
University of Central Florida University of Central Florida 

STARS STARS 

Electronic Theses and Dissertations, 2020- 

2022 

Mixed-integer Programming Methods for Modeling and Mixed-integer Programming Methods for Modeling and 

Optimization of Cascading Processes in Complex Networked Optimization of Cascading Processes in Complex Networked 

Systems Systems 

Cheng-Lung Chen 
University of Central Florida 

 Part of the Industrial Engineering Commons 

Find similar works at: https://stars.library.ucf.edu/etd2020 

University of Central Florida Libraries http://library.ucf.edu 

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted 

for inclusion in Electronic Theses and Dissertations, 2020- by an authorized administrator of STARS. For more 

information, please contact STARS@ucf.edu. 

STARS Citation STARS Citation 
Chen, Cheng-Lung, "Mixed-integer Programming Methods for Modeling and Optimization of Cascading 
Processes in Complex Networked Systems" (2022). Electronic Theses and Dissertations, 2020-. 987. 
https://stars.library.ucf.edu/etd2020/987 

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd2020
https://network.bepress.com/hgg/discipline/307?utm_source=stars.library.ucf.edu%2Fetd2020%2F987&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd2020
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd2020/987?utm_source=stars.library.ucf.edu%2Fetd2020%2F987&utm_medium=PDF&utm_campaign=PDFCoverPages


MIXED-INTEGER PROGRAMMING METHODS FOR MODELING AND
OPTIMIZATION OF CASCADING PROCESSES IN COMPLEX

NETWORKED SYSTEMS

by

CHENG-LUNG CHEN
M.S. The Ohio State University, 2017
M.S. Arizona State University, 2015

B.B.A Soochow University, Taiwan, 2009

A dissertation submitted in partial fulfilment of the requirements
for the degree of Doctor of Philosophy

in the Department of Industrial Engineering and Management Systems
in the College of Engineering and Computer Science

at the University of Central Florida
Orlando, Florida

Spring Term
2022

Major Professor: Vladimir Boginski



c© 2022 Cheng-Lung Chen

ii



ABSTRACT

Dynamics and growth of many natural and man-made systems can be represented by large-

scale complex networks. Entity interactions and community interconnections within complex

networks increase the level of difficulty for the investigation on structural network properties

such as robustness, vulnerability and resilience. In this dissertation, we develop method-

ologies based on mixed-integer programming techniques to solve challenging optimization

problems that model cascading processes in complex networked systems. In particular, we

seek to provide decision making recommendations for problems related to different types

of cascading processes in networks commonly considered in a variety of applications: in-

terdependent infrastructure networks and social networks. In the first part, we propose a

novel optimization model to enhance the resilience against cascading failure by mitigation

and restoration in interdependent networks. We derive a polynomial class of valid inequali-

ties from the cascading constraints and reformulate the substructure that describes capacity

restriction to guarantee integral solutions. The computational experiments illustrate that

our strengthened formulation outperforms the default setting of a commercial solver on all

tested instances. Next, we study the least cost influence maximization problem that arises

in social network analytics. We investigate the polyhedral properties of a substructure that

is a relaxation of the mixed 0-1 knapsack polyhedron. We give three exponential class of

facet-defining inequalities from this substructure and an exact polynomial time separation

algorithm for the inequalities. In addition, we propose another new class of strong valid

inequalities that dominates the cycle elimination constraints. Through the computational

experiments, we demonstrate that a delayed cut generation algorithm that exploits these

inequalities is very effective to solve the problem under different settings of network size,

density and connectivity.
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CHAPTER 1: INTRODUCTION

Complex networked systems are ubiquitous in the modern world as they arise in many as-

pects of human activities and natural systems. For instance, physical infrastructure systems,

which provide necessary services to households, include electrical power grid, water and

gas distribution networks. Infrastructure systems also include various types of transporta-

tion/supply networks (e.g., airports, harbors, highways, railroads), communication networks

(e.g., internet, phone), etc. These networks are often interdependent, which makes them

susceptible to cascading failures, where a failure in one network may cause failures in other

networks. Furthermore, social networks are another important type of complex networked

systems that have been receiving increased attention in the recent decades. In particular, this

is associated with the growth of social media network platforms, which nowadays serve as

the means of spreading/propagation of news, opinions, and influence in a cascading fashion.

These large-scale networked systems admit abstract mathematical representations

as graphs, where nodes represent the elements of a system and a set of connecting edges

represent the existence of a relation or interaction between those elements. The collective

behavior exhibited by large-scale networks may be different from individual behavior of single

units (nodes), which increases the difficulty of analyzing their properties and decision-making

for optimal operations.

One particular factor that affect the analytical complexity of different large-scale

networked systems is the interdependence between them, where these networks engage in

complex interactions and information exchange via a flexible communication infrastructure,

result in nodes in one network require support from nodes in another network. A very

common example for interdependence in diverse infrastructures can be seen in the coupled

components among water distribution, electrical power and transportation systems, where

the generation of electricity requires water for cooling and fuel replenishment supplied from
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transportation system; on the other hand, the power station provides electricity for pumping

and control in water system and signaling in transportation system.

Despite the emergence of network science tools that aim to study the architecture

and topological characteristics of complex networks, those tools are not always sufficient to

uncover the complete picture of non-trivial structures and properties of the underlying archi-

tecture. The nature of interconnections between complex networks leads to the phenomena

of cascading processes, which is crucial to the dynamics of system resilience and vulnerability.

Many researchers have been investigating the impact and behavior of these percolation-like

processes in various types of networks. For example, those concerned with public health

policy in the epidemiology field are interested in determining how fast and how small of an

outbreak that could lead to pandemic. Similarly, many studies on information spreading in

social media have been engaged in estimating the coverage and propagation time of rumors,

fake news or political propaganda across social media. There are also researchers who are

concerned with robustness and vulnerability of infrastructure systems, where the cause of

components failure is either random breakdown or targeted attacks.

In this dissertation, we investigate optimal decision-making problems arising in com-

plex networked systems. Rather than just describing topological and structural character-

istics of networks, we are interested in optimization problems that are critical to the func-

tionality of complex networks under the influence of cascading processes, ensuring they are

resilient to failures/attacks, reliable to operate and scalable to support changing needs and

population demographics. We develop mathematical representations of these problems that

contain logical conditions and time dynamics of cascading processes under the framework

of mixed-integer programming. To develop exact and efficient algorithms for solving the

corresponding mixed-integer programming problems, we study their polyhedral structures

and propose valid inequalities, strong formulations and cutting plane based exact algorithms

to strengthen the relaxation, speed up the computational time and obtain smaller or even

2



zero optimality gap.

In the remainder of this section, we provide a brief review of basic terminologies in

graph theory and mixed-integer programming with emphasis on polyhedral theory. We then

introduce the research scope and outline of this dissertation.

1.1 Graphs and Networks

A graph is defined in mathematical terms as follows:

Definition 1. A graph, more specifically an undirected graph G consists of a set of vertices

(nodes) V = {v1, . . . , vn} and a set of edges E, for which we write G = (V,E). Each edge

e ∈ E is said to join two vertices, which are called its end points. If e joins v1, v2 ∈ V , we

write e = (v1, v2). Vertex v1 and v2 in this case are said to be adjacent. Edge e is said to be

incident with vertices v1 and v2, respectively.

In various cases, G is either vertex-weighted or edge-weighted, hence a function f :

V → R or g : E → R is specified.

Definition 2. The number of edges incident on a vertex v is called the degree of the vertex.

We denote the degree of vertex v to be dG(v). A vertex v is called isolated if dG(v) = 0, or

pendant if dG(v) = 1. Note that the summation of degrees in an undirected graph is always

an even number, that is,
∑

v∈V dG(v) = 2|E|.

3



Figure 1.1: An undirected graph with pendant vertexes 4,5,6 and isolated vertex 7.

In some cases, the precise order of two vertices connected by an edge is important.

We often refer to edge with direction as arc. Typical examples include the one-way road

in transportation network, routing in vehicle scheduling network, journal article citation

networks and food webs between different species in nature. Formally, the directed graph

can be defined in the following way:

Definition 3. A directed graph D = (V,A) consists of a set of vertices V = {v1, . . . , vn}

and a set of arcs A, where elements of A are distinct ordered pairs of distinct elements of

V , and are called arcs or directed links.
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Figure 1.2: A directed graph.

In many practical situations, it is often necessary to describe the neighbors of a vertex.

In graph-theoretical terms, the neighbors of a vertex v are formed by the vertices that are

adjacent to v, or, in other words, those vertices to which v has been joined by means of an

edge. We give precise formal mathematical notations as follows.

