these parameters’ prior

distributions are set as 10 % greater than their true values to account for parameter uncertainties.

We choose the lower/upper bound of the uniform prior distributions as 90 % and 200 % less/greater

than the µπ(αc) to account for the parameter uncertainties. The standard deviations of the Gaussian

prior distributions are set as 30 % of the mean value. The results for uniform, U(·), and Gaussian,

N (·), prior distributions are given in Table 6.3. It is seen that the proposed method can accurately

estimate the parameters under different prior distributions, and the largest errors forH andKA are,

respectively, 0.2 %, and 0.3 %.

Table 6.3: Parameter Calibration under Different Prior Distributions

H(Ht = 5.40) KA(Kt
A = 125)

π(H) Estimated (% Error) π(KA) Estimated (% Error)

U(0.60, 12) 5.401 (0) U(13.8, 275) 125.4 (0.3)

N (6, 1.82) 5.41 (0.2) N (137.5, 41.32) 124.7 (0.2)

Tolerance Test

In this section, we evaluate the performance of the proposed model under different parameter

deviations. For this purpose, we consider more extreme cases in which the prior distribution is a

Gaussian distribution whose mean has a ϑ% deviation from the true values and whose standard

deviation is 10 %, 30 %, and 60 % of the mean values. All other settings are the same for all

simulations. Table 6.4 shows the results for ϑ equal to 20 %, 30 %, and 40 %, in which the mean
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of the prior distribution is shown by µπ(αc). It can be seen that even when the means of the priors

have considerable deviations from the true values and the standard deviations of the priors are

relatively small, the proposed approach still has high accuracy. For the first highlighted row in

Table 6.4, the maximum error is 0.4 %, which by contrast, the proposed algorithm in [41] has an

error greater than 25 % for the same deviations and priors. Moreover, the proposed method in [41]

for the case, where the standard deviation is large, and the parameters are in support of the prior

distribution has an error greater than 18 %. By contrast, the proposed method has an error less than

0.4 %, as shown in the second highlighted row.

To compare our proposed method with the method in [43], which considers the gross error in the

prior distributions, we consider a case similar to the test B in [43]. Specifically, we set the mean

value of the prior distribution for H as 61 % less than the true value and that for KA as 225 %

greater than the true value, and choose the lower/upper bounds of the uniform prior distributions

as 90 % less/greater than the mean values. We show the performance of the proposed method in

Table 6.5. It shows that the proposed model can estimate the parameters with high accuracy. The

estimation error of the proposed approach for H is 0.05 % and for KA is 0.2 %, which are less than

the corresponding errors, 0.08 % and 0.5 % respectively, in [43].

Calibration of Eighteen Parameters

This case study demonstrates the performance of the proposed model in a higher-dimensional

case with eighteen critical parameters. These parameters are the same are identified by the EE

method and listed in Table 6.1. The prior distributions of these parameters for training the model

are assumed to have a µπ(αc) with 10 % deviation from the true values and follow a uniform

distribution as U
(
µπ(αc)−µπ(αc) · 50 %, µπ(αc) +µπ(αc) · 50 %

)
. Table 6.7 lists the true and

estimated values. The estimation errors verifies the well-trained model has acceptable accuracy for
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Table 6.4: Calibration of H and KA for Different ϑ and µπ(·)

Standard Deviation (10%)

ϑ
H KA

µπ(H) Estimated Error (%) µπ(KA) Estimated Error (%)

40 % 7.56 5.41 0.1 175 125.5 0.4

30 % 7.02 5.39 0.1 162.5 125.5 0.4

20 % 6.48 5.39 0.2 150 125.3 0.2

Standard Deviation (30 %)

ϑ
H KA

µπ(H) Estimated Error ( %) µπ(KA) Estimated Error ( %)

40 % 7.56 5.39 0.2 175 124.6 0.3

30 % 7.02 5.40 0.3 162.5 124.6 0.3

20 % 6.48 5.41 0.2 150 124.8 0.1

Standard Deviation (60 %)

ϑ
H KA

µπ(H) Estimated Error ( %) µπ(KA) Estimated Error ( %)

40 % 7.56 5.38 0.4 175 124.7 0.2

30 % 7.02 5.39 0.2 162.5 125.2 0.2

20 % 6.48 5.42 0.3 150 125.3 0.2

high dimensional parameters.

We also compare the performance of the proposed method with that in [11]. We set the prior

distribution for the two methods the same. Specifically, we use 10% deviation in the parameters

and use a uniform distribution as U
(
µπ(αc) − µπ(αc) · 50 %, µπ(αc) + µπ(αc) · 50 %

)
. The

performances of the proposed method and A-ABC-SMC are shown in Fig .6.5. As it can be seen,
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Table 6.5: Parameter Calibration Under Bad Prior Distribution

H(Ht = 5.40) KA(Kt
A = 125)

π(H) Estimated ( % Error) π(KA) Estimated ( % Error)

U(0.9, 17.2) 5.403 (0.05) U(28.1, 534.4) 125.3 (0.2)

Table 6.6: Parameter Calibration under Misspecified Prior Distributions

H(Ht = 5.40) KA(Kt
A = 125)

π(H) Estimated (% Error) π(KA) Estimated (% Error)

U(6.5, 12) 5.45 (1.1) U(70, 100) 126.5 (1)

N (7, 0.32) 5.41 (0.2) N (91, 5.32) 124.1 (0.8)

the proposed method achieves better performance than the A-ABC-SMC.

