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ABSTRACT 

 The work presented in this thesis deals with the application of optimization tools 

to the design of solid rocket motor grains per internal ballistic requirements.  Research 

concentrated on the development of an optimization strategy capable of efficiently and 

consistently optimizing virtually an unlimited range of radial burning solid rocket motor 

grain geometries. 

 Optimization tools were applied to the design process of solid rocket motor grains 

through an optimization framework developed to interface optimization tools with the 

solid rocket motor design system.  This was done within a programming architecture 

common to the grain design system, AML.  This commonality in conjunction with the 

object-oriented dependency-tracking features of this programming architecture were used 

to reduce the computational time of the design optimization process. 

 The optimization strategy developed for optimizing solid rocket motor grain 

geometries was called the internal ballistic optimization strategy.  This strategy consists 

of a three stage optimization process; approximation, global optimization, and high-

fidelity optimization, and optimization methodologies employed include DOE, genetic 

algorithms, and the BFGS first-order gradient-based algorithm.  This strategy was 

successfully applied to the design of three solid rocket motor grains of varying 

complexity. 

 The contributions of this work are the application of an optimization strategy to 

the design process of solid rocket motor grains per internal ballistic requirements.  
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CHAPTER 1: INTRODUCTION 

This chapter serves as an introduction to the work completed.  Descriptions of the 

optimization problem, applications of this work, and specific research contributions are 

contained in follow sections. 

1-1     Introduction 

This paper presents the application of optimization tools and techniques to the 

computer-aided design of solid rocket motor grains.  Optimization techniques were 

applied to the design of solid rocket motor grains within a system level missile design 

and analysis software titled, Interactive Missile Design (IMD) developed by Lockheed 

Martin, Missiles and Fire Control in Orlando, Florida.  Historically, techniques for 

designing grain geometries in IMD involved a series of methodical inefficient time 

consuming steps.  Through the use of design optimization tools, techniques and strategy 

were invented to circumvent these historical techniques and provide a more effective 

method to efficiently and consistently design solid rocket motor grains for internal 

ballistic requirements.   

Sophisticated methods were employed to model solid rocket motor grain 

geometries.  To model grain geometries, IMD used a set of geometric primitives (blocks, 

cylinders, cones, extrusions, etc.) to construct complicated grain geometries, and through 

Boolean operations these primitive geometries were joined together in order to realize the 

burn surface area of the grain.  However, while IMD has the methods to model solid 
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rocket motor grains, simulate surface recession, and perform ballistic analyses, it lacks 

optimization tools capable of optimizing grain geometries for internal ballistic 

requirements.  The research presented in this paper discusses optimization strategies and 

tools developed for optimizing solid rocket motor grains for internal ballistics.  

 Once the internal ballistic optimization strategy was developed, three solid rocket 

motor grains of varying complexities were optimized to prove the strategy.  Figure 1-1 

illustrates these three center perforated radial burning grain geometries where (a) 

represents a multi-cylinder grain, (b) represents a slotted grain, and (c) represents a 

complex grain.  More details on each of these three grains will be presented throughout 

this paper.   

 

a b c 

Figure 1-1 – Three Solid Propellant Grains (a-c) that were optimized. 

  

 Finally, the internal ballistic optimization strategy demonstrated the ability to 

improve solid rocket motor grains geometry with respect to internal ballistic performance 

requirements.  Optimization techniques applied within the optimization strategy included 

design of experiments, genetic algorithms, and gradient-based algorithms.  Some solid 
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rocket motor characteristics considered to rate the merit of respective designs include 

thrust versus time, burn area versus distance, total impulse, and propellant weight. 

1-2     Scope of Work 

 The tools of optimization are currently being accelerated faster than ever into 

industry.  Work presented in this thesis demonstrates how optimization functionality can 

be applied to the design process of solid rocket motor grains.  Advantages of optimization 

strategies in the solid rocket motor design process include a reduction in the design time, 

and the ability to efficiently and consistently realize design behavior.  The scope of work 

is summarized in the following bullets: 

1. Develop an optimization strategy capable of optimizing a solid rocket motor 

grain geometry for a ballistic requirement of thrust. 

2. Investigate methods of approximation that will reduce the computational time 

required to converge to optimum solid rocket motor grain designs. 

3. Integrate the solid rocket motor design interface and the optimization interface 

using AML, a demand driven, dependency tracking programming language. 

4. Optimize three solid propellant grains of varying complexity within a demand 

driven, dependency tracking interface. 

5. Identify optimization algorithm(s) with the most efficient and most consistent 

rates of convergence. 

6. Recommendation future investigations in this arena.   
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1-3     Software Application and Integration 

Software required for this research included software for modeling solid rocket 

motor grains, an optimization algorithm software suite, and a software interface between 

the grain modeling software and the optimization algorithm suite.  The flow of software 

integration is shown in Figure 1-2. 

 

 

IMD
Solid Rocket Motor 

Subsystem

DOT

AML

AMOPT
IMD

Solid Rocket Motor 
Subsystem

DOT

AML

AMOPT

   
 

Figure 1-2 – Software Integration Flowchart. 

 

First, software was required to model solid rocket motor grain geometries and 

inspect internal ballistic properties.  This was accomplished by composing a system 

similar to the solid rocket motor subsystem of Interactive Missile Design (IMD).  This 

system was used to model solid rocket motor grain geometries, simulate surface 
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recessions, and perform internal ballistic analyses of solid rocket motor grains.  This 

system was coded using Adaptive Modeling Language (AML), a demand-driven 

dependency-tracking programming language developed and supported by TechnoSoft Inc.  

Furthermore, AML is the underlying programming language of IMD.  IMD was 

developed by Lockheed Martin, Missiles and Fire Control and was designed as a system 

level missile design and analysis tool that streamlined the conceptual and preliminary 

missile design and development process.    

Next, a suite of optimization algorithms was required to optimize solid rocket 

motor grain geometries.  Two optimization algorithm suites were used.  First, Design 

Optimization Tools (DOT) developed by Vanderplaats Research and Development was 

used as it contained first and second order gradient-based algorithms.  Next, algorithms 

integrated into the optimization interface AMOPT, developed by TechnoSoft Inc., were 

also used.  AMOPT is discussed in the next paragraph. 

Finally, an interface was required to tie the solid rocket motor modeling system to 

the third-party optimization algorithm suite.  AMOPT provided this interface.  AMOPT 

was developed to link the optimization algorithms in DOT and manage optimization 

models.  From this interface, the optimization process in its entirety was executed, and 

with its AML architecture it could take advantage of all the demand-driven dependency-

tracking features of the programming language.   
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1-4     Research Contributions 

The research contributions of this work are summarized in the list below and 

discussed throughout this thesis. 

1. The Internal Ballistic Optimization Strategy was developed as a strategy for 

optimizing solid rotor motor grain designs per internal ballistic requirements. 

2. The Internal Ballistic Optimization Strategy was applied to the design of solid 

rocket motor grains in three optimization trials involving three different solid rocket 

motor grain designs. 

3. The Internal Ballistic Optimization Strategy is capable of optimizing solid rocket 

motor grains per one of two internal ballistic properties: thrust-time and burn-area 

versus distance.   

4. Optimization methodologies used in the optimization strategy were studied and 

chosen based on the different optimization techniques employed by these 

methodologies; these different optimization techniques compliment each other in 

converging to optima. 

 

 This research concentrated on the application of optimization to the design of 

solid rocket motor grains.  Solid rocket motor grains were optimized on merits 

comprised of internal ballistic properties.  Emphasis was placed on the development of 

a strategy that would efficiently and consistently optimize any center perforated radial-

burning solid rocket motor grain design.  This strategy is referenced throughout this 

paper as the internal ballistic optimization strategy.   
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 The internal ballistic optimization strategy was developed using AML, an object-

oriented dependency-tracking programming language.  Also, because AML was the 

underlying programming language of the solid rocket motor grain modeling system 

within IMD, full advantage was taken of the object-oriented dependency-tracking 

behavior of AML.  

 During the three trials of the internal ballistic optimization strategy, optimal 

results were recorded with the use of non-gradient based optimization methodologies at 

the start of the optimization process.  This was caused by the formulation of the 

optimization models.  However, as the optimization converged and there was less 

variation in the optimum response, and gradient based optimization methodologies 

proved to be an effective component to the internal ballistic optimization strategy.   
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CHAPTER 2: TECHNICAL SUMMARY 

This chapter serves to introduce the technical topics of this thesis.  Technical 

topics presented fit two major categories: optimization and solid rocket motor grains.  

Principles of optimization are presented first, followed by an introduction to solid rocket 

motor grains.   Finally, a detailed discuss of optimization techniques (including 

optimization algorithms) are presented.  Optimization algorithms discussed include 

gradient based, non-gradient based, and genetic algorithms.   

2-1     Principles of Optimization 

Present day software design tools require the use of sophisticated optimization 

tools to efficiently solve design problems.  Examples of some engineering software that 

currently supply optimization design tools include PRO-E by Product Development 

Company, I-DEAS by Structural Dynamics Research Corporation and CODE V by 

Optical Research Associates.  In order for these optimization tools  to be implemented 

efficiently, the formulation of the optimization design problem must adhere to the 

formulation criterion shown in Equation 2-1. [1]  This basic formulation consists of three 

principle components listed on the next page and discussed in subsections that follow.  

Note the nomenclature below will be used throughout this paper. 
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1. Objective/Merit function represented by )(XF , 

2. Design variables represented by the vector X ,  

3. Constraints represented by )(Xgi , )(Xhj , or X with upper and lower bounds.   

 

 

2-1-1     Objective Function 

The objective function, )(XF , provides the criterion for rating design 

improvement during the optimization process.  This function is a function of the design 

variables chosen to describe a particular system.  Without this dependence, the design 

variables would be unable to influence the design.   

Optimization problems are typically tasked with finding the minimum condition 

for a system.  Problems seeking a maximum condition can be converted into 

minimization problems by minimizing the negative of the objective function, )(XF− . 

[1]   

 Optimization algorithms operate by sampling the objective function iteratively at 

different perturbations of the design variables until the objective function converges to a 

solution, within an acceptable tolerance.  Therefore, the formulation of objective function 

is a key determinant to the convergence rate of the optimization process, and the 

 

m
upper
kk

lower
k

hj

gi

nkXXX

njXh

niXgthatSuch
XFMinimize

,...,1

,...,10)(

,...,10)(:
)(:

=≤≤

==

=≤
 Equation 2-1 
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objective function must be formulated in terms of its sensitivity to small perturbations of 

the design variables throughout the entire design space.  Objective functions that are 

insensitive to changes in the design variables can suffer from early optimization process 

termination.  Likewise, hyper-sensitive formulations run the risk of becoming unbound 

which also can result in early termination. [2] 

2-1-2     Design Variables 

Design variables are parameters chosen to describe a design, and are denoted by 

the vector X .  In the case of a box design, the design variables would be the height, 

width and depth of the box.  Design variables are manipulated by a search direction or 

search strategy to drive the objective function to a minimum.  An example of an 

optimization problem involving a box is the problem of maximizing a volume while 

minimizing surface area. 

Design variables can take one of two forms: continuous and discreet. [1] 

Continuous design variables can be assigned any real numerical value within a specified 

range.  Discrete design variables can be assigned only discrete values that exist within a 

data set or range.  One design variable used in this thesis was discrete and the rest were 

continuous.  

Selecting design variables to represent a system is the first step of the 

optimization process.  These variables must be chosen carefully in order to effectively 

describe the design.  Another consideration for choosing design variables is quantity of 

design variables selected.  The quantity of design variables chosen to represent a system 

directly relates to the complexity of the optimization problem, and the more complex the 
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optimization problem, the more it costs to solve. [1]  Therefore, the less design variables 

the better.   

One way to reduce the number of design variables is through variable 

decomposition. [1] This method eliminates variables from an optimization problem by 

formulating one or more variables in terms of another.  For example, if a box is to be 

optimized for maximum volume and that box must be twice as tall as it is wide, the 

design variable for box height can be replaced with 2·(box width) every time it appears in 

the problem.  This reduces the number of design variables by one and makes the 

optimization problem that much easier to solve.   

Finally, it is good practice to eliminate large variations in the magnitudes of 

design variables and constraints through normalization. [1]  Design variables may be 

normalized to unity by scaling, and often unity represents the largest value the design 

variables will ever see.  Normalization is important as many optimization software 

packages are not numerically robust enough to handle this condition.    

2-1-3     Constraints 

Constraints are used to bound on the solution space of optimization problems to a  

feasible region.  There are three types of constrains used in optimization; inequality, 

equality, and side constraints.  Referencing Equation 2-1, )(Xgi  represents inequality 

constraints, )(Xhj  represents equality constraints, and kX represents side constraints.  To 

have influence on the optimal design, constraints must be influenced by at least one 

design variable. [3]   
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The choice of constraint depends on the problem.  Inequality are used more often 

than equality constraints as they are less restrictive of the design. [3]  More feasible 

solutions exist between a range of values than at a specific value as deem necessary by 

equality constraints.  On the other hand, they can be used to reduce the number of design 

variables. [1] 

 For an optimization problem to produce a feasible solution, all constraints must be 

satisfied. [1]  This means that even though a set of design variables may evaluate to an 

optimum, if even one constraint is violated the solution is considered infeasible. 

2-2     Objective Function: Damped Least Squared Method 

Since 1960, the damped least-squares method (DLSM) has been implemented in 

objective functions for many optimizers. [4]  This method fits the genre of what are 

known as downhill optimizers where in a system with multiple minima, it is supposed to 

find the nearest local minimum. [5]  It is possible that the local minimum could correlate 

with the global minimum; however, this is unlikely and it is often advised to start the 

optimization process multiple times each time using a different initial starting position.  

One downside of using the DLSM is that this function suffers from stagnation, yielding 

slow convergence to local minima.  To rectify this, however, designers over the years 

have found ways to overcome this deficiency by learning to manipulate the damping 

factors. [5] 

The damped least-squares function is a continuation of the least-squares method 

(LSM) formulated by summing the squares of operands, fi multiplied by weighting 
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factors, wi.  These operands must be a functions of the design variables, X , in order for 

the formulation to be properly influenced and thus be an objective function.  This 

formulation is shown in Equation 2-2 below where yi represents a reference point from 

which a difference is calculated. [4]    
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2-3     Solid Rocket Motor Grains 

A solid rocket motor grain is the physical mass of propellant used in solid rocket 

motors.  Solid rocket motor grains are burned to convert energy stored in the propellant 

into kinetic energy, thrust.  A typical scenario for a solid rocket motor grain is produce 

large amounts thrust at the instant of motor ignition and then reduce the amount of thrust 

to an acceptable point after lift-off to prevent overstressing of the rocket during 

maximum dynamic pressure. [6]  The burn characteristic of a solid rocket motor grain is 

greatly influenced by the shape, size, and geometry of that grain.   

This section presents the subject of solid rocket motor grains.  Technical information 

includes a component overview of solid rocket motor grains, a description of solid rocket 

motor grain geometry and its relationship to thrust, a description of how the burn of a 

solid rocket motor grain is modeled, and finally, a description of how a solid rocket 

motor produces thrust. 
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2-3-1     Principle Components of a Solid Rocket Motor Grain 

Solid rocket motor grains have five principle components: propellant, combustion 

chamber, nozzle, and igniter. [7]  These components and relevant subcomponents are 

diagramed in Figure 2-1 and described in the order in which they appear in the figure. 

     

 
 
   

 
A

B

C

G

D E
F

 
A: Combustion Chamber  E: Nozzle Throat   
B: Solid Propellant   F: Nozzle Exit Plane 
C: Initial Free Volume  G: Igniter 
D: Nozzle 

Figure 2-1 – Sectional view of a solid propellant rocket booster. 

 

First, referring to Figure 2-1, the combustion chamber, A, represents the housing 

for the solid propellant grain shown as the hatched area labeled B.  The combustion 

chamber is also the mechanism that limits the maximum volume of solid propellant in the 

grain.  Therefore, a variation in thrust for any specific propellant is highly a function of 

the propellant grains geometry rather than the volume of actual propellant. [7]  Solid 

propellant grain geometry will be discussed in the next section.   
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 The initial free volume, B, of a solid propellant grain is a hollow geometrical 

perforation in the propellant ported to the rocket nozzle.  This is where the propellant 

reacts to produce hot high pressure gases that are expelled through the nozzle to provide 

thrust. [5]  The propellant in reference figure is in the shape of a cylinder, and the initial 

free volume is shown as a cylindrical perforation inside the propellant.  The surface area 

of the initial free volume is the exposed area of the grain known as the burn surface area.  

A grains initial free volume can take on a variety of shapes, from the simplest cylinder to 

something orders of magnitude more complex.  Throughout this paper, the shape of the 

initial free volume is also referred to as grain geometry. 

The nozzle and components thereof,  (D,E, and F) in Figure 2-1, represent the 

mechanism for regulating pressure inside the combustion chamber, and ultimately the 

exhaust velocity, and thrust.  Component adjustments that effect the exhaust velocity 

include the area ratio of the nozzle throat E to the nozzle exit plane F, and the pitch angle 

of the nozzle. [7]   

Lastly, the igniter (G) serves to ignite the propellant.  It is assumed in this paper 

that this device ignites the entire burn surface area instantaneously. 

Components that highly contribute to the thrust of a solid propellant grain are the 

geometry of the grains initial free volume, the entrance and exit areas of the nozzle, and 

the burn rate of the propellant. [8]  The next section describes the grain geometry, the 

shape of the initial free volume. 
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2-3-2     Solid Propellant Grain Geometry 

The initial free volume geometry (grain geometry) of a solid rocket motor grain is 

the principle component that influences solid rocket motor internal ballistics. [7]  This 

geometry ultimately defines the burn surface area.  The burn surface area is the surface 

area of a grain’s initial free volume, and the area of the propellant exposed to the 

environment through the nozzle.  Figure 2-2 shows two solid rocket motor grain models.  

These models represent two solid rocket motor grains through the parametric shape of 

their respective initial free volumes.   In these figures, the solid objects inside the wire-

frame volumes are the initial free volumes of the grains, and the wire-frame volumes 

surrounding the free volumes represent the propellant.    

 

(a) Cylindrical Grain (b) Slotted Grain 

Figure 2-2 – Two different Solid Rocket Motor Grains.  

  

Solid rocket motor grain geometries are commonly modeled using geometric 

primitives.  These primitives include geometric shapes (blocks, cylinders, cones, spheres, 

etc).  Also, through the use of Boolean operands (union, and intersection), primitive 
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geometric shapes are collected into a single geometric entity that can be grown in a 

direction normal to its burn surface area. [8]   

A feature of solid rocket motor grains is they lend themselves to mechanically 

constrained design volumes. According to George P. Sutton, “Since a given combustion 

chamber will be able to hold only a limited amount of propellant, the variation of thrust 

for any specific propellant has to be obtained by varying the geometric form and 

therefore the exposed burning surface of the propellant charge.”  This quote states that 

solid propellant grains are versatile in the mission characteristic they satisfy.  Just by 

changing the grain geometry, not the physical envelop allocated to the grain, the thrust- 

time curve for a grain can be altered to satisfy the requirements of different missions. 

2-3-3     Burn Process of a Solid Rocket Motor Grains 

In the burn process of solid rocket motor grains, propellant recedes in a direction 

normal to the burn surface area of the grain. [7, 8]  As propellant recedes, the burn 

surface area changes as a function of time, burn rate, and grain geometry.  At the start of 

the burn process, there is a transient phase where the burn rate increases rapidly until it 

reaches a constant rate determined by the design pressure of the motor and burn rate of 

the propellant.  However, for motors that are designed to reach a steady state design 

pressure, the transient phase only lasts a few milliseconds.  The volume of propellant 

burned per second is called the web. [7]  Additionally, the time a propellant grain burns is 

commonly expressed in a web distance, a linear distance of propellant, normal to the 

current burn surface, that would burn in a specified amount of time.  Solid propellant 
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grain surface recession is commonly expressed in terms of burn area versus web distance, 

a dependent of thrust versus time. 

To exemplify the burn process, consider the center perforated cylindrical grain in 

Figure 2-2a on page 16.  When this grain burns the cylindrical perforation, the initial free 

volume of the grain, grows concentrically larger receding the propellant until all is 

consumed.  For this simple grain geometry, the burn area versus web is easy to 

mathematically predict.  However, for grains of more complex geometries, it becomes 

more difficult to efficiently make such mathematically predictions and computers are 

used to simulate the burn process of solid rocket motors. 

 

  

  
 

Figure 2-3 – Steps A--D depicting the surface recession of a solid propellant 

 

Finally, for a more complicated grain example, Figure 2-3 represents two-

dimensional cross-sections of a four-slotted star grain at four increments during the burn 

process.  An isometric view of this grain appears similar to the five-slotted star grain 

shown in Figure 2-2b on page 16.  The hatched area represents the remaining propellant, 

and the dark outline represents a cross section of the burn surface area.  This figure 

depicts the propellant receding in a direction normal to the burn surface area.  Where as 

mathematical representations of burn surface area versus web are not difficult for steps A 
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and B, once the propellant recession starts intersecting the case, predicting the burn 

surface area gets quite rigorous.  Without iterating the mathematics used to calculate web 

versus distance for this grain, the mathematical difficulty is empirically expressed.  

2-3-4     Nozzle Geometry 

The nozzle component of a solid propellant rocket is the exit port to the 

combustion chamber.  The shape of the nozzle is used to convert the chemical energy 

released in combustion into kinetic energy. [7]  Nozzles have several key parameters 

shown in Figure 2-1 on page 14 including the nozzle throat and the nozzle exit plane.  

The nozzle throat is the point in the nozzle with the smallest cross-sectional area, and the 

nozzle exit plane is rear exit area of the nozzle.  Also important but not labeled in the 

figure are the convergent and divergent cones of the nozzle.   

To aid in the flow of exhaust gases out of the combustion chamber the nozzle has 

a convergent cone and a divergent cone.  The convergent cone is designed to funnel 

exhaust gases from the combustion chamber into the nozzle throat, and the divergent 

cone is designed to control pressures and exhaust velocities.  The convergent section of 

the nozzle is in a space of the grain where the kinetic energy is relatively small, “and 

virtually any symmetrical and well-rounded convergent shape has very low losses”. [7]  

Conversely, the shape of the divergent section of the nozzle is more critical.  The nozzle 

throat represents the plane in the nozzle with the smallest cross-sectional area.  There is a 

relationship between the nozzle throat area and the nozzle exit plane called the area ratio 

which is the ratio between these two areas.  This number in conjunction with the 
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divergent angle of the cone represents the two performance driving characteristics of a 

solid rocket nozzle.   

2-3-5     Thrust Calculations 

Thrust is an internal ballistic property of solid rocket motors.  Internal ballistics 

deal with solid rocket motor properties such as thrust, pressure exponent, burn rate, etc. 

resulting from burning a solid propellant in a rocket motor or gas generator.  External 

ballistics, in contrast, deal with the trajectory aspects of rockets.   

Solid propellant rocket engines are reaction engines that produce thrust based on 

the Newtonian principle that “to every action there is an equal and opposite reaction.”  

Thrust is the reaction force on the rocket structure caused by the action of the pressure of 

the combustion gases against the combustion chamber and nozzle surfaces. [7]  When 

solid propellant is ignited, propellant evaporates into hot high pressure gases that exhaust 

through the rockets nozzle at high velocities.   

Axial thrust is determined through the integration of the pressure in the 

combustion chamber and nozzle over all the respective area elements.  This is described 

mathematically in Equation 2-3 and visually in Figure 2-4. 

 

∫= dAPThrust  Equation 2-3 



 21

 
 
 

 
 

Figure 2-4 – Pressure forces acting on rocket chamber/nozzle walls. 

 

In this research, rocket thrust was calculated using algorithms supplied by 

Lockheed Martin, Missiles and Fire Control.  These algorithms use a highly simplified 

combustion model known as St. Robert’s Law.  This model assumes the normal burning 

rate of the propellant is a function of the chamber pressure.  The combination of this 

normal burning rate and burn surface area of the grain is used to determine the volume of 

propellant burned in the chamber at any given time step.  This is then used to determine 

the chamber pressure, and ultimately thrust.  The general form of the normal burning rate 

law is expressed in Equation 2-4. 
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 where: 
 r = normal burning rate in inches/second. 
 a = reference burning rate. (propellant characteristic) 
 P = chamber pressure. 
 Pref = reference chamber pressure. 
 n = burn rate exponent. (propellant characteristic) 
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2-4     Approximation Techniques 

 Design optimization strategies typically involve multiple steps of performing 

iterative optimization analyses.  Often for a design problem to converge to a solution 

individual analyses must be repeated.  Each analysis step has a cost associated with it, 

and as the number analyses increase, this cost can become significant to the point of 

being prohibitive.  Approximation techniques can be use ahead of optimization to 

understand the design space of an abstract problem.  Significant cost savings can be 

realized through the use of approximation techniques.  This section discusses 

approximation techniques including DOE and regressions. 

2-4-1     Design of Experiments (DOE) 

 Design of Experiments (DOE) represents a group of methodologies used to 

quantitatively sample the design space of a system with relatively few design points.  In 

this project and others, DOEs are routinely employed as a precursor to the optimization 

process.   

 There are two major advantages to running DOEs.  First, by sampling the 

objective response over the design space, system behavior is ascertained over the design 

space and design points with the highest merit can be used as starting points for 

optimization processes.  Second, performing regression analysis on DOE output relating 

the variance of the objective response to the design variables reveals design variable 

sensitivities, and with this information, the vector of design variables can be altered 

and/or revised as appropriate.  Accuracy of these mathematical models depend upon of 
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the system response behavior and the DOE methodology used to collect the system 

response. 

 One of the most common DOE methodologies is the full-factorial DOE.  The full-

factorial DOE samples the effects of all design variables and their interactions.  This 

methodology is run as a level-two or level-three experiment.  For level-two DOEs, design 

variables are sampled at the upper and lower bound of their defined domains, where as 

for level-three DOEs, design variables are sampled at the upper, lower, and midpoint of 

each variables domain.  For example, Table 2-1 lists all experiments for level-three full 

factorial DOE with variables DV1, DV2, and DV3 defined in the domain from -1 to 1.  