Definition 4. For any graph G = (V,E) and a vertex v ∈ V , the neighbor set Nv of v is

the set of vertices adjacent to v except v itself, that is Nv = {u ∈ V : (u, v) ∈ E}.

Definition 5. A graph G′ = (V ′, E ′) is called a subgraph of G = (V,E) if V ′ ⊆ V and

E ′ ⊆ E. We say that G′ is the subgraph of G induced by V ′.

Definition 6. A path of G is a sequence of consecutive edges e1, e2, . . . , em ∈ E of the

form: e1 = (v1, v2), e2 = (v2, v3), . . . , em = (vm, vm+1). The path is a cycle if v1 = vm+1.

The path/cycle is called elementary if an edge is never used twice, i.e., ei 6= ej ∀i 6= j. A

path/cycle is called simple if it never visits the same vertex twice except for v1 = vm+1 in the

case of a cycle.
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Figure 1.3: A directed path 1-5-3-4-2 on a directed graph.

The optimal solution of many graph/network optimization problems is indeed a sub-

graph of the original network with certain properties. For example, in the application of

routing problem or influence propagation within a network, the optimal solution is acyclic,

i.e., no cycles are allowed so that the direction is clearly identified by the optimal path.

1.2 Mixed-integer Programming

A generic mixed-integer (linear) programming (MIP) is a mathematical optimization model

of the form

z∗ = min{cᵀx : Ax ≥ b, x ∈ Rn−k
+ × Zk+} (1.1)

where c ∈ Qn, A ∈ Qm×n, b ∈ Qm and we let Q,R,Z,B represent the set of rational

numbers, real numbers, integers and binaries, respectively. The set P := {x ∈ Rn−k
+ × Zk+ :

Ax ≥ b} is called the feasible set of MIP. The goal is to find a set of mixed-integer points

x∗ ∈ Rn−k
+ × Zk+ lie in the feasible set P that minimize the linear function cᵀx∗. MIP
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provides an broad framework that a very large number of decision making problems can

modeled in this form, including production planning, telecommunication network design,

routing and staffing in airline scheduling and combinatorial auctions, just to name a few.

Mixed-integer programming problems are in generalNP-hard. The difficulty of solving them

to optimality increases exponentially as the problem size grows. It is common to consider

a relaxation problem of MIP in order to design an efficient algorithm. By relaxing the

integrality restriction on some variables, we obtain the linear programming (LP) relaxation

of MIP in the form

z∗0 = min{cᵀx : x ∈ P0} (1.2)

where P0 := {x ∈ Rn
+ : Ax ≥ b}. The LP relaxation is easier to solve than MIP since linear

programming is polynomial solvable. In addition, the objective function value z0 provides a

lower bound for z∗ as P ⊆ P0 and typically this containment is strict. A fundamental idea

behind most methods to solve MIP is the branch-and-bound algorithm, which repeatedly

solve the LP relaxation, obtain the lower bound and decide to further branch the feasible

region if integer feasible solution is not found. Another method relies on relaxation to solve

MIP is the cutting plane method. The combination of these two methods results in the

branch-and-cut algorithm, which has been implemented in the core of state-of-the-art MIP

solvers nowadays. With the advance development in computing power, many difficult MIP

problems can be solved to near optimal or even optimal in a reasonable amount of time.

1.2.1 Branch-and-Bound Algorithm

The branch-and-bound algorithm is an implicitly enumeration that utilizes the concept of

divide-and-conquer. The algorithm begins with solving the LP relaxation and obtain a

solution x. If the solution is fractional, i.e., x 6= Rn−k
+ × Zk+, then we update the lower

7



bound information with the objective function value. Next, we select a particular xj for

j ∈ {1, . . . , k} to create two additional subproblems (nodes) by adding xj ≤ bxjc and

xj ≥ dxje into the LP relaxation. This process is called branching and it is executed at

every node. We illustrate this concept in Figure 1.4. Nodes are pruned when a feasible

solution x ∈ Rn−k
+ × Zk+ is found and the best upper bound is replaced with the objective

function value, or the lower bound exceeds current upper bound, or when the solution is

infeasible. The algorithm takes finite but exponentially many iterations to terminate when

all the available subproblems are explored.

(a) Initial problem (b) Adding x1 ≤ bx1c and x1 ≥ dx1e

Figure 1.4: Divide the feasible region in branch-and-bound

1.2.2 Cutting Plane Algorithm

We first explore the geometry of polyhedra and use it to develop the concept of cutting

planes. The polyhedron Q is a set

Q = {x ∈ Rn
+ : aix ≤ bi, i ∈ [1, r]} (1.3)
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for some finite r, where [1, r] denotes the set {1, . . . , r}. A geometric representation of Q

can be regarded as the intersections of r half-spaces defined by the inequalities aix ≤ bi The

dimension of Q is the minimum dimension of affine subspace containing Q. In other word,

the dimension of Q is p if there are at most p + 1 affinely independent points contained in

Q. We say Q is full-dimensional if p = n.

The minimal description of polyhedron Q is defined as the smallest convex set con-

taining Q, or the convex hull of Q, denoted by conv (Q). Furthermore, conv (Q) is a rational

polyhedron, the extreme points of conv (Q) and Q coincide.

We know optimization a linear function over a mixed-integer set is equivalent to

optimizing its convex hull from the fundamental theorem of mixed-integer programming.

When conv (Q) is known, then the optimization problem of MIP over the polyhedron Q

is reduced to solving the linear programming problem. Nevertheless, obtaining an explicit

minimal description of conv (Q) is a challenging task as the number of inequalities defining

conv (Q) can be very large. One possible way to eliminate fractional solution and acquire a

set close to conv (Q) is to generate a small set of valid inequalities progressively.

Definition 7. An inequality πᵀx ≤ π0 is a valid inequality for Q if πᵀx ≤ π0 for all x ∈ Q.

We need to give a precise definition on the strength of valid inequalities as it is possible

that there exists exponentially many valid inequalities for a polyhedron.

Definition 8. If πᵀx ≤ π0 and ηᵀx ≤ η0 are two valid inequalities for Q, then we say

πᵀx ≤ π0 dominates or is stronger than ηᵀx ≤ η0 if Q ∩ {x ∈ Rn
+ : πᵀx ≤ π0} ⊂ Q ∩ {x ∈

Rn
+ : ηᵀx ≤ η0}.

An alternative way to verify the dominance relationship between valid inequalities is

to check if there exists γ > 0 such that π ≥ γη, π0 ≤ γη0 and (π, π0) 6= γ(η, η0).

Definition 9. The inequalities with dimension n − 1 that describe conv (Q) are called

facet-defining inequalities.
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Given a facet-defining inequality πᵀx ≤ π0, the corresponding facet is the set

H = P ∩ {x ∈ Rn
+ : πᵀx = π0}. (1.4)

The method of combining the steps of iteratively solving LP relaxation and adding

valid inequalities is referred to as cutting plane method. Given a fractional solution x from

LP relaxation, we identify a valid inequality πᵀx ≤ π0 that cuts off this solution, i.e., πᵀx > π0

by introducing this inequality back to the LP relaxation. We continue this process until an

integer feasible solution is found or no valid inequalities can be identified.

Figure 1.5: πᵀx ≤ π0 cut off x

The most crucial question in designing cutting plane algorithm is how to identify a

strong valid inequality that separates the current fractional solution x from the feasible region

with maximum distance. This question is referred to as the separation problem. Consider a

family of valid inequalities F , the separation problem given a fractional solution x answers

the following two questions:

1. there exists a valid inequality πᵀx ≤ π0 from F violated by the solution x with distance
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ξ = πᵀx− π0,

2. all inequalities in F are satisfied by this solution x without violation.

Following the theorem of equivalence of optimization and separation, the separation

problem is polynomial-time solvable if and only if the optimization problem is polynomial-

time solvable. In addition, if there are finite number of valid inequalities in F or the in-

equalities in F plus original constraints are enough for the description of conv (Q), then the

cutting plane method will terminate in finite steps. We summarize the cutting plane method

in the following Algorithm 1.
Algorithm 1: Cutting Plane Algorithm for MIP

initialization: solve LP relaxation and get x = arg min{cᵀx : x ∈ P0} ;

while x 6= P do

solve the separation problem ;

if πᵀx ≤ π0 for all (π, π0) ∈ F then

x∗ ⇐ x , break ;

else

Separation gives (π, π0) such that πᵀx > π0;

P0 ⇐ P0 ∩ {x ∈ Rn
+ : πᵀx ≤ π0} ;

solve x = arg min{cᵀx : x ∈ P0} ;

end

end

Return x∗ and cᵀx∗ ;

1.2.3 Branch-and-Cut Algorithm

The branch-and-cut algorithm provides a desirable scheme to alleviate the computational

inefficiency of both branch-and-bound algorithm and cutting plane method, where the former
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is suffered from the exponentially many nodes needed to visit in the branch-and-bound tree

and the latter has exponentially many valid inequalities to identify via a NP-hard separation

problem. In branch-and-cut, the separation problem is dynamically executed to identify a

whether a valid inequality cut off this fractional solution at every node. In practice, the

separation is often done by heuristics in order to reduce the solution time. The benefit of

this combination is to possibly reduce the size and nodes and improve the bound, with the

expense of finding valid inequalities together to speed up the overall computational time for

solving a MIP.