Different events may enable the calibrations of different parameters, and there is no closed-form

solution to the best event for generator model calibration. However, we can identify the key pa-

rameters that should be estimated based on each event. If engineering judgment can help select

reasonable parameters, multiple events can also be utilized in the development of techniques to

help select the best parameters for calibration [19, 48]. Using one event for parameter estimation

and the other for cross-validation is one example. In this CHAPTER , we train the model using two

different events and use two events for cross-validation. Based on EE analysis, the top eighteen

key parameters are the same in all the events. Table 6.8 shows the root mean square errors (RMSE)

of real and reactive power for two events calculated by

RMSE =

√√√√ 1

K

K∑
t=1

(ym(t)− ymeas(t))
2,
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Table 6.7: Calibration of Eighteen Key Parameters

Parameter True value Estimated (% Error) Parameter True value Estimated (% Error)

Ks 20 19.75 (1.1) Xd 0.57 0.57 (0)

T5 10 9.97 (0.3) T1 0.15 0.14 (4.1)

T6 10 9.63 (0.3) T3 0.15 0.14 (4.3)

KA 125 122.8 (1.7) A1 0.035 0.035 (0)

T ′do 5.4 5.34 (1) X ′d 0.25 0.25 (0)

H 5.4 5.4 (0) X ′q 0.32 0.32 (0)

Tb 3.86 3.81 (1) RT 0.42 0.42 (0)

a23 1.102 1.107 (0.4) RP 0.01 0.01 (0)

Tc 0.9 0.87 (2.2) TR 1 0.99 (1)

where ym and ymeas are the model response and its corresponding measurement value. From

Table 6.8, it can be seen that the proposed method significantly reduces the RMSE for two events.

The parameter set with the lowest RMSE is chosen as the estimated parameters. Fig. 6.6 shows

the model validation results under two events with the original parameters and the estimated best

parameters and µπ(αc). For both events, there is a significant mismatch between model outputs

and PMU measurements when original parameters, µπ(αc), are considered. By contrast, for the

selected estimated parameters, the model outputs and PMU measurements match very well.
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Table 6.8: RMSE Values of the Real and Reactive Power for Two Events

RMSE Active power Reactive power

Events
Original

Parameters

Estimated

Parameters

Original

Parameters

Estimated

Parameters

1 2.9 0.21 3.2 0.33

2 1.8 0.14 4.3 0.16

Time Efficiency

A Windows server with Intel(R) Core(TM) i7-8700 and 8GB memory was used to generate the

simulation data. It took around 5 minutes to generate the dynamic simulation data for two parame-

ters and 25 minutes for eighteen parameters. The CVAE model’s training took less than 2 minutes

for two parameters and around 3 minutes for eighteen parameters. Testing the well-trained model

with the new measurements takes less than 1 s for two parameters case and eighteen parameters.

Conclusions

This CHAPTER presents a framework to systematically validate stability models, identify prob-

lematic model parameters, and calibrate them using online PMU measurements. With Elementary

Effects (EE) analysis, we first identify the critical parameters of the generator. Using the event

playback, we generate dynamic simulations for training a CVAE model, based on which, we esti-

mate the model parameters. We tested the proposed model on two and eighteen critical parameter

cases to evaluate its robustness. Simulation results indicate that the proposed method can accu-

rately and efficiently estimate the full distributions of the parameters even when the actual values
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of the parameters are out of the prior distributions. The proposed framework can be extended for

more complex power system models, such as aggregate renewable power plants and composite

load models. This will be investigated in our future works.
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Figure 6.1: Proposed framework for model validation and parameter calibration.
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Figure 6.2: The framework of the proposed CVAE: (a) during training; (b) during test.
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Figure 6.3: Maximum error of the estimated parameters for different number of simulations. (a)
Two parameters; (b) Eighteen parameters.
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Figure 6.4: Validation of loss function for two and eighteen key parameters for different time
series lenght; (a) two parameters; (b) eighteen parameters.
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Figure 6.5: Model outputs with A-ABC-SMC method and the proposed method; (a) Real power
and (b) reactive power. - - Calibration with A-ABC-SMC method, -. Measurements, − calibration
with the proposed method.
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Figure 6.6: Model outputs for estimated parameters: (a) Event 1; (b) Event 2. — PMU
measurements; - - model outputs before calibration; . model outputs after calibration.

