














to assign surface friction values between the pieces. The material properties used in these models
were silicon for the substrate (yield strength of 26800psi), epoxy for the adhesive (yield strength
of 15300psi), and nylon for the tubing (yield strength of 8000psi). Using identical loading (200N
axial load at end of tube), boundary conditions, and critical geometries between a one-piece
finite element model and a finite element model consisting of multiple pieces, the one piece
model generated a peak stress of 9 x 10* Pa and a well distributed pattern of stress (Figure 67)
whereas the model consisting of multiple pieces generated a peak stress of 1.43 x 10° Pa and the

distribution was very concentrated around the interfaces between the tube and epoxy (Figures 68,

69).

Figure 67. Boundary conditions on multiple-piece design. Blue = Force, Orange = constraint,

Purple = constraint, Aqua = constraint
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constraint,

Force, Orange

Figure 68. Boundary conditions on single-piece design. Blue

Purple = constraint, Aqua = constraint
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Figure 69. Finite Element Model of multiple-piece design (Front view)
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Figure 70. Finite Element Model of multiple-piece design (Isometric view)
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Figure 71. Finite Element Model of single-piece design (Front view)
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Figure 72. Finite Element Model of single-piece design (Isometric view)

4.1.2 Type II Package

The type II package was tested for tensile strength in an Instron Universal Materials
Testing System machine. Again a jig (APPENDIX V) was fabricated for the purposes of
applying the force in the desired location and configuration for the tensile test to closely
represent the forces the package will experience in service. The type Il package was loaded on
the curved surfaces adjacent to the thinnest section of the “neck” (Figure 73). In service most
loads will be on or adjacent to the neck of type II package and in addition, the neck being the
thinnest section means failure is most likely going to occur here. The jigs had circular notches

machined into them to apply a force around the entire neck rather than at a point.
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Force from Force from
Instron Instron

Figure 73. Schematic diagram of forces from Instron tensile test

Two separate halves of the package were tested under almost identical conditions. The package
was loaded into the jig that fit loosely enough as to prevent the test from loading the package in
bending or shear, only in pure tension. The Instron machine was set to apply a deflection of
.Smm per minute, a total deflection of Smm, or a total load of 1000N. Both tests resulted in
similar deflections and loads. Test I resulted in a deflection at fracture of 3.46mm and a load at
fracture of 411N (Figure 74). Test II resulted in a deflection at fracture 3mm and a load at
fracture of 303N (Figure 75). It must be noted that neither packages fractured at the expected

location likely due to imperfections and voids in the material.
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Figure 74. Graph of Instron tensile test for type II package.
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Figure 75. Graph of Instron tensile test for Type II package
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A FEA simulation as developed for comparison of results. Using the material properties from the
SLA material and the same 3D computer file that was utilized to create the stereolithograhy
prototype, a load was applied of 400N in tension parallel to the longitudinal axis of the Type II
package. The results are very good: The SLA material has a yield strength of 66-68 Mpa which
is what the FEA model generated as a high stress in the thin neck portion of the model (Figure
76). The standard plumbing fixture utilized in service with the Type II package is rated for

250psi or 1.72Mpa, this value is much lower than mechanical limit of the package.

von Mizes (Min®2)
B 838e+007
B 273e+007
_5.7058e+007
_5.044e+007
4. 579e+007
_4.01de+007
3.449e+007
l 2 AgSe+007
_2.320e+007
1 755e+007

1.190e+007
6.256e+006

G.059e+003

Figure 76. FEA of Type Il package

The results from my testing, calculations, and simulations relate a strong improvement in

the mechanical service strength of the Type I, Type II, and Type III packages over existing
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designs presented earlier in the background section of this thesis [5, 6, 9-11, 13, 16, 28, 30, 33,
39, 44, 45]. I have shown significant Improvements in areas such as tensile strength, bending
strength, and maximum fluid pressure. These improvements are related to a more simple design

with fewer separate pieces.
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CHAPTER FIVE: CONCLUSION

The research presented in this thesis involves the standardization of MEMS packaging
and the design, fabrication, and characterization of said packaging. Using what exists
commercially at the macro level to interface with what is being invented at the micro level is a
necessary function in the integration of MEMS devices into the mainstream market. The
production scale of current research into these products and areas has restricted the integration of
new devices by cost and availability.

In this work, three different types of packages were designed, fabricated and tested. In
rapid prototyping of these components, combination of novel and traditional micromachining
techniques including UV-LIGA, stereolithography and precision machining were studied. In
type-I package, a rapid production of microfluidic pattern using a SU-8 over anodized alumina
structure was demonstrated with an injection molding method. Structural integrity of the
fabricated package using a one body design was tested and compared with the previous results.
The proposed method provides an alternative to produce a strong and inexpensive chip-type
BioMEMS devices. In type-1I package, the package was produced for large volume sampling
with reiterated design and fabrication. As a result, a plug-in type package with standard
electrical/fluidic connection capability was created. Its mechanical strength was studied with
FEA model and standard tensile testing. The type-II package could be used to house a chip
sensor in connection with standard size fluidic tubings and connectors. The type-IIl devices
provide easy connectivity with a syringe for sampling, which would reduce a required time for

testing a sensor.
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Future developments will undoubtedly cause the evolution of microfluidics devices to
parallel that of the microelectronics industry. All of this is dependant not only on the innovations
of future work but also the economic forces caused by consumer demand.

The anodizing process has yet to develop the well-controlled nanoporous structure that

we desire. This will be pursued further in future work.
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APPENDIX I.

MATHEMATICAL CALCULATIONS FOR STRESS AND STRAIN IN
PACKAGE TESTING VERIFICATION.
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Calculation for cantilevered hollow beam of circular
cross section

L = distancey,,q4 s = distance .4 F = load
E = Youngspqqulus 1= momentj, i,
M, ¢ _
o= v ?'ﬂ[ = F-I]
I
Coc v = I100psi tube q = 1.6mm  tube g = 0.063in F := 79N

tube; = .5mm tube;q = 0.031in d=3mm d=0012in

tuheuﬂ

(F-d)-

o= - - G = 9118« 10° psi
m-\mheud — tube;y ;l
o)

Calculation for internal pressure in microfluidic package
to cause disconnect.

small.tube.inner = -(.4mm) {lismnnectfm.m = 69N

area

LOIN

pressure .. = pressure
Aredsmall tube.inner

. =1373:10°Pa

ma

Calculation for tensile axial stress of hollow tube of
circular cross section.

2 2 _ load
areagmall. tube.material = 7 (-8mm)” — 7-(.4mm) Stress = area
€0 naxg Asmall. tube.material = 24-613N Cmaxg = 6-274 107 Pa
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APPENDIX 11

MECHANICAL DRAWINGS FOR MACHINING OF TYPE | PACKAGE
TEST JIG.
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APPENDIX 111

MECHANICAL DRAWINGS FOR MACHINING OF POLYCARBONATE
TYPE 11l PACKAGE.
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APPENDIX IV

MECHANICAL DRAWINGS OF TYPE |1l PACKAGE MACHINING.
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APPENDIX V.

MECHANICAL DRAWINGS FOR TYPE Il PACKAGE TEST JIG.
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