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ABSTRACT  

Neuroergonomics, the application of neuroscience to human factors and ergonomics, is an 

emerging science focusing on the human brain concerning performance at work and in 

everyday settings. The advent of portable neurophysiological methods, including 

electroencephalography (EEG), has enabled measurements of real-time brain activity 

during physical tasks without restricting body movements. However, the EEG signatures 

of different physical exertion activity levels that involve the musculoskeletal system in 

everyday settings remain poorly understood. Furthermore, the assessment of functional 

connectivity among different brain regions during different force exertion levels remains 

unclear. One approach to investigating the brain connectome is to model the underlying 

mechanism of the brain as a complex network. This study applied employed a graph-

theoretical approach to characterize the topological properties of the functional brain 

network induced by predefined force exertion levels, namely extremely light (EL), light 

(L), somewhat hard (SWH), hard (H), and extremely hard (EH) in two frequency bands, 

i.e., alpha and beta. Twelve female participants performed an isometric force exertion task 

and rated their perception of physical comfort at different physical exertion levels. A CGX-

Mobile-64 EEG was used for recording spontaneous brain electrical activity. After 

preprocessing the EEG data, a source localization method was applied to study the 

functional brain connectivity at the source level. Subsequently, the alpha and beta networks 

were constructed by calculating the coherence between all pairs of 84 brain regions of 
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interests that were selected using  Brodmann Areas. Graph -theoretical measures were then 

employed to quantify the topological properties of the functional brain networks at 

different levels of force exertions at each frequency band. During an ‘extremely hard’ 

exertion level, a small-world network was observed for the alpha coherence network, 

whereas an ordered network was observed for the beta coherence network. The results 

suggest that high-level force exertions are associated with brain networks characterized by 

a more significant clustering coefficient, more global and local efficiency, and shorter 

characteristic path length under alpha coherence. The above suggests that brain regions are 

communicating and cooperating to a more considerable degree when the muscle force 

exertions increase to meet physically challenging tasks. The exploration of the present 

study extends the current understanding of the neurophysiological basis of physical efforts 

with different force levels of human physical exertion to reduce work-related 

musculoskeletal disorders. 
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1. CHAPTER ONE: INTRODUCTION 

1.1 Manual Material Handling Task 

Manual material handling (MMH) task is essential in the workplace. Although the widely 

developed automated handling system has reduced some of these tasks, numerous occupations 

jobs still require the application of muscular strength for lifting, carrying, pulling, pushing, 

holding, moving or restraining an object. Forceful exertions, high task repetition, and sustained 

awkward postures that occur during MMH are ergonomics risk factors that significantly increase 

the likelihood of work-related musculoskeletal disorders (WMSDs) (Bernard, 1997), along with 

the individual-related risk factors (Chaffin et al., 1978; Snook, 1978). The National Institute for 

Occupational Safety and Health reported that forceful exertions are the most important contributor 

to the WMSD (Bernard and Putz-Anderson, 1997). When requirements for a physical job exceed 

the individual physical capability (i.e., muscular strength), then the probability of experiencing 

WMSDs increases (Chaffin et al., 1978; Nicholson and Legg, 1986; Mital and Kumar, 1998). 

Therefore, previous studies confirmed that the MMH tasks should not exceed human physical 

capabilities.  

1.2 Muscular Strength 

Human muscular strength is defined as the maximum force a muscle can generate under prescribed 

conditions that vary   according to gender, sex, weight, and stature  (Kamon and Goldfuss, 1978; 

Chaffin et al., 1999). Muscular strength can be measured by assessing the exerted force associated 

with perception, external stimuli, and tolerance of pain and discomfort. If the individual strength 

is not sufficient for the task, then the probability of experiencing exertion-related injuries is high 

https://www.sciencedirect.com/science/article/pii/S016981410800070X?casa_token=8o-6CG8bd_gAAAAA:qtF1EnYkXekM6NzlObwayTrFat1Zbi2BZpzoFAdfWxMfubFs0eKmohktjZouWj-DdrHIOqJRLt8#bib22
https://www.sciencedirect.com/science/article/pii/S016981410800070X?casa_token=8o-6CG8bd_gAAAAA:qtF1EnYkXekM6NzlObwayTrFat1Zbi2BZpzoFAdfWxMfubFs0eKmohktjZouWj-DdrHIOqJRLt8#bib22
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(Chaffin et al., 1978; Nicholson and Legg, 1986).  Human strengths can be assessed under static 

(i.e., isometric) or dynamic (i.e., isotonic muscle strength or isokinetic muscle strength) conditions 

(Mital and Kumar, 1998). Static muscle strength reflects the muscle capability to exert a force 

where the length of the muscle does not change, and the joint movement remains stable. In contrast, 

dynamic strength reflects the muscle ability to repeatedly exert a force over a period of time where 

motion is required around joints (Mital et al., 1993).  

1.3 Perceived Exertion 

 

The perceived muscular exertion, also known as the perception of effort or the sense of effort, is 

the conscious sensation of physical activity (Borg, 1962; Marcora, 2010), which provides 

information about the difficulty of the physical task or exercise intensity. The perception of 

physical exertion is subject to the psychophysical power law (Stevens, 1957), which defines the 

nonlinear relationship between perceived intensity and the strength of the physical stimulus. 

Improving our understanding of the underlying mechanisms of generating the perception of effort 

(Robertson and Noble, 1997), endurance in physical performance (Marcora and Staiano, 2010; 

Comani et al., 2013), and the relationship between workload and physical fatigue and workload 

(Pageaux et al., 2015; Guo et al., 2017) is important to prevent work-related musculoskeletal 

injuries.  

The perception of force exertion is influenced by various psychophysical, cognitive, and social 

factors. Therefore, various subjective and physiological measures have been used in the past to 

quantify the perceived exertion during physical activity.  Specifically, the rate of perceived 
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exertion (RPE) introduced by Borg (1970, 1982, 1998) was found to be a useful tool for assessing 

the perceived exertion by subjectively rating how strenuous or difficult is the physical activity.  

Although subjective scaling methods have contributed greatly to the assessment of the perceived 

exertion (Gamberale, 1990; Karwowski, 1991), they are insufficient for decoding the whole 

perception (Richard, 1980; Hernandez et al., 2002; Alessandro et al., (2014). Subjective scales 

describe people's opinions indicating "what a worker will do rather than what he can do."  

Hernandez et al. (2002) and Karwowski et al. (2003) highlighted the importance of studying the 

human brain function at physical activities combined with perceptual, cognitive, and affective 

processes, an umbrella of "physical neuroergonomics". Studying the neural signatures of physical 

exertions might provide useful information that helps in understanding the integration between 

physiological and psychological processes involved in physical activities (Shortz et al., 2012). In 

this regard, it is important to identify brain regions associated with force exertion and assess brain 

activation patterns associated with different levels of perceived rate of physical exertion. 

1.4 Problem Statement 

There is no published study that investigated the connectivity among different brain regions during 

the force exertion task in which the human brain is complex systems that continuously processed 

and transferred information to other interconnected regions (Sporn, et al. 2000, 2004). Few studies 

have investigated the effect of the force exertion on brain data using the traditional methods such 

as component analysis (Freude and Ullsperger, 1987; Shibata et al., 1997; Slobounov et al., 2002; 

Schillings et al., 2006) and the spectrum of power (Cao et al., 2015). These methods do not involve 

the connection between regional properties, largely neglecting the brain characteristics from a 



4 

 

global perspective. Furthermore, there are no published studies that investigated the changes in the 

topological properties of the functional brain network with different force exertions for female 

participants during arm isometric exertion task. In this regard, there is a great potential for 

providing a more extensive understanding of the neurophysiological basis of physical exertions 

with different force levels considering the brain as “connectome”, a large-scale network of 

interconnected regions. 

1.5 Study Objectives  

Our main objective was to explore the topological changes in the functional brain networks 

induced by isometric force exertions. To this end, we applied the graph-theoretic framework to 

characterize the global and local network topological properties in the alpha and beta frequency 

during an isometric arm exertions task based on the EEG source level in a group of healthy female 

participants. The main objective is divided into the following segments: 

1. Locate changes in cortical source related to different force exertion levels at each frequency 

band. 

2. Investigate the different connectivity patterns related to different force exertion levels at each 

frequency band. 

3. Investigate the different network properties related to different force exertion levels at each 

frequency band. 
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4. Investigate the correlations between network the brain characteristic for both frequency bands 

with human performance (i.e., different levels of force exertion and rate of perceiving physical 

comfort).  

1.6 Research Questions 

Different research questions (RQ) were addressed to achieve the aforementioned research 

objectives. These questions include: 

RQ#1: How can different force exertion levels affect the maximum current source density?  

RQ#2: How can different force exertion levels affect the functional connectivity pattern?  

RQ#3: How can different force exertion levels affect the network topological properties? 

RQ#4: What is the correlation between the exerted forces and human performance?   

1.7 Study Hypothesis 

The proposed hypothesis includes: 

Hypothesis #1: EEG source localization changes with different force exertion level.  

Hypothesis #2: Connectivity patterns change with different force exertion levels.  

Hypothesis #3: : Graph-theoretic properties (global and local) change with different force exertion 

levels. 

Hypothesis #4 : Graph-theoretic properties are correlated with human performance (i.e.: different 

levels of force exertion and rate of perceiving physical comfort).  
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1.8 The Significant of the Study 

 

This study aims to extend our current understanding of the neurophysiological basis of physical 

exertions with different force levels in human physical effort aiming to reduce work-related 

musculoskeletal disorder. The study's findings might also help improve the workplace design to 

maximize the workers' physical and mental well-being. 

1.9 Thesis Organization 

Chapter Two 

Chapter 2 introduces the concept of neuroergonomics, illustrating how limitations in traditional 

human factors and ergonomics have led researchers to study brain activity at work. We focus on 

electroencephalography (EEG), demonstrating its advantages and limitations. Then, we provide a 

systematic literature review of the EEG methods that have been used to characterize human 

performance at physical activities. Accordingly, we provide a bibliometric analysis, study 

limitations, research gaps, and future implications. 

Chapter Three 

The main content of this chapter is adapted from the systematic review paper by (Ismail and 

Karwowski, 2020), which has been published in the IEEE Access journal. This chapter introduces 

the concepts of brain connectivity (i.e., connectome) and provides an overview of the graph theory 

approach. We propose a pipeline for constructing the unweighted functional brain network from 

EEG data for both sensor and source levels. We summarize different methods for estimating the 
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functional connectivity networks and defined the most commonly used graph theory measures. We 

provided a second systematic literature review discussing the application of the graph theory 

approach in task-evoked EEG applications for healthy participants only.  

Chapter Four 

This chapter discusses the materials and methodology that were applied in the current study. We 

further propose an EEG pipeline for constructing the EEG functional brain network at the source 

level.  

Chapter Five  

This chapter describes the statistical analysis methods and the results. This chapter is organized as 

follows: force calculations, rate of perceiving the physical comfort calculations, EEG source 

localization, functional connectivity estimation, graph theory measurements, and finally 

correlation analysis. 

Chapter Six  

This chapter provides a discussion, conclusion, and recommendation for future work. 

Appendices 

Appendix A: Summary of Reviewed Physical Activity Articles for EEG Task-Based Apllications. 

Appendix B: Summary of the applications of Graph-Theoretical Analysis for EEG Task-Based. 

Appendix C: Isometric Strength Test Instructions. 

Appendix D: Borg’s RPE 6-20 Scale for Rating the Perceived Exertion. 
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Appendix E: The Scale for Rating the Perceived Comfort Scale. 

Appendix F: Data Collection Form 

Appendix G:  Study Flyer 

Appendix H: Medical Screening Questionnaire Form 

Appendix I: The approval of the Institutional Review Board (IRB) at the University of Central 

Florida (UCF). 

Appendix J: Anthropometric Measurements 

Appendix K: Selected Brain Regions of Interests.   
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2. CHAPTER TWO: REVIEW OF LITERATURE 

This chapter introduces the concept of neuroergonomics, illustrating how limitations in traditional 

human factors and ergonomics have led researchers to study brain activity at work. We focused on 

Electroencephalography (EEG) technique demonstrating its advantages and limitations. Then, we 

provided a systematic literature review of the EEG methods that have been used to characterize 

human performance at physical activities. Accordingly, we provided a bibliometric analysis, study 

limitations, research gaps and future implications. 

2.1 Human Factors and Ergonomics 

The discipline of human factors and ergonomics investigates the interactions between humans, 

machines, the environment, and technology while considering human capabilities and limitations 

to assure safe and satisfying working environments (Wilson and Corlett, 1995; IEA, 2000; 

Karwowski, 2005, 2006).  The implementation of human-centered design principles can lead to a 

reduction in WMSDs, human errors, and fatigue, and diminished stress in the workplace (Lee et 

al., 2017), as well as enhanced system performance (Neumann et al., 2016).  Many traditional 

techniques and methods evaluate work tasks in a subjective manner, using a variety of qualitative 

approaches (Stanton et al., 2004; Marras and Karwowski, 2006; Salvendy, 2012). Such approaches 

do not allow for adequate analysis of the complex interactions between the cognitive, perceptual, 

and physical aspects of working with modern technology (Karwowski et al., 2003; Parasuraman, 

2003; Karwowski, 2005; Hancock, 2019), nor do they allow us to model and quantify the complex 

relationship between the human mind and technology (Hancock, 2019). Recent advances in 
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artificial intelligence, autonomous systems, and modern industrial automation, such as digital 

manufacturing (i.e., Industry 4.0), created the need for human operators nowadays to collaborate 

with sophisticated and dynamically changing technological environments that require high levels 

of cognitive, perceptual, and decision-making behavior (Kelvin et al., 2012; Boy, 2017). 

Monitoring and assessing tasks that require high levels of vigilance, attention, and decision-

making ability have created a need for a deeper understanding of human performance by 

considering the human brain at work. This pioneering concept, known as neuroergonomics, was 

first introduced by Parasuraman et al. (2003). 

2.2 Neuroergonomics 

Neuroergonomics—the study of the brain and behavior at work— focuses on integrating 

techniques from neuroscience to measure the human brain signals during work (Parasuraman, 

2003; Parasuraman and Matthew, 2008). Neuroergonomics research aims to expand our 

understanding of the neural mechanisms underlying human cognitive, perceptual, and motor 

processing with a focus on real-world contexts. Progress in neuroergonomics research up-to-date 

mainly focused on analyzing the neural behavior in the cognitive domain of human activity, while 

few studies were conducted in the physical domain (Ismail and Karwowski, 2020). Humans are 

daily engaged with tasks that require human body or limb movements alongside cognitive 

processing, integrating both physical and cognitive considerations should be considered in future 

neuroergonomics studies to better understand the human capabilities and limitations at work 

(Karwowski et al., 2003; Johnson and Proctor, 2013; Mehta, 2016). 
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2.3 Human Brain 

The human brain is the most complex organ in the human body, composed of 100 billion neurons 

connected by almost 150 trillion synapses (Pakkenberg et al., 2003; Herculano-Houzel, 2009). 

Communication between neurons flows via electrical signals results in the generation of an 

electrical current, which subsequently creates wave patterns termed "brain signals" (i.e., brain 

rhythm, brain oscillation, neural oscillation, brain electrical activity, or brain potential activity). 

To measure brain signals, several neurophysiological methods have been used, such as functional 

magnetic resonance imaging (fMRI), functional near-infrared spectroscopy (fNIRS), computed 

tomography (CT), positron emission tomography (PET), magnetoencephalography (MEG), and 

electroencephalography (EEG) (Mehta and Parasuraman, 2013). 

2.4 Electroencephalography 

Electroencephalography (EEG), a powerful noninvasive technique, is one of the most commonly 

used neurophysiological techniques enabling to study of the high temporal dynamics of the 

functional brain networks (Henry, 2006; Beres, 2017). EEG signals can be classified into five 

frequency bands according to brain rhythms, including delta (0.5–3.5 Hz), theta (4–8 Hz), alpha 

(8–13 Hz), beta (13– 30 Hz), and gamma (30-100 Hz) bands (Teplan, 2002; Al-kadi et al., 2013; 

Cohen, 2014). The knowledge about different types of brain signals according to their frequency 

ranges with a description concerning the psychological and behavioral conditions and their 

location in the brain are provided in (Table 2-1).  
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Table 2-1: The classification of EEG signals by frequency range with description, psychological 

and behavioral condition and location in the brain 
EEG signals Frequency Range Description Psychological and behavioral 

condition 

Delta (δ) 0.5 to 4 Hz -The slowest brain wave 

concerning frequency. 

-The highest amplitude. 

-Dominant in the infant. 

- Dominant during deep sleep 

stage 

Theta (θ) 4 to 8 Hz -Known as a slow activity.  -Dominant during deep 

relaxation and meditation. 

Alpha (α) 8 to13 Hz -Represents white matter. 

-Found in all ages. 

 

-Dominant in wakeful but 

relaxed states with closed eyes. 

-Mainly appears in drowsiness 

condition. 

Beta (β) 13 to 30 Hz -A fast wave but not the 

fastest. 

 

-Dominant in alert, 

concertation, attention, 

anxiety, thinking, and 

calculating. 

-Associated with behavior 

tasks such as problem-solving, 

task engagement, and decision-

making. 

Lower 

Gamma 

30 to 80 Hz -The fastest brain frequency 

signal. 

-Dominant during a high level 

of cognitive tasks. 

-Related to perception, 

learning, and language 

processing. 

Upper Gamma        80 to 150 Hz 

 

EEG has many advantages in comparison to other neurophysiological measures including (1) the 

excellent temporal resolution conveying the brain signals without any delay  (Nijholt et al., 2008; 

Parasuraman and Matthew, 2008; Frey et al., 2013; Zhang et al., 2014), (2) portability and mobility 

for use in real-life environments,  (3) affordability (Gramann and Plank, 2019). EEG techniques 

also exhibit three significant drawbacks: (1) low spatial resolution  which results mainly from the 

volume conduction phenomena (Brunner et al., 2016), (2) the existence of artifacts (Sethi et al., 

2006; Al-kadi et al., 2013; Reis et al., 2014; Tandle and Jog, 2015; Islam et al., 2016), and (3) the 
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long preparation time required for setup and cleaning (Sullivan et al., 2008; Bulea et al., 2013; 

Frey et al., 2013). 

 Different EEG analysis methods have been used to characterize human performance based on the 

time domain, frequency domain, time-frequency domain, and nonlinear methods. Time-domain 

analysis methods include EEG components analysis known as event-related potential. Frequency 

domain method is known as spectral analysis, including power spectrum density, event-related 

synchronization and desynchronization, the ratio of powers, and peak alpha frequency.  Time-

frequency domain methods rely on wavelet transform and Hilbert-Huang transform. Finally, 

nonlinear methods includes entropy, fractural dimension, largest Lyapunov exponents, and  

Lempel-Ziv complexity (Lutzenberger et al., 1995; Gribkov and Gribkova, 2000).  

2.5 Review of Literature in Physical Neuroergonomics  

2.5.1 Review Standards 

 

The present study uses a systematic approach to review the applications of EEG indices that have 

been used to quantify human performance at work either laboratory or real-life settings.  This 

systematic review was conducted based on the Preferred Reporting Items for Systematic Reviews 

and Meta-Analyses (PRISMA) guidelines (Liberati et al., 2009; Moher et al., 2009, 2010).  
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2.5.2 Search Strategy  

Comprehensive literature searches were independently conducted using the following databases 

and search engines: IEEE Xplore, Google Scholar, Science Direct, and SpringerLink with no 

limitations on publication year. We applied the following Boolean operators: “EEG” OR 

“Electroencephalography” AND “physical work” OR “physical task” OR  “physical exercise” OR 

“physical activity” OR “physical movement” OR “movement-related cortical activity.” 

2.5.3 Screening Process and Study Selection 

A total of 830 articles were originally screened for eligibility. Duplicate studies (n=273) were 

removed, resulting in (n=557) records. Owing to the number of results obtained by the previous 

search terms, more keywords were applied with no restrictions regarding publication date 

including neuroergonomics, human factors, human performance, ergonomics, safety, fatigue, 

workload, effort, vigilance, attention, alertness, drowsiness, emotion, stress, or decision making. 

These keywords helped to maintain our focus and narrowed the final selection of the studies by 

excluding an additional (n=289) article. After reviewing all titles and abstracts of the remaining 

articles, three researchers independently reviewed the full text of 115 articles for inclusion and 

exclusion criteria.  

2.5.4 Criteria for Inclusion and Exclusion 

Exclusion criteria were applied to limit the final selection of studies. In order to meet the eligibility 

requirements, we have included published articles with the following criteria: (a) only English 
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language publications; (b) experimental studies on healthy participants; (c) content from peer-

reviewed journals, conference publications, textbooks, and reference books; (d) studies using EEG 

technique only; and (e) physical activities that represents the biomechanical properties of 

movements, such as grasping, gripping, finger wrist, elbow, arm, knee and hip movements that 

may be present during lifting, assembling, carrying, and placement tasks.  

Articles with the following features were excluded: (a) studies that were not associated with 

physical tasks; (b) studies that combined EEG with other neuroimgaing technique; (c) physical 

activities studies on infants or children; (d) physical activities studies on participants with neural 

disorders or brain diseases; and (e) physical in vigorous exercise. Accordingly, the following 

studies were excluded due to the  subsequent reasons, (n = 21) studies on brain diseases or neural 

disorders, (n = 15) studies on vigorous exercise,  (n = 11) studies that combined  EEG with other 

neuroimaging techniques, and (n = 2 ) the full text was only available in the Chinese language. To 

collect all relevant articles during the literature search, the reference lists of the candidate articles 

(n = 122) were reviewed, resulting in (n = 15) additional articles that adhered to the criteria for 

inclusion. The findings of the literature search and the selection process are summarized in the 

PRISMA diagram (Figure 2-1). 

2.5.5 Data Collection and Summary Measures 

Relevant information from the included articles was extracted and summarized in (Appendix A), 

which displays physiological measurements, the number of EEG electrodes, EEG index, 

characteristics of participants, domain, experimental task, artifact removal method, and feature 

extraction method. 



16 

 

2.5.6 Synthesis of Results 

A total of 88 articles were eligible for the final inclusion in the systematic literature review. The 

overall search process and the associated quantitative identifications are shown in (Figure 2-2). 

The reviewed studies confirmed that EEG indices are highly sensitive to fluctuations during 

physical activity. In general, 64 (80%) of the reviewed articles were addressing brain activity 

during physical activity only, while 16 articles (20%) reported on the combined physical and 

mental activities.  

2.5.7 Discussion 

This section discusses the effect of the following domains on the EEG activity including (1) 

physical or muscular fatigue, (2) movement observation, planning, and execution, (3) 

biomechanical properties (e.g., force, torque), (4) stressful and emotional exhaustion, (5) physical 

workload and intensity, (6) physical exertion, and (7) motor training and learning. 

2.5.7.1 Applications of EEG indices in physical work 

In this section we focused to review physical activities that represents the biomechanical properties 

of movements, such as grasping, gripping, finger wrist, elbow, arm, knee and hip movements that 

may be present during lifting, assembling, carrying, and placement tasks. However, vigorous tasks 

that require high-intensity movements, such as jogging, dancing, running or jumping were 

excluded. 
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Figure 2-1: Flow chart of the methodology and process selection according to PRISMA 

 

2.5.7.1.1 The Effect of Fatigue  

Fatigue is a multidimensional concept that combines psychological and physiological aspects 

(Berchicci et al., 2013; Sengupta et al., 2014a). During a physical task, not only the human muscles 
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become fatigued, but also the central nervous system resulting in vigilance deterioration, reduces 

the wellness to exert effort, and declines in physiological capabilities. Consequently, “If the 

muscles begin to fatigue, the brain also begins to fatigue”, as defined by Zadry et al. (2011). 

Accordingly, understanding the neuromuscular fatigue by analyzing the coherence between EEG  

signals (i.e., brain) and electromyography (EMG) signal (i.e., muscles) (Kristeva-feige et al., 2002; 

Gwin and Ferris, 2012; Kim et al., 2017) became an intresting research in sports and exercise 

neuroscience. Human brain avoids fatigue by shifting the brain activities toward the right anterior 

and inferior hemispheres, which means the brain requires more resources to complete the task 

when fatigue occurs (Liu et al., 2007). 

2.5.7.1.1.1 Power Spectrum Density 

 

Characteristics of brain activity using EEG Power spectral density (PSD) demonstrated an increase 

in theta and a reduction in alpha bands after knee joint reproduction task in the frontal cortex 

(Baumeister et al., 2012). An increase in the ratio of the power of (α+θ/ β) during a material 

handling task carried on a construction site was reported (Aryal et al., 2017). The ratio of power 

of alpha/beta succeded to reflect the sensation of the core temperature during physical task(Nybo 

and Nielsen, 2001; Ftaiti et al., 2010). The Root Mean Square (RMS) is a measure of the bio-signal 

strength, found to increase for alpha, beta, and gamma in the left motor cortex during a hand 

movement fatigue task (Abdul-latif et al., 2004a). Furthermore, mean rectified amplitude increases 

in the primary motor and sensory regions during the highest intensity exercise (Flanagan et al., 

2012). Other studies established a reduction in the Peak Alpha Frequency (PAF) around motor 
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cortex region concluding that this might be an indicator of muscular fatigue (Ng and Raveendran, 

2007). A reduction in PSD of alpha and beta in frontal and central lobe have been reported during 

hot exhaustive exercise (Périard et al., 2018). 

The PSD of EEG frequencies has been applied as an input parameter for detecting and classifying 

the physical fatigue (Abdul-latif et al., 2004b; Jain et al., 2016). The application of the advanced 

algorithm with EEG indices helped in developing smart detection systems (Baumeister et al., 2012; 

Jain et al., 2016) , and the implementation on adaptive automation systems (Scerbo et al., 2003; 

Freeman et al., 2004; Parasuraman and Wilson, 2008). 

 An increase in the current source density (CSD) of beta activity at the left motor cortex was found 

in a hand gripping task (Ng and Raveendran, 2011), demonstrating that beta activity is associated 

with motor control.   

2.5.7.1.1.2 Event Related Potentials  

The motor-related cortical potential (MRCP) is an event related potentials (ERP) component that 

is locked to the initiation of movement (Hallett, 1994). MRCP has been extensively used to reflect 

the magnitude of the neural activity before and after physical task through the utilization of three 

components: (1) bereitschafts potential (BP) or readiness potential (RP) (Shibasaki and Hallett, 

2006); (2) motor potentials (MP); (3) movement monitoring potentials  (MMP). The RP, MP, and 

MMP potentials are associated with movement planning or preparation, movement execution, and 

performance control, respectively (Nascimento et al., 2005). An increase in the amplitude of RP 

values at the supplementary motor area was found with a small level of physiological fatigue 
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during exertion of highly repetitive forces (Schillings et al., 2006). Studies concluded that muscle 

fatigue increases the brain activity over the supplementary motor and contralateral sensorimotor 

areas (Johnston et al., 2001; Dirnberger et al., 2004). Different patterns were observed in a large 

group of muscles (Spring et al., 2016), emphasizing the importance of the size of the muscle groups 

when comparing neurophysiological brain responses. 

2.5.7.1.1.3 Non-linear Methods 

An increase in the fractional dimension (FD)  was associated with fatigued handgrip task compared 

to a resting state (Huang et al., 2003) whereas  largest Lyapunov exponents reduced with fatigue 

(Yao et al., 2009).  

2.5.7.1.2 The Effect of Observation, Imagination, and Execution  

2.5.7.1.2.1 Power Spectrum Density 

Our brain is always active even when we are resting. This attracted researchers to study the brain 

activity during planning, observation and imaginations, a time where there is no muscle movement 

(Shakeel et al., 2015).  Task observation is activated by the mirror neurons  in the motor cortex 

and the posterior frontal cortex (Cochin, 1999; Rizzolatti and Craighero, 2004). An essential and 

relevant parameter in this respect is derived from EEG signal power is an event-related 

synchronization and desynchronization (ERD/ERS). A reduction in power is called event-related 

desynchronization (ERD), whereas an increase is referred to as event-related synchronization 

(ERS) (Pfurtscheller, 1992; Pfurtscheller et al., 1998). Mu and beta ERD are sensitive to the 
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kinematics changes in a hand posture task (Nakayashiki et al., 2014).The sensorimotor cortex is 

involved in the task observation  (Babiloni et al., 1999; Muthukumaraswamy and Johnson, 2004; 

Storti et al., 2015). Calmels et al. (2006)found a higher power of ERD in alpha and beta for the 

pre-movement than in post-movement. Different patterns were found in the finger and foot 

preparation and execution (Cochin, 1999; Pfurtscheller et al., 2000; Zaepffel et al., 2013). Storti 

found significant changes in the  network topological organization by grasping and reaching task 

(Storti et al., 2015, 2018). An increase in the alpha partially directed coherence in the during the 

movement preparation reflects the high exchange of information when performing the subsequent 

movements (Fallani et al., 2008). Comapred to motor imaganery, the motor executation induced a 

greater strength coupling between dorsolateral prefrontal cortex to the pre-motor cortex during 

motor execution than motor imagery. However, the motor imaganery induced greater strength 

coupling between pre-motor cortex to the supplementary motor area and primary motor cortex to 

the pre-motor cortex (Kim et al., 2018).  

2.5.7.1.2.2 Nonlinear Methods 

A linearly increase in FD was associated with handgrip force during the holding and the movement, 

with no significant change during the preparation phase (Liu et al., 2005a). The nonlinear source 

strength significantly changed patterns during preparation, execution, and sustaining phases of 

isometric hand exertions (Yang et al., 2011). 
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2.5.7.1.3 The Effect of Force and Torque  

 

2.5.7.1.3.1 Power Spectrum Density 

The hand grip force significant affects the PSD of beta and gamma (Cao et al., 2015). The PSD of 

beta and gamma are significantly higher at high force levels compared to low force levels in C3, 

C4, Cz, Pz and Fz electrodes.  

2.5.7.1.3.2 Event Related Potentials  

 There is a direct relationship between the force exerted and the amplitude of MRCP  (Shibata et 

al., 1997). For instance, as the force levels increase the amplitude of  BP increases (Freude and 

Ullsperger, 1987). The negative slope of MRCP is highly correlated with joint forces and the rate 

of increasing the force mainly in supplementary motor area and contralateral sensorimotor cortex 

(Siemionow et al., 2000). The amplitude of the RP increases when both the force production and 

rate of force development torque increase (Nascimento et al., 2005). Slobounov et al. (2004) found 

an increase in MRCP in frontal, central, and parietal cortical areas associated with the development 

rate of force. Furthermore, they found that the amplitude of the early MRCP component increased 

with the perception of effort, while the MMP increases with force level. Other studies explained 

contradiction results (Slobounov et al., 2002; Schillings et al., 2006).  



23 

 

2.5.7.1.4 The Effect of Stress and Emotion Exhaustion  

 

2.5.7.1.4.1 Power Spectrum Density 

Excessive stress significantly deteriorates the human performance and increase the probability of 

errors. Considering neural mechanism on quantifying human psychosocial conditions can help in 

early detecting workers' stress for improving workers', health, wellbeing, safety and productivity. 

The workers emotions significantly altered by working conditions (Jebelli et al., 2018a). For 

instance the PSD of beta activity was greater in the active versus inactive conditions (Jebelli et al., 

2017). Recent studies established the activation of the motor cortex under stressful working 

conditions (Jebelli et al., 2018b), although it is widely known that the frontal lobe is the emotion 

control center (Rusinov, 2012). After a stressful physical work, the PSD of the beta band in the 

right hemisphere was higher than in the left hemisphere (Sulaiman et al., 2009). The difference 

between the available time and the time required to do the job is known as time pressure, another 

significant factor that affects the human performance at work (Slobounov et al., 2000). It was 

evident that the time pressure significantly increases in the frontal midline theta activity and 

gamma activity in frontal, central, and parietal regions. Another study by Zadry et al. (2009) found 

an increase in the RMS of alpha band in the frontal and occipital brain regions associated with 

time-stress. The continues monitoring the brain patterns at work will provide opportunism to avoid 

excessive stresses to maintain workers' health, wellbeing, safety and productivity. 
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2.5.7.1.5 The Effect of workload, intensity and exertion  

2.5.7.1.5.1 Power Spectrum Density 

The perception of physical exertion is associated with cortical activity in especially in the frontal 

cortex. The PSD of alpha/beta in the F3 electrode found to be an indicator to rate of perceived 

exertion (2001; Nielsen and Nybo, 2003). Predominant frontal-motor coupling in alpha band and 

fronto-occipital in beta band was associated with the highest rate of perceiving the exertion 

(Comani et al., 2013).  The prefrontal cortex plays an important role in the initiations of the 

volitional movement (Hallett, 2007; Berchicci et al., 2013; Robertson and Marino, 2016). Guoa et 

al (2017) reported an associated between the perceived exertion and cortical activity during 

movement execution in the prefrontal cortex, supplementary motor area , and primary motor 

cortex. The premotor cortex, supplementary motor area, and primary motor cortex are associated 

with the planning and execution of movement and voluntary actions (Lotze et al., 1999; Haggard, 

2009; Zaepffel et al., 2013; Kim et al., 2018). 