111



CHAPTER 7: MEASUREMENT-BASED PARAMETER

IDENTIFICATION OF DC-DC CONVERTERS WITH A-ABC-SMC

Khazeiynasab, S. R., & Batarseh, I. Measurement-Based Parameter Identification of DC-DC Con-

verters with Adaptive Approximate Bayesian Computation. Australasian Universities Power En-

gineering Conference (AUPEC 2021)

Introduction

Switch-mode power converters (SMPC) are broadly used in different power electronics applica-

tions, including motor drives, computers, portable electronics, domestic appliances, or in power

conversion systems for renewable generation, among others [50–52]. Parameter identification can

extract the parameters of the converters and generate accurate discrete simulation models. In this

CHAPTER , we propose a measurement-based converter parameter calibration method by A-ABC-

SMC method, which estimates the parameters related to passive and parasitic components. At first,

we propose to find suitable prior distribution for the parameter which we do not know the prior

information about them. With having prior distributions, we can use the ABC-SMC to find the

exact values of the parameters of the converter. We chose the distance function carefully and based

on the simulations we assigned the best method for the threshold sequencing. For improving the

computationally of the algorithm, we propose an adaptive weight that helps the algorithm to find

the optimal values with fewer simulations. The effectiveness of the proposed method is validated

for a DC-DC buck converter. The results show that the proposed approach can accurately and

efficiently estimate the posterior distributions of the buck parameters subject to gross errors in the

prior distributions of the parameters. The proposed algorithm can also be applied to other parame-

ter identifications and optimization applications such as rectifiers, filters, or power supplies, among
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others. The contributions are summarized as follows.

1. For the parameter which we do not know the initial values, like the impedance of the DC

power supply, we introduce a method to find their prior distributions.

2. We perform DC-DC converter parameter calibration by adaptive ABC SMC, which estimates

the posterior distributions of the parameters by a simulation-based procedure.

3. We improve the computational efficiency of ABC SMC based parameter calibration by de-

veloping adaptive weights of the particles at each iteration. This weighting scheme, helps

the algorithm not to be stuck in the local optimal, and also the algorithm needs less number

of simulation to find the posterior distributions of the parameters.

DC-DC Converters Parameter Calibration by A-ABC-SMC

Mathematical models have become powerful tools for model analysis. However, as the models

become more complex, the computational challenges of parameter inference and model validation

are increasingly vast. Let z∗ = [V >meas I
>
meas]

> be the measurements with the actual value of the

parameters, and z = [V >out I
>
out]
> be the outputs of model andαc is the parameter vector which we

want to estimate. Assuming the prior distribution for αc as π(αc). Fig. 8.2 shows the framework

for DC-DC converter parameter estimation.

ABC-based methods use systematic comparisons between real and simulated data in order to obtain

a good approximation to the true (but unobtainable) posterior distribution

p(αc|z∗) =
l(z∗|αc)π(αc)∫
l(z∗|αc)π(αc)dαc

, (7.1)

where the denominator is referred to as the Bayesian Evidence; and the integral runs over all
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possible parameter values. p(αc|z∗) is posterior distribution, and l(z∗|αc) is the likelihood of

αc given data z∗. Instead of evaluating the likelihood, ABC-based approaches use systematic

comparisons between real and simulated data. If ε is sufficiently small, the distribution pε(αc|z∗)

will be a good approximation of the posterior distribution. Recently, algorithms using SMC with

particle filtering have gained growing attention [5, 12, 78]. ABC SMC samples from a sequence

of distributions that increasingly resemble the target posterior. They are constructed by estimating

the intermediate distributions pεt(αc|z) for a decreasing sequence of {εt}1≤t≤NT where T is the

maximum number of iterations [87]. The algorithm first generates an initial pool of N particles

that satisfy ρ(z, z∗) ≤ ε1 by randomly sampling from the prior π(αc). In the following iterations,

successive distributions are randomly constructed by sampling from the previous population with

probabilities {w(i,t−1)}{1≤i≤N} where w(i,t−1) is the weight for the ith particle in iteration t− 1. To

filter and perturb the particles, we need a transition kernel. A transition kernel κt is used to perturb

the particles and find α(i,t)
c ’s. The new particle α(i,t)

c is used to simulate z and if ρ(z, z∗) ≤ εt

is satisfied, the particle is accepted. The process is repeated until N particles are accepted. At

iteration t, the ABC SMC algorithm proposes parameters from the following distribution [88]

qt =


π(αc), t = 1∑N

j=1w
(j,t−1)κt

(
α

(i,t)
c

∣∣α(j,t−1)
c

)
, t > 1,

(7.2)

At each iteration, new weights are assigned to the particles, and in the next iteration the particles

with larger weights become better represented in the population. The importance weights associ-

ated with an accepted population {α(i,t)
c }{1≤i≤N} are calculated as [5]:

w(i,t) =


1
N
, t = 1

π
(
α

(i,t)
c

)
∑N
j=1 w

(j,t−1)κt
(
α

(i,t)
c

∣∣α(j,t−1)
c

) . t > 1

(7.3)
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The efficiency of ABC SMC heavily relies on a proper choice of the perturbation kernel function

κt(·|·), the distance function, ρ(z, z∗), having a good prior distributions for the parameters, the

threshold sequence {εt}1≤t≤T , and the weights of the particles in each iterations [10]. In this

CHAPTER , we carefully assigned a distance function and focused on the adaptive weight and

how to find the good prior distributions for the parameters which we do not know their initial

values. These factors will be discussed below.

