
To achieve this goal a mechanism to aggregate the solution quality of individual is 

necessary.  

 

Table 14: HP2 Test Problem Results (Best value for 1000 trials each) 
          % Restriction         
    10 20 30 40 50 60 70 80 90 
  10 3153.4 3163.4 3155.2 3154.4 3159.4 3155.2 3154.2 3122 3113 
  20 3151 3159.4 3157.8 3160.6 3148 3153 3148.2 3130 3137.2 
%Priority 30 3152.4 3157.4 3155.2 3157.6 3156 3157.6 3141.8 3140.4 3136.4 
  40 3150.8 3153.2 3154 3153.6 3153.2 3150.8 3156.2 3142.2 3142.4 
  50 3148.8 3152.4 3152.6 3153.2 3154.2 3148.4 3147.2 3155.4 3157.4 
  60 3149.2 3151.8 3150.2 3150 3150.2 3151.6 3150.4 3153 3152.8 
  70 3148.8 3152.8 3150 3150.8 3150.8 3151.6 3150.6 3153.2 3150 
  80 3148 3148 3150.2 3149.8 3150.4 3148.8 3151.4 3150 3152.4 
  90 3148 3148 3149 3149 3148 3150 3149 3149 3149.4 

 

 

Moraga (2002) uses the following procedure to tune parameters for a set of 

problems: 

1. Select a representative set of problems, preferably problem with known solution 

values, or lower/upper bounds known, from all of the problems that Meta-RaPS is 

going to be used on. It is important that the test sample chosen should have 

different sizes. 

2. Select parameter domain and increment over which the parameters are to be 

varied. %p and %r range over 0 to 100, this range may be divided into different 

increment sizes of, 10, 20, 30 or any user specified increments. 

3. For each problem in the sample problems, run Meta-RaPS over the entire 

parameter domain selected by increasing or decreasing the increments.  
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4. Find the best parameter setting by looking at an aggregate performance measure. 

The aggregate performance measure, for a specific setting, is best calculated as 

the solution deviation from optimal averaged over all test problems tested. 

 

5.2 Analytic Parameter Setting Techniques 

 

 Apart from simpler procedures, some techniques approach the parameter setting 

problem in a more systematic way. These procedures are explained and compared in this 

section. 

 

5.2.1 Response Surface Methodology  

 

5.2.1.1 Description of Response Surface Methodology 

 

Response surface methodology (RSM), or experimental design (ED) procedures, 

are the most frequently used parameter setting techniques because of their simplicity. 

RSM tries to find ways to collect as few data points as possible and get most information 

out of the data points using a statistical model. In RSM parameter setting application 

literature, Coy (2000) used gradient descent technique to find effective parameters for the 

Vehicle Routing Problem. His procedure which is applicable for any given type of 

combinatorial problem is as follows: 

A subset of problems from the entire problem set is selected and high-quality 

parameter settings for each type of problem are found. The parameters found for different 

type or size of example problems are combined to yield the parameters that work well on 
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any type and/or example of problems being selected. For the parameter search with RSM, 

the starting level of each parameter, the range over which the parameter is varied and the 

increment used are needed. This is usually accomplished using a small pilot study which 

is done by taking a small number of problems and running some trial solutions to 

intuitively get a feel for the parameter domain.  

Depending on the number of parameters two designs are considered: two-level 

full factorial designs, if the number of parameters is small, or partial  two-level factorial 

design such as Taguchi design might be used to provide efficiency when there are more 

than a few parameters. For both the full factorial and partial factorial designs, it is 

recommended to test both the extreme minimum and maximum parameter settings (often 

coded as-1 and +1) as well as a mid-point setting (coded as 0) to test for curvature. After 

the experiment is conducted, linear regression is applied to the response surface and the 

path of steepest descent is calculated. Next in the direction of the steepest descent data 

points are taken by making small steps, along the path. The procedure is continued until 

the limit of the experimental region is reached or the best solution found has not changed 

for a specified number of steps. The linear regression may not always give optimal 

parameters, and this method does not provide exact optimization but a good 

approximation. To make the method more accurate at the expense of computation time, 

instead a quadratic model can be fit.  

Because meta-heuristics give stochastic outputs, when evaluating design points it 

is important to take more than one trial run for each point. To find general good 

parameter settings independent of the problem, Coy (2000) recommends averaging the 

best parameters values found for different problems or different subsets of problems. This 

procedure could lead to some poor performance possibilities, because the problems being 
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studied may be too broad for one set of parameters and the class of problems may be 

divided into two or more subclasses. This division should be done in terms of the 

significant differences among the problems such as matrix density ratio, size of instance, 

computed generated of real world data problems, etc. 

To summarize the main steps of this approach, Coy’s (2000) procedure is as 

follows: 

1. Select a subset of problems to analyze from the entire set of problems  

2. Select the starting level of each parameter, the range over which each parameter is 

to be varied and the amount of increment to each parameter. 

3. Find good parameter settings for each subsets, using design of experiments (DOE) 

and RSM optimization by gradient descent. 

4. Average the parameter values found in Step 3 to find robust parameters for the 

entire class of problems. 

The shortcoming of this approach is that even if optimal parameters have been set 

for each subset of problems, averaging those parameters will give equal importance to 

different types of problems. Golden(1998) proposed weighing the different examples in 

terms of their size by taking the natural logarithm of the size of examples and then 

normalizing this value for all the subsets to find the weights for each subset.  

 

5.2.1.2 RSM Application to Meta-Raps 

 
For the RSM the design center is chosen to be 40% priority and 40% restriction. 

The model for the HP2 0-1 MKP test problem is shown in Table 15. At α level of 0.05, 

apart from Priority*Restriction (the interaction term) all other terms are significant. The 
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model has and R2 value of 90.3%  and R2 adjusted value of 83.3%, indicating a good fit. 

Table 16 shows the ANOVA table for the model. Figure 5 shows the response surface of 

the model, in this plot one can see that the parameter combinations for which the 0-1 

MKP test problem is maximized. The response surface in Figure 5, is maximized at lower 

levels of %priority and %restriction. 

 

Table 15: Estimated Regression Coefficients and Significance of Terms 
Term Coefficient SE Coef T P 
Constant 3169.47 17.4794 181.326 0.000 
Priority -0.58 0.5453 -1.073 0.319 
Restriction -0.53 0.5453 -0.980 0.360 
Priority2 0.00 0.0056 0.021 0.984 
Restriction2 -0.1 0.0056 -2.307 0.054 
Priority*Restriction 0.02 0.0074 3.089 0.018 

 
 
 
Table 16: ANOVA for the Model 
Source DF      Seq SS Adj SS Adj MS F P 
Regression 5 2252.12 2252.12 450.42 12.98 0.002 
Linear 2 1732.42 53.26 26.43 0.77 0.500 
Square 2 188.45 188.45 94.23 2.71 0.134 
Interaction 1 331.24 331.24 331.24 9.54 0.018 
Residual Error 7 242.99 242.99 34.71   
Lack-of-Fit 3 196.16 196.16 65.39 5.28 0.065 
Pure Error 4 46.83 46.83 11.71   
Total 12 2495.12     

 

 

After the model is fitted, the normality assumption is checked by looking at the 

plot of the residuals, and the model fit parameters. The next step is to find the stationary 

point using the eigenvalue analysis. The stationary point is the plane tangent to the 

surface, that is parallel to the XY plane (in 3D). Another definition of the stationary point 

is where the derivative of the function equals zero. The stationary point is important 
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because depending on the eigenvalues the response surface has the point of maximum 

response if all eigenvalues are negative, or the point of minimum if all eigenvalues are 

positive or the sadde point (point of inflection) if the eigenvalues are mixed in sign. The 

stationary point is found as 5.55% priority and 2.9% restriction and it is a saddle point 

because the eigenvalues are mixed in sign.  
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Figure 5: Surface Plot of Knapsack Problem Solution Value 
 

Based on the surface and the contour plots, the direction of gradient ascent is 

found and another model with a different base is fitted in the region where the 0-1 MKP 

problem is maximized.  