2.5.7.1.5.2 Event Related Potentials  

The EEG amplitude of the MRCP at frontal–central electrode sites is a relevant measure to the 

intensity of perceived exertion associated with different weight levels (de Morree et al., 2012). 

Desmurget et al. (2009) suggested that not only the frontal cortex but also the parietal cortex 

mainly the posterior parietal cortex is involved in the experience of conscious intention. De Moree 

et al. (2012) showed a significant correlation between the amplitude of MRCP and the perception 

of effort. Two years later, the authors studied the effect of caffeine intake and time spend on the 
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task over the perception of effort (Morree et al., 2014). Results revealed a reduction in MRCP 

amplitude and RPE after caffeine intake in the premotor and motor cortex, whereas time spends 

on task demonstrated increment the amplitude of MRCP.  According to the general statement of 

the presented state of research, theoretically the prefrontal cortex, the presupplementary and 

supplementary motor areas, the premotor cortex, the primary motor cortex, and the posterior 

parietal cortex might be considered  crucial brain regions for the perception of physical effort (de 

Morree et al., 2012), along with sensory brain areas (Enoka and Stuart, 1992). Although the neural 

mechanism regarding the perception of physical effort has been clarified to some extent, more 

neurophysiological studies are needed to precisely understand the brain function and 

disfunction between different regions forming large-scale networks.  

2.5.7.1.6 The Effect of Motor Learning and practice 

2.5.7.1.6.1 Power Spectrum Density 

Evaluating motor learning based on neural changes has been a challenging area for sports 

medication, rehabilitation, and kinematic prediction in the neuroergonomics area (Meinel et al., 

2016). In general, human performance can be improved through practice and training. Practice 

reduces the theta ERS in the frontal area, indicating the deterioration in the attention after training. 

Pitto argued that high synchronization in theta, and desynchronization in both alpha and beta 

reflects the easiness of the task after training (Pitto et al., 2011). Successful trila were determined 

by dominant power in alpha band in both frontal midline and right primary sensorimotor areas. 

Intresting that Babiloni (2008) suggested to train the frontal alpha activity to induce higher ERD 
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known as “ERD neurofeedback”.  Motor learning processes results in a higher gamma band 

activity in the motor cortex (Amo et al., 2017) and increases the amplitude and latency of the ERP 

at the premotor cortex  (Allami et al., 2014). A significant difference in EEG activity was found 

wwhen comparing results from single traning session with multiple (Jochumsen et al., 2017). 

2.5.7.1.7 The Effect of Physical Workload  

2.5.7.1.7.1 Power Spectrum Density 

Recent evidence suggests that brain cortical function is influenced by different exercise mode, 

intensity and workload (Weng et al., 2017; Schmitt et al., 2019; Pichardo-Rivas and Gutiérrez, 

2021). In a low workload the PSD of alpha was found to be greater than in a high workload task 

(Zadry et al., 2010, 2011). The PSD for theta, alpha, and beta significantly increased with high 

intensity at frontal, central and parietal regions (Bailey et al., 2008). Furthermore, an increase in 

the PSD of beta and gamma activity was found in a weight pressing task (Engchuan et al., 2017). 

The PSD for most of frequency bands has a positive correlated with exercise workload (Lin et al., 

2017). The alpha peak frequency increased after a physical effort task (Gutmann et al., 2015, 2018; 

di Fronso et al., 2019). Enders et al (2016) speculate that high intensity exercise induced greater 

brain activity in Brodmann area (BA) 8 followed by BA 6 and BA 7 for alpha and beta bands. 

Moderate changes in the prefrontal cortex, and higher in the parietal lobe were observed with the 

elevation of the exercise intensity (Wingfield et al., 2018). Brümmer et al., (2011) found localized 

brain activity in both primary sensory cortex and prefrontal cortex with elevated exercise intensity. 

One possible explanation for the aforementioned result is that the high workload requires more 
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brain activities than low workload task. One study reported a reduction in PSD of alpha during 

physical activity (Kubitz and Mott, 1996).  

2.5.7.1.7.2 Event Related Potentials  

The amplitude of contingent negative variation decreased after high-intensity tasks compared to 

medium intensity, whereas the relative power of theta activity increased after the high intensity 

exercise compared to medium intensity (Kamijo et al., 2004a). A reduction in amplitude of P300 

was observed after high-intensity physical tasks compared to medium intensity (Kamijo et al., 

2004b).  

2.5.7.1.7.3 Non-Linear Methods 

The reduction of fuzzy entropy, an EEG complexity indicator, during high intensity exercise may 

infer to the increase of the neuronal synchrony (Lin et al., 2017). 

2.5.7.1.7.4 Complex network measures 

Porter et al. (2019) found an increase in the functional brain network of the frontal region 

associated with physical and cognitive exertion. Graph theoretical approach were used to 

characterize the changes of functional network efficiency an endurance performance study 

(Tamburro et al., 2020). The above-mentioned studies investigated the changes in brain activity 

caused by cycling. However, the effect of different exertion force levels is still unclear 
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2.5.7.2 Applications of EEG Indices in Physical Activity Accompanied by a Mental Task 

In naturalistic work conditions both cognitive skills and physical abilities are required to perform 

a task, since “The human action is orchestrated by the mind (brain) and body interactions” as stated 

by Mehta (2016). Smit et al. (2005) asssessed the effect of mental and physcal effort on vigiliance. 

Compared to physical effort, an increase in PSD of theta was found in the mental effort. However, 

an increase in alpha and reduction in beta was found after the physical effort. Therefore, it could 

be indicated that mental effort deteriorates the alertness level, whereas physical efforts increase of 

attention level but deteriorate the cognitive processing. Another study demonstrates that attention 

deteriorate due to physical and mental fatigue, this was quantified by an increase in PSD of theta, 

alpha, and the ratio of (alpha+theta)/beta activity but a reduction in beta activity (Jagannath and 

Balasubramanian, 2014). Wascher et al. (2014) analyzed the attention levels with handling boxes 

and solving cognitive riddles tasks. A significant increase was found in the PSD of theta and alpha 

activity and the amplitude of N2 during a cognitive task, whereas the amplitude of P300 reduced 

during the physical task. Two years later, the same authors found an increase in the PSD of alpha 

activity with time spend on the task, reflecting an increase in mental fatigue and motivation 

reduction (Wascher et al., 2016). A reduction in the amplitude of P300 during the go condition 

revealed an increase in the cognitive load due to movement (Yagi et al., 1999; Zink et al., 2016). 

Physical activity increases the mental fatigue this was quanfied by the following: (a) a reduction 

in the relative energy in beta in most brain regions; (b) a slight rise in the energy ratio of alpha/beta;  

(c) a reduction in the spectral coherence value beta band; and (d) a reduction in the lempel ziv 

complexity in frontal, parietal, and temporal  (Xu et al., 2018). Another study found that prolonged 

physical activity deteriorates the attention, this was quantified by a reduction in the amplitude of 



29 

 

P300 while a rise in the P 300 latency.  An increase in the brain horizontal visibility graph-based 

synchronization in parietal and occipital areas with the existence of fatigue was observed 

(Sengupta et al., 2014a, 2014b). An increasing trend in the network clustering coefficient was 

found during succeful fatgue stages. 

2.6. Bibliometric Analysis 

2.6.1 The Categories of the Reviewed Articles 

The reviewed studies have confirmed that EEG indices are highly sensitive to fluctuations in the 

human brain during physical activity. The articles in the current review categorized into physical 

activities experiment only and physical activity with mental task experiment. In general, (n=72) 

82% of the reviewed articles were addressing brain activity during physical activity only, while 

(n=16) 18 % combined physical and mental activities (Figure 2-2).  

 

Figure 2-2: The categories of the reviewed articles 

82%

18%

Physical activity Physical and mental activities
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2.6.2 The Taxonomy of Different Domains in the Reviewed Articles 

The taxonomy of the different domains shown in (Figure 2-3) as follows: physical fatigue task (n 

= 30), followed workload and intensity ( n = 26),observation, imagination, and execution  (n= 16), 

force or torque ( n= 6), stressful and emotional exhaustion (n= 6), motor training and learning 

(n=4), 

 

 

Figure 2-3: Taxonomy of different domains in the reviewed articles for physical activities 
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2.6.3 The Frequency of the Used EEG Indices in the Reviewed Articles 

In general, 85% of the reviewed articles applied traditional linear analyses methods to quantify 

EEG signals in physical activity studies. The majority of studies (n=52) have applied the power of 

frequency methods (Figure 2-4), followed by the ERP components (n=26). On the contrary, few 

studies applied nonlinear methods such as entropies, FD and L1 (n= 5). Previous studies have 

analyzed the EEG for individual electrode site, whereas the connectivity between the pairs of EEG 

electrodes by applying the network analysis methods to study the brain as a connected complex 

network were less addressed (n=4). Finally, each of the current source density and the graph theory 

measures were used in only (n=2).  

 

Figure 2-4: The frequency of the used EEG indices (Event-related potentials [ERP]) 
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2.6.4 Neurophysiological Bases of effect of different force levels 

Five studies have addressed the effect of different force exertion levels on neural signature of them 

(n=4) applied the MRCP, and (n=1) applied PSD. 

 

Figure 2-5: EEG indices used to characterize brain signals during perceived exertion 

2.6.5 The Number of the Selected EEG Channels 

A critical aspect of any EEG study is the selection of the number of recording electrodes. Two 

recommendations were found in the literature. The first is to reduce the number of electrodes 

(i.e.,<64 channels) to cover the region of interest (Luck, 2014; García-Prieto et al., 2017; Wang et 

al., 2018b; Li et al., 2019) which provides sufficient analysis especially when using ERPs (Lau et 

al., 2012). The second is to use a large number of electrodes (i.e., ≥ 64 channels) to help  to 

eliminate the tonic muscle artifacts (Janani et al., 2018; Gramann and Plank, 2019). Moreover, a 

large number of electrodes are needed for researchers interested in network analysis and EEG 
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source localization method (Lantz et al., 2003; Fallani et al., 2008; Hassan et al., 2014; Song et al., 

2015; Hassan and Wendling, 2018). Our systematic review identified 71 studies that used less than 

64 channels, while 16 studies used 64 or more electrodes. One study did not mention the number 

of electrodes used as summarized in (Appendix A).  

2.6.6 Participant’s Demographic Distribution 

The demographic distribution of the studies included healthy male and female participants (Figure 

2-6). Of these, 32% of the studies engaged males, and 3% of the studies employed females, and 

64% of the studies reported participation of subjects of both genders. The majority of the reviewed 

studies had a higher number of male participants than females. Only one study did not mention the 

number of participants (1%). 

 

Figure 2-6: Percentage of participants gender distribution in literature 

 

 

32%

3%64%

1%

Males Females Both Not mentioned in the article



34 

 

2.6.7 Task categorization of the Reviewed Articles 

The experimental studies have been categorized into physical tasks only, and studies with physical 

and mental tasks. Physical tasks were categorized into upper body, lower body, upper and lower 

body, and stressful and emotional exhaustion. Studies of physical activities associated with mental 

task are grouped to analyze (1) physical and mental workload on EEG signals, (2) physical and 

mental fatigue on EEG signals, and (3) physical and mental exertion on EEG signals (Figure 2-7). 

 

 

Figure 2-7: The taxonomy of the reviewed article’s tasks 

2.7 Research Gap in Physical activities studies using EEG 

This section is addressing some limitations that were found through our review. The research gaps 

were categorized into (a) methods, (b) tasks, (c) Domains, (d) electrodes, and (e) participants. 
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a. Methods 

The application of EEG indices has advanced our knowledge in characterizing the brain activity 

relevant to human physical activities at work. Previous studies focused on traditional linear 

methods. However, the EEG data are complex and contain dynamic information from different 

brain regions brain. One method is to study the brain as a complex network using the network 

science approach (Rubinov and Sporns, 2010). The modern network science, a mixture of dynamic 

systems theory, graph theory, and statistics, has been applied to study the brain connectivity under 

various states and conditions. 

 The application of brain data to advanced mathematical algorithms will help in developing 

automotive adaptive systems that are capable of monitoring the human physical state to prevent 

fatigue and excessive workload (Aryal et al., 2017; Qi et al., 2019). Furthermore, it will help in 

developing smart detective systems, recognition systems, and predictive models (Pitto et al., 2011; 

Borghetti et al., 2017).  

One crucial limitation is the validation of the artifact removal process levitating a research question 

on to how does clean EEG actually look like? (Daly et al., 2012). 

EEG data are spatiotemporal with an excellent temporal resolution but poor spatial resolution. The 

EEG electrode reference and volume conduction significantly influence spatial resolution. 

Therefore, localizing the EEG source to correlate the activity of the brain regions might improve 

the EEG spatial resolution (Cao et al., 2015). The selection of the best reference is still a debate 

(Ng and Raveendran, 2007; Anastasiadou et al., 2019; Herrera et al., 2019). 
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The current review includes studies with randomized controlled trials. However, studies 

considering non-randomized controlled trials were not considered included in the current review. 

We encourage future systematic reviews to consider both randomized controlled trials and non-

randomized controlled trials to assess the methodological quality. 

b. Tasks 

Recent methodological aspects of EEG systems provided the opportunity to apply experiments in 

real working environments (Reis et al., 2014). However, our review revealed that most of the 

reported studies were focused on controlled laboratory experiments due to the low signal to noise 

ratio in controlled laboratory conditions.  

Most of the reviewed EEG studies covered the body areas such as upper limbs, mainly finger 

movement, handgrip, and hand grasping tasks. Tasks that require the activity of the shoulder have 

been poorly addressed. Moreover, the EEG signatures of tasks that involve the torso, spine, and 

lumbar area, which are essential for the prevention of WMSD, should also be investigated in the 

future studies.   

c. Domains 

The number of studies on physical tasks with mental activities is significantly less than the number 

of studies dealing only with physical tasks. Therefore future research should integrate physical 

activities and cognitive functions (Mehta, 2016). More attention is required to crucial factors that 

deteriorate the human performance at work including stress, comfort, discomfort, and excessive 

muscular strength. 
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 d. EEG channels 

The selection of the number of recording electrodes is an open research question. Several studies 

characterized the EEG information from the individual electrode source point of view, neglecting 

the integration and segregation between different brain regions.  

e. Gender 

A considerable gap with respect to the number of female’s participants compared to males was 

found in the reviewed articles. Females have unique needs and responsibilities that must be 

considered to alleviate the occurrence of WMSD.  
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3. CHAPTER THREE 

FUNCTIONAL CONNECTIVITY AND GRAPH THEORETICAL 

MEASUREMENTS 

In this chapter, we introduce the concepts of brain connectivity (i.e., connectome) focusing on 

functional brain connectivity. We provide theoretical background and basic principles for the 

graph-theoretical approach. We proposed a pipeline for constructing an unweighted functional brain 

network from EEG data for both sensor source and space source methods. We summarized different 

methods for estimating the functional connectivity and defined graph theory measures that were 

used to characterize global and nodal network properties.  Besides, we provided another systematic 

literature review of the functional brain network studies that applied a theoretical graph approach in 

task-evoked EEG applications for healthy participants only. 

3.1 Introduction 

The main content of this chapter is adapted from the systematic review paper by (Ismail and 

Karwowski, 2020) which has been published in the IEEE access journal.  

A great body of evidence is suggesting to study the brain function as a large-scale network based 

on “network science” (Bassett and Sporns, 2017). The concept of network science originated from 

the mathematical field of graph theory (Diestel, 1997) and evolved after the mid-1990s from the 

increased use of complex integrated systems in a variety of fields (Barabási and Albert, 1999). 

Modern network science, a mixture of dynamic systems theory, graph theory, and statistics, has 

been applied to study the functional and structural brain connectivity network under various states 

and conditions. Over the past couple of decades, mapping the human brain connectivity patterns 
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have gained considerable attention in the area of neuroscience, and cognitive neuroscience  known 

as “Connectome” (Sporns et al., 2005; Bullmore and Sporns, 2009; Rubinov and Sporns, 2010; 

Sporns, 2011, 2014).  Efforts have been made to study the topological properties of the brain for 

neurological disorders network (Stam, 2014), brain disease and dysfunction network (Bassett and 

Bullmore., 2009; Vecchio et al., 2017; Pegg et al., 2020), aging network (Vecchio et al., 2017),  

resting-state network (Rutter et al., 2013; van Diessen et al., 2015), and high brain functions 

networks such as perception, problem-solving, memory, and attention (Breckel et al., 2013a; Dai 

et al., 2017; Taya et al., 2018; Ghaderi et al., 2019).  

A considerable amount of connectivity studies were applied using the fMRI data (Raichle, 2009; 

Farahani et al., 2019; Shou et al., 2020) due to its good spatial resolution. However, the technique 

has low temporal resolution and provides an indirect measurement of brain activity (van Diessen 

et al., 2015). To analyze the dynamic processes and the directional of the flow of information 

(Lopes da Silva, 2013), a high temporal resolution technique is valuable (Teplan, 2002; Stam et 

al., 2007b; Hassan and Wendling, 2018; O’Neill et al., 2018). 

In the last two decades, EEG connectivity studies have gained considerable interest in clinical 

studies. The first application of graph theory to EEG data was reported by Stam et al. (2007a) 

comparing the functional brain network of controlled and Alzheimer’s disease patients. Though, 

little is known regarding the healthy participants in everyday activity. 

There are three different types of connectivity that are closely related: structural connectivity, 

functional connectivity, and effective connectivity (Lee et al., 2003a, 2003b). Structural 

connectivity encompasses the physical connections among neurons, known as “neuroanatomical” 
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connections (Iakovidou, 2017), referring to the white matter connectivity in the brain. Functional 

connectivity is “the statistical interdependencies between physiological time series recorded from 

different brain regions” (Friston et al., 1993b; Friston, 1994). The effective connectivity refers to 

the causal effect and the direct influence of one neural element on another (Friston et al., 1993a, 

1993b; De Vico Fallani et al., 2014). For a review of functional and effective connectivity, we 

refer the reader to Friston (2011) and Goldenberg and Galván (2015). 

3.2 Functional Connectivity 

 

Functional connectivity measures the statistical interdependence of physiological time series 

recorded in different brain regions (Stam et al., 2009). Functional connectivity has been devoted 

to several studies since it is the best choice for analyzing the functional neuroimaging data and 

developing computer simulation models (Fingelkurts et al., 2005). Since the calculations of the 

functional connectivity are highly dependent on brain activities over the time series, a high 

temporal resolution technique such as EEG ( <1ms) is an optimum choice for reflecting the 

dynamic and rapid neural response (Hassan and Wendling, 2018) and modeling the causal 

inference (Sakkalis, 2011). The statistical dependencies between pairs of regions are measured 

through different methods that are summarized in (Table 3-1). The following table provides a 

variety of the most established estimation methods for functional connectivity; For each 

measurement we indicate (1) whether it is a univariate or a multivariate connectivity measure; (2) 

whether it is directed or undirected connectivity methods; (3) whether it is time, frequency domain 

analysis or cross-frequency phase coupling; (4) whether it is linear, nonlinear or information based 
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technique; (5) the sensitivity to the volume conduction (Kaminski and Blinowska, 1991; Kamiński 

et al., 2001; van Diessen et al., 2015; Brunner et al., 2016). For connectivity measurement review 

articles (see (Blinowska, 2010; Bastos and Schoffelen, 2016; Marzetti et al., 2019)). 

Table 3-1 Functional connectivity measurements 

 (Directed Transfer Function [DTF], Generalized synchronization [GS], Granger causality  [GC], 

Imaginary part of the coherence [IPC], Mutual information [MI], Partial Directed Coherence 

[PDC], Phase locking value [PLV], Phase synchronization [PS], Weighted Phase Lag Index 

[wPLI], Synchronization likelihood [SL]). 

Functional 

estimators  
 

Uni-

varia
te 

Multi- 

variate 

Direct 

Causalit
y based  

Un-

direct   

Time-

domain 

Frequency 

domain 

Phase 

coupling 

Linea

r  

Non-

linear  

Info-

based 

Volume 

conduction 
sensitivity 

Correlation  ✔   ✔ ✔   ✔ 

 

  Highly sensitive 

Cross correlation  ✔ ✔  ✔   ✔ 

 

  less sensitive 

Coherence  ✔ 

 

  ✔  ✔  ✔   Highly sensitive 

PLV  ✔ 

 

  ✔  ✔ ✔  ✔  Highly sensitive 

Phase lag index  ✔ 

 

  ✔  ✔   ✔  Less sensitive 

wPLI 

 
✔   ✔  ✔   ✔  Less sensitive  

Partial coherence 

 

 ✔  ✔  ✔   ✔  Robust 

MI  ✔ 

 

  ✔ ✔     ✔ Robust  

Transfer entropy ✔  ✔  ✔    ✔  Less sensitive 

GS  ✔  ✔      ✔  

SL   ✔   ✔     ✔  Sensitive 

 
PS  ✔  ✔   ✔  ✔  Sensitive 

 

GC   ✔ ✔  ✔ ✔  ✔   Less sensitive 

 DTF  ✔ ✔   ✔  ✔   Sensitive 
 

IPC  ✔   ✔  ✔  ✔   Less sensitive  

 PDC    ✔ ✔   ✔  ✔   Less sensitive 

 

3.3 Theoretical Aspects of Graph Theory 

Graph theory is a powerful mathematical tool that graphically illustrates the architecture of a 

complex network based on the modern theory of networks (Diestel, 1997). In 1736, the physicist 

https://en.wikipedia.org/wiki/Mutual_information
https://en.wikipedia.org/wiki/Phase_synchronization
https://en.wikipedia.org/wiki/Cross-correlation
https://en.wikipedia.org/wiki/Mutual_information
https://en.wikipedia.org/wiki/Transfer_entropy
https://en.wikipedia.org/wiki/Phase_synchronization
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Leonard Euler solved the problem of crossing the Pregel River, which is known as the “Seven 

Bridges of Königsberg.” The aim was to cross the seven bridges that connected two small islands 

in the Pregel river to the city of Königsberg only once and to return to the original location. 

Euler addressed this problem by reformulating the problem into an abstract representation and 

eliminating all features except for the landmasses and the bridges connecting them. In modern 

terms, Euler replaced each landmass with an abstract point (i.e., “vertex” or “node”) and each 

bridge with an abstract connection (“edge” or “line”), resulting in a mathematical structure called 

a “graph” or “network.” The contemplation of this problem led to the foundations of “graph 

theory”—the first true proof in the theory of networks. In 1741, Euler published his paper ‘Solutio 

problematis ad geometriam situs pertinentis,’ describing a hypothetical solution to the Konigsberg 

bridge problem (Euler, 1741). 

Since then, graph theory has become a vital method in the field of electrical circuits and chemical 

structures. The modern era of graph theory began in the late 1990s with the discovery of small-

worldness (Watts and Strogatz, 1998) and scale-free network models (Barabasi and Albert, 1999), 

enabling the quantification of brain connectivity patterns. 

Over the last two decades, the application of graph theory to the quantification of 

neurophysiological data has gained much attention in biology and neuroscience for diagnosing 

brain disorders such as epilepsy (Dellen et al., 2009; Christodoulakis et al., 2012), schizophrenia 

(Rutter et al., 2013), Alzheimer’s disease (Stam et al., 2009), rehabilitation after stroke (Westlake 

and Nagarajan, 2011), and other brain disorders (for a review, see Vecchio et al. (2017) and 

Farahani et al. (2019)). Whereas several subsequent works aimed to study the topological 

https://en.wikipedia.org/wiki/Vertex_(graph_theory)
https://en.wikipedia.org/wiki/Edge_(graph_theory)
https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)
https://en.wikipedia.org/wiki/Graph_theory
https://en.wikipedia.org/wiki/Graph_theory


43 

 

configuration of the brain in response to task modulation, the majority of the studies presented 

herein are primarily focused on cognitive neuroscience. Hence, one of the aims of the current 

review is to shed light on the functional connectivity of the brain at work and during everyday 

tasks. 

For a better understanding of network properties, the data are presented as a graph (G). The graph 

is a basic topographical representation consisting of a collection of V vertices (nodes) that are 

connected by edges (E) (links or connectors), where G = (V, E). To study the human brain network 

on a macroscopic scale, the nodes represent brain regions (i.e., EEG electrodes/sensors), whereas 

the edges represent statistical measures of association, including anatomical, functional, or 

effective connections (Rubinov and Sporns, 2010; Goldenberg and Galván, 2015). Graph edges 

include weighted direct, unweighted direct, weighted undirect, and unweighted undirect. A 

directed edge shows that the information flows in one direction only. The direct edge shows that 

the activity of one node depends on the other. Whereas an Undirect graph shows that information 

flows in both directions along edges that connect. The weight between two nodes reflects the 

connectivity strength of the edge, which allows for discrimination between strong and weak 

connections. Weak connections can be removed by thresholding.  

3.4 Pipeline for EEG Functional Brain Network  

The following eleven steps present the full pipeline for constructing the unweighted functional 

brain network using graph theory with EEG data. Here, we briefly describe each step, with the 

corresponding methodology and brief mathematical descriptions focused on unweighted networks. 

We have also summarized all steps of the pipeline, starting from the acquisition of EEG brain 
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signals to the statistical description of the brain network (Figure 3-1). Our aim is to provide a 

simple stepwise method that can be used by non-expert researchers in the field. 

1.Define the nodes of the brain network: The nodes of the brain network represent the brain region. 

In EEG applications the network nodes are defined by using one of two approaches. The first 

approach termed “sensor signals” or “individual channel,” which relies on the predefined standard 

placement of the EEG electrodes (Figure 3-1a) (Jasper, 1958; Chatrian et al., 1985; Oostenveld 

and Praamstra, 2001). This approach is simple, but the volume conduction may affect the accuracy 

of the functional connectivity estimates (Brunner et al., 2016; Mierlo et al., 2019). Thus, other 

researchers have suggested using a second approach based on EEG source space connectivity 

(Dimitrakopoulos et al., 2017; Hassan and Wendling, 2018) that can be defined by subdividing the 

brain into different regions to select the regions of interest based on parcellations scheme and 

individually segregated anatomical regions-of-interest (ROIs) from brain atlases (Tzourio-

Mazoyer et al., 2002; Zalesky et al., 2010). The source space is computed after the EEG signals 

are recorded (Figure 3-1b), preprocessed, and epoched (Figure 3-1c), then the 3D electrode 

locations are determined via the software acquisition system. To localize the brain source and 

reconstruct the time course, the inverse problem, which relies on dipole theory, must be solved 

(Baillet et al., 2001; Michel et al., 2004) by applying the following steps: (a) Obtain a head model 

by either using simple spherical head models or imaging a realistic head model by MRI (Figure 

3-1d). Realistic head models are usually preferable for an accurate calculation for the brain's 

electric potentials and geometrical characteristics. (b) Estimate the source localization in the head 

model to determine the location of the dipole source and reconstruct the time course (Figure 3-1e). 

Several algorithms are used for this purpose, including beamforming, LORETA (Pascual et al., 
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1994), standardized LORETA (sLORETA)(Pascual-Marqui, 2002b), exact LORETA 

(eLORETA), minimum norm estimate (MNE)(Hämäläinen and Ilmoniemi, 1994), and weighted 

MNE (wMNE) algorithms. Next, the source reconstructed time series is partitioned into an 

individually ROIs from the brain (Schoffelen and Gross, 2009) (Figure 3-1f) determined from 

functional atlases (Desikan et al., 2006) to obtain regional time series (Figure 3-1g). 

2. Preprocess the EEG data: After high-quality EEG signals are recorded from the scalp surface, 

the continuous EEG time series data (Figure 3-1b) must be preprocessed for segmentation, 

filtration, denoising, and artifact removal (Figure 3-1c) (Shamlo et al., 2015). EEG data are 

contaminated by various types of artifacts, which are categorized as physiological or non-

physiological (Ruffini et al., 2006; Sethi et al., 2006; Daly et al., 2012; Bulea et al., 2013). Various 

methods for data cleaning are discussed in (Reis et al., 2014; Islam et al., 2016). Then specific 

time-windows are extracted from the cleaned continuous EEG data “epochs”. 

3. Define the edges: The edges represent connections between different neurons or brain regions, 

and exhibit various patterns of connectivity, including structural, functional, and effective 

connectivity (Kaiser, 2011). In functional connectivity, the edges represent the time-series 

correlation between two different nodes (Figure 3-1c) or regions (Figure 3-1g). The edge is 

categorized as either direct or undirect with or without weights. Weights provide more information 

about the relationship between node pairs. 

4. Compute the connectivity matrix (A): The connectivity matrix is known as the adjacency matrix 

and contains information regarding the associations among connectivity patterns. The connectivity 

is described by an N × N symmetric matrix, in which the rows (i) and columns (j) denote nodes, 
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and matrix entries (aij) denote edges. There are two types of metrics: one metric is based on 

channels (Figure 3-1i), whereas the other metric is based on the brain region (current densities for 

each brain region pair) (Figure 3-1h). 

5. Convert the connectivity matrix into a binarized matrix: Matrix binarization is performed to 

convert the adjacent matrix to an unweighted matrix (Figure 3-1j). For matrix binarization, a 

threshold value is calculated for each element. If the correlation measures for each pair exceed the 

threshold, value edges are added between node pairs (otherwise no edge exists). Consequently, a 

matrix with entry aij = 1 reflects a connection between nodes i and j, while a matrix with entry aij 

= 0 reflects no connections between nodes i and j (Sporns et al., 2005).  

6. Choose a threshold value: The selection of the threshold value is an area of the ongoing research 

question, and the optimum threshold value is an open question in the literature. Thresholding helps 

to simplify the complexity of the brain network calculations by eliminating weak, noisy, and 

insignificant edges in the network (Bullmore and Sporns, 2009; Dellen et al., 2009; Iakovidou, 

2017). A careful selection is crucial, some criteria’s for appropriate threshold selection are reported 

in (Bassett et al., 2006; van Wijk et al., 2010a; Toppi et al., 2012). 

7. Estimate the functional connectivity measurement: Several methods are available for estimating 

pairwise associations between electrodes sensors or regions. A comparison between the functional 

connectivity estimates methods were summarized in (Table 3-1).  For a comprehensive review, 

articles see ((Blinowska, 2011; Sakkalis, 2011; De Vico Fallani et al., 2014)). Unfortunately, there 

is no such an optimal method to universally assess the functional connectivity (David et al., 2004; 

Wendling et al., 2009; Sakkalis, 2011). Authors suggested to be careful while choosing the 
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functional connectivity estimator and proposed some crucial factors to be considered such as (1) 

define the underlying hypothesis that will be studied (De Vico Fallani et al., 2014); (2) the nature 

of coupling either linear interdependencies, nonlinear interdependencies or information based 

technique (David et al., 2004; Imperatori et al., 2019) ; (3) the time-domain or frequency domain 

dependent of the estimator that is originally based on the neuroimaging technique being selected 

in the study (De Vico Fallani et al., 2014); (4) the frequency specificity of the interaction (broad 

vs. narrowband); (5) Direct (i.e., causal interaction) or non-direct type of measurement (Bastos 

and Schoffelen, 2016); (6) model-based or data-driven techniques (Sakkalis, 2011; Bastos and 

Schoffelen, 2016); 7) stationary or quasi-stationarity brain signals (De Vico Fallani et al., 2014); 

(8) bivariate or multivariate modeling consideration(Blinowska, 2011); (9) source or sensor 

electrode connectivity;  (10) the sensitivity to volume conduction phenomena (Brunner et al., 2016; 

Chella et al., 2016). 