1.3 Research Scope and Outline

In this dissertation, we first study cascading processes that induces malfunction of compo-

nents from two different interdependent systems. Particularly, we study how to optimally

mitigate the malicious cascading failure and restore failed components in two-layered inter-

dependent networks. We conduct polyhedral analysis on one substructure of the formulation

and derive valid inequalities to strengthen the model. For another substructure, we give a

convex hull where all extreme points are integral and replace the substructure with this strong

formulation. We show that our proposed mitigation and restoration strategies are beneficial

to lessen the scale of cascading failure. Our mathematical model is also very flexible to

be extended to multiple layered interdependent networks, different types of network opera-

tions and partial capacity reduction. In addition, our computational results demonstrate the

polyhedral enhancement is very effective in solving small to medium sized interdependent

networks with interdependent links density from 10% up to 40%.

Next, we investigate a static least cost influence maximization problem in social net-

work where the influence spreading is motivated by partial incentives given to a subset of

users initially. The propagation mechanism follows the linear threshold model, where a user
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will propagate the information if and only if the summation of peer influence plus the incen-

tives is exceed the user’s threshold. We study the node propagation substructure and exploit

the valid inequalities from mixed 0-1 knapsack polyhedron hidden in this substructure. We

give three new class of valid inequalities and exact polynomial time separation algorithms for

them. We show that, the valid inequalities from mixed 0-1 knapsack polyhedron can also be

separated efficiently from our proposed separation algorithm. In addition, we investigate the

polyhedral properties for the problem when cycles are exist. We show that the problem can

be solved in polynomial time on a simple cycle. For arbitrary graphs, we propose another

new class of strong valid inequalities the dominates cycle elimination constraints. Our com-

putational experiments illustrate the efficacy of the proposed valid inequalities via a delayed

cut algorithm. For the cas of equal influence weights, we present a convex hull description

for the problem with equal influence weights and 100% adoption rate on a tree in the natural

space of incentive, arc propagation and activation variables. We prove that such description

requires only polynomial number variables and constraints. Finally, we demonstrate the

effectiveness of proposed valid inequalities through extensive computational experiments by

comparing the delayed cut generation algorithm with different settings and an alternative

formulation of the problem.

The remainder of this dissertation is organized as follows. In chapter 2, we study the

failure mitigation and restoration in interdependent networks via mixed-integer optimization.

In chapter 3, we investigate the polyhedron of the static least cost influence maximization

problem in social networks. Finally, in chapter 4, we conclude this dissertation and discuss

possible future work extensions.
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CHAPTER 2: FAILURE MITIGATION AND RESTORATION IN

INTERDEPENDENT NETWORKS VIA MIXED-INTEGER

OPTIMIZATION

This chapter is based on [12]. In this chapter, we propose a new optimization model for de-

termining optimal mitigation and restoration strategies for coupled interdependent networks

in the context of preserving and/or restoring the maximum flow through the entire networked

system, subject to cascading node failures that may be caused by disruptions of a subset

of “seed nodes” at an initial time step. Previous related studies mainly focused on “static"

strategies to mitigate cascading failures. However, our model allows one to identify “dy-

namic" strategies for step-by-step failure propagation, given initial seed node disruptions.

Moreover, the proposed model accounts for backup arc capacity and node fortification to

mitigate the impact of further failure cascades on network performance. The objective is

to restore network performance during a finite recovery planning horizon at total minimal

cost. We formulate this problem by mixed-integer optimization, and derive valid inequalities

using the substructure of the problem. We report a summary of computational experiments

to demonstrate the strength and effectiveness of the inequalities when compared to solving

the problem with a commercial optimization solver.

2.1 Introduction

Network optimization problems that consider certain performance characteristic(s) of a given

“single-layer" network have been studied extensively over the past decades. However, many

complex systems consist of several distinct networks, or “layers”, that interact with each

other, thus forming multi-layer interdependent networks. In many applications, these in-

terdependencies represent physical or virtual connections between network layers necessary
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for the operation or delivery of information/commodities which ensure the functionality of

the entire networked system. Coupled (two-layer) interdependent networks often arise in

the domain of critical infrastructure systems, which provide necessary services such as wa-

ter supply, transportation, communication, energy, etc. For instance, power grid networks

provide electricity to every node in a communication (i.e., SCADA) network. The nodes in

a communication network, on the other hand, send control signals back to the power grid.

Other examples of coupled interdependent networks include hybrid social-physical networks

[9], power-water distribution networks [61], and law enforcement [7]. Each type of a network

has its distinct features and characteristics. Their closely connected and inseparable inter-

actions make the analysis of general network properties, such as robustness, reliability, and

vulnerability, more challenging than in the case of a single-layer network.

The phenomena of cascading failures has received increasing attention, especially

in interdependent infrastructure literature, since these low-probability high-impact events

affect the vulnerability of interdependent networks and produce substantial social and eco-

nomic impacts. Generally, cascading failures originate from a small fraction of “activated”

(disrupted or attacked) seed nodes which then propagate to different network layers via in-

terdependent links over time. In the context of a social network, the seed nodes are the key

opinion leaders which try to spread certain information in order to achieve spin control at

a desired level among different groups. In critical infrastructure systems, these initial acti-

vated seed nodes could be regarded as damaged system components after either a random

disruptive event (i.e., severe weather) or a targeted deliberate attack.

To illustrate that cascading failures triggered by seed nodes could propagate very

rapidly and lead to catastrophic consequences, we list several examples of well-known large-

scale blackouts around the world. One commonly shared cause of transmission line loss,

overheating and regional power outrage is tree flashover. Cases like this include The 1996

Western North America blackouts [17], The 2003 U.S.-Canadian blackout[42], and the 2003
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Italy blackout [57] . Another possible reason is deliberate cyberattack. For instance, the

2015 Ukrainian blackout was due to unauthorized intrusion into the SCADA system of

the electricity distribution company [32]. Finally, the 2016 South Australia blackout was

attributed to severe storms that damaged transmission towers and brought about 850,000

customers to lose their power supply [4]. For other examples of cascading blackouts in electric

power grid, we refer the reader to [56].

Considering the fact that cascading failures significantly deteriorate network func-

tionality, various studies of interdependent networks with cascading failures have focused

on investigating the robustness of such networks (e.g., when random nodes or arcs are re-

moved and/or directional changes occur between interdependent links) primarily through

simulation experiments (see [16, 8, 28, 62, 19, 45, 47]).

One research direction in addressing adverse impacts of disruptive events on infras-

tructure networks is to consider restoration activities. A prompt planning for restoration can

potentially prevent major outages and maintain stable operation of infrastructure systems.

There exists a large body of literature on network restoration of single-layer networks in

humanitarian operations (see [10] for a recent comprehensive review).

Similarly to single-layer networks, it is necessary to consider a time-expanded model

for restoration in interdependent networks as the resources for restoration are generally

scarce. A useful model would potentially guide the decision maker with respect to the

scheduling of restoration activities. Lee et al. [33] propose a multi-commodity flow model

that incorporates five types of infrastructure interrelationship. Specifically, they model in-

terdependencies between the power system, telecommunication, and subway system of New

York City using aforementioned definition. Without considering the time-index and restora-

tion decision together in their model, the cascading failure is ignored and the restoration

activities can not be determined from the optimal output of the model. The model can

only be used as a guideline for restoration service after known disruption occurred on net-

16



work components. Sharkey et al. [53] introduce an integrated design and scheduling model to

demonstrate the value of information sharing for restoring services provided by infrastructure

systems with operational interdependencies. Gonzalez et al. [22] propose an interdependent

network design problem for reconstructing partially destroyed infrastructure systems. Their

model provides details on formulating functional, physical, and location interdependencies.