The secondary model has the base at the 10% priority and 10% restriction point. 

An identical procedure is carried out on this model to determine the validity of the model. 

The new model has R2 = 92.8%, R2 adjusted = 87.7% values and except for the square 

terms, all other terms are significant. After the eigenvalue analysis, the stationary point 

 61



(maxima) is found as 9.5% priority and 5.5% restriction values which is the final 

parameter setting the model proposes. 

5.2.2 Genetic Algorithms  

 

 In addition to being a meta-heuristic to solve combinatorial problems, genetic 

algorithms (GA), can also be used to set parameters for other meta-heuristics. 

(Grefenstette, 1986) 

 

5.2.2.1 Description of Genetic Algorithms 

 

Description of the GA procedure has been given in section 2.2.1. Genetic 

algorithms as a parameter search method has many advantages over statistical parameter 

setting techniques. The parameters of the meta-heuristics may heavily influence both 

computation time and the quality of the solution. One of the reasons that setting robust 

parameters is difficult is that there may be complex interactions among different 

parameters (Golden et al., 1998). Grefenstette (1986) points out that if the response 

surface is fairly simple, conventional nonlinear optimization or control theory techniques 

may be suitable, however, for many applications the response surface may be difficult to 

search, e.g., a high-dimensional, multimodal, discontinuous, or noisy function of 

parameters.  

One main advantage of GA over RSM type of methods is GA can be executed 

with much less information about the parameter space and the type of problem. Another 

difference between these methods is the RSM methods require the user to specify a 

design center which requires the user to have prior information about the solution quality. 

 62



Specification of the design center can prevent the exploration of the full parameter space. 

On the other hand although the RSM procedure is cumbersome, it is a more 

straightforward procedure which can be applied in the same way to any type of problem. 

GA parameter search has to be modified for different applications. The analyst has to 

apply GA in an efficient way for a satisfying performance (Golden et al., 1998). 

 

5.2.2.2 Genetic Algorithms application to Meta-RaPS 

 

GA parameter setting is applied to all large set 0-1 MKP problems. Real-coded 

GA is used for the parameters of Meta-RaPS, %priority and %restriction, which are 

continuous over the [0,100] interval. Blend crossover and random mutation is used as 

described by Deb (2001), for the reproduction, binary tournament selection with an elitist 

strategy is used in which the individuals in the top 10% of the population’s best 

performance is transferred to the next generation.  

For this application the following GA parameter values are used; population size 

30, crossover rate 0.9, mutation Rate: 0.5. These parameters are taken from literature 

(Deb, 2001) and they are verified/tuned by experimentation. For this application, the 

starting population is randomly selected. If a better population with higher fitness values 

is selected, it is expected that average fitness value will convergence at an earlier number 

generations.  

Figure 6 shows the convergence of GA algorithm. After about 30th generation the 

average solution value, for 30 individuals, of the HP2 0-1 MKP Test Problem becomes 

stable.  
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Figure 6: GA Convergence  
 

 

Table 17 shows the %priority and %restriction values and the corresponding 0-1 MKP 

solution values (fitness values) of all the 30 individuals in the 30th generation. The best 

solution value comes from the 26th individual that has a %priority of 13.3 and 

%restriction 6.6. 
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Table 17: The %Priority and the %Restriction values of the 30th Generation 
Individual Number %Priority  %Restriction Solution Value 

1 19.5 6.7 3150.6 
2 19.5 81.1 3097.6 
3 19.5 48.5 3118.8 
4 22.4 89.7 2991.6 
5 22.4 74.9 3069.2 
6 26.0 86.0 2952.8 
7 26.0 51.8 3116.0 
8 39.2 63.7 3085.2 
9 29.0 37.1 3137.6 

10 30.2 17.4 3156.0 
11 34.9 45.1 3092.6 
12 21.7 40.3 3114.0 
13 48.8 89.0 3120.2 
14 41.0 68.2 3117.0 
15 27.9 2.5 3150.6 
16 55.8 8.9 3057.2 
17 26.0 86.0 3025.0 
18 15.3 15.9 3037.0 
19 69.1 73.5 3078.2 
20 64.9 98.6 3100.0 
21 17.0 48.5 3093.4 
22 13.4 50.9 3104.0 
23 69.9 81.1 3026.6 
24 6.1 10.0 3126.6 
25 44.9 64.4 3077.8 
26 13.3 6.6 3159.8 
27 13.4 93.8 3031.8 
28 40.8 8.3 3113.0 
29 67.7 78.2 3028.4 
30 67.7 46.5 3049.8 

 

 

5.2.3 Reactive Search 

 

 Reactive parameter setting methods have a major advantage over other methods 

in that they eliminate a separate parameter setting phase and incorporate parameter 

setting and solution building.  
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5.2.3.1 Description of Reactive Search 

 

The reactive search (RS) method uses the feedback from the meta-heuristic to set 

the parameters. RS aims to eliminate the parameter setting problems of meta-heuristics 

and make them robust. RS incorporates a history-based adaptive procedure in meta-

heuristic search for online determination of the parameters. History-based learning 

gradually sets parameter values to better performing parameter combinations. After a 

given number of iterations or predefined time, the parameters having higher probabilities 

are determined to be better parameters in terms of solution performance. The online 

setting of parameters eliminates the need for a parameter setting procedure and sets the 

parameters as the meta-heuristic is run. The RS procedure has been applied to GRASP 

meta-heuristics (Gomes, 2001) and TS (Rayward-Smith, 1996; Delmaire, 1999).  

In the RS procedure, one parameter setting combination is randomly selected 

from a candidate set of parameter setting combinations at each iteration and the meta-

heuristic is run with the selected parameter combination. At the end of a predefined fixed 

number of iterations the probability of selecting a particular parameter setting is 

calculated based on the performance (the solution value) of that parameter setting with 

respect to the best parameter setting performance found so far. The RS procedure stops 

when there is no improvement (change in the values of probabilities) for a number of 

iterations.  

For a given parameter setting Delmaire (1999) measures the effectiveness in two 

dimensions: 

1. Quality of solution by determining the average deviation from the best solution 

known so far. 
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2. Variability of solution which is the ability to generate many different solutions. 

This is measured by the proportion of different solutions obtained at a setting by 

total number of iterations for which the setting is used. 

Both dimensions are aggregated as the utility of the parameter setting. 

 

Gomes (2001) reports that the RS procedure gives better results than the GRASP 

heuristic alone because it is able to determine appropriate values of parameter(s). 