In general, the EEG signals are best expressed based on frequency domain characteristics for 

distinguishing between neural and artifacts signals, thus considering frequency‐based functional 

estimators methods are particularly attractive (Astolfi et al., 2007). Several MATLAB based 

toolboxes are available for source estimation, estimating the functional connectivity, and analyze 

the network measurements that are summarized in (Hassan and Wendling, 2018).  

8. Construct the network: Mathematically, a network is a matrix (Vecchio et al., 2017). In order to 

construct a network, the binarized matrix is converted into a sparsely connected graph, represented 

as a scalp graph (Figure 3-1k) or cortex network (Figure 3-1l) after localizing the source as 

mentioned in the first step.  
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9. Analyze the data using graph theory: Different graph theory metrics are used to quantify network 

by analyzing the topological properties of the network (Figure 3-1m). Different toolkits have been 

developed for visualizing and analyzing topological properties, as summarized by Xia et al. 

(2013a) and Hassan et al. (2018). In the following section, we present a detailed description of the 

measures used to detect aspects of functional integration and segregation for unweighted networks. 

10. Apply statistics: Statistical methods are applied to compare the statistical differences between 

two different states such as exertion (hard vs. light), intensity (high vs. low), conditions (movement 

vs. rest), populations (healthy vs. diseased), or gender (males vs. females) or by comparing results 

to a theoretical reference network (network types are described below) (Figure 3-1n). There are 

several methods for statistical inference, nonparametric statistics, permutational statistics, and 

bootstrapping are the most appropriate for the nature of EEG data. 

11. Classify the conditions: Several methods have been used to classify different brain states 

(Figure 3-1O). For instance, functional connectivity estimates have been used to classify fatigue 

and non-fatigue conditions (Sun et al., 2018), whereas hand movements have been classified based 

on network node strength (Ghosh et al., 2015). Other classification algorithms, such as artificial 

neural networks (Samima and Sarma, 2019) and support vector machines (Sun et al., 2014b; Chen 

et al., 2019), have been used to classify mental workload and mental fatigue using connectivity 

features. 
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Figure 3-1: Schematic illustration of the pipeline for constructing a functional brain network 

based on EEG data using graph theory. 

The green line defines the first approach, termed the “sensor signal” or “individual channels” 

method, while the red line defines the second approach, denoted as “EEG source connectivity.” 

(a) Place the cap with electrodes on the scalp. (b) Record the EEG time series. (c) Preprocess the 

data by cleaning, filtering, removing artifacts, and epoched. (d) Solve the inverse problem by first 
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estimating or imaging the head model (method 2). (e) Reconstruct the electrical potential time 

source (method 2). (f) Parcels the source reconstructed epochs into ROI (method 2). (g) Define the 

ROI for the epochs. (h) Develop the connectivity matrix for the selected ROI. (i) Develop the 

connectivity matrix for the selected EEG channels (method 1). (j) Apply the threshold value(s) to 

binarize the connectivity matrix (methods 1 & 2). (k): Construct the scalp functional brain network 

between EEG electrodes. (l) Construct the cortex functional brain network within the ROI. (m) 

Apply network topological properties to calculate graph theory measurements. (n) Apply statistical 

analysis methods. (o) Classify different states if needed (Hwang et al., 2018; Mierlo et al., 2019). 

 

3.5 Graph Theoretical Measures and Network Topology Properties  

 

Network parameters are categorized into global (graph) and local (nodal) properties. Global 

properties include the characteristic path length, clustering coefficient, small-worldness, global 

efficiency, local efficiency, and transitivity whereas nodal properties include nodal centrality, 

betweenness centrality, and nodal efficiency. The following section provides mathematical 

equations for each network parameter, in which the definitions are limited to unweighted graphs.  

 

3.5.1 Global measures 

 

The path length is the number of edges that must be traversed in order to move from one node to 

another. The shortest path length (Han et al., 2019), or geodesic path (Newman, 2003), is the 

minimum number of edges necessary for a node to reach another node. The charasteritic path 

length (PL) is the average of the shortest path lengths over all possible nodes in the network (Latora 

and Marchiori, 2003; Qi et al., 2019) and represents the speed at which information is transferred 

between various brain regions, reflecting the global integration of information processing. PL is 
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defined the distance between two nodes i and j, given as the minimum number of edges needed to 

travel from node i to node j. N is the set of all nodes in the network, and n is the number of nodes 

(equation 1).The shorter the length, the better the integration of the graph, resulting in a simpler 

transfer of information. 

                                                     𝑃𝐿 =
1

𝑛(𝑛−1)
∑ 𝑑𝑖𝑗𝑖,𝑗𝜖𝑁.𝑖≠𝑗          ( 1 ) 

The inverse of the average shortest path length is used to quantify Eglobal which represents the 

efficiency of information transfer across the whole network, i.e., global information processing (Li 

et al., 2016). A higher Eglobal value indicates a faster parallel transfer of information in a network 

(Latora and Marchiori, 2001) and a superior integration of information (Ghaderi et al., 2018). 

     𝐸𝑔𝑙𝑜𝑏𝑎𝑙 =
1

𝑛(𝑛−1)
∑

1

𝑑𝑖,𝑗
𝑖,𝑗𝜖𝑁.𝑖≠𝑗          ( 2 ) 

 

The local clustering coefficient is the ratio of the number of existing edges between adjacent nodes 

to all possible connected edges (Kaiser, 2011; Liu et al., 2017) and is a measure of local 

connectivity or “cliqueness,” as it reflects the local interconnectedness among neighbors of a node 

in a graph (Kaminski and Blinowska, 2018). A higher clustering coefficient corresponds to more 

robust and efficient local interactions which is a direct measure to the function segregation. The 

average of the local clustering coefficient of all nodes is denoted as the global clustering coefficient 

(CC) (Watts and Strogatz, 1998). where  is the number of edges connected to node i and  is a binary 

value indicating the connection status ( = 1, edge exists;  = 0, edge does not exist) (equation 3) (Li 

et al., 2016).  
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     𝐶𝐶 =
1

𝑛
∑

∑ 𝑚𝑖𝑗𝑚𝑖ℎ𝑚𝑗ℎ𝑗,ℎ𝜖𝑁

𝐾𝑖(𝐾𝑖−1)𝑖𝜖𝑁              ( 3 ) 

Elocal is the average efficiency of all pairs of nodes, shows whether the communication between 

nodes is still efficient when a node is removed from the network. A higher Elocal is an indication 

for the robustness of the network at the local scale. 

     𝐸𝑙𝑜𝑐𝑎𝑙 =
1

𝑛
∑ 𝐸𝑔𝑙𝑜𝑏𝑎𝑙 𝐺(𝑖)𝑖𝜖𝐺          ( 4 ) 

The small-worldness parameter (σ) are characterized by a strong local clustering between network 

nodes with short path length between neighbor nodes (Watts and Strogatz, 1998; Bassett and 

Bullmore, 2006). Small-world network has a balance between the segregation and integration of 

the information (Latora and Marchiori, 2001). Meaning that most nodes can be reached from any 

other node in a small number of steps (Goldenberg and Galván, 2015). The small-worldness is 

determined as the ratio of the normalized CC (denoted as γ) to the normalized PL (denoted as λ) 

(Humphries et al., 2006; Humphries and Gurney, 2008) (equation 5).  

           σ =
𝐶𝐶

𝐶𝐶𝑟𝑎𝑛𝑑
⁄

𝑃𝐿
𝑃𝐿𝑟𝑎𝑛𝑑

⁄
=

γ

λ
       ( 5 )  

3.5.2 Nodal measures 

Graph theory local measures are commonly used to evaluate the network centrality and detecting 

network hubs such as betweenness centrality, degree centrality, and eigenvector centrality 

(Boccaletti et al., 2006; Zuo et al., 2012). The degree centrality (K) is the number of edges that 

connect one node with all other nodes. A higher degree indicates a more central node (Kaiser, 
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2011). Mathematically, it is calculated by summing the number of edges connected to each node. 

In which i is the source node and j is the destination node as shown in (equation 6). 

      𝐾𝑖 = ∑ 𝑎𝑖𝑗𝑗≠𝑖           ( 6 ) 

A node with a high degree of centrality is referred to as a “hub” (Sporns et al., 2007; Iakovidou, 

2017). A hub is a node with more edges than any other node (Kaiser, 2011) and indicates the 

important brain regions that interact with other regions (Iakovidou, 2017). Provincial hubs are hubs 

that are connected to other nodes in the same module, whereas connector hubs are connected to 

nodes in other modules (GeethaRamani and Sivaselvi, 2014). 

The betweenness centrality of a node measures the proportion of shortest paths between all node 

pairs in the network that pass through a given index node (Freeman, 1977; Fornito et al., 2016). 

The nodal efficiency (Enodal) is the inversely proportion of the characteristic path length between 

node i and all other nodes in the network.  It measures the ability of a node to propagate information 

with the other nodes in a network. As shown in (equation 7), N is the number of nodes and dij is 

the shortest path length between node i and node j. 

      𝐸𝑛𝑜𝑑𝑎𝑙 =
1

𝑁(𝑁−1)
∑

1

𝑑𝑖,𝑗
≠𝑖𝜖𝐺         ( 7 ) 

Detailed descriptions of these network parameters and their interpretations have been provided in 

several studies (Latora and Marchiori, 2001; Boccaletti et al., 2006; Achard and Bullmore, 2007; 

Bullmore and Sporns, 2009; Li et al., 2016). Furthermore, reviews on the application of graph 

theory to neuroscience can be found in several previous works (Stam and Reijneveld, 2007; Wang 

et al., 2010; Kaiser, 2011). 

https://en.wikipedia.org/wiki/Node_(networking)
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3.5.3 Network Types 

There are four types of networks (i.e., regular, well-ordered, or lattice-like networks; random 

networks; small-world networks; and scale-free networks) (Figure 3-2) (Reijneveld et al., 2007; 

Stam and Reijneveld, 2007; Stam, 2010). These different networks are distinguished based on the 

number of local segregation events (i.e., represented through CC) and the global integration 

between nodes (i.e., represented through PL). 

Regular networks have a high CC with a long PL, indicating that the network is robust but 

inefficient in transferring information. In contrast, random networks have a small CC and a short 

PL, indicating that the network is efficient in transferring information but is not robust. A small-

world network is intermediate between regular and random networks and has a short PL, similar 

to a random network, with a higher CC than a regular network (Latora and Marchiori, 2003). 

Small-world networks are robust and efficient in transferring information (Micheloyannis et al., 

2006a; Taya et al., 2015). In particular, small-world networks are characterized by high Elocal and 

Eglobal values, sparse connectivity between nodes, and low wiring costs (Danielle and Bullmore, 

2006). Therefore, small-world networks are considered as near-optimal networks in terms of 

segregation, integration, cost, and performance (Stam and Dijk, 2002; Stam et al., 2009). A scale-

free network is unique due to its extremely short path length (Cohen and Havlin, 2003; Stam and 

Reijneveld, 2007; Broido and Clauset, 2019) and strikes a balance between global and local 

communications (Taya et al., 2015) with a power-law degree distribution. Other network 

classifications have been proposed by Kaiser (2011) based on topological and spatial organization. 
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Figure 3-2: Four types of networks (in the scale-free network, the white and striped nodes 

represent network hubs) (Stam and Reijneveld, 2007; Stam, 2010). 

3.6 Application of Graph Theory to EEG   

3.6.1 Connectivity Studies on Movement Execution  

Motion is essential for everyday tasks, as “human action is orchestrated by mind (and brain) and 

body interactions” (Mehta, 2016). The contralateral somatosensory, ipsilateral somatosensory, and 

motor areas of the brain are strongly related to the function of motor processing. Before movement 

occurs, there is a transfer of information from the contra-to-ipsilateral hemispheres, whereas the 

opposite pattern occurs after movement (Nolte et al., 2004). Babiloni et al. (2001) observed a 

higher degree of activation in the bilateral primary sensorimotor areas during ongoing movement 

than during the preparation for movement execution. The supplementary motor areas of left and 

right hemispheres found to have higher strength value (De Vico Fallani et al., 2008). The increase 

in network edges during the preparation for movement demonstrates the need for a higher degree 

of information exchange in order to execute movement-related tasks (Fallani et al., 2008). 

Moreover, decreased accessibility and increased centrality have been observed during the 

preparation and execution of finger movement tasks.  
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Different patterns of coupling are observed for different intervention strategies. Particularly, 

different intensity levels during a cycling task generate different patterns of brain connectivity in 

the alpha and beta bands of the prefrontal motor and central areas (Comani et al., 2013). 

Furthermore, an increase in synchronization has been observed in the parietal and occipital lobes 

after physically and visually fatiguing tasks (Sengupta et al., 2014a). Increased mutual information 

(MI) values for the beta band have been observed during a finger-tapping task, reflecting an 

increase in the flow of information (Jin et al., 2012). Lastly, a strong interaction between the 

sensorimotor and prefrontal areas has been shown to occur during the transition period from the 

resting state to hand movement (Cheng et al., 2016). 

Local network properties have been considered during left- and right-hand movement tasks in 

order to classify different movements (Filho et al., 2018). Ghosh et al. (2015) showed that the node 

strength can be applied to classify hand movement without the need for any classifier. The Enodal 

value of the left sensory and bilateral primary motor cortices increases during motion-related tasks 

but decreases in posterior parietal areas (Jin et al., 2012). Furthermore, researchers observed an 

increase in the functional connectivity of the motor region during arm movements, as well as a 

reduced node accessibility and increased node centrality (Storti et al., 2015, 2016). Two years later, 

the same research group (Storti et al., 2018) found that arm movement significantly reduced 

network connectivity, primarily in the alpha and beta bands, and reduced the weighted PL only 

during movement of the left arm. However, neither the CC nor the small-worldness exhibited any 

significant changes. Jin et al. (2012) observed the economy of small-worldness in alpha and beta 

band networks during finger movement and resting tasks. The medial premotor and bilateral 

prefrontal cortex for the higher frequency bands appear to have greater connectivity and a higher 
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CC, but a shorter PL during motor tasks (Bassett et al., 2006). Significant changes in the hubs of 

the lower beta and gamma bands in the superior parietal somatosensory cortex have been shown 

to characterize visuomotor associations (Nguyen et al., 2019). A comparison between the node 

degree of spectral coherence and that of imaginary coherence in the beta band during a motor task 

showed that the spectral coherence network outperformed the imaginary coherence network in the 

contralateral motor cortex (Cattai et al., 2018).  

3.6.2 Connectivity Studies on Exertion 

A higher perception of effort task revealed strong beta coherence coupling in the prefrontal-motor 

area (Comani et al., 2013).  An increase in partial theta coherence has been observed in the frontal 

region during working memory tasks associated with physical exertion. An interesting U-shaped 

pattern was initially observed in the CC, where the CC of the theta band increased during both 

physical exertion tasks and mental tasks and decreased significantly when the tasks became more 

difficult (Porter et al., 2019). 

3.6.3 Connectivity Studies on Fatigue 

Fatigue diminishes human performance by slowing the human response time, increasing the error 

rate, increasing drowsiness, and causing musculoskeletal disorders. Several previous studies have 

addressed the underlying neural mechanism of mental fatigue in realistic applications (Majumder 

et al., 2019). Different patterns of connectivity between the right and left hemispheres in 

sensorimotor areas have also been demonstrated during a state of fatigue (Sun et al., 2014a), similar 

to the findings of Liu et al. (2010) in different brain regions. Comparing the synchronization 



58 

 

between pre-fatigued and post-fatigued tasks in parietal and occipital lobes indicates that the 

human brain exhibits stronger coupling during fatigue to maintain information transmission until 

the required task is accomplished (Kar and Routray, 2013; Sengupta et al., 2014a, 2014b). An 

increase in CC and K and a reduction in PL is an indication of vigilance reduction as a result of 

fatigue. The local network topologies of some EEG electrodes were significantly correlated with 

the degree of fatigue and borg’s scale values. Furthermore, the global network topologies were 

different between adults and children (Wang et al., 2018c). 

3.6.4 Connectivity Studies on Physical Workload 

The assessment of mental workload based on neuronal data has been of great interest (for a review, 

see Borghini et al. (Borghini et al., 2014)), while few in physical workload. Activities in the 

primary motor cortex increased with the incremental of exercise intensity (Brümmer et al., 2011). 

Sauseng et al. (2007)found an increase in the main local frontal-midline theta activity in conditions 

requiring the highest level of task demand. The weighted PLI value for the alpha band in all brain 

regions has been shown to decrease during a high cognitive-motor workload demand, whereas an 

increase was demonstrated in the coupling of the theta band  (Shaw et al., 2019). 

3.7 Results from Graph Theoretical EEG based Studies 

From 77 articles we have reviewed and summarized in (Appendix B), over than half of the articles 

selected were published during the four years (70%; n = 52). The results show an increasing trend 

in brain function studies using brain connectivity techniques and graph theory measures (Figure 

3-3). We expect the number of future studies to increase dramatically over the next several years.  
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Figure 3-3: Scatter plot of the publications of graph theory studies based on EEG data per year 

 

Overall, the evidence indicates that cognitive functions (80%) are more frequently addressed than 

motor processing (20%). techniques for estimating functional connectivity, including phase-

locking value (PLV) (Lachaux et al., 1999), partial directed coherence (PDC) (Baccalá and 

Sameshima, 2001), and phase lag index (PLI) (Stam et al., 2007b), exhibited the greatest potential 

impact (40%) (Figure 3-4). Numerous studies (n = 9) used the PLV technique, as it overcomes the 

limitations involved in using traditional coherence methods and calculates the linear correlation 

between EEG signals (Lachaux et al., 1999). The PLV technique is followed by the PDC, as this 

technique allows one to assess the statistical interdependence of EEG signals in the frequency 

domain (Baccalá and Sameshima, 2001; Baccala et al., 2007). 
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Figure 3-4: Pareto chart of methods for estimating functional connectivity 

(Phase Locking Value [PLV], Partial Directed Coherence [PDC], Phase Lag Index [Phase Lag 

Index], Directed Transfer Function [DTF], Mutual information [MI],  Minimum connected 

component [MCC]). 

 

The CC and PL are the most frequently used graph theory metrics to characterize the brain network 

(average, normalized, or weighted) (n = 33 and 26, respectively) (Figure 3-5). 
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Figure 3-5: Frequency of graph theory measures (clustering coefficient [CC], path length [PL], 

global efficiency [Eglobal], local efficiency [Elocal]) 

3.8 Limitations and Future Directions for Graph Theory Applications 

 

There is a growing interest in investigating brain connectivity with respect to the execution of 

specific tasks. The reviewed applications in this chapter indicated that the graph theory measures 

with EEG data yields reliable and feasible results. Motion tasks were limited to finger movements 

such as tapping, whereas exertion tasks were limited to cycling activity (Comani et al., 2013; Porter 

et al., 2019). Regularly performed activities in everyday settings such as handling, lifting, gripping, 
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grasping, pulling, pushing, assembling, sorting, manual inspection, and lower limb movements 

have not been well quantified using graph theory measures. Therefore, new exploratory studies are 

required to address real-world applications. 

Methodological choices through EEG recording, pre-processing, and analysis significantly impact 

the functional connectivity estimations and network topology. These including the choice of 

reference, artifacts removal, the confounding effect of volume conduction in EEG (in signals 

space), and inverse problem (in source space) (for a review see (van Diessen et al., 2015)). Hence, 

future researchers should explore the effects of different types of references on the connectivity 

measurements, similarly as (Chella et al., 2016; Anastasiadou et al., 2019). For mitigating the 

volume conduction effect, less sensitive connectivity estimators to volume could be used (Nolte et 

al., 2004; Stam et al., 2007b; Vinck et al., 2011; Christodoulakis et al., 2015).  Other suggestions 

include the use of spatial filters (Laplacian montage), studying current source density, and 

implementing the source space method  (Bastos and Schoffelen, 2016; Hassan and Wendling, 

2018). Although there are several methods were proposed to solve the inverse problem (Anzolin 

et al., 2019), there is no unique method without assumptions and limitations. Additionally, the 

source space method is difficult to implement, and the effect of volume conduction can never be 

completely abolished (Hassan et al., 2014; Hassan and Wendling, 2018).  

Many attempts have been proposed to minimize the existence of muscular and ocular artifacts in 

EEG data (Makeig et al., 1996; Urigüen and Zapirain, 2015; Blum et al., 2019; Pion-Tonachini et 

al., 2019a). None of the development methods guarantee artifact free data. It is unknown to what 

extent the reduction of artifacts could influence the connectivity measurements.  Filtering is used 
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to avoid antialiasing and eliminate the effect of direct current. A careful selection of filtering is 

crucial since filtering affects the phase and amplitude of EEG signals. Thus, a zero-phase filter is 

highly recommended.  

Functional connectivity patterns and graph theory have proven to be powerful tools for 

characterizing brain signals. However, the ability to use these measurements as an input parameter 

for developing predictive models, adaptive systems, or monitoring systems has been poorly 

addressed (Cynthia et al., 2017; Chen et al., 2019; Yuan et al., 2019). One of the most challenging 

goals in the field of neuroergonomics is to develop smart systems that can accurately monitor and 

detect an operator's mental state and the intention of movements at work (Samima and Sarma, 

2019).  

Another limitation is the difficulty of drawing specific conclusions, especially when using different 

factors, as discrepancies could stem from (a) differences in estimations of functional connectivity 

(Wendling et al., 2009; Li et al., 2016; Cattai et al., 2018), (b) differences in threshold values 

(Micheloyannis et al., 2006b; Lithari et al., 2012; Huang et al., 2016; Nguyen et al., 2019), (c) 

differences in recording reference locations (Nunez et al., 1997; Micheloyannis et al., 2006a; 

Christodoulakis et al., 2015; Anastasiadou et al., 2019), (d) the numbers of existing edges (De 

Vico Fallani et al., 2014), (e) sample size bias (Bastos and Schoffelen, 2016), (f) factors related to 

participant demographics, such as gender and age (Micheloyannis et al., 2009; Wang et al., 2018c) 

or level of education (Micheloyannis et al., 2006b, 2006a); (g) the brain states of the subjects, such 

as healthy or pathological (Stam, 2014); or (h) the inclusion of trained or untrained participants 

(Taya et al., 2015, 2018).  
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Further research is needed to avoid the arbitrary selection of the threshold value in a binary network 

and minimize bias. The chance of having a network with a high false-negative value and threshold 

bias, motivated researchers to propose novel computational methods (Drakesmith et al., 2015). 

The unweighted network still dominates the literature, as it simplifies the complexity of brain 

signals by eliminating the weakest connections (Storti et al., 2016). Although several thresholding 

approaches are proposed, there is no reliable method that efficiently filters brain information 

(Vijayalakshmi et al., 2015). Others sustained to implement a weighted network as it is more 

informative (De Vico Fallani et al., 2014). While In that case, care must be taken since variation 

in weights affects the network topology (Fornito et al., 2013). 

A considerable number of experiments were conducted on males only or both genders. There is a 

significant gap in investigating the functional brain network on female participants. Studies have 

demonstrated that there are significant differences between males and females, and therefore, 

functional brain network studies focused solely on female participants are required to address these 

differences. Wang et al. (2018c) suggested dividing participants uniformly according to age or 

gender for more accurate observation. Moreover, the number of participants in future studies 

should be larger to achieve a higher degree of generalization. 
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4. CHAPTER FOUR: MATERIALS AND METHODS 

In this chapter, we describe the study methodology by explain the EEG data acquisition, 

preprocessing procedures, feature extraction, connectivity estimation and network construction. 

We proposed an EEG pipeline for constructing functional brain EEG source network.  

4.1 Experiment and Task Description 

 

The experiment was designed to record the brain signals to investigate the interactions of brain 

activities in the form of EEG signatures, measures the exerted forces, and collect the perceived 

comfort with the predefined force exertions levels. 

An isometric arm exertion task using the Jackson Strength Evaluation System was performed. The 

system was developed by Andrew Jackson (1994) to assess the physical ability of workers to 

perform MMH tasks (Chaffin et al., 1978; Mital and Kumar, 1998). The participant stands straight 

on a wood plate, in which a metal chain is anchored to the plate. The handle is attached at the top 

of the metal chain, approximately at the elbow high of the participant and parallel to the floor. The 

length of the chain is adjusted to match the necessary elongation so the participant’s muscles will 

not contract, which fulfills the definition of isometric. The weight of the handle and chain is 1.5 

Kilograms (3.3 lbs).  

Participants lift the chain and exert a force by pulling the chain using the handle that matches 

predefined levels of exertion. Participants must pull the handle upward using their upper arms 
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approximately 90 degrees without any body movement, as shown in (Figure 4-1). The isometric 

strength test instructions are provided in (Appendix C). 

 

Figure 4-1:Isometric Strength test as recommended by Chaffin et al. (1978) 

 

4.2 Experimental Design 

The presented design of the experiment is based on previously established procedures that have 

been previously conducted in the computational Neuroergonomics laboratory presented by Aljuaid 

(2016). 

The experiment consisted of two tasks: 1) maximum voluntary contraction (MVC), and 2) the 

isometric force exertion task. In MVC, the participants were asked to apply the maximum force 

for three seconds for each of three trials separated by 30-second rest periods between each trial. 

Then, a five-minute rest was provided to avoid muscle fatigue. In the isometric arm flexion task, 

the participant was asked to exert a force that matched one of five predefined exertion levels, as 

follows: 1) extremely light, 2) light, 3) somewhat hard, 4) hard, and 5) extremely hard. The utilized 
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force levels were selected from a 6–20 scale of perceived exertion proposed by Borg (1982) 

(Appendix D). The participants were asked to maintain steady-state exertion for three seconds for 

three trials separated by 120-second rest periods between each trial. After each trial, the 

participants were asked to subjectively assess the level of physical comfort that corresponded to 

the exerted force [N] using an 11-point scale of perceived physical comfort scale (Appendix E).  

The order of force exertion levels was determined randomly to prevent potential learning effects. 

The whole arm experiment for each participant with EEG preparation time lasts for approximately 

62 minutes, unless participants asked for more rest.  The detailed timeline for the designed 

experimental is provided in (Figure 4-2).  

 

Figure 4-2: The study protocol for arm force exertion 
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4.3 Research Variables 

 

The independent variables of the experiment included MVC, and levels of perceived exertion. 

While the dependent variables include graph theory measures, exerted force, and rate of perceived 

physical comfort (RPPC).  A sample of the data collection process is shown in (Appendix F). 

Independent variables 

 

Maximum voluntary contraction (MVC) Level of perceived exertion 

Dependent variables 

 

Graph theory measures Exerted force RPPC 

 

4.4 Experiment Procedure  

 

Participants visited the computational neuroergonomics lab in two occasions, for preparation 

session and for experimental session (Figure 4-3). 

The preparation session is crucial to ensure that the assigned participant met all the eligibility 

criteria mentioned in the flyer (Appendix G). If the participants met all the criteria, we measure 

the participant’s head circumference using a flexible tape measure to prepare a correctly fitted cap 

size. The available cap sizes include 54, 56, and 58 cm. A detailed description for the experimental 

session is provided in section (4.6). 
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Figure 4-3: Experiment Procedure 

4.5 Apparatus and Instrument 

 

4.5.1 Electroencephalogram 

A CGX-Mobile-64 EEG device was used for recording brain activity. The EEG headset is wireless, 

motion resistant, and easy to use. The system is a wet headset that requires conductive gel to 

connect the skin of the scalp to the electrodes with Ag/AgCl active electrodes positioned according 

to the 10–10 international montage system. (Figure 4-4). The EEG signals were acquired using 

Cognionics acquisition software (CGX software, 2020). A superVisc electrolyte gel was used for 

active electrodes and connecting impedance was kept below 10 kΩ. To avoid anti-aliasing, 

physiological signals were sampled at 500 Hz with a bandpass filter of 0.1–100 Hz. 
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Figure 4-4:EEG Mobile-64 headset   

4.5.2 Jackson Strength Evaluation System 

The Jackson Strength Evaluation system is consisting of a wooden platform, a handle, a chain, a 

hand dynamometer, and a control unit (Figure 4-5). Two types of handles are attached to the 

device. The short handle for leg strength test, whereas the long handlebar for arm and torso strength 

test (Chaffin et al., 1978; Mital and Kumar, 1998).   

 

Figure 4-5: Jackson Strength Evaluation System 



71 

 

4.5.3 TORBAL Force Gauge 

TORBAL FC5k series force measurement device is be attached to the handle for measuring the 

exerted force. The device was set to measure force in newton (N) unit. For MVC measurements, 

the TORBAL FC device was set to multi-peak mode. For exertion force measurements, the 

TORBAL FC device is set to a standard mode.  

4.5.4 Wireless Trigger   

A wireless trigger marks the starting and endpoint for each trial using a parallel port. Participants 

listen to the experiment instructions through E-prime software (E-prime software, 2020), which is 

the stimulus generation method.  

4.6 Experimental Setup and Paradigm 

For experimental setup, we have followed the recommended procedure addressed in previous 

studies presented in (Light et al., 2010; Heisz and McIntosh, 2013). 

Before the participant arrives, the following were prepared:     

Place all electrodes on the cap. It takes 35-40 minutes to place 64 electrodes on the cap. 

Set up the TORBAL force gauge. 

Test the stimulus generation software (E-prime software) and ensure that the trigger is sending 

markers. 

Set up the EEG acquisition software for recording. 
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Fill some syringes with conductive gel. 

Prepare consent form, medical screening form, and data collection sheet. 

Prepare the cotton swabs, alcohol, tissues, hairbrush (disinfected hard-bristle comb), and tape 

measurement. 

Prepares the supplies for participants to wash their hair after the experiment (i.e., large sink, 

shampoo, and paper towels). 

When the participant arrives, we followed the following procedures: 

Participants fill a medical screening questionnaire form (Appendix H). If any participant failed to 

meet the eligibility criteria, a participant would discontinue. 

All Participants received a written informed consent which was approved by the Institutional 

Review Board (IRB) at the University of Central Florida (UCF) (Appendix I). Participants read 

the informed consent and decide whether they will participate in the experiment or not. If the 

participant decided to participate in the experiment, we begin to explain the task and demonstrate 

all the experimental procedures. 

Participants received detailed written instruction with enough time to read (Appendix C).   

The EEG device was introduced to the participants. 

Anthropometric measurements were collected (Appendix J), and the Jackson chain height was 

adjusted. 

Participants were trained to perform the task correctly. 
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Scalp and EEG preparation   

Manual abrasion participants' scalp was conducted with a hard-bristle comb for removing dead 

skin. Participants were asked to wash their hair without using additives such as hair styling 

products or conditioners to avoid greasing layer, which is previously mentioned in the experiment 

flyer (Appendix G).  

Measure the distance between the participants' nasion and inion to ensure that Cz electrode is 

placed at the center of the head. Then measure nasion to Cz, to ensure that the distance is half the 

distance from nasion to inion.  

Mount the cap on the participant's head and tighten the cap with the chinstrap. 

Turn on the EEG device and check the wireless connection. 

Use a cotton swab with isopropyl alcohol to clean the skin for each electrode opening in the cap. 

A second manual abrasion is made before applying the conducting gel using the blunt syringe 

nose. This is done by gently pushing the participant's hair through the electrode opening to ensure 

complete visibility of scalp skin. 

Fill the electrode cap opening by injecting the superVisc electrolyte gel using a small syringe. Start 

to fill the reference and ground electrodes. 

To lower the electrode impedance, apply more gel and twist the syringe tip on the scalp. This will 

increase the connectivity between the scalp and electrodes. Applying too much gel may create a 

bridge between the signals of neighboring electrodes. 
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Ensure that all electrodes are connected with low impendence. 

Before collecting the data 

Participants were asked to perform some blinking, head, turning, neck movement, head movement, 

chowing, and jaw clenching to see the influence of movement on the EEG data quality. 

Participants were kindly asked to avoid unnecessary movement and to maintain a stable body 

position to minimize artifacts during the task (i.e., to collect as much as possible clean data). 

Start recording and save the file. 

During data collection 

Ensure that participants are performing the task correctly. 

Ensure that participants are not blinking too much. 

Ask participants if they need more break time, water, or snacks. 

Ensure that all electrode impedances are low. 

After collecting the data  

Carefully remove the EEG cap from the participant's head. 