The number of iterations required to sample the design space in a three level DOE is the 

3 raised to a power equal to the number of design variables; e.g. 33 = 27 iterations.  A 

two-level DOE with the variables listed in the table below would have 23 = 8 iterations.   

 

Table 2-1 – Data Set for 3 Design Variables in a Level 3 Full Factorial DOE. 

Iteration DV1 DV2 DV3  Iteration DV1 DV2 DV3 
1 -1 -1 -1  15 0 0 1 
2 -1 -1 0  16 0 1 -1 
3 -1 -1 1  17 0 1 0 
4 -1 0 -1  18 0 1 1 
5 -1 0 0  19 1 -1 -1 
6 -1 0 1  20 1 -1 0 
7 -1 1 -1  21 1 -1 1 
8 -1 1 0  22 1 0 -1 
9 -1 1 1  23 1 0 0 

10 0 -1 -1  24 1 0 1 
11 0 -1 0  25 1 1 -1 
12 0 -1 1  26 1 1 0 
13 0 0 -1  27 1 1 1 
14 0 0 0          
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 Different requirements mandate the need for running a level-two or level-three 

full factorial DOE.  Level-two DOEs are used on systems when a linear response is 

expected and information on all design variables and their interactions are desired.  

Level-three experiments are used when a non-linear response is expected.  A 

disadvantages of full factorial DOEs is a large number of experiments are required for 

designs with a large number of design variables. [9]   

 In summary, DOEs sample the solution space of a design with a limited number 

of design points.  Designs are sampled without the need for derivative or gradient 

calculation used by many optimization algorithms, and furthermore, results of DOE 

methodologies significantly minimize time, and thus, cost of a design. [10] 

2-4-2     Response Surface Methodology 

 One of the most common methods of “global approximation” is the response 

surface methodology. [1]  The first step to create a response surface approximation is to 

sample the objective function at multiple experimental design points.  Often DOE 

techniques are used to generate a sum of experiments to be run.  Next, an analytical 

expression is fit to the data.  This expression, typically a polynomial, is used to predict 

system performance at multiple design points. 

 Fidelity of response surface approximations are highly subject to the number of 

experiments sampled and size of the design space.  It is standard to run at least three sets 

of experiments. [10]  Also, the order of the polynomial fit is an important contributor to 

approximation accuracy; e.g. if a system has a cubic response, a linear response surface 

would not likely produce an accurate fit. [1] 
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2-5     Optimization Algorithms 

The probability of finding an optimum solution is highly related to the  

optimization formulation and what optimization algorithm is used as the optimizer.  

Records of optimization techniques being used in structural design date back to the 

eighteenth century, and when the aerospace industry recognized the importance of 

minimum weight in aircraft marks another milestone in the development of optimization 

techniques. [1]  This section focuses on optimization algorithms grouped under the 

following categories: first and second order gradient based algorithms, and genetic 

algorithms. 

 

2-5-1     First-order Gradient Based Methods 

 First-order gradient based optimization methods utilize the gradient of the 

objective function to increase the convergence rate to optima.  These methods apply to 

unconstrained optimization problems, and are usually more efficient than zero-order 

(non-gradient) based methods given certain conditions are valid. [11]  First-order gradient 

based methods inherently have a higher cost to operate driven by gradient information 

that must be supplied analytically or by finite differencing calculations.  However, even 

though the cost per iteration may be higher for these methods than for zero-order methods, 

the trade is a lesser number of iterations required to achieve an optimum solution. 

 

  )(XFS
r

−∇=  Equation 2-5 
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 The simplest first order gradient based algorithm is known as the method of 

steepest descent. [11, 12].  The search direction of this algorithm moves with the negative 

gradient of the objective function, see Equation 2-5.  Note, if the search direction moved 

with the positive gradient, this algorithm would be named the method of steepest ascent. 

[3]  This is but one example of first-order gradient based algorithms.  Other algorithms 

have adapted this principle to produce algorithms with much more efficient performance.   

 Next, second-order gradient based methods will be discussed. 

2-5-2     Second-order Gradient Based Methods 

 Second-order gradient based optimization methods provide a more accurate 

representation of the objective function than first-order methods, and with the inclusion 

of second order information the convergence rate becomes more efficient. [3] 

Second-order gradient based methods utilize function values, gradient of  

the objective function, and the Hessian matrix, H, in the optimization process. [3, 11]  

The Hessian matrix, shown in Equation 2-6, is a matrix of second derivatives of the 

objective function with respect to the design variables.  By using the Hessian matrix in 

the formulation of the search direction S
r

, see Equation 2-7, functions that are truly 

quadratic in the design variables can be optimized in only one iteration. [3, 11] 
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Equation 2-7 

 

 Differing from the first-order gradient base methods examined in previous 

sections, these methods are applied to constrained optimization problems.  Though 

second-order methods approach the use of constraints differently, a common approach 

alters the search direction to “push away” from the constraint boundary before it is 

violated. [11]   

 Common to second-order gradient based algorithms is the use of the Kuhn-Tucker 

conditions.  These conditions, shown in Equation 2-8 to Equation 2-10 are used in the 

determination of global optimality.  Equation 2-8 requires the values of all design 

variables exist within a feasible domain.  Equation 2-9 requires for all inequality 

constraint(s), )(Xg j , that are not exactly satisfied (e.g. not critical), the corresponding 

Lagrange multiplier, λj, must equal zero.  Finally, the third Kuhn-Tucker condition, 

Equation 2-10, requires search directions satisfying both usability and feasibility 

requirements will be precisely tangent to the constraint boundary and the line in which 

the objection function is constant. [1]  “A feasible direction is one in which all constraints 
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are satisfied, and a usable direction is one in which the objective function is improved.” 

[10]  
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2-5-3     Genetic Optimization Methods 

Genetic optimization methods originated in genetics, biology, and computer 

science.  Genetic optimization methods operate differently than conventional 

optimization methods by relying on a survival of the fittest type approach in the hunt for 

optima.  Just as biological creatures evolve by passing on useful characteristics and 

discarding not so useful ones, genetic optimization processes work by retaining design 

sets that give the best figure of merit while the design sets that do not have such good 

merit ratings are discarded. [7]   

Genetic methods have many renditions.  For reference purposes, a popular 

method, titled population-based search, is now presented.  A flow diagram depicting the 

encoding process is shown in Figure 2-5.  This process is started with the selection of 

several design sets within a feasible design space.  The first iteration design sets are 
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called parent values.  Next, each design set is encoded into a binary chain of ones and 

zeros.  These chains of numbers are called chromosomes. [7] 
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Figure 2-5 – The process of encoding a design set used in Genetic Algorithms. 

 

 Genetic algorithms are stochastic search techniques that guide a population of 

solutions using the principles of evolution and natural genetics.  Once the design sets 

have been encoded into chromosomes, they are manipulated in one of two ways to form 

new design sets shown Figure 2-6.  The crossover method swaps sections of chromosome 

to form new chromosomes, and the mutation method changes the values of one or more 

binary bits of the chromosomes to form new chromosomes.  Finally, these new 

chromosomes are decoded back into the base of the parent values, e.g. binary to decimal, 

and the objective function is evaluated.   
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Figure 2-6 – Genetic Algorithm Flow Diagram using the Population Based Search. 

 

The main disadvantage of genetic algorithms is they require numerous evaluations 

of the objective function (on the order of thousands) to find optima.  This increases the 

cost of using the algorithms.  Conversely, there are two main advantages.  First, genetic 

algorithms have a higher potential than conventional algorithms of finding the global 

optima.  By searching stochastically, genetic algorithms are less likely to get stuck in 

local minima.  Second, genetic algorithms are easily coded, and because of that there are 

many free algorithms available. 
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CHAPTER 3: THRUST OPTIMIZATION FRAMEWORK AND IMD 

This chapter presents the optimization framework created to optimize solid rocket 

motor grains for a given thrust versus time profile.  First, presented is the programming 

language used to build the interface between the solid rocket motor grain module and the 

optimization module.  Next, the system used to model solid rocket motor grain 

geometries and surface recessions is presented.  Note, this chapter only presents the 

program and what it does.  Discussions of the workings of solid rocket motor grains and 

how they are modeled are presented Chapter 2.  Finally, presented is the optimization 

interface system.     

3-1     Adaptive Modeling Language 

Adaptive Modeling Language (AML) developed by TechnoSoft Inc. was the 

programming language chosen to build the optimizer to grain model interface.  Several 

specific features made this language conducive to this interface.  These software features 

including a object-oriented environment, dependency-tracking demand-driven 

computations, and an ability to capture many applications into a unified model.  

Additionally, AML is already being used as the underlying architectural language for 

Interactive Missile Design (IMD) developed by Lockheed Martin, Missiles and Fire 

Control and TechnoSoft Inc..  IMD is a large scale industrial system that enables rapid 

design and analysis of conceptual and preliminary missile models. 
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This section describes the aforementioned features of AML and how they were used 

in the application of the research presented in this paper.  Also, a brief introduction to 

IMD will be presented at the close of this section. 

3-1-1     Object-Oriented Programming Language 

Object-oriented programming languages (OOPL) offers a powerful model for 

designing complex computer software.  In OOPLs, relations are established between 

classes and subclasses in a hierarchical order.  Classes can be defined from existing 

classes or instantiated with  independently defined properties.  In the class hierarchy, 

classes can inherit properties from other classes or predefined objects in AML.  An 

example showing the principles of OOPL is next. 

For example, consider the class table-class created in AML.  This class is 

graphically represented in Figure 3-1.  Table-class has the fundamental properties of a 

table including a rectangular box surface with four cylindrical legs.  These table 

components are generated through the use of five predefined subclasses; one box-object 

and four cylinder-objects.  Figure 3-2 below represents the class hierarchy of table-class.  

Classes, subclasses, and property names are shown on the left, and values assigned to 

properties are shown on the right of the table.  Parentheses indicate an object or property

 inheritance from the property or object labeled within the parentheses.  Each subclass

under table-class inherits from one of two predefined AML objects; box-object or 

cylinder-object.
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Figure 3-1 – Graphical representation of a Table-object. 

 

Figure 3-2 – Class hierarchy of object-oriented programming language. 

Class
table-length 9 Property
table-width 6 "
table-depth 0.5 "
leg-height 5 "
leg-diameter 0.5 "

(Box-Object) Subclass
Length (table-length) Property
Width (table-width) "
Depth (table-depth) "
Position (0 0 0) "

(Cylinder-Object) Subclass
Height (leg-height) Property
Diameter (leg-diameter) "
Position F[(table-length, table-width, leg-diameter)] "

(Cylinder-Object) Subclass
Height (leg-height) Property
Diameter (leg-diameter) "
Position F[(table-length, table-width, leg-diameter)] "

(Cylinder-Object) Subclass
Height (leg-height) Property
Diameter (leg-diameter) "
Position F[(table-length, table-width, leg-diameter)] "

(Cylinder-Object) Subclass
Height (leg-height) Property
Diameter (leg-diameter) "
Position F[(table-length, table-width, leg-diameter)] "

Leg-1

Leg-2

Leg-3

Leg-4

Table-Class

Table-Top

 

 

Table-Top

Leg 1-4 
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 When a class inherits from a predefined object, that class inherits the objects 

properties.  Therefore, if a class inherits from box-object, that class will have properties 

that define the dimensions and position of a box. 

This example demonstrated the advantages of inheritance.  First, in regard to 

object inheritance, once an object or class is defined it does not have to be redefined.  

Notice a cylinder-object was used four times to create the table legs, but it only had to be 

created once. To carry this further, table-class could be inherited by another class to 

create a whole restaurant of tables.  Second, in regard to property inheritance, property 

inheritance allows the dimensions of this table to be controlled by just five properties 

immediately under table-class.  All the subclasses of table-class inherit from these 

properties to specify their dimensions and positions.  By using property inheritance, the 

height of the table leg does not have to be specified four separate times and by doing so, 

the model becomes much more efficient.  If this were an optimization example, property 

inheritance could be use to reduce the number of design variables and cause the 

optimization process to be more efficient.  

3-1-2     Demand-Driven Dependency Tracking Language 

Demand-driven dependency-tracking behavior, supported by AML, is an 

important feature for processing the complex internal ballistics and optimization 

algorithms presented in this paper.  Demand-driven behavior refers to the fact that 

properties are only evaluated when the property value is demanded.  This eliminates the 

need for unnecessary calculations and therefore, reduces the convergence time of 

optimization routines.   
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 Dependency-tracking behavior keeps track of computational dependencies in 

order to increase computational speed.  If a property was demanded and the model had 

changed such that the demanded property or dependencies of the demanded property had 

become invalid, those dependencies would be evaluated as necessary to insure the value 

of the demanded property is representative of the current model.  For example, consider 

the thrust calculation of a solid rocket motor grain.  Dependencies of the thrust 

calculation include the grains’ geometry.  If the grain geometry changes, the thrust 

property value automatically changes to unbound in AML signifying the model has 

changed in a way that invalidated the result of the thrust formula.  When the value of that 

property is demanded, the surface recession of the solid propellant grain is simulated 

automatically as a dependency of the thrust calculation before the thrust property value is 

available. 

 Finally, Figure 3-3 presents a flow chart showing the demand-driven dependency 

track behavior of an optimization iteration performed on a solid propellant grain.  First, 

the value of the objective function is demanded.  Next, the dependencies of the objective 

function are demanded followed by their dependencies.  Once all layers of dependencies 

have been evaluated the objective function is evaluated.  In the figure below, arrows relay 

the chain of dependencies, and the data flow.  The process is as follows. 

 First, the objective function is demanded and in turn, the objective function 

demands the values of its dependencies: Grain Thrust and Thrust Weighting Values.  

Grain Thrust has dependencies of its own and they are in turn demanded.  Finally, data 

ripples back up the tree, the objective function is evaluated and returned to the 

demanding property.  The point is, to evaluate the objective function only the objective 
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function had to be demanded.  Beyond the objective function, AML evaluated the 

dependencies to ensure the value of the objective function is current.  No special code 

had to be written to validate the dependencies of the objective function prior to its 

evaluation.  
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Figure 3-3 – Grain Optimization Demand-Driven Dependency-Tracking Iteration. 

 

3-1-3     Solid Rocket Motor Design Module 

 The Solid Rocket Motor Design Module is an interactive solid rocket motor 

design tool that runs in an AML environment.  Like most solid rocket motor modelers, 
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this module utilizes geometric primitives (blocks, cylinders, cones, spheres, etc.) to 

construct solid propellant grains.  Through Boolean (union, intersect, and cut) and non-

Boolean operations geometric primitives are formed into more complex geometries, and 

constructions of geometric primitives are joined to form single geometric entities, solid 

propellant grains.   

 Each geometric primitive used in grain construction has its own set of parametric 

controls, and through these controls the grain is made to grow normal to itself.  The 

surface recession of the solid rocket motor grain is modeled graphically during evaluation, 

and is a dependency of the thrust calculation.  Internal ballistic calculations on the grain 

produce burn area versus distance and thrust versus time results. 

 To aid the design of solid rocket motor grains, the Solid Rocket Motor Design 

Module has the ability to use optimization techniques to target the merit of thrust versus 

time or burn-area versus distance.  Given a base design, once the user enters a thrust 

versus time or web versus distance requirement the design merit is evaluated against that 

requirement using a built-in merit function.  It is also possible to weight a portion of the 

requirement profile in the merit function.   

 Next, the optimization interface that brings the power of optimization to the 

design of solid rocket motor grains is described. 

3-2     Optimization Interface 

 The optimization algorithm to solid-propellant-grain-design tool interface was 

managed by a tool suite titled AMOPT developed by TechnoSoft Inc.  Since this tool 

runs in an AML environment, it inherently takes advantage of the demand-driven 
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dependency-tracking environment discussed in section 3-1-2.  This is an important 

feature for reducing computational time in optimization processes.  AMOPT provided 

three important components of the thrust optimization framework; optimization 

algorithms, an interface to Design Optimization Tools (DOT) by Vanderplaats R&D, 

Inc., and a common user interface.    

 First, AMOPT contains a host of design optimization algorithms.  These 

algorithms area based several optimization methodologies including, design of 

experiments, and non-gradient based methods.  The design of experiments method is an 

approximation method, and the rest are optimization methods.  These methods do not 

require additional licensing, but for more complex problems and faster convergence rates, 

more complex algorithms are suggested.   

 Second, in addition to the included optimization algorithms AMOPT is able to 

link to the third-party Design Optimization Tools (DOT).  DOT is a gradient-based 

numerical optimization package developed by Vanderplaats R&D, Inc. designed to solve 

a wide variety of non-linear optimization problems.  Algorithms contained in DOT 

include first and second order gradient-based algorithms.  These algorithms are designed 

to work on large scale problems with a large number of design variables.  First and 

second order gradient-based optimization algorithms, by design, offer a faster rate of 

convergence than non-gradient based methods. [11] 

 Third, the user-interface through which optimization problems are defined plays 

an important role in the efficiency of the optimization process.  If the process of setting 

up a problem consumes a significant amount of time or requires the user to know a 

cryptic syntax, it is unlikely the optimization capability would be used to its full potential.  
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AMOPT employs an efficient common user-interface that puts little burden on the user to 

define optimization problems.  The interface is common between optimization 

algorithms.  Therefore, the optimization model definition consisting of design variables, 

constraints, and objective function(s) only needs to be input once and any available 

optimization algorithms can be chosen to do the optimization.   

 Three tabs of the AMOPT user-interface are shown in Figure 3-4a-c below.  The 

first tab (a) was used to define the optimization model.  Exclusive sections are available 

for selecting AML properties to be used a design variables, constraints, and objective 

function(s).  As stated in the previous paragraph, once these selections are made, they are 

fixed and can be used for several optimization algorithms.  The next AMOPT tab (b) is 

used to select an optimization algorithm and specify control parameters specific to that 

algorithm; maximum number of iterations, derivative sensitivity, step size, etc.  Finally, 

tab (c) is used to run the optimization process and view the optimization response.  When 

the optimization process is run, design variable values are set and applied to the design.  

Next, the object function and constraint values (if specified) are demanded.  Finally, these 

values are sent to the optimization algorithm, the current solution is compared to the exit 

criterion, and barring a criterion being satisfied, a new search direction is calculated and 

process starts again.   
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Figure 3-4 – AMOPT Tabbed User-Interface Windows 
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CHAPTER 4: OPTIMIZATION PROBLEM STATEMENT 

This section presents detailed discussion of the problem subject of this thesis.  

Also included in this section are subsections dedicated to the formulation of the problem.  

These subsections include topics of the objective function, design variables, and 

constraints. 

4-1     Optimization Problem Statement 

The problem posed by Lockheed Martin, Missiles and Fire Control was a 

constructive investigation into the application of optimization techniques to the design 

process of solid rocket motor grains within in IMD type environment.  The large scale 

missile design software Interactive Missile Design (IMD) developed by Lockheed Martin 

is currently absent of any tools or methods designed to optimize solid rocket motor 

grains.  To circumvent the quasi  hunt-and-peck method utilized by propulsion engineers 

in solid rocket motor grain design, the objective of that proposed was to capture a process 

capable of optimizing the a solid rocket motor grain geometry for internal ballistic 

requirements (i.e. thrust versus time). 

To test the optimization process developed, three different grains of varying 

complexity were used: a multi-cylinder-grain, a slotted-grain, and a complex-grain.  

These three grains are shown in Figure 4-1a-f.  Each grain is shown in an isometric view 

and end view and are placed in order of increasing complexity.  The wire-frame cylinder 

in these figures represents the volume of the combustion chamber, and the object 
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appearing solid in these figures represents the initial free volume and initial burn surface 

area.   

 

 
a 

 
b 

 
c 

 
d 

 
 
e 

 
f 

Figure 4-1 – Three solid propellant grains shown in isometric and front view diagrams.  
                     (a-b) Multi-Cylinder Grain, (c-d) Star Grain, (e-f) Complex Grain. 
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4-2     Design Variables 

 The objective of the optimization problem described in the previous section was 

to achieve a desired thrust product from a grain through the geometric manipulation of 

the grains geometry.  Therefore, the design variables used in this problem were the 

geometric parameters that defined the respective grain geometries.    

 Different grains have a different number of design variables.  Referencing Figure 

4-1 on the previous page, the cylinder grain (a) has three defining geometric dimensions 

that are potential design variables.  The star grain (b) has four additional potential design 

variables, and the complex grain (c) had more than eleven potential design variables. 

Figure 4-2 shows a dimensioned profile of the complex grain. However, not all 

dimensions that define a grains geometry have to be used as design variables.   
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Figure 4-2 – Geometric dimensions of complex-grain. 

 

 Two types of design variables were utilized in this problem; continuous and 

discrete.  All but one of the design variables were continuous.  All of the continuous 

variables represented geometric dimensions.  The single discrete design variables 

represented the quantity of slots/fins the slotted and complex grain.   
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4-3     Design Constraints 

Two types of design constraints were used to bound the solid space of the thrust 

optimization problem.  First, in every optimization run, side constraints played an 

important role in  bounding the domain of the design variables.  These side constraints 

helped to maintain a feasible grain design and reduced the amount of ill conditioning 

throughout the optimization process.  For example, fins on the star and complex grains 

were prevented from becoming too thick or thin.  Equation 4-1 formulates this example.  

In this example, the design variable Xi represents a the fin thickness of a grain and that 

thickness is only allowed to exist in a domain from 4 to 8 inches. 

 

 

 Second, inequality constraints, gi(x), were used to bound the values of grain 

properties.  For example, a inequality constraint that could be used was the space factor 

constraint.  The space factor constraint controlled the propellant volume to combustion 

chamber volume ratio formulated in Equation 4-2.   
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Most of the time inequality/equality of constraints were not used, and once weighting of 

the objective function used instead.  Ultimately, these constraints reduced the number of 

iterations required to find a feasible solution.      

  "8"4 ≤≤ iX    Equation 4-1 
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4-4     Design Objective 

 The objective of this optimization research was to develop an optimization design  

tool and strategy for optimizing solid rocket motor grains for the internal ballistic of 

thrust.  The development of this tool was structured such that it could optimize any 

geometrically parameterized grain regardless of configuration and complexity.  Section 

5-2-1 will provide detailed discussions on how the optimization problem was 

formulated to account for variations in grain configurations.   

 The optimization problem used by the optimization design tool was formulated as 

a minimization problem, and is summarized in Equation 4-3 below.  This formulation 

minimizes the deviation between the thrust time curve of the grain being designed and the 

thrust-time requirement.   
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Equation 4-3 

 

The number of design variables, for solid propellant grains optimized in this paper, varied 

between three (for the slotted-grain) and eleven (for the complex-grain).  More complex 

grains with more design variables could be optimized; however, more design variables 

causes the cost and time merits of the optimization process to increase.  The objective 

function, )(XF , was based on the damped least squares method. 
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CHAPTER 5: OPTIMIZATION FORMULATION AND STRATEGY 

 The process of applying design optimization to the design process of solid 

propellant grains involved the orchestration of several events.  Beyond the construction 

of the initial solid propellant grain described in Chapter 2, the optimization strategy had 

to be planned and formulated.  Presented in this chapter are the optimization strategy, 

formulation of the standard objective/merit function for grain optimization, and problems 

encountered during development of the optimization process. 

5-1     The Internal Ballistic Optimization Strategy 

 This section discusses the internal ballistic optimization strategy, a strategy 

developed through research documented in this thesis to efficiently optimize solid rocket 

motor grain for internal ballistic requirements of thrust and burn-area versus web-

distance.  This optimization strategy was developed as a three stage process 

encompassing design approximation, global design optimization, and high-fidelity design 

optimization.  This chapter presents, first, an overview of the ballistic optimization 

strategy followed by three sections containing detailed discussions on individual stages of 

the strategy.   

5-1-1     Internal Ballistic Optimization Strategy Overview 

 The internal ballistic optimization strategy was the label given to the optimization 

strategy for optimizing solid rocket motor grain designs for a given thrust-time or burn-
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area-versus-distance requirement.  This strategy involved a three stage process.  Starting 

with a base grain geometry and a thrust-time requirement, the design was approximated.  

Next, using the optimum approximation from the first stage of the strategy, the design 

was optimized using a global design optimization technique.  Finally, after the grain had 

converged to a quasi optimal design configuration, a high-fidelity optimization technique 

was employed to fine tune the design to meeting the requirement.  A flow diagram in 

Figure 5-1 illustrates this optimization strategy, where each block in the diagram 

represents an important step in the optimization process, and arrows connecting the 

blocks indicate the grain design transitioning from one step to another.     

 Sections that follow discuss individual stages of the ballistic optimization strategy 

shown in blocks 3 – 5 in the figure below. 
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Figure 5-1 – Flow Diagram of the Internal Ballistic Optimization Strategy. 

 

5-1-2     Internal Ballistic Optimization Strategy Stage 1: Design Approximation 

 The first stage of the internal ballistic optimization strategy approximated the 

solid rocket motor grain design using a full-factorial design of experiments (DOE).  DOE 

worked by sampling the objective function response (design merit) over the entire design 

space of a grain.  The primary reason for choosing this experiment was the full factorial 

DOE samples the effect of design variables and interactions between all design variables.   

Furthermore, the full factorial DOE was executed as a three-level design as the 

objective response was non-linear and ill-conditioned.  A three-level full-factorial DOE 

experiment was choice as it produced the most comprehensive set of results.  However, 
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for solid rocket motor grains with seven or more design variables, a three-level DOE 

produced a prohibitive number of experiments (> 2187).  To mitigate this problem, 

designs with large number of design variables were approximated using a subset of the 

most response sensitive variables, and then the full set of design variables were used in 

the following stages of the strategy.  Further advantages of three-level DOEs are 

discussed in section 2-4-1     .   

The AML optimization interface (AMOPT) used to execute DOEs and developed 

by TechnoSoft allowed the sequence of experiments in a full-factorial DOE to be altered 

and/or amended.  This feature allowed DOEs to become especially powerful as several 

potential optima could be discovered at several values of discrete design variables.   