However, none of these models have considered the impact of cascading failure to restora-

tion activities. Nguyen and Sharkey [46] present a novel interdiction-based approach to

determine the order and minimum number of components inspections required of a single in-

frastructure network after disruptive events, assuming customer self-report outrage data are

available. Although their model does not provide restoration scheduling decision, it could be

potentially improve the accuracy and efficiency of restoration for both single and multi-layer

interdependent networks.

Research on developing mathematical optimization models (with guaranteed optimal-

ity of a solution) for interdependent networks with cascading failures have not been exten-

sively addressed in the literature. Shen [54] considers two-stage stochastic programs for a

single network and multiple interdependent networks subjected to random arc disruption.

The mitigation is done by selectively disconnecting failed components instead of beforehand

activities such as hardening components before disruption. Parandehgheibi et al. [48] design

a two-phase control algorithm for a power grid and a communication network in order to

redistribute power flow against cascading failures. However, they only consider initial node

removal when implementing the algorithm, and it is unclear whether the algorithm will work

if computing resources are limited and cascading failure spreads rapidly over time.Only a

limited number of studies have included cascading failures into network optimization prob-

lems. Veremyev et al. [59] incorporate the cascading failure propagation processes into a

mathematical optimization model. They sought to find the minimum-cardinality subset of

“critical” nodes whose initial activation would isolate all nodes in both layers of an inter-
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dependent network. Gillen et al. [20] propose a critical arc detection problem on a social

network where the cascading influence propagation is based on linear threshold model. Their

model seeks to identify which arcs are critical in the process of influence spreading.

Although researchers and practitioners are aware of the potential consequences of

cascading failures, simulation results do not always provide information on the optimal

strategies for managing interdependent networks under disruptive events. Optimization-

based approaches are intended to provide such information; however, previously developed

optimization models usually treat failed nodes/links as a “static” input. Cascading failures

represent an ongoing process after they are triggered by a natural disaster or an adversarial

attack. Therefore, effective strategies to increase the resilience of interdependent networks

should consider “dynamic” mitigation actions in order to reduce the impact of cascading fail-

ures, as well as to establish a recovery plan to restore the network performance in a timely

manner.

In this chapter, we introduce a new optimization model that takes into account node

failures and not only captures the dynamics of failure propagation, but also simultaneously

considers mitigation and restoration for interdependent networks. This work seeks to al-

leviate the impact of disruptions in interdependent networks via optimal mitigation and

restoration strategies. To explicitly model how dynamic failure propagation exacerbates the

network performance, we adopt the network flow model. This representation is without

loss of generality as interdependent infrastructures, such as water, power, gas, and signal

transmission can be regarded as networks with materials moving from source nodes to sink

nodes that traverse capacitated arcs. For the ease of representation, we use the maximum

flow problem as a “basis” for our models, since the maximum flow problem is often used

in the context of operations of infrastructure, information, and other types of networked

systems. Almoghathawi and Barker [3] also model interdependent infrastructure networks

as maximum flow problem in each layer. They propose two component importance measure-
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ments to examine the resilience of networks after disruption and restoration. They give four

separate optimization models under different disruptive settings in order to identify criti-

cal components that affect resilience the most. However, they do not consider mitigation

or the effect of cascading failure to network resilience in the model directly. Ahangar et

al. [2] adopt multi-commodity flows to model the interdependencies between infrastructure

systems. They show that their model is compact and can easily incorporate the type of in-

terdependencies defined in [33]. However, they do not consider cascading failures, mitigation

or restoration, as the objective is to maximize overall functionality of network operations.

To model mitigation and restoration, we assume that the decision-maker has a limited

budget to execute mitigation and restoration activities. Specifically, mitigation consists of

node fortifications and/or increasing arc backup capacity. After nodes are “fortified”, they

are assumed to be immune against disruption or unfavorable influences and thus will prevent

future cascades. Related ideas about fortification against cascade propagation can be found

in [21], where a single network critical node detection problem with arc weight uncertainty

is proposed; however, that work does not consider capacity expansion or restoration. Arc

capacity expansion allows the flow of networks to be redistributed so as to bypass failed

components. These additional backup arc capacity can facilitate the possibility of flow

redistribution through alternative routes. Restoration enables the node to change status

from failed to functional. Note that during the recovery stage, our model also gives a

recommendation for the node recovery sequence. As failure propagation is still going on

while recovery activities are performed, it is critical to prioritize the recovery of nodes that

would potentially cause further cascade propagation if not recovered.

To summarize, the main contributions of this chapter are:

• We propose the first mathematical optimization problem on coupled interdependent

networks that simultaneously considers the effect of mitigation and restoration in the
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presence of dynamic cascading failures. Moreover, we discuss how our model can

potentially be extended to other related settings, including multi-layer networks and

capacity degradation.

• We conduct polyhedral analysis from the two substructures of the mixed-integer opti-

mization model and derive valid inequalities to strengthen the formulation.

• We compare the cost differences based on combinations of mitigation and restoration

options and show the benefit of our proposed strategy to increase the resilience of in-

terdependent networks. We also illustrate the efficacy of our valid inequalities through

computational results.

2.2 Problem Statement

In this section, we consider a formal setup of an optimization problem formulated for a two-

layer (coupled) interdependent network with considerations outlined in the previous section.

Throughout the chapter, let the finite recovery planning period be denoted by T , and

also let [i, j] := {t ∈ Z : i ≤ t ≤ j}. Consider two directed graphs, G1 = (N1, A1) and

G2 = (N2, A2), where N` is the set of nodes and A` is the set of directed arcs for ` ∈ [1, 2].

We define sets E12 and E21 as the interdependent link sets and (i, j) ∈ E12 indicates the

operation of a node i in N1 depending upon the input of node j in N2. A similar definition

is given for the set E21. Let the costs of fixed-charge on the usage of backup arc capacity

be f `ij, the node fortification be g`i , and the node restoration be h`i for some network layers

` ∈ [1, 2], nodes i ∈ N`, and arcs (i, j) ∈ A`.

2.2.1 Assumptions and Decision Dynamics

To develop a formal mathematical optimization model, we make the following assumptions re-

garding failure mechanisms and how they affect network functionality/operation. Of course,
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Table 2.1: Definitions of indices, parameters and decision variables.

Indices
i, j Indexes used for the nodes
t Time period index
` Network layer index
Sets
N1 Set of nodes in the first network layer
N2 Set of nodes in the second network layer
A1 Set of arcs in the first network layer
A2 Set of arcs in the second network layer
E12 Set of interdependent arcs where node i in layer 1 depends on the input of node j in layer 2
E21 Set of interdependent arcs where node i in layer 2 depends on the input of node i in layer 1
Parameters
T Total number of time period for recovery planning
f `ij Fixed-charge cost of using backup capacity of arc (i, j) in layer `
g`i Cost of fortification on node i in layer `
h`i Cost of restoration on node i in layer `
δ` Restoration threshold of network layer `
r`i Initial activation (failure) on node node i in layer `
B`
w Budget of fortification of network layer `

B`
z Budget of restoration in each time period of network layer `

C`
ij Capacity of arc (i, j) in network layer `

C
`

ij Backup capacity of arc (i, j) in network layer `
o` Origin in network layer `
d` Destination in network layer `
n` Constant takes value of 1

|N`|+1

Decision Variables
v`ij 1 if backup capacity of arc (i, j) in layer ` is used, 0 otherwise
w`i 1 if node i in layer ` is fortified, 0 otherwise
x`ijt flow amount on arc (i, j) in network layer ` at time t
y`it 1 if node i in layer ` failed at time t, 0 otherwise
z`it 1 if node i in layer ` is restored at time t, 0 otherwise

these are not the only possible assumptions that can be made for such a model; however,

since we are formulating an optimization problem that takes into account node failures and

consequent cascading failures dynamics, we believe that the assumptions listed below are

reasonable for formulating the respective mixed-integer optimization problem while making

it possible to conduct further rigorous analysis of its properties.
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Assumption 1. (A1) We consider node failures only, and also that nodes that belong to

different layers have a “one-to-many” interdependence relationship; that is, if a node j ∈ N2

(or j ∈ N1) fails at time t, then all of its dependent nodes i ∈ N1 (or i ∈ N2) fail at time

t+ 1. This definition is the same as the one used in [59], where it is referred to as “Type 1”

interdependence.

Assumption 2. (A2) When node i fails, the arc capacity associated with the outgoing arcs

of node i is reduced to 0.

Assumption 3. (A3) The original network performance (e.g., maximum flow values, with-

out disruptions) is known to the decision-maker and is used as the restoration threshold.

Assumption 4. (A4) Restoration of a node requires one time period, hence, the node will

be functional and flow can be restored at time period t+ 1 if restoration is made at time t.