Participants were given receive shampoo and paper towels for hair cleaning. 

We thank participants and give each a gift card. 
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We start cleaning the device by first removing all electrodes from the cap then soak the electrodes 

in warm distilled water for 10 minutes. A toothbrush and alcohol pads were used to remove any 

excess gel from electrodes. Then electrodes rinsed with distilled water. 

We clean the elastic cap by rinsing it with alcohol and water, then lay it to air dry. 

4.7 Experiment Environment 

This study was conducted in a temperature-controlled laboratory and sound-attenuated 

environment. This environment helped participants  to concentrate on task performance and 

minimized the non-physiological artifacts as possible (Reis et al., 2014; Islam et al., 2016). To 

minimize the risk of selection bias, all participants were randomly selected (i.e., selection bias) . 

The participants had no previous knowledge regarding the study purpose (to reduce performance 

bias) and hypothesized outcomes (to reduce detection bias). All incomplete data outcomes (i.e., 

reporting bias) and excluded data (i.e., attention bias) were recorded (Higgins et al., 2019). 

4.8 Anthropometric Measurements  

Anthropometric measurements were collected from all participants, including body weight, 

shoulder height, hip height, knee height, arm length, knuckle height, and body height (Appendix 

J).  

4.9 Participants Selection and Ethical Code 

Twelve healthy adult female participants (mean age 28 ± 6 y) performed an arm isometric exertion 

task. All participants met the experimental requirements, including absence of history of 
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cardiovascular problems, neurological disorders, fatigue-related disorders, chronic physical, 

musculoskeletal disease, back pain, injuries, or mental illness. Pregnant female participants were 

excluded. Participants were instructed not to take any medication, coffee, or alcohol for a minimum 

of 24 hours before the experiment, and no exercise for the past 48 hours. All experiments were 

carried out with the approval of the Institutional Review Board at the University of Central Florida 

(STUDY00000535) (Appendix I). Written informed consent was obtained from each participant 

after the explanation of the experimental protocol. To protect the privacy of the participants, and 

to maintain the ethical standards, we ensured (1) concealment participants’ names; (2) 

confidentiality of anthropometric data; and (3) secure data storage. 

Perception is different between males and females (Karwowski, 1991; Wright and Saylor, 1991). 

A significant difference in muscular strength was observed by gender differences (Chaffin et al., 

1978; Delorme et al., 2007). Furthermore, different brain patterns were observed due to gender 

differences (Dimitrakopoulos et al., 2018; Zhang et al., 2018). A structural brain difference was 

found between males and females. Thus, gender is a crucial biological variable in brain research 

(Cahill, 2006; Xin et al., 2019). 

4.10 Methodological pipeline 

An overview of the methodological pipeline is shown in (Figure 4-6). First, EEG data were 

collected for all participants using 64 EEG channel locations. Then the collected EEG time-series 

signals underwent preprocessing processes (shown in detail in section 4.12.1). Fast Fourier 

Transform (FFT) algorithm using Hanning window was used to calculate cross spectra for each 

frequency band for each participant at each exertion level for the cleaned and filtered EEG epochs. 
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Using eLORETA transformation matrix, cross spectra of each subject and for each frequency band 

were then transformed to eLORETA files (Pascual-Marqui et al., 1994; Pascual-Marqui, 2007) 

and reconstructed the EEG current source density.  

 

Figure 4-6: Methodological pipeline 

 

(a) Collect the EEG data using 64 channel locations. (b) Record the EEG time series. (c) Filter, 

clean and epoch the EEG time-series signals. (d) Reconstruct the EEG source from the EEG cross 

spectral in eLORETA software. (e) Parcellate the cortex according to the Brodmann area (BA) 

atlas. (f) Construct the adjacent matrix after estimating the connectivity patterns. (g) Binarize the 
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network using a threshold value. (h) Construct the functional connectivity patterns between 

Regions of interest (ROI). (i) Calculate the graph theory measures to compute the local and global 

network properties. (j) Apply a non-parametric permutation tests to assess brain topological 

changes. 

 

The solution space estimated by source localization was then parcellated into brain anatomical 

structures according to the Brodmann area (BA) atlas, which was used to define 84 BA regions of 

interest (i.e., graph nodes) for brain network construction.  Functional connectivity was estimated 

across all pairs of brain regions (i.e., network edges). This step yielded an adjacent matrix (size 84 

× 84) for each participant for each frequency band at each exertion level that was binarized to  

remove weak connections (van den Heuvel et al., 2017). Graph theory measures were then used to 

compute the local and global network properties. Finally, statistical analysis based on non-

parametric permutation tests was used to assess brain topological changes in the studied 

experimental conditions. 

 4.11 EEG Acquisition 

EEGs signals were recorded using a CGX-64 Mobile gel-based system electrode cap with 

Ag/AgCl active electrodes positioned according to the 10–10 international montage system. The 

EEG signals were  acquired using the Cognionics acquisition software CGX (CGX software, 

2020). A superVisc electrolyte gel was used for active electrodes and connecting impedance was 

kept below 10 kΩ or less. To avoid anti-aliasing, the physiological signals were sampled at 500 

Hz with a bandpass filter of 0.1-100 Hz. The reference electrode is located at the left linked mastoid 

and the ground at the right linked mastoid.  
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4.12 EEG Data Preprocessing  

The data processing workflow is summarized in (Figure 4-7). The data processing workflow that 

consisted of ten stages including data curation, cleaning, artifact removal, dipole localization, 

feature extraction, source reconstruction, defining the regions of interest (ROI), functional 

connectivity estimation, graph theory calculations and statistical analysis.  

 

Figure 4-7: The data processing workflow 
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(artifact substance reconstruction [ASR], adaptive mixture independent component analysis 

[AMICA], Brodmann areas [BA], current source density [CSD], exact Low Resolution Brain 

Electromagnetic Tomography [eLORETA], independent component [IC], region of interest [ROI]. 

4.12.1 EEG Data Pre-Processing 

The first four stages were the EEG pre-processing stages. Since raw EEG data is contaminated 

with artifacts, filtering, denoising, and cleaning are crucial for enhancing the signal to noise ratio 

(Urigüen and Zapirain, 2015). EEG pre-processing was performed using EEGLAB (version 

14.1.2b; Delorme and Makeig, 2004), an open source toolbox run on Matlab R2019b software 

(MathWorks, Natick, MA). 

Curation (stage 1): The raw EEG data was imported ensuring a double-precision option (Shamlo 

et al., 2015). The data were visually inspected and the sample was reduced from 500 Hz to 250 Hz 

for easier storage and faster processing. The Montreal Neurological Institute (MNI) coordinates 

were used for defining the channels location and head center was optimized to fit the head sphere.  

 Cleaning (stage 2): EEG signals were filtered through a 1–50 HZ zero-phase Hamming window 

known as a finite impulse response bandpass filter (Christiano and Fitzgerald, 2003; Garcés Correa 

et al., 2007; Winkler et al., 2015; Maess et al., 2016).  The spectra for the 64 channels were plotted 

and manually visualized. Then, an automatic bad channel rejection using the EEGLAB toolbox 

known as clean_raw data (Chang et al., 2018) was applied. This automatic toolbox can detect and 

separate noisy channels and low-frequency drifts. Then, interpolation was applied after detecting 

and removing bad channels to alleviate the bias resulting from the unequal number of electrodes 

between the right and left hemispheres. An offline common average reference (CAR) was applied 

to reset the data to a zero-sum across channels. Applying all the procedures in stage 2 helped to 
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obtain more clean data, but most artifacts still exist. Therefore, artifact removal methods are 

required (stage 3). 

Artifact removal (stage 3): For artifact removal and correction methods, an artifact substance 

reconstruction method that subspaces unusually large-amplitude data was first applied. This 

method does not consider eye-blinking or small-amplitude contamination (Mullen et al., 2013, 

2015). Consequently, an independent-component analysis (ICA) decomposition method based on 

the blind source separation technique was used. Before applying ICA, the continuous EEG data 

was epoched based on the task structure. For each participant, there were three MVCs and five 

isometric exertion levels that were repeated three times, resulting in a total of 18 epochs. For 12 

participants, there were a total of 216 epochs. An adaptive mixture ICA (AMICA) algorithm was 

used to decompose EEG signals into independent components (ICs) (Palmer et al., 2011). AMICA 

proved to outperform all other ICA approaches (Delorme et al., 2012; Hsu et al., 2018). An 

automated classifier known as IC Label was used to distinguish between the brain and non-brain 

sources (Pion-Tonachini et al., 2019a, 2019b).  

Dipole localization (Stage 4): Before rejecting any IC, sources were localized to the separated IC 

components. An equivalent current dipole and bilateral model were computed for each IC using a 

boundary element head model (BEM)  (Oostendorp and van Oosterom, 1989; Oostenveld and 

Oostendorp, 2002) based on MNI coordinate (Montreal Neurological Institute).  DIPFIT version 

3, an EEGlab plugin (Oostenveld and Oostendorp, 2002), was used for calculating the dipole 

localization.  A nonlinear optimization technique using the MATLAB optimizer toolbox was used 

to locate the best position for a single dipole or bilateral dipole (Piazza et al., 2016)(Figure 4-8). 
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Residual variances , which measures the variance between original scalp recorded signal locations 

and models, were kept below 40%. Components that appear to be eye movements and blinking, 

electrocardiography, motion artifacts, line, and noise channel were manually removed after 

localizing the dipole.  Following Nguyen et al. (2019) protocol, the entire experiment would be 

rejected if the number of rejected ICs was more than 50% of the total IC. An example of the 

outcome from IC label classifier is provided in (Figure 4-9). 

 

Figure 4-8: Dipoles for 64 electrodes  

4.12.2 Data processing 

Feature extraction (stage 5): EEG cross spectra was extracted based on Fast Fourier Transform 

using Hanning windows with 10% onset. The cross spectra were averaged across the 50% 

overlapping windows considering two frequency bands (alpha = 8–13 Hz and beta = 13–30 Hz) 
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for each participant, using eLORETA software (freely available 

at http://www.uzh.ch/keyinst/loreta.htm). 

Source reconstruction (Stage 6): Using the eLORETA transformation matrix, cross spectra for 

each participant and for each frequency band were transformed to eLORETA files. This resulted 

in three-dimensional intracerebral CSD of the electrical neuronal generators for each participant 

(Pascual-Marqui et al., 2002). The eLORETA is a genuine inverse solution with exact zero error 

localization in the presence of measurement and structured biological noise (Pascual-Marqui et al., 

1994; Pascual-Marqui, 2002a, 2007).  

 

Figure 4-9: IC label classifier for a single participant for a single channel 

 

http://www.uzh.ch/keyinst/loreta.htm
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The software uses a realistic head model (Fuchs et al., 2002) based on the Montreal Neurologic 

Institute (MNI) 152 template (Mazziotta et al., 2001), with the three-dimensional solution space 

restricted to the cortical gray matter and hippocampi, as determined by the probabilistic Talairach 

atlas (Lancaster et al., 2000). The software helps solve the inverse solution by parcellating the 

spectral current density into 6239 voxels of 5-mm3 spatial resolution. eLORETA has been used 

extensively and was validated in several studies using real human data (Canuet et al., 2011, 2012; 

Olbrich et al., 2013; Di Lorenzo et al., 2015; Hata et al., 2016; Shreekantiah Umesh et al., 2016; 

Lanzone et al., 2020). eLORETA helps determine the distribution of current density across voxels 

in the brain (Pascual-Marqui et al., 2011a) and was demonstrated to be more robust and accurate 

than other source-localization methods (Jatoi et al., 2014; Dai et al., 2017). 

Regions of interests (stage 7): A voxel-wise approach was used to define the regions of interest 

(ROI) using a single voxel method in which the ROIs were centered at the given voxel coordinates 

including all cortical gray matter voxels within 15 mm distance from the center. Anatomical labels 

corresponding to Brodmann areas (BA)  provided by eLORETA software package are based on the 

Talairach Daemon (http://www.talairach.org/) (Appendix K) (Brett et al., 2002).We selected the 

whole brain 84 ROI ( 42 for each hemisphere) provided by eLORETA software. This step helped 

in converting the EEG from sensor levels to source level (Figure 4-10). Each brain regions 

represents the network node.  

http://www.talairach.org/
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Figure 4-10: 2D channel location plot (i.e., scalp level) converted to 84 ROI (i.e., source level)  

 

Source Functional connectivity (stage 8):  EEG source-based functional connectivity matrices 

were computed using eLORETA software using the coherence method to estimate the patterns of 

statistical dependencies among 84 ROI for two EEG frequency bands (i.e., alpha and beta) for each 

participant. The 84 × 84 coherence connectivity matrices were converted to a binary matrix using 

a set of range of sparsity thresholds to maintain strong connections (van den Heuvel et al., 2017). 

To prevent the formation of a disconnected network and maintain network reachability, wide 

sparsity values in the range of 5–50% with steps of 5% were used. 

Network analysis (stage 9): Global and local graph measures were computed  for all exertion 

level for two frequency bands, then we assessed the network properties using nonparametric 

permutation-based statistical method (Nichols and Holmes, 2002b). 



86 

 

4.13 Estimation of Functional Connectivity of EEG Cortical Sources   

Coherence measures the  degree  of  association  between  two  different brain regions. It measures 

the phase synchrony of EEG signals recorded between pairs of electrodes in the frequency domain 

as defined by Walter (1968). Mathematically, coherence is defined as the absolute value of the 

cross spectrum of two signals normalized by spectral power of each of the signals (Nunez et al., 

1997), as shown in equation (8). Where f is the frequency, Wx is the cross power spectral density 

of x, Wy is the cross power spectral density of y, and Wxy is the cross power spectrum density of 

the two signals. 

                                𝐶𝑥𝑦(𝑓) =
|𝑊𝑥𝑦|

2
(𝑓)

𝑊𝑥(𝑓)∗ 𝑊𝑦(𝑓)
                ( 8 ) 

Coherence is one of the widely used methods to study the functional brain network (Andrew and 

Pfurtscheller, 1999; Canteroa et al., 1999; Nolte et al., 2004; Sauseng et al., 2005; Comani et al., 

2013; Bowyer, 2016; Storti et al., 2016) and represents a reliable method for evaluating the 

physiological abnormalities (Adler et al., 2003; Wang et al., 2014). In this study, the coherence 

was computed for 84 ROIs using eLORETA connectivity algorithm (Pascual-Marqui et al., 2011b) 

for each subject and each EEG frequency band (alpha and beta). 

4.14 Graph Analysis and Measures Computation 

We calculated the most common global and local graph measures for each exertion level for each 

frequency band across the network densities, ranging from 0.1 to 0.5, with a step size of 0.05. 

Global graph measures included average clustering coefficient, characteristic path length, global 

efficiency, small-worldness (SW), local efficiency, and modularity. The clustering coefficient is a 

https://www.sciencedirect.com/science/article/pii/S0929664613002325?via%3Dihub#fd1
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measure of the degree to which nodes in a graph tend to cluster together. The characteristic path 

length (PL) is the average of the shortest route between all pairs of nodes in the network and 

measures the network ability to transfer serial information (Brier et al., 2014). The inverse of PL 

is global efficiency, which measures the network’s ability to transfer parallel information (Berlot 

et al., 2016). SW is the ratio of the clustering coefficient to PL. An SW index greater than 1 

indicates small-world organization of the brain network (Watts and Strogatz, 1998). Local 

efficiency measures the efficiency of information transfer limited to neighboring nodes. 

Modularity is the ability of a graph to be subdivided into modules that are maximally connected 

within a module and sparsely connected between modules (Newman, 2006). 

Graph-theoretical local measures provide knowledge of individual nodes’ properties. We assessed 

the importance of various ROIs within the brain network by evaluating nodal properties, including 

degree centrality, betweenness centrality, and nodal efficiency. Degree centrality counts the 

number of edges connecting a node with all other nodes. The greater the degree, the more important 

the node is in the network. Betweenness centrality quantifies the number of times that a node acts 

as a bridge along the shortest path between two other nodes. Nodal efficiency measures the ability 

of information propagation between a node and the remaining nodes in the network (Wang et al., 

2010). 

  



88 

 

 

5. CHAPTER FIVE 

 RESULTS AND ANALYSIS 

This chapter includes the statistical analysis methods and the results. We started the chapter with 

the descriptive statistics regarding the anthropometric measures, force measures, and comfort 

scales. Then we estimated the maximum current source density for each exertion level for each 

frequency band. We calculated the functional connectivity between the pairs of brain regions and 

computed the coherence matrices. Finally, we computed the graph theory global and local 

measures. 

5.1 Statistical Analysis 

5.1.1 Isometric Force  

To assess the effect of predefined levels of physical exertion on generated arm forces, analysis of 

variance (ANOVA) was used. Tukey’s post hoc multiple-comparison test was also performed to 

identify significant differences in exerted forces. 

 

5.1.2 Rate of Perceived Physical Comfort 

ANOVA was also used to assess the effect of predefined levels of physical exertion on the assessed 

RPPC scores. Tukey’s post hoc multiple-comparison test was also performed to identify significant 

differences in the rate of perceived physical comfort. 
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5.1.3 eLORETA Source Localization 

To evaluate the difference in CSD in cortical source-localization between exertion levels in each 

frequency band, we applied voxel-by-voxel independent sample F-ratio tests, based on eLORETA 

log-transformed CSD power. To control Type 1 errors, we applied a statistical non-parametric 

permutation test with 5000 data randomizations to create the permutation distribution and to 

determine the critical threshold at significance value = 0.05(Holmes et al., 1996; Nichols and 

Holmes, 2002b). The critical threshold was then entered to “maximal-statistic” to determine the 

maximum activation region at the 95th percentile under the null hypothesis (Olbrich et al., 2013). 

The use of the SnPM has been implemented in many studies due to the advantage of the multiple 

test correction and controlling type 1 error (Hata et al., 2016; Kitaura et al., 2017). We assessed 

the difference of the source localization of cortical oscillations between the exertion levels in alpha 

and beta band using a voxel-by-voxel independent F-ratio-tests, with threshold set at 5% 

significance level. A total of 5000 data randomizations were used to determine the critical 

probability threshold values for the actually observed log F-ratio values with correction for 

multiple comparisons across all voxels and all frequencies, with no need to rely on Gaussianity.  

5.1.4 Source Functional Connectivity Estimations 

For the functional connectivity analysis, we performed a method that applies a single voxel at the 

centroid of each BA using eLORETA software (Canuet et al., 2012; Hata et al., 2016; Zinn et al., 

2016; Ponomareva et al., 2020). A connectivity analysis between pairs of 84 ROIs in two frequency 

bands in all physical exertion levels was conducted using independent sample t-tests that were 
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corrected for multiple comparisons using a non-parametric randomization method based on the 

‘maximal-statistic’. We applied the same permutation test with 5000 randomizations to identify 

the critical probability thresholds at significant levels and correct for Type 1 errors. 

5.1.5 Brain Network Analysis 

For graph theory measures, we applied a non-parametric permutation test (p-values were 

calculated from 30,000 permutations of group labels) (Nichols and Holmes, 2002a), to examine 

the topological properties between predefined force exertion levels. Briefly, for each network 

measure, we first calculated the between-group difference in the mean values. An empirical 

distribution of the difference was then obtained by randomly reallocating all values into two 

predefined force exertion levels and recalculating the mean differences between the two 

randomized groups (30,000 permutations). The 95th-percentile points of the empirical distribution 

were used as critical values in a one-tailed test of whether the observed group differences could 

occur by chance. For comparisons of nodal measures, Bonferroni correction procedures were used 

to correct for multiple comparisons (Sture Holm, 1979). 

5.1.6 Correlation Analysis  

To investigate the interrelationships between the exerted forces and RPPC with global graph theory 

measures, Spearman correlation coefficients were calculated.  Only those graph theorical measures 

that showed significance in the correlation analysis were included. 
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5.2 Results 

5.2.1 Anthropometric Characteristics 

displays the summary of anthropometric measurements and static arm flexion strength for all 

participants. 

Table 5-1 displays the summary of anthropometric measurements and static arm flexion strength 

for all participants. 

Table 5-1: Descriptive statistics of anthropometric measurements and MVC for all subjects 

Variable Mean SD 

Age (year) 27.4 6.20 

Body Weight (kg) 60.20 11.00 

Shoulder Height (cm) 135.84 7.50 

Hip Height (cm) 98.04 6.07 

Knee Height (cm) 51.65 2.84 

Arm Height (cm) 106.26 5.90 

Knuckle Height (cm) 73.98 6.28 

Body Height (cm) 163.00 7.26 

Maximum voluntary contraction (arm flexion, N) 115.00 47.60 

5.2.2 Isometric Force  

Descriptive statistics across all subjects (N=12) for isometric forces exerted at various levels of 

predefined levels of physical exertion are displayed in (Table 5-2). 
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Table 5-2: Isometric arm exertion forces means, standard deviation (Sd), range and percentage of 

maximum voluntary contraction (MVC) at different levels of physical exertion levels 

 
Physical 

exertion level 

Isometric arm exertion force (N) 

 

Mean 

 

Sd 

Range %MVC 

Minimu

m 

Maximu

m 

Mean Minimum Maximum 

Extremely hard 67.35 35.25 2 18 56.36 3.34 113.8 

hard 41.83 18.9 3 28 35.00 5.00 68.60 

Somewhat hard 34.58 16.7 3 66 28.9 2.51 55.23 

Light 13.61 6.76 6 82 11.39 2.51 23.43 

Extremely light 8.04 5.32 4 136 4.455 1.67 15.06 

 

 Table 5-3 depicts the results of ANOVA for the effect of exertion level on the generated arm 

forces (N). Table 4 provides the results of Tukey pairwise comparison of forces for different levels 

of exertion at 95% confidence level. 

Table 5-3: ANOVA table for the effect of exertion level on the exerted arm forces (N) 
Source DF Adj SS Adj MS F-Value P-Value 

Participant 11 11374 1034.0 4.05 0.00 

Exertion level  4 27108 6777.08 26.54 0.00 

Error  44 11236 255.4   

Total 59 49718    

  

Pairwise comparison among exertion levels were performed using the post hoc Tukey test and 

adjusted p-values were computed (Table 5-4). Results revealed no significant difference between 

‘hard’ versus ‘somewhat hard’, or ‘light’ versus ‘extremely light’ (Figure 5-1) (Table 5-4 and 

Table 5-5). 
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Table 5-4: Tukey simultaneous Tests for differences of means for forces exerted at different 

physical exertion levels. 

Difference of 

Exertion levels 

Difference of 

mean 

SE of 

Differences 

Simultaneous 

95% CI 

T-Value Adjusted P-

value 

EL - EH -59.31 6.52 (-77.85, -40.76) -9.09 0.000 

H - EH -25.52 6.52 (-44.06, -6.97) -3.91 0.003 

L - EH -53.73 6.52 (-72.28, -35.19) -8.24 0.000 

SWH - EH -32.77 6.52 (-51.32, -14.23) -5.02 0.000 

H - EL 33.79 6.52 (15.25, 52.34) 5.18 0.000 

L - EL 5.58 6.52 (-12.97, 24.12) 0.85  NS 

SWH - EL 26.53 6.52 (7.99, 45.08) 4.07 0.002 

L - H -28.22 6.52 (-46.76, -9.67) -4.33 0.001 

SWH - H -7.26 6.52 (-25.80, 11.29) -1.11  NS 

SWH - L 20.96 6.52 (2.41, 39.50) 3.21 0.020 

 

 

Table 5-5: Summary statistics for arm forces exerted at different levels of physical exertion 

(Tukey pairwise comparison at 95% confidence level) 

 

Exertion level Mean 

force (N) 

Grouping 

Extremely hard 67.4    A 

Hard 41.83         B 

Somewhat hard 34.57          B  

Light 13.62                C  

Extremely light 8.04                C 
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Figure 5-1: pairwise comparison between isometric forces at different levels of physical exertion 

to extremely light [EL], light[L], somewhat hard [SWH], hard [H], and extremely hard [EH] 

5.2.3 Rate of Perceived Physical Comfort  

Descriptive statistics across all subjects (N=12) for RPPC scores at predefined levels of physical 

exertion are shown in (Table 5-6).  

Table 5-6: The mean and standard deviation for the rate of perceived physical comfort (RPPC) at 

each exertion level 
Exertion level Mean of RPPC Standard deviation of RPPC 
Extremely light 4.583 1.48 

Light 5.375 1.63 
Somewhat hard 5.729 1.68 

Hard 7.750 2.11 
Extremely hard 8.23 2.30 
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Table 5-7 shows the results of ANOVA for the effect of exertion level on the RPPC scores.  

Table 5-7: ANOVA table for the effect of exertion level on RPPC scores 

 
Source Df Adj SS Adj MS F-Value P-value 

Participants 11 61.71 5.60 7.56 0.000 

Exertion levels 4 119.36 29.84 40.23 0.000 

Errors 44 32.64 0.7417   

Total 59 213.71    

 

 Table 5-8 provides the results of Tukey pairwise comparison of perceived comfort for various 

levels of exertion at the 95% confidence level. Results revealed no significant difference between 

the rating of perceived comfort between ‘hard’ and ‘extremely hard’ levels, between ‘somewhat 

hard’ and ‘hard’, and between ‘extremely light’ and ‘light’ levels (Figure 5-2)( 

Table 5-9). 

Table 5-8: Tukey simultaneous Tests for differences of RPPC scores at different levels of 

physical exertion 

  

Difference of 

Exertion levels 

Difference 

of Means 

SE of 

Difference 

Simultaneous 95% 

CI T-Value 

Adjusted 

P-Value 

EL – EH 3.646 0.352 (2.646, 4.645) 10.37 0.000 

H – EH 0.792 0.352 (-0.208, 1.791) 2.25 0.180 

L – EH 3.167 0.352 (2.167, 4.166) 9.01 0.000 

SWH – EH 1.146 0.352 (0.146, 2.145) 3.26 0.017 

H – EL -2.854 0.352 (-3.854, -1.855) -8.12 0.000 

L – EL -0.479 0.352 (-1.479, 0.520) -1.36 0.654 

SWH – EL -2.500 0.352 (-3.499, -1.501) -7.11 0.000 

L – H 2.375 0.352 (1.376, 3.374) 6.75 0.000 

SWH – H 0.354 0.352 (-0.645, 1.354) 1.01 0.851 

SWH – L -2.021 0.352 (-3.020, -1.021) -5.75 0.000 

 

Table 5-9: Summary statistics for RPPC scores at different levels of physical exertion (Tukey 

pairwise comparison at 95% confidence level) 

Exertion level Mean Grouping 

Extremely hard 4.583 A 

Hard 5.375 A      B 

Somewhat hard 5.729          B 

Light 7.750                 C 
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Extremely light 8.23                 C 

 
Figure 5-2: pairwise comparison between isometric forces at different levels of physical exertion 

to extremely light [EL], light[L], somewhat hard [SWH], hard [H], and extremely hard [EH] 

5.2.4 Correlation Analysis for the Exerted Force and RPPC 

Correlation analysis revealed a significant negative correlation between the RPPC and exerted 

force (r = -0.963; p < 0.009) (Figure 5-3). Increasing force exertion correlated with decreasing 

RPPC score (Figure 5-3). The overall results of forces and RPPC scores at five exertion levels are 

illustrated in (Figure 5-4). 
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Figure 5-3: Correlation of RPPC and force exerted, (r: Spearman’s rank correlation coefficient, 

CI: confidence interval).  

 

Figure 5-4:Arm forces and RPPC scores bar plot at different levels of physical exertion across all 

subjects (N=12) 
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5.2.5 Source Localization 

5.2.5.1 eLORETA Source Localization 

The average CSD for each exertion level for each frequency band for 12 female participants were 

computed (research question 1).  For alpha band, the highest CSD was found in the middle frontal 

gyrus of the frontal lobe corresponding to BA 6 for the “extremely hard exertion” level only. 

However, for all other exertion levels, the highest CSD was found in the superior frontal gyrus of 

the frontal lobe, corresponding to BA 8 (Figure 5-5).   

Left              Right            Top              Front              Back 

 

 

 

 

Figure 5-5: Current source density for each exertion level for alpha frequency band 

(red to yellow is an indication to the source localization strengthening, whereas blue is an 

indication to the source localization weakness) 

Extremely hard  

        P<0.05 

Max T-value 

 

Current source density for alpha band          P<0.05 

Min T-value 

 

Hard  

Somewhat hard  

Light 

Extremely light 
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Detailed information regarding the brain structure, the maximum activated BA with MNI 

coordinates, voxel threshold (T-values), for each exertion level for alpha frequency band was 

reported in (Table 5-10). 

 

Table 5-10: CSD localization for each frequency band for each exertion levels  

(Brodmann Area [BA]; Montreal Neurological Institute [MNI]; Threshold [T-value]; Middle 

Frontal Gyrus [MFG}, Superior Frontal Gyrus [SFG]). 

 

 

 

 

 

 

 

For beta band, the highest CSD was localized in the postcentral gyrus of the parietal lobe 

corresponding to BA 5 for extremely hard exertion level (Figure 5-6). For all other exertion levels, 

the highest CSD was highly localized in the precuneus of the parietal lobe corresponding to BA 7.  

Detailed information regarding the brain structure, the maximum activated BA with MNI 

coordinates, voxel threshold (T-values), for each exertion level for the beta frequency band was 

reported in ( 

 

Table 5-11). 

Exertion levels Alpha frequency band 

Brain 

structure 

Maximum activated BA with 

MNI coordinates 

Voxel 

(T-value) 

Extremely hard MFG  BA 6, MNI (X= 5, Y= 20, Z= 65) 9.49E+4 

Hard SFG 

 

BA 8, MNI (X= 10, Y= 50, Z= 45) 4.78E+4 

Somewhat hard SFG 

 

BA 8, MNI (X= 10, Y= 50, Z= 45) 4.77E+4 

Light SFG 

 

BA 8, MNI (X= 10, Y= 50, Z= 45) 4.79E+4 

Extremely light SFG BA 8, MNI (X= 10, Y= 50, Z= 45) 4.79E+4 
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Table 5-11: CSD localization for each frequency band for each exertion levels 

 (Brodmann Area [BA]; Montreal Neurological Institute [MNI]; Threshold [T-value]) 

 

 

 

 

 

 

 

 

    Left               Right            Top            Front            Back 

 

 

Exertion level Beta frequency band 

Brain structure Maximum activated   BA with MNI 

coordinates 

Voxel  

(T-value) 

Extremely hard Postcentral gyrus  

 

BA 5, MNI (X= 5, Y= -50, Z= 70) 1.75E+5  

Hard Precuneus gyrus   

 

BA 7, MNI (X= 10, Y= -60, Z= 70 

 

1.31E+5 

Somewhat hard Precuneus gyrus   

 

BA 7, MNI (X= 10, Y= -60, Z=70)  

 

1.31E+5 

Light 

 

Precuneus gyrus   

 

BA 7, MNI (X= 10, Y= -60, Z=70) 

 

1.30E+5 

 
Extremely light Precuneus gyrus   

 

BA 7, MNI (X= 10, Y= -60, Z=70) 1.30E+5 

 

Current source density for beta band 

 

Extremely hard  

Hard  

Somewhat hard  

Light 

Extremely light 

 

        P<0.05 

Max T-value 

 

        P<0.05 

Min T-value 
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Figure 5-6: CSD localization for each exertion level for beta frequency band 

(Red to yellow is an indication to the source localization strengthening, whereas blue is an 

indication to the source localization weakness). 