Following DOE execution in the first stage of the internal ballistic optimization 

strategy, the best grain design approximation was selected and used as the base design for 

the second stage of the strategy, global design optimization. 

5-1-3     Internal Ballistic Optimization Strategy Stage 2: Design Optimization 

 The second stage of the internal ballistic optimization strategy optimized the solid 

rocket motor grain design using a global optimization approach.  Global optimization was 

applied through the use of a genetic algorithm.  See section 0 for a discussion of genetic 

algorithms.   

 Genetic algorithms are effective at performing a global search.  Other algorithms, 

such as hill-climbing algorithms, perform local searches using a “convergent stepwise 

procedure, which compares the values of nearby points and moves to the relative optimal 

points”. [13]  This was an important feature due to the formulation of the ballistic 
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optimization problem.  The damped least squares method utilized as the objective 

function and described in section 2-2, has a tendency to stagnate at local minima.  

Genetic algorithms successfully mitigate this situation through an evolutionary stochastic 

nature of searching for optima.  Rather than climb into a pit, analogous to a local 

minimum, the evolutionary search method effectively utilizes the convexity of a problem 

to insure that any local optima is a global optima. [13]  This was the primary reason for 

selecting this algorithm as the optimizer. 

 

Table 5-1 – Parameter Settings for Genetic Algorithm. 

Population Size 

Number of Generations 

Noise Power 

Extreme Value 

 

 

 Before the optimization process could begin, however, four parameter settings of 

the genetic optimization algorithm were defined.  These parameter settings are listed in  

Table 5-1 above and are discussed referencing genetic algorithms terminology outlined in 

section 2-5-3.  First, the parameter labeled Population Size defined the numeric precision of 

the design variables by specifying the bit length of each chromosome.  This value was 

calculated using Equation 5-1.  Next, the parameter labeled Number of Generations 

represented the number of iterations though which each chromosome was allowed to 

mutate. [13]  This value was chosen to be 50 percent of the population size insuring 
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enough iterations to utilize/vary all bits of the chromosomes. [13]  Third, the parameter 

setting labeled Noise Power represented the design variable increment and was used to 

calculated the Population Size parameter.  Lastly, the Extreme Value setting represented 

the largest expected objective function response value.  If such response values increased 

beyond the Extreme Value setting, the optimization process would terminate.   
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 The genetic algorithm was selected and executed through AMOPT.  The genetic 

algorithm provided through AMOPT was developed by TechnoSoft Inc., also the 

developers of AML and AMOPT.   

 Following the global optimization execution, the solid rocket motor grain design 

should be fitness significantly improved from that of the approximated design (the base 

design of this stage of the optimization strategy).  The thrust-time product of the grain 

should resemble the requirement; however, the thrust-time product may still depart from 

the requirement in several key areas at this point.  Therefore, following the execution of 

the second stage of the ballistic optimization strategy, the optimum grain design was 
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selected and used as the base design to the third and final stage of the strategy, high-

fidelity optimization. 

5-1-4     Internal Ballistic Optimization Strategy Stage 3: High-Fidelity Optimization 

 The third and final stage of the internal ballistic optimization strategy used high-

fidelity optimization techniques to fine tune the solid rocket motor grain design to satisfy 

the thrust-time requirement.  Experimental data indicated the thrust response of the 

optimized grain design from the previous stage would track with the requirement, 

however, the total impulse (area under the thrust-time curve) of the grain may still 

deviate from the requirement.  Two reasons this deviation could still exist at this point 

were (1) the global optimization from the previous stage had converged to a local 

optimum (rather than the global optimum) or (2) the objective function had stagnated due 

to a decrease in response sensitivity to changes in the design variables.     

 High-fidelity optimization used the Broyden, Fletcher, Goldfarb, and Shanno 

(BFGS) first-order gradient based algorithm to optimize the solid rocket motor grain from 

the second stage of the internal ballistic optimization strategy.  This algorithm discussed 

in section 2-5-1 used gradient information from the objective function at the current 

design point to calculate the optimum search direction.  This was a hill climbing 

algorithm that operated unlike the genetic algorithm from the second stage; thus, it was 

expected to overcome weaknesses and stagnation points of the second stage of the 

optimization strategy.  This was the primary reason for selecting it.   
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Table 5-2 – Parameter Settings for BFGS Algorithm. 

Initial Relative Step Size (DX1) 

Initial Step Size (DX2) 

Relative Gradient Step (FDCH)

Min. Gradient Step (FDCHM) 

Extreme Value 

 

 The BFGS algorithm was part of an optimization algorithm suite contained within 

Design Optimization Tools 5.0 (DOT) developed and supported by Vanderplaats 

Research and Development, Inc.  This algorithm required the following five parameters 

settings shown in Table 5-2 to be defined.  First, the parameter setting labeled Initial 

Relative Step Size (DX1) defined the maximum relative change in the design variable 

attempted on the first optimization iteration.  Next, the parameter labeled Initial Step Size 

(DX2) represented the maximum absolute change in a design variable attempted on the 

first optimization iteration.  These two parameters were used to estimate the initial move 

in a one-dimensional search and were updated as the optimization progressed.  Third, the 

Relative Gradient Step (FDCH) parameter represented the relative finite difference step 

used when calculating gradients, and forth, the parameter labeled Min. Gradient Step 

(FDCHM) represented the minimum absolute value of the finite difference step when 

calculating gradients.  This prevented the step size from becoming too small.  Finally, the 

parameter labeled Extreme Value represented an upper limit value to the response value. 

[14]  If response values occur higher than the specified parameter, the optimization 

process will terminate.  These parameters were all set within AMOPT. 
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 In addition to using a gradient based optimization algorithm in this stage, the 

weights were applied to the objective function to increase the response sensitivity.  Up 

until this point, weights had not been applied to the objective function as doing so would 

have been premature.  Now that the grain had been optimized in the second stage of the 

internal ballistic optimization strategy the thrust-time response should approach the 

thrust-time requirement at several data points, but at other points the thrust-time response 

may still deviate from the requirement.  Whenever a thrust-time data point becomes 

satisfied its contribution to the objective function becomes zero, thus reducing the 

response sensitivity.  Upon inspection of the thrust-time response in relation to the thrust-

time requirement, the objective function should be weighted a points corresponding to a 

significant deviation from the requirement.  This increased the response sensitivity at 

critical points, which decreased the chance of premature optimization process 

termination. 

 Finally, following completion of high-fidelity optimization the grain should 

satisfy the requirement.  Advantages of this stage include a fast convergence rate to 

optima thanks to the high-fidelity gradient based algorithm, and a chance to weight the 

objective function.  Disadvantages of this stage include a higher probability of premature 

termination of optimization using the BFGS algorithm. 

5-2     Optimization Formulation 

 Two methodologies were used to formulate the solid rocket motor design 

optimization model.  The first methodology based formulation on a reference thrust-time 

curve, and the second methodology based formulation on a reference burn-area versus 
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web-distance curve.  The first methodology optimizes solid propellant grains for thrust 

versus time; where as, the second methodology optimizes solid propellant grains for 

burn-area versus web-distance.  The next two subsections discuss formulation of the solid 

rocket motor optimization model for thrust and burn-area ballistics.   

5-2-1     Thrust Optimization Formulation 

The figure of merit for solid rocket motor grain optimization on the basis of thrust 

was measured by the deviation of a grains’ thrust-time curve from the requirement, 

respectively.  To efficiently compare the thrust time curve of a grain design with a 

reference curve, the damped least squares (DLS) method was employed.  This method, 

summarized in Equation 5-2, was defined as a sum of differences between n selected 

points on the grains’ thrust time curve )(XT i  and the given data points i
oT .  Finally, this 

difference was multiplied by a weighting factor wi. 
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 Three major advantages of the DLS method prompted its use in the optimization 

formulation.  First, this formulation was adaptable enough to accommodate variations in 

thrust optimization problem definitions.  Optimization processes developed in this paper 

were independent of grain configuration.  Furthermore, different grain configurations 

have different thrust time requirements, and thus, slightly different problem definitions.    

Second, thrust, for all practical purposes, is an implicit function of the design variables, 
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and the DLS method allows for expressing the merit of a solid rocket motor grain as a 

function of the design variables.  Finally, the DLS method has been used in countless 

design optimization tools and has proven its functionality. [4] 

5-2-2     Burn-Area Optimization 

 Optimization on the ballistic merit of  burn-area versus web-distance was a 

simplification of optimization on the merit of thrust time.  Burn-area was a dependent of 

thrust, and therefore, by optimizing directly on the merit of burn-area, the overhead 

associated with thrust calculations were eliminated.  This methodology is used for 

preliminary and conceptual designs.   

  The figure of merit for burn-area optimization problems was measured by the 

deviation of a grains’ burn-area versus web-distance curve from the required curve.  This 

deviation was compared using the DLS method, the same way it was compared for thrust 

optimization.  The formulation of burn-area optimization is summarized in Equation 5-3 

using the DLS method where the grains’ burn-area versus web-distance curve is 

represented by )(XBi  and the required data points, i
oB .  Finally, this difference was 

multiplied by a weighting factor wi. 
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5-3     Resolved Issues with the Optimization Strategy 

 During implementation of the optimization strategy described above several 

major issues were encountered that threatened the success of the optimization strategy.  

This section describes the major issues experienced along with their resolutions. 

5-3-1     Issue 1: Error in Surface Recession Model 

During early optimization processes of the center perforated star and complex 

grains, shown first in Figure 1-1 on page 2, the objective versus iteration response 

indicated unusually high convergence rates to optima.  Upon inspection of several 

optimum grain designs, it was discovered the corresponding surface recession models 

were terminating early thus resulting in shortened internal ballistic responses.  The cause 

of the early termination was determined to be inherent to how the burn-surface-area of 

the grain was interpreted by AML when the corners of the grains’ fins began intersecting 

themselves.  However, just because the surface recession of the grain model terminated 

early was no reason for the objective function to evaluate to a minimum.  In fact the 

opposite should have occurred. 

The issue was resolved by reformulating the objective function to penalize itself if 

the grain surface recession terminates early or late with respect to the requirement.  This 

was formulated as a progressive penalty such that the earlier (or later) grain surface 

recession terminates the more penalty is added to the objective function. 
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5-3-2     Issue 2: Unexpected Halting of High Fidelity Optimization  

 The second unexpected issue encountered in the optimization process of solid 

rocket motor grains was unexpected halting of the high-fidelity gradient-based 

optimization.  This would occur when optimization was attempted in the third stage of 

the internal ballistic optimization strategy.  The optimization process would be started 

but after two to four iterations, the process would terminate. 

 The cause of this early termination of the optimization process was determined to 

be a result of reduced sensitivity in the objective function.  Following the completion of 

stage two of the internal ballistic optimization process (global optimization) many data-

points along the thrust-time curve were satisfied or near satisfied.  The made the 

contribution to the objective function for those respective data-points zero or near zero.   

To mitigate this reduction in objective function sensitivity, weights were applied to data-

points which deviated by more that 10% from the requirement, respectively.  Weights 

that were applied were on the order of 5 to 10X.  Following the application of weights 

and renormalization of the objective function, the high-fidelity gradient-based 

optimization process would optimize the grain without early termination. 
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CHAPTER 6: OPTIMIZATION ANALYSIS 

 A strategy labeled the internal ballistic optimization strategy was developed as a 

plan for designing solid rocket motor grains to satisfy ballistic requirements using 

optimization tools.  This chapter describes the optimization methodologies, the 

optimization formulations, and the design results of this strategy as it was applied to the 

design of three different solid rocket motor grains; the multi-cylinder grain, the star grain, 

and the complex grain.  

 The strategy for optimizing each solid rocket motor grain is discussed in separate 

sections described as optimization trials #1 through #3.  Within each trial an overview of 

each grain and design optimization goal is presented followed by discussion of the 

optimization model definitions, respectively.  Next, the optimization methodologies and 

results are discussed in subsections dedicated to each stage of the optimization strategy as 

applied to each grain.  This chapter ends with a discussion of other optimization 

strategies and formulations that were considered. 

6-1     Internal Ballistic Optimization Strategy Trial #1 

 The first trial of the internal ballistic optimization strategy involved the 

optimization of a multi-cylinder solid rocket motor grain for a thrust-time internal 

ballistic requirement.  The goal of this trial was to optimize a center perforated multi-

cylinder-grain geometry per a thrust-time requirement generated by a multi-cylinder grain 
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of different geometric configuration.  This created an optimization design experiment 

with a known solution.  
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Figure 6-1 – (a) Multi-Cylinder Grain Design Solution and (b) Thrust-Time Requirement 
generated by this grain design. 
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Figure 6-2 – (a) Initial Multi-Cylinder Grain Design and (b) corresponding Thrust-Time 
Product. 

 

 The thrust requirement for this optimization trial was generated from the multi-

cylinder grain model shown in Figure 6-1a.  Figure 6-1b shows a corresponding plot of 

this thrust-time requirement.   
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 Next, five geometric parameters defining the grain geometry were changed 

resulting in the altered multi-cylinder grain geometry shown in Figure 6-2a.  Each of the 

three cylinders composing this grain design had congruent diameters and lengths 

essentially transforming the grain into a simple center perforated grain.  Furthermore, 

resulting from the change in grain geometry, the thrust-time product became significantly 

different when compared to the requirement, see Figure 6-2b.   

 With a different thrust-time product the design challenge had been created; 

optimize the multi-cylinder grain geometry shown in Figure 6-2a to produce a thrust-time 

product that satisfies the requirement.  The next four subsections discuss the optimization 

problem definition, the optimization methodology and the design results at each of the 

three stages of the optimization process: approximation, optimization, and high-fidelity 

optimization. 

6-1-1     Optimization Model Definition 

 This section discusses the multi-cylinder solid rocket motor grain design 

optimization model definition for ballistic optimization strategy trial #1.  The 

optimization problem definitions outlined in this and the next two trials were setup using 

the three step process described in section 2-1 titled Principles of Optimization. 

 First, design variables were selected to represent the center perforated multi-

cylinder grain geometry.  The real grain model in AML consisted of three AML cylinder 

objects, and the grain geometry was controlled by five dimensions.  Figure 6-3 represents 

a cross-sectional view of the multi-cylinder grain with controlling dimensions labeled.  

Assuming all other controlling dimensions/orientations/positions were constant 
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(including the nozzle dimensions), these five dimensions were chosen as the continuous 

design variables. 

 

 

  

Figure 6-3 – Dimensioned cross-section of the multi-cylinder grain. 

 

 To eliminate wide variations in the magnitudes of the design variables each 

variable was normalized [1] with respect to the combustion chamber dimensions (the 

object containing the propellant in Figure 6-3).  For example, if a design variable varied 

by diameter, it was normalized to the combustion chamber diameter, and likewise, if a 

design variable varied by length it was normalized to the combustion chamber length.  

This operation converted the design variables to ratios existing between zero and one. 

Table 6-1 lists these variables along with descriptive remarks, initial values, and upper 

and lower bounds (UB and LB). 
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Table 6-1 – Initial design variable configuration for multi-cylinder grain. 

Variable Name Variable Description Initial Value LB UB 

  DV-D1   Diameter of Cylinder 1 0.20 0.15 0.90 

  DV-D2   Diameter of Cylinder 2 0.33 0.15 0.90 

  DV-D3   Diameter of Cylinder 3 0.60 0.15 0.90 

  DV-L5   Length of Cylinder 2 0.66 0.50 0.90 

  DV-L6   Length of Cylinder 3 0.33 0.1 0.45 

 

 Second, the design constraints were formulated.  Initially, side constraints were 

imposed on all design variables to restrict the domain to which they existed, see the upper 

(UB) and lower (LB) bounds listed in Table 6-1.  Next, two inequality constraints, see 

Equation 6-1 and Equation 6-2, were formulated to maintain the hierarchy of cylinder 

diameters in the grain (Prefixes of the design variable names (DV-) are omitted in these 

equations).  Referencing the constraint descriptions in Table 6-2 on the next page, all of 

these constraints were satisfied and active in the initial design; an active constraint is one 

whose value resides on a constraint boundary. 

 

 Constraint 1 
0≤

−
D1

D2D1  
 Equation 6-1 

 

 Constraint 2 
032

≤
−

D2
DD  

 Equation 6-2 
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Table 6-2 -- Constraint values of initial design configuration. 

Constraint Variable Description Initial Value Condition 

      1  Diameter of Cylinder 2 0.00  < 0.00 

      2  Diameter of Cylinder 3 0.00  < 0.00 

 

 

 Third, the objective function was formulated.  The objective function was 

formulated using the damped least squares formulation discussed in section 4-4.  

Dependencies of this formulation were the data-points from the thrust-time requirement 

and data-points from the thrust-time product of the grain design.   

 Additionally, the objective function was formulation was scripted in AML to take 

advantage of the languages demand-driven dependency-tracking features.  Upon 

evaluating the objective function, the objective function would automatically fetch data-

points from the thrust-time requirement and execute a surface recession simulation of the 

grain to generate the thrust-time product of the grain.  This created a seamless operation 

conducive to an iterative optimization environment.   

 Lastly, the objective function was normalized to itself.  This created an initial 

design merit value of 1.0 (one); designs with higher merit have values approaching zero.  

This operation was performed ahead of each stage of the optimization process. 

 This optimization model definition was used throughout the entire ballistic 

optimization strategy.  The next three sub-sections describe the three stages of the 
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internal ballistic optimization process: design approximation, design optimization, and 

high-fidelity optimization. 

6-1-2     Internal Ballistic Optimization Strategy Stage 1: Design Approximation 

 The first stage of the internal ballistic optimization strategy, outlined in section  

5-1-2, centered on approximating the multi-cylinder solid rocket motor grain design 

using design of experiments (DOE).  This approximation technique provided an 

inexpensive vehicle for characterizing the design space of the grain.  The goal of this 

stage was to approximate the grain design driven by a thrust-time requirement and 

identify a grain design approximation(s) that best satisfied that requirement with the 

intent of optimizing that design(s) in the second stage of the strategy.   

 The multi-cylinder grain design was approximated using full-factorial level-three 

DOE.  This DOE was executed as a three-level design as the response was known to be 

nonlinear.  Additionally, the thrust-time response between variations in the grain 

geometry proved to be highly ill-conditioned over anything but a finite change in grain 

geometry.  Therefore, the comprehensive full-factorial DOE methodology was chosen as 

the most efficient approximation technique as it measures the response of every possible 

combination of design variables for the level of design chosen.    With five design 

variables representing the grain geometry, the full-factorial three level DOE consisted of 

243 experiments.   

 The multi-cylinder grain design approximation results are plotted in Figure A-1 

under Appendix A-2 and listed in Table A-1 under Appendix A-3.  The 

aforementioned plot represents the results in two series; The Raw DOE Response series 
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represented the responses from all 243 experiments, and the Sorted Feasible DOE 

Response series represented only the feasible responses (designs satisfying all 

constraints) sorted in order of increasing design merit.  Only one third of all the responses 

satisfied all of the constraints.  Results plotted in the former series indicated only one 

appreciable local minimum.  This was confirmed by the results plotted in the later series 

as among the designs of highest merit (lowest objective function value), no significant 

differences were observed between the designs.   

 

Table 6-3 – Design variable values for approximated Multi-Cylinder grain design. 

Variable Name Variable Description Value 

  DV-D1   Diameter of Cylinder 1 0.15 

  DV-D2   Diameter of Cylinder 2 0.525 

  DV-D3   Diameter of Cylinder 3 0.9 

  DV-L5   Length of Cylinder 2 0.5 

  DV-L6   Length of Cylinder 3 0.1 

 

 

 Finally, the best approximated multi-cylinder grain design was loaded into AML 

and validated to be free of defect.  The merit value of this design was 0.31 which marked 

a 69 percent design improvement relative to the base design.  Table 6-3 lists the design 

variable values for the best approximated grain, and Figure 6-4 shows a model of the best 

approximated multi-cylinder solid rocket motor grain design and a plot of its thrust-time 

product plotted against the thrust-time requirement and the thrust-time product of the 
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base grain.  This plot clearly shows a significant design improvement with respect to the 

requirement. 
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Figure 6-4 – (a) Approximated Multi-Cylinder grain model and (b) Thrust-Time Product. 

 

6-1-3     Internal Ballistic Optimization Strategy Stage 2: Design Optimization 

 The second stage of the internal ballistic optimization strategy, discussed in 

section 5-1-3, centered on the optimization of the multi-cylinder solid rocket motor 

grain design.  The goal of this stage was to optimize the best approximated multi-cylinder 

grain design (shown in  Figure 6-4) per the stated thrust-time requirement.  This strategy 

employed a global optimization routine using the genetic optimization algorithm from the 

AMOPT optimization interface developed by TechnoSoft; genetic algorithms are 

discussed in section 2-5-3.   

 First, the approximated multi-cylinder grain design (from the first stage of the 

strategy) was prepared for optimization.  The AML optimization interface AMOPT 

provided an elegant widget for performing this operation.  While still in the 

approximation mode of AMOPT, the DOE experiment producing the best feasible 
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response was selected and set as the concurrent working design.  Next, the objective 

function was renormalized to a unit value of one.  At this point, the grain model and 

optimization model definition was setup for optimization, however parameter settings of 

the optimization algorithm remained undefined. 

 

Table 6-4 – Parameter Setting Definitions for the Genetic Algorithm used in Trial #1. 

Population Size 50 

Number of Generations 25 

Noise Power 0.001 

Extreme Value 4 

 

 

 Next, four parameter settings of the genetic algorithm were defined. These 

parameter settings are listed in Table 6-4 above and what these parameters represent are 

discussed in section 5-1-3.  The first parameter, Population Size, was calculated using 

Equation 5-1 and the design variable information in Table 6-1.  The next parameter, 

Number of Generations, was chosen to be 50 percent of the population size. [13]  The 

product of these two parameters defined the maximum number of optimization iterations.  

The third setting, Noise Power, represented the design variable increment.  Lastly, the 

Extreme Value setting represented the largest expected objective function response value.  

If such response values increased beyond the Extreme Value setting, the optimization 

process would terminate.   
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Figure 6-5 – (a) Optimized Multi-Cylinder Grain Model and (b) Thrust-Time Product. 

  

 Once the optimization model and optimization algorithm were setup, the 

optimization process was initiated.  The optimization process ran successfully without 

premature termination.  A plot of the multi-cylinder grain optimization response is shown 

in Figure B-1 under Appendix B-2 and Table B-1 under Appendix B-3      lists every 

tenth response of the total 1250 responses.   Design improvement per iteration occurred 

rapidly in the beginning of the optimization process improving the design merit by 

approximately 90 percent.   

 The optimized multi-cylinder grain model and corresponding thrust-time product 

are shown above in Figure 6-5.  This plot indicated the thrust-time product of the 

optimum grain design was in phase with the requirement and followed a similar trend; a 

significant improvement from the approximated grain design.  However, the total impulse 

(area under the thrust-time curve) of the optimum grain still deviated from that of the 

requirement.  This departure will be dealt with in the third stage of the internal ballistic 

optimization strategy. 
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 Accomplishments from this stage of the internal ballistic optimization strategy 

included a multi-cylinder grain design with a design merit improvement of 99 percent, 

and combining this improvement with the improvement from stage one of the strategy 

yielded an design improvement of 98 percent. 

6-1-4     Internal Ballistic Optimization Strategy Stage 3: High-Fidelity Optimization 

 The third, and final stage of the internal ballistic optimization strategy, discussed 

in section 5-1-4,  centered on high-fidelity optimization of the multi-cylinder grain 

design.  At this point the previous two stages of the ballistic optimization strategy had 

approximated/optimized the multi-cylinder grain design to have a thrust-time product 

with a merit 98 percent higher than the base design; however, this thrust-time product 

still departed from the requirement in several critical areas.  Therefore, the goal of this 

final stage of the ballistic optimization strategy was to optimize the multi-cylinder grain 

design per the stated thrust-time requirement to have an overall merit 90 percent better 

than the base grain using the high-fidelity BFGS gradient-based optimization algorithm.  

This algorithm is discussed in section 2-5-1. 

 The high-fidelity optimization process started with the optimized grain design 

produced from the second stage of the strategy described in the previous section; Figure 

6-5 shows the grain model and thrust-time characteristic of the grain at this stage.  Next, 

key features of the high-fidelity optimization process will be described. 

 First, the optimized multi-cylinder grain design (from the second stage of the 

internal ballistic optimization strategy) was prepared for high-fidelity optimization.  

Within the AML optimization interface AMOPT, the optimization iteration producing the 
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optimum design was selected and set as the concurrent design.  Next, the objective 

function was renormalized to a unit value of one.  At this point, the model and high-

fidelity optimization problem definition was setup, however parameter settings of the 

optimization algorithm remained unset. 

 

Table 6-5 – Parameter Setting Definitions for the BFGS Algorithm used in Trial #1. 

Initial Relative Step Size (DX1) 0.01 

Initial Step Size (DX2) 1 

Relative Gradient Step (FDCH) 0.001 

Min. Gradient Step (FDCHM) 0.0001

Extreme Value 50 

  

 Next, five DOT parameter settings were defined to control the BFGS algorithm.  

These parameter settings are listed in Table 6-5 and what these parameters represent are 

discussed in section 5-1-4.  All of these parameter definitions were left at their default 

values except for the Extreme Value parameter.  This parameter was increased to the 

value shown above to avoid premature termination of the optimization process when 

finite differences was used to recalculate the gradient of the objective function.  When 

these occurred at several times during the optimization process the response was higher 

than normal. 

 After settings to the optimization algorithm were defined, the objective function 

was weighted in areas corresponding to the thrust response of the multi-cylinder grain 

having greater than ten percent departure from the requirement (see Figure 6-5b above).  
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This increased the response sensitivity in these areas.  The objective function was 

weighed 5x on areas of the thrust-time curve that deviated form the requirement by more 

than ten percent.  By using weights to increase the objective function sensitivity in areas 

of needed improvement the probability of premature termination of the optimization 

process was mitigated. 