Distance Function

Choosing a summary statistic and distance metric which are sensitive to the parameters of interest

is a crucial step in parameter inference with ABC SMC [88]. In this CHAPTER , we choose the

following L2 distance function based on numerical experiments:

ρ(z, z∗) =
1

2K
‖z − z∗‖2, (7.4)

where ‖·‖2 is the 2-norm of a vector.

Probability Weight

The probability weights of the particles allow the algorithm to search in the regions with high-

probability and to reject particles from low-probability regions of the parameter space [5, 110].

In [5,10,88], the weights for the all particles at iteration t = 1 are equal to 1/N . In [4], the weight

considered based on the prior distribution for the parameters. However, since the particles sampled

randomly in the first iteration, the distance of the particles is different, and assign an equal weight

causes the algorithm to search around the particles which may be far from the optimal value. In

this CHAPTER , we consider the weights based on the discrepancy of the particles.
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Let consider the discrepancy vector at the first iteration as ρ1 = [ρ11, ρ
1
2, · · · , ρ1N ]. Based on the

discrepancy, for the particle which has a smaller discrepancy there is more probability being close

to the optimal, then the particle with smaller discrepancy should have a greater weight. Then, in

this CHAPTER , we assigned the weight for the particle i at the first iteration as follows:

w(i,1) =
1

ρ1i
. (7.5)

For iteration 2 ≤ t ≤ T , [4] used the prior distribution and a forward and a backward kernels

to assign the weights for the particles, [5] improved the weights and used (7.3) to calculate the

weights of the particles. But, in the cases where the prior distributions are not well known for the

parameters, using the weight based on (7.3) is not a good choice. In this CHAPTER , for particle i

at iteration t we use the prior information of the parameter, π
(
α

(i,t)
c

)
, and the information of how

much the particles are close to the optimal value, ρti. We defined a constant β to make a trade-

off between the prior information of the particles and their distances. This constant can help the

algorithm not to be stuck in search around the local optima. Then, the weight for 2 ≤ t ≤ T for

particle i is calculated as follow:

w(i,t) = β π
(
α(i,t)

c

)
+ (1− β)

1

ρti
. (7.6)

Adaptive Threshold Sequence

To balance the computational efficiency and the accuracy of the posterior distribution, we define a

threshold sequence:

E = {ε1, ε2, · · · , εT}, (7.7)
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where ε1 > ε2 > · · · > εT . If the threshold is too large, too many proposed particles are accepted;

if it is too small, the ABC algorithm is not efficient since many proposed particles will be rejected

[88]. Selecting it adaptively based on some quantile of the threshold in the previous iteration has

better performance [89]. In this CHAPTER , we use the following threshold sequence scheme:

• We choose ε1 as the acceptance rate in the first iteration is equal to 0.5. We run the simulation

for Kini = 2N , and chose the median of the all discrepancy of Kini simulations.

• For ε2:T−1, εt+1 is calculated based on the qth-percentile of the distribution of particle distances

in iteration t.

Prior Distribution Correction

An interesting and inexpensive feature of the proposed approach is based on the first step, in which

we can estimate the parameters of the system, even we do not know the prior distribution of the

parameters. For these cases, we add the prior correction at the first step of the algorithm. For the

parameters that we do not know good prior distributions for them, we consider a uniform distri-

bution with very small lower and very large upper bounds. This step makes the proposed method

robust to such deviation and makes it suitable for use in the case in which one lacks appropriate

prior knowledge about the true parameters. For instance, if the prior π
(
αc) is misspecified, it

means that the true parameter is not contained in the support of π
(
αc). In the case of the power

electronics application, for example, we do not know the impedance of the power supply. In this

approach, we model the distribution p(ρ(·)|αc) based on the parameter, i. e for any value of input

we calculate the discrepancy for N0 simulation. Let consider the discrepancy for parameter i as

ρ0 = {ρ10, ρ20, · · · , ρ
N0
0 }. We consider the Np smallest distance of the N0 distances, and based on

the Np distances, we consider a Gaussian distribution for the prior distribution with the following
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mean and variance.

µ = min(ρ0),

σ2 =

∑Np

i=1(ρ
i
0 − µ)2

Np

. (7.8)

Proposed ABC SMC Algorithm

The proposed ABC SMC algorithm is presented in Algorithm 5. The ABC SMC algorithm will

stop when the lowest threshold in the threshold sequence is less than the predefined smallest thresh-

old or when a maximum number of T iterations has been performed [4, 5]

Simulation Results

The model of the DC-DC buck converter is based on TPS40200EVM-002 model and is built in the

Matlab/Simulink and the proposed algorithm is implemented in Python. All tests are performed

on a desktop PC with Intel(R) Core(TM) i7-8700 and 8-GB RAM.