The decision dynamics of our proposed model are illustrated in Figure 2.1. The

vertical axis represents the network flow level, while the the horizontal axis represents the

time period. The total flow level drops when node failures are initiated. The backup capacity

decision v and node fortification decision w can mitigate the damage caused by node failures.

For the recovery planning, after node failures have occurred on the networks, the restoration

decisions z represent a gradual repair of the nodes, thus bringing the flow level back to the

designated threshold.

2.2.2 Network Performance Constraints

Next, we describe the details of the formulation. We assess network performance by defining

the flow variables x`ijt ≥ 0 between the origin and destination (O-D) path for each graph.

Here we assume only one O-D path in each network and that x`ijt represents the flow on arc
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Figure 2.1: Illustration of decision dynamics in the proposed model.

(i, j) at time t of network layer `. The physical flow must satisfy the flow conservation law,

∑
j:(i,j)∈A`

x`ijt −
∑

j:(j,i)∈A`

x`ijt = 0 ` ∈ [1, 2],

i ∈ N` \ {o`, d`}, t ∈ [1, T ], (2.1)

where o` and d` represented the origin and destination node of network layer `. It is rea-

sonable to assume that the decision maker has knowledge of the network’s behavior (e.g.,

maximum flow values without node disruptions) and knows the required recovery level to

restore network performance. Since we adopt maximum flow to evaluate performance, we

define a non-negative parameter δ` to be the restoration threshold. The constraint on the

23



target performance in terms of flows can be stated as

∑
j:(i,d`)∈A`

x`ijT ≥ δ` ` ∈ [1, 2]. (2.2)

2.2.3 Cascading Failure, Mitigation and Restoration Constraints

To model the loss and restoration of network performance, we introduce the dynamic indi-

cator of cascading failure and recovery into the model. Let y`it ∈ {0, 1} equal 1 if node i in

layer l is in a “failure” status at time step t, otherwise, let it equal 0. Also let z`it ∈ {0, 1}

be 1 if the function of node i of network layer ` is recovered in time period t, 0 otherwise.

For the purpose of mitigation, let v`ij ∈ {0, 1} equal 1 if the backup capacity of arc (i, j) in

network layer ` is used, otherwise, let it equal 0. Let w`i ∈ {0, 1} equal 1 if node i in network

layer ` is fortified and immune to failure, otherwise let it equal 0.The dynamics of failure

propagation in each node can be described through the following constraints. First, we state

the propagation constraints in layer 1, for i ∈ N1, t ∈ [1, T − 1], we have

y1i,t+1 ≥ K2(y
1
it − z1it) +K2

∑
(j,i)∈E21

(y2jt − z2jt)− w1
i , (2.3)

y1i,t+1 ≤ y1it − z1it +
∑

(j,i)∈E21

(y2jt − z2jt), (2.4)

where K2 is a scaling constant which takes the value of 1
|N2|+1

. Constraints (2.3) and (2.4)

repeatedly model the failure propagation for every time period. The constant K2 ensures

that the summation of the right-hand side is at most 1 when node i has failed already at

time t, or if any of the nodes it depends on from layer 2 failed at time t while having no

restoration or fortification. However, if a node is fortified, the failure propagation will be

interdicted through all time periods. By the same logic, for i ∈ N2 , t ∈ [1, T − 1], the
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propagation constraints in layer 2 can be stated as

y2i,t+1 ≥ K1(y
2
it − z2it) +K1

∑
(j,i)∈E12

(y1jt − z1jt)− w2
i , (2.5)

y2i,t+1 ≤ y2it − z2it +
∑

(j,i)∈E12

(y1jt − z1jt), (2.6)

where K1 = 1
|N1|+1

. To model node fortification in all the time periods it is effective in, we

include the node immune constraint as follows:

y`it ≤ 1− w`i ` ∈ [1, 2], i ∈ N`, t ∈ [1, T ]. (2.7)

For each node i, the initial condition can be accounted for by adding the following constraints.

Let parameter r`i equal 1 if the “seed node” i is initially “activated” (or, failed), otherwise, let

it equal 0. Seed nodes can be viewed as a subset of nodes that initiate the cascading process

at time zero. The initial seed activating constraints are described by

y`i1 ≥ r`i (1− w`i ) ` ∈ [1, 2], i ∈ N`, (2.8)

y`i1 ≤ r`i ` ∈ [1, 2], i ∈ N`. (2.9)

2.2.4 Capacity Constraints

With proper definitions of network dynamics characterized by fortification, failure, and

restoration indicators, we now characterize how the flow is affected by the interaction of

mitigation, disruption, and restoration via modeling the capacity change in each arc caused

by disruption. Because of (A3), the outgoing flow is blocked from node i once a node is

failed. Let C`
ij and Cij denote the capacity and backup capacity amount on each arc (i, j) of

network layer `. Hence, for ` ∈ [1, 2], (i, j) ∈ A`, t ∈ [2, T ], the relationship between physical
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flow and capacity is described by

x`ijt ≤
(
C`
ij + C

`

ijv
`
ij

) (
1− y`i,t−1 + z`i,t−1

)
. (2.10)

Once a node has failed, the capacity is lost until recovery is made. Note that due to (A4),

capacity is restored in the period t + 1 only if recovery is done in t. The nonlinearity in

constraints (2.8) can be linearized via McCormick linearization [38] with auxiliary variables

φ`ijt ≥ 0, for ` ∈ [1, 2], (i, j) ∈ A`, t ∈ [2, T ], we have

x`ijt ≤ φ`ijt, (2.11a)

φ`ijt ≤
(
C`
ij + C

`

ijv
`
ij

)
, (2.11b)

φ`ijt ≤
(
C`
ij + C

`

ij

) (
1− y`i,t−1 + z`i,t−1

)
, (2.11c)

φ`ijt ≥
(
C`
ij + C

`

ijv
`
ij

)
−
(
C`
ij + C

`

ij

) (
y`i,t−1 − z`i,t−1

)
. (2.11d)

2.2.5 Logical Conditions and Budget Constraints

In addition, we include several logical conditions between failure and recovery as well as the

budget limitation to execute node fortification and recovery in the following constraints:

∑
i∈N`

w`i ≤ B`
w ` ∈ [1, 2], (2.12)

∑
i∈N`

z`it ≤ B`
z ` ∈ [1, 2], t ∈ [1, T ], (2.13)

z`it ≤ y`it ` ∈ [1, 2], i ∈ N` \ {o`, d`}, t ∈ [1, T ], (2.14)

z`it = y`it ` ∈ [1, 2], i ∈ {o`, d`}, t ∈ [1, T ], (2.15)

y`i,t+1 + z`it ≤ 1 ` ∈ [1, 2], i ∈ N`, t ∈ [1, T − 1]. (2.16)
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The budget limitation of fortification and restoration is described in constraints (2.12)

and (2.13) where B`
w and B`

z are the numbers of nodes can be fortified and recovered in

each time period, respectively. Constraints (2.14) represent that the recovery of a node is

possible only if it has failed already. Because the origin and destination are the required

nodes to create a positive flow in the maximum flow settings, we ensure their recovery

in constraints (2.15) if any of them have failed. Finally, constraints (2.16) ensure that

failure will not be propagated to time step t + 1 once a node is restored at time step t.

With the objective of minimizing the total cost of capacity expansion, while increasing node

fortification and recovery, the mixed-integer programming formulation for the considered

problem of mitigation and restoration on two-layered interdependent networks (2-INMR)

is given by

2-INMR: min
{
fᵀv + gᵀw + hᵀz : (2.1)− (2.9), (2.11a)− (2.11d),

(2.12)− (2.16), x ≥ 0, v,w,y, z ∈ {0, 1}
}
.

2.2.6 An Example of Mitigation and Restoration Against Cascading Failures

To illustrate the considered cascading failure mechanisms, a small-scale example of 2-INMR

is given in Figures 2.2 - 2.5, in which two identical networks G1 and G2, where N1 = N2 =

{1, 2, 3, 4, 5} and A1 = A2 = {(1, 2), (1, 3), (2, 3), (2, 4), (2, 5), (3, 2), (3, 5), (4, 5)}, are shown,

along with the interdependent links set E12 = {(5, 1), (5, 2), (5, 3)} and E21 = {(4, 1), (5, 5)}.

The origin and destination in each network are 1 and 5. In Figure 2.2, the black arcs represent

the optimal positive flow amount under normal node operations.