 

 
 

(a) 

 

Time (s)

Thrust

 
(b) 

Figure 6-6 – (a) Optimized Multi-Cylinder Grain Model and (b) Thrust-Time Product. 

  

 The high-fidelity optimization was carried out in AML through the AMOPT 

interface using the BFGS algorithm.  The high-fidelity optimization process converged to 

a solution quickly generating a multi-cylinder solid rocket grain design with a merit 

improvement of 92 percent over the grain design produced from the second stage of the 

ballistic optimization strategy.  The optimized multi-cylinder grain model and a plot of 

the corresponding thrust-time product are shown in Figure 6-6.  This plot indicates high 

correlation between the thrust-time product of the grain design and thrust-time 

requirement.  
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Table 6-6 – Multi-cylinder grain design variable values for optimum versus solution. 

Variable Name Variable Description Optimum Design Design Solution 

  DV-D1   Diameter of Cylinder 1 0.23 0.20 

  DV-D2   Diameter of Cylinder 2 0.31 0.33 

  DV-D3   Diameter of Cylinder 3 0.6 0.6 

  DV-L5   Length of Cylinder 2 0.53 0.66 

  DV-L6   Length of Cylinder 3 0.25 0.25 

 

  

 In summary, accomplishments from this stage of the optimization strategy include 

a multi-cylinder solid rocket motor grain design that satisfies the thrust-time requirement 

imposed on the grain.  The high-fidelity optimization increased the design merit of the 

grain by 92%, and combining this improvement in design merit with that from previous 

two stages of the internal ballistic optimization process yielded a design merit 

improvement of 99.98%.  Additionally,  since there was a known solution to this design 

project, comparisons were made between the final optimum grain design and the grain 

design used to generate the thrust-time requirement.  These comparisons are shown 

below in Table 6-6 where design variable values are listed for the optimum design and 

the design solution representative of the grain design that generated the requirement.  

Comparisons show the optimum grain design highly correlates with the design solution 

on all except one design variable: DV-L5 (the length of the middle section of the multi-

cylinder grain).  Given the excellent agreement between the thrust-time products of the 
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two grains, it was assumed the design was insensitive to variations in this particular 

variable, and this is an alternate design solution. 

6-2     Internal Ballistic Optimization Strategy Trial #2 

 The second trial of the internal ballistic optimization strategy involved the 

optimization of a star/slotted solid rocket motor grain per the thrust-time requirements of 

a real solid fueled rocket motor, the Thiokol XM33E5 Castor.  This rocket motor has 

been used in the solid rocket boosters of the Delta D launch vehicle, and as the second 

stage of the NASA Scout launch vehicle. 

 The Thiokol XM33E5 Castor rocket motor requirements were obtained directly 

from the Chemical Propulsion Information Analysis Center (CPIA), however this 

information is also published by John Hopkins University in the CPIA/M1 Rocket Motor 

Manual.  For reference, the portion of the CPIA/M1 Rocket Motor Manual used in the 

paper is posted in 0.   

 This optimization trial initiated with the star grain shown in Figure 6-7a as the 

base solid rocket motor grain model.  This base model was acquired from a library of 

generic grains.  Figure 6-7b shows the same grain model with combustion chamber 

dimensions per the Castor requirement.  Figure 6-7b shows the thrust-time requirement of 

the Castor rocket motor plotted against the thrust product of the base model.   

 The next four subsections discuss the optimization model definition, the 

optimization methodology and the design results at each of the three stages of the 

optimization process: approximation, optimization, and high-fidelity optimization. 
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Figure 6-7 – The (a) initial grain design; (b) the initial grain design with Castor’s case 
dimensions; (c) the thrust time requirement of the XM33E5 Castor solid fueled rocket; 

 

 

 

 

6-2-1     Optimization Model Definition 

 This section discusses the optimization model definition for the star solid rocket 

motor grain design.  The optimization model definition outlined in this section follows a 

three step process discussed in section 2-1     . 
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 First, design variables were selected to represent the parametric geometry of the 

star grain.  The star grain was constructed in an AML and consisted of a fin-object and a 

cylinder object.  These objects perforated the grain and were invariant along the grain’s 

entire length.  The fin-object inherited (terminology defined in section 3-1     ) from three 

separate objects that defined (1) the profile of a fin, (2) the extrusion of the fin profile, 

and (3) the pattern of fins.  For a visual reference, a cross-section of the grain and an 

illustration of the objects involved in its construction are shown in Figure 6-8.  This 

group of separate objects were joined (using a union object) to make one geometry, the 

center perforated star-grain. 
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Figure 6-8 – Cross Section of Solid Rocket Motor Grain in Star Configuration. 

  

 With the grain construction geometry known, the choice of design variables was 

clear.  Referencing Figure 6-8, Table 6-7 below lists the design variables along with their

initial values, and upper (UB) and lower (LB) bounds.  This geometry was represented by

four design variables; two continuous variables and one discrete variable.  The discrete 

variable represented the 
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number of fins in the grain and was labeled No-of-Fins.  Finally, all variables were 

normalized with respect to the diameter of the combustion chamber; see discussion 

towards  the end of section 6-1-1 regarding normalizing the design variables. 

 

Table 6-7 – Initial design variable configuration for star grain. 

Variable Name Variable Description Initial Value UB LB 

  No-of-Fins   Quantity of Fins   5 Domain { 4   5   6 } 

  DV-Fin-Depth   Depth of Fins   0.260 0.08 0.40 

  DV-Fin-Thickness   Thickness of Fins   0.079 0.015 0.10 

  

 Second, design constraints were applied to the model.  Side constraints were 

imposed on all design variables, see the upper (UB) and lower (LB) bounds listed in  

Table 6-7.  In this problem, side constraints were used primarily to control (1) the fin 

thickness, and (2) the size of the grain geometry with respect to the combustion chamber.  

It was intended that these constraints posed minimum restriction on the allowable design 

space.    

 Next, two inequality constraints were formulated to control the weight of 

propellant per a derived requirement.  These constraints are formulated in Equation 6-3 

where W represents the weight of the grain model and WTarget represents the target weight,  

The initial constraint boundaries are listed in Table 6-8.  Note, both constraints were 

formulated such that they were satisfied with negative values per the guidelines of 

optimization tool Design Optimization Tools (DOT).   
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Table 6-8 – Constraint values of initial design configuration. 

Constraint No./Name Variable Description Initial Value LB UB 

1.)  Propellant-Weight LB on Prop. Weight -0.14 -0.15 0 
 

2.)  Propellant-Weight UB on Prop. Weight -0.05 -0.15 0 
 

  

 Third, the objective function was formulated.  This was done by, first, entering 

data points for the target thrust time.  For this optimization trial the thrust-time 

requirement, discussed above on page 74, was the thrust requirement of the Thiokol 

XM33E5 Castor solid fueled rocket obtained from the CPIA/M1 Solid Rocket Motor 

Manual.  The normalized target thrust time curve is shown above in Figure 6-7c.  Next, 

the objective function was automatically formulated through the use of demand-driven 

dependency-tracking AML code.  Before the optimization process began, the objective 

function was normalized to a value of one. 

 This optimization model definition was used throughout the entire ballistic 

optimization strategy.  The next three sub-sections describe the three stages of the 

ballistic optimization process: design approximation, design optimization, and high-

fidelity optimization. 
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6-2-2     Internal Ballistic Optimization Strategy Stage 1: Design Approximation 

 The first stage of the internal ballistic optimization strategy, outlined in section 5-

1-2, center on approximating the star solid rocket motor design using DOE.  This 

approximation technique provided an inexpensive vehicle for characterizing the design 

space of the grain.  The goal of this stage was to approximate the grain design driven by a 

thrust-time requirement of the Thiokol XM33E5 Castor solid fueled rocket and identify 

grain design approximation(s) that best meet that requirement with the intent of 

optimizing that design(s) in the second stage of the strategy.   

 The star grain design was approximated using a full-factorial level-three DOE.  In 

this case the cost (number of experiments) of running a full-factorial level-three DOE 

was insignificant as there was such a small number of design variables, and the same 

conditions existed in this trial as did in the previous trial (discussed in section 6-1-2) 

that justified this DOE methodology.  With three design variables representing the star 

grain geometry, the full-factorial three level DOE consisted of 27 experiments. 

 The star grain design approximation results are plotted in Figure A-2 under 

Appendix A-2 and listed in Table A-2 under Appendix A-4.  The aforementioned 

plot represents the results in two series; The Raw DOE Response series represented the 

responses from all 27 experiments, and the Sorted Feasible DOE Response series 

represented only the feasible responses (designs satisfying all constraints) sorted in order 

of increasing design merit.  Only one third of all the responses satisfied all of the 

constraints.  Plotted results correlated with source data indicated two local minima, one 

with a geometric grain configuration employing 4 fins and the other employing 5 fins.   
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Table 6-9 –Design Variable configurations for Star grain design approximations. 

Variable Name Star Grain 1 Star Grain 2 

  No-of-Fins   4   5 

  DV-Fin-Depth 0.4 0.4 

  DV-Fin-Thickness 0.0575 0.0575 

 

 

 Finally, since two local minima were discovered in the approximation process, 

two designs were saved to pass to the second stage of the optimization strategy.  The best 

approximated star grain with 4 fins had a merit value 0.39, and the best approximated star 

grain with 5 fins had a merit value of 0.55.  This marked design improvements of 61% 

and 45%, respectively.  Table 6-9 lists the design variable values for the best 

approximated grains; Grain1 in this table refers to the approximated grain with 4 fins and 

Grain2 refers to the approximated star grain with 5 fins. Figure 6-9 and Figure 6-10 show  

model of the best approximated 4 fin and 5 fin solid rocket motor grain designs and plots 

of their thrust-time products plotted against the thrust-time requirement, respectively.  

These plots clearly show significant design improvements from the base star grain with 

respect to the requirement. 
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  Figure 6-9 – (a) Approximated 4 Fin Star Grain Model and (b) Thrust-Time Product. 
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  Figure 6-10 – (a) Approximated 5-Fin Star Grain Model and (b) Thrust-Time Product. 

  

6-2-3     Internal Ballistic Optimization Strategy Stage 2: Design Optimization 

 The second stage of the internal ballistic optimization strategy focused on the 

optimization of the star solid rocket motor grain design.  The methodology of this stage 

was outlined in section 5-1-3, and the goal of this stage was to optimize the two best 

approximated star grain designs (shown in Figure 6-9 and Figure 6-10) per the thrust-

time requirement of the Thiokol XM33E5 Castor solid fueled rocket.  This strategy 
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employed a global optimization routine using the genetic optimization algorithm from the 

AMOPT optimization interface developed by TechnoSoft.  Genetic Algorithms are 

discussed in section 2-5-3. 

 First, the AMOPT interface was used to select and prepare each of the two 

approximated star grains for global optimization.  The primary difference between the 

star grains corresponded to the value of one discrete design variable which manifested 

itself in the number of slots in the grain geometries.  Since the genetic optimization 

algorithm was not design to optimize while using simultaneously discrete and continuous 

design variables, each of the two star grains were optimized separately while hold the 

discrete design variable fixed.   

 

Table 6-10 – Parameter Setting Definitions for the Genetic Algorithm used in Trial #2. 

Population Size 25 

Number of Generations 25 

Noise Power 0.001 

Extreme Value 4 

 

 Next, four parameter settings of the genetic algorithm were defined.  These 

parameters settings are listed in Table 6-10 and what these parameters represent are 

discussed in section 5-1-3.  The first parameter, Population Size, was calculated using 

Equation 5-1 and the design variable information in Table 6-1.  Since the star grain had 

half the number of design variables as did the multi-cylinder grain from optimization trial 

#1, it was realistic to see the Population Size parameter shrink to have the value used in 
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trial #1.  To ensure enough generations to thoroughly mutate the chromosomes used by 

the genetic algorithm the Number of Generations parameter was left unchanged.  Next, 

the third setting, Noise Power, represented the design variable increment, and last, the 

Extreme Value setting represented the largest expected objective function response value.  

If such response values increased beyond the Extreme Value setting, the optimization 

process would terminate.   

 The optimization process ran successfully and without premature termination; 

however, referencing the optimization responses from the two star grains plotted in 

Figure B-2a-b, respectively, under Appendix B-2, the convergence rate drastically 

differed between the two grains being optimized.  The 4-slotted star grain optimization 

response worsen in the beginning, stagnated throughout almost the entire optimization 

process, and converged rapidly in the final few design responses. On the other hand, the 

5-slotted star grain optimization response rapidly improved in the beginning of the 

process, continued to gradually improve until approximately two-thirds of the way into 

the process, and then, stagnated for the last third of the process.  It was expected this 

difference in convergence rates between the two grains was had due to an implied 

constraint on total impulse.  Because the thrust-time requirement was defined as a 

continuous collection of data-points over the thrust-time curve (rather than as segments of 

data-points) the area under the curve, total impulse, had an implicit effect on the 

optimization response.  Additionally, Table B-2 and Table B-3 list every tenth 

optimization response from a total of 625 responses for each grain, respectively.   
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 Figure 6-11 – (a) Optimized 4-slotted Star Grain Model and (b) Thrust-Time Product. 
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 Figure 6-12 – (a) Optimized 5-slotted Star Grain Model and (b) Thrust-Time Product. 

 

 In summary, accomplishments from this stage of the internal ballistic 

optimization strategy included two solid rocket motor star grain designs, a 4-slotted grain 

and a 5-slotted grain.  The merit of these grain designs had improved by 37 percent and 

96 percent, respectively.  The differences in merit improvement were attributed to the 

implicit constraint on total impulse.  Given these differences, the 4-slotted star grain 

design was dropped, and the 5-slotted star grain was developed further in the next stage 

of the internal ballistic optimization strategy, high-fidelity optimization. 
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6-2-4     Internal Ballistic Optimization Strategy Stage 3: High-Fidelity Optimization 

 The third, and final internal ballistic optimization strategy stage of optimization 

trial #2 centered on the high-fidelity optimization of the star solid rocket motor grain 

design.  The methodology used in this stage is outlined in section 5-1-4.   

 To summarize the design optimization progress on the star solid rocket motor 

grain up to this point, the design had been approximated in internal ballistic optimization 

strategy stage #1 and globally optimized in stage #2.  Stage #1 of the strategy produced 

two potential star grain designs (one with 4 slots and the other with 5), and stage #2 

brought the number of designs back down to one by discovering the 4-slotted star grain 

design could not satisfy the total impulse constraint imposed as an implicit constraint of 

the thrust-time requirement.  The 5-slotted star grain, conversely, saw a significant merit 

improvement by global optimization; however, the thrust-time product of the 5-slotted 

star grain remained significantly progressive to the requirement.  Therefore, the goal of 

this final stage of the internal ballistic optimization strategy was to optimize the 5-slotted 

star grain design per the Thiokol XM33E5 Castor solid-fueled rocket thrust-time 

requirement to have an overall merit 90 percent better than the base grain using the high-

fidelity BFGS optimization algorithm.   

 First, the optimized 5-slotted star grain design (see Figure 6-12 in the previous 

section) was prepared for high-fidelity optimization.  With the optimum design from the 

previous section set as the concurrent design, the design variables were reset within 

AMOPT to reflect the current design.  Next, the objective function was renormalized to a 

unit value of one, and the BFGS algorithm developed by Vanderplaats Research and 
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Development was selected.  At this point, the model and high-fidelity optimization 

problem definition was setup; however, parameter settings of the BFGS algorithm 

remained undefined. 

 

Table 6-11 – Parameter Setting Definitions for the BFGS Algorithm used in Trial #1. 

Initial Relative Step Size (DX1) 0.01 

Initial Step Size (DX2) 1 

Relative Gradient Step (FDCH) 0.001 

Min. Gradient Step (FDCHM) 0.0001

Extreme Value 50 

 

 

 Next, five DOT parameter settings were defined to control the BFGS algorithm.  

These parameter definitions are listed in Table 6-11, and what these parameters represent 

are discussed in section 5-1-4.  All of these parameter definitions were left at their 

default values except for the Extreme Value parameter which was increased to the value 

shown to avoid premature termination of the optimization process when finite 

differencing was used to calculate the gradient of the objective function.  When this 

occurred at several instances during the optimization process the response was higher 

than normal. 

 After the optimization algorithm parameter settings to the were defined, the 

objective function was weighted in areas corresponding to the thrust response of the star 

grain having greater than ten percent departure from the requirement (see Figure 6-12 in 
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the previous section).  This increased response sensitivity in these areas, and thus, the 

design merit increased more for improvement in weighted areas that non-weighted areas 

of the thrust-time curve.  Additionally, this decreased the chance of premature 

termination of the optimization process due to poor response sensitivity. 

 The high-fidelity optimization process executed on the 5-slotted star grain 

converged quickly to a solution taking just three percent of the CPU time it took to 

converge in the previous section.  The 5-slotted star grain design generated in the process 

had a merit improvement of 98 percent over the grain design from the second stage of the 

strategy.  The optimized star grain model and a plot of the corresponding thrust-time 

product are shown in Figure 6-13.  This plot indicates the goals of optimization trial #2 

were met successfully with the high correlation between the thrust-time product of the 

grain design the thrust-time requirement of the Castor solid-fueled rocket.  The thrust-

time product of the optimized star grain was still slightly progressive as compared to the 

requirement; however, it was assumed this departure could be attributed to how the 

chemical propellant and nozzle geometry data taken from the CPIA/M1 Rocket Motor 

Manual was interpreted.  Experimental data proved this hypothesis by perturbing the 

chemical propellant density and nozzle throat area to retard the progressive thrust-time 

behavior of the optimum star solid rocket motor grain to make it neutral burning as per 

the requirement. 
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 Figure 6-13 – (a) High-Fidelity Optimized 5-slotted Star Grain Model and (b) Thrust-             
                       Time Product. 

 

 Lastly, this optimum 5-slotted star grain geometry was compared with that of the 

Castor solid rocket motor grain geometry information published in the CPIA/M1 Rocket 

Motor Manual.  Table 6-12 lists the design variable values for the optimum star grain 

design (labeled Optimum Design in the table) and for the Thiokol XM33E5 Castor solid-

fueled rocket motor grain  as would be if the real grain dimensions were divided by the 

case diameter to encode them the same as the design variables.  The optimum grain 

design variable values were within 9 percent of those of from the Castor grain design.  

 

Table 6-12 – Star grain design variable values for optimum versus Castor grain design. 

Variable Name Variable Description Optimum Design Castor Design  

  dv-fin-thickness   Diameter of Cylinder 1 0.137 0.127 

  dv-fin-depth   Diameter of Cylinder 2 0.044 0.036 

  Number-of-Fins Number of Slots in Array 5 5 
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 In summary, accomplishments from this stage of the optimization strategy 

included a 5-slotted star rocket motor grain design that satisfied the Thiokol XM33E5 

Castor solid-fueled rocket thrust-time requirement, and the grain geometries compared 

closely to one another.  High-fidelity optimization increased the design merit of the grain 

by 97%, and combined with the design improvement from the previous two stages of the 

internal ballistic optimization strategy yielded a design merit improvement of 99.92% in 

relation to the base 5-slotted star grain.   

6-3     Internal Ballistic Optimization Strategy Trial #3 

 The third optimization trial of the internal ballistic optimization strategy involved 

solid rocket motor grain optimization on the merit of burn area versus distance (rather 

than thrust versus time).  Optimizing on this merit decoupled the merit dependence on 

grain geometry from the nozzle geometry and propellant parameters other than burn-rate, 

and provided a basis for conceptualizing the design of a grain geometry.  The subject 

grain of this trial was the grain labeled complex grain shown below in Figure 6-14a-b 

along with this grains burn-area-versus-distance response and burn-area-versus-distance 

requirement to which it was optimized.  The goal of this trial was to quantify the 

efficiency of the optimization strategy when implemented on complicated grain 

geometries with a large number of design variables.   
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Figure 6-14 – Complex Grain and Burn-Area versus Web-Distance Requirement. 

 

 The grain geometry and burn-area versus web-distance requirement used in this 

optimization trial were extrapolated from figures and plots contained in [8].  This 

reference used a similar grain to demonstrate computer aided modeling techniques for 

solid propellant grains.  No exact design parameters of the complex grain geometry or 

burn-area-versus-distance requirement were given by the referenced paper; therefore, in 

this thesis, the exact geometry and geometric scale of the complex grain, and the 

amplitude of the burn-area-versus-distance requirement were assumed.    

 The next four subsections discuss the optimization process of the complex grain 

starting with the definition of the optimization model. 

 

6-3-1     Optimization Model Definition 

 This section discusses the optimization model definition for the complex solid 

rocket motor design.  The optimization model definition discussed in this section follows 

a three step process discussed in section 2-1.  The process of defining the optimization 



 91

model for the complex grain initiated with the selection of the design variables followed 

by the application of side constraints.   Due to the conceptual nature of this problem, 

design constraints were not employed.  Finally, data points from the burn-area- versus-

distance requirement were entered and the objective function was formulated. 

 First, design variables were selected to represent the complex grain geometry.  

The complex grain geometry was comprised of ten geometric primitives: five cylinders, 

two spheres, two extrusions, and one cone.  Each geometric primitive was defined by at 

least three dimensional properties and a global position property.  This created the 

potential for 40 design variables and an indeterminate amount of constraints.  However 

through variable decomposition, discussed in section 2-1-2, this large set of possible 

design variables were reduced to 11, see Figure 6-15. 

 

 

Figure 6-15 – Complex grain with annotated dimensions. 

 

 The design variables chosen to represent the complex grain are listed in Table 

6-13 below and correspond to the above figure.  This table lists variable names along 

with brief variable descriptions, initial values, and upper (UB) and lower (LB) bounds. 
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changing the grain geometry and then (2) evaluating the objective function could be 

seamlessly  controlled by optimization algorithms. 

 The next three sub-sections discuss the results of the optimization process: design 

approximation with design of experiments, design optimization, and high-fidelity 

optimization. 

6-3-2     Internal Ballistic Optimization Strategy Stage 1: Design Approximation 

 The first stage of the internal ballistic optimization strategy, outlined in section 5-

1-2, centered on approximating the complex solid rocket motor design using DOE.  

The goal of this stage was to approximate the complex grain design driving by a burn-

area-versus-distance requirement and identify a grain design approximation(s) that best 

satisfied that requirement with the intent of optimizing that design(s) in the second stage 

of the strategy. 

 The past two optimization trials had used the full-factorial level-three DOE to 

approximate solid rocket motor grain designs; however, a full-factorial level-three DOE 

would have required a prohibitive number of experiments to approximate the complex 

solid rocket motor grain as the complex grain had 11 design variables (311 = 177147 

experiments).  Therefore, the response sensitivity of each design variable was evaluated 

and from that experimental data, the number of design variables used in the design 

approximation was reduced to 6 which reduced the number of experiments required of 

the DOE approximation to 729. 

 The complex grain design approximation results are plotted in Figure A-3 under 

Appendix A-2 and are listed in Table A-3 under Appendix A-5.  The 
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was a conceptual design effort, a non-restrictive solution space was desired; therefore, the 

side constraints were relatively loose.  However, following the first DOE design 

approximation (discussed in the next section) it was discovered, bounds on the variable 

titled DV-fin-depth were too loose and the fins were allowed to be enveloped by the 

primary cylinder of the grain.  Furthermore, the LB on the corresponding variable was 

tightened and the fin remained a part of the grain geometry.  Lastly, the final set of side 

constraint bounds are shown per variable in Table 6-13. 

 Third, the objective function was formulated.  The objective function in this and 

the two previous trials was formulated with the demand-driven dependency-tracking 

features of AML.  This function accepted two inputs, namely lists of burn-surface-area-

versus-distance data points from the requirement (entered by the user) and the subject 

grain (generated by surface recession simulation).  The objective function used the 

damped least squares method to rate the grains’ merit of the solid rocket motor grain, see 

section 4-4 for details. 

 At this point, the optimization model for solid rocket motor grain was setup, and 

the demand-driven dependency-tracking features of the objective function were setup 

such that the process could run seamlessly.  The dependency tracking features of the 

objective function were setup such that calculated values would expire with changes to 

the grain geometry.  For example, any time the grain geometry was altered for improved 

burn-area-versus-distance response, the objective function property would drop its 

current value and have to be re-evaluated.  Furthermore, the demand-driven features were 

setup such that when the objective function was demanded, a surface recession 

simulation would be demanded of the grain.  Thus, the optimization process of (1) 
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changing the grain geometry and then (2) evaluating the objective function could be 

seamlessly  controlled by optimization algorithms. 

 The next three sub-sections discuss the results of the optimization process: design 

approximation with design of experiments, design optimization, and high-fidelity 

optimization. 

6-3-2     Internal Ballistic Optimization Strategy Stage 1: Design Approximation 

 The first stage of the internal ballistic optimization strategy, outlined in section 5-

1-2, centered on approximating the complex solid rocket motor design using DOE.  

The goal of this stage was to approximate the complex grain design driving by a burn-

area-versus-distance requirement and identify a grain design approximation(s) that best 

satisfied that requirement with the intent of optimizing that design(s) in the second stage 

of the strategy. 

 The past two optimization trials had used the full-factorial level-three DOE to 

approximate solid rocket motor grain designs; however, a full-factorial level-three DOE 

would have required a prohibitive number of experiments to approximate the complex 

solid rocket motor grain as the complex grain had 11 design variables (311 = 177147 

experiments).  Therefore, the response sensitivity of each design variable was evaluated 

and from that experimental data, the number of design variables used in the design 

approximation was reduced to 6 which reduced the number of experiments required of 

the DOE approximation to 729. 

 The complex grain design approximation results are plotted in Figure A-3 under 

Appendix A-2 and are listed in Table A-3 under Appendix A-5.  The 
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aforementioned plot represents the results in two series; The Raw DOE Response series 

represented the responses from all 729 experiments, and the Sorted Feasible DOE 

Response series represented the responses sorted in order of increasing design merit.  

Results plotted in the former series showed a recurring trend which indicated a response 

sensitivity to the design variable controlling the length of the fins.  However, regardless 

of this recurring trend, the overarching trend indicated only one appreciable local 

minimum.  This was confirmed by the results plotted in the later series as among the 

designs of highest merit no significant differences were observed between the designs.   