Parameter setting

In this CHAPTER , in all simulations, we consider q = 0.75 for choosing the thresholds. Based

on the simulations results, we chose the β = 0.4. We consider a Gaussian distribution kernel same

as [5]. We set the maximum number of iteration as T = 10.
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Algorithm 5: Adaptive ABC SMC algorithm for estimating the posterior distribution of parameters
αc using N particles, the prior distribution π(αc), given data z∗. α(i,t)

c is the parameter set for particle
i at iteration t.

1: Find the prior distributions for the parameter based on (7.8)
2: Set maximum number of iterations T and set ε1 by section (4)
3: At iteration t = 1
4: for 1 ≤ i ≤ N do
5: while ρ(z, z∗) > ε1 do
6: Sample α∗c from the prior: α∗c ∼ π(αc)
7: Generate data z from α∗c : z ∼ Model(α∗c)
8: Calculate discrepancy ρ(z, z∗) based on (7.4)
9: end while

10: Set α(i,1)
c ← α∗c

11: Set w(i,1) based on (7.5)
12: end for
13: Generate Gaussian perturbation kernel κ2 = N (α̃1

c ,Γ
1)

14: Determine ε2 based on section (4)
15: At iteration t > 1
16: for 2 ≤ t ≤ T do
17: for 1 ≤ i ≤ N do
18: while ρ(z, z∗) > εt do
19: Sample α∗c from the previous population {α(i,t−1)

c }{1≤i≤N} with probabilities
{w(i,t−1)}{1≤i≤N} and perturb them to obtain α∗∗c ∼ κt(αtc, 2 Γt−1)

20: Generate data z from α∗∗c : z ∼ Model(α∗∗c )
21: Calculate discrepancy ρ(z, z∗) based on (7.4)
22: end while
23: Set αtc ← α∗∗c
24: Calculate w(i,t) based on (7.6)
25: end for
26: Generate Gaussian perturbation kernel κt+1 = N (αtc, 2 Γt−1)
27: Determine εt+1 based on section (4)
28: end for

Adaptive Weight

For comparing the different methods, we use the acceptance rate which is defined as follow:

acc =
N

Ns

, (7.9)
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where N is the number of the particles which are used in the algorithm, and Ns is the total number

of simulation during each iteration. At first, we compare the acc at iteration 2 with the we which is

used in [5, 12, 120]. Fig. 7.1a shows the acceptance rate for fifty independent simulations with the

proposed weight and the we. As it can be seen, the proposed weight has greater acceptance rate for

all the simulations.
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Figure 7.1: Acceptance rates for fifty different simulations (a) t = 2 and (b) whole iterations. ◦
Weight in [5, 12] ∗ Proposed weight.

Fig. 7.1b shows the acceptance rate for whole iterations of fifty different simulations. It can be

seen that the algorithm can find the posterior distributions with less number of simulations with

compare to the other methods.

Calibration of Buck Converter

In this CHAPTER , we consider the non-isolated buck converter. Its topology is shown in Fig. 7.2.

Since the frequency of switching is high, then the parasitic elements of the converter component

should be considered. We consider RM as the the parasitic resistance for the MOSFET, RL for
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inductor, Rc for the capacitor. We also model the input capacitor as a Cin series with a parasitic

resistance as Rcin [50]. The parasite element of the voltage source is also very important, we

consider inductor as Ls series with resistance as Rs. At first, we get the outputs of the Buck

converter with a set of parameters, αTrue
c , which we know their values. We consider the outputs

of the model regarding the αTrue
c as z∗. For the resistance of the power supply, we assume that

we do not the prior distribution for it. Then, we consider a uniform distribution as U(0, 10000)

to consider all uncertainties. Then, by the simulation based on section 7 we found that the prior

distribution can be considered as a Gaussian distribution as N (0.5, 10). For the other parameters,

we consider the uniform distribution as the prior distributions for the parameters and estimate their

values. We consider the mean values of the parameter as 20% percent greater than the true value

to consider the uncertainties. We choose the lower/upper bounds of the uniform prior distributions

for the parameters as a very small number and very large number. Table 7.1 shows the prior

distributions, the estimated values, and the estimation errors. It is seen that the proposed method

can accurately estimate the parameters under a uniform prior distribution with a small/large for

lower/upper bounds.

To analyze the performance of the converter with the estimated parameters under the transient and

steady-state conditions, we change the load at the output. Fig. 7.3 shows the performance of the

converter under the transient condition, and Fig. 7.4 shows the performance of the converter in the

steady-state condition. As can be seen, the output of the converter with the estimated parameters

is very close to the measurements.
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Figure 7.2: Circuit representation of the DC-DC buck converter.
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Figure 7.3: Buck converter operating under transient condition. (a) Output voltage; (b) Output
current. — Measurements; .- converter before calibration; - - converter after calibration.