Suppose in Figure 2.3 the initial failed nodes are {2, 4, 5} ∈ G1 and {2} ∈ G2 at

t = 1. Immediately as a result of these node failures, arcs (2, 4) and (4, 5) in layer 1 and arcs

(2, 3), (2, 4) and (4, 5) in layer 2 would have zero capacity, which blocks the flow and reduces
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Figure 2.2: Optimal flow distribution on a two-layer interdependent network.

the flow level. Without mitigation and restoration, the consequence is shown in Figure 2.4,

where failed nodes block the flow at the next time step t+ 1 and result in partial flow in G1

and zero flow in G2 due to the failure propagation from node 5 in layer 1 to node 1, 2, and

3 in layer 2 in one time period.

To demonstrate potential benefits of using our proposed strategies with mitigation

and restoration, as depicted in Figure 2.5, we consider a small test case with four time peri-

ods and let B1
w = B2

w = 1 and z1it = z2it = 1. We let C`
ij = C

`

ij = f `ij and randomly generate

the arc capacity parameters. The parameters associated with arcs {(1, 2), (1, 3), (2, 3), (2, 4),

(2, 5), (3, 2), (3, 5), (4, 5)} are {143, 104, 82, 137, 109, 132, 131, 145}, respectively. We also ran-

domly generate fortification and restoration costs and assume that restoration cost is ap-

proximately 25% higher than fortification cost. The fortification costs associated with each

node are {139, 132, 124, 143, 174} and the restoration costs are {173, 165, 155, 178, 217}. The

original maximum flow in both graphs are equal and thus the restoration threshold is

δ1 = δ2 = 247.

In Figure 2.5, network layer G1 is able to restore the flow by fortifying node 5 (yellow
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Figure 2.3: Disruptions of flows caused by failures of the “seed nodes” (in grey) at the intitial
time step.

node), recovering node 2, and utilizing the backup capacity of arc (2, 5) to mitigate the dam-

age caused by node 4. In network layer G2, simply fortifying node 2 is sufficient. The total

cost is 580 units. We compare optimal costs based on different combinations of decisions;

these decisions are whether to allow restoration only (R), restoration and backup capacity

(R+B), or restoration, backup capacity, and fortification (R+B+F). Table 2.2 shows the cost

comparison with all four scenarios and the node recovery sequence for each scenario. The

costs of using restoration only is 20% higher than using restoration, backup capacity, and

fortification. In the subsequent Table 2.3, we also report the optimal decisions corresponding

to each scenario. The solution suggests that using the backup capacity of arc (2, 5) is critical

to mitigate damage on node 4 in layer 1.

Remark 1. The upper bound of the cost can be estimated by multiplying the number of
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Figure 2.4: Flow distribution after initial node failures (note that additional two nodes fail
as a result of their dependence on a node that failed at the initial time step).

Figure 2.5: Mitigation and restoration against cascading failures.

initial failed nodes and restoration costs, that is,

∑
`∈[1,2]

∑
i∈N`

r`ih
`
i .
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Table 2.2: Cost comparison based on different scenarios.

Node Recovery Sequence
Scenario t = 1 t = 2 t = 3 t = 4 Cost

R N1(5), N2(2) N1(2) N1(4) — 725
R + B N1(5), N2(2) — N1(2) — 656
R + F N1(4) — N1(2) — 649

R + B + F — N1(2) — — 580

Table 2.3: Optimal decision in different scenarios.

Scenario Failed
Node

Backup
Arc Used

Node
Fortified

R – – –
R+B N1(4) (2, 5) ∈ A1 –
R+F – – N1(5), N2(2)

R+B+F N1(4) (2, 5) ∈ A1 N1(5), N2(2)

This is the worst-case cost when neither fortification nor backup arc capacity are available

to mitigate the losses caused by cascading failures.

2.2.7 Possible Extensions of the Model

We close this section by discussing several possible extensions of the proposed model in order

to illustrate its flexibility in other related settings.

First, we show how to develop our model for multi-layer interdependent networks.

Consider m directed graphs G` = (N`, A`) where ` ∈ [1,m]. For every pair of interdependent

link (i, j) ∈ Epq, it now represents the operations of node i in Np depends upon the input

of node j in Nq, where p ∈ [1,m], q ∈ [1,m] and p 6= q. Clearly, the number of sets Epq is

bounded by 2-permutations of m, if all networks are interdependent with each other. Since

the constraints in section 2.2.2, 2.2.3, 2.2.4, and 2.2.5 are indexed by the layer index `, these
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constraints can be extended for multi-layer networks naturally. For example, the multi-layer

version of cascading constraints (2.3) and (2.4) in section 2.2.3 between layers p and q can

be formulated as

yqi,t+1 ≥ Kp(y
q
it − z

q
it) +Kp

∑
(j,i)∈Epq

(ypjt − z
p
jt)− w

q
i , (2.17)

yqi,t+1 ≤ yqit − z
q
it +

∑
(j,i)∈Epq

(ypjt − z
p
jt). (2.18)

Next, to model other types of network operations (flows) in each layer, one can simply

modify the constraints in section 2.2.2. For instance, suppose that for layer 1 we consider a

multi-commodity flow problem with K commodities and their time-dependent demand Dkt

at time period t. Then for k ∈ [1, K] and t ∈ [1, T ], the network operations constraints in

layer 1 can be formulated as

∑
j:(i,j)∈A1

x1ijkt −
∑

j:(j,i)∈A1

x1ijkt =


0 i ∈ N1 \ {o1, d1},

Dkt i = o1,

−Dkt i = d1.

(2.19)

Note that the capacity level on each arc is still subject to node failures as described in

Section 2.2.3. The evaluation of network performance for this layer is to see how much cost

is required to allocate on fortification, backup capacity and restoration in order to satisfy

the demand for each commodity.

Finally, we consider the situation where the arc capacities are not necessarily 100%

lost when nodes fail. Given a predetermined loss rate parameter γ with 0 ≤ γ ≤ 1, the
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partial loss capacity constraints due to node fail can be formulated as

x`ijt ≤
(
C`
ij + C

`

ijv
`
ij

) [
1− γ

(
y`i,t−1 − z`i,t−1

)]
. (2.20)

If node i is failed at time t − 1 (y`i,t−1 = 1) and there is no backup capacity (v`ij = 0)

or restoration (z`i,t−1 = 0), then the upper bound of flow is reduced to (1 − γ)C`
ij. The

predetermined loss rate can also be tailored to each node depending on the type of network

components.

2.3 Valid Inequalities

Mixed-integer optimization problems are generally known to be computationally challenging.

In addition, a proper mathematical formulation is critical for the computational performance.

Polyhedral methods such as deriving valid inequalities or strong formulations are often used

to improve the computational time and solution quality. Therefore, in this section, we

provide valid inequalities for the 2-INMR problem formulation defined above.

2.3.1 Strengthened Cascades Inequalities

The big-M type constants K1 and K2 in constraints (2.3) - (2.6) create many fractional

points; therefore, we attempt to remove them by introducing valid inequalities and thus

tighten the constraints. We let P be the set of feasible solutions to the polytope consisting

of (2.3) - (2.7). Let Γ1
i := {j | (j, i) ∈ E21} ∪ {i} for i ∈ N1. In other words, Γ1

i is the set

which contains all the nodes j ∈ N2 of which i ∈ N1 depends on through interdependent arc

set E21 and itself. A similar definition is made for Γ2
i as well.

Proposition 1. For i ∈ N1, t ∈ [1, T−1], k ∈ Γ1
i , the strengthened cascades inequality
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in layer 1

y1i,t+1 + w1
i ≥ y`kt − z`kt (2.21)

is valid for P, where ` = 1 if k = i, ` = 2 if k 6= i.

Proof. For k = i, the inequalities reduce to y1i,t+1 + w1
i ≥ y1it − z1it which is valid. For k 6= i,

the inequalities reduce to the disaggregate versions of inequalities (2.3), saying any node

in j ∈ N2 which fails will cause i ∈ N1 to fail, which is exactly the definition of Type 1

interdependence mentioned in Assumption 1 above.

Corollary 1. For i ∈ N2, t ∈ [1, T − 1], k ∈ Γ2
i , the cascade inequality in layer 2

y2i,t+1 + w2
i ≥ y`kt − z`kt (2.22)

is valid for P, where ` = 2 if k = i, ` = 1 if k 6= i.

Example 1. Consider two node sets N1 = {1, 2, 3} and N2 = {4, 5} and let E21 =

{(4, 2), (5, 1), (5, 2)}. The strengthened cascade inequalities in layer 1 are

y11,t+1 + w1
1 ≥ y11t − z11t, (2.23)

y11,t+1 + w1
1 ≥ y25t − z25t, (2.24)

y12,t+1 + w1
2 ≥ y12t − z12t, (2.25)

y12,t+1 + w1
2 ≥ y24t − z24t, (2.26)

y12,t+1 + w1
2 ≥ y25t − z25t. (2.27)
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2.3.2 Strengthened Capacity Inequalities

Observe that (2.11b) - (2.11d) consist of a polytope. We are interested in finding a tighter

description of these constraints.