Table 6-14 – Design variable values for best approximated Complex grain design. 

Variable Name Variable Description Value 

  DV-D1   Diameter of Cylinder 1 0.3 

  DV-D2   Diameter of Cylinder 2 0.7 

  DV-D3   Diameter of Cylinder 3 0.2 

  DV-L1   Position of Cylinder 2   0.08 (n/a) 

  DV-L2   Length of Cylinder 1 0.33 (n/a) 

  DV-L3   Position of Cylinder 3 0.88 (n/a) 

  DV-L5   Length of Cylinder 2 0.04 (n/a) 

  DV-L6   Length of Cylinder 3 0.04 (n/a) 

  DV-fin-length   Length of Fins 0.1 

  DV-fin-thickness   Thickness of Fins 0.06 

 DV-fin-depth   Height of Fins 0.25 
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 Finally, the best approximated complex grain design was loaded into AML and 

validated to be free of defect.  The merit value of this design was 0.69 which marked a 

31% design improvement relative to the base design.  Table 6-14 lists the design variable 

values for the best approximated grain, and Figure 6-16 shows a model of the best 

approximated complex solid rocket motor grain design along with a plot of its burn-area-

versus-distance product plotted against the requirement and the product of the base grain.  

This plot shows how discontinuities in the base grain response had somewhat smoothed 

and a significant design improvement had been made with respect to the requirement. 
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Figure 6-16 – (a) Approximated Complex grain and (b) corresponding burn-area-versus-
distance product plotted against the requirement. 

 

6-3-3     Internal Ballistic Optimization Strategy Stage 2: Design Optimization 

 The second stage of the internal ballistic optimization strategy, discussed in 

section 5-1-3,  focused on the optimization of the complex solid rocket motor grain 

design.  The goal of this stage was to optimize the best approximated complex grain 
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design (shown in Figure 6-16) per that stated burn-area-versus-distance requirement.  

This strategy employed a global optimization routine using the genetic optimization 

algorithm from the AMOPT optimization interface developed by TechnoSoft; genetic 

algorithms are discussed in section 0.   

 First, the approximated complex grain design (from the first stage of the strategy) 

was prepared for optimization.  The AML optimization interface AMOPT provided an 

elegant widget for performing this operation.  While still in the approximation mode of 

AMOPT, the DOE experiment producing the best response was selected and set as the 

concurrent working design.  Next, the objective function was renormalized to a unit value 

of one.  At this point, the grain model and optimization model definitions were setup for 

optimization, however, the parameter settings of the optimization algorithm remained 

undefined.   

 

Table 6-15 – Parameter Setting Definitions for the Genetic Algorithm used in Trial #3. 

Population Size 40 

Number of Generations 25 

Noise Power 0.001 

Extreme Value 4 

 

 

 Next, four parameter settings of the genetic algorithm were defined.  These 

parameters settings are listed in Figure 6-15 and what these parameters represent are 

discussed in section 5-1-3.  The first parameter, Population Size, was calculated using 
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Equation 5-1 and the design variable information in Table 6-1.  Based on the 

convergence rate in optimization processes from the second stage of the previous two 

optimization trials, it was hypothesized the Population Size had been chosen to allow 

conservative margin.  Therefore, even through the number design variables had doubled, 

it was reasonable to expect design improvement with the Population Size defined to have 

a value between the values of the previous two optimization trials.  To ensure enough 

generations to thoroughly mutate the chromosomes used by the genetic algorithm the 

Number of Generations parameter was left unchanged.  Next, the third setting, Noise 

Power, represented the design variable increment, and last, the Extreme Value setting 

represented the largest expected objective function response value.  If such response 

values increased beyond the Extreme Value setting, the optimization process would 

terminate.   

 The optimization process ran successfully and without premature termination.  

Referencing Figure B-3 in Appendix B-2, the convergence rate was high in the very 

beginning of the process and then slowed to a more gradual rate.  The convergence rate 

never stagnated, but by the end of the process had slowed a rate of diminishing returns.  

This was desired!  Unlike design responses from the previous two trials, the optimization 

response for this design had no wasted iterations, and considering the cost per iteration 

for this design was considerably higher than the past two designs, it was important to not 

wasted iterations.  Additionally, Table B-4 lists every tenth optimization response from a 

total of 1000 optimization design responses. 

 

 



 99

 

 
(a) 

 

Bu
rn

 A
re

a

Web Distance

Burn-Area vs. Web Distance

Bu
rn

 A
re

a

Web Distance

Burn-Area vs. Web Distance

 
(b) 

Figure 6-17 – Optimized Complex Grain and corresponding Burn Area versus Distance 
plotted versus the Requirement. 

 

 In summary, accomplishments form this stage of the internal ballistic 

optimization strategy include complex grain design producing a burn-area-versus-

distance response much more neutral, as the requirement, than the base complex grain 

design from the first section of this trial.  The merit of this complex grain at the end of the 

optimization process had improved by 47 percent.  More design improvement could have 

been had given more iterations by increasing the Population Size parameter of the genetic 

algorithm, however, considering the cost per iteration of this design, it was though this 

improvement could be had more efficiently using the high fidelity optimization strategy 

discussed in the next section. 

6-3-4     Internal Ballistic Optimization Strategy Stage 3: High-Fidelity Optimization 

 The third, and final stage of the internal ballistic optimization strategy for 

optimization trial #3 centered on the high-fidelity optimization of the complex grain 

design.  The mechanics behind this stage are discussed in section 5-1-4.  The baseline 
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of this stage was the complex grain design product from stage 2 of the internal ballistic 

optimization strategy; a grain design that had already been approximated and optimized 

using a global optimization technique.  The goal of this final stage was to optimize the 

complex solid rocket motor grain design per the stated burn-area-versus-distance 

requirement to have an overall merit 90 percent better than the base grain used at the start 

the optimization process.   

 First, the optimized complex grain design (from the second stage of the ballistic 

optimization strategy) was prepared for high-fidelity optimization.  Within the AML 

optimization interface AMOPT, the optimization iteration producing the optimum design 

was selected and set as the concurrent design.  Next, the objective function was 

renormalized to a unit value of one.  At this point, the model and high-fidelity 

optimization problem definition was setup, however parameter settings of the 

optimization algorithm remained unset. 

 The high-fidelity optimization process utilized the BFGS optimization algorithm 

developed by Vanderplaats Research and Development.  This algorithm is discussed in 

section 2-5-1.  This algorithm had five controlling parameters.  These parameters 

settings are listed in Table 6-16 and what these parameters represent are discussed in 

section 5-1-4.  All of these parameter definitions were left at their default values 

except for the Extreme Value parameter.  This parameter was increased to the value 

shown above to avoid premature termination of the optimization process when finite 

differences was used to recalculate the gradient of the objective function.  When these 

occurred at several times during the optimization process the response was higher than 

normal.  These settings were made inside the AMOPT interface. 
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Table 6-16 – Parameter Setting Definitions for the BFGS Algorithm used in Trial #1. 

Initial Relative Step Size (DX1) 0.01 

Initial Step Size (DX2) 1 

Relative Gradient Step (FDCH) 0.001 

Min. Gradient Step (FDCHM) 0.0001

Extreme Value 50 

 

 

 After settings to the optimization algorithm were defined, the objective function 

was weighted.  Since the design requirement was to have a neutral burn-area-versus-

distance response the objective function was weighted at the beginning and end of the 

complex grain response corresponding to areas where the response was the least neutral 

(see Figure 6-17b above)  A 5x weighting was applied in these areas.  By using weights 

to increase the objective function sensitivity in areas of needed improvement the 

probability of premature termination of the optimization process was mitigated. 
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Figure 6-18 – High-Fidelity Optimized Complex Grain and corresponding Burn Area 
versus Distance plotted versus the Requirement. 

 
 
 The high-fidelity optimization was carried out in AML through the AMOPT 

interface.  The high-fidelity optimization process converged to a solution generating a 

complex solid rocket grain design with a merit improvement of 31 percent over the grain 

design produced from the second stage of the ballistic optimization strategy.  The 

optimized grain had a burn-area-versus-distance response much more neutral than the 

base design.  This is shown in Figure 6-18 which shows the optimized complex grain 

model and a plot of the corresponding burn-area-versus-distance product. 
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Table 6-17 – Initial design variable configuration for cylinder grain. 

Variable Name Variable Description Value 

  DV-D1   Diameter of Cylinder 1 0.32 

  DV-D2   Diameter of Cylinder 2 0.8 

  DV-D3   Diameter of Cylinder 3 0.05 

  DV-L1   Position of Cylinder 2   0.15 

  DV-L2   Length of Cylinder 1 0.41 

  DV-L3   Position of Cylinder 3 0.72 

  DV-L5   Length of Cylinder 2 0.08 

  DV-L6   Length of Cylinder 3 0.04 

  DV-fin-length   Length of Fins 0.14 

DV-fin-thickness   Thickness of Fins 0.03 

 DV-fin-depth   Height of Fins 0.22 

 

  

 In summary, accomplishments from this stage of the optimization strategy include 

a complex solid rocket motor grain design with a burn-area-versus-distance response 

much more neutral than the base design.  The high-fidelity optimization increased the 

design merit of the grain by 31 percent, and combining this improvement in design merit 

with that from previous two stages of the ballistic optimization process yielded a design 

merit improvement of 75 percent.  This was 15 percent short of the goal of this 

optimization trial, however, considering the burn-area-versus-distance response of the 
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optimum complex grain had a neutral trend similar to the requirement and the response 

deviated always on the high side of the requirement indicates the requirement may be 

beyond the capability of the grain.  Other steps that could have been performed to 

improve the merit of the grain further include (1) performing the approximation stage of 

the ballistic optimization strategy again incorporating the unused design variables, and 

(2) increase the Population Size setting to the genetic algorithm to allow more iterations 

to improve the design. 

6-4     Investigated Optimization Strategies 

 The section discusses alternative optimization techniques and strategies that were 

considered.  Techniques discussed in this section failed to produce optimum results for an 

assortment of reasons. 

6-4-1     Full-Factorial Design of Experiments Level of Analysis 

 The full-factorial Design of Experiments technique used to approximate solid 

rocket motor grain designs had two modes of operation, level-two and level-three.  The 

level-two mode is used to approximate systems with a linear response, and the level-three 

mode is used to approximation systems with a non-linear response.  The level-three 

DOEs can have a significantly higher cost of operation as for every design variable there 

are three levels of experiment, rather than two, and if a system has a large number of 

design variables, this cost can become prohibitive. 

 Given, there exist designs with large numbers of design variables (large being 

defined as seven or more), an attempt was made to mitigate the prohibitive cost of 
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executing a level-three DOE by running a level-two DOE.  This approach was tested on 

several solid rocket motor grains.  First, a relatively large design was approximated using 

a level-three full-factorial DOE.  Next, the design was reset to its base configuration and 

the process was repeated using a level-two DOE.  Finally, results were compared on 

merits of design improvement.   

 Results compared between the two methods showed poor results.  Design merits 

of approximated designs produced by the level-three DOE were about twice that of what 

was produced by level-two DOEs.  When these respective designs were optimized, the 

optimizer had a easier time with the design produced by the three-level DOE 

approximation.  Designs produced by two-level DOEs often required heavy weighting of 

the objective function to increase design sensitivities and eliminate premature termination 

of the optimization process.  Given such, it was concluded the cost savings versus design 

improvement achieved by using a two-level DOE rather than a three-level DOE was not 

achieved. 

6-4-2     High Fidelity Optimization starting at DOE Optimum 

 The internal ballistic optimization strategy involved a three step design 

optimization process.  First, the design was approximated using DOE.  Second, the 

design was optimized using genetic algorithms, and finally, high-fidelity gradient-based 

optimization techniques were used to finish the optimization process.  The long pole in 

the tent, so to speak, is the second step of the strategy involving genetic algorithms.  

Therefore, an attempt was made to eliminate the second stage of the strategy and 
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optimize the approximated design using high-fidelity gradient-based optimization 

techniques. This was actually the original attempt at defining an optimization strategy. 

 Problems were experienced almost immediately with this optimization strategy.  

Often the optimization process would prematurely terminate due to no change in design 

merit.  Gradient-based optimization algorithms utilize gradient information obtained from 

the objective function and constraints to calculate a search direction used to manipulate 

the design variable vector.  Apparently, the response sensitivity of design approximations 

were still fairly low.  Thus, finite changes to the design variables had little to no effect to 

objective function response, and with no improvement, the optimization process would 

terminate.   

 When the design sensitivity was high enough, gradient-based optimization 

algorithms worked successfully.  However, when there was not enough sensitivity a great 

deal of weighting had to be applied.  This resulted in an inconsistent optimization 

strategy and therefore this strategy was not used.   
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CHAPTER 7: RESULTS AND DISCUSSION 

 This chapter focuses on the results of applying the internal ballistic optimization 

strategy, developed in this paper, to the design of solid rocket motor grains.  These results 

include a summary of the optimization design trials per stage of the ballistic optimization 

strategy and a summary of how the strategy worked as a whole to reduce the cost of 

obtaining an optimum solution.  This chapter ends with a conclusion of the work 

performed following by recommendations of future work. 

7-1     Ballistic Optimization Strategy Results 

 This section discusses the results of applying the internal ballistic optimization 

strategy to the design of solid rocket motor grains per stage of the strategy.  The internal 

ballistic optimization strategy was comprised of three stages: (1) design approximation, 

(2) design optimization, and (3) high-fidelity design optimization.   

7-1-1     Internal Ballistic Optimization Strategy Stage 1 Results 

 It was discovered through experimental data and validated through optimization 

trials 1, 2, and 3 presented in this paper, the full-factorial level-three design of 

experiments DOE was an effective technique for approximating solid rocket motor grain 

designs.  The design merit of the grain approximations from the three optimization trials 

showed at least 30 percent improvement from the respective base designs.  Also, these 
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approximated designs provided successful starting designs for global optimization 

performed in the second sage of he strategy.   

 

Table 7-1 – Summary of approximation results from three optimization trials. 

 No. of  Design Variables Cost Merit Improvement 

Optimization Trial #1 5 243 69% 

Optimization Trial #2 3 27 61% 

Optimization Trial #3 6 729 31% 

 

 

 A summary of the approximation results from the three optimization trials are 

shown in the Table 7-1.  This table lists the number of design variables, cost (number of 

experiments), and design merit improvement for each respective optimization trial.  

These results show the first stage of the internal ballistic optimization strategy using a 

level-three full-factorial DOE was successful at consistently and effectively 

approximating a variety of solid rocket motor grain designs. 

7-1-2     Internal Ballistic Optimization Strategy Stage 2 Results 

 It was discovered through experimental data and validated through optimization 

trials 1, 2, and 3 presented in this paper, global optimization performed in the second 

stage of the ballistic optimization strategy was the most effective stage of optimization 

solid rocket motor grain designs to ballistic requirements.  Global optimization performed 

a stochastic search that relied on evolution and inheritance to optimize the design. 
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Table 7-2 – Summary of optimization results from three optimization trials. 

 No. of  Design Variables Cost Merit Improvement 

Optimization Trial #1 5 1250 99% 

Optimization Trial #2 3 625 96% 

Optimization Trial #3 5 1000 47% 

 

  

 A summary of the second stage optimization results from the three optimization 

trials are shown in the Table 7-2 below.  This table lists the number of design variables, 

cost (number of iterations), and design merit improvement for each respective 

optimization trial.  Note, the merit improvement posted in the table represents the 

improvement in merit from the second stage of the optimization process alone and does 

not represent any combined improvement from the first stage of the strategy. 

These results overwhelmingly show the second stage of the internal ballistic optimization 

strategy using global optimization techniques of the genetic algorithm was successful at 

consistently and effectively optimizing a variety of solid rocket motor grain designs.  

7-1-3     Internal Ballistic Optimization Strategy Stage 3 Results 

 The final stage of the internal ballistic optimization strategy used high-fidelity 

gradient-based optimization techniques to fine tune solid rocket motor grain designs to 

meet internal ballistic requirements of thrust and/or burn-area versus web distance.  

Through experimental data from optimization trials 1, 2, and 3 presented in this thesis, 
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the Broyden, Fletcher, Goldfarb, and Shanno (BFGS) algorithm was effective at 

optimizing solid rocket motor grain designs to meet the requirement.  Unique to this stage, 

weighting was applied to the objective function.  This allowed response sensitivity to be 

increased and areas on a respective grains internal ballistic curve that departed from the 

requirement were able to be targeted.  This proved to be a powerful tool that enabled this 

stage of the optimization strategy to optimize solid rocket motor grains to the point of 

satisfying their respective requirements. 

 

Table 7-3 – Summary of high-fidelity optimization results from three optimization trials. 

 No. of  Design Variables Cost Merit Improvement 

Optimization Trial #1 5 115 92% 

Optimization Trial #2 3 17 97% 

Optimization Trial #3 1000 69 31% 

 

 

 A summary of the third stage optimization results from the three optimization 

trials are shown in the Table 7-3 below.  This table lists the number of design variables, 

cost (number of iterations), and design merit improvement for each respective 

optimization trial.  Note, the merit improvement posted in the table represents the 

improvement in merit from the third stage of the optimization process alone and does not 

represent any combined improvement from the first and/or second stages of the strategy. 
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These results show the third stage of the internal ballistic optimization strategy using a 

high-fidelity gradient-based optimization algorithm was successful at consistently and 

effectively optimizing a variety of solid rocket motor grain designs.   

 

7-1-4     Summary Results of Internal Ballistic Optimization Strategy 

 In summary, the internal ballistic optimization strategy proved to be successful at 

optimizing solid rocket motor grain designs consistently and effectively.  Each stage of 

the strategy was successful at contributing to the over all success of the strategy, and the 

methods used in each stage of the strategy compensated for weaknesses of the previous 

stages.  For example, the method in the second stage of the strategy did not suffer the 

stagnation problems inherit to the method used in the third stage of the strategy. 

 

Table 7-4 – Summary of results from the internal ballistic optimization strategy. 

 No. of  Design Variables Merit Improvement 

Optimization Trial #1 5 99.9% 

Optimization Trial #2 3 99.9% 

Optimization Trial #3 5 74.7% 

  

 

 Table 7-4 represents a summary of the design improvements in respective solid 

rocket motor grain designs produced by the internal ballistic optimization strategy.  

Results shown in this table combine the optimization results from all three stages of the 
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strategy.  Designs in optimization trials 1 and 2 met the goal of improving the design by 

more than 90% with respect to the base design and the design in optimization trial 3 came 

within 15 percent of the goal. 

7-2     Conclusion of Work 

 Ballistic design optimization has been performed on three different solid rocket 

motor grain designs of varying complexity and practicality.  These solid rocket motor 

grain designs were optimized on the basis of ballistic properties including thrust-time and 

burn-area-versus-distance requirements.  Key contributions of this research are 

summarized in the following: 

1. A three stage optimization strategy was developed (the internal ballistic 

optimization strategy) with the purpose of optimizing solid rocket motor grains 

for internal ballistic performance.   

2. The internal ballistic optimization strategy can successfully fit the internal 

ballistic product of a solid rocket motor grain (thrust) to a required thrust-time 

curve. 

3. Three solid rocket motor grains of varying complexity were optimized using the 

internal ballistic optimization strategy. 

4. The ballistic optimization strategy was developed to work in any AML 

environment and incorporated the demand-driven dependency-tracking object-

oriented features of AML.   

5. In addition to the development of the optimization strategy, AML code was 

written that would create and burn solid rocket motor grains. 
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 Though the use of the AML environment, the optimization process for each 

individual stage of the optimization strategy was made to run seamlessly during the 

optimization process.  As a result, the computational time was reduced and design 

efficiency was increased.  Also, integrated into this environment was the optimization 

interface AMOPT developed and supported by TechnoSoft.  AMOPT provided an 

environment for hosting the optimization model (design variable, constraint, and 

objective function definitions), optimization algorithms, and an interface to third party 

optimization algorithms developed by Vanderplaats Research and Development 

(developers of Design Optimization Tools). 

 The three stage internal ballistic optimization strategy presented herein was 

developed as a “general purpose” optimization strategy for designing solid rocket 

propellant grains of any geometry/requirement.  This strategy has been applied to solid 

rocket motor design tools extracted from Interactive Missile Design (IMD) developed by 

Lockheed Martin, Missiles and Fire Control. 

7-3     Recommendations 

 Based on the research presented in this paper, the following text details 

recommendations from the author for further enhancement and expansion of the ballistic 

optimization strategy. 

 First, improvements to the optimization formulation are recommended to allow 

for the optional inclusion of standard constraints into the objective function formulation.  

Constraints involving the following solid rocket motor characteristics are considered 
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standard: Total Impulse (the product of thrust and duration), Space Factor (the ration of 

propellant volume to the chamber volume), and Propellant Weight (weight of the 

propellant contained within the combustion chamber).  By formulating these constraints 

into the objective function, the use of extraneous constraints (i.e. inequality constraints) 

to achieve the same effect would no longer be required.  This would allow the genetic 

algorithm and first-order gradient-based algorithms that normally do not consider 

constraint responses to allow constraints to effect the design.   

 Second, it is recommend to understand the benefit of weighting the objective 

function.  This operation will increase response sensitivity at points on the response curve 

where weights are applied.  As the optimization process approaches an optimum, there is 

a likelihood of significantly decreased response sensitivity.  Weighting can be used to 

mitigate this problem which causes premature termination of the optimization process. 

 Finally, additionally work should include a better means of handling discrete 

design variables in the optimization process.   
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APPENDIX A: STAGE #1 – DESIGN APPROXIMATION 
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A-1     Appendix Overview 

 Contained in this appendix are the approximation results from three separate solid 

rocket motor design approximations performed in the first stage of the ballistic 

optimization strategy described in this paper.  Solid rocket motor grain designs were 

approximated using a level-three full-factorial DOE such that the thrust product of the 

designs performed better with respect to given thrust-time requirements.  The design 

approximation results are presented in plotted and tabular form.  The following lists the 

contents of each section in this appendix. 

   

Section A-2 contains the approximation responses represented in plotted form.  

Section A-3 contains the tabular approximation results for the Multi-cylinder grain. 

Section A-4 contains the tabular approximation results for the CASTOR1 grain. 

Section A-5 contains the tabular approximation results for the Complex grain. 

 

.   
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A-2     Approximation Response Plots: Trials 1, 2, and 3 

The following three figures show the approximation responses graphed versus 

iteration for three different solid rocket motor grains: the Multi-cylinder grain, the 

CASTOR grain, and the Complex grain.  Figure A-1 plots the approximation response to 

the multi-cylinder grain design approximation.  Figure A-2 plots the approximation 

response to the CASTOR1 grain design approximation, and Figure A-3 plots the 

approximation response to the Complex grain design approximation.   

Each plot represents the design approximation results in two series.  The series 

labeled “Raw DOE Response” represents the raw approximation response, and next, the 

series labeled “Sorted Feasible DOE Response” represents only a subset of  feasible 

approximation responses sorted in order of increase design merit (a merit of zero 

represents the perfect design). 
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Figure A-1 – DOE approximation responses from the Multi-cylinder grain design.
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Star Grain Design Approximation
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Figure A-2 – DOE approximation responses from the Star grain design. 
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Complex Grain Approximation
DOE Factorial 3 Response
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Figure A-3 – DOE approximation responses from the Complex grain design. 
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A-3     Approximation Responses: Optimization Trial 1 

 Table A-1 lists results of a three-level full factorial DOE design approximation 

performed on the multi-cylinder solid rocket motor grain design.  Columns labeled with 

the prefix dv- contain design variable values per iteration for the respective design 

variable name following the hyphen.  Columns labeled con1 and con2 contain design 

constraint responses, and the column labeled DLSM (short for Damped Least Squares 

Method) contains the objective-function response per iteration.  Note, Iteration 46 

produced the approximated design with the highest merit (minimum objective function 

response).   

 

Table A-1 – Multi-cylinder grain full-factorial 3-level DOE approximation responses. 