Conclusion

This CHAPTER has proposed a parameter calibration method for DC-DC buck power converter

based on an A-ABC-SMC approach. We developing the ABC SMC algorithm by proposing a novel

and straightforward weight scheme. The proposed algorithm tested on a DC-DC converter with

122



Table 7.1: Actual and Identified Values of the Parameters of the Buck Converter.

Parameter True value Prior distribution Estimated value % Error

Rs 0.16 Ω N (0.5, 3) 0.16 0

Ls 0.40 µH U(0, 2) 0.40 µH 0

RM 40 mΩ U(0, 4) 39.5 mΩ 1

Cin 100µF U(0, 0.01) 99.2µF 1

Rcin 75 mΩ U(0, 1.5) 76.1 mΩ 1

L 33µH U(0, 3.3 m) 32.56µH 1

RL 60 mΩ U(0, 6) 60.8 mΩ 1

Rc1 65 mΩ U(0, 6.5) 64.8 mΩ 0

C1 100µF U(0, 0.01) 100µF 0

Rc2 300 mΩ U(0, 30) 300.8 mΩ 0

C2 100µF U(0, 0.01) 99.3µF 1

its parasite and passive elements of the converter. Test results show that the proposed approach

can find the exact values of the parameters for a converter by considering the passive and parasite

components. We also analyze the steady-state and transient performance of the converter with the

estimated parameters, the results show the great performance of the algorithm.
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Figure 7.4: Buck converter operating under steady state condition. (a) Output voltage; (b) Output
current. — Measurements; .- converter before calibration; - - converter after calibration..
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CHAPTER 8: POWER ELECTRONIC PARAMETER CALIBRATION

USING A DEEP LEARNING BASED METHOD

introduction

Battery technology has improved considerably in efficiency, cost, and reliability, while utility-scale

PV deployment has accelerated rapidly. These developments pave the way for energy storage sys-

tems to be combined with PV and grid to provide low-cost energy, grid stability, and reliability for

the grid. The integration of energy storage into the PV and grid system can enable multiple critical

features for future grid needs, including grid support, load shifting, peak shaving, energy backup,

etc. The transition from a grid-tied to a more distributed configuration will require capabilities

far beyond those of today’s grid-tied power electronics. Developing cost-effective, reliable, and

simplified designs are required to expand the deployment of PV+storage hybrid systems. Parame-

ter identification can estimate the parameters of the converters and besides, with having the exact

parameters we can have a generate accurate simulation models.

In this CHAPTER , we consider a Three Port Multilevel Inverter (TPMI) proposed by [121] as

shown in Fig. 8.1. We propose a measurement-based inverter parameter calibration method by a

novel deep learning method. At first, with sensitivity analysis, the critical parameters are identified.

Then, with having prior distributions of the parameters, we generate the simulations for training a

CVAE model. The proposed algorithm can also be applied to other parameter identifications and

optimization applications such as rectifiers, filters, or power supplies, among others.
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Figure 8.1: Schematic of TPMI.

Inverter Parameter Estimation Framework

Inverter mathematical models are powerful tools for analyzing models. As models become more

complex, the computational challenges of parameter inference and model validation become in-

creasingly complex. However, the likelihood function may not always be available because it is

computationally too expensive to calculate or does not have a closed-form likelihood function.

However, simulating the models is possible. Fig. 8.2 shows the framework for PEC parameter

estimation.

Identifiability of Parameters

A PEC has many parameters. Calibrating all parameters could be computationally challenging.

Therefore, the parameters with the highest identifiability should be first identified [47]. In this

CHAPTER a sensitivity based approach is used to find the critical parameters of the case under

126



Figure 8.2: Proposed framework for test the PEC model performance and parameter
identification.

study. The sensitivity of parameter αi regarding the the ac and dc output voltage calculated as
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follows:

Sac(αi)=
K∑
k=1

|Vac,k(α+
i )−Vac,k(α−i )|

K(α+
i −α−i )/αi

,

Sdc(αi)=
K∑
k=1

|Vdc,k(α+
i )−Vdc,k(α−i )|

K(α+
i −α−i )/αi

,

where α+
i = αi + ∆αi and α−i = αi−∆αi, and ∆αi is a small perturbation of αi. The parameters

with the largest sensitivities will be considered as having the highest identifiability [122].

Simulation Results

The proposed model is implemented in MATLAB/Simulink software. By defining the suitable

prior distribution, we generate the training data. All the case studies using Python 3.8 and deep

learning were carried out using a neural networks API, Pytorch [119].

Critical Parameter Identification

For sensitivity analysis, a small perturbation ∆αi = 10 %|αi| is applied to each parameter. From

the trajectory sensitivity, it is found that only the parameters shown in Table 8.1 are the problematic

parameters for the PEC under study. The top fourteen critical parameters and their normalized

sensitivities regarding the voltage of AC and DC ports are provided in Table 8.1.