Delmaire (1999) reports that for some test problems of Single Source Capacited Plant 

Location Problem, RS incorporated GRASP reduced the average deviation from the value 

of best solution obtained with GRASP by at least 50%. For a specific set of test problems, 

the RS applied GRASP average mean deviation never exceeds 0.5% while pure GRASP 

is always above 1% deviation. 

The RS procedure applied to Meta-RaPS is as follows:  

1. Candidate parameter selection: 9 levels of %p and 9 levels of %r 

parameters,both starting from 10 to 90 with 10 increments. 81 %p and %r 

combinations in total. 

C={c1,  …, c81}                          (6) 

2. Each parameter setting combination in set C is set to have equal probability of 

being selected 

 

3. Meta-RaPS is run for 200 iterations. At each iteration parameters are 

randomly selected from set C based on their probabilities (pi) and the best 
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solution value for all the parameter combinations that are run are stored in 

array 

Ā= {a1, …, an}                          (8) 

4. After every 200 iterations qi, values are updated according to Eq. 9. 

 

5. The probabilities are updated at the last step by Eq. 10. 

 

6. Procedure is terminated at 1000 iterations. It may also be terminated when 

there is no change in pi values for predefined number of iterations. 

 

5.2.3.2 Application to Meta-RaPS 

 

The reactive search is applied to 0-1 MKP. The problem used for the application 

is HP2. Table 18 shows the probabilities after 5000 trials for the HP2 test problem. 

Higher probability values for a particular parameter combination indicates better solution 

performance. The %priority and %restriction parameters are searched with the 

increments of 10 within 10% to 90% domain for both parameters. 

As the results of the parameter setting techniques suggests, there is more than one 

parameter combinations that give good results. In Table 18, the 10% priority and 10% 

restriction combination gives the best solution performance as it is the parameter setting 

with the largest probability. It should be noted that while using RS to generate the values 
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in Table 18 to determine the best parameter setting, Meta-RaPS is simultaneously 

arriving at the final solution value for the MKP problem HP2. 
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Table 18: Reactive Search Results 

%Priority %Restriction Probability 
Times 
used 

 
%Priority %Restriction Probability 

Times 
used 

10 10 0.01816 16  50 60 0.01162 12 
10 20 0.01736 12  50 70 0.00784 11 
10 30 0.01575 13  50 80 0.00762 11 
10 40 0.01308 14  50 90 0.00707 5 
10 50 0.01029 19  60 10 0.01412 16 
10 60 0.01146 9  60 20 0.01669 19 
10 70 0.00731 11  60 30 0.01581 13 
10 80 0.00438 5  60 40 0.01599 15 
10 90 0.00057 6  60 50 0.01307 9 
20 10 0.01620 18  60 60 0.01152 13 
20 20 0.01728 16  60 70 0.01132 12 
20 30 0.01469 14  60 80 0.01015 12 
20 40 0.01225 9  60 90 0.00886 17 
20 50 0.01054 9  70 10 0.01324 6 
20 60 0.01096 13  70 20 0.01513 12 
20 70 0.00593 12  70 30 0.01559 17 
20 80 0.00365 5  70 40 0.01510 17 
20 90 0.00213 5  70 50 0.01564 13 
30 10 0.01555 15  70 60 0.01423 13 
30 20 0.01589 12  70 70 0.01303 15 
30 30 0.01479 14  70 80 0.01186 13 
30 40 0.01291 12  70 90 0.01208 13 
30 50 0.01047 12  80 10 0.01298 6 
30 60 0.01004 13  80 20 0.01497 15 
30 70 0.00620 4  80 30 0.01574 19 
30 80 0.00458 6  80 40 0.01598 15 
30 90 0.00413 8  80 50 0.01655 11 
40 10 0.01618 10  80 60 0.01457 13 
40 20 0.01744 9  80 70 0.01302 16 
40 30 0.01542 14  80 80 0.01553 12 
40 40 0.01166 19  80 90 0.01493 12 
40 50 0.01266 15  90 10 0.01231 8 
40 60 0.01012 10  90 20 0.01314 15 
40 70 0.00748 10  90 30 0.01399 7 
40 80 0.00547 17  90 40 0.01403 12 
40 90 0.00502 13  90 50 0.01606 12 
50 10 0.01501 16  90 60 0.01481 15 
50 20 0.01613 13  90 70 0.01488 18 
50 30 0.01538 16  90 80 0.01369 13 
50 40 0.01417 13  90 90 0.01477 10 
50 50 0.01175 12      
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5.2.4 Ranking and Selection Techniques 

 

 The ranking and selection (R&S) method is a very common statistical parameter 

selection method for different settings. This methods is based on systematically 

eliminating inferior parameter settings. 

 

5.2.4.1 Description of Ranking and Selection Technique 

 

Moraga (2002) proposed solving the parameter setting problem of Meta-RaPS by 

ranking and selection procedures for simulation. Ranking and Selection methods are 

techniques in simulation to find the best of k treatments or the subset of size m containing 

the best of k treatments or m best of k treatments (Moraga, 2002).  

Since the goal of the parameter setting problem is to find the best possible 

parameter settings the R&S technique of selecting the best of k treatments can be applied. 

In this case, the goal is to select the setting with the maximum response, because 0-1 

MKP is a maximization problem, but the procedure can also be applied to set the 

minimum response without any modifications. Due to randomness preserved in the Meta-

RaPS procedure, R&S technique requires a large number of replications to overcome the 

problem of finding an inferior parameter setting.  

To make sure that one setting is better than another, the R&S technique uses two 

parameters which are to be determined by the analyst. If A is the correct parameter 

combination and B is the inferior parameter combination which yields close solutions to 

A, then P(CS) ≥ P*, the probability of making the correct selection(P(CS)) is more than 

P*. P* the parameter determined by analyst should be greater than 1/k where k is the 
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number of systems compred.. Also A-B ≥ d*, the indifference amount d*>0 should be 

specified by the analyst which is the minimal difference of A and B so that A will be 

regarded as a better solution than B (Law and Kelton, 2000).  

The procedure for selecting best of k parameter combinations is as follows: 

1. In the first stage sampling, make n0≥2 replications for each k settings and compute 

the mean and standard deviation.  

2. In the second stage, the total required sample size for setting i, Ni is calculated 

using the formula: 

 

where  is the smallest integer that is greater than or equal to real number x, 

and h1 (k,P*,n0) is the Rinott’s constant obtained from tables (Mendenhall and 

Sincich, 1994).  

3. Run Ni-n0 more replications of treatment i and the average for this stage is 

computed. 

4. Compute the weights to needed to combine first and second stage results using the 

following formula: 

 

 

5. Compute the sample means as follows: 
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6. Select the smallest as the best of k treatments (Moraga, 2002) 

5.2.4.2 Application to Meta-RaPS 

 

As done for the other methods, the R&S procedure is applied to %priority and 

%restriction values between [10,90] with 10 increments except 95% percent last data 

point is used for both parameters which is used as an additional point to have a higher P* 

value. For each of ten %priority settings, the best of ten %restriction value will be 

selected. For example, for p=10, the best out of 10 settings will be found: (10,10), 

(10,20), (10,30),…, (10,90), (10,95). Then from the best 10 %priority settings, whose 

best %restriction values are already set, the best setting for the entire parameter range 

will be selected (Moraga, 2002). 