Iteration dv-d1 dv-d2 dv-d3 dv-l5 dv-l6 con1 con2 DLSM 
1 0.15 0.15 0.15 0.5 0.1 0 0 1.98794 
2 0.15 0.15 0.15 0.5 0.275 0 0 1.98794 
3 0.15 0.15 0.15 0.5 0.45 0 0 1.98794 
4 0.15 0.15 0.15 0.7 0.1 0 0 1.98794 
5 0.15 0.15 0.15 0.7 0.275 0 0 1.98794 
6 0.15 0.15 0.15 0.7 0.45 0 0 1.98794 
7 0.15 0.15 0.15 0.9 0.1 0 0 1.98794 
8 0.15 0.15 0.15 0.9 0.275 0 0 1.98794 
9 0.15 0.15 0.15 0.9 0.45 0 0 1.98794 

10 0.15 0.15 0.525 0.5 0.1 0 -0.71 1.08666 
11 0.15 0.15 0.525 0.5 0.275 0 -0.71 0.51449 
12 0.15 0.15 0.525 0.5 0.45 0 -0.71 0.32811 
13 0.15 0.15 0.525 0.7 0.1 0 -0.71 1.08666 
14 0.15 0.15 0.525 0.7 0.275 0 -0.71 0.51449 
15 0.15 0.15 0.525 0.7 0.45 0 -0.71 0.32811 
16 0.15 0.15 0.525 0.9 0.1 0 -0.71 1.08666 
17 0.15 0.15 0.525 0.9 0.275 0 -0.71 0.51449 
18 0.15 0.15 0.525 0.9 0.45 0 -0.71 0.32811 
19 0.15 0.15 0.9 0.5 0.1 0 -0.83 1.04758 
20 0.15 0.15 0.9 0.5 0.275 0 -0.83 0.99198 
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Iteration dv-d1 dv-d2 dv-d3 dv-l5 dv-l6 con1 con2 DLSM 
21 0.15 0.15 0.9 0.5 0.45 0 -0.83 1.08942 
22 0.15 0.15 0.9 0.7 0.1 0 -0.83 1.04758 
23 0.15 0.15 0.9 0.7 0.275 0 -0.83 0.99198 
24 0.15 0.15 0.9 0.7 0.45 0 -0.83 1.08942 
25 0.15 0.15 0.9 0.9 0.1 0 -0.83 1.04758 
26 0.15 0.15 0.9 0.9 0.275 0 -0.83 0.99198 
27 0.15 0.15 0.9 0.9 0.45 0 -0.83 1.08942 
28 0.15 0.525 0.15 0.5 0.1 -0.71 2.5 0.32289 
29 0.15 0.525 0.15 0.5 0.275 -0.71 2.5 0.32289 
30 0.15 0.525 0.15 0.5 0.45 -0.71 2.5 0.32289 
31 0.15 0.525 0.15 0.7 0.1 -0.71 2.5 0.49964 
32 0.15 0.525 0.15 0.7 0.275 -0.71 2.5 0.49964 
33 0.15 0.525 0.15 0.7 0.45 -0.71 2.5 0.49964 
34 0.15 0.525 0.15 0.9 0.1 -0.71 2.5 0.81871 
35 0.15 0.525 0.15 0.9 0.275 -0.71 2.5 0.81871 
36 0.15 0.525 0.15 0.9 0.45 -0.71 2.5 0.81871 
37 0.15 0.525 0.525 0.5 0.1 -0.71 0 0.32289 
38 0.15 0.525 0.525 0.5 0.275 -0.71 0 0.32289 
39 0.15 0.525 0.525 0.5 0.45 -0.71 0 0.32289 
40 0.15 0.525 0.525 0.7 0.1 -0.71 0 0.49964 
41 0.15 0.525 0.525 0.7 0.275 -0.71 0 0.49964 
42 0.15 0.525 0.525 0.7 0.45 -0.71 0 0.49964 
43 0.15 0.525 0.525 0.9 0.1 -0.71 0 0.81871 
44 0.15 0.525 0.525 0.9 0.275 -0.71 0 0.81871 
45 0.15 0.525 0.525 0.9 0.45 -0.71 0 0.81871 
46 0.15 0.525 0.9 0.5 0.1 -0.71 -0.42 0.30934 
47 0.15 0.525 0.9 0.5 0.275 -0.71 -0.42 0.50118 
48 0.15 0.525 0.9 0.5 0.45 -0.71 -0.42 0.94383 
49 0.15 0.525 0.9 0.7 0.1 -0.71 -0.42 0.47144 
50 0.15 0.525 0.9 0.7 0.275 -0.71 -0.42 0.47979 
51 0.15 0.525 0.9 0.7 0.45 -0.71 -0.42 0.67295 
52 0.15 0.525 0.9 0.9 0.1 -0.71 -0.42 0.78148 
53 0.15 0.525 0.9 0.9 0.275 -0.71 -0.42 0.65895 
54 0.15 0.525 0.9 0.9 0.45 -0.71 -0.42 0.71526 
55 0.15 0.9 0.15 0.5 0.1 -0.83 5 1.13199 
56 0.15 0.9 0.15 0.5 0.275 -0.83 5 1.13199 
57 0.15 0.9 0.15 0.5 0.45 -0.83 5 1.13199 
58 0.15 0.9 0.15 0.7 0.1 -0.83 5 1.35649 
59 0.15 0.9 0.15 0.7 0.275 -0.83 5 1.35649 
60 0.15 0.9 0.15 0.7 0.45 -0.83 5 1.35649 
61 0.15 0.9 0.15 0.9 0.1 -0.83 5 1.63909 
62 0.15 0.9 0.15 0.9 0.275 -0.83 5 1.63909 
63 0.15 0.9 0.15 0.9 0.45 -0.83 5 1.63909 
64 0.15 0.9 0.525 0.5 0.1 -0.83 0.714 1.13199 
65 0.15 0.9 0.525 0.5 0.275 -0.83 0.714 1.13199 
66 0.15 0.9 0.525 0.5 0.45 -0.83 0.714 1.13199 
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Iteration dv-d1 dv-d2 dv-d3 dv-l5 dv-l6 con1 con2 DLSM 
67 0.15 0.9 0.525 0.7 0.1 -0.83 0.714 1.35649 
68 0.15 0.9 0.525 0.7 0.275 -0.83 0.714 1.35649 
69 0.15 0.9 0.525 0.7 0.45 -0.83 0.714 1.35649 
70 0.15 0.9 0.525 0.9 0.1 -0.83 0.714 1.63909 
71 0.15 0.9 0.525 0.9 0.275 -0.83 0.714 1.63909 
72 0.15 0.9 0.525 0.9 0.45 -0.83 0.714 1.63909 
73 0.15 0.9 0.9 0.5 0.1 -0.83 0 1.13199 
74 0.15 0.9 0.9 0.5 0.275 -0.83 0 1.13199 
75 0.15 0.9 0.9 0.5 0.45 -0.83 0 1.13199 
76 0.15 0.9 0.9 0.7 0.1 -0.83 0 1.35649 
77 0.15 0.9 0.9 0.7 0.275 -0.83 0 1.35649 
78 0.15 0.9 0.9 0.7 0.45 -0.83 0 1.35649 
79 0.15 0.9 0.9 0.9 0.1 -0.83 0 1.63909 
80 0.15 0.9 0.9 0.9 0.275 -0.83 0 1.63909 
81 0.15 0.9 0.9 0.9 0.45 -0.83 0 1.63909 
82 0.525 0.15 0.15 0.5 0.1 2.5 0 0.92808 
83 0.525 0.15 0.15 0.5 0.275 2.5 0 0.92808 
84 0.525 0.15 0.15 0.5 0.45 2.5 0 0.92808 
85 0.525 0.15 0.15 0.7 0.1 2.5 0 0.92808 
86 0.525 0.15 0.15 0.7 0.275 2.5 0 0.92808 
87 0.525 0.15 0.15 0.7 0.45 2.5 0 0.92808 
88 0.525 0.15 0.15 0.9 0.1 2.5 0 0.92808 
89 0.525 0.15 0.15 0.9 0.275 2.5 0 0.92808 
90 0.525 0.15 0.15 0.9 0.45 2.5 0 0.92808 
91 0.525 0.15 0.525 0.5 0.1 2.5 -0.71 0.92808 
92 0.525 0.15 0.525 0.5 0.275 2.5 -0.71 0.92808 
93 0.525 0.15 0.525 0.5 0.45 2.5 -0.71 0.92808 
94 0.525 0.15 0.525 0.7 0.1 2.5 -0.71 0.92808 
95 0.525 0.15 0.525 0.7 0.275 2.5 -0.71 0.92808 
96 0.525 0.15 0.525 0.7 0.45 2.5 -0.71 0.92808 
97 0.525 0.15 0.525 0.9 0.1 2.5 -0.71 0.92808 
98 0.525 0.15 0.525 0.9 0.275 2.5 -0.71 0.92808 
99 0.525 0.15 0.525 0.9 0.45 2.5 -0.71 0.92808 

100 0.525 0.15 0.9 0.5 0.1 2.5 -0.83 0.89922 
101 0.525 0.15 0.9 0.5 0.275 2.5 -0.83 0.77337 
102 0.525 0.15 0.9 0.5 0.45 2.5 -0.83 0.82068 
103 0.525 0.15 0.9 0.7 0.1 2.5 -0.83 0.89922 
104 0.525 0.15 0.9 0.7 0.275 2.5 -0.83 0.77337 
105 0.525 0.15 0.9 0.7 0.45 2.5 -0.83 0.82068 
106 0.525 0.15 0.9 0.9 0.1 2.5 -0.83 0.89922 
107 0.525 0.15 0.9 0.9 0.275 2.5 -0.83 0.77337 
108 0.525 0.15 0.9 0.9 0.45 2.5 -0.83 0.82068 
109 0.525 0.525 0.15 0.5 0.1 0 2.5 0.92808 
110 0.525 0.525 0.15 0.5 0.275 0 2.5 0.92808 
111 0.525 0.525 0.15 0.5 0.45 0 2.5 0.92808 
112 0.525 0.525 0.15 0.7 0.1 0 2.5 0.92808 
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Iteration dv-d1 dv-d2 dv-d3 dv-l5 dv-l6 con1 con2 DLSM 
113 0.525 0.525 0.15 0.7 0.275 0 2.5 0.92808 
114 0.525 0.525 0.15 0.7 0.45 0 2.5 0.92808 
115 0.525 0.525 0.15 0.9 0.1 0 2.5 0.92808 
116 0.525 0.525 0.15 0.9 0.275 0 2.5 0.92808 
117 0.525 0.525 0.15 0.9 0.45 0 2.5 0.92808 
118 0.525 0.525 0.525 0.5 0.1 0 0 0.92808 
119 0.525 0.525 0.525 0.5 0.275 0 0 0.92808 
120 0.525 0.525 0.525 0.5 0.45 0 0 0.92808 
121 0.525 0.525 0.525 0.7 0.1 0 0 0.92808 
122 0.525 0.525 0.525 0.7 0.275 0 0 0.92808 
123 0.525 0.525 0.525 0.7 0.45 0 0 0.92808 
124 0.525 0.525 0.525 0.9 0.1 0 0 0.92808 
125 0.525 0.525 0.525 0.9 0.275 0 0 0.92808 
126 0.525 0.525 0.525 0.9 0.45 0 0 0.92808 
127 0.525 0.525 0.9 0.5 0.1 0 -0.42 0.89922 
128 0.525 0.525 0.9 0.5 0.275 0 -0.42 0.77337 
129 0.525 0.525 0.9 0.5 0.45 0 -0.42 0.82068 
130 0.525 0.525 0.9 0.7 0.1 0 -0.42 0.89922 
131 0.525 0.525 0.9 0.7 0.275 0 -0.42 0.77337 
132 0.525 0.525 0.9 0.7 0.45 0 -0.42 0.82068 
133 0.525 0.525 0.9 0.9 0.1 0 -0.42 0.89922 
134 0.525 0.525 0.9 0.9 0.275 0 -0.42 0.77337 
135 0.525 0.525 0.9 0.9 0.45 0 -0.42 0.82068 
136 0.525 0.9 0.15 0.5 0.1 -0.42 5 0.85605 
137 0.525 0.9 0.15 0.5 0.275 -0.42 5 0.85605 
138 0.525 0.9 0.15 0.5 0.45 -0.42 5 0.85605 
139 0.525 0.9 0.15 0.7 0.1 -0.42 5 1.11337 
140 0.525 0.9 0.15 0.7 0.275 -0.42 5 1.11337 
141 0.525 0.9 0.15 0.7 0.45 -0.42 5 1.11337 
142 0.525 0.9 0.15 0.9 0.1 -0.42 5 1.6445 
143 0.525 0.9 0.15 0.9 0.275 -0.42 5 1.6445 
144 0.525 0.9 0.15 0.9 0.45 -0.42 5 1.6445 
145 0.525 0.9 0.525 0.5 0.1 -0.42 0.714 0.85605 
146 0.525 0.9 0.525 0.5 0.275 -0.42 0.714 0.85605 
147 0.525 0.9 0.525 0.5 0.45 -0.42 0.714 0.85605 
148 0.525 0.9 0.525 0.7 0.1 -0.42 0.714 1.11337 
149 0.525 0.9 0.525 0.7 0.275 -0.42 0.714 1.11337 
150 0.525 0.9 0.525 0.7 0.45 -0.42 0.714 1.11337 
151 0.525 0.9 0.525 0.9 0.1 -0.42 0.714 1.6445 
152 0.525 0.9 0.525 0.9 0.275 -0.42 0.714 1.6445 
153 0.525 0.9 0.525 0.9 0.45 -0.42 0.714 1.6445 
154 0.525 0.9 0.9 0.5 0.1 -0.42 0 0.85605 
155 0.525 0.9 0.9 0.5 0.275 -0.42 0 0.85605 
156 0.525 0.9 0.9 0.5 0.45 -0.42 0 0.85605 
157 0.525 0.9 0.9 0.7 0.1 -0.42 0 1.11337 
158 0.525 0.9 0.9 0.7 0.275 -0.42 0 1.11337 
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Iteration dv-d1 dv-d2 dv-d3 dv-l5 dv-l6 con1 con2 DLSM 
159 0.525 0.9 0.9 0.7 0.45 -0.42 0 1.11337 
160 0.525 0.9 0.9 0.9 0.1 -0.42 0 1.6445 
161 0.525 0.9 0.9 0.9 0.275 -0.42 0 1.6445 
162 0.525 0.9 0.9 0.9 0.45 -0.42 0 1.6445 
163 0.9 0.15 0.15 0.5 0.1 5 0 1.85633 
164 0.9 0.15 0.15 0.5 0.275 5 0 1.85633 
165 0.9 0.15 0.15 0.5 0.45 5 0 1.85633 
166 0.9 0.15 0.15 0.7 0.1 5 0 1.85633 
167 0.9 0.15 0.15 0.7 0.275 5 0 1.85633 
168 0.9 0.15 0.15 0.7 0.45 5 0 1.85633 
169 0.9 0.15 0.15 0.9 0.1 5 0 1.85633 
170 0.9 0.15 0.15 0.9 0.275 5 0 1.85633 
171 0.9 0.15 0.15 0.9 0.45 5 0 1.85633 
172 0.9 0.15 0.525 0.5 0.1 5 -0.71 1.85633 
173 0.9 0.15 0.525 0.5 0.275 5 -0.71 1.85633 
174 0.9 0.15 0.525 0.5 0.45 5 -0.71 1.85633 
175 0.9 0.15 0.525 0.7 0.1 5 -0.71 1.85633 
176 0.9 0.15 0.525 0.7 0.275 5 -0.71 1.85633 
177 0.9 0.15 0.525 0.7 0.45 5 -0.71 1.85633 
178 0.9 0.15 0.525 0.9 0.1 5 -0.71 1.85633 
179 0.9 0.15 0.525 0.9 0.275 5 -0.71 1.85633 
180 0.9 0.15 0.525 0.9 0.45 5 -0.71 1.85633 
181 0.9 0.15 0.9 0.5 0.1 5 -0.83 1.85633 
182 0.9 0.15 0.9 0.5 0.275 5 -0.83 1.85633 
183 0.9 0.15 0.9 0.5 0.45 5 -0.83 1.85633 
184 0.9 0.15 0.9 0.7 0.1 5 -0.83 1.85633 
185 0.9 0.15 0.9 0.7 0.275 5 -0.83 1.85633 
186 0.9 0.15 0.9 0.7 0.45 5 -0.83 1.85633 
187 0.9 0.15 0.9 0.9 0.1 5 -0.83 1.85633 
188 0.9 0.15 0.9 0.9 0.275 5 -0.83 1.85633 
189 0.9 0.15 0.9 0.9 0.45 5 -0.83 1.85633 
190 0.9 0.525 0.15 0.5 0.1 0.714 2.5 1.85633 
191 0.9 0.525 0.15 0.5 0.275 0.714 2.5 1.85633 
192 0.9 0.525 0.15 0.5 0.45 0.714 2.5 1.85633 
193 0.9 0.525 0.15 0.7 0.1 0.714 2.5 1.85633 
194 0.9 0.525 0.15 0.7 0.275 0.714 2.5 1.85633 
195 0.9 0.525 0.15 0.7 0.45 0.714 2.5 1.85633 
196 0.9 0.525 0.15 0.9 0.1 0.714 2.5 1.85633 
197 0.9 0.525 0.15 0.9 0.275 0.714 2.5 1.85633 
198 0.9 0.525 0.15 0.9 0.45 0.714 2.5 1.85633 
199 0.9 0.525 0.525 0.5 0.1 0.714 0 1.85633 
200 0.9 0.525 0.525 0.5 0.275 0.714 0 1.85633 
201 0.9 0.525 0.525 0.5 0.45 0.714 0 1.85633 
202 0.9 0.525 0.525 0.7 0.1 0.714 0 1.85633 
203 0.9 0.525 0.525 0.7 0.275 0.714 0 1.85633 
204 0.9 0.525 0.525 0.7 0.45 0.714 0 1.85633 
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Iteration dv-d1 dv-d2 dv-d3 dv-l5 dv-l6 con1 con2 DLSM 
205 0.9 0.525 0.525 0.9 0.1 0.714 0 1.85633 
206 0.9 0.525 0.525 0.9 0.275 0.714 0 1.85633 
207 0.9 0.525 0.525 0.9 0.45 0.714 0 1.85633 
208 0.9 0.525 0.9 0.5 0.1 0.714 -0.42 1.85633 
209 0.9 0.525 0.9 0.5 0.275 0.714 -0.42 1.85633 
210 0.9 0.525 0.9 0.5 0.45 0.714 -0.42 1.85633 
211 0.9 0.525 0.9 0.7 0.1 0.714 -0.42 1.85633 
212 0.9 0.525 0.9 0.7 0.275 0.714 -0.42 1.85633 
213 0.9 0.525 0.9 0.7 0.45 0.714 -0.42 1.85633 
214 0.9 0.525 0.9 0.9 0.1 0.714 -0.42 1.85633 
215 0.9 0.525 0.9 0.9 0.275 0.714 -0.42 1.85633 
216 0.9 0.525 0.9 0.9 0.45 0.714 -0.42 1.85633 
217 0.9 0.9 0.15 0.5 0.1 0 5 1.85633 
218 0.9 0.9 0.15 0.5 0.275 0 5 1.85633 
219 0.9 0.9 0.15 0.5 0.45 0 5 1.85633 
220 0.9 0.9 0.15 0.7 0.1 0 5 1.85633 
221 0.9 0.9 0.15 0.7 0.275 0 5 1.85633 
222 0.9 0.9 0.15 0.7 0.45 0 5 1.85633 
223 0.9 0.9 0.15 0.9 0.1 0 5 1.85633 
224 0.9 0.9 0.15 0.9 0.275 0 5 1.85633 
225 0.9 0.9 0.15 0.9 0.45 0 5 1.85633 
226 0.9 0.9 0.525 0.5 0.1 0 0.714 1.85633 
227 0.9 0.9 0.525 0.5 0.275 0 0.714 1.85633 
228 0.9 0.9 0.525 0.5 0.45 0 0.714 1.85633 
229 0.9 0.9 0.525 0.7 0.1 0 0.714 1.85633 
230 0.9 0.9 0.525 0.7 0.275 0 0.714 1.85633 
231 0.9 0.9 0.525 0.7 0.45 0 0.714 1.85633 
232 0.9 0.9 0.525 0.9 0.1 0 0.714 1.85633 
233 0.9 0.9 0.525 0.9 0.275 0 0.714 1.85633 
234 0.9 0.9 0.525 0.9 0.45 0 0.714 1.85633 
235 0.9 0.9 0.9 0.5 0.1 0 0 1.85633 
236 0.9 0.9 0.9 0.5 0.275 0 0 1.85633 
237 0.9 0.9 0.9 0.5 0.45 0 0 1.85633 
238 0.9 0.9 0.9 0.7 0.1 0 0 1.85633 
239 0.9 0.9 0.9 0.7 0.275 0 0 1.85633 
240 0.9 0.9 0.9 0.7 0.45 0 0 1.85633 
241 0.9 0.9 0.9 0.9 0.1 0 0 1.85633 
242 0.9 0.9 0.9 0.9 0.275 0 0 1.85633 
243 0.9 0.9 0.9 0.9 0.45 0 0 1.85633 
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A-4     Approximation Responses: Optimization Trial 2 

 Table A-2 lists results of a three-level full factorial DOE design approximation 

performed on the star solid rocket motor grain design.  Columns labeled with the prefix 

dv- contain design variable values per iteration for the respective design variable name 

following the hyphen.  Columns labeled con1 and con2 contain design constraint 

responses, and the column labeled DLSM (short for Damped Least Squares Method) 

contains the objective-function response per iteration.  Note, Iterations 19 and 20 

produced the approximated design with the highest merit (minimum objective function 

response).  

  

Table A-2 – Star grain full-factorial 3-level DOE approximation responses. 

Iterations dv-fin-depth dv-fin-thickness dv-number-of-fins DLSM 
1 0.1 0.01 4 4.16283 
2 0.1 0.01 5 1.65183 
3 0.1 0.01 6 0.95379 
4 0.1 0.055 4 2.16851 
5 0.1 0.055 5 1.7457 
6 0.1 0.055 6 2.25963 
7 0.1 0.1 4 1.76965 
8 0.1 0.1 5 2.24865 
9 0.1 0.1 6 1.96823 

10 0.175 0.01 4 0.40069 
11 0.175 0.01 5 0.70575 
12 0.175 0.01 6 1.09412 
13 0.175 0.055 4 0.80212 
14 0.175 0.055 5 1.00955 
15 0.175 0.055 6 1.21462 
16 0.175 0.1 4 1.10333 
17 0.175 0.1 5 1.29002 
18 0.175 0.1 6 1.43517 
19 0.25 0.01 4 0.40243 
20 0.25 0.01 5 0.73408 
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Iterations dv-fin-depth dv-fin-thickness dv-number-of-fins DLSM 
21 0.25 0.01 6 1.18118 
22 0.25 0.055 4 1.13458 
23 0.25 0.055 5 1.45254 
24 0.25 0.055 6 1.82074 
25 0.25 0.1 4 1.93789 
26 0.25 0.1 5 2.27808 
27 0.25 0.1 6 2.61185 
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A-5     Approximation Responses: Optimization Trial 3 

 Table A-3 lists the abridged results from the three-level full factorial DOE design 

approximation performed on the complex solid rocket motor grain design.  Columns 

labeled with the prefix dv- contain design variable values per iteration for the respective 

design variable name following the hyphen.  Columns labeled con1 and con2 contain 

design constraint responses, and the column labeled DLSM (short for Damped Least 

Squares Method) contains the objective-function response per iteration.  Note, Iteration 

702 produced the approximated design with the highest merit (minimum objective 

function response).  

  

Table A-3 – Complex grain full-factorial 3-level DOE approximation responses. 

Iterations dv-d1 dv-d2 dv-d3 dv-fin-length dv-fin-thickness dv-fin-depth DLSM 
1 0.1 0.5 0.1 0.05 0.02 0.15 2.50 
2 0.1 0.5 0.1 0.05 0.02 0.2 2.47 
3 0.1 0.5 0.1 0.05 0.02 0.25 2.36 
4 0.1 0.5 0.1 0.05 0.04 0.15 2.51 
5 0.1 0.5 0.1 0.05 0.04 0.2 2.47 
6 0.1 0.5 0.1 0.05 0.04 0.25 2.37 
7 0.1 0.5 0.1 0.05 0.06 0.15 2.51 
8 0.1 0.5 0.1 0.05 0.06 0.2 2.48 
9 0.1 0.5 0.1 0.05 0.06 0.25 2.37 

10 0.1 0.5 0.1 0.075 0.02 0.15 2.47 
20 0.1 0.5 0.1 0.1 0.02 0.2 2.39 
30 0.1 0.5 0.2 0.05 0.02 0.25 1.58 
40 0.1 0.5 0.2 0.075 0.04 0.15 1.70 
50 0.1 0.5 0.2 0.1 0.04 0.2 1.62 
60 0.1 0.5 0.3 0.05 0.04 0.25 1.62 
70 0.1 0.5 0.3 0.075 0.06 0.15 1.75 
80 0.1 0.5 0.3 0.1 0.06 0.2 1.71 
90 0.1 0.6 0.1 0.05 0.06 0.25 2.18 
100 0.1 0.6 0.1 0.1 0.02 0.15 2.20 
110 0.1 0.6 0.2 0.05 0.02 0.2 1.41 
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Iterations dv-d1 dv-d2 dv-d3 dv-fin-length dv-fin-thickness dv-fin-depth DLSM 
120 0.1 0.6 0.2 0.075 0.02 0.25 1.34 
130 0.1 0.6 0.2 0.1 0.04 0.15 1.41 
140 0.1 0.6 0.3 0.05 0.04 0.2 1.45 
150 0.1 0.6 0.3 0.075 0.04 0.25 1.39 
160 0.1 0.6 0.3 0.1 0.06 0.15 1.46 
170 0.1 0.7 0.1 0.05 0.06 0.2 2.08 
180 0.1 0.7 0.1 0.075 0.06 0.25 2.04 
190 0.1 0.7 0.2 0.05 0.02 0.15 1.27 
200 0.1 0.7 0.2 0.075 0.02 0.2 1.24 
210 0.1 0.7 0.2 0.1 0.02 0.25 1.16 
220 0.1 0.7 0.3 0.05 0.04 0.15 1.28 
230 0.1 0.7 0.3 0.075 0.04 0.2 1.25 
240 0.1 0.7 0.3 0.1 0.04 0.25 1.22 
250 0.2 0.5 0.1 0.05 0.06 0.15 1.63 
260 0.2 0.5 0.1 0.075 0.06 0.2 2.22 
270 0.2 0.5 0.1 0.1 0.06 0.25 1.37 
280 0.2 0.5 0.2 0.075 0.02 0.15 1.31 
290 0.2 0.5 0.2 0.1 0.02 0.2 1.23 
300 0.2 0.5 0.3 0.05 0.02 0.25 1.26 
310 0.2 0.5 0.3 0.075 0.04 0.15 1.39 
320 0.2 0.5 0.3 0.1 0.04 0.2 1.34 
330 0.2 0.6 0.1 0.05 0.04 0.25 1.32 
340 0.2 0.6 0.1 0.075 0.06 0.15 1.36 
350 0.2 0.6 0.1 0.1 0.06 0.2 1.30 
360 0.2 0.6 0.2 0.05 0.06 0.25 1.00 
370 0.2 0.6 0.2 0.1 0.02 0.15 1.04 
380 0.2 0.6 0.3 0.05 0.02 0.2 1.11 
390 0.2 0.6 0.3 0.075 0.02 0.25 1.05 
400 0.2 0.6 0.3 0.1 0.04 0.15 1.11 
410 0.2 0.7 0.1 0.05 0.04 0.2 1.23 
420 0.2 0.7 0.1 0.075 0.04 0.25 1.19 
430 0.2 0.7 0.1 0.1 0.06 0.15 1.23 
440 0.2 0.7 0.2 0.05 0.06 0.2 0.88 
450 0.2 0.7 0.2 0.075 0.06 0.25 0.83 
460 0.2 0.7 0.3 0.05 0.02 0.15 0.95 
470 0.2 0.7 0.3 0.075 0.02 0.2 0.92 
480 0.2 0.7 0.3 0.1 0.02 0.25 0.90 
490 0.3 0.5 0.1 0.05 0.04 0.15 1.13 
500 0.3 0.5 0.1 0.075 0.04 0.2 1.91 
510 0.3 0.5 0.1 0.1 0.04 0.25 0.96 
520 0.3 0.5 0.2 0.05 0.06 0.15 1.18 
530 0.3 0.5 0.2 0.075 0.06 0.2 2.03 
540 0.3 0.5 0.2 0.1 0.06 0.25 0.98 
550 0.3 0.5 0.3 0.075 0.02 0.15 1.68 
560 0.3 0.5 0.3 0.1 0.02 0.2 1.62 
570 0.3 0.6 0.1 0.05 0.02 0.25 0.87 
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Iterations dv-d1 dv-d2 dv-d3 dv-fin-length dv-fin-thickness dv-fin-depth DLSM 
580 0.3 0.6 0.1 0.075 0.04 0.15 0.91 
590 0.3 0.6 0.1 0.1 0.04 0.2 0.86 
600 0.3 0.6 0.2 0.05 0.04 0.25 0.89 
610 0.3 0.6 0.2 0.075 0.06 0.15 0.93 
620 0.3 0.6 0.2 0.1 0.06 0.2 0.88 
630 0.3 0.6 0.3 0.05 0.06 0.25 1.35 
640 0.3 0.6 0.3 0.1 0.02 0.15 1.39 
650 0.3 0.7 0.1 0.05 0.02 0.2 0.77 
660 0.3 0.7 0.1 0.075 0.02 0.25 0.74 
670 0.3 0.7 0.1 0.1 0.04 0.15 0.78 
680 0.3 0.7 0.2 0.05 0.04 0.2 0.76 
690 0.3 0.7 0.2 0.075 0.04 0.25 0.72 
700 0.3 0.7 0.2 0.1 0.06 0.15 0.77 
702 0.3 0.7 0.2 0.1 0.06 0.25 0.69 
710 0.3 0.7 0.3 0.05 0.06 0.2 1.19 
720 0.3 0.7 0.3 0.075 0.06 0.25 1.14 
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APPENDIX B: STAGE #2 – DESIGN OPTIMIZATION 
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B-1     Appendix Overview 

 Contained in this appendix are the optimization results from three separate solid 

rocket motor design optimizations performed in the second stage of the ballistic 

optimization strategy described in this paper.  Solid rocket motor grain designs were 

optimized using genetic algorithms such that the thrust product of the designs performed 

better with respect to given thrust-time requirements.  The design optimization results are 

presented in plotted and tabular form.  The following lists the contents of each section in 

this appendix. 