Choice of Number of Simulations

As many simulations as possible are desirable for high accuracy, they will impose a greater com-

putational burden. As a result, it is reasonable to estimate the parameters of different dimensions
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Table 8.1: Top Fourteen Critical Parameters of the Model

Parameter Sac(αi) Parameter Sdc(αi)

Llink1 1 Cout2 1

Cout1 0.9 Llink2 0.97

C1 0.3 Rout1 0.62

Llink2 0.02 Cout1 0.26

Cout2 0.02 Llink2 0.25

Rout1 0.01 C2 0.049

Rlink 0.01 Rlink2 0.03

with different numbers of simulations.

Fig. 8.3 shows the maximum error for fourteen critical parameters under different numbers of

simulations. We set the maximum acceptable error to be 1%. Based on Fig. 8.3 when the number

of simulations is equal to 2000, this error criterion will be satisfactory.

Generation of Dataset and Parameter Settings

Multiple critical parameters are randomly chosen and we automatically generate dynamic TPMI

data. The sampling time is set as 0.0001. For each simulation, the time horizon for getting the

whole dynamic responses is set as 3 s.

The selection of appropriate Hyper-parameters is often necessary for satisfactory performance in

the deep learning-based methods. In this CHAPTER , we use the Bayesian process method [118]

via scikit-learn [103] to find the network hyper-parameters such as max-pool size, stride length,

the size of the latent space, and etc. The learning rate is set to 1×10−3. We set the dimension of
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Figure 8.3: Maximum error of the estimated parameters for fourteen critical parameters.

the latent space as 10. We use the different activation functions for our model, such as Sigmoid

and ReLU. For the fully connected layers, we use a dropout of 0.3. The max-pooling layers have

a pool size of 10 and stride length of 10. All the case studies using Python 3.8 and deep learning

were carried out using a neural networks API, Pytorch [119].

Calibration of Fourteen Parameters

This case study demonstrates the performance of the proposed model in a higher-dimensional case

with fourteen critical parameters. These parameters are the same are identified by the sensitivity

based method and listed in Table 8.1. The prior distributions of these parameters for training the

model are assumed to have a µπ(αc) with 30 % deviation from the true values and follow a uniform
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distribution as U
(
µπ(αc)−µπ(αc) · 90 %, µπ(αc) +µπ(αc) · 90 %

)
. Table 8.2 lists the true and

estimated values. The accuracy of the estimation verifies the well-trained model has acceptable

accuracy for high dimensional parameters. The dc and ac output voltages of the TPMI under a

specific event are shown in Fig. 8.4. It can be seen that the model with the initial values of the

parameters has discrepancy with the measurements, however the calibrated model has a very good

match output with the measurements.

Table 8.2: Calibration of Fourteen Key Parameters

Parameter
True value

(×10−6)

Estimated

(×10−6)

Parameter
True value

(×10−6)

Estimated

(×10−6)

Llink1 33 33.4 Cout2 11 11

Cout1 11 10.8 Llink2 33 33.5

C1 11 11.2 Rout1 19 18.9

Llink2 33 32.5 Llink2 33 32.8

Cout2 11 10.8 Cout1 11 11.2

Rout1 19 19.3 C2 10 10.3

Rlink 2× 104 2× 104 Rlink2 2× 104 2× 104

Conclusions

This CHAPTER presents a framework to systematically validate stability models, identify prob-

lematic model parameters, and calibrate them using online PMU measurements. With Elementary

Effects (EE) analysis, we first identify the critical parameters of the generator. Using the event
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Figure 8.4: TPMI performance with calibrated and the true value parameters. (a) DC port output
voltage (b) AC port output voltage; — Measurements; .- with the initial values; - - with calibrated
values.

playback, we generate dynamic simulations for training a CVAE model, based on which, we esti-

mate the model parameters. We tested the proposed model on two and eighteen critical parameter

cases to evaluate its robustness. Simulation results indicate that the proposed method can accu-

rately and efficiently estimate the full distributions of the parameters even when the actual values

of the parameters are out of the prior distributions. The proposed framework can be extended for

more complex power system models, such as aggregate renewable power plants and composite

load models. This will be investigated in our future works.

Conclusions and Future Works

This CHAPTER presents a framework to systematically validate PEC models, identify problematic

model parameters, and calibrate them using online measurements. With sensitivity analysis, we

first identify the critical parameters of the model. Based on the prior distributions of the parameters
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we create the training data. We tested the proposed model on a TMPI model. Simulation results

indicate that the proposed method can accurately and efficiently estimate the full distributions of

the parameters. The proposed framework can be extended for more complex power electronic

models.
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CHAPTER 9: CONCLUSIONS AND FUTURE WORKS

This thesis lies at the power system model validation and machine learning and engineering in-

terface, focusing on power plants and power electronic components. Therefore, we use the event

playback to use the PMU time-series measurements to validate the model and then calibrate the

model.