The parameters selected for the procedure are as follows P*=0.90, n0=20, k=10 

and constant h1=3.182. The R&S procedure demonstrated using 0-1 MKP test problem 

HP2 would proceed as follows. 

Stage 1: Selection of the best %restriction values for each of the %priority values.  In 

Table 19, which is the first screening, the best ten combinations (given a %priority value 

the %restriction with largest Xt value is selected), are selected for the second and final 

screening. The ten best value are the highest ten Xt values from the Table 19. 

Table 19 Shows the best %restriction setting for each %priority.  
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Table 19: Selection of best %restriction value for a given %priority (Stage 1) 
%Priority %Restriction X Std. Ni Ni-no Y(ni-no) Wi1 Wi2 Xt 

10 10 2977.72 99.88 1010 910 2956.93 0.100 0.9 2959 
10 20 2972.25 87.57 777 677 2968.01 0.136 0.863 2968.6 
10 30 2941.48 109.2 1208 1108 2932.95 0.087 0.913 2933.7 
10 40 2890.36 127.5 1647 1547 2875.95 0.064 0.935 2876.9 
10 50 2837.06 158.9 2558 2458 2846.98 0.040 0.96 2846.6 
10 60 2859.36 164.2 2730 2630 2838.42 0.039 0.96 2839.3 
10 70 2780.02 169.9 2923 2823 2767.3 0.036 0.963 2767.8 
10 80 2723.86 198.3 3980 3880 2700.62 0.026 0.974 2701.2 
10 90 2650.97 198.2 3979 3879 2658.28 0.026 0.973 2658.1 
10 95 2598.42 232 5452 5352 2648.14 0.019 0.981 2647.2 
20 10 2950.18 98.82 989 889 2950.27 0.105 0.895 2950.3 
20 20 2970.72 104.6 1108 1008 2966.51 0.093 0.906 2966.9 
20 30 2921.2 118.7 1426 1326 2930.41 0.074 0.926 2929.7 
20 40 2874.53 116.1 1366 1266 2873.55 0.078 0.922 2873.6 
20 50 2841.78 149.5 2264 2164 2838.86 0.045 0.955 2839 
20 60 2849.74 157.6 2516 2416 2819.46 0.04 0.958 2820.7 
20 70 2753.6 169.7 2918 2818 2757.2 0.036 0.963 2757.1 
20 80 2709.95 192.6 3757 3657 2707.51 0.02 0.973 2707.6 
20 90 2680.82 203.6 4198 4098 2680.84 0.025 0.974 2680.8 
20 95 2656.2 197.9 3966 3866 2678.04 0.026 0.973 2677.5 
30 10 2937.77 94.02 896 796 2945.29 0.121 0.878 2944.4 
30 20 2944.23 100.2 1016 916 2970.33 0.101 0.899 2967.7 
30 30 2923.13 119.3 1441 1341 2936.2 0.070 0.929 2935.3 
30 40 2887.18 129.8 1706 1606 2878.11 0.059 0.94 2878.7 
30 50 2840.44 157.6 2517 2417 2850.47 0.043 0.957 2850 
30 60 2832.25 165.7 2782 2682 2811.7 0.03 0.962 2812.5 
30 70 2758.72 170.7 2950 2850 2762.76 0.037 0.963 2762.6 
30 80 2727.67 186.4 3518 3418 2732.53 0.030 0.969 2732.4 
30 90 2719.11 204.8 4247 4147 2711.72 0.024 0.975 2711.9 
30 95 2706.84 208.9 4420 4320 2698.84 0.024 0.975 2699 
40 10 2949.84 103.7 1090 990 2934.45 0.097 0.902 2936 
40 20 2973.84 105.9 1137 1037 2964.04 0.094 0.906 2965 
40 30 2935.12 103.1 1076 976 2935.41 0.096 0.903 2935.4 
40 40 2863.31 135.5 1861 1761 2887.82 0.058 0.942 2886.4 
40 50 2882.41 137.3 1910 1810 2858.75 0.055 0.944 2860.1 
40 60 2833.73 174.5 3084 2984 2857.02 0.035 0.965 2856.2 
40 70 2783.24 157.3 2506 2406 2784.85 0.042 0.957 2784.8 
40 80 2744.68 186.9 3536 3436 2756 0.029 0.97 2755.7 
40 90 2736.04 198.6 3993 3893 2738.25 0.027 0.973 2738.2 
40 95 2727.2 210.1 4470 4370 2736.47 0.023 0.976 2736.3 
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Continued  
%Priority %Restriction X Std. Ni Ni-no Y(ni-no) Wi1 Wi2 Xt 

50 10 2927.35 105 1118 1018 2926.69 0.096 0.903 2926.8 
50 20 2948.72 100 1013 913 2965.16 0.104 0.895 2963.4 
50 30 2934.52 114.8 1336 1236 2942.86 0.080 0.919 2942.2 
50 40 2911.27 138.3 1936 1836 2903.74 0.054 0.945 2904.2 
50 50 2864.93 171.1 2965 2865 2870.37 0.036 0.964 2870.2 
50 60 2862.53 160.5 2608 2508 2842.56 0.041 0.959 2843.4 
50 70 2790.15 191.6 3716 3616 2807.31 0.02 0.972 2806.8 
50 80 2785.95 195.2 3857 3757 2791.15 0.028 0.972 2791 
50 90 2775.38 191.1 3698 3598 2778.4 0.028 0.971 2778.3 
50 95 2800.17 203.3 4184 4084 2769.25 0.025 0.975 2770 
60 10 2910.39 100 1013 913 2908.67 0.105 0.895 2908.9 
60 20 2959.57 108.9 1202 1102 2955.64 0.089 0.91 2956 
60 30 2942.68 118.8 1429 1329 2949.73 0.074 0.926 2949.2 
60 40 2946.07 116.4 1371 1271 2924.64 0.07 0.924 2926.3 
60 50 2890.17 153.2 2378 2278 2891.64 0.045 0.955 2891.6 
60 60 2860.61 168.3 2868 2768 2869.87 0.03 0.964 2869.5 
60 70 2856.62 160 2592 2492 2843.08 0.04 0.959 2843.6 
60 80 2834.24 175.4 3114 3014 2838.82 0.034 0.966 2838.7 
60 90 2809.59 193.4 3789 3689 2824.37 0.026 0.973 2824 
60 95 2800.63 188 3580 3480 2825.93 0.029 0.971 2825.2 
70 10 2893.45 96.13 936 836 2901.39 0.113 0.887 2900.5 
70 20 2929.58 112 1272 1172 2950.58 0.085 0.915 2948.8 
70 30 2938.49 101.3 1039 939 2948.73 0.097 0.903 2947.7 
70 40 2929.07 138.4 1939 1839 2934.52 0.053 0.947 2934.2 
70 50 2939.41 130 1712 1612 2919.64 0.063 0.936 2920.9 
70 60 2912.39 130.4 1722 1622 2900.33 0.062 0.937 2901.1 
70 70 2889.39 142.6 2059 1959 2884.79 0.050 0.949 2885 
70 80 2867.04 167 2823 2723 2880.02 0.037 0.963 2879.5 
70 90 2871.24 157.9 2524 2424 2871.75 0.043 0.957 2871.7 
70 95 2855.38 169.3 2904 2804 2865.24 0.037 0.963 2864.9 
80 10 2888.44 97.43 962 862 2875.16 0.113 0.887 2876.7 
80 20 2926.6 114.2 1320 1220 2931.08 0.077 0.923 2930.7 
80 30 2941.41 121.9 1506 1406 2940.9 0.07 0.928 2940.9 
80 40 2946 116 1364 1264 2938.01 0.078 0.922 2938.6 
80 50 2956.76 117.5 1397 1297 2940.72 0.072 0.927 2941.9 
80 60 2918.99 134.2 1823 1723 2926.46 0.057 0.943 2926 
80 70 2889.23 133.9 1817 1717 2923.73 0.060 0.94 2921.7 
80 80 2937.25 124 1558 1458 2920.49 0.06 0.934 2921.6 
80 90 2925.9 123.5 1545 1445 2913.32 0.06 0.934 2914.2 
80 95 2902.49 152.7 2363 2263 2910.36 0.045 0.954 2910 
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Continued  
%Priority %Restriction X Std. Ni Ni-no Y(ni-no) Wi1 Wi2 Xt 