Proposition 2. Let Q1 denote the feasible solution set to constraints (2.11b) - (2.11d)

and define feasible set Q2 by the following constraints:

φ`ijt ≤ C`
ij + C

`

ij −
(
C`
ij + C

`

ij

) (
y`i,t−1 − z`i,t−1

)
, (2.28a)

φ`ijt ≤ C`
ij + C

`

ijv
`
ij − C`

ij

(
y`i,t−1 − z`i,t−1

)
, (2.28b)

φ`ijt ≥ C`
ij + C

`

ijv
`
ij −

(
C`
ij + C

`

ij

) (
y`i,t−1 − z`i,t−1

)
, (2.28c)

φ`ijt ≥ C`
ij

(
1− y`i,t−1 + z`i,t−1

)
, (2.28d)

then Q2 ⊆ Q1.

Proof. We characterize all the extreme points of a polytope denoted by Q2 in Table 2.4 by

dropping all the indexes. Observe that Q2 is a polytope of one network component at a single

time period. It is not difficult to verify that these extreme points are ∈ Q1 as well. Note

that as long as C and C are integers, constraints (2.28a) - (2.28d) will give integer extreme

points. Now consider fractional points (φ̂, v̂, ŷ, ẑ) = (0, 0, C
C+C

, 0), (C, 0, C
C+C

, 0), (0, 0, 1, C
C+C

)

and (C, 0, 1, C
C+C

), these points belong to Q1 but they are cut off by constraints (2.28a) -

(2.28d).

2.4 Computations

In this section, we report our computational experiments on the interdependent networks

mitigation and restoration problem under different settings.
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Table 2.4: Extreme points of a single polytope of Q2.

φ v y z
0 0 1 0
0 1 1 0
C 0 0 0
C 0 1 1

C + C 1 0 0
C + C 1 1 1

2.4.1 Test Instances Generation and Software/Hardware Description

For illustrative purposes, we consider two networks where |N1| = |N2| and |A1| = |A2|, with

the same network topology. In each combination of node and arc sets, the interdependent

arc sets |E12| and |E21| are randomly generated according to the targeted density 10%, 20%,

30%, and 40%. We use the NetworkX package of Python 2.7 to generate a Erdos-Renyi graph

with the connecting probabilities between each node to be 0.1. We generate 5 instances with

10, 20, 30, 40, and 50 nodes in each layer, denoted by 10-10, 20-20, . . . , 50-50, respectively.

In each network layer, there exists exactly one origin-destination path, and the max-

imum flow δ1 and δ2 (without disruptions/failures) are assumed to be known already. Arc

capacities C`
ij are generated based on the discrete uniform distribution in interval [80, 150],

and we let the backup capacity amount C`

ij and fixed-charge cost f `ij equal the generated

capacity. For the fortification cost and restoration cost, we assume the latter is 25% more

expensive; the costs are generated based on a discrete uniform distribution in the interval

[120, 180].

In order to ensure that a feasible solution exists, we let the planning horizon T equal

the number of nodes. The fortification and restoration budgets are assumed to be 40% of

the nodes in each layer. The initial seed nodes failures (or, “activation”) is generated based

on the discrete uniform distribution in the interval [0, 1].
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All experiments are conducted by using a single thread on a PC Intel Core i7 processor

with a CPU at 3.40 GHz and a RAM space of 8GB. The problem is coded in Python 2.7

and Gurobi 8.1 is used as the mixed-integer optimization solver.

2.4.2 Benefits of Proposed Mitigation and Restoration Strategy

We first report the cost savings of different scenarios based on the instances generated using

the above assumptions. Similar to the small illustrative example in Section 2.2.6, we compute

the exact optimal cost of the number of nodes on each side when equaled to 10, 20 and 30

respectively, with an interdependent arc density range from 10% to 40%. The results are

shown is Table 2.5. In each category, the last row of Table 2.5 indicates the cost savings

by calculating the maximum cost minus the minimum cost divided by maximum cost of

that column, multiplied by 100%. We further depict the optimal cost of four different

scenarios as the function of interdependent arc density for the instances with N1 = N2 = 10,

N1 = N2 = 20 and N1 = N2 = 30 in Figure 2.6, 2.7 and 2.8, respectively.

Clearly, the cost increases as the density of interdependent arcs increases, and using

restoration only produces the highest costs compared to other scenarios. The minimum costs

for all tested data from using restoration, backup capacity, and node fortification together

shows that using all three strategies produces compelling results in terms of cost saving.

Note that depending on the network topology, it is possible that backup arc capacity may

be unable to mitigate the damage since the node must survive for it to be used. When

fortification is incorporated, it is possible to circumvent failed nodes by launching backup

capacity from surviving nodes, thus reducing the recovery cost.

2.4.3 Solution Quality at Root Node

Next, we test the strength of the “natural” formulation given in Section 2.2 (denoted by

NF) and the one with valid inequalities derived in Section 2.3. We add all of the cascade
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Table 2.5: Cost comparison for generated instances.

Cost with Different |E| Density

Nodes Scenario 10% 20% 30% 40%

10-10

R 1814 2374 2354 2836
R+B 1484 2374 2354 2836
R+F 1225 1520 1520 1705
R+B+F 1221 1405 1520 1705
Saving 32.69% 40.82% 35.43% 39.88%

20-20

R 2901 3097 3097 3097
R+B 2884 3097 3097 3097
R+F 2148 2482 2482 2482
R+B+F 2082 2482 2482 2482
Saving 28.23% 19.86% 19.86% 19.86%

30-30

R 6062 8520 10652 10652
R+B 6062 8520 10652 10652
R+F 2036 2444 2482 2482
R+B+F 1829 2292 2292 2292
Saving 69.83% 73.10% 78.48% 78.48%

inequalities into the natural formulation as the number of these inequalities is polynomial,

then we replace constraints (2.11b) - (2.11d) by (2.28a) - (2.28d) and denote this formulation

as SF.

In Table 2.6, we compare the LP relaxation gap at the root node for both formulations.

We do not limit the computational time, since the goal is to get the true optimal solution so

that the root gap can be calculated. The root gap is calculated by ZUB−ZLB
ZUB ×100% where ZUB

is the optimal solution and ZLB is the LP relaxation on root node. From the last column we

can observe that the improvement on LP relaxation is very significant, which means the valid

inequalities are very strong. The improvement for all the instances are above 54% with the
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Figure 2.6: Optimal cost comparison when N1 = N2 = 10.

Figure 2.7: Optimal cost comparison when N1 = N2 = 20.

maximum gap improvement 86.36%. Reducing the root relaxation gap improves the lower

bound and thus gives a computational advantage for solving the optimization problem.

2.4.4 Benefits of Strengthened Formulation

Finally, we would like to demonstrate the effectiveness of the proposed inequalities when it

comes to optimization. The computational time is limited to 3600 seconds. If a problem is

not solved to optimality when the time limit is reached, we report the ending gap, which is
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Figure 2.8: Optimal cost comparison when N1 = N2 = 30.

calculated by ZUB−ZLB
ZUB × 100%. Note that ZUB is the incumbent integer solution while ZLB is

the best lower bound generated by Gurobi. The notation ”–“ indicates that Gurobi is not

able to find any integer solution within an hour but a lower bound is generated. We report

the total branch-and-bound nodes explored, the number of Gurobi cuts generated, and the

CPU seconds in subsequent columns these are summarized in Table 2.7.

For the first three data categories, the effectiveness of the valid inequalities is superior.

Gurobi cannot close the gap when the number of nodes is 20 and the density of interdependent

arcs are above 10% for NF, while with the valid inequalities all the instances in the first

three categories can be solved in less than 161 seconds. However, when the number of nodes

increases to 40 and 50, the problem becomes very challenging to solve. When the number

of nodes equals 40, the ending gap of SF within an hour is less than 6%. Moreover, Gurobi

is unable to find an integer solution for an instance with 20% and 40% interdependent arcs

density while the ending gap is above 60% for interdependent arcs density 10% and 30%.

When the number of nodes equals 50, Gurobi is again unable to find an integer incumbent

solution for NF with 10%, 20%, 30% interdependent arcs density respectively. The only

exception when SF does not outperform NF within an hour is the instance with 50 nodes and

40



Table 2.6: Comparison on Root Relaxation.