We then use the sensitivity analysis to find the critical parameters and consider a system with

low-dimensional parameters. With the black-box optimization and reinforcement learning-based

methods, we calibrate the model with four and eight parameters.

We then consider a comprehensive hydro-power plant model with a synchronous generator and its

controller, i.e., an exciter, a governor, a power system stabilizer. With an approximate Bayesian

computation (ABC) based method, we consider the fourteen critical parameters, and then by de-

veloping the ABC with sequential Monte Carlo (SMC) sampler, we calibrate the model.

Since the generator in the industry has more parameters, we then consider a high-dimensional case

with eighteen critical parameters. We then use a deep learning method. We proposed a Long

Short-Term Memory (LSTM)-based method that improves the estimation accuracy.

We then focused on the conditional variational autoencoders (CVAE) to improve the computational

cost of the model calibration. We showed that the CVAE-based method has an outstanding perfor-

mance from the computational aspect and accuracy with the extensive results with the proposed

method. We also applied the CVAE-based method to power electronic components.

This thesis can be extended in several following directions:

• Apply the proposed methods to estimate the parameters of the different power system compo-
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nents such as composite load models.

• Apply the proposed methods to a power system with a high penetration of renewable energy and

a high number of power electronics components.
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[63] G. Rojas-Dueñas, J.-R. Riba, and M. Moreno-Eguilaz, “Nonlinear least squares optimiza-

tion for parametric identification of dc–dc converters,” IEEE Trans. Power Electron., vol. 36,

no. 1, pp. 654–661, Jun. 2020.

[64] M. M. F. S. Algreer, “Microprocessor based signal processing techniques for system identi-

fication and adaptive control of dc-dc converters,” Ph.D. dissertation, Newcastle University,

2012.

[65] F. Alonge, F. D’Ippolito, and T. Cangemi, “Identification and robust control of dc/dc con-

verter hammerstein model,” IEEE Trans. Power Electron., vol. 23, no. 6, pp. 2990–3003,

Dec. 2008.

[66] V. Valdivia, A. Barrado, A. LÁzaro, P. Zumel, C. Raga, and C. FernÁndez, “Simple model-

ing and identification procedures for “black-box” behavioral modeling of power converters

based on transient response analysis,” IEEE Trans. Power Electron., vol. 24, no. 12, pp.

2776–2790, Oct. 2009.

143



[67] S. Rahmani, S. M. Mousavi, and M. J. Kamali, “Modeling of road-traffic noise with the use

of genetic algorithm,” Applied Soft Computing, vol. 11, no. 1, pp. 1008–1013, Jan. 2011.

[68] E. Aarts and J. Korst, “Simulated annealing and boltzmann machines,” INFORMS Journal

on Computing, 1988.

[69] A. R. Conn, K. Scheinberg, and L. N. Vicente, Introduction to derivative-free optimization.

Siam, 2009, vol. 8.

[70] R. G. Regis and C. A. Shoemaker, “A stochastic radial basis function method for the global

optimization of expensive functions,” INFORMS Journal on Computing, vol. 19, no. 4, pp.

497–509, Nov. 2007.

[71] K. Elsayed and C. Lacor, “Robust parameter design optimization using kriging, rbf and

rbfnn with gradient-based and evolutionary optimization techniques,” APPL MATH COM-

PUT, vol. 236, pp. 325–344, Jun. 2014.

[72] K. Holmström, “An adaptive radial basis algorithm (ARBF) for expensive black-box global

optimization,” J GLOBAL OPTIM, vol. 41, no. 3, pp. 447–464, Jul. 2008.

[73] M. D. McKay, R. J. Beckman, and W. J. Conover, “Comparison of three methods for select-

ing values of input variables in the analysis of output from a computer code,” Technometrics,

vol. 21, no. 2, pp. 239–245, May 1979.

[74] G. I. Diaz, A. Fokoue-Nkoutche, G. Nannicini, and H. Samulowitz, “An effective algorithm

for hyperparameter optimization of neural networks,” IBM J RES DEV, vol. 61, no. 4/5, pp.

9–1, Sep. 2017.

[75] P. Etingov, F. Tuffner, J. Follum, X. Li, H. Wang, R. Diao, Y. Zhang, Z. Hou, Y. Liu,

D. Kosterev et al., “Open-source suite for advanced synchrophasor analysis,” in 2018

IEEE/PES(T&D). IEEE, Apr. 2018, pp. 1–5.

144



[76] J. Cussens, “Approximate bayesian computation for the parameters of prism programs,” in

International Conference on Inductive Logic Programming. Springer, Jun. 2010, pp. 38–

46.

[77] J. K. Pritchard, M. T. Seielstad, A. Perez-Lezaun, and M. W. Feldman, “Population growth

of human y chromosomes: a study of y chromosome microsatellites.” Mol. Biol. Evol,

vol. 16, no. 12, pp. 1791–1798, Dec. 1999.

[78] P. Marjoram, J. Molitor, V. Plagnol, and S. Tavaré, “Markov chain Monte Carlo without
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