90 10 2875.61 102 1053 953 2853.66 0.101 0.899 2855.9 
90 20 2891.51 104.8 1113 1013 2896.27 0.097 0.902 2895.8 
90 30 2907.73 119.3 1442 1342 2910.98 0.074 0.926 2910.7 
90 40 2908.55 120.4 1468 1368 2928.41 0.074 0.926 2926.9 
90 50 2947.41 131 1738 1638 2930.89 0.063 0.937 2931.9 
90 60 2923.6 117 1386 1286 2920.85 0.07 0.924 2921.1 
90 70 2924.93 126.7 1625 1525 2930.07 0.066 0.933 2929.7 
90 80 2942.17 120.7 1475 1375 2934.33 0.071 0.929 2934.9 
90 90 2922.7 125.8 1604 1504 2928.79 0.06 0.932 2928.4 
90 95 2926.2 123.5 1544 1444 2935.65 0.070 0.93 2935 
95 10 2846.42 70.95 510 410 2837.31 0.206 0.794 2839.2 
95 20 2873.76 101.1 1036 936 2869.75 0.100 0.899 2870.2 
95 30 2876.39 97.58 965 865 2876.85 0.113 0.887 2876.8 
95 40 2908.75 118 1410 1310 2893.58 0.076 0.923 2894.7 
95 50 2889.04 105.3 1124 1024 2895.64 0.094 0.905 2895 
95 60 2897.84 108.8 1200 1100 2904.6 0.088 0.911 2904 
95 70 2896.75 110.2 1230 1130 2906.77 0.088 0.912 2905.9 
95 80 2907.72 120.7 1476 1376 2908.24 0.073 0.926 2908.2 
95 90 2908.91 125.4 1592 1492 2907.61 0.066 0.934 2907.7 
95 95 2911.47 122.6 1521 1421 2906.01 0.068 0.931 2906.4 

 

 

Stage 2: The same procedure in Stage 1 is applied to all the selected %priority 

values with the best %restriction values. The experiment is run again for the parameters 

of the second stage. Results are shown at table Table 20. The best parameter combination 

has the the largest Xt value which is the 20% priority and 20% restriction.  

 

Table 20: Selection of the best parameter setting (Stage 2) 
%Priority %Restriction X Std. Ni Ni-no Y(ni-no) Wi1 Wi2 Xt 
          
10 20 2973.0 102 1057 957 2965.4 0.1014 0.898 2966.2 
20 20 2984.5 85 744 644 2968.4 0.1359 0.864 2970.7 
30 20 2963.1 105 1134 1034 2964.8 0.0922 0.907 2964.7 
40 20 2969.0 95 916 816 2966.9 0.1176 0.882 2967.2 
50 20 2960.9 106 1153 1053 2960.4 0.0925 0.907 2960.5 
60 20 2960.8 104 1117 1017 2952.0 0.0971 0.902 2952.9 
70 20 2944.1 116 1386 1286 2941.8 0.0782 0.921 2942 
80 50 2940.6 121 1487 1387 2936.3 0.0699 0.930 2936.6 
90 80 2931.4 121 1504 1404 2930.5 0.0701 0.929 2930.6 
95 80 2903.0 128 1678 1578 2903.8 0.0651 0.934 2903.8 
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5.2.5 Summary of Techniques for 0-1 MKP and ETP 

 

The four analytical parameter setting techniques discussed in this chapter are also 

applied to ETP. Table 21 shows the results of all the parameter setting techniques applied 

to one sample 0-1 MKP and ETP (5th problem of 25 Job high setting set) problems.  

 

Table 21: Final Parameter Setting Suggestions for 0-1 MKP and ETP  
Problem  RSM GA RS R&S 
0-1 MKP 9% Priority 

5% Restriction 
13% Priority 
6% Restriction 

10% Priority 
10% Restriction 

20% Priority 
20% Restriction 

ETP 62% Priority 
33% Restriction 

45% Priority 
34% Restriction 

50% Priority 
40% Restriction 

40% Priority 
40% Restriction 

 

 

 The different techniques usually result in consistent parameter settings but there 

may be occasions where alternative parameter settings could be found by different 

parameter setting techniques. The results in Table 21 show that the best parameter found 

by different techniques are within a small region of the parameter domain ( e.g., in Table 

21 the parameter settings of different techniques for the ETP problem are all close to 45% 

priority and 35% restriction). 

 The drawbacks of the reactive search (RS) and ranking and selection (R&S) 

procedures are that they are both dependent on the initial set of candidate parameters 

which are defined by the user. The principal concern with the response surface method 

(RSM) procedure is that it does not guarantee optimality. This leaves with genetic 

algorithms (GA) as the only technique that can globally optimize the parameters. Both 

R&S and RSM require extensive human effort each time the procedure is repeated. Once 

the code is completed both GA and RS can be repeated without any human effort.  
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 In summary, aside from issues of initial choice of parameters and being able to 

find global best parameters, GA appears to be the best in terms of solution quality, and 

the most robust setting technique. The major strength of RS is its ability to 

simultaneously set parameters while generating the final result. However, this can be 

achieved with GA keeping the best solution from all the individuals. Any GA procedure 

using elitism, which carries the fittest individual to next generation without any genetic 

operations, is able to keep the best found solution till the end of the procedure. 

 For its flexibility in application, ease of use, repeatability, global optimization 

performance, reactiveness, and freedom from user defined candidate parameter settings, 

the GA appears to be the best parameter setting technique of those considered. A more in 

depth comparison of different parameter setting techniques is continued in Chapter 6, 

where the techniques introduced in this chapter are compared to the technique developed 

in this research effort. 

 

5.3 Setting Robust Parameters For a Set of Problems 

 

Section 5.2 discussed methods to find the best setting or preferred settings for 

%priority and %restriction for one problem. However most of the time the Meta-RaPS 

application (or the application of another meta-heuristic) is used for a number of 

problems and due to time restrictions it is not always possible to set parameters for each 

problem and run each problem with its best setting.  