 

5.2.5.2 eLORETA Statistics and Multiple Comparison Corrections 

The CSD for pairwise exertion levels resultant from permutation test applied in eLORETA are 

displayed in Table 5-12 for alpha frequency and in  

Table 5-13 for beta frequency. For illustration purposes, the three-dimensional statistical mapping 

figures are also provided, where yellow or red color indicates an increase in the oscillatory activity, 

and blue color indicates a reduction in the oscillatory activity. Figure 5-7 is a representation of the 

three-dimensional statistical mapping resulting from the comparison of eLORETA CSD between 

the ‘extremely hard’ exertion levels for alpha band. The ‘extremely hard’ exertion level generates 

neurons that oscillate more strongly compared to the ‘extremely light’ exertion level in the frontal 

lobe (precentral gyrus, BA 4 [X = 65, Y = -5, Z = 20], BA 6, [X = 65, Y = -5, Z = 25]), and the 

parietal lobe (postcentral gyrus, BA 43 [X = 65, Y = -10, Z = 20]), with log-F-ratio threshold T-

max = 1.459. 
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Figure 5-7: Three-dimensional statistical mapping for alpha frequency band in extremely hard vs 

extremely light exertion levels 

Figure 5-8 depicts the three-dimensional statistical mapping resulting from the comparison of 

eLORETA CSD between the extreme exertion levels for beta band. The “extremely hard” 

exertions generate neurons that oscillate more strongly than the those at the “extremely light” 

exertion level in the parietal lobe (inferior parietal lobule, BA 40, [ X= 60 , Y= -35 , Z= 50], and  

postcentral gyrus, BA 2 [ X= 60 , Y= -30 , Z= 50]) with log-F-ratio threshold T-max = 0.407.  

 

 

 

Figure 5-8: eLORETA statistical maps for beta frequency band in extremely hard vs extremely 

light exertion levels  

 

Figure 5-9 depicts the three-dimensional statistical mapping resulting from the comparison of 

eLORETA CSD between the “extremely hard” and “hard” exertion levels for alpha band. The 

“extremely hard” exertions generate neurons that oscillate more strongly than those at the “hard” 

Current source density  

 

Current source density  

 



103 

 

exertion level in the frontal lobe (Precentral Gyrus, BA 4  [X= 65 , Y= -5 , Z= 20] with log-F-ratio 

threshold T-max = 1.46. 

 

 

 
 

Figure 5-9: eLORETA statistical maps for alpha frequency band in extremely hard vs hard 

exertion levels 

 

Figure 5-10 depicts the three-dimensional statistical mapping resulting from the comparison of 

eLORETA CSD between the “extremely hard” and “hard” exertion levels for beta band. The 

“extremely hard” exertions generate neurons that oscillate more strongly than those at the “hard” 

exertion level in the parietal lobe (inferior parietal lobule, BA 40, [(X= 60 , Y= -35 , Z= 50 ], with 

log-F-ratio threshold T-max = 0.405). 

 

Current source density  
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Figure 5-10:  eLORETA statistical maps for beta frequency band in extremely hard vs hard 

exertion levels 

 

 

Figure 5-11 depicts the three-dimensional statistical mapping resulting from the comparison of 

eLORETA CSD between the “extremely hard” and “somewhat hard” exertion levels for alpha 

band. The “extremely hard” exertions generate neurons that oscillate more strongly than those at 

the “somewhat hard” exertion level in the frontal lobe (precentral gyrus, BA 4, [X= 65, Y= -5, Z= 

25], with log-F-ratio threshold T-max = 1.458). 

 

 
 

Figure 5-11: eLORETA statistical maps for alpha frequency band in extremely hard vs 

somewhat hard exertion levels 

 

 

 

Figure 5-12 depicts the three-dimensional statistical mapping resulting from the comparison of 

eLORETA CSD between the “extremely hard” and “somewhat hard” exertion levels for beta band. 

The “extremely hard” exertions generate neurons that oscillate more strongly than those at the 

Current source density  

 

Current source density  
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“somewhat hard” exertion level in the parietal lobe (inferior parietal lobule, BA 40, [X= 65 , Y= -

35 , Z= 50], with log-F-ratio threshold T-max = 0.406). 

 

 
 

Figure 5-12: eLORETA statistical maps for beta frequency band in extremely hard vs somewhat 

hard exertion levels 

 

 

Figure 5-13 depicts the three-dimensional statistical mapping resulting from the comparison of 

eLORETA CSD between the “extremely hard” and “light exertion” exertion levels for alpha band.  

 

 

 Current source density  

 

Current source density  
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Figure 5-13: eLORETA statistical maps for alpha frequency band in extremely hard vs light 

exertion levels 

The “extremely hard” exertions generate neurons that oscillate more strongly than those at the 

“light” exertion level in the frontal lobe (precentral gyrus, BA 4, [X= 65, Y= -5 , Z= 25], with log-

F-ratio threshold T-max = 1.456). 

Figure 5-14 depicts the three-dimensional statistical mapping resulting from the comparison of 

eLORETA CSD between the “extremely hard” and “light” exertion levels for beta band. The 

“extremely hard” exertions generate neurons that oscillate more strongly than those at the “light” 

exertion level parietal lobe (inferior parietal lobule, BA 40 [X= 60 , Y= -35 , Z= 50], with log-F-

ratio threshold T-max = 0.407). 

 

 
:  
 

Figure 5-14: eLORETA statistical maps for beta frequency band in extremely hard vs light 

exertion levels 

 

Figure 5-15 depicts the three-dimensional statistical mapping resulting from the comparison of 

eLORETA CSD between the “hard” and “somewhat hard” exertion levels for alpha band. The 

“hard” exertions generate neurons that oscillate more strongly than those at somewhat hard 

Current source density  
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exertion level in parietal lobe (precentral gyrus, Ba 7, (X= -15, Y= -55, Z= 65), with log-F-ratio 

threshold T-max =0.009).  

 

 

 

Figure 5-15: eLORETA statistical maps for alpha frequency band in hard vs somewhat hard 
 

 

Figure 5-16 depicts the three-dimensional statistical mapping resulting from the comparison of 

eLORETA CSD between the “hard” and “somewhat hard” exertion levels for beta band. The 

“hard” exertions generate neurons with less oscillation than those at the “somewhat” hard exertion 

level in frontal lobe (inferior frontal gyrus, Ba 47, [X= 25 , Y= 15 , Z= -15], with log-F-ratio 

threshold T-min = -0.00169).  

 

Current source density  
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Figure 5-16: eLORETA statistical maps for beta frequency band in hard vs somewhat hard 

 

 

Figure 5-17 depicts the three-dimensional statistical mapping resulting from the comparison of 

eLORETA CSD between the “hard” and “light” exertion levels for alpha band. The “hard” 

exertions generate neurons with less oscillation than those at  the “light” exertion level in temporal 

lobe (superior temporal gyrus, Ba 22, [X= 65 , Y= -25 , Z= 0], with log-F-ratio threshold T-max 

=-5.40E-3). 

 

 
 

Figure 5-17: eLORETA statistical maps for alpha frequency band in hard vs light 

 

Figure 5-18 depicts the three-dimensional statistical mapping resulting from the comparison of 

eLORETA CSD between the “hard” and “light” exertion levels for beta band. The “hard” exertions 

generate neurons that oscillate more strongly than those at the “light” exertion level in frontal lobe 

(paracentral lobule, BA 5, [X= -15 , Y= -45 , Z= 60], with log-F-ratio threshold T-min =0.00232) 

Current source density  

 

Current source density  
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but less oscillation were found in occipital lobe (middle occipital gyrus, BA 19, [X= -55 , Y= -70 

, Z= 5], with log-F-ratio threshold T-min = - 0.00231). 

 

 

Figure 5-18: eLORETA statistical maps for beta frequency band in hard vs light 

 

Figure 5-19 depicts the three-dimensional statistical mapping resulting from the comparison of 

eLORETA CSD between the “hard” and “extremely light” exertion levels for alpha band. The 

“hard” exertions generate neurons that oscillate less strongly than the “extremely light” exertion 

level in temporal lobe (Superior Temporal Gyrus, BA 22, [X= 65 , Y= -20 , Z= 0], with log-F-ratio 

threshold T-min =-0.00764). 

 

 
 

Figure 5-19:eLORETA statistical maps for alpha frequency band in hard vs extremely light 
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Figure 5-20 depicts the three-dimensional statistical mapping resulted from the comparison of 

eLORETA CSD between the “hard” and “extremely light” exertion levels for beta band. The 

“hard” exertions generate neurons that oscillate more strongly than those at the “extremely light” 

exertion level in frontal lobe (paracentral lobule, BA 4, [X= 0 , Y= -40 , Z= 65], with log-F-ratio 

threshold T-max= 0.002392). 

 

 

 

Figure 5-20: eLORETA statistical maps for beta frequency band in hard vs extremely light 

 

 

Figure 5-21 depicts the three -dimensional statistical mapping resulting from the comparison of 

eLORETA CSD between the “somewhat hard” and “light” exertion levels for alpha band.  

 

Current source density  
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Figure 5-21: eLORETA statistical maps for alpha frequency band in somewhat hard vs light 

 

The “somewhat hard” exertions generate neurons that oscillate less than those at the “light” 

exertion level in temporal lobe (middle temporal gyrus, BA 21, [X= -50, Y= 0 , Z= -15], with log-

F-ratio threshold T-min=-0.00837). 

Figure 5-22 depicts the three-dimensional statistical mapping resulting from the comparison of 

eLORETA CSD between the “somewhat hard” and “light” exertion levels for beta band. The 

“somewhat hard” exertions generate neurons that oscillate more strongly than those at the light 

exertion level in frontal lobe (precuneus, BA 31, [X= -15, Y= -45 , Z= 40], with log-F-ratio 

threshold T-max=-0.001555). 

 

 

Figure 5-22: eLORETA statistical maps for beta frequency band in somewhat hard vs light 

 

Figure 5-23 depicts the three-dimensional statistical mapping resulting from the comparison of 

eLORETA CSD between the “light” and “extremely light” exertion levels for alpha band. The 

“light” exertions generate neurons that oscillate less than those at the “extremely light” exertion 

Current source density  

 

Current source density  
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level in parietal lobe (precuneus, BA 7, [X= -10 , Y= -50 , Z= 55], with log-F-ratio threshold T-

min=-4.42E-3). 

 

 

Figure 5-23: eLORETA statistical maps for alpha frequency band in light vs extremely light 

 

 

Figure 5-24 depicts the three-dimensional statistical mapping resulting from the comparison of 

eLORETA CSD between the “light” and “extremely light” exertion levels for beta band. The 

“light” exertions generate neurons that oscillate more strongly than the “extremely light” exertion 

level in frontal lobe (precentral gyrus, BA 6, [X= -35, Y= -10 , Z= 60], with log-F-ratio threshold 

T-max= 0.001496). 
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Figure 5-24: eLORETA statistical maps for beta frequency band in light vs extremely light 

 

Table 5-12: The statistical comparisons of eLORETA estimated current source density for pairwise 

exertion levels for alpha frequency. 
Exertion level comparison Brain structure Maxi/Min 

activated BA 

Thresholds values  

(t-value) for p <0.05 

Extremely hard vs hard 

 

Precentral gyrus  BA 4 T-max = 1.45 

Extremely hard vs somewhat 

hard 

Precentral gyrus  BA 4 T-max = 1.45 

Extremely hard vs light 

 

Precentral gyrus  BA 4 T-max = 1.45 

Extremely hard vs extremely 

light 

Precentral gyrus  BA 4 T-max = 1.45 

Hard vs somewhat hard Precentral gyrus  BA 7 T-max = 0.009 

Hard vs light 

 

Superior temporal 

gyrus 

BA 22 T-max =0.009 

Hard vs extremely light 

 

Superior temporal 

gyrus 

BA 22 T-min= 0.009 

Somewhat hard vs light Middle temporal gyrus BA 21 T-min= 0.00837 

Light vs extremely light 

 

Precuneus  BA 7 T-max =0.00442 

 

Table 5-13: The statistical comparisons of eLORETA estimated current source density for 

pairwise exertion levels for beta frequency.  
Exertion level 

comparison 

Brain structure Max/Min 

activated BA 

Thresholds values  

(t-value) for p <0.05 

Extremely hard vs hard 

 

Inferior parietal lobule BA 40 T-max = 0.405 

Extremely hard vs 

somewhat hard 

Inferior parietal lobule BA 40 T-max = 0.407 

Extremely hard vs light 

 

Inferior parietal lobule BA 40 T-max = 0.407 

Extremely hard vs 

extremely light 

Postcentral gyrus BA 2 T-max = 0.388 

Hard vs somewhat hard Inferior parietal lobule BA 40 T-min = 0.00153 

Hard vs light 

 

Middle occipital gyrus BA 19 T-min=0.00231 

Current source density  
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Hard vs extremely light 

 

Precentral gyrus BA 4 T-max = 0.003 

Somewhat hard vs light 

 

Precuneus gyrus BA 31 T-max = 0.00155 

Light vs extremely light 

 

Precentral gyrus in frontal 

lobe 

BA 4 T-max= 0.003 

 

5.2.6 Functional Connectivity  

5.2.6.1 Functional Connectivity Patterns 

Coherence matrices were computed for 84 ROIs using eLORETA connectivity algorithm for each 

subject and for each frequency band (alpha and beta) (Pascual-Marqui et al., 2011b). Figure 5-25 

provides an overview of the functional brain network for the various force exertion levels, using 

the coherence method in each frequency alpha and beta band (research question 2). The 

visualization of functional interactions between neighboring and distant brain regions was 

performed using BrainNet Viewer (http://www.nitrc.org/projects/bnv/), a Matlab toolbox (Xia et 

al., 2013b), 

http://www.nitrc.org/projects/bnv/


115 

 

 

 

Figure 5-25: Visualization of the alpha and beta functional brain networks for all exertion levels 

using coherence method. 

 

Overall, we found that beta coherence networks had more connections in the frontal and temporal 

lobes than the alpha coherence network at all force exertion levels, including the left superior 

frontal gyrus (BA 10), the left precentral gyrus (BA 44), the right precentral gyrus (BA 44), the 

left inferior frontal gyrus (BA 45), the middle frontal gyrus (BA 46), the middle temporal gyrus 

(BAs 21 and 39), the left fusiform gyrus (BA 37), and the left transverse temporal gyrus (BA 42).  

When exertion level increases, there is a strong coupling between the left paracentral (BA 5) and 

the left lingual gyrus (BA 17) in the alpha band. In general, the BA 5 region is involved in 

somatosensory processing, motor control, and association (Mackenzie et al., 2016), whereas BA 

17 is involved in discerning the intensity of the object (i.e., primary visual cortex). This study 

https://en.wikipedia.org/wiki/Somatosensory
https://en.wikipedia.org/wiki/Association_(psychology)
https://www.sciencedirect.com/topics/neuroscience/visual-cortex
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identified a strong coupling between the left superior frontal gyrus (BA 10) and the middle frontal 

gyrus (BA 11). In general, BA 10 is involved in various executive brain functions, whereas BA 11 

is involved with planning, decision making, and processing rewards. Disconnections were found 

between the middle frontal gyrus (BA 14) and the anterior cingulate (BA 33) when exertion level 

increases. It should be noted that, in general, BA 33 is heavily related to positive emotions (Vogt, 

2005).  

When exertion level increases, there is strong coupling between the right superior frontal gyrus 

(BA 10) and the parahippocampal gyrus (BA 34) in the beta band. The coherence coefficient for 

each exertion level for alpha and beta are shown in (Figure 5-26). The coherence coefficient is a 

normalized quantity bounded by 0 and 1(Nunez et al., 1997). 

 
Figure 5-26: The coherence coefficient for each exertion level for alpha and beta 
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5.2.6.1 Functional Connectivity Multiple Comparison  

eLORETA wire diagrams were used to graphically demonstrate the significant differences in brain 

functional connectivity among the force exertion levels. The significant connected regions are 

mapped in red lines, and the significant disconnected regions are mapped in blue lines.  Table 5-14 

summarizes the significant differences in the functional connectivity between the exertion levels 

for each frequency band. The levels of connectivity between extremely hard exertion level versus 

other exertion levels (hard, somewhat hard, light and extremely light) for each frequency band are 

shown in Figure 5-27. 

Comparing the extremely high exertion to all other exertion levels for alpha network, 

a significantly increase in the alpha coherence was found. In addition, when comparing extremely 

high exertion to all other exertion levels for the beta network, a significant increase in the beta 

coherence was observed. A few disconnections between the left and right hemispheres in the beta 

network were also present. 
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Figure 5-27: eLORETA wire diagram comparing extremely hard exertion with other exertion 

levels for each frequency band (extremely light [EL], light[L], somewhat hard [SWH], hard [H], 

and extremely hard [EH]). 

 

Figure 5-28 shows the connectivity between hard exertion level versus somewhat hard, light and 

extremely light, respectively, for each frequency band. The alpha coherence network was 

significantly lower for the hard exertion level than the other exertion levels. No significant 

differences were observed between hard and somewhat hard exertion levels. The beta band 

network showed a significantly greater functional brain network in hard exertion than the 

somewhat hard level, whereas significant disconnections were found in comparison to light and 

extremely light exertion levels. 

 

 

 

 

                                          H vs SWH                   H vs L                 H vs EL 

 

A
lp

h
a
 

B
et

a
 



119 

 

Figure 5-28: eLORETA wire diagram comparing hard exertion with other exertion levels for 

each frequency band (extremely light [EL], light[L], somewhat hard [SWH], hard [H], and 

extremely hard [EH]) 

 

Figure 5-29 shows the connectivity between somewhat hard exertion level versus other exertion 

levels including light and extremely light for each frequency band. The alpha network was found 

to have denser connections in the fronto-central brain region than light and extremely light 

exertion. No significant alterations were found in the beta coherence network when comparing 

somewhat hard exertion to extremely light exertion level. 

 

 

 

                                                              Alpha                                                            Beta 

   SWH vs L              SWH vs EL                   SWH vs L                   SWH vs EL 

 
 

 

Figure 5-29: eLORETA wire diagram comparing somewhat hard exertion with other exertion 

levels for each frequency band (extremely light [EL], light[L], somewhat hard [SWH], hard [H], 

and extremely hard [EH]). 

 

                                                        alpha L vs EL                  beta L vs EL 
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Figure 5-30: eLORETA wire diagram comparing light with extremely light level for each 

frequency band. 

 

Figure 5-30 shows the connectivity between extremely exertion level versus light, for each 

frequency band. A significant increase in the coherence connectivity for some cortical regions 

were found for both alpha and beta networks. 

 

Table 5-14: Summery of the significant difference in functional connectivity between the 

exertion levels for each frequency band 
Exertion level comparison Frequency 

band 

Connectivity 

Extremely hard v hard 

 

Alpha More connections in frontal-parietal region 

Extremely hard vs hard 

 

Beta More connections in frontal- limbic region 

Extremely hard vs somewhat 

hard 

Alpha More connections in right frontal-parietal region 

Extremely hard vs somewhat 

hard 

Beta More connections in frontal- limbic region and 

frontal- temporal 

 

Extremely hard vs light 

 

Alpha More connections in frontal-parietal region and 

parietal-temporal 

Extremely hard vs light 

 

Beta More connections in frontal- limbic region 

Extremely hard vs extremely 

light 

Alpha More connections in frontal-parietal and parietal-

occipital 
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Extremely hard vs extremely 

light 

Beta More connections in frontal-parietal and parietal-

occipital 

Hard vs somewhat hard Alpha No significant difference 

Hard vs somewhat hard Beta More connections in frontal-limbic region 

Hard vs light 

 

Alpha Less connections in central brain regions 

Hard vs light 

 

Beta Less connections in central brain regions 

Hard vs extremely light 

 

Alpha More connections and decreased in some regions 

Hard vs extremely light 

 

Beta Less connections in left frontal-parietal 

Somewhat hard vs light Alpha More connections in central brain region 

Somewhat hard vs light 

 

Beta More connections in prefrontal cortex 

Somewhat hard vs extremely 

light 

Alpha More connections in central brain region 

Somewhat hard vs extremely 

light 

Beta No significant change was found 

Light vs extremely light 

 

Alpha More connections in central brain region 

Light vs extremely light 

 

Beta More connections parietal-limbic 

 

5.2.7 Brain Network  

This section discusses the topological differences for global and local network measures (research 

question 3). Global measures were computed using the Brain Connectivity Toolbox 

(http://www.brain-connectivity-toolbox.net) (Rubinov and Sporns, 2010) whereas local measures 

were computed based on a developed python code. 

http://www.brain-connectivity-toolbox.net/
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5.2.7.1 Topological differences in global network 

5.2.7.1.1 Alpha coherence brain network 

The permutation test for global measures yielded significant differences among the different 

exertion levels. Table 5-15 displays the mean, the standard deviation (Sd) , the sigificant P-value 

observed from permutation test for the all exertion levels in alpha coherence.  

A small-worldness network was observed in the extremely hard exertion level for alpha coherence 

network compared to other exertion levels ( permutation test, P<0.0453).  Significant changes in 

the characteristic path length were found for the different exertion levels as shown in (Figure 

5-31A). Significant changes in the characteristic path length were  found for for the various 

exertion levels. A significant reduction in the characteristic PL between the following exertion 

levels was found hard vs somewhat hard (permutation test, p < 0.0089), hard vs light (permutation 

test, p < 0.0233), and hard vs extremely light (permutation test, p < 0.0179). In general, a reduction 

in the characteristic PL for high exertion levels indicated strong communication efficiency 

between brain regions (Figure 5-31C).  

 

Table 5-15: Mean, standard deviation (sd) and significant statement from permutation test between 

exertion levels for smalll-world, characteristic path length, clustering coefficient, global 

efficiency,  local efficiency, and  modularity in alpha coherence network. 

 

 

Graph 

theory 

measures 

 

Exertion levels 

 

Mean 

 

Sd 

P-value from permutation test 

Extremely 

hard 

Har

d 

Somewhat 

hard 

Ligh

t 

Extremel

y light 

 

 

Extremely hard 0.505 0.005 - - - - 0.0453 

hard 0.5038 0.001 - - - - - 
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Graph 

theory 

measures 

 

Exertion levels 

 

Mean 

 

Sd 

P-value from permutation test 

Extremely 

hard 

Har

d 

Somewhat 

hard 

Ligh

t 

Extremel

y light 

 

Small world 

somewhat hard 0.5036 0.001 - - - - - 

light 0.5037 0.001 - - - - - 

extremely light 0.5038 0.001 - - - - - 

 

 

characteristi

c path 

length 

Extremely hard 1.436 0.039 - - - - 0.014 

hard 1.4472 0.001 - - 0.0089 0.023 - 

somewhat hard 1.4476 0.001 - - - - 0.0179 

light 1.4479 0.001 - - - - - 

extremely light 1.4471 0.002 - - - - - 

Clustering 

coefficient 

Extremely hard 0.2521 0.004 - 0.0123 - - - 

hard 
0.2509

8 
0.000 - - 0.0353 - 0.032 

somewhat hard 0.2507 0.001 - - - 0.0209 - 

light 
0.2509

3 
0.000 - - - - - 

extremely light 0.2510 0.000     - 

Global 

efficiency 

Extremely hard 0.1713 0.006 - - - - - 

hard 0.1698 0.000 - - 0.0176 0.0203 - 

somewhat hard 
0.1697

2 
0.000 - - - 0.0108 - 

light 0.1697 0.000 - - - - 0.0478 

extremely light 
0.1697

9 
0.000 - - - - - 

local 

efficiency 

Extremely hard 0.278 0.006 - 0.0115 - - - 

hard 0.2767 0.000 - - 0.0434 - 0.0277 

somewhat hard 0.2763 0.001 - - - 0.0247 0.0426 

light 0.2766 0.000 - - - - - 

extremely light 0.2767 0.000 - - - - - 

Modularity Extremely hard 0.142 0.084 - - - 0.0264 0.0326 

hard 0.138 0.082 - - - 0.004 0.0033 

somewhat hard 0.139 0.083 - - - - - 

light 0.139 0.082 - - - - - 

extremely light 0.137 0.082 - - - - - 
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Figure 5-31: Graph theoretical network metrics showing main effects of different exertion levels 

(a) Characteristic path length (b) Clustering coefficient (c) Global efficiency (d) Local efficiency 

for alpha coherence (where extremely hard [EL], hard [H], somewhat hard [SWH], light [L], and 

extremely light [EL]). 

 

A significant increase in the network global efficiency for high exertion levels was also observed 

(Figure 5-31B). A significant reduction between the the extremely hard exertion versus hard 

exertion (permutation test,  P< 0.0123), hard versus some what hard (permutation test,  P< 

0.0353),and hard versus extremely light exertion (permutation test,  P< 0.032). However a 

significant increase was observed between and somewhat hard relative to light exertion 

(permutation test,  P< 0.0209). 
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A  significant increase in the network local efficiency for extremely hard comapred to to hard 

exertion level (permutation test,  P< 0. 0115), hard relative to somewhat hard exertion (permutation 

test,  P< 0.0434), hard relative to exremely light exertion (permutation test,  P< 0.0277), and 

somewhat hard exertion relative to extreemly light (permutation test,  P< 0.0426) was found. 

However, significant reduction between somewhat hard and light was also observd  (permutation 

test,  P< 0.0247). In general, the extremely hard and hard exertion levels provoked dense connected 

neighboring nodes between the network nodes compared to light and extremely light exertion 

levels. This was evident from local efficiency and modularity ensuring that the brain is more 

segregated at the high exertion levels compared to low exertion levels (Figure 5-31D). 

5.2.7.1.2 Global measures for beta coherence brain network  

 

The permutation test for global measures yielded significant differences in beta coherence  

between different exertion levels. Table 5-16 displays the mean, the standard deviation, the 

sigificant p-value observed from permutation test for the all exertion levels in beta coherence.  

The maximum values for both characteristic path length and clustering coefficient were observed 

at extremely hard exertion, whereas the minimum values were found at the extremely low exertion 

level  (Figure 5-32A). The reduction in the average characteristic path length and clustering 

coefficient in the low exertion levels suggests that the brain network might shifted from random 

network to more organized small world network. 
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Table 5-16: Mean, standard deviation (sd) and significant statement from permutation test 

between exertion levels for smalll-world, characteristic path length, clustering coefficient, global 

efficiency,  local efficiency, and  modularity in beta coherence network. 
 

Graph 

theory 

measures 

 

Exertion 

levels 

 

Mean 

 

Sd 

P-value from permutation test 

Extremely 

hard 

Hard Somewhat 

hard 

Light Extremely 

light 

 

 

Characteristic 

path length 

Extremely 

hard 
0.892059 0.00052 - 0.023 - 0.000 0.0027 

hard 0.891945 0.00032 - - 0.0171 0.000 0.000 

somewhat hard 0.892022 0.00031 - - - 0.000 0.000 

light 0.892034 0.0002 - - - - 0.000 

extremely light 0.891916 0.00029 - - - - - 

Clustering 

coefficient 

Extremely 

hard 
0.244543 0.00178 - - - - 0.0079 

hard 0.243985 0.00019 - - - - 0.0209 

somewhat hard 0.244048 0.00017 - - - - 0.0032 

light 0.244036 0.0002 - - - - 0.0406 

extremely light 0.24393 0.0018 - - - - - 

Global 

efficiency 

Extremely 

hard 
0.252198 0.00042 - 0.018 - 0.000 0.000 

hard 0.252323 0.00005 - - 0.0174 0.000 0.000 

somewhat hard 0.252307 0.00005 - - - 0.021 0.000 

light 0.252303 0.00003 - - - - 0.000 

extremely light 0.252332 0.00005 - - - - - 

Local 

efficiency 

Extremely 

hard 
0.323795 0.00125 - - - - 0.0148 

hard 0.3235 0.00023 - - - - 0.0027 

somewhat hard 0.323527 0.00021 - - - - 0.000 

light 0.323473 0.00018 - - - - 0.0398 

extremely light 0.323458 0.0008         - 

  Modularity Extremely 

hard 0.2776 0.1389 
- - - - 0.0357 

hard 0.2761 0.1389 - - - 0.018 0.0385 

somewhat hard 0.2768 0.1389 - - - - 0.0169 

light 0.2776 0.1380 - - - - 0.0169 

extremely light 0.2768 0.1391 - - - - - 

 

A significant reduction in the characteristic path length was obsereved  in  extremely hard 

compared to hard exertion level (permutation test, P< 0.0239), extremely hard compared to light 

(permutation test, P< 0.00), extremely hard compared to extremely light (permutation test, P< 

0.0027). Furthmore, a significant decline between hard and light (permutation test, P< 0.00), and 
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light copmared to extremely light (permutation test, P< 0.00). However, a significant increase in 

the characteritic path length was found for  hard compared to both somewhat hard exertion level 

(permutation test, P< 0.0171) and light (permutation test, P< 0.00).   

 

 

Figure 5-32: Graph theoretical network metrics showing main effects of different exertion levels  

(a) Characteristic path length (b) Clustering coefficient (c) Global efficiency (d) Local efficiency 

for beta coherence (where extremely hard [EL], hard [H], somewhat hard [SWH], light [L], and 

extremely light [EL]). 
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Over all, a significant increase in the global effieicny for the lower exertion levels compared to 

higher exertion levels (Figure 5-32C) was observed. The sharp decline of clustering coefficient in 

the extremly light exetion level compared to the other exertion levels suggest the disconnectivity 

between brain regions with low exertion levels (Figure 5-32B).  Consequently, significant 

reduction in the local effieicny for the extreme light exertion level was obesrved compared to other 

exertion levels  (Figure 5-32) 

5.2.7.2 Topological differences in local network 

Nodal centrality measures that include betweenness centrality, degree centrality and nodal 

efficiency (Achard and Bullmore, 2007) were used to quantify the relative importance of a node 

within the overall network.  

5.2.7.2.1 Betweenness centrality 

 

Betweeness centrality (BC) measures the centrality of a node which helps in identifying the most 

central nodes in a network. BC  assesses the proportion of shortest paths between all node pairs in 

the network that pass through a given index node (Freeman, 1977). 

Table 5-17 displays the statistically significant betweeness centrality between extremely hard, 

versus hard, somewhat hard, light, and extremely light for alpha band.  

 



129 

 

Table 5-17: Permutation test P-values for betweeness centrality between extremely hard (EH) 

versus hard (H), somewhat hard (SWH), light(L), and extremely light (EL) for alpha 

 
ROI Lobe Structure BA EH vs 

H 

EH vs 

SWH 

EH vs 

L 

EH vs EL 

P-

value 

P-value P-

value 

P-value 

12 Frontal Superior Frontal BA 10 <0.05 <0.05 <0.05 <0.05 

19 Frontal Inferior Frontal BA 45 <0.05 <0.05 <0.05 <0.05 

23 Frontal Inferior Frontal BA 47 <0.05 <0.05 <0.05 <0.05 

30 Parietal Precuneus BA 7 <0.05 <0.05 <0.05 <0.05 

32 Parietal Precuneus BA 31 <0.05 <0.05 <0.05 <0.05 

61 Temporal Middle Temporal BA 21 <0.05 <0.05 <0.05 <0.05 

62 Temporal Fusiform gyrus BA 37 <0.05 <0.05 <0.05 <0.05 

70 Temporal 
Superior 

Temporal 
BA 41 <0.05 <0.05 <0.05 <0.05 

77 Occipital Lingual Gyrus BA 17 <0.05 <0.05 <0.05 <0.05 

 

Table 5-18 displays the statistically significant betweeness centrality between hard versus 

somewhat hard, light, and extremely light for alpha band.  

Table 5-18: Permutation test P-values for betweeness centrality between hard (H) versus 

somewhat hard (SWH), light(L), and extremely light (EL) for alpha 

 
ROI Lobe Structure BA H vs 

SWH 

H vs L H vs EL 

P-value P-value P-value 

12 Frontal Superior Frontal BA 10 <0.05 <0.05 <0.05 

19 Frontal Inferior Frontal BA 45 <0.05 <0.05 <0.05 

23 Frontal Inferior Frontal BA 47 <0.05 <0.05 <0.05 

26 Parietal Postcentral Gyrus BA 2 <0.05 <0.05 <0.05 

30 Parietal Precuneus BA 7 <0.05 <0.05 <0.05 

32 Parietal Precuneus BA 31 <0.05 <0.05 <0.05 

61 Temporal Middle Temporal BA 21 <0.05 <0.05 <0.05 

62 Temporal Fusiform gyrus BA 37 <0.05 <0.05 <0.05 

70 Temporal Superior Temporal BA 41 <0.05 <0.05 <0.05 

77 Occipital Lingual Gyrus BA 17 <0.05 <0.05 <0.05 

Table 5-19 shows the statistically significant betweeness centrality between somewhat hard versus 

light, and extremely light, and light versus extremely light for alpha band. 
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Table 5-19: Permutation test P-values for betweeness centrality between somewhat hard (SWH) 

versus light(L), and extremely light (EL), and light(L) versus extremely light (EL) for alpha 
ROI Lobe Structure BA SWH vs 

L 

SWH vs EL L vs EL 

P-value P-value P-value 

12 Frontal Superior Frontal BA 10 <0.05 <0.05 <0.05 

19 Frontal Inferior Frontal BA 45 <0.05 <0.05 <0.05 

23 Frontal Inferior Frontal BA 47 <0.05 <0.05 <0.05 

26 Parietal Postcentral Gyrus BA 2 <0.05 <0.05 <0.05 

30 Parietal Precuneus BA 7 <0.05 <0.05 <0.05 

32 Parietal Precuneus BA 31 <0.05 <0.05 <0.05 

61 Temporal Middle Temporal BA 21 <0.05 <0.05 <0.05 

62 Temporal fusiform gyrus BA 37 <0.05 <0.05 <0.05 

70 Temporal 
Superior 

Temporal 
BA 41 <0.05 <0.05 <0.05 

77 Occipital Lingual Gyrus BA 17 <0.05 <0.05 <0.05 

 

For all exertion levels, the key nodes were significantly located in the left superior frontal (BA 

10), the right inferior frontal (BAs 45 and 47), the left precuneus (BAs 7 and 31), the right middle 

temporal (BA 21), the left fusiform gyrus (BA 37), the left superior temporal (BA 41), and the 

right lingual gyrus (BA 17) for the alpha band. For the beta network, significant differences were 

observed only in the inferior frontal (BA 47) for all force exertion levels. 