   

Section B-2 contains the optimization responses represented in plotted form.  

Section B-3 contains the tabular optimization results for the Multi-cylinder grain. 

Section B-4 contains the tabular optimization results for two Star grains. 

Section B-5 contains the tabular optimization results for the Complex grain. 
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B-2     Optimization Response Plots: Trials 1, 2, and 3 

The following three figures show the optimization responses graphed versus 

iteration for three different solid rocket motor grains: the Multi-cylinder grain, the Star 

grain, and the Complex grain.  Figure B-1 plots the optimization response for the multi-

cylinder grain design optimization.  Figure B-2 plots the optimization response for the 

star grain design optimization, and Figure B-3 plots the optimization response to the 

complex grain design optimization.   

Each plot represents the design optimization results in two series.  The series 

labeled “Raw Optimization Response” represents the raw approximation response, and 

next, the series labeled “Sorted Optimization Response” represents the optimization 

responses sorted in order of increasing design merit (a merit of zero represents the perfect 

design). 
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Multi-Cyinder Grain Optimization
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Figure B-1 – Optimization responses from the Multi-Cylinder grain design. 
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Star Grain with 4-Slots Optimization
Genetic Algorithm Response
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Star Grain with 5-Slots Optimization
Genetic Algorithm Response
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Figure B-2 – Optimization responses from (a) the Star grain design with 5-slots and (b) 
the Star grain design with 4-slots. 
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Complex Grain Optimization
Genetic Algorithm Response
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Figure B-3 – Optimization responses from the Complex grain design. 
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B-3     Optimization Responses: Optimization Trial 1 

 Table B-1 lists design optimization results from the experiment of using genetic 

optimization algorithm to optimize the multi-cylinder solid rocket motor grain design for 

thrust-time performance.  Columns labeled with the prefix dv- contain design variable 

values per iteration for the respective design variable name following the hyphen.  The 

column labeled DLSM (short for Damped Least Squares Method) contains the objective-

function responses, and the column labeled Penalty contains constraint response 

information.  A penalty value of zero (0.000) indicates the grain design satisfied all 

constraints, and a penalty value greater than zero indicates a design violated at least one 

constraint.  Note, Iteration 1220 produced the approximated design with the highest merit 

(minimum objective function response).   

 

Table B-1 – Multi-cylinder grain abridged genetic optimization response. 

Iteration dv-d1 dv-d2 dv-d3 dv-l5 dv-l6 DLSM Penalty 
10 0.269 0.568 0.247 0.651 0.354 0.654 1.223 
20 0.833 0.391 0.393 0.570 0.192 2.642 1.085 
30 0.457 0.773 0.327 0.726 0.238 1.769 1.297 
40 0.521 0.685 0.775 0.608 0.300 1.928 0.000 
50 0.498 0.403 0.795 0.554 0.448 1.235 0.225 
60 0.496 0.353 0.515 0.666 0.311 1.157 0.385 
70 0.373 0.359 0.540 0.556 0.370 0.504 0.037 
80 0.388 0.484 0.788 0.589 0.264 0.847 0.000 
90 0.229 0.378 0.743 0.677 0.294 0.439 0.000 
100 0.634 0.696 0.610 0.845 0.326 2.270 0.138 
110 0.150 0.314 0.900 0.594 0.450 0.863 0.000 
120 0.472 0.415 0.817 0.630 0.221 0.970 0.130 
130 0.162 0.292 0.851 0.883 0.446 0.739 0.000 
140 0.360 0.375 0.288 0.833 0.215 0.601 0.287 
150 0.333 0.297 0.484 0.832 0.356 0.293 0.115 
160 0.233 0.328 0.732 0.672 0.331 0.255 0.000 
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Iteration dv-d1 dv-d2 dv-d3 dv-l5 dv-l6 DLSM Penalty 
170 0.387 0.363 0.571 0.557 0.361 0.567 0.062 
180 0.408 0.900 0.900 0.500 0.100 0.988 0.000 
190 0.153 0.273 0.704 0.684 0.218 0.206 0.000 
200 0.250 0.305 0.591 0.724 0.232 0.063 0.000 
210 0.206 0.361 0.729 0.654 0.332 0.354 0.000 
220 0.202 0.369 0.821 0.706 0.418 0.523 0.000 
230 0.151 0.344 0.890 0.671 0.413 0.581 0.000 
240 0.151 0.210 0.712 0.752 0.344 0.477 0.000 
250 0.433 0.309 0.558 0.758 0.376 0.789 0.381 
260 0.196 0.329 0.841 0.779 0.288 0.259 0.000 
270 0.210 0.339 0.582 0.765 0.235 0.297 0.000 
280 0.150 0.272 0.661 0.655 0.229 0.150 0.000 
290 0.272 0.443 0.694 0.642 0.323 0.722 0.000 
300 0.169 0.353 0.636 0.627 0.310 0.238 0.000 
310 0.150 0.263 0.640 0.735 0.247 0.157 0.000 
320 0.150 0.228 0.543 0.767 0.178 0.476 0.000 
330 0.194 0.252 0.689 0.656 0.207 0.254 0.000 
340 0.166 0.265 0.790 0.871 0.189 0.307 0.000 
350 0.194 0.311 0.792 0.668 0.178 0.169 0.000 
360 0.156 0.240 0.530 0.794 0.166 0.435 0.000 
370 0.196 0.338 0.900 0.685 0.305 0.298 0.000 
380 0.180 0.382 0.683 0.618 0.260 0.353 0.000 
390 0.150 0.242 0.587 0.794 0.195 0.280 0.000 
400 0.153 0.350 0.665 0.598 0.264 0.158 0.000 
410 0.220 0.297 0.637 0.700 0.237 0.082 0.000 
420 0.297 0.295 0.564 0.755 0.227 0.119 0.007 
430 0.178 0.299 0.648 0.634 0.225 0.076 0.000 
440 0.253 0.310 0.596 0.711 0.241 0.067 0.000 
450 0.150 0.347 0.730 0.695 0.212 0.275 0.000 
460 0.256 0.303 0.632 0.648 0.259 0.062 0.000 
470 0.239 0.301 0.598 0.540 0.212 0.047 0.000 
480 0.220 0.312 0.633 0.694 0.273 0.071 0.000 
490 0.196 0.297 0.658 0.668 0.226 0.097 0.000 
500 0.220 0.305 0.616 0.701 0.238 0.048 0.000 
510 0.195 0.318 0.626 0.695 0.234 0.108 0.000 
520 0.157 0.284 0.635 0.715 0.255 0.086 0.000 
530 0.193 0.304 0.630 0.662 0.239 0.043 0.000 
540 0.179 0.313 0.662 0.538 0.204 0.055 0.000 
550 0.201 0.300 0.592 0.679 0.228 0.048 0.000 
560 0.241 0.312 0.615 0.668 0.261 0.047 0.000 
570 0.191 0.331 0.596 0.500 0.201 0.034 0.000 
580 0.217 0.299 0.619 0.706 0.229 0.066 0.000 
590 0.243 0.289 0.578 0.678 0.252 0.080 0.000 
600 0.223 0.316 0.610 0.579 0.220 0.026 0.000 
610 0.202 0.304 0.609 0.559 0.215 0.017 0.000 
620 0.243 0.314 0.597 0.661 0.235 0.055 0.000 
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Iteration dv-d1 dv-d2 dv-d3 dv-l5 dv-l6 DLSM Penalty 
630 0.217 0.302 0.606 0.621 0.233 0.021 0.000 
640 0.258 0.323 0.628 0.666 0.263 0.112 0.000 
650 0.226 0.296 0.602 0.667 0.223 0.061 0.000 
660 0.184 0.290 0.619 0.500 0.198 0.076 0.000 
670 0.216 0.293 0.606 0.573 0.216 0.055 0.000 
680 0.200 0.337 0.592 0.519 0.204 0.074 0.000 
690 0.174 0.276 0.631 0.603 0.214 0.118 0.000 
700 0.195 0.285 0.584 0.500 0.207 0.098 0.000 
710 0.217 0.294 0.633 0.584 0.228 0.059 0.000 
720 0.210 0.295 0.607 0.650 0.216 0.059 0.000 
730 0.230 0.321 0.619 0.541 0.210 0.030 0.000 
740 0.169 0.330 0.635 0.512 0.209 0.036 0.000 
750 0.290 0.271 0.544 0.733 0.257 0.135 0.064 
760 0.246 0.308 0.617 0.549 0.202 0.041 0.000 
770 0.224 0.312 0.636 0.500 0.200 0.067 0.000 
780 0.267 0.294 0.620 0.607 0.248 0.082 0.000 
790 0.190 0.323 0.603 0.545 0.205 0.025 0.000 
800 0.213 0.296 0.600 0.603 0.227 0.051 0.000 
810 0.150 0.303 0.590 0.500 0.235 0.072 0.000 
820 0.223 0.321 0.632 0.500 0.205 0.024 0.000 
830 0.248 0.336 0.619 0.500 0.204 0.076 0.000 
840 0.210 0.310 0.621 0.561 0.210 0.020 0.000 
850 0.231 0.318 0.611 0.525 0.217 0.021 0.000 
860 0.212 0.333 0.588 0.560 0.227 0.042 0.000 
870 0.205 0.284 0.596 0.584 0.227 0.064 0.000 
880 0.212 0.306 0.634 0.539 0.217 0.033 0.000 
890 0.222 0.300 0.606 0.500 0.212 0.029 0.000 
900 0.206 0.308 0.590 0.583 0.232 0.026 0.000 
910 0.203 0.303 0.618 0.559 0.218 0.020 0.000 
920 0.196 0.310 0.611 0.529 0.209 0.019 0.000 
930 0.209 0.298 0.585 0.570 0.223 0.066 0.000 
940 0.219 0.332 0.636 0.576 0.207 0.068 0.000 
950 0.212 0.302 0.622 0.500 0.220 0.021 0.000 
960 0.225 0.316 0.612 0.518 0.205 0.027 0.000 
970 0.217 0.284 0.604 0.558 0.223 0.061 0.000 
980 0.206 0.311 0.596 0.598 0.228 0.030 0.000 
990 0.204 0.304 0.613 0.563 0.211 0.018 0.000 

1,000 0.222 0.311 0.600 0.668 0.262 0.041 0.000 
1,010 0.185 0.314 0.653 0.500 0.223 0.059 0.000 
1,020 0.217 0.289 0.607 0.548 0.213 0.065 0.000 
1,030 0.199 0.320 0.626 0.500 0.203 0.015 0.000 
1,040 0.197 0.297 0.619 0.552 0.189 0.066 0.000 
1,050 0.179 0.316 0.614 0.565 0.192 0.076 0.000 
1,060 0.202 0.330 0.629 0.522 0.220 0.022 0.000 
1,070 0.216 0.306 0.633 0.542 0.217 0.033 0.000 
1,080 0.202 0.326 0.623 0.518 0.213 0.016 0.000 
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Iteration dv-d1 dv-d2 dv-d3 dv-l5 dv-l6 DLSM Penalty 
1,090 0.199 0.339 0.640 0.500 0.187 0.131 0.000 
1,100 0.228 0.314 0.622 0.521 0.210 0.026 0.000 
1,110 0.204 0.341 0.629 0.521 0.219 0.064 0.000 
1,120 0.200 0.315 0.628 0.545 0.214 0.018 0.000 
1,130 0.210 0.286 0.654 0.510 0.211 0.093 0.000 
1,140 0.244 0.330 0.644 0.500 0.221 0.058 0.000 
1,150 0.217 0.304 0.627 0.500 0.221 0.025 0.000 
1,160 0.213 0.313 0.616 0.508 0.215 0.013 0.000 
1,170 0.199 0.320 0.623 0.515 0.222 0.014 0.000 
1,180 0.202 0.334 0.630 0.500 0.226 0.045 0.000 
1,190 0.188 0.327 0.614 0.521 0.227 0.013 0.000 
1,200 0.199 0.328 0.630 0.501 0.196 0.087 0.000 
1,210 0.213 0.308 0.643 0.500 0.214 0.033 0.000 
1,220 0.200 0.319 0.610 0.529 0.249 0.011 0.000 
1,230 0.180 0.325 0.599 0.500 0.224 0.031 0.000 
1,240 0.209 0.325 0.596 0.500 0.239 0.015 0.000 
1,247 0.206 0.312 0.607 0.529 0.245 0.009 0.000 
1,250 0.196 0.302 0.567 0.537 0.193 0.077 0.000 
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B-4     Optimization Responses: Optimization Trial 2 

 Table B-2 and Table B-3lists design optimization results generated in 

Optimization Trial #2 where stage 2 of the ballistic optimization strategy was used to 

optimize two star solid rocket motor grain designs: one grain design employing 4 slots 

and one grain design employing 5 slots.  The second stage of the ballistic optimization 

algorithm use the the genetic algorithm to optimize the star solid rocket motor grain 

designs for thrust-time performance.   

 Columns labeled with the prefix dv- contain design variable values per iteration 

for the respective design variable name following the hyphen.  The column labeled 

DLSM (short for Damped Least Squares Method) contains the objective-function response 

per iteration.  This optimization problem was unconstrained.  Note, Iteration 620 

produced the approximated design with the highest merit (minimum objective function 

response).   

 

Table B-2 – Every tenth optimization response for the Star grain design with 4-slots. 

Iterations dv-fin-depth dv-fin-thickness dv-number-of-fins DLSM Response 
1 0.379 0.054 4 1.036 

10 0.191 0.015 4 1.841 
20 0.227 0.091 4 1.494 
30 0.175 0.080 4 1.029 
40 0.216 0.098 4 1.664 
50 0.230 0.018 4 1.682 
60 0.238 0.042 4 1.281 
70 0.329 0.080 4 0.975 
80 0.286 0.084 4 1.009 
90 0.386 0.070 4 0.977 

100 0.386 0.074 4 0.965 
110 0.389 0.087 4 1.008 



 143

Iterations dv-fin-depth dv-fin-thickness dv-number-of-fins DLSM Response 
120 0.282 0.081 4 0.985 
130 0.388 0.048 4 1.097 
140 0.400 0.061 4 0.994 
150 0.398 0.055 4 1.032 
160 0.184 0.060 4 1.291 
170 0.291 0.061 4 0.994 
180 0.344 0.096 4 1.091 
190 0.382 0.076 4 0.975 
200 0.080 0.069 4 8.925 
210 0.317 0.067 4 0.970 
220 0.364 0.072 4 0.960 
230 0.358 0.071 4 0.979 
240 0.393 0.065 4 0.968 
250 0.347 0.077 4 0.980 
260 0.362 0.070 4 0.977 
270 0.080 0.059 4 9.235 
280 0.400 0.073 4 0.962 
290 0.400 0.080 4 0.975 
300 0.362 0.077 4 0.984 
310 0.328 0.064 4 0.993 
320 0.358 0.082 4 0.989 
330 0.303 0.066 4 0.970 
340 0.286 0.072 4 0.959 
350 0.340 0.077 4 0.983 
360 0.359 0.074 4 0.965 
370 0.292 0.067 4 0.971 
380 0.365 0.074 4 0.969 
390 0.400 0.083 4 0.998 
400 0.400 0.073 4 0.963 
410 0.384 0.072 4 0.959 
420 0.327 0.070 4 0.978 
430 0.400 0.070 4 0.978 
440 0.334 0.075 4 0.971 
450 0.299 0.070 4 0.977 
460 0.354 0.070 4 0.976 
470 0.387 0.071 4 0.955 
480 0.333 0.070 4 0.978 
490 0.370 0.072 4 0.960 
500 0.384 0.072 4 0.959 
510 0.340 0.071 4 0.956 
520 0.390 0.065 4 0.968 
530 0.350 0.072 4 0.960 
540 0.388 0.071 4 0.979 
550 0.331 0.071 4 0.979 
560 0.394 0.072 4 0.958 
570 0.080 0.058 4 9.252 



 144

Iterations dv-fin-depth dv-fin-thickness dv-number-of-fins DLSM Response 
580 0.362 0.073 4 0.962 
590 0.360 0.072 4 0.957 
600 0.379 0.069 4 0.974 
610 0.194 0.063 4 1.409 
620 0.341 0.073 4 0.961 
621 0.342 0.072 4 0.960 
622 0.381 0.074 4 0.965 
623 0.368 0.073 4 0.963 
624 0.350 0.071 4 0.980 
625 0.369 0.073 4 0.961 

 

 

Table B-3 – Every tenth optimization response for the Star grain design with 5-slots. 

Iterations dv-fin-depth dv-fin-thickness dv-number-of-fins DLSM Response 
1 0.080 0.081 5 0.367 

10 0.319 0.017 5 0.197 
20 0.133 0.074 5 0.148 
30 0.274 0.024 5 0.242 
40 0.177 0.083 5 0.948 
50 0.147 0.058 5 0.238 
60 0.215 0.056 5 0.562 
70 0.095 0.073 5 0.150 
80 0.180 0.068 5 0.730 
90 0.103 0.062 5 0.086 

100 0.096 0.064 5 0.129 
110 0.128 0.029 5 0.284 
120 0.149 0.100 5 0.133 
130 0.088 0.096 5 0.272 
140 0.104 0.015 5 0.091 
150 0.227 0.042 5 0.409 
160 0.142 0.086 5 0.113 
170 0.099 0.082 5 0.129 
180 0.106 0.091 5 0.088 
190 0.145 0.100 5 0.102 
200 0.080 0.015 5 0.209 
210 0.116 0.080 5 0.070 
220 0.107 0.057 5 0.075 
230 0.103 0.065 5 0.085 
240 0.118 0.069 5 0.089 
250 0.193 0.100 5 1.599 
260 0.121 0.072 5 0.095 
270 0.132 0.100 5 0.065 
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Iterations dv-fin-depth dv-fin-thickness dv-number-of-fins DLSM Response 
280 0.140 0.095 5 0.082 
290 0.102 0.083 5 0.108 
300 0.128 0.090 5 0.087 
310 0.086 0.023 5 0.157 
320 0.115 0.100 5 0.064 
330 0.110 0.077 5 0.070 
340 0.146 0.100 5 0.107 
350 0.132 0.095 5 0.077 
360 0.100 0.038 5 0.086 
370 0.103 0.048 5 0.079 
380 0.107 0.057 5 0.074 
390 0.161 0.100 5 0.416 
400 0.120 0.099 5 0.067 
410 0.136 0.099 5 0.066 
420 0.130 0.100 5 0.063 
430 0.130 0.099 5 0.066 
440 0.127 0.100 5 0.062 
450 0.136 0.100 5 0.063 
460 0.135 0.098 5 0.071 
470 0.128 0.100 5 0.062 
480 0.129 0.099 5 0.064 
490 0.124 0.100 5 0.064 
500 0.121 0.099 5 0.066 
510 0.138 0.100 5 0.064 
520 0.138 0.099 5 0.067 
530 0.131 0.100 5 0.065 
540 0.125 0.100 5 0.063 
550 0.127 0.098 5 0.066 
560 0.127 0.100 5 0.062 
570 0.134 0.100 5 0.065 
580 0.125 0.100 5 0.063 
590 0.129 0.100 5 0.062 
600 0.130 0.100 5 0.064 
610 0.130 0.100 5 0.064 
620 0.127 0.100 5 0.062 
621 0.126 0.100 5 0.063 
622 0.141 0.100 5 0.075 
623 0.127 0.099 5 0.064 
624 0.128 0.098 5 0.065 
625 0.129 0.100 5 0.063 
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B-5     Optimization Responses: Optimization Trial 3 

 Table B-4 lists design optimization results from the experiment of using genetic 

optimization algorithm to optimize the complex solid rocket motor grain design for 

thrust-time performance.  Columns labeled with the prefix dv- contain design variable 

values per iteration for the respective design variable name following the hyphen.  The 

column labeled DLSM (short for Damped Least Squares Method) contains the objective-

function responses.  This optimization problem was unconstrained.  Note, Iteration 970 

produced the approximated design with the highest merit (minimum objective function 

response).   

 

Table B-4 – Complex grain abridged genetic optimization response. 