To overcome this problem, researchers have studied procedures that find 

parameters that yield good solutions for a set of problems. If the number of problems in 

the set is big, it is recommended that instead of using all the problems for parameter 
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setting, a small subset of problems should be selected. The sample subset problems are 

selected so that the sample is representative of the problem set in terms of the size and the 

structure of the problem. The structure of the problem depends on the problem’s 

specifications. For some problem types, the complexity of the problems may also be 

various. The matrices in the problems that represent distance, flow, capacity may be 

binary values or integers even though problems may have the same size. Also the density 

of the matrix (ratio of non-zero element of the matrix to the number of entries in the 

matrix) may differ in similar problem sizes and this may require a different set of 

parameter values.  

After a representative sample is selected, Coy (2000) proposes setting the best 

parameters for each of these problems and then averaging the parameter values for the 

final parameter settings. Golden et al. (1998) combines the parameter settings for each 

problem by linearly weighting them. Averaging parameter values give equal weight for 

each test problem. Golden et al. (1998) set the weights equal to the natural logarithm of 

the size of the test problem for example, number of nodes in the VRP problem. The GA 

that Golden et al. (1998) implemented searches through the best settings available using 

the function of tour length for VRP which combines different problems by using the 

weights. Moraga (2002) used the average of all the %deviation from the best known or 

optimal solution of the problems in the subset as the aggregate performance measure to 

find out which parameter settings average %deviation performs best.  

Although the parameter setting techniques discussed in this chapter are effective 

procedures, none of the techniques is initially designed specifically for the parameter 

setting context. Also some of these techniques (i.e. R&S for ranking of simulation 

models, both RSM and GA as a general optimization algorithm) are not specifically 
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tailored to include features to fit the parameter setting context. They are used for 

parameter setting purpose without any modification to their procedure. Chapter 6 initially 

discusses how parameter setting methods compare and select parameter settings, and then 

tries to design a new parameter setting technique that will outperform current parameter 

setting techniques found in the literature. 
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CHAPTER 6: PARAMETER SETTING WITH NON-PARAMETERIC 
BASED GENETIC ALGORITMS 

 A new parameter setting technique, non-parametric based genetic algorithms 

(NPGA), is introduced in this chapter as well as the motivation for its development. A 

comparison of NPGA with the other known techniques discussed in Chapter 5 is also 

presented. 

 

6.1 Analysis of the best solution behavior 

 

Some of the parameter setting methods (RSM and R&S) used in Chapter 5 

assume that the distribution of the best solution from a given number of iterations is 

normal. It is the nature of any combinatorial optimization problem that the distribution of 

the best solution values form a number of iterations of a randomized meta-heuristic, taken 

from a number of iterations will be a discrete distribution. The feasible region of a 

combinatorial optimization problem will have discontinuous points in the solution space. 

Additionally the best solution distribution will be bounded by the optimal solution value. 

The trials made with both Meta-RaPS 0-1 MKP and ETP applications show that 

the best solution distribution does not follow any particular distribution. Both the 

Kolmogorov-Smirnov and chi-square goodness of fit tests reject the fit of a normal 

distribution. The distribution is dependent on the problem used, type of application and 

type of algorithm used. In fact it is desired for a well designed meta-heuristic to give non-

symmetrical solution distribution. For a maximization problem it is better for the meta-

heuristic’s solution distribution to be skewed to the left near the optimal solution value. 

For the minimization problems a solution distribution skewed to the right is preferred.  
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Figures 7 and 8 show examples of the best solution distributions for the ETP and 

0-1 MKP problems. In Figure 7, the distribution for the 7th 25 job high setting problem’s 

best solution (for 100 iterations) is shown. Since ETP is a minimization, the right-skew is 

expected. While Figure 7 is the distribution for one specific problem, the same general 

shape distributions are present for all the ETP data sets. 
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Figure 7: Meta-RaPS ETP 25-7-high Problem Solution Distribution 
 
 
 

 Table 22 shows that only 15.4% of the ETP Problems solutions are normally 

distributed and even if the solution distribution is normal, 53% of the time normal 

distribution is not the best parametric distribution that represents the data. The 

experimentation showed that most of the best fits come from a beta distribution, followed 

by triangular and Erlang distributions. 
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Table 22: Summary of Normal Distribution Fit to ETP Solution Distribution  
Normal Distribution is: Number of Problems Percentage of Problems in 

all ETP Problems 
Rejected 208 86.6% 
Failed to Reject and not found as best fit 17 8.2% 
Failed to Reject and found as best fit  15 7.2% 
Total 240 100% 

 
 

Figure 8 shows the distribution of best solutions (from 100 iterations) for the first 

0-1 MKP problem of 5 constraint, 100 item test problem set.  As summarized in Table 

23, almost all the problems in 0-1 MKP set show a similar shaped distribution as Figure 8 

which is skewed to the left. Normal distribution rarely represents the best solution 

distribution from a large number of iterations for the OR-Library (Chu & Beasley 1999) 

problems. In most cases (93.7% of the problems), normality is rejected based on 

statistical tests (i.e. chi-square and Kolmogorov-Smirnov). 
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Figure 8: Meta-RaPS 0-1 MKP 5-100-1 Problem Solution Distribution  
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Table 23: Summary of Normal Distribution Fit to 0-1 MKP Solution Distribution  
Normal Distribution is: Number of Problems Percentage of Problems in 

all ETP Problems 
Rejected 253 93.7% 
Failed to Reject and not found as best fit 7 2.6% 
Failed to Reject and found as best fit  10 3.7% 
Total 270 100% 

 
 
 

Because the solution distributions are not normally distributed, as discussed 

above, parameter setting techniques that rely on normality assumption to fail or to give 

inconsistent results. Because the best solution distribution is not normal and dependent on 

the application and/or problem, the use of techniques involving parametric techniques 

may not be appropriate for parameter setting purposes. Therefore a robust parameter 

setting method should make a comparison between parameter setting performances with 

a distribution-free or non-parametric method. Although normality assuming techniques 

may work and be able to suggest good parameter settings for some cases, in general they 

are not the right techniques to represent, or model, the solution distribution of a parameter 

setting of a meta-heuristic. 

 

6.2 Non-Parametric Tests 

 

When the performance of different parameter values is compared, there can be 

two comparison cases: two different parameter’s solutions can be compared, or a group 

of parameter’s solution values can be compared.  

The parametric techniques for these kind of comparisons are t-test for comparing 

two parameter setting samples and a one-way ANOVA for comparing three or more 

parameter setting samples. Both parametric techniques assume that the populations come 

from normal frequency distributions. The non-parametric equivalents of these techniques 
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are Mann-Whitney (also called Wilcoxon rank sum test) for two samples and Kruskal-

Wallis Test for more than two samples. The following description of the Mann-Whitney 

and Kruskal-Wallis, non-parametric tests are taken from Hollander (1999). 

 The steps of the Mann-Whitney Test is: 

1. Rank two combined samples in ascending order. 

2. If there is a tie between two or more the observations then average rank is 

assigned.  

3. Sum of the ranks for first sample (the larger sample if sample sizes are different) 

is summed and this value is called T1. 

4. Calculate the test statistics 

 

5. Reject H0: equality of population medians if 

 

In Equation 15, m refers to the sizes of the 2 populations, N is the combined 

sample size which is n+m and Ri stands for the rank of observations. The z value can be 

used if both n and m are greater than or equal to 20. Otherwise a t value with N-1 degrees 

of freedom at specified alpha level should be used.  