Root Gap (%)

Nodes Arcs Density |E12| |E21| NF SF Improve

10-10 74

10% 8 10 44.42 9.03 79.67
20% 22 23 63.38 8.65 86.36
30% 25 25 65.62 14.41 78.04
40% 42 41 78.02 21.38 72.60

20-20 36

10% 37 41 80.71 33.31 58.73
20% 71 87 82.94 31.91 61.53
30% 123 114 83.54 33.09 60.39
40% 164 148 83.73 35.98 57.03

30-30 103

10% 99 80 82.01 23.90 70.76
20% 179 196 85.93 27.53 67.96
30% 259 265 85.62 28.88 66.27
40% 359 353 84.71 27.21 67.89

40-40 184

10% 143 171 90.04 35.58 60.49
20% 340 309 90.13 37.86 58.00
30% 483 496 90.02 41.14 54.3
40% 622 654 90.21 41.27 54.25

50-50 247

10% 247 242 88.98 30.57 65.64
20% 517 498 88.33 31.96 63.82
30% 760 742 87.98 32.73 62.80
40% 1021 990 87.73 32.72 62.71

40% density interdependent arcs, where we denote * in the column. From our experiment, it

took Gurobi 4147.11 seconds to solve the root relaxation for SF, however, the root relaxation

gap is significantly smaller than NF (33% versus 88%), which results in an overall shorter

computational time.
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Table 2.7: Effectiveness of the Formulations.

B&B Nodes Gurobi Cuts CPU Time (EGap)

Nodes Arcs Density |E12| |E21| NF SF NF SF NF SF

10-10 74

10% 8 10 115 1 698 3 1.05 0.35
20% 22 23 195 1 1843 0 3.44 0.37
30% 25 25 45 1 1438 43 3.36 0.87
40% 42 41 6294 1 2108 24 124.63 0.41

20-20 36

10% 37 41 15812 868 2460 243 934.35 9.73
20% 71 87 9587 2309 4037 199 (11.97%) 29.11
30% 123 114 7585 828 4387 149 (26.47%) 22.96
40% 164 148 6833 1675 4884 178 (27.6%) 47.30

30-30 103

10% 99 80 4334 315 8415 69 (15.47%) 39.67
20% 179 196 1652 1463 8489 272 (34.83%) 160.81
30% 259 265 459 261 8815 211 (54.60%) 104.09
40% 359 353 3501 303 8222 178 (41.43%) 131.08

40-40 184

10% 143 171 129 17778 15684 589 (59.38%) (1.72%)
20% 340 309 453 10202 15967 579 — (2.56%)
30% 483 496 312 10202 18078 307 (84.53%) (2.85%)
40% 622 654 774 3957 16812 318 — (5.18%)

50-50 247

10% 247 242 1 2598 28586 318 — (5.53%)
20% 517 498 1 1 27692 362 — (13.98%)
30% 760 742 1 526 27164 288 — (8.72%)
40% 1021 990 754 0 26829 0 (91.10%) ∗

2.5 Conclusion

In this chapter, we propose a novel optimization model for mitigation and restoration against

a dynamic cascade of node failures over two-layer interdependent networks. We consider

the maximum flow problem as it is often used in various settings of studying information,

infrastructure, and other types of networked systems. From the computational results on the
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considered illustrative examples, we demonstrate that significant cost savings can be achieved

by considering mitigation and restoration simultaneously to prevent cascading failure and

restore network performance in a designated time horizon. Moreover, in the presence of

dynamic cascading failures, our model is able to prioritize the recovery of the damaged

components to avert further failure cascade.

We present two classes of valid inequalities derived from the cascading constraints

and capacity constraints, both of which are substructures of the original formulation. We

incorporate these valid inequalities into the formulation directly in order to tighten the

bound. Our computational experiments show that these inequalities are enough to solve

instances from N = 10 up to N = 30 on each side of the interdependent network with

an interdependence density range from 10% to 40% within a short amount of time, while

default Gurobi settings are unable to solve most of the instances when valid inequalities are

not added to the formulation. To identify some potential model extensions, we discussed

the possibility of extending our model to several different settings, including multi-layer

interdependent networks, multi-commodity flows, and capacity degradation, by changing

certain parts of the formulation of 2-INMR.
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CHAPTER 3: A POLYHEDRAL STUDY OF LEAST COST

INFLUENCE MAXIMIZATION IN SOCIAL NETWORKS

This chapter is partially based on [11]. The least cost influence maximization problem aims

to determine minimum cost of partial (e.g., monetary) incentives initially given to the influ-

ential spreaders on a social network, so that these early adopters exert influence toward their

neighbors and prompt influence propagation to reach a desired penetration rate by the end

of cascading processes. We first conduct polyhedral analysis on a substructure that describes

influence propagation assuming influence weights are unequal, linear and additively separa-

ble. Two classes of facet-defining inequalities based on a mixed 0-1 knapsack set contained in

this substructure are proposed. We characterize another exponential class of valid and facet-

defining inequalities utilizing the concept of minimum influencing subset. We show that these

inequalities can be separated in polynomial time efficiently. Furthermore, a polynomial-time

dynamic programming recursion is presented to solve this problem on a simple cycle graph.

For arbitrary graphs, we propose a new exponential class of valid inequalities that dominates

the cycle elimination constraints and an efficient separation algorithm for them. A compact

convex hull description for a special case is presented. We illustrate the effectiveness of these

inequalities via a delayed cut generation algorithm in the computational experiments.

3.1 Introduction

Intricate connections between entities in many natural and man-made systems form large

complex networks. Of particular interest in network science is to gain insight into the

dynamic of cascading processes in complex networks. For instance, the spreading of new

behaviors, opinions, technologies, conventions, and gossips from person to person through

a social network may play an important role in designing competitive marketing strategies.
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Indeed, the collection of social ties among consumers can be exploited to select pivotal early

adopters for initiation and anticipate the time and cost required for the information propa-

gation. Therefore, a key research question has been focused on how to efficiently identity a

set of users to disseminate a certain information within the network, result in an increasing

trend in studying social influence and information propagation in social networks (see, e.g.,

[14, 31]). As it may be expected, the spreading of social influence is commonly studied on

network graphs that consist of nodes and links representing users and their connections, as

well as a framework that describes how the information propagates among various inter-

mediate users over time. Granovetter [23] first presented the threshold model to simulate

the collective force exerted by a group on each of its members for predicting innovation and

rumor diffusion, voting trends, and migration. A distinct threshold value is assigned to each

user representing the proportion of neighbors who make a decision before a particular user

makes such decision. Many extensions built on the threshold model have been proposed to

encompass different circumstances. Among them, the linear threshold model and indepen-

dent cascade model are the two most popular and well-studied one. Kempe et al. [30] study

the linear threshold and independent cascade models under the influence maximization (IM)

problem. The goal of IM is to activate as many nodes as possible by the end of propaga-

tion process given selected influential nodes within budget. Specifically, they show that the

expected influence spread is a monotone submodular function, which can be approximated

by greedy algorithm with performance guarantee 1 − 1
e
− ε. On the other hand, the target

set selection (TSS) introduced by [13] aims to find the minimum number of users required

initially and activate the entire network through the propagation process. These two types

of problems are fundamental in social network analysis and have many variants. Here we

refer the reader to a survey of hardness and solution approaches for TSS [6], a review on ap-

proximation algorithms for IM [34], and a comprehensive review on introduction to types of

social networks, properties, evaluation metrics and known method to solve IM [49]. Recently,
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Azaouzi et al. [5] presented a comprehensive review on models and methods of group-level

IM and IM under privacy protection.

In this chapter, we study an optimization problem arising in social network analyt-

ics, referred to as the least cost influence maximization (LCIM) problem [18, 25, 26]. The

propagation process in LCIM is based on the linear threshold model, where each user is as-

signed a real-valued threshold and each link between users is assigned a weight to represent

influence level. If the summation of influence weights from neighbors exceeds one’s thresh-

old value, then the individual is activated, meaning that the information is adopted or the

person changes their opinion to align with friends (neighbor nodes) in the social network. In

LCIM, the concept of influence weights is extended with the idea of giving partial incentives

such as free samples or coupons to individual as a motivation for spreading information.

The assumption of the linear threshold model allows the incentives and influence weights in

the activation processes to be linearly additive, which immediately admits a mixed-integer

optimization formulation for the influence propagation. Our goal is to develop an exact

computational method based on the polyhedral structure. We assume that all the param-

eters are deterministic, all the nodes are inactive initially and nodes remain activated once

the influence weights exceeds the threshold. A similar assumption on using deterministic

parameters in linear threshold model can be found in [27]. From a practical point of view,

the assumption of deterministic linear threshold depends on the accuracy of estimation of

influence factors and threshold parameters. Machine learning and