The nodes with the highest BC are known as highly central or hubs. Such a node might play a 

controlling role in the passage of information through the network. The key node with highest BC 

in the extremely hard exertion level for alpha network located in the superior frontal gyrus in the 

right frontal lobe, corresponding to BA 10. For all other exertion levels, the key node with the 

highest BC was found in the left superior frontal brain region, corresponding to BA 11. The key 

node with highest BC in the beta network for all exertion levels was in the left lingual gyrus in the 

occipital lobe (BA 17). Therefore, we suggest that the aforementioned brain regions are critical for 

the efficient information processing within the brain network for exertion task. 
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5.2.7.2.2 Degree centrality analysis 

The results for degree centrality (DC) for all subjects in all exertion levels for the alpha coherence 

are shown in ( 

).   

 

Figure 5-33: Results for degree centrality for alpha coherence network for all exertion levels 

 

The extremely light exertion level exhibited a higher DC in all network nodes compared to other 

exertion levels. In all the exertion levels superior frontal gyrus in the orbitofrontal part 

corresponding to (BA 11-Left) was found to be the most important node is in the alpha network in 

terms of the number of edges incident upon a node. 
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The results for degree centrality for all subjects in all exertion levels for the beta coherence is 

shown in (Figure 5-34). For all the exertion levels, the precentral gyrus part of the frontal lobe 

corresponding to (BA 44) was the most important node in the beta network in terms of the number 

of edges incident upon a node. 

 

.  

Figure 5-34: Degree centrality for beta coherence network for all exertion levels 
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5.2.7.2.3 Nodal efficiency 

 

Nodal efficiency measures the ability of information exchange between a given node and the other 

nodes in the network or the ability of a node to propagate information with the other nodes in a 

network. A node with highest nodal efficiency indicates high capability of information exchange 

with other nodes and can therefore be categorized as a hub  (Ma et al., 2018).  

Table 5-20 shows the statistically significant nodal efficiency between extremely hard versus hard, 

somewhat hard, light, and extremely light exertion levels for alpha band. The significance level 

was set at p < 0.05. 

Table 5-20: List of brain regions, lobe, brain structure, Brodmann area (BA) and P-value for the 

statistically significant nodal efficiency between extremely hard (EH) and hard (H), extremely 

hard (EH) and somewhat hard (SWH), extremely hard (EH) and light (L), and extremely hard 

(EH) and extremely light  (EL) for alpha band. 
ROI Lobe Brain structure BA P-value 

EH vs H EH vs 

SWH 

EH vs L EH vs 

EL 

    

2 Frontal Precentral Gyrus BA4 0.0377 - - 0.0259 

12 Frontal Superior Frontal BA 10 0 0 0 0 

16 Frontal Medial Frontal Gyrus BA25 - 0.0346 0.0235 - 

19 Frontal Inferior Frontal BA 45 0 0 0 0 

23 Frontal Inferior Frontal BA 47 0 0 0 0 

26 Parietal Postcentral Gyrus BA 2 0 0 0 0 

30 Parietal Precuneus BA 7 0 0 0 0 

32 Parietal Precuneus BA 31 0 0 0 0 

39 Limbic  Cingulate Gyrus BA24 - 0.0219 - - 

58 Limbic  Posterior Cingulate BA23 - - - 0.0385 

61 Temporal Middle Temporal BA 21 0 0 0 0 

62 Temporal Fusiform gyrus BA 37 0 0 0 0 

64 Temporal Superior Temporal  BA38 - - - 0 

70 Temporal Superior Temporal BA 41 0 0 0 0 

74 Temporal Transverse Temporal  BA42 0.0021 - - - 

77 Occipital Lingual Gyrus BA 17 0 0 0 - 
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Table 5-21 shows the statistically significant nodal efficiency between hard versus somewhat hard, 

light, and extremely light exertion levels for alpha band. The significance level was set at p < 0.05. 

Table 5-21: List of brain regions, lobe, brain structure, Brodmann area (BA) and P-value for the 

statistically significant nodal efficiency between hard (H) and somewhat hard (SWH), hard (H) 

and light (L), and hard (H) and extremely light (EL) for alpha band. 

 
ROI Lobe Brain structure BA P-value 

H vs 

SWH 

H vs L H vs EL 

5 Frontal Middle Frontal 

Gyrus 
BA 6 - 0.0338 - 

12 Frontal Superior Frontal BA 10 0 0 0 

14 Frontal 
Middle Frontal 

Gyrus 
BA 11 0.0216 - - 

19 Frontal Inferior Frontal BA 45 0 0 0 

23 Frontal Inferior Frontal BA 47 0 0 0 

25 Parietal Postcentral Gyrus BA 2 0 0 0 

26 Parietal Postcentral Gyrus BA 2 0 0 0 

30 Parietal Precuneus BA 7 0 0 0 

32 Parietal Precuneus BA 31 0 0 0 

37 Limbic  Posterior Cingulate BA23 - - 0 

53 Limbic  Parahippocampal  BA34 0.017 - 0.0152 

57 Limbic  Parahippocampal  BA36 - - 0.05 

61 Temporal Middle Temporal BA 21 0 0 0 

62 Temporal Fusiform gyrus BA 37 0 0 0 

70 Temporal Superior Temporal BA 41 0 0 0 

77 Occipital Lingual Gyrus BA 17 0 0 0 

78 Occipital Lingual Gyrus BA17 0.0311 - - 

 

Table 5-22 shows the statistically significant nodal efficiency between somewhat hard versus light, 

and extremely light exertion levels for alpha band. The significance level was set at p < 0.05. 

Table 5-22: List of brain regions, lobe, brain structure, Brodmann area (BA) and P-value for the 

statistically significant nodal efficiency between somewhat hard (SWH) and light (L), and 

somewhat hard (SWH) and extremely light  (EL) for alpha band. 

 
ROI Lobe Brain structure BA P-value 

SWH vs 

L 

SWH vs 

EL 

5 Frontal Middle Frontal Gyrus BA 6 0.0373 - 
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ROI Lobe Brain structure BA P-value 

SWH vs 

L 

SWH vs 

EL 

12 Frontal Superior Frontal BA 10 0 0 

13 Frontal Superior Frontal  BA 11 - 0.0331 

14 Frontal Middle Frontal Gyrus BA 11 0.011 - 

19 Frontal Inferior Frontal BA 45 0 0 

23 Frontal Inferior Frontal BA 47 0 0 

25 Parietal Postcentral Gyrus BA 2 0 0 

26 Parietal Postcentral Gyrus BA 2 0 0 

30 Parietal Precuneus BA 7 0 0 

32 Parietal Precuneus BA 31 0 0 

33 Parietal Precuneus BA 31 - 0.0347 

35 Parietal Inferior Parietal BA40 0.0203 0.0142 

38 Parietal Posterior Cingulate BA 23 - 0.0286 

53 Limbic  Parahippocampal  BA34 0.0163 0.014 

61 Temporal Middle Temporal BA 21 0 0 

62 Temporal fusiform gyrus BA 37 0 0 

64 Temporal Superior Temporal BA38 - 0 

70 Temporal Superior Temporal BA 41 0 0 

77 Occipital Lingual Gyrus BA 17 0 0 

78 Occipital Lingual Gyrus BA17 - 0.0257 
 

Table 5-23 shows the statistically significant nodal efficiency between light versus extremely 

light exertion level for alpha band. The significance level was set at p < 0.05. 
 

Table 5-23: List of brain regions, lobe, brain structure, Brodmann area (BA) and P-value for the 

statistically significant nodal efficiency between light (L) and extremely light  (EL) for alpha 

band. 

 
ROI Lobe Brain structure BA P-value 

L vs EL 

12 Frontal Superior Frontal BA 10 0 

13 Frontal Superior Frontal  BA 11 0.0405 

19 Frontal Inferior Frontal BA 45 0 

23 Frontal Inferior Frontal BA 47 0 

25 Parietal Postcentral Gyrus BA 2 0 

26 Parietal Postcentral Gyrus BA 2 0 

30 Parietal Precuneus BA 7 0 

32 Parietal Precuneus BA 31 0 

33 Parietal Precuneus BA 31 0.0114 

61 Temporal Middle Temporal BA 21 0 

62 Temporal fusiform gyrus BA 37 0 



136 

 

64 Temporal Superior Temporal BA38 0 

70 Temporal Superior Temporal BA 41 0 

77 Occipital Lingual Gyrus BA 17 0 

 

For all exertion levels in the alpha band, the highest regional efficiencies were found in the middle 

frontal gyrus of frontal lobe corresponding to BA 11 and the posterior cingulate of limbic lobe 

corresponding to BA 29. The lowest regional efficiencies were found in the superior frontal of the 

frontal lobe corresponding to BA 10, the inferior frontal in frontal lobe corresponding to BAs 45 

and 47, the precuneus in the parietal lobe corresponding to BAs 7 and 31, the middle temporal 

gyrus in the temporal lobe corresponding to BA 21, the fusiform gyrus in the temporal lobe 

corresponding to BA 37, and the lingual gyrus in the occipital lobe corresponding to BA 17. 

shows the statistically significant nodal efficiency between extremely hard, versus hard, somewhat 

hard, light, and extremely light exertion levels for beta band. The significance level was set at p < 

0.05. 

Table 5-24 shows the statistically significant nodal efficiency between extremely hard, versus 

hard, somewhat hard, light, and extremely light exertion levels for beta band. The significance 

level was set at p < 0.05. 

Table 5-24: List of brain regions, lobe, brain structure, Brodmann area (BA) and P-value for the 

statistically significant nodal efficiency between extremely hard (EH) and hard (H), extremely 

hard (EH) and somewhat hard (SWH), extremely hard (EH) and light (L), and extremely hard (EH)  

and extremely light  (EL) for beta band. 

 
ROI Lobe Brain structure BA P-value 

EH vs 

H 

EH vs 

SWH 

EH vs L EH vs 

EL 

    

23 Frontal Inferior Frontal BA 47 0 0 0 0 
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ROI Lobe Brain structure BA P-value 

EH vs 

H 

EH vs 

SWH 

EH vs L EH vs 

EL 

    

29 Parietal Lobe Postcentral Gyrus BA 3 0.046 - - - 

33 Parietal Lobe Precuneus BA 31 - 0.0408 - 0.0414 

34 Parietal Lobe Inferior Parietal  BA 40 - 0.0125 0.0142 0.0264 

36 Parietal Lobe Inferior Parietal  BA 40 0.0296 - - 0.0336 

49 Limbic Lobe Posterior Cingulate BA 30 - 0.0425 - - 

52 Limbic Lobe Parahippocampal BA 34 0.035 - 0.027 - 

56 Limbic Lobe Parahippocampal BA 35 - - 0.0162 - 

58 Limbic Lobe Posterior Cingulate BA23 - - - - 

61 Temporal Middle Temporal BA 21 - 0.0161 - - 

66 Temporal Middle Temporal  BA 39 - - - 0.0101 

76 
Occipital 

Lobe 
Lingual Gyrus BA 17 

- 
0.0211 - 0.0263 

 

Table 5-25 shows the statistically significant nodal efficiency between hard versus somewhat hard, 

light, and extremely light exertion levels for beta band. The significance level was set at p < 0.05. 

 

Table 5-25: List of brain regions, lobe, brain structure, Brodmann area (BA) and P-value 

for the statistically significant nodal efficiency between hard (H) and somewhat hard (SWH), 

hard (H) and light (L), and hard (H) and extremely light (EL) for beta band. 

 
ROI Lobe Brain structure BA P-value 

H vs 

SWH 

H vs L H vs EL 

3 Frontal Paracentral Lobule BA 5 0.0077 - 0.0199 

23 Frontal Inferior Frontal BA 47 0 0 0 

29 Parietal  Postcentral Gyrus BA 3 0.0465 - - 

36 Parietal  Inferior Parietal  BA 40 - - 0.0274 

57 Limbic  Parahippocampal  BA36 - 0.031 - 

78 Occipital Lingual Gyrus BA17 0.0274 - - 

81 Occipital Cuneus BA 30 - - 0.0233 

 

Table 5-26 shows the statistically significant nodal efficiency between somewhat hard versus light, 

and extremely light exertion levels for beta band. The significance level was set at p < 0.05. 
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Table 5-26: List of brain regions, lobe, brain structure, Brodmann area (BA) and P-value  

for the statistically significant nodal efficiency between somewhat hard (SWH) and light (L), and 

somewhat hard (SWH) and extremely light (EL) for beta band. 

 
ROI Lobe Brain structure BA P-value 

SWH vs 

L 

SWH vs EL 

4 Frontal Paracentral Lobule BA 5 - 0.019 

16 Frontal Medial Frontal  BA 25 0.021 - 

23 Frontal Inferior Frontal BA 47 0 0 

38 Limbic  Posterior Cingulate BA 23 - 0.026 

57 Limbic  Parahippocampal  BA36 0.0028 - 

76 Limbic  Lingual Gyrus BA17 0.0174 - 
 

Table 5-27 shows the statistically significant nodal efficiency between light versus extremely 

light for beta band. The significance level was set at p < 0.05. 

 

Table 5-27: List of brain regions, lobe, brain structure, Brodmann area (BA) and P-value 

for the statistically significant nodal efficiency between light (L) and extremely light (EL) for 

beta band. 

 
ROI Lobe Brain structure BA P-value 

L vs EL 

21 Frontal Middle Frontal 

Gyrus 
BA 46 

0.0315 

23 Frontal Inferior Frontal BA 47 0.000 

26 Parietal Postcentral Gyrus BA 2 0.0315 

57 Limbic  Parahippocampal  BA36 0.0165 

76 Limbic 

Lobe 

Lingual Gyrus BA17 

0.0218 
 

Interesting, for beta network the highest network efficiency was found in precentral gyrus of 

frontal lobe corresponding to BA44 and lingual gyrus in occipital lob, corresponding to BA 17.  
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The minimum network efficiency was present in inferior frontal gyrus of frontal lobe 

corresponding to BA 47 and middle temporal gyrus in temporal lobe corresponding to BA 21. 

A summary for the highest nodal centrality for alpha and beta for each exertion level is shown in 

(Table 5-28). 

Table 5-28: Summary of the highest nodal centrality for alpha and beta for each exertion level 

 
Nodal centrality Frequency  

band 

Extremely  

hard 

Hard Somewhat 

hard 

Light Extremely 

 light 

Betweeness centrality Alpha BA 10 BA 11 BA 11 BA 11 BA 11 

Betweeness centrality Beta BA 17 BA 17 BA 17 BA 17 BA 17 

Degree centrality Alpha BA 11 BA 11 BA 11 BA 11 BA 11 

Degree centrality Beta BA44 BA44 BA44 BA44 BA44 

Nodal efficiency Alpha BA 11 & 

29 

BA 11 & 

29 

BA 11 & 

29 

BA 11 

& 29 

BA 11 & 

29 

Nodal efficiency Beta BA44 BA44 BA44 BA44 BA44 

 

5.2.8 Correlation between Force and Graph theory Measures 

To investigate a possible relationship of exerted forces (N) and global graph theory measure, 

correlation analysis was performed to address  (research question 4).  Spearman rank correlation 

coefficients were calculated to determine the relationship between the exertion force effect and 

obtained global graph theory measure. The significant results are displayed in (Table 5-29). The 

extremely hard level of exertion force was positively correlated with the global efficiency for alpha 

coherence (r=0.629, p=0.028) (Figure 5-35), but not correleted with any other network measure. 

The light force exertion level was negatively correlated with path length for beta coherence (r=-
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0.643, p=0.024) (Figure 5-36). No significant correlations were found between graph measures 

and other exertions including somewhat hard, hard, and extremely light exertion levels.  

Table 5-29: Correlation analysis between graph measures and exerted forces (N) 

 
Exertion level Extremely hard Light 

Graph theory measure Global efficiency for alpha 

coherence network 

Path length for beta 

coherence network 

P- value 0.031 0.024 

Correlation coefficient 0.622 -0.643 

 

 

Figure 5-35: Scatterplot reporting the trend of extremely hard force over global efficiency for alpha 

network. 
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Figure 5-36: Scatterplot reporting the trend of light force over path length for beta network. 

5.2.9 Correlation between RPPC and Graph theory Measures 

The correlation between global measures and RPPC scores at predefined force exertion levels were 

computed using Spearman rank correlation for  both  frequency bands. The significant results are 

displayed in (Table 5-30). For RPPC ratings at the extremely hard exertion level, we found 

negative correlation between comfort scores and global efficiency for alpha coherence (Figure 

5-37). For RPPC ratings at somewhat hard exertion level, we found positive correlation between 

comfort scores and local efficiency for beta coherence (Figure 5-38). No significant correlations 

were found between graph measures and the other exertion levels including hard, light and 

extremely light exertion level. 
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Table 5-30: Correlations between the RPPC levels at predefined exertion levels and the graph 

theory measures. 
Exertion level Extremely hard Somewhat hard 

Graph theory measure Global efficiency for alpha 

coherence network 

Local efficiency for beta 

coherence network 

P- value 0.007 0.041 

Correlation coefficient -0.728 0.596 

 

 

 

Figure 5-37: Scatter plots reporting the correlations between the RPPC at extremely hard exertion 

level and the Global efficiency for alpha coherence.  
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Figure 5-38: Scatter plots reporting the correlations between the exertion levels and the graph 

theory measures   
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6. CHAPTER SIX CONCLUSIONS AND FUTURE WORK 

This chapter provides the discussion, study limitations, recommendations for future work, and the 

study conclusions. 

6.1 Discussion  

To the best of our knowledge, this research is considered to be the first task-based EEG study to 

investigate the effect of induced force exertion on the EEG functional brain network at source level 

for healthy female participants using a graph-theoretical approach. We demonstrated that graph-

theoretical measures applied to source EEG data could be used to identify brain network 

topological properties induced by different force exertion levels. 

First, we have established an EEG preprocessing flow process chart to construct the EEG 

functional brain network at the source level. Second, we localized the current source density and 

obtained the maximum or minimum activated brain regions at each exertion level at each frequency 

band. Then, we computed the functional connectivity patterns induced by different force exertion 

levels and frequency bands using the coherence method. Finally, we computed the global and local 

graph theoretical measures to characterize the functional brain network at each exertion level and 

each frequency band. Our study revealed many findings concerning (a) force measures and RPPC 

scores, (b) source localization, (c) functional brain patterns, (d) global and local graph theory 

measures, and (e) the correlation between the RPPC, force, and global graph theory. 
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Results from pairwise comparison revealed no significant difference between hard versus 

somewhat hard, and light versus extremely light force levels. 

6.1.1 Force Measures and RPPC Scores 

As expected, a negative correlation between the RPPC and exerted force was found. These results 

indicate that as the level of exerted forces in physical tasks increases, the participants’ feeling of 

task comfort declines. This observation shed light on investigating the effect of the perception of 

physical comfort on neural activity in future work.  

6.1.2 Source Localization 

The source localization method was applied to determine the activated brain regions at different 

predefined physical exertion levels for alpha and beta bands. For the alpha band, the maximum 

CSD was found in the middle frontal gyrus of the frontal lobe corresponding to BA 6 under 

extremely hard exertion level only. Findings from the current study are in line with previous results 

reported by Schneider et al. (2009b), concluding that high-intensity physical exercise was 

associated with an increase in the CSD of alpha in frontal brain areas to BA 6 and BA  9, 

respectively.  For all other exertion levels, the maximum CSD was localized in the superior frontal 

gyrus of the frontal lobe corresponding to BA 8 in the prefrontal cortex. Therefore, when force 

exertion r 

diminishes, the brain recruits more prefrontal neurons. A study by Thomas et al. (2008) found an 

increase in the prefrontal cortex at the beginning of physical exercise then reduced at the high 

workload. Greater neural activity in the prefrontal cortex (BA 9) and premotor cortex (BA6) is 

crucial for motor planning and sensory integration (Schneider et al., 2009b). In general, changes 
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in the brain activity in the frontal brain regions are involved in emotional processing (Faw, 2003; 

Coan and Allen, 2004; Umeda, 2012; Palmiero and Piccardi, 2017). Therefore, future research 

should consider the fact that tasks with forceful exertions might affect participant’s mood and 

workers’ general wellbeing (Ekkekakis and Petruzzello, 1999; Schneider et al., 2009a; Mikkelsen 

et al., 2017). 

For beta activity, the maximum CSD was found in the postcentral gyrus of the parietal lobe 

corresponding to BA 5 under extremely hard exertion level only. For all other exertion levels, the 

maximum CSD was localized in the precuneus of the parietal lobe corresponding to BA 7, which 

is believed to be predominate to motor behavior in general (Hyvarinen et al., 1979; Schneider et 

al., 2009a), somatosensory perception (Heim et al., 2012), and conscious awareness (Vogt and 

Laureys, 2005). Our results are  consistent with those by Fontes et al. (2015), who reported  a high 

activation to the posterior cingulate gyrus and precuneus as the “hard” rate of  

perceived exertion and hypothesized that “posterior region and precuneus might integrate 

physiological afferent signals from the periphery to promote emotional and conscious control 

during exercise through perceived exertion.”  

Pairwise comparison of CSD for the “extremely hard” exertion generates stronger oscillations than 

those for all the other exertion levels in the frontal lobe corresponding to BA 4, BA 6, and BA 43 

for alpha band. The oscillations for the beta band were more strongly localized in the parietal lobe, 

corresponding to BA 2 and BA 40. Our results are similar to previous studies that reported the 

predominant role of CSD in the prefrontal cortex corresponding to BA 10&46 (Abeln et al., 2015) 

and in both the primary sensory cortex and prefrontal cortex (Brümmer et al., 2011b) with elevated 
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exercise intensity.  Finally, the comparison of the hard exertion level with other exertion levels 

revealed many other different significant findings, as discussed below. 

For the alpha band, the hard force exertion level, neural oscillated more strongly than at somewhat 

hard exertion level in precuneus of the parietal lobe corresponding to BA 7.  This is consistent 

with Fontes et al. (2015), who reported an association between higher levels of perceived exertion 

and both posterior cingulate cortex and precuneus.  

For the beta band, more frontal activations also were found at hard exertion level compared to both 

light and extremely light exertion levels for only BA 5 and BA 4. 

An unexpected reduction in brain activity was observed when comparing hard with somewhat hard 

exertion levels in the frontal region for alpha in BA 47.   A comparison of hard exertion with light 

exertion for the alpha band also revealed less activated brain regions in the temporal lobe 

corresponding to BA 22. Finally, a less activated occipital region was observed at hard exertion 

compared to light for the alpha band corresponding to BA 19.   

Comparing somewhat hard with light showed a highly activated frontal lobe BA 31 for beta but 

less for alpha in the temporal lobe (BA 21.)  Comparing light with extremely light exertion levels 

demonstrated a highly activated frontal lobe (BA 6) for the beta band but less parietal lobe (BA 7) 

for the alpha band. 

6.1.3 Functional Brain Patterns  

Functional connectivity estimators were computed using the coherence method that was proved 

sufficient to capture the amount of shared activity between brain regions at frequency domain 
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(Andrew and Pfurtscheller, 1999; Canteroa et al., 1999; Nolte et al., 2004; Sauseng et al., 2005; 

Comani et al., 2013; Bowyer, 2016; Storti et al., 2016). Comparing the extremely hard with all 

other exertion levels, the alpha network demonstrated a strong coupling in frontoparietal brain 

regions. The frontoparietal alpha network reflects attention modulation and perceptual regulation 

(Misselhorn et al., 2019). Furthermore, increments of functional connectivity over the 

frontoparietal may indicate the progression of muscular fatigue (Johnston et al., 2001). We found 

functional disconnections between the middle frontal gyrus and anterior cingulate when exertion 

level increases in beta frequency. Anterior cingulate plays an important role in cognitive control, 

emotions working memory processing and decision making. Such disconnections might indicate 

an impairment in cognitive performance leading to deterioration in task response time (Carter, 

1998; Vogt, 2009; Etkin et al., 2011; Tops and Boksem, 2011).  

6.1.4 Brain Network 

6.1.4.1 Global measures 

Using the graph theory measures, we investigated the global and local alterations of the cortical 

functional connectivity network in alpha and beta bands at predefined force exertion levels. 

6.1.4.1.1 Clustering coefficient 

An increase in the clustering coefficient and local efficiency for alpha and beta coherence was 

observed at the extremely hard exertion level compared to the extremely low exertion. This 

observation suggests an increase in the functional segregation of the brain network during high 

force exertions. Storti et al. (2018) found an increase in the clustering coefficient during the 

isometric finger movement task indicating a strong connection of neighbor nodes among the 
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network during the voluntary arm movement task. However, high mental workload tasks were 

found to diminish the local clustered connectivity (Sciaraffa et al., 2017).  Others suggested that 

an increase of clustering coefficient is associated with better performance of working memory (Dai 

et al., 2017). 

 6.1.4.1.2 Path length and global efficiency 

The reduction of characteristic path length at high exertion levels reflects a higher global efficiency 

for transferring the parallel information. Therefore, we suggest that the brain is more efficient for 

processing and transferring information when the physical task requires more exertion. Our results 

are in line with previous studies (see Kar et al., 2011; Chua et al., 2017; Han et al., 2019). The 

exhibition of small-worldness organization for alpha coherence network indicates the optimal 

functional segregation and integration under the extremely hard exertions compared to extremely 

low exertion levels. These results are also consistent with a previous study by Ren et al. (2015) 

that found an increase in small-worldness, especially in the alpha band during the performance of 

a task with a high workload level compared to an easy task. 

We found that the brain functional network has shifted to a more ordered network configuration 

for the beta network. Similar phenomena were observed in brain activity after performing a 

sustained attention task (Breckel et al., 2013).  In the present study, the global efficiency was 

enhanced under hard exertion conditions for the alpha band but not for the beta band. The above 

results might indicate an enhanced performance during the hard exertion task with more integration 

of processing in the brain network. The higher global structure in the alpha band might be 

attributed to the importance of the alpha network in the information processing and the need for a 
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particular type of attention required for coping with the high force exertion tasks (Klimesch, 2012). 

In comparison, the lower global structure in the beta band under hard exertion levels might indicate 

the reduction in processing the sensory information and cognitive functioning during high 

demanding force tasks. 

6.1.4.1.3 Local efficiency and modularity 

 

Greater cognitive efforts induce the presence of the human functional brain networks that are more 

efficient but also exhibit less economical network configurations (Kitzbichler et al., 2011). 

Furthermore, mentally fatiguing tasks have been associated with the human functional brain 

networks that are more economical but also less efficient (Zhao et al., 2017; Li et al., 2019). In this 

study, an increase of local efficiency for both frequency bands was associated with elevated force 

exertion levels. In accordance with previous findings (Huang et al., 2016; Dai et al., 2017; Kakkos 

et al., 2019), the increment of local efficiency suggests that brain regions are communicating and 

cooperating to a larger degree as the physical force exertion level increases.  Modularity has been 

a good estimator for network robustness (Kim and Cho, 2016) and has been used to predict changes 

in the working memory capacity (Stevens et al., 2012). The results of the present study suggest 

that high force exertion.  

tasks provoke alpha coherence networks with a more modular network configuration, contrary to 

the reported results regarding cognitive effort effects (Kitzbichler et al., 2011). 
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6.1.4.2 Local measures 

To investigate the effects of force exertion levels on the nodal properties, three centrality measures 

were calculated, such as betweenness centrality (BC), degree centrality (DC), and nodal efficiency 

(NE). For the alpha network, the key node with the highest BC in the extremely hard exertion level 

was located in the superior frontal gyrus of the right frontal lobe corresponding to (BA 10). For all 

other exertion levels, the key node with the highest BC was located in the left superior frontal 

corresponding to (BA11). For the beta network, the key node with the highest BC for all exertion 

levels was located in the left lingual gyrus of the occipital lobe (BA 17). Therefore, we suggest 

that the aforementioned brain regions play a vital role in the flow of information and the global 

information integration between different brain regions during the force exertion task. 

Another centrality measure is the degree centrality. We did not find much difference between the 

different exertion levels. Particularly, for all exertion levels, the region with the highest degree 

centrality for the alpha network was found in the superior frontal gyrus corresponding to (BA 11), 

whereas the region with the highest degree centrality for the beta network was found in the 

precentral gyrus corresponding to (BA 44). Therefore, these regions play an essential role in the 

connectivity of the whole network during force exertion tasks and also facilitate functional 

integration. 

The last centrality measure is the nodal efficiency which measures the ability of information 

propagation between a node and the remaining nodes in the network.  We did not find much 

difference between the different exertion levels in nodal efficiency.  Particularly, for all exertion 
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levels in the alpha network, two nodes were found to have the highest nodal efficiency. These are 

the middle frontal gyrus and posterior cingulate corresponding to B11 and 29, respectively.  

Whereas for the beta network for all exertion levels, the highest nodal efficiency was found in the 

precentral gyrus corresponding to BA 44. Therefore, these nodes have the highest capability of 

information transmission with all other nodes during the force exertion task. 

6.2 Study Limitations and Future Implications 

 

The present study results demonstrate that graph-theoretical measures can be used to quantify the 

changes in the brain network topological properties induced by various physical force exertions. 

However, many challenges must still be addressed to achieve further progress. Although the 

existing literature suggests that the sample size of 12 participants is not too small, the participant 

sample size needs to increase further. Future research is needed to study the perception of both 

static and dynamic force exertions in other body parts such as legs and torso. We may consider 

theta and gamma frequency bands in future perceived exertion studies. Future studies may also 

pay more attention to connectivity estimators' methods to investigate the difference in the network 

topological properties. 

Although the majority of previous work have binarized the brain network to remove weak, noisy, 

and insignificant connections in the network, other studies reported that the weighted graphs may 

contain more information and might ensure greater sensitivity in response to distractors effect than 

unweighted (Bola and Sabel, 2015; Storti et al., 2016). In particular, the choice of the thresholding 
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value is crucial since it significantly affects the network topology properties. None of them are 

free from bias, requiring future investigation (van Wijk et al., 2010; Toppi et al., 2012). The 

superior temporal resolution of EEG helps to capture dynamic changes in brain activity. 

Consequently, the implementation of the dynamic functional connectivity method is very 

promising for future neuroergonomics studies. 

 

6.3 Conclusions 

The study findings, based on graph-theoretic measures, underline the changes in the functional 

human connectome and show how brain network topological changes at different force exertion 

levels. The use of the graph-theoretical approach may represent a clear methodological 

advancement to extend the current understanding of the neurophysiological basis of physical 

exertions with varying levels of force and can help improve the workplace design to maximize the 

workers' physical and mental well-being. 

 

6.4 Research Contribution  

The results of this study provide the following contributions: (1) Investigation of the effects of 

different levels of force on whole-brain functional connectivity at the source level (2) Combination 

of the functional connectivity and graph theoretical measurements to quantify the functional brain 

network topological properties during an isometric force exertions task performed by female 
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participants. (3) Assessment of the correlations between the brain network characteristics for alpha 

and beta bands and human performance, i.e., different levels of force exertion and RPPC. 
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REVIEWED PHYSICAL NEUROERGONOMICS ARTICLES 

  



156 

 

A summary of the relevant information from the included articles which displays physiological 

measurements, the number of EEG electrodes, EEG index, characteristics of participants, domain, 

experimental task, artifact removal method, and feature extraction method.  