 The steps of the Kruskal-Wallis Test are: 

1. Rank combined samples in ascending order. 

2. If there is a tie between two or more the observations then average rank is 

assigned.  
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3. The sum of ranks for all sample groups are calculated. (Ri)  

4. Calculate the test statistic 

5. 

 

6. Reject H0: mean ranks of k groups do not differ if 

 

 

 In Steps 4 and 5, ni stands for the ith sample size for k samples, N stands for the 

total number of observations which is the sum of all ni’s from 1 to k, Rij is the rank of 

individual observations and Ri is the sum of ranks of the observations within a group.  

 When comparing a number of different parameter values, the Kruskal-Wallis test 

may arrive at the conclusion that all the sampled populations are not identical. However 

Kruskal-Wallis does not answer the question of which populations are different than the 

others. In order to answer this question multiple comparisons can be performed. However 

there exists a problem in keeping the stated significance level (α), used in Kruskal-Wallis, 

while making C independent comparisons. Because the number of multiple comparisons 

made (C) effects the overall probability of making only correct decisions at 1-α, when the 

null hypothesis of no difference among populations is true, in order to adjust this problem 

Dunn’s (Snell, 1983) procedure is used.  

 The Dunn’s comparison formula uses the z-table and each pairwise comparison is 

performed according to following formula: 
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For samples i and j of like size; k is the number of samples (different parameter 

settings),  is the mean of the ranks of a sample and N is the total number of 

observations. In Equation 16 if the difference of mean of ranks are larger than the right-

hand-side of the inequality, then test is significant at α level. 

 It should be noted here that instead of Kruskal Wallis test, Mood's median test 

could also have been used. Mood’s median test is more robust than is the Kruskal-Wallis 

test against outliers, but is less powerful for data from many distributions. 

 

6.3 Non-Parametric Based Genetic Algorithm 

 

The Non-Parametric Based Genetic Algorithm (NPGA) uses similar genetic 

operation and coding as the GA used in section 5.2.2. The difference between the NPGA 

developed here and GA developed in section 5.2.2 is during the selection of parents for 

reproduction which is done by tournament selection. In NPGA, when two different 

individuals representing two parameter settings are compared to be parents in tournament 

selection, the winner is selected by looking at the distribution of fitness values, which is 

the solution value of the combinatorial optimization problem, instead of comparing one 

fitness value from each individual as done in the GA described in section 5.2.2. NPGA 

compares parameter settings with each other to determine if they are statistically better 

than one another by using the non-parametric methods described in section 6.2. The 

comparison Mann-Whitney test is used to compare two individuals (parameter settings) 

from 10 best solutions selected out of 100 iterations. After the tournament selection, the 
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NPGA continues to the regular GA’s genetic operations as described in section 5.2.2. 

NPGA also uses blend crossover and random mutation for these two procedures since 

they are common and effective procedures for the real-coded (chromosomes represented 

with real values as opposed to binary coding procedure which uses binary strings)) GAs. 

Although the GA does not assume normality within its procedure, during parent 

selection, it compares two different parameter settings and does not use a non-parametric 

comparison. Therefore NPGA enhances and modifies the GA procedure to use non-

parametric comparisons. The flowchart of the NPGA procedure is given in Figure 9.  

 

 

 Random 30 Individuals: real valued  
%p and %r pairs 

 Meta-RaPS is run for fitness values

Elitism: Top 10% individuals to next 
generation 

Binary Tournament Selection of Parents: 
Parents’ Fitness Distribution is compared 

Genetic Operations: 
Blend Crossover & Random Mutation  

Figure 9: Flowchart of NPGA 
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For the experimentation in this chapter, the NPGA uses 30 individuals for the 

population with 90% crossover and 50% mutation rates. These parameters are taken from 

the literature on GA (Deb, 2002) and verified by experimentation. Based on 

experimentation, the performance of the NPGA parameter tuned Meta-RaPS is robust to 

the small changes in the NPGA parameters’ values used. In other words, NPGA yields 

consistent results even if NPGA parameters used are varied in a narrow range from the 

literature.   

 It should be noted that the importance of this new non-parametric GA method 

(NPGA) comes from both the performance of the parameter setting methods. As well as 

it is sound, the NPGA is the correct procedure to use since the distribution of the best 

solution values is rarely normally distributed. 

 NPGA can be used for any type of meta-heuristic method. It is not specific to 

Meta-RaPS. The method can be extended to more than two parameters and the parameter 

ranges do not have to be percentage values. The flexibility of GA enables different types 

of parameters to be set by NPGA for any meta-heuristic procedure that requires 

parameter tuning.   

 

6.4 NPGA Results 

 

 Similar to the parameter setting methods mentioned in Chapter 5, NPGA is tested 

for both 0-1 MKP and ETP. Tables 24 and 25 compare the results of different parameter 

techniques for 0-1 MKP and ETP problems respectively. The comparison between 

different methods is done using Kruskal-Wallis (K-W) and multiple comparison tests as 

described in Section 6.2. If K-W test is found significant, then multiple pairwise 
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comparisons are performed using Dunn’s method. For these comparisons a significance 

level of 0.05 is selected.  

The numbers shown in Tables 24 and 25 are the counts of problems for a 

parameter setting technique that gives statistically better distribution of solution values 

(solution performance) than others. For each problem set all 30 problems are tested. In 

some cases Kruskal-Wallis (K-W) test may not be significant, meaning that all the 

parameter setting methods had similar performance. The far right column in Table 24 

shows the number of problems from the set of 30 in which the K-W test is significant (i.e. 

when at least one parameter setting method’s solution performance is better). When the 

K-W test is significant, there are cases when the solution performance is optimized by 

more than one parameter setting techniques. In other words, a subset of parameter setting 

methods provide the best performance and their performance is indifferent when 

compared within each other. In Tables 24 and 25 compare all five parameter setting 

techniques discussed in Chapter 5 (including trail-and-error, labeled as TE) to NPGA. 

Table 24 shows for 54 problems of the 270 MKP problems compared, at least one 

parameter setting method yielded a significantly different solution value than other 

parameter setting techniques. For these 54 problems, the Meta-RaPS results using the 

NPGA parameter setting technique are statistically better or similar to the other parameter 

setting techniques in most (50) of these problems.  
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Table 24: Comparison of Parameter Setting Methods for 0-1 MKP 
Problem Set Technique is in the Best Techniques List 
m n TE RS RSM R&S GA NPGA 

K-W Test 
significant 

5 100 3 4 5 3 6 6 6 
5 250 2 5 6 2 7 8 10 
5 500 2 6 4 2 3 7 9 
10 100 2 5 5 2 5 7 7 
10 250 2 1 4 5 5 5 5 
10 500 0 2 2 3 3 4 4 
30 100 2 2 3 0 1 3 3 
30 250 0 0 1 0 1 2 2 
30 500 2 5 8 3 8 8 8 
Total Count 15 30 38 20 39 50 54 

 

 

Similar to the 0-1 MKP results shown in Table 24, Table 25 suggests that NPGA 

is consistently able to set the best parameters for ETP as well. For 41 problems of the 240 

ETP problems compared, at least one parameter setting method yielded a significantly 

different solution value than other parameter setting techniques. It is observed in Table 25 

the 10 and 15 Job ETP problems are not parameter sensitive and their parameters can be 

set with simple parameter setting methods such as running small experiments. However 

for the larger size problems, the problems get harder for Meta-RaPS to solve and the 

parameter tuning for Meta-RaPS gains more importance. 