Iterations dv-d1 dv-d2 dv-d3 dv-fin-length dv-fin-depth DLSM 
1 0.150 0.813 0.220 0.123 0.256 1.135 

10 0.374 0.613 0.261 0.087 0.299 1.723 
20 0.200 0.557 0.201 0.085 0.299 1.298 
30 0.332 0.757 0.237 0.107 0.153 1.320 
40 0.241 0.582 0.201 0.055 0.208 1.418 
50 0.296 0.692 0.252 0.093 0.288 1.313 
60 0.150 0.850 0.300 0.059 0.350 1.247 
70 0.447 0.842 0.147 0.050 0.186 0.777 
80 0.336 0.627 0.112 0.071 0.153 1.143 
90 0.369 0.803 0.207 0.070 0.183 0.914 

100 0.322 0.850 0.144 0.140 0.199 0.842 
110 0.318 0.842 0.147 0.127 0.194 0.838 
120 0.341 0.840 0.130 0.096 0.271 0.769 
130 0.349 0.808 0.205 0.079 0.191 0.919 
140 0.401 0.850 0.128 0.072 0.181 0.786 
150 0.421 0.793 0.175 0.079 0.160 0.766 
160 0.285 0.794 0.175 0.100 0.261 0.801 
170 0.335 0.839 0.138 0.095 0.265 0.740 
180 0.342 0.829 0.178 0.106 0.212 0.750 
190 0.230 0.819 0.197 0.101 0.321 0.750 
200 0.310 0.800 0.170 0.128 0.254 0.719 
210 0.405 0.793 0.189 0.061 0.188 0.729 
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Iterations dv-d1 dv-d2 dv-d3 dv-fin-length dv-fin-depth DLSM 
220 0.294 0.846 0.166 0.120 0.206 0.877 
230 0.349 0.832 0.180 0.132 0.242 0.701 
240 0.374 0.811 0.174 0.127 0.227 0.711 
250 0.376 0.808 0.184 0.092 0.208 0.689 
260 0.267 0.850 0.194 0.150 0.237 0.684 
270 0.353 0.837 0.149 0.130 0.259 0.730 
280 0.424 0.808 0.130 0.150 0.201 0.798 
290 0.343 0.825 0.144 0.113 0.264 0.752 
300 0.401 0.788 0.228 0.079 0.151 1.160 
310 0.404 0.797 0.197 0.082 0.187 0.749 
320 0.268 0.842 0.188 0.129 0.263 0.620 
330 0.252 0.835 0.185 0.106 0.298 0.645 
340 0.382 0.812 0.162 0.140 0.273 0.717 
350 0.347 0.827 0.133 0.112 0.274 0.771 
360 0.178 0.850 0.198 0.079 0.350 1.006 
370 0.324 0.836 0.171 0.128 0.281 0.642 
380 0.394 0.817 0.186 0.114 0.150 0.704 
390 0.283 0.834 0.185 0.122 0.276 0.597 
400 0.268 0.835 0.177 0.106 0.297 0.759 
410 0.301 0.832 0.180 0.116 0.276 0.718 
420 0.296 0.832 0.187 0.122 0.284 0.588 
430 0.335 0.818 0.164 0.133 0.311 0.718 
440 0.397 0.828 0.167 0.150 0.316 0.638 
450 0.294 0.826 0.189 0.120 0.257 0.634 
460 0.291 0.828 0.186 0.126 0.237 0.638 
470 0.282 0.836 0.184 0.122 0.277 0.588 
480 0.296 0.843 0.191 0.122 0.316 0.579 
490 0.286 0.841 0.192 0.119 0.326 0.583 
500 0.279 0.835 0.187 0.127 0.318 0.577 
510 0.295 0.843 0.186 0.112 0.350 0.552 
520 0.298 0.850 0.188 0.115 0.343 0.594 
530 0.299 0.834 0.189 0.116 0.343 0.574 
540 0.295 0.841 0.183 0.118 0.341 0.698 
550 0.325 0.831 0.191 0.123 0.295 0.587 
560 0.304 0.827 0.186 0.122 0.280 0.587 
570 0.296 0.838 0.186 0.108 0.347 0.559 
580 0.328 0.833 0.182 0.123 0.280 0.693 
590 0.325 0.845 0.180 0.129 0.262 0.681 
600 0.304 0.838 0.188 0.115 0.347 0.563 
610 0.288 0.845 0.184 0.122 0.322 0.553 
620 0.311 0.835 0.187 0.123 0.310 0.560 
630 0.296 0.845 0.187 0.122 0.319 0.558 
640 0.302 0.831 0.189 0.118 0.343 0.578 
650 0.289 0.846 0.186 0.107 0.350 0.558 
660 0.299 0.843 0.182 0.115 0.345 0.687 
670 0.297 0.844 0.186 0.116 0.348 0.555 
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Iterations dv-d1 dv-d2 dv-d3 dv-fin-length dv-fin-depth DLSM 
680 0.313 0.844 0.184 0.107 0.350 0.540 
690 0.282 0.847 0.182 0.119 0.338 0.716 
700 0.292 0.844 0.191 0.104 0.350 0.575 
710 0.297 0.839 0.186 0.118 0.344 0.557 
720 0.301 0.848 0.186 0.120 0.333 0.555 
730 0.290 0.850 0.185 0.101 0.350 0.594 
740 0.296 0.836 0.185 0.118 0.344 0.555 
750 0.301 0.844 0.186 0.115 0.347 0.553 
760 0.304 0.849 0.182 0.119 0.333 0.685 
770 0.313 0.842 0.188 0.110 0.350 0.552 
780 0.321 0.848 0.182 0.101 0.346 0.666 
790 0.305 0.848 0.182 0.110 0.347 0.680 
800 0.304 0.840 0.187 0.116 0.350 0.552 
810 0.311 0.842 0.191 0.107 0.348 0.566 
820 0.302 0.847 0.193 0.086 0.350 0.586 
830 0.299 0.844 0.186 0.111 0.346 0.555 
840 0.305 0.843 0.184 0.114 0.350 0.546 
850 0.325 0.850 0.181 0.104 0.350 0.694 
860 0.309 0.842 0.181 0.115 0.345 0.672 
870 0.314 0.850 0.186 0.109 0.346 0.585 
880 0.313 0.834 0.181 0.120 0.340 0.681 
890 0.307 0.844 0.183 0.113 0.349 0.683 
900 0.313 0.844 0.186 0.113 0.344 0.547 
910 0.312 0.833 0.184 0.114 0.350 0.555 
920 0.341 0.844 0.186 0.120 0.349 0.547 
930 0.344 0.850 0.187 0.116 0.346 0.586 
940 0.317 0.850 0.181 0.099 0.346 0.668 
950 0.313 0.842 0.181 0.106 0.348 0.670 
960 0.322 0.841 0.184 0.115 0.347 0.540 
970 0.264 0.822 0.186 0.105 0.341 0.613 
980 0.313 0.837 0.184 0.116 0.344 0.545 
990 0.310 0.844 0.184 0.105 0.344 0.543 
1000 0.322 0.838 0.184 0.119 0.350 0.540 
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APPENDIX C: STAGE #3 – HIGH-FIDELITY OPTIMIZATION 
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C-1     Appendix Overview 

 Contained in this appendix are the high-fidelity optimization results from three 

separate solid rocket motor high-fidelity (HF) design optimization trials performed in the 

third stage of the ballistic optimization strategy described in this paper.  High fidelity 

solid rocket motor grain designs optimization was carried out using the BFGS gradient 

based optimization algorithm to improve the thrust-time product the respective solid 

rocket motor grains.  The design optimization results are presented in plotted and tabular 

form.  The following lists the contents of each section in this appendix. 

   

Section C-2 contains the high-fidelity optimization responses represented in plotted form.

Section C-3 contains the tabular HF optimization results for the Multi-cylinder grain. 

Section C-4 contains the tabular HF optimization results for the CASTOR1 grain. 

Section C-5 contains the tabular HF optimization results for the Complex grain. 
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C-2     High-Fidelity Optimization Response Plots: Trials 1, 2, and 3 

The following three figures show high-fidelity optimization responses graphed 

versus iteration for three different solid rocket motor grains: the Multi-cylinder grain, the 

Star grain, and the Complex grain.  Figure C-1 plots the high-fidelity optimization 

response of the multi-cylinder grain design optimization.  Figure C-2 plots the high-

fidelity optimization response of the star grain design optimization, and Figure C-3 plots 

the high-fidelity optimization response of the complex grain design optimization.   

Each plot represents the design optimization results in two series.  The series 

labeled “Raw Optimization Response” represents the raw approximation response, and 

next, the series labeled “Sorted Optimization Response” represents the optimization 

responses sorted in order of increasing design merit (a merit of zero represents the perfect 

design). 
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Figure C-1 – Optimization Response Plot of the Multi-Cylinder Grain Design. 
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Star Grain High-Fidelity Optimization
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Figure C-2 – Optimization Response Plot of the Star Grain Design. 
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Complex Grain High-Fidelity Optimization
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Figure C-3 – Optimization Response Plot of the Complex Grain Design. 
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C-3     High-Fidelity Opt. Responses: Optimization Trial 1 

 Table C-1 lists design high-fidelity optimization results from the experiment of 

using the BFGS gradient based algorithm to optimize the multi-cylinder solid rocket 

motor grain design for thrust-time performance.  Columns labeled with the prefix dv- 

contain design variable values per iteration for the respective design variable name 

following the hyphen.  The column labeled DLSM (short for Damped Least Squares 

Method) contains the objective-function responses.  Note, Iteration 115 produced the 

approximated design with the highest merit (minimum objective function response).   

 

Table C-1 – Multi-cylinder grain high-fidelity optimization response. 

Iterations dv-d1 dv-d2 dv-d3 dv-l5 dv-l6 DLSM 
1 0.19647 0.30002 0.56678 0.53671 0.1941 1.00019 
2 0.19667 0.30002 0.56678 0.53671 0.1941 0.99939 
3 0.19647 0.30032 0.56678 0.53671 0.1941 1.00143 
4 0.19647 0.30002 0.56734 0.53671 0.1941 0.99826 
5 0.19647 0.30002 0.56678 0.53724 0.1941 1.00031 
6 0.19647 0.30002 0.56678 0.53671 0.1943 0.99763 
7 0.19832 0.29813 0.56833 0.5366 0.20012 0.77014 
8 0.20132 0.29507 0.57084 0.53643 0.20985 0.71607 
9 0.20916 0.28706 0.57741 0.53597 0.23533 0.56658 

10 0.22969 0.2661 0.59461 0.53479 0.30203 0.55246 
11 0.28343 0.21121 0.63965 0.53169 0.45 8.59756 
12 0.22067 0.2753 0.58706 0.53531 0.27273 0.27294 
13 0.22089 0.2753 0.58706 0.53531 0.27273 0.27275 
14 0.22067 0.27558 0.58706 0.53531 0.27273 0.27212 
15 0.22067 0.2753 0.58764 0.53531 0.27273 0.27336 
16 0.22067 0.2753 0.58706 0.53584 0.27273 0.27274 
17 0.22067 0.2753 0.58706 0.53531 0.27301 0.27462 
18 0.23198 0.31338 0.5779 0.54019 0.1941 1.01443 
19 0.22324 0.28394 0.58498 0.53642 0.2549 0.13987 
20 0.22532 0.29096 0.58329 0.53732 0.24039 0.4045 
21 0.22243 0.28121 0.58563 0.53607 0.26053 0.19015 
22 0.22346 0.28394 0.58498 0.53642 0.2549 0.13976 
23 0.22324 0.28422 0.58498 0.53642 0.2549 0.13938 
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Iterations dv-d1 dv-d2 dv-d3 dv-l5 dv-l6 DLSM 
24 0.22324 0.28394 0.58556 0.53642 0.2549 0.14027 
25 0.22324 0.28394 0.58498 0.53695 0.2549 0.13975 
26 0.22324 0.28394 0.58498 0.53642 0.25515 0.14089 
27 0.2201 0.27213 0.56714 0.53555 0.24659 0.69764 
28 0.22317 0.2837 0.58462 0.5364 0.25473 0.13938 
29 0.22274 0.28205 0.58213 0.53628 0.25357 0.45057 
30 0.2232 0.28381 0.58478 0.53641 0.25481 0.13961 
31 0.2234 0.2837 0.58462 0.5364 0.25473 0.13928 
32 0.22317 0.28399 0.58462 0.5364 0.25473 0.13891 
33 0.22317 0.2837 0.58521 0.5364 0.25473 0.1398 
34 0.22317 0.2837 0.58462 0.53694 0.25473 0.13926 
35 0.22317 0.2837 0.58462 0.5364 0.25499 0.1404 
36 0.22379 0.28366 0.58362 0.53651 0.25474 0.13844 
37 0.22478 0.28359 0.582 0.53668 0.25475 0.40309 
38 0.2236 0.28368 0.58394 0.53647 0.25474 0.13874 
39 0.22401 0.28366 0.58362 0.53651 0.25474 0.13833 
40 0.22379 0.28395 0.58362 0.53651 0.25474 0.13797 
41 0.22379 0.28366 0.58421 0.53651 0.25474 0.13886 
42 0.22379 0.28366 0.58362 0.53704 0.25474 0.13832 
43 0.22379 0.28366 0.58362 0.53651 0.25499 0.13946 
44 0.22433 0.28329 0.58342 0.53751 0.25448 0.15803 
45 0.2238 0.28365 0.58362 0.53653 0.25473 0.13841 
46 0.22389 0.28359 0.58358 0.5367 0.25469 0.13823 
47 0.22412 0.28359 0.58358 0.5367 0.25469 0.13813 
48 0.22389 0.28388 0.58358 0.5367 0.25469 0.13777 
49 0.22389 0.28359 0.58417 0.5367 0.25469 0.13866 
50 0.22389 0.28359 0.58358 0.53723 0.25469 0.13812 
51 0.22389 0.28359 0.58358 0.5367 0.25494 0.13926 
52 0.22489 0.28288 0.58386 0.53665 0.25438 0.15853 
53 0.2239 0.28359 0.58359 0.5367 0.25469 0.13823 
54 0.22412 0.28359 0.58359 0.5367 0.25469 0.13813 
55 0.2239 0.28387 0.58359 0.5367 0.25469 0.13777 
56 0.2239 0.28359 0.58417 0.5367 0.25469 0.13866 
57 0.2239 0.28359 0.58359 0.53723 0.25469 0.13812 
58 0.2239 0.28359 0.58359 0.5367 0.25494 0.13926 
59 0.22402 0.28399 0.58341 0.53675 0.25369 0.13348 
60 0.22421 0.28465 0.58311 0.53684 0.25207 0.40027 
61 0.22399 0.28389 0.58345 0.53674 0.25394 0.13465 
62 0.22424 0.28399 0.58341 0.53675 0.25369 0.13339 
63 0.22402 0.28428 0.58341 0.53675 0.25369 0.13306 
64 0.22402 0.28399 0.58399 0.53675 0.25369 0.13392 
65 0.22402 0.28399 0.58341 0.53729 0.25369 0.13338 
66 0.22402 0.28399 0.58341 0.53675 0.25394 0.13447 
67 0.22412 0.28438 0.58321 0.5368 0.25269 0.39946 
68 0.22402 0.284 0.5834 0.53675 0.25368 0.13345 
69 0.22402 0.28401 0.5834 0.53675 0.25364 0.13327 



 157

Iterations dv-d1 dv-d2 dv-d3 dv-l5 dv-l6 DLSM 
70 0.22425 0.28401 0.5834 0.53675 0.25364 0.13317 
71 0.22402 0.28429 0.5834 0.53675 0.25364 0.13285 
72 0.22402 0.28401 0.58398 0.53675 0.25364 0.1337 
73 0.22402 0.28401 0.5834 0.53729 0.25364 0.13316 
74 0.22402 0.28401 0.5834 0.53675 0.25389 0.13425 
75 0.22447 0.28501 0.58379 0.53681 0.25321 0.13025 
76 0.22521 0.28663 0.58443 0.53691 0.25251 0.12552 
77 0.22712 0.29086 0.58611 0.53716 0.25069 0.11419 
78 0.23213 0.30196 0.59051 0.53783 0.24592 0.08746 
79 0.24524 0.33099 0.60203 0.53957 0.23343 0.47314 
80 0.23281 0.30347 0.59112 0.53792 0.24527 0.08733 
81 0.23305 0.30347 0.59112 0.53792 0.24527 0.08733 
82 0.23281 0.30378 0.59112 0.53792 0.24527 0.08744 
83 0.23281 0.30347 0.59171 0.53792 0.24527 0.08787 
84 0.23281 0.30347 0.59112 0.53846 0.24527 0.08737 
85 0.23281 0.30347 0.59112 0.53792 0.24551 0.08765 
86 0.25228 0.30338 0.58076 0.53113 0.24701 0.31103 
87 0.23314 0.30347 0.59094 0.5378 0.2453 0.0872 
88 0.23531 0.30346 0.58979 0.53705 0.24549 0.09244 
89 0.23316 0.30347 0.59093 0.5378 0.2453 0.08719 
90 0.23339 0.30347 0.59093 0.5378 0.2453 0.09331 
91 0.23316 0.30378 0.59093 0.5378 0.2453 0.0873 
92 0.23316 0.30347 0.59152 0.5378 0.2453 0.08772 
93 0.23316 0.30347 0.59093 0.53834 0.2453 0.08723 
94 0.23316 0.30347 0.59093 0.5378 0.24554 0.08752 
95 0.23315 0.30413 0.58993 0.53689 0.24563 0.08688 
96 0.23315 0.30519 0.58832 0.53542 0.24618 0.08638 
97 0.23313 0.30797 0.58408 0.53158 0.2476 0.08506 
98 0.2331 0.31525 0.57299 0.52152 0.25133 0.30217 
99 0.23337 0.30797 0.58408 0.53158 0.2476 0.09118 
100 0.23313 0.30828 0.58408 0.53158 0.2476 0.08515 
101 0.23313 0.30797 0.58466 0.53158 0.2476 0.08557 
102 0.23313 0.30797 0.58408 0.53211 0.2476 0.08509 
103 0.23313 0.30797 0.58408 0.53158 0.24785 0.08538 
104 0.23312 0.30852 0.58301 0.52473 0.24754 0.30618 
105 0.23313 0.30797 0.58407 0.53155 0.2476 0.08506 
106 0.23337 0.30797 0.58407 0.53155 0.2476 0.09117 
107 0.23313 0.30828 0.58407 0.53155 0.2476 0.08514 
108 0.23313 0.30797 0.58466 0.53155 0.2476 0.08556 
109 0.23313 0.30797 0.58407 0.53208 0.2476 0.08509 
110 0.23313 0.30797 0.58407 0.53155 0.24785 0.08537 
111 0.23213 0.30796 0.58404 0.53155 0.24755 0.08501 
112 0.23052 0.30795 0.58399 0.53155 0.24747 0.08497 
113 0.22628 0.3079 0.58385 0.53154 0.24727 0.08504 
114 0.22969 0.30794 0.58396 0.53154 0.24743 0.08496 
115 0.22969 0.30794 0.58396 0.53154 0.24743 0.08496 
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C-4     High-Fidelity Opt. Responses: Optimization Trial 2 

 Table C-2 lists design optimization results from the experiment of using the 

BFGS gradient based algorithm to optimize the star solid rocket motor grain design for 

thrust-time performance.  Columns labeled with the prefix dv- contain design variable 

values per iteration for the respective design variable name following the hyphen.  The 

column labeled DLSM (short for Damped Least Squares Method) contains the objective-

function responses.  This optimization problem was unconstrained.  Note, Iteration 17 

produced the approximated design with the highest merit (minimum objective function 

response).   

 

Table C-2 – Star grain high-fidelity optimization response. 

Iterations dv-fin-depth dv-fin-thicknes number-of-fins DLSM 
1 0.010 0.175 5 1.000 
2 0.010 0.175 5 0.999 
3 0.010 0.175 5 1.002 
4 0.014 0.168 5 0.879 
5 0.020 0.157 5 0.636 
6 0.036 0.128 5 0.023 
7 0.079 0.100 5 0.938 
8 0.052 0.100 5 0.710 
9 0.036 0.128 5 0.023 

10 0.036 0.128 5 0.023 
11 0.031 0.155 5 0.478 
12 0.035 0.133 5 0.039 
13 0.036 0.128 5 0.023 
14 0.036 0.128 5 0.023 
15 0.034 0.140 5 0.113 
16 0.036 0.130 5 0.025 
17 0.036 0.128 5 0.023 
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C-5     High-Fidelity Opt. Responses: Optimization Trial 3 

 Table C-3 lists design optimization results from the experiment of using BFGS 

gradient based algorithm to optimize the complex solid rocket motor grain design for 

thrust-time performance.  Columns labeled with the prefix dv- contain design variable 

values per iteration for the respective design variable name following the hyphen.  The 

column labeled DLSM (short for Damped Least Squares Method) contains the objective-

function responses.  This optimization problem was unconstrained.  Note, Iteration 69 

produced the approximated design with the highest merit (minimum objective function 

response).   

 

Table C-3 – Complex grain high-fidelity optimization response. 

It’ns dv-d1 dv-d2 dv-d3 dv-l1 dv-l2 dv-l3 dv-l5 dv-l6 dv-fin-length DLSM 
1 0.3 0.7 0.1 0.1 0.4 0.8 0.06 0.06 0.100 1.000 
2 0.303 0.7 0.1 0.1 0.4 0.8 0.06 0.06 0.100 0.999 
3 0.3 0.707 0.1 0.1 0.4 0.8 0.06 0.06 0.100 0.931 
4 0.3 0.7 0.101 0.1 0.4 0.8 0.06 0.06 0.100 1.002 
5 0.3 0.7 0.1 0.101 0.4 0.8 0.06 0.06 0.100 0.997 
6 0.3 0.7 0.1 0.1 0.404 0.8 0.06 0.06 0.100 0.999 
7 0.3 0.7 0.1 0.1 0.4 0.808 0.06 0.06 0.100 1.010 
8 0.3 0.7 0.1 0.1 0.4 0.8 0.061 0.06 0.100 0.999 
9 0.3 0.7 0.1 0.1 0.4 0.8 0.06 0.061 0.100 1.000 

10 0.3 0.7 0.1 0.1 0.4 0.8 0.06 0.060 0.101 0.999 
11 0.3 0.709 0.098 0.102 0.4 0.799 0.061 0.060 0.101 0.962 
12 0.301 0.723 0.095 0.106 0.401 0.797 0.063 0.059 0.101 0.924 
13 0.303 0.76 0.087 0.115 0.402 0.792 0.068 0.058 0.104 0.840 
14 0.308 0.8 0.065 0.14 0.406 0.779 0.08 0.054 0.110 0.808 
15 0.32 0.8 0.05 0.15 0.415 0.745 0.08 0.043 0.126 0.765 
16 0.352 0.8 0.05 0.15 0.439 0.7 0.08 0.040 0.150 0.786 
17 0.327 0.8 0.05 0.15 0.42 0.727 0.08 0.04 0.135 0.763 
18 0.33 0.8 0.05 0.15 0.42 0.727 0.08 0.04 0.135 0.765 
19 0.327 0.792 0.05 0.15 0.42 0.727 0.08 0.04 0.135 0.699 
20 0.327 0.8 0.051 0.15 0.42 0.727 0.08 0.04 0.135 0.764 
21 0.327 0.8 0.05 0.149 0.42 0.727 0.08 0.04 0.135 0.764 
22 0.327 0.8 0.05 0.15 0.424 0.727 0.08 0.04 0.135 0.765 
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It’ns dv-d1 dv-d2 dv-d3 dv-l1 dv-l2 dv-l3 dv-l5 dv-l6 dv-fin-length DLSM 
23 0.327 0.8 0.05 0.15 0.42 0.734 0.08 0.04 0.135 0.764 
24 0.327 0.8 0.05 0.15 0.42 0.727 0.079 0.04 0.135 0.765 
25 0.327 0.8 0.05 0.15 0.42 0.727 0.08 0.041 0.135 0.763 
26 0.327 0.8 0.05 0.15 0.42 0.727 0.08 0.04 0.136 0.763 
27 0.302 0.6 0.05 0.15 0.394 0.719 0.08 0.04 0.140 1.164 
28 0.315 0.6 0.05 0.15 0.408 0.723 0.08 0.04 0.137 1.154 
29 0.323 0.715 0.05 0.15 0.416 0.726 0.08 0.04 0.136 0.827 
30 0.327 0.8 0.05 0.15 0.42 0.727 0.08 0.04 0.135 0.694 
31 0.33 0.8 0.05 0.15 0.42 0.727 0.08 0.04 0.135 0.695 
32 0.327 0.792 0.05 0.15 0.42 0.727 0.08 0.04 0.135 0.699 
33 0.327 0.8 0.051 0.15 0.42 0.727 0.08 0.04 0.135 0.694 
34 0.327 0.8 0.05 0.149 0.42 0.727 0.08 0.04 0.135 0.696 
35 0.327 0.8 0.05 0.15 0.424 0.727 0.08 0.04 0.135 0.695 
36 0.327 0.8 0.05 0.15 0.42 0.734 0.08 0.04 0.135 0.695 
37 0.327 0.8 0.05 0.15 0.42 0.727 0.079 0.04 0.135 0.695 
38 0.327 0.8 0.05 0.15 0.42 0.727 0.08 0.041 0.135 0.694 
39 0.327 0.8 0.05 0.15 0.42 0.727 0.08 0.04 0.136 0.694 
40 0.326 0.799 0.05 0.15 0.419 0.727 0.08 0.04 0.135 0.693 
41 0.324 0.799 0.05 0.15 0.417 0.726 0.08 0.04 0.136 0.693 
42 0.321 0.798 0.05 0.15 0.413 0.725 0.08 0.04 0.137 0.692 
43 0.311 0.796 0.05 0.15 0.402 0.72 0.08 0.04 0.141 0.704 
44 0.322 0.798 0.05 0.15 0.414 0.725 0.08 0.04 0.137 0.692 
45 0.325 0.798 0.05 0.15 0.414 0.725 0.08 0.04 0.137 0.692 
46 0.322 0.79 0.05 0.15 0.414 0.725 0.08 0.04 0.137 0.698 
47 0.322 0.798 0.051 0.15 0.414 0.725 0.08 0.04 0.137 0.693 
48 0.322 0.798 0.05 0.149 0.414 0.725 0.08 0.04 0.137 0.694 
49 0.322 0.798 0.05 0.15 0.418 0.725 0.08 0.04 0.137 0.693 
50 0.322 0.798 0.05 0.15 0.414 0.732 0.08 0.04 0.137 0.693 
51 0.322 0.798 0.05 0.15 0.414 0.725 0.079 0.04 0.137 0.694 
52 0.322 0.798 0.05 0.15 0.414 0.725 0.08 0.041 0.137 0.692 
53 0.322 0.798 0.05 0.15 0.414 0.725 0.08 0.04 0.138 0.692 
54 0.322 0.8 0.05 0.15 0.413 0.724 0.08 0.04 0.137 0.761 
55 0.322 0.799 0.05 0.15 0.414 0.725 0.08 0.04 0.137 0.692 
56 0.322 0.799 0.05 0.15 0.414 0.725 0.08 0.04 0.137 0.692 
57 0.325 0.799 0.05 0.15 0.414 0.725 0.08 0.04 0.137 0.692 
58 0.322 0.791 0.05 0.15 0.414 0.725 0.08 0.04 0.137 0.698 
59 0.322 0.799 0.051 0.15 0.414 0.725 0.08 0.04 0.137 0.693 
60 0.322 0.799 0.05 0.149 0.414 0.725 0.08 0.04 0.137 0.694 
61 0.322 0.799 0.05 0.15 0.418 0.725 0.08 0.04 0.137 0.693 
62 0.322 0.799 0.05 0.15 0.414 0.732 0.08 0.04 0.137 0.693 
63 0.322 0.799 0.05 0.15 0.414 0.725 0.079 0.04 0.137 0.694 
64 0.322 0.799 0.05 0.15 0.414 0.725 0.08 0.041 0.137 0.692 
65 0.322 0.799 0.05 0.15 0.414 0.725 0.08 0.04 0.138 0.692 
66 0.322 0.8 0.05 0.15 0.414 0.725 0.08 0.04 0.137 0.692 
67 0.322 0.8 0.05 0.15 0.414 0.725 0.08 0.04 0.137 0.761 
68 0.322 0.799 0.05 0.15 0.414 0.725 0.08 0.04 0.137 0.692 
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It’ns dv-d1 dv-d2 dv-d3 dv-l1 dv-l2 dv-l3 dv-l5 dv-l6 dv-fin-length DLSM 
69 0.322 0.8 0.05 0.15 0.414 0.725 0.08 0.04 0.137 0.691 
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APPENDIX D: XM33E5 CASTOR SOLID FUELED ROCKET 
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D-1     XM33E5 Castor Solid Fueled Rocket Datasheet 

 Contained in this appendix are excerpts from the Chemical Propulsion 

Information Analysis Center CPIA/M1 Rocket Motor Manual published by John Hopkins 

University containing information on the Thiokol XM33E5 Castor solid fueled rocket 

motor.  Information contained in the excepts includes grain geometry, a thrust-time 

performance requirement, and propellant information. 
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