(alpha  [α], beta  [β], bereitschaftspotential [BP], contingent negative variation [CNV], delta [δ], 

electroencephalography [EEG], Electromyography [EMG], electrooculography [EOG], energy ratio of 

alpha to beta [Eα/β], event related potentials [ERP], females [f], finite impulse response filter [FIR], fast 

Fourier transform [FFT], gamma  [γ], independent component analysis [ICA], Lempel-Ziv complexity 

[LZC], males [M], movement-monitoring potential (MMP), motor potential (MP), movement-related 

cortical potential (MRCP), maximum voluntary contraction [MVC], mutual information [MI],  power 

spectrum density [PSD], readiness potential (RP), short time Fourier transform [STFT], spectral coherence 

value [SCV], theta [θ]). 

# Author Physiologic

al 

measurem

ent 

Reference   EEG index Domains  physical 

activity 

Subject 

gender

& 

number 

Artifact 

removal 

method 

 

Features 

Extraction 

method 

1 (Freude and 

Ullsperger, 
1987) 

14 channels 

EEG, EOG 
& EMG 

Linked 

earlobes 
 

BP MVC force   

 

Handgrip M=9  Not mentioned  Averaging 

signals 

2 (Shibata et 

al., 1997) 

3 channels 

EEG & 
EMG 

Not 

mentioned  

MP & grand 

mean MRCP 

MVC force   Elbow 

flexions 
 

M=10 Bandpass 

filter 

Epochs 

from -200 
to about -

50 

millisecond

s 

 
3 (Siemionow 

et al., 2000) 

2 channels 

EEG & 

EMG 

Cz & C3 

referred 

linked 
earlobes 

Magnitude 

of MRCP 

MVC force Elbow flexion M=6 

F=2 

visually check  

 

Averaging 

signals 

4 (Johnston et 
al., 2001) 

30 channels 
EEG & 

EMG 

Linked 
earlobes & 

average re-

reference 

Average of 
BP, MP, & 

MMP 

 

Muscle 
fatigue 

Hand 
graspping 

6 
unknow

n  

visually check 
& band pass 

filter  

BP:1500 
ms before 

and 5500 

ms after 
trigger 

MP: the 

mean from 
250 to100 

MMP:from 

2000 to 
4000 ms 

after 
5 (Slobounov 

et al., 2002) 

17 channels 

EEG 

Linked 

earlobes 

Average of  

BP, MP, & 

amplitude 
of MMP 

 

MVC force 

 

Multi-finger 

isometric 

force 

6 

unknow

n  

visually check  

& 

NeuroScan’s 
software for 

ocular artifact 

Averaging 

signals 

Epochs 
between 

600 &500  

 
6 (Dirnberger 

et al., 2004) 

9 channels 

EEG 

Linked 

earlobes 

MRCP 

Amplitude 

of MMP 

Muscle 

fatigue 

Index finger 

movement 

Group 1 

M=16 

F=17 

Unknown  Averaging 

signals 
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# Author Physiologic

al 

measurem

ent 

Reference   EEG index Domains  physical 

activity 

Subject 

gender

& 

number 

Artifact 

removal 

method 

 

Features 

Extraction 

method 

7 (Slobounov 

et al., 2004) 

17 channels 

EEG 

Linked 

earlobes 

Average of 

BP, MP & 
MMP  

Perception of 

effort 

Isometric 

finger 
movement 

6 

unknow
n 

visually check  

 

Averaging 

signals 

8 (Nascimento 

et al., 2005) 

40 channels 

EEG & 

EOG 

Earlobes Average of 

RP, MP & 

MMP 

 Torque  Isometric 

plantar flexion 

tasks  

M=6 

F=3 

visually check 

&band-pass 

filter 

Averaging 

signals 

9 (Schillings et 

al., 2006) 

32  

channels 

EEG, EOG 
& EMG 

Linked 

mastoids  

Average of 

RP 

Muscle 

fatigue 

 

Isometric 

Hand gripping 

F=14 visually 

check, band-

pass filter 
&automatic 

EOG removal 

Averaging 

signals 

1
0 

(Liu et al., 
2007) 

64 channels 
EEG 

linked 
earlobes 

MRCP 
negative 

potential  

 

Muscular 
fatigue 

Hand gripping   M=7 Visual check , 
bandpass 

filter, & PCA 

Averaging 
signals 

1

1 

(Flanagan et 

al., 2012) 

12 channels 

EEG 

Linked ears  Mean 

rectified 

amplitude 

Muscular 

fatigue 

Repetition 

squat exercise 

M= 7  FIR , spatial 

filters   &  

visually check 

Averaging 

signals 

1

2 

(de Morree 

et al., 2012) 

62 channels 

EEG & 

EMG 

CZ  Amplitude 

of MRCP 

Perception of 

effort 

Unilateral 

weightlifting 

with the elbow 
flexors 

16 

unknow

n 

visually check  

&band-pass 

filter 

Averaging 

signals 

1

3 

(Berchicci et 

al., 2013) 

64 channels 

EEG & 
EMG 

left mastoid 

then re-
reference to 

average 

mastoids 

Amplitude 

of MRCP 

Muscular 

fatigue 

Isometric knee 

extensions 

M=10 

F=8 

visually check  

 

Averaging 

signals 

1

4 

(Morree et 

al., 2014) 

59 channels 

EEG & 
EMG 

CZ then re-

referenced to 
the average 

reference 

Amplitude 

of MRCP 

Perception of 

effort 

Isometric knee 

extension 

F=12 bandpass filter 

&ICA 

Averaging 

signals 

1
5 

(Spring et 
al., 2016) 

64 channels 
EEG  

 

Average 
reference  

Amplitude 
of the 

MRCP 

Muscular  
fatigue 

Cycling with 
knee 

extension 

M=20 visually 
check, band 

pass filters, 

&low pass 
filter 

Averaging 
signals 

1

6 

(Guo et al., 

2017) 

64 channels 

EEG, EMG 
& EOG 

Re- reference 

to average 

Amplitude 

of MP 

Perceived of 

effort  

Hand gripping 28 

unkown 

visually 

check, &low 
pass filter 

Averaging 

signals 

1

7 

(Kamijo et 

al., 2004b) 
 

3 channels 

EEG 

Linked 

earlobes 

P300 The effect of 

physical 
workload 

&mental task 

on 
information 

processing  

Cycling M=12 High cut 

filters 

positive 

peaks that 
appeared in 

a post-S2 

window of 
250–500 

ms. 

1
8 

(Mijović et 
al., 2016) 

24 channels 
EEG 

FCz then re -
reference to 

the average 

of the 
mastoid 

channels 

P300 The effect of 
physical 

&mental task 

on attention  
 

Manual 
assembly task 

with or 

without 
instructions  

M=14 Bandpass 
&ICA 

(EEGLAB) 

Averaging 
signals 

1
9 

(Zink et al., 
2016) 

24 channels 
EEG& 

EMG 

re- 
referenced 

offline to the 

mean of TP9 
&TP10  

 

P300 The effect of 
physical 

workload 

&cognitive 
task on 

attention 

Cycling with 
auditory  

M=11 
F=4 

Bandpass 
&ICA 

Averaging 
signals 
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# Author Physiologic

al 

measurem

ent 

Reference   EEG index Domains  physical 

activity 

Subject 

gender

& 

number 

Artifact 

removal 

method 

 

Features 

Extraction 

method 

2

0 

(Allami et 

al., 2014) 

32 channels 

EEG  

Average 

reference  

N2 

component 

Motor 

training 

Hand grasping M=7 

F=4 

Band-pass 

filtered 

Averaging 

signals 
2

1 

(Breitling et 

al., 1986) 

16 channels 

EEG & 

EMG 
 

Average 

reference 

PSD for δ, 

θ, α, lower 

β & upper β 

workload  Finger 

movement  

14 un 

known  

visually 

check, & 

band-pass 
filtered  

FFT 

2

2 

(Kubitz and 

Mott, 1996) 

4 channels 

EEG  

referenced to 

the vertex  
 

PSD of α & 

β 

Effect of 

physical or 
mental 

workload on 

information 
processing  

Cycling 

and/or 
watching a 

videotape 

M= 20 

F=14  

Low pass 

filter  

Unknown  

2
3 

(Cochin, 
1999) 

14 channels 
EEG& 

EOG 

common 
average 

PSD for  
θ1, θ2, α1, 

α2, β1, β2 

& β3 

Observation 
& execution  

Finger 
movement  

M=10 
F=10  

visually check 
& automatic 

EOG 

correction 

FFT 

2

4 

(Slobounov 

et al., 2000) 

15 channels 

EEG& 

EOG 

Linked 

mastoid 

PSD for θ 

& γ 

Stress & 

emotion 

exhaustion 

visuomotor 

task 

(computer 
game) 

M=6 

F=2 

visually 

check, & 

band-pass 
filter 

FFT 

2

5 

(Nybo and 

Nielsen, 
2001) 

3 channels 

EEG 

Paired 

mastoid  

PSD α, β & 

α/β     

Perception of 

effort  

Cycling  14 

unknow
n  

band-pass 

filter 

FFT 

2

6 

(Nielsen et 

al., 2001) 

2 channels 

EEG  

Paired 

mastoid 

PSD α, β & 

α/β     

Muscular 

fatigue  

Cycle 

ergometer 

M=7 Not mentioned FFT 

 
2

7 

(Abdul-latif 

et al., 2004b) 

2 channels 

EEG & 

EMG 

Ipsilateral 

ear 

 

 

RMS for an 

α, β, & γ 

Muscle 

fatigue 

Hand 

movement 

M=15 

W=10 

Low pass 

filter, high 

pass filter, 

notch filter, & 

visually check 

An 

algorithm 

written in 

MATLAB 

2
8 

(Smit et al., 
2005) 

3 channels 
EEG & 

EOG 

Left mastoid PSD of δ, 
θ, α, β1 & 

β2 

The effect of 
physical & 

mental effort 

on attention  

Cycling with 
mental task 

M=8 
F=36 

 

Visually check 
& bandpass 

filtered 

FFT 

2

9 

(Ng and 

Raveendran, 

2007) 

55 channels 

EEG & 

EOG 

Linked 

earlobes 

PAF Physical 

fatigue 

Hand gripping M=8 Regression 

coefficient 

FFT for 

PSD 

The center 
of gravity 

method for 

PAF 
 

3

0 

(Bailey et 

al., 2008) 

8 channels 

EEG 

Linked 

earlobes 

PSD of θ, 

α1, α2, β1 
& β2 

Workload 

(Exercise 
intensity) 

Cycle 

ergometer 

M=20 High & low 

pass filtered 

FFT 

3

1 

(Zadry, H. 

R. et al., 

2009) 

4 channels 

EEG & 

EMG 

Piciform 

bone 

RMS for α Stress & 

emotion 

exhaustion 

Light 

assembly task 

M=3 

F=3 

Bandpass 

filters 

Not 

mentioned 

3

2 

(Sulaiman et 

al., 2009) 

2 channels 

EEG 

Ear lobe  PSD of β  Stressful & 

emotional 
exhaustion 

Stress exercise 

on treadmill 

M=3 

F=2 

Butterworth & 

Bandpass 
Filter  

STFT  

3

3 

(Ftaiti et al., 

2010) 

1 channel 

EEG 

Not 

mentioned  

PSD α, β & 

α/β     

Muscular 

fatigue 

cycling 

exercises 

F=7 Not mentioned  FFT 

3

4 

(Zadry and 

Dawal, 

2010) 

4 channels 

EEG, EOG 

&EMG 
 

Bipolar Mean PSD 

of α 

The effect of 

mental 

&physical 
workload on 

fatigue  

Assembly 

with mental 

task 

M=10 

F=10 

bandpass filter FFT  

3
5 

(Zadry, H. 
R. et al., 

2010) 

8 channels 
EEG, EOG 

& EMG 

Bipolar  PSD of α 
bands 

 

Workload  Light 
assembly  

M=5 
F=3 

band-pass 
filter 

FFT 
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# Author Physiologic

al 

measurem

ent 

Reference   EEG index Domains  physical 

activity 

Subject 

gender

& 

number 

Artifact 

removal 

method 

 

Features 

Extraction 

method 

3

6 

(Ng and 

Raveendran, 
2011) 

64 channels 

EEG 

Average 

reference  

Normalized 

PSD of  θ, 
α & β 

 

Muscular 

fatigue 

Hand gripping   M=10 Blind Source 

Separation 
method with 

the Wavelet 

method & 
ICA 

Fourier 

Transform 
 

3

7 

(Zadry et al., 

2011) 

4 channels 

EEG, EOG 
&EMG 

 

Piciform 

bone 

Mean PSD 

of α 

The effect of 

mental 
&physical 

workload on 

fatigue 

Assembly 

with mental 
task 

M=5 

F=5 

Visually check 

& bandpass 
filtered 

FFT 

3

8 

(Baumeister 

et al., 2012).  

22 channels 

EEG 

Linked 

earlobes  

Log PSD of  

θ & α 

Muscular 

fatigue  

knee joint 

reproduction  

M=12 Visually check 

& bandpass 
filtered 

FFT 

3

9 

(Ma et al., 

2013) 

2 channels 

EEG 
&EMG 

Not 

mentioned 

PSD of θ & 

SMR 

The effect of 

physical 
activity on 

mental 

workload 

Occupational 

jobs in 
production 

line  

 

M= 1 Bio Trace was 

used to filter 
the data 

Not 

mentioned  

4

0 

(Nakayashiki 

et al., 2014) 

8 channels 

EEG 

A1 &A2 

(i.e., left 

&right 
mastoids) 

mu & β 

ERD 

Observation 

& execution 

Hand grasping  11 

unknow

n 

Bandpass 

Filters 

STFT 

4

1 

(Jagannath 

and 
Balasubrama

nian, 2014) 

25 channels 

EEG 
&EMG 

Not 

mentioned 

PSD of  θ, 

α, β & ratio 
𝛼+𝜃

𝛽
. 

The effect of 

physical 
&mental task 

on fatigue 

Monotonous 

driving 

M=20 Bandpass 

Filters 

Wavelet 

packet 
decomposit

ion 

4

2 

(Cao et al., 

2015) 

28 

channelsEE

G & EMG 

Apex nasi 

 

PSD of  α, 

β & γ 

MVC force 

& Physical 

fatigue  

Handgrip  M=11 Band-pass 

filter & linear 

regression 

algorithm for 
ocular artifact 

PSD by  

averaged 

periodogra

ms. 
 

4

3 

(Aljuaid and 

Karwowski, 
2016) 

64 channels 

EEG 

Ear lobe PSD of θ, 

α, β & γ 

Strength 

capability  

Manual lifting 

task 

M=10 

F=2 

Band pass 

filter & ASR 

FFT 

4

4 

(Jain et al., 

2016) 

8 channels 

EEG 

Ear lobe PSD of θ, α 

& β 

Muscular 

fatigue 

Manual lifting 

task 

M=10 

F=4 

Bandpass 

filtered & IIR 
filter  

Not 

mentioned 

4

5 

(Amo et al., 

2017) 

9 channels 

EEG EMG 
&EOG 

 

FPz  PSD of γ Motor 

training & 
learning 

wrist 

extension 

M=10 

F-6  

Bandpass, low 

pass, notch & 
Butterworth 

filters  

 

FFT 

 

4

6 

(Aryal et al., 

2017) 

4 channels 

EEG 

Not 

mentioned  

 (α+θ) /β Physical 

fatigue  

 

Manual lifting 

task 

M=12 Moving 

average filters 

& visual 

check 

Neuro 

Experiment

er software 

4

7 

(Engchuan et 

al., 2017) 

2 channels 

EEG  

Not 

mentioned 

PSD of δ, 

θ, α, β & γ  

Workload bench press M=9 Not mentioned  FFT 

4

8 

(Hwang et 

al., 2018) 

4 channels 

EEG 

Linked 

mastoid 

PSD of δ, 

θ, α, β & γ 

Stress  & 

emotion 
exhaustion 

Manual lifting 

task 

M= 10 band-pass 

filter, notch 
filter & ICA 

Not 

mentioned 

4

9 

(Kim et al., 

2018) 

32 channels 

EEG 

right earlobe Mu ERD  Execution & 

imaginary 

Finger tapping 

trials 

M=10 

F=4 

EEGLAB Not 

mentioned 
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# Author Physiologic

al 

measurem

ent 

Reference   EEG index Domains  physical 

activity 

Subject 

gender

& 

number 

Artifact 

removal 

method 

 

Features 

Extraction 

method 

5

0 

(Jebelli et 

al., 2018) 

14 channels 

EEG 

Linked 

mastoid 

Valence 

&arousal 
ratio of α / 

β, & 

 

Stress  & 

emotion 
exhaustion 

Work on 

ladder vs work 
on confined 

space 

M=11 ICA, low pass 

filter, high 
pass filter & 

notch filter. 

correlation-

based 
methods 

 

5

1 

(Jebelli et 

al., 2018b) 

14 channels 

EEG 

Linked 

mastoid 

PSD of β   Stress & 

emotion 

exhaustion  

sheet metal 

fabrication job 

M=8 Low, high, 

notch Filter & 

ICA 

Fourier 

transform 

5

2 

(Périard et 

al., 2018) 

61 channels 

EEG 

re-referenced 

to an average 

reference 

PSD α, & β   Muscular 

fatigue  

Cycling  11 Visually check 

& ICA  

 

FFT 

5

3 

(Porter et al., 

2019) 

32 EEG 

channels  

common 

average 
reference 

was 

positioned 
between Fpz 

&Fz  

PSD for θ 

& Partial 
correlation 

(graph 

theory) 

The effect of 

perceived 
physical 

&mental 

exertion on 
attention 

Cycling & 

working 
memory 

M=  8 

F= 5 

Band pass 

filter & ICA  

FFT 

5
4 

(Pfurtschelle
r et al., 

1998) 

23 channels 
EEG, 

EOG& 

EMG 

Right 
mastoid 

ERD/ERS 
for α,  β & 

Mu rhythm 

ERD 

Observation 
& execution 

wrist, finger & 
thumb 

11 
unknow

n 

Visual check 
&  Bandpass 

filter 

Not 
mentioned 

5

5 

(Pfurtschelle

r et al., 

2000) 

34  

channelsEE

G, EOG& 
EMG 

Left mastoid Mu rhythm 

ERD 

Observation 

& execution 

actions 

finger & foot 

movement 

M=8 

F=4 

Visual check 

&  Bandpass 

filter 

Not 

mentioned 

5

6 

(Muthukuma

raswamy and 

Johnson, 

2004) 

128 

channels 

EEG 

Cz reference 

& re-

referenced to 

average 

Mu rhythm 

ERD 

Observation 

& execution  

Gripping  M=9 

W=7  

 

 

visual 

inspection 

FFT by 

hanning 

window 

5
7 

(Calmels et 
al., 2006) 

19 EEG 
electrode 

Mastoids  ERD/ERS 
for   (7–10 

Hz; 10–13 

Hz; 13–20 
Hz; & 20–

30 Hz) 

Observation 
& execution  

Index finger 
movement  

 8 
unkown   

Visual check 
&  Bandpass 

filter  

ERD/ ERS 
using  

Neuroscan 

4.1 
software   

5
8 

(Pitto et al., 
2011) 

13 channels 
EEG 

Linked ears ERS ERD 
θ, α & β 

Motor 
learning 

Putting  M=5 
F=2 

band-pass 
filter & ICA 

 

Not 
mentioned 

5
9 

(Zaepffel et 
al., 2013) 

62 channel 
EEG 

Average 
reference  

ERD/ERS 
for β  

Observation, 
preparation 

& execution 

Hand grasping 
 

M= 5 
F=9 

Visual check, 
low pass filter,  

Butterworth & 

band-pass 
filter 

Continuous 
wavelet 

transform 

6

0 

(Storti et al., 

2015) 

21 channels 

EEG  

Fz  PSD, ERD 

& Spectral 

coherence 

for α & β 

(graph 
theory) 

Execution Arm 

movement 

M = 7 

F=3 

 

Band pass 

filter & ICA  

FFT 

6

1 

(Storti et al., 

2016) 

19 EEG 

channels 

Fz PSD, ERD 

& Spectral 
coherence 

for α & β 

(graph 
theory) 

Execution Left/right arm 

movements 

M= 7 

F = 3 
 

Band pass 

filter & ICA  

FFT 

6

2 

(Storti et al., 

2018) 
 

64 channels 

EEG  

Fz  PSD, ERD 

& lagged 
coherence 

for δ, θ, α 

& β 

Execution Reaching & 

grasping  

10 

unkown 

Band pass 

filter & ICA  

FFT 
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# Author Physiologic

al 

measurem

ent 

Reference   EEG index Domains  physical 

activity 

Subject 

gender

& 

number 

Artifact 

removal 

method 

 

Features 

Extraction 

method 

(graph 

theory) 
6

3 

(Babiloni et 

al., 1999) 

128 

channels 

EEG   

Not 

mentioned 

BP,RP,MP  

& α ERD 

Observation, 

preparation 

& execution 

Index finger 

movement 

M=4 Bandpass 

filter 

Averaging 

signals for 

ERP. 
Welch 

technique 

for power 
spectra 

6

4 

(Kamijo et 

al., 2004a) 

3 channel 

EEG, EMG 
&EOG  

 

Linked 

earlobes 

Amplitude 

of CNV & 
PSD α  

Effect of 

workload on 
attention 

Bicycle 

ergometer 
with  reaction 

time task 

M=12 High cut 

filters 

Averaging 

signals 

6

5 

(Jochumsen 

et al., 2017) 

4 channels 

EEG& 

EOG 

Right ear 

lobe 

MRCP, 

ERS/ERD 

for α/mu & 
β  

Motor 

training  

Grasping  M=17 

F=21 

 

Bandpass & 

Butterworth 

filter  

Averaging 

signals 

6
6 

(Liu et al., 
2005b) 

64 channels 
EEG & 

EMG 

Linked 
mastoids  

PSD of δ, 
θ, α &β, 

MRCP for 

negative 
potential 

Muscle 
fatigue 

 

Hand gripping  M=7 
F=1 

visually check 
& bandpass 

filters 

FFT for 
PSD by   

Hanning 

window 
Trigger 

averaged 

for MRCP 
6

7 

(Doppelmayr 

et al., 2007) 

3 channels 

EEG  

Mastoids P300, 

N200, & 

ERS/ERD 

Effect of 

physical task 

on attention  

Auditory 

oddball 

paradigm with 
a footrace  

M=1  Visually 

inspected & 

bandpass 
filtered 

Averaging 

signals 

6

8 

(Wascher et 

al., 2014) 

28 EEG 

channels & 
EOG 

Linked 

mastoids 

individual  

θ, α & the 
amplitude 

of P3&N2 

Effect of 

physical 
&mental 

activity on 

attention  

Handling &  

solving 
cognitive 

riddles  

M=3 

F=7 

Visually check 

&  regression-
based method 

Averages 

for a 
continuous 

Wavelet 

transform 
6

9 

(Wascher et 

al., 2016) 

2 channels 

EEG & 

EOG 
 

Averaged 

mastoids 

Gravity 

frequency 

for θ & α, 
ERD/ERS 

for θ & α 

Effect of 

physical task 

on mental 
fatigue on 

motivation 

Handling 

some boxes  

with Simon 
task  

25 

Unknow

n  

ICA  FFT 

7
0 

(Wang et al., 
2017) 

32 channels 
EEG 

 

Average 
reference  

PSD of α, β 
& γ, & 

sample 

entropy 

Muscular 
fatigue 

Hand gripping  
 

M=18 ICA Periodogra
ms for PSD 
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# Author Physiologic

al 

measurem

ent 

Reference   EEG index Domains  physical 

activity 

Subject 

gender

& 

number 

Artifact 

removal 

method 

 

Features 

Extraction 

method 

7

1 

(Albuquerqu

e et al., 
2018) 

8 channels 

EEG 

Fpz &Nz PSD of δ, 

θ, α, β, δ to 
β, θ to β, & 

low γ; the 

amplitude 
modulation 

rate of 

change, 
&the 

magnitude 

&phase 
coherence 

between 
power 

spectra 

Effect of 

physical task 
on mental 

workload 

cycling with 

Multi-
Attribute Task 

Battery II 

M=24 

F=23 

band-pass 

filter 

Hilbert 

transform 

7

2 

(Xu et al., 

2018) 

 

20 channels 

EEG 

 

Reference 

bilateral 

mastoids 

Eβ, Eα/β, 

SCV of β & 

LZC 

Effect of the 

physical 

activity on 
mental 

fatigue 

cycling with 

N-back task  

 

M= 5 

F=9  

Band pass 

filters, 

Butterworth 
&ICA 

(EEGLAB) 

WPD using  

Daubechies 

7
3 

(Lin et al., 
2017) 

5 channels 
EEG& 

ECG 

Left mastoid 
Re-reference 

common 

average  

PSD 
&entropies  

Workload  Cycling 
exercise  

M=25 
F=19 

Bandpass 
filter 

Morlet 
wavelet 

transform 

& 
Higuchi’s 

fractal 

dimension 
7

4 

(Huang et 

al., 2003) 

EEG & 

EMG 

Not 

mentioned 

FD Muscle 

fatigue 

Hand gripping  unknow

n 

Unknown  Length of 

signal &k 
using the 

least square 

fit 
7

5 

(Liu et al., 

2005a) 

5 channels 

EEG 

Linked 

mastoid 

FD MVC force 

 

Handgrip M=6 

F=2 

Visual check Katz’s 

algorithm, 

evcik’s 
method, 

&Higuchi’s 

method 
7

6 

(Yao et al., 

2009) 

64 channels 

EEG 

Linked 

Mastoids 

L1 Muscle 

fatigue 

Handgrip M=6 

F=2 

visual check 

& band-pass 

filtered 

Mean 

exponential 

divergence 
or 

convergenc

e of nearby 
trajectories 

in phase 

space 
7

7 

(Brümmer et 

al., 2011) 

32 channels 

EEG 

A triangle of 

FP1, FP2 & 

FZ 

Magnitude 

current 

density 

Workload Rest & 

Cycling 

M=15 

F=11 

Butterworth, 

notch-filter, 

automatic 
artifact 

correction 

algorithm & 
visually check 

LORETA 

current 

density 

7

8 

(Yang et al., 

2011) 
 

 

64 channels 

EEG 

linked 

earlobes 

Nonlinear  

source 
strength 

 

Preparation 

& execution 

Isometric 

hand 
Handgrip 

contraction 

M=4 

F=4 

visual check, 

low pass filter 
& ICA 

LORETA 

current 
density 

estimation 

were 
performed 
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# Author Physiologic

al 

measurem

ent 

Reference   EEG index Domains  physical 

activity 

Subject 

gender

& 

number 

Artifact 

removal 

method 

 

Features 

Extraction 

method 

using Curry 

software 
package 

7

9 

(Fallani et 

al., 2008) 
GT 

96 channels 

EEG 
(16 ROI) 

Not 

mentioned 

Alpha  

partial 
direct 

coherence 

 

Observation 

& execution 

Finger 

movement 

M = 5 

 

Low pass 

filters 

Time-

frequency  

8

0 

(Jin et al., 

2012) 

 

58 EEG 

channels  

Right earlobe MI Imagination Sequential 

finger-tapping 

task 

Males = 

12 

Visual check FFT for 

PSD 

Morlet 
wavelet 

transformat

ion for MI 
8

1 

(Comani et 

al., 2013) 

FC 

32 EEG 

channels  

 
 

Common 

electrical 

reference 

Alpha 

Coherence 

Perception of 

effort and 

attention  

Road-cycling 

athlete 

n = 1 

(gender 

is 
unknow

n 

Band pass 

filter 

cross 

spectrum 

8
2 

(Kar and 
Routray, 

2013) 

 

19 EEG 
channels 

forehead Synchroniz
ation 

likelihood 

Physical, 
mental, and 

visual 

fatigue 

Walking, 
driving, and 

listening 

Males = 
12 

FIR Empirical 
mode 

decomposit

ion  
8

3 

(Sengupta et 

al., 2014a) 

GT 

19 channels 

EEG 

Not 

mentioned 

Horizontal 

visibility 

graph 
synchroniza

tion 

Mental, 

physical & 

visual 
fatigue 

Driving, 

treadmill, & 

visual tasks 

M = 12 Band pass 

filter & power 

line removal 

Time series 

8
4 

(Sengupta et 
al., 2014b) 

 

19 channels 
EEG 

 

Not 
mentioned 

Weighted 
visibility 

graph 

similarity 
for 0.5 Hz 

to 30 HZ 

Mental, 
physical & 

visual 

fatigue 

Simulated 
computer 

driving game 

M = 12 Band pass 
filter & power 

line removal 

Time series 

8
5 

(Wang et al., 
2018c) 

 

32 EEG 
channels 

NM Phase 
synchroniza

tion 

 

Physical 
fatigue 

Repetitive 
forearm task 

Adults:  
Males = 

5 

Females 
= 5 

Children
:  

Males = 

4 
Females 

= 6 

Bandpass 
filter and ICA 

FFT 

8

6 

(Cattai et al., 

2018) 

 

74 EEG 

channels 

NM Spectral 

coherence 

and 

imaginary 
coherence 

for  θ, α, β, 

γ 

Execution Grasping Males 

and 

females 

= 10 

ICA Welch 

method for 

power 

spectrum 

8

7 

(Filho et al., 

2018) 

 

64 EEG 

channels 

 

CAR 

PSD &  

Pearson’s 

correlation  
 

Execution Hand 

imaginary task 

M = 7 

F= 1 

FIR and CAR 

filtering 

Welch 

method for 

power 
spectrum  

motifs 

synchroniz
ation 

method 
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# Author Physiologic

al 

measurem

ent 

Reference   EEG index Domains  physical 

activity 

Subject 

gender

& 

number 

Artifact 

removal 

method 

 

Features 

Extraction 

method 

8

8 

(Shaw et al., 

2019) 
 

64 EEG 

channels 

left earlobe wPLI  

 

Physical 

workload 

Seated and 

walking 

Males 

and 
females 

= 15 

 

band pass, 

notch, 
butterworth 

filters, and 

ICA 

Phase 

analysis 
cross-

spectrum b 
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APPENDIX B 

SUMMARY OF THE APPLICATIONS OF GRAPH THEORETICAL 

ANALYSIS 
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Relevant information from the included articles, including the node definition, edge definition, 

graph theory metrics, number of participants with gender, domain, experiment, and primary 

findings. 

Study 

# 

Article  Node 

definition 

Edge 

definition 

and 

direction 

Graph 

theory 

metrics 

Number of 

participants 

Domain Experiment Primary findings 

1 (Michelo

yannis et 

al., 

2006b) 

28 EEG 
channels  

 

Synchroni

zation 
likelihood 

Undirect 

CC, PL, and 
σ 

Group 1: Males = 
14 

Females = 6 

Group 2: 

Males = 15 
Females = 5  

Working 
memory  

Two-back 

working 
memory tests 

Less-educated individuals exhibited 

more organized small-world network 

topologies in comparison with more 
highly educated individuals. 

2 (Sauseng 

et al., 
2007) 

32 EEG 
channels  

PLV 

Undirect 

FC Males = 5  

Females = 7 

Working 
memory   

Finger 
movement 

Greater phase coherence of the theta 

band was evident in the frontal and 
posterior parietal regions. 

 

3 (Fallani 
et al., 
2008) 

96 EEG 
channels  

PDC 
Direct 

 

Density, 
node 

strength, 

strength 
distribution

, link 

reciprocity, 
motifs, 

Eglobal, 
and Elocal 

Males = 5 

 

Motion Dorsal 
flexion  

The observed increase in network 
edges during the movement 

preparation phase demonstrates the 

need for greater information 
exchange in the execution of 

movement tasks. Decreased 

accessibility and increased centrality 

were observed during the preparation 

and execution of finger movement 
tasks. 

4 (Liu et 
al., 
2010) 

32 EEG 
channels  

DTF 
Direct 

FC Males = 50 Mental 
fatigue 

Vigilance, 
arithmetic 

tasks, and 

switching 
tasks 

The FC of the alpha band in the 
parietal to frontal lobes was 

weakened, whereas the FC in central 

area and the middle-to-left region of 
the beta and alpha bands increased 

during mental fatigue. The middle-to-

right FC of the beta bands increased 
after the task. 