 

 

 

 

 

 

 

 91



Table 25: Comparison of Parameter Setting Methods for ETP 
Problem Set Technique is in the Best Techniques List 
n Level TE RS RSM R&S GA NPGA 

K-W Test 
significant 

10 Low 0 0 0 0 0 0 0 
10 Medium 0 0 0 0 0 0 0 
10 High 0 1 0 1 1 1 1 
15 Low 0 0 0 0 0 0 0 
15 Medium 0 0 1 0 1 0 0 
15 High 2 1 2 2 1 2 2 
20 Low 2 3 3 3 3 3 3 
20 Medium 0 1 1 1 1 2 2 
20 High 2 1 2 2 2 3 3 
25 Low 2 2 4 1 3 4 5 
25 Medium 2 2 2 2 4 4 4 
25 High 1 1 2 2 1 2 3 
40 Low 3 2 4 2 3 4 5 
40 High 1 3 3 1 3 3 3 
50 Low 2 1 3 5 3 4 4 
50 High 3 4 5 4 5 6 6 
Total Count 20 22 32 26 31 38 41 
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CHAPTER 7: CONCLUSIONS AND FUTURE RESEARCH  

This dissertation offers a comprehensive comparative study of several established 

meta-heuristic parameter setting techniques as well as developing a new parameter 

setting method. Although parameter setting is required for most meta-heuristics, it has not 

been addressed extensively in literature. 

Although the proposed parameter setting technique, NPGA, is tested on Meta-

RaPS, it is applicable to any meta-heuristic that has parameters. The experimentation 

from several different combinatorial problems reveals that the distribution of a best 

solution of a meta-heuristic taken from a large number of iterations rarely follows a 

mound-shaped and/or normal distribution. The distribution of best solution, from a given 

number of iterations, for 87% of the 240 ETP test problems and 94% of the 270 0-1 MKP 

test problems are found not to be normally distributed. Therefore when using a parameter 

setting technique, that compare different parameter setting levels, a distribution-free 

method should be used, hence the development of NPGA.  

The proposed method, NPGA, integrates GA with non-parametric tests and is able 

to set efficient parameters. NPGA is compared to five existing parameter setting methods 

for both ETP and 0-1 MKP problems. In the vast majority of the problems, NPGA 

method consistently proposed the best parameters found by any of the parameter setting 

studied. For ETP, NPGA provided best 38 parameter settings out of the 41 problems in 

which there is a statistical performance difference between the parameter setting 

techniques and for the 0-1 MKP, NPGA provided best 50 parameter settings out of the 54 

problems in which there is a statistical performance difference between the parameter 

setting techniques. In some cases the problems are not parameter sensitive and all of the 
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parameter setting techniques considered are able to devise similar parameter settings 

Apart from these problems, for most of the problems the NPGA is able to suggest 

parameter settings whose solution performance is statistically better than the performance 

of parameter settings found by other parameter setting techniques. From all the parameter 

setting techniques investigated, NPGA set parameters give the best solution performance 

for Meta-RAPS. 

In addition to the parameter setting work done within this dissertation, advances 

were also made on solution algorithms for the two combinatorial optimization problems 

used to demonstrate the parameter setting techniques; 0-1 Multidimensional Knapsack (0-

1 MKP) and the Early/Tardy Single Machine Scheduling Problem with a Common Due 

Date and Sequence Dependent Setup Times(ETP). 

 The first combinatorial optimization problem studied in this dissertation is 0-1 

MKP which is one of the most studied problems in literature. The Meta-RaPS application 

of 0-1 MKP uses a new heuristic based on the idea of Cho (2004). The Meta-RaPS 0-1 

MKP application yields better solution performance than the other pre-existing Meta-

RaPS 0-1 MKP(Moraga, 2005). The application in this research also gives comparable 

solution performance against other meta-heuristics in the literature except GA (Chu and 

Beasley, 1998) and ADP (Bertsimas, 2002). The Meta-RaPS gives 0.75% average 

percent deviation, from best known solutions for the 270 0-1 MKP test problems, where 

other Meta-RaPS, GA, ADP and second GA application for 0-1 MKP by Haul and Voss 

(1997), yields 0.77%, 0.53%, 0.74% and 0.93% respectively. 

The second combinatorial optimization problem studied in this research effort is 

ETP which is a special case of single machine scheduling problem. Meta-RaPS utilizes 

SAPT (Rabadi, 1999) heuristic and enhances its solution quality by introducing 
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randomness. The ETP Meta-RaPS is compared against the simulated annealing (SA) 

meta-heuristic by Rabadi (2004) and is able to give better solution performance on 

comparable CPU time. Out of 60 larger size (40 and 50 job size problems) ETP problems 

compared, Meta-RaPS provided better solution performance than SA for 55 of the 

problems. For the smaller set, up to 25 job problem size, in all four different problem 

sets, each of which have 15 problems generated, the Meta-RaPS solution performance 

outperformed SA and SA-SAPT algorithms. 

While conducting this research several areas of future work were identified. 

During the parameter setting techniques comparison, it is identified that most problems 

are either not parameter sensitive or their parameters does not need any sophisticated 

parameters setting methods, meaning their parameters can be set by simple trial error 

methods. Future research can be directed to analysis of the parameter sensitivity of the 

problems by investigating their structure (e.g., correlation structure of a problem, size of 

problem). Apart from the problem challenged in this dissertation another gap found in 

literature of heuristics and / or meta-heuristics is how to combine the different parameter 

settings for different problems and come up with parameters that yield good performance 

independent of the problem. Another future research topic comes from a practical 

application point of view, given a limited amount of time, the discussion of how much of 

this time should be spend on parameter selection and how much time should be spared to 

run the Meta-RaPS with the setting found, should be made. Another potential area of 

parameter setting research is whether to use a single combination of parameter settings, 

or multiple combinations. Given a number of iterations, is the best strategy to solve a 

problem to use all the iterations with the best setting found from a parameter setting 

technique or to partition the number of iteration to n best parameter setting combinations. 
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In addition to parameter setting related research topics, additional modification to Meta-

RaPS itself should be considered. Because of its simplicity, Meta-RaPS is open to 

modifications in its procedure and is able to use some of the strategies that other meta-

heuristics use. Currently the parameters %restriction and %priority are kept constant 

during each iteration. Similar to simulated annealing (see section 2.2.2), Meta-RaPS 

could modify the degree of randomness within an iteration. The underlying idea used by 

SA is that during the initial stages of the iteration, the algorithm is allowed to explore the 

solution space and do a random search. However, when the iteration is close to the end 

stages of constructing a solution, the greedy rule may dominate and the algorithm may 

limit randomness. Meta-RaPS procedure can make use of this idea SA uses and guide the 

search to have a varied level of randomness during different parts of the search. 

Introduction of updating parameter settings during an iteration is valuable for Meta-RaPS 

because this makes Meta-RaPS a dynamic procedure. In other words dynamic parameter 

driven Meta-RaPS will not require any pre-parameter setting phase and thus Meta-RaPS 

procedure will be a holistic procedure that modifies, sets and guides its own parameters. 
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