5 (Jin et 

al., 
2012) 

58 EEG 
channels  

MI 
Undirect 

Enodal  Males = 12 Motion  Sequential 

finger-
tapping task 

An economical small-worldness was 

observed in the alpha and beta bands. 
The Eglobal value in the alpha band 

did not change, whereas an increase 

was observed in the beta band. An 
increased Enodal was evident in the 

bilateral primary motor and left 

sensory areas, whereas contrasting 
results were found in the posterior 

parietal areas. The MI increased in the 

beta band during the task, but not in 
the alpha band.  

6 (Comani 

et al., 
2013) 

32 EEG 
channels  

 

 

Coherenc
e 

Undirect 

 

FC n = 1 

(gender is 
unknown) 

Motion  Road-cycling 
athlete 

During sustained movement, a strong 

FC was observed for the beta band in 
the frontal-motor area. 
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7 (Dimitri
adis et 

al., 
2013) 

64 EEG 
channels  

PLV 
Undirect 

Elocal Males = 1 Mental 
workloa
d 

Arithmetic 
tasks  

The PLV of the alpha frequency was 
higher in the parietal occipital than in 

the prefrontal regions, and the task 

difficulty was best reflected in the 
parieto-occipital functional 

connections. 

8 (Hassan 
et al., 
2013) 

256 EEG 
channels 

PLV 
Undirect 

Degree, 
number of 

edges, 

density, and 
betweennes
s 

Males and 
females = 9 

 

Cognitiv
e 

workloa
d 

Spelling 
tasks 

Asymmetric results from the left and 
right hemispheres were demonstrated 

by a higher density, betweenness, and 

node degree for the left hemisphere. 

9 (Kar and 

Routray, 
2013) 

19 EEG 
channels 

Synchroni

zation 

likelihood 
Undirect 

Degree, 
CC, and PL 

Males = 12  Physical

, mental, 

and 
visual 
fatigue  

Walking, 

driving, and 
listening  

An increase in the degree of 

connectivity and CC and a decrease in 

PL were observed during fatigue. 

10 (Klados 

et al., 
2013) 

32 EEG 
channels 

Magnitud

e square 

coherence 
Undirect 

Node 

strength, 

Eglobal, 
Elocal, CC, 
PL, and σ 

Males = 12  

Females = 12  

Working 
memory  

Difficult 
calculations 

During difficult mathematics, a 

denser alpha FC was observed in the 

fronto-parietal regions. The local and 
global alpha bands were efficient; 

however, the beta and gamma bands 

exhibited no differences in Eglobal, 
Elocal, or σ. 

11 (Sengupt
a et al., 
2014a) 

19 EEG 
channels  

Horizonta
l visibility 

graph 
Undirect 

 

CC and PL Males = 12 Mental, 
physical

, and 

visual 
fatigue  

Driving, 
treadmill, 

and visual 
tasks 

A strong FC was observed in the 
parietal and occipital lobes after 

fatigue tasks, with an increase in the 

CC. 

12 (Sengupt

a et al., 
2014b) 

19 EEG 
channels  

  

Weighted 

visibility 

graph 
similarity 
Undirect 

 

CC and PL Males = 12 Mental, 

physical

, and 
visual 
fatigue 

Simulated 

computer 
driving game 

An increased CC in the parietal and 

occipital lobes demonstrated the 

occurrence of fatigue. 

13 (Sun et 
al., 
2014a) 

64 EEG 
channels 

 

 

PDC 
directed 

CC, PL, and 
σ 

Males = 15 

Females = 17 

 

Mental 
fatigue 

PVT 
Significant increases in weighted PL 
under a fatigued state and in 

functional connectivity in the left 

fronto-parietal brain region were 
observed. 

14 (Sun et 

al., 
2014b) 

64 EEG 
channels  

PDC 
Directed 

FC  Males = 12 

Females = 14 

Mental 
fatigue 

PVT 
Different patterns were observed in 

the right and left sensorimotor regions 

during a state of fatigue. The middle 
frontal gyrus and several motor areas 

were crucial for sustained attention. 

15 (Bola 
and 

Sabel, 
2015) 

128 EEG 
channels 

PLV 
Undirect 

CC, PL, 
modularity, 

and 

network 
hubs 

Males = 10  
Females = 8 

Visual 
percepti
on  

Visual 
discriminatio
n  

A strong CC, interactions between 
hub nodes, and low modularity were 

observed in cognitive networks.  

16 (Dimitri
adis et 

64 EEG 
channels 

PLV 
Undirect 

FC Males = 9 

Females = 7 

Workloa
d  

Mental 
arithmetic 
task 

The PLV of the theta and alpha bands 
in the frontal and parieto-occipital 

brain reflected the cognitive load. 
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al., 
2015) 

17 (Ghosh 
et al., 
2015) 

32 EEG 
channels  

DFT 

Directed 

Network 
density and 

node 
strength 

Males and 
females = 3 

Motion Motor 
imagery 
tasks 

The node strength for electrode C3 
was observed to be high during right-

hand movements.  

18 (Kong et 

al., 
2015) 

16 EEG 
channels 

Granger 

causality 
Directed 

CC, PL, 

Eglobal, 
and 

percentage 
of 

unconnecte
d nodes 

Males and 
females = 12  

 

Mental 
fatigue 

Simulated 
driving 

A reduction in the ability of the 

human brain to integrate information 
was reflected by a decrease in 
Eglobal. 

 

19 (Ren et 

al., 
2015) 

32 EEG 
channels 

PLV 
Undirect 

Σ Males = 8  Cognitiv

e 
workloa
d 

Piloting with 
MATB 

A small-world network topology was 

observed for the alpha bands during a 
high cognitive workload. 

20 (Storti et 

al., 
2015) 

21 EEG 
channels 

Spectral 

coherence 
Undirect 

Node 

strength, 

accessibilit
y, 

betweennes

s, and 
eigenvector  

Males = 7 

Females = 3 

 

 

Motion Arm 
movements  

The FC was found to be strong in the 

motor regions but weak in other 

regions. Less accessibility was 
reported in the central and motor 

areas during movement. 

21 (Vijayal
akshmi 

et al., 
2015) 

40 EEG 
channels  

MCC 
Undirect 

Degree, 
CC, PL, 

Elocal, and 
Eglobal 

Males = 9   

Females = 1 

Cognitiv
e 

workloa
d  

Driving 
simulator 

MCC was capable of detecting 

cognitive impairment. A high degree 

of connectivity during cognitive tasks 
indicated strong connections, high 

functional segregation, and global 

integration.  

22 (Wang et 

al., 
2015) 

19 EEG 
channels 

Synchroni

zation 

likelihood 
Undirect 

 FC Males = 20 Fatigue  Driving  
A weak FC was observed after long 

driving tasks. 

23 (Huang 
et al., 
2016)  

16 EEG 
channels 

PDC 
Direct 

Degree, 
Elocal, 

Eglobal, 

and degree 
distribution 

Males = 19  Mental 
Workloa
d 

Playing and 
resting tasks 

During play, Elocal was observed to 
be higher for the beta bands and lower 

for the theta bands in comparison to 

those for resting tasks. 

24 (Li et al., 

2016) 

 

11 EEG 

channels 

PLI 

Undirect 

CC, PL, σ, 

Eglobal, 
and Elocal 

Males = 8 

Females = 12 

Mental 

fatigue 

Attention 

task 

During fatigue, an increased 

betweenness centrality was observed 

in the frontal cortex. The CC and PL 

increased over time, indicating that 
the brain regions were more 

segregated and communicated with 

each other less efficiently. A reduced 
Eglobal and enhanced Elocal implied 

that brain resources might be 

reorganized and that the concerted 
activities within regions were more 

active, whereas interactions between 

regions were inhibited. 
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25 (Storti et 
al., 
2016) 

19 EEG 
channels 

Spectral 
coherence 
Undirect 

Node 
strength, 

accessibilit
y, 

betweennes

s, CC, 
centrality, 

and 
eigenvector 

 

Males = 7 

Females = 3 

 

Motion Left/right 
arm 
movements 

The FC increased in the motor region 
during arm movements, and the node 

accessibility decreased with increases 

in node centrality during arm 
movements. 

26 (Chua et 

al., 
2017) 

64 EEG 

channels  

PLI 

Undirect 

 

CC, PL, and 

Eglobal  

Males = 18 Mental 

fatigue 

Driving 

simulation 

An increased CC and decreased PL 

were observed with mental fatigue. 

27 (Cynthia 
et al., 
2017) 

16 EEG 
channels 

PLV 
Undirect 

CC, PL, 
Eglobal, 
and Elocal  

 

Males = 10 

Females = 10 

Mental 
fatigue 

Driving 
The PLV was found to be able to 
measure changes in neuronal 

function. 

28 (Dai et 
al., 
2017) 

64 EEG 
channels 

Cross- 
coherence 
Undirect 

Eglobal, 
CC, PL, 

Elocal, and 

betweennes
s 

Males = 11 

Females = 17  

 

Working 
memory 

N-back tasks 
Memory load resulted in a higher 
functional integration in the theta 

bands and a lower functional 

segregation in the alpha bands. The 
theta PL and alpha CC were 

negatively correlated with reaction 

time, whereas the node betweenness 
of the theta bands was positively 

correlated with the reaction time. 

29 (Dimitra

kopoulos 

et al., 
2017) 

64 EEG 
channels  

Pearson 

correlatio
n  

Undirect 

FC 
Males = 11 

Females = 17 

 

Mental 

workloa
d 

N-back and 

mental 
arithmetic 

Changes related to cognitive task 

difficulty were found to occur in the 

frontal theta and beta bands based on 
the features obtained from the 

functional connectivity. 

30 (Li et al., 
2017) 

19 EEG 
channels  

MI 
Undirect 

Maximum 

eigenvalue 

and degree 
centrality 

Males and 
females = 18 

 

Mental 
fatigue 

Mental 

arithmetic 
problems 

The maximum eigenvalue increased 

as mental fatigue increased. The 

weighted degree centrality exhibited 
substantial changes during mental 

fatigue 

31 (Ren et 
al., 
2017) 

64 EEG 
channels  

Phase 
synchroni

zation 
Undirect 

σ Males = 10 Mental 
workloa
d 

Flight 
simulation 

task with 
MATB 

A more globally efficient but less 
clustered network was observed for a 

high-difficulty cognitive workload. 

32 (Sciaraff

a et al., 
2017) 

30 EEG 
channels  

PDC 
direct 

Nodal 

strength 
and CC 

Males = 10 Mental 

workloa
d 

Piloting with 
MATB 

The strength changed significantly 

with task difficulty. A higher 
workload corresponded to a lower CC 

in the central and parietal regions.  

33 (Zhang 
et al., 
2017) 

64 EEG 
channels  

PLI 
undirect 

Eglobal, 
Elocal, and 
Enodal 

Males = 20 Mental 
workloa
d 

Flight 
simulation  

The Eglobal and Elocal values for the 
alpha and theta bands were higher in 

2D tasks than in 3D tasks. The Enodal 

value decreased for both the alpha 
and theta bands with increasing 

mental workload. 
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34 (Zhao et 
al., 
2017) 

32 EEG 
channels  

Coherenc
e  

undirect 

CC and PL Males = 13 

Females = 3 

Mental 
fatigue 

Driving 
fatigue 

A significant increase in PL was 
observed for all EEG bands; however, 

an increase in CC was observed only 

for the delta, alpha, and beta bands. 

35 (Cattai et 

al., 
2018) 

74 EEG 
channels 

Spectral 

coherence 
and 

imaginary 

coherence 
undirect 

 

Weighted 
node degree 

Males and 
females = 10 

Motion Motor 
imagery 

The spectral coherence in the beta 

activity outperformed the imaginary 
coherence in the contralateral motor 

cortex. 

36 (Chen et 

al., 
2018a) 

40 EEG 
channels 

Phase 

coherence 
undirect 

FC Males = 12   Mental 
fatigue 

Driving  
The phase coherence for the alpha 

and theta bands was high after a 
driving task. 

37 (Chen et 
al., 
2018b) 

30 EEG 
channels 

PLI 
undirect 

Nodes, link 

degree, leaf 

fraction, 
kappa, 

diameter, 

eccentricity
, 

betweennes
s centrality, 

tree 

hierarchy, 

and degree 
correlation 

Males = 15 Mental 
fatigue 

Driving 
The PLI was observed to be high 
during drowsiness. 

The degree of delta activity was 

significantly lower during alertness, 
whereas the delta values for 

betweenness centrality and kappa 

were higher during a state of 
drowsiness. 

The degree of theta, BC, and kappa 

were significantly lower during a 
state of alertness than during 

drowsiness. 
Also, the authors reported a more 

organized integrated network during 

drowsiness compared to that during 
alertness for the theta frequency band. 

38 (Dimitra
kopoulos 

et al., 
2018) 

64 EEG 
channels  

Generaliz
ed PDC  
direct 

CC, PL, and 
σ 

Males = 40 Mental 
fatigue 

PVT with 
simulation 
driving  

A positive correlation between PL 
and task duration was observed, and 

mental fatigue increased both CC and 

PL. A disruption in global integration 
was revealed in both fatigue tasks, 

whereas increased local segregation 

was 
observed only for the simulated 

driving task. 

39 (Filho et 
al., 
2018) 

64 EEG 
channels 

Pearson’s 
correlatio
n  

undirect 

 

 

Degree, 
CC, PL, 

betweennes

s centrality, 
and 

eigenvector  

Males = 7 

Females = 1 

Motion Motion 
imagery  

Graph theoretical metrics were shown 
to be useful features for classifying 

different hand movement tasks, 

especially the local properties of the 
network. 

40 (Ghaderi 

et al., 
2018) 

21 EEG 
channels 

Coherenc
e  

Undirect 

Degree, 

CC, 

transitivity, 
and Eglobal 

Group 1, Case 1: 
Males = 11 

Females = 6 

Group 1, Case 2: 
Males = 14 

Females = 11 

Time 

percepti
on  

Mindfulness 
state task 

Segregation of the beta network was 

found to be crucial for time 

perception. 
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Group 2, Case 1: 

Males = 5 

Females = 3 

Group 2, Case 2: 

Males = 5 

Females = 4 

41 (Taya et 
al., 
2018) 

62 EEG 
channels 

DTF 
Direct 

CC, 
normalized 

CC, 

normalized 
PL, PL, and 
σ 

Males = 18 Workloa
d 

Piloting task 
(MATB) 

During training, Eglobal initially 
decreased and subsequently 

increased, whereas Elocal and small-

worldness exhibited opposite 
patterns. The centrality of nodes 

changed in the frontal and temporal 

regions. 
 

42 (Toppi et 

al., 
2018) 

60 EEG 
channels 

PDC 
Direct 

 

Degree, 

Eglobal, 
Elocal, and 
σ 

Males = 6 

Females = 11 

Working 
memory 

Sternberg 

item 
recognition 

A small-world topology was evident 

in storage and retrieval. 

43 (Storti et 

al., 
2018) 

64 EEG 
channels  

Lagged 
coherence 

undirect 

CC, PL, and 
σ 

Males and 
females = 10 

Motion Reaching 

and grasping 
movements 

Movement was found to reduce the 

FC. The weighted PL decreased 

during left-hand movements. 

44 (Sun et 
al., 

2018) 

64 EEG 
channels 

PDC 
Direct 

Betweennes
s, PL, CC, 

and σ 

Males = 12 

Females = 14 

Mental 
fatigue 

PVT 
During mental fatigue, the PL 
increased and σ decreased, whereas 

the nodal betweenness decreased in 

the left frontal and middle central 
areas and increased in the right 

parietal areas. A prolonged time spent 
on the task reduced the local level of 

interconnectivity. 

45 (Wang et 
al., 
2018a) 

14 EEG 
channels 

Synchroni
zation 
likelihood 

undirect 

Degree,  
CC, and 
Eglobal 

Males = 10  
Females = 2  

Mental 
fatigue 

Driving  
A lack of awareness due to mental 
fatigue was demonstrated by an 

increase in the CC and network 

Eglobal in a sub-band (36–44 Hz).   

46 (Wang et 
al., 
2018b) 

14 EEG 
channels  

Pearson 
correlatio
n  

Undirect 

CC and 
Eglobal  

Males = 8 

Females = 2 

Mental 
fatigue 

Driving 
fatigue 

A dense FC was observed during 
fatigue, with an increase in the CC 

and PL as the driving time increased. 

The degree of FC gradually increased 
with time.  

47 (Wang et 
al., 
2018c) 

32 EEG 
channels 

Phase 
synchroni

zation 
Undirect 

PL, CC, and 
degree 
centrality 

Adults:  

Males = 5 

Females = 5 

Children:  

Males = 4 

Females = 6 

Physical 
fatigue  

Repetitive 
forearm task 

Different movement-related EEG 
potentials were observed in children 

and adults during physical fatigue. 
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48 (Chen et 
al., 
2019) 

14 EEG 
channels 

PLI 
Undirect 

CC and PL Males = 14  Mental 
fatigue 

Real driving  
CC and PL were reduced during 
fatigue, and a weak FC was observed 

in the frontal-to-parietal alpha and 

beta bands during drowsiness. 

49 (Han et 

al., 
2019) 

62 EEG 
channels  

Pearson 

correlatio
n 

undirect 

Degree 

centrality, 
CC, and PL 

Males = 12 

Females = 4 

Mental 
fatigue 

Driving task 
As the degree of fatigue increased, the 

FC and CC increased, whereas PL 

decreased for the delta band. 

50 (Ghaderi 

et al., 
2019) 

19 EEG 
channels 

Coherenc
e  

undirect 

CC, PL, 

transitivity, 

Eglobal, 

degree 

centrality, 

and 
modularity 

Males = 12 

Females = 12 

Mental 

workloa
d 

Mathematica
l task 

During problem-solving, the beta 

band exhibited strong connectivity 

with high degrees of transitivity, 
clustering, and modularity. The alpha 

band exhibited a disrupted FC with a 

reduction in segregation. The theta 
band exhibited unaltered brain 

network function. 

51 (Kakkos 
et al., 
2019) 

64 EEG 
channels 

PLV 
undirect 

CC, PL, 
Eglobal, 
and Elocal  

 

Males = 33 Mental 
workloa
d 

Flight 
simulation  

Increased alpha and beta bands were 
observed with increasing workload. 

The Eglobal beta pattern was 

evidently a unique trend. 

52 (Li et al., 
2019) 

9 EEG 
channels 

MI 
undirect 

σ, CC, and 
PL 

Males = 20 Mental 
fatigue 

Arithmetic 
task 

Mental fatigue was reflected by a 
strong coupling connection and a 

reduction in the small-world network. 

53 (Nguyen 

et al., 
2019) 

17 ROIs PLV 
undirect 

Hubs Males = 4 

Females = 8 

Motion Visuomotor  
An FC pattern with hubs 

demonstrated the most central brain 
regions in a visuomotor task. 

54 (Porter et 

al., 
2019) 

32 EEG 
channels  

Partial 

correlatio
n  

undirect 

CC Males = 8 

Females = 5 

Perceive

d 

physical 
and 

mental 
exertion 

Cycling and 

working 
memory 

The partial correlation of theta bands 

increased in the frontal region during 

working memory. 
Initially, the theta CC increased 

during both tasks and subsequently 

decreased significantly when the task 
became more difficult.  

55 (Samima 
and 

Sarma, 
2019) 

64 EEG 
channels  

NM Nodal 
strength 
and CC 

Males and 
females = 20 

 

Mental 
workloa
d 

Working 
memory test 
battery 

The nodal strength was higher when 
the workload difficulty was 

increased. Contrasting results were 

found for the CC. 

56 (Shaw et 

al., 
2019) 

64 EEG 
channels 

wPLI 
Undirect 

FC Males and 
females = 15 

 

Physical 

workloa
d  

Seated and 
walking 

A strong FC was observed in all brain 

regions for theta band during 
walking. 

57 (Yuan et 
al., 
2019) 

32 EEG 
channels  

PLI 

Undirect 

Degree 
centrality, 

modularity, 
CC, PL, 

Males = 5 
Females = 5 

Mental 
workloa
d 

Security 
inspection 
monitoring  

During high-workload tasks, the 
average degree centrality between 

nodes was high, whereas for a low 
workload, the connectivity was weak. 

When the experts could not detect 

whether the blocked item was 
dangerous, the characteristic shortest 
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Eglobal, 
and σ 

path was the costliest. When there 
was no block but danger or when 

there was a block but no danger, the 

CC and degree of modularity 
increased. The highest Eglobal and 

small-worldness values were 

observed in cases of danger with no 
block. Thus, the highest coherence 

occurred for the target stimulus 

without any block. 
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APPENDIX C 

 ISOMETRIC STRENGTH TEST INSTRUCTIONS 
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Before starting your first trial, you will be provided with the following instructions based on the protocol 

by Chaffin et al. (1978). In this task, the measurement of the isometric strength of your arm will take place 

using Jackson Strength Evaluation System (Figure C.1). Here you will be requested to exert a force without 

any movements.  You will be requested to lift the chain as depicted in (Figure C.2)  

 

 

Figure C.1: The Jackson Strength Evaluation System 

 

Figure C.2: Arm isometric strength based on Chaffin et al. (1978) protocol 

 

This task will be demonstrated to you. Please ask questions if further clarification is needed. There will be 

Three attempts, the first attempt is warmup will not be counted. You will be given only almost 50% effort. 

This will guide you to know what you are going to do. After that, you will have three attempts for each 

area. You are required to do your best on all of them as your score will be the average among the three 

trials. During each trial, you will rest for 30 seconds or until you are ready. Once you are ready, wait for 

the tone from the software and then exert the required force for 3 seconds. You will have a rest for two 

minutes between each trial. Remember always you are required to stop if you feel pain or discomfort, stop 

exerting force immediately. 
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APPENDIX D 

BORG'S RPE (6–20) SCALE (BORG, 1982) 
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Borg’s RPE (6-20) scale is a linear scale, ranges from 6 to 20, where 6 means “no exertion at 

all,” and 20 means “maximal exertion.” 

Question: How might you describe your exertion? 
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APPENDIX E 

 RATING OF PERCEIVED COMFORT   
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Question: How you might describe your level of comfort? 

0 No comfort 

1 Very low comfort 

2  

3 Fair comfort 

4  

5 Moderate comfort 

6 More than moderate comfort 

7  

8 High comfort 

9  

10 Very high comfort 
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APPENDIX F 

 DATA COLLECTION FORM 
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Session 1: Maximum voluntary contraction (MVC) 

Exert the maximum force you can by pulling on the bar as hard as you can without jerking. 

Force 

1  

2  

3  

 

Session 2: Given RPE rate RPC: 

 Trials 

1 2 3 

Somewhat hard Exert the force level that you believe corresponds to “somewhat hard.” 

Force    

For this exertion, please rate your comfort level in the scale from 0 to 10 

RPC-Numerical    

The “Somewhat hard” reference will be changed depending on 5 different levels: 

Extremely light 

Light 

Somewhat hard 

Hard 

Extremely hard. 
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APPENDIX G 

 STUDY FLYER 
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APPENDIX H 

 MEDICAL SCREENING  

  



185 

 

Subject 

ID: 

______________ Today’s 

Date: 

____/____/_____ Height: ___ 

   mm           dd             yy   

DoB: ____/____/_____   Weight: ___ 

 mm           dd             yy     

Please circle each of the following medical screening. It will help to determine your eligibility to participate in this 

experiment. Please be indicated that your participation is voluntary, and you may choose not to answer all questions. 

Please feel to refer to your copy of the consent form for more details. 

Yes | No  Have you ever been diagnosed with any kind of heart disease? 

Yes | No  Have you ever been diagnosed with high blood pressure?  

Yes | No  Have you had any surgery during the last six months?  

Yes | No  Are you currently taking any medications?  

Yes | No Do you have any musculoskeletal diseases? 

Yes | No  Do you have any chronic disease? 

Yes | No  Have you seen any psychiatric or psychologist before? 

Yes | No  Are you at least 24 hours since your last alcoholic drink? 

Yes | No  Did you have any known mental or neurological disorders/diseases such as Epilepsy, 

depression, Attention Deficit Hyperactivity Disorder, etc.? 
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APPENDIX I 

 IRB APPROVAL OF HUMAN RESEARCH 
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APPENDIX J 

 ANTHROPOMETRIC MEASUREMENTS 
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Subject ID: 

______________ 

Today’s Date: ____/____/_____ 

mm           dd             yy 

Variable  Value 

Age (years)   

Body weight (kg)   

Height (cm)   

Shoulder height (cm)   

Hip height (cm)   

Knee height (cm)   

Arm height (cm)   

Knuckle height (cm)   
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APPENDIX K 

REGIONS OF INTEREST 
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Montreal Neurophysiological Institute (MNI) coordinates of the 84 regions of interest (ROIs) used 

to analyze the electroencephalograph signal of each exertion level. 

Hemisphere 
MNI 

Lobe Structure Brodmann area ROI 
X Y Z 

left -35 -25 55 Frontal Lobe Precentral Gyrus BA4 1 

left -35 -20 50 Frontal Lobe Precentral Gyrus BA4 2 

right 15 -45 60 Frontal Lobe Paracentral Lobule BA5 3 

left -15 -45 60 Frontal Lobe Paracentral Lobule BA5 4 

right 30 -5 55 Frontal Lobe Middle Frontal Gyrus BA6 5 

left -30 -5 55 Frontal Lobe Middle Frontal Gyrus BA6 6 

right 20 25 50 Frontal Lobe Superior Frontal Gyrus BA8 7 

left -20 30 50 Frontal Lobe Superior Frontal Gyrus BA8 8 

left -30 30 35 Frontal Lobe Middle Frontal Gyrus BA9 9 

right 30 30 35 Frontal Lobe Middle Frontal Gyrus BA9 10 

right 25 55 5 Frontal Lobe Superior Frontal Gyrus BA10 11 

left -25 55 5 Frontal Lobe Superior Frontal Gyrus BA10 12 

right 20 45 -20 Frontal Lobe Superior Frontal Gyrus BA11 13 

left -20 40 -15 Frontal Lobe Middle Frontal Gyrus BA11 14 

right 5 15 -15 Frontal Lobe Subcallosal Gyrus BA25 15 

left -10 20 -15 Frontal Lobe Medial Frontal Gyrus BA25 16 

right 55 10 15 Frontal Lobe Precentral Gyrus BA44 17 

left -50 10 15 Frontal Lobe Precentral Gyrus BA44 18 

right 50 20 15 Frontal Lobe Inferior Frontal Gyrus BA45 19 

left -50 20 15 Frontal Lobe Inferior Frontal Gyrus BA45 20 

right 45 35 20 Frontal Lobe Middle Frontal Gyrus BA46 21 

left -45 35 20 Frontal Lobe Middle Frontal Gyrus BA46 22 

right 30 25 -15 Frontal Lobe Inferior Frontal Gyrus BA47 23 

left -30 25 -15 Frontal Lobe Inferior Frontal Gyrus BA47 24 

left -55 -25 50 Parietal Lobe Postcentral Gyrus BA2 25 

left -45 -30 45 Parietal Lobe Postcentral Gyrus BA2 26 

right 55 -25 50 Parietal Lobe Postcentral Gyrus BA2 27 

right 35 -25 50 Parietal Lobe Postcentral Gyrus BA3 28 

right 40 -25 50 Parietal Lobe Postcentral Gyrus BA3 29 

left -20 -65 50 Parietal Lobe Precuneus BA7 30 

right 15 -65 50 Parietal Lobe Precuneus BA7 31 

left -10 -50 30 Parietal Lobe Precuneus BA31 32 

right 10 -50 35 Parietal Lobe Precuneus BA31 33 

right 50 -30 45 Parietal Lobe Inferior Parietal Lobule BA40 34 

right 50 -45 45 Parietal Lobe Inferior Parietal Lobule BA40 35 
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Hemisphere 
MNI 

Lobe Structure Brodmann area ROI 
X Y Z 

left -50 -40 40 Parietal Lobe Inferior Parietal Lobule BA40 36 

left -5 -40 25 Limbic Lobe Posterior Cingulate BA23 37 

right 5 -45 25 Limbic Lobe Posterior Cingulate BA23 38 

right 5 0 35 Limbic Lobe Cingulate Gyrus BA24 39 

right 5 30 20 Limbic Lobe Anterior Cingulate BA24 40 

left -5 0 35 Limbic Lobe Cingulate Gyrus BA24 41 

left -5 30 20 Limbic Lobe Anterior Cingulate BA24 42 

right 20 -35 -5 Limbic Lobe Parahippocampal Gyrus BA27 43 

left -20 -35 -5 Limbic Lobe Parahippocampal Gyrus BA27 44 

left -20 -10 -25 Limbic Lobe Parahippocampal Gyrus BA28 45 

right 20 -10 -25 Limbic Lobe Parahippocampal Gyrus BA28 46 

left -5 -50 5 Limbic Lobe Posterior Cingulate BA29 47 

right 5 -50 5 Limbic Lobe Posterior Cingulate BA29 48 

left -15 -60 5 Limbic Lobe Posterior Cingulate BA30 49 

left -5 20 20 Limbic Lobe Anterior Cingulate BA33 50 

right 0 20 20 Limbic Lobe Anterior Cingulate BA33 51 

right 15 0 -20 Limbic Lobe Parahippocampal Gyrus BA34 52 

left -15 0 -20 Limbic Lobe Parahippocampal Gyrus BA34 53 

left -20 -25 -20 Limbic Lobe Parahippocampal Gyrus BA35 54 

right 30 -25 -25 Limbic Lobe Parahippocampal Gyrus BA35 55 

right 25 -25 -20 Limbic Lobe Parahippocampal Gyrus BA35 56 

left -30 -30 -25 Limbic Lobe Parahippocampal Gyrus BA36 57 

right -5 -40 25 Limbic Lobe Posterior Cingulate BA23 58 

left -45 -20 -30 Temporal Lobe Fusiform Gyrus BA20 59 

left -60 -20 -15 Temporal Lobe Middle Temporal Gyrus BA21 60 

right 60 -15 -15 Temporal Lobe Middle Temporal Gyrus BA21 61 

left -45 -55 -15 Temporal Lobe Fusiform Gyrus BA37 62 

right 45 -55 -15 Temporal Lobe Fusiform Gyrus BA37 63 

left -40 15 -30 Temporal Lobe Superior Temporal Gyrus BA38 64 

right 40 15 -30 Temporal Lobe Superior Temporal Gyrus BA38 65 

right 45 -65 25 Temporal Lobe Middle Temporal Gyrus BA39 66 

left -45 -65 25 Temporal Lobe Middle Temporal Gyrus BA39 67 

left -45 -30 10 Temporal Lobe 
Transverse Temporal 

Gyrus 
BA41 68 

right 55 -20 5 Temporal Lobe Superior Temporal Gyrus BA41 69 

left -55 -25 5 Temporal Lobe Superior Temporal Gyrus BA41 70 

right 45 -30 10 Temporal Lobe 
Transverse Temporal 

Gyrus 
BA41 71 

left -60 -10 15 Temporal Lobe 
Transverse Temporal 

Gyrus 
BA42 72 

left -60 -25 10 Temporal Lobe Superior Temporal Gyrus BA42 73 
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Hemisphere 
MNI 

Lobe Structure Brodmann area ROI 
X Y Z 

right 60 -10 15 Temporal Lobe 
Transverse Temporal 

Gyrus 
BA42 74 

right 65 -25 10 Temporal Lobe Superior Temporal Gyrus BA42 75 

right 15 -85 0 Occipital Lobe Lingual Gyrus BA17 76 

right 10 -90 0 Occipital Lobe Lingual Gyrus BA17 77 

left -10 -90 0 Occipital Lobe Lingual Gyrus BA17 78 

left -15 -85 0 Occipital Lobe Lingual Gyrus BA17 79 

left -25 -75 10 Occipital Lobe Cuneus BA30 80 

right 10 -60 5 Occipital Lobe Cuneus BA30 81 

right 25 -75 10 Occipital Lobe Cuneus BA30 82 

right 40 -5 10 Sub-lobar Insula BA13 83 

left -40 -10 10 Sub-lobar Insula BA13 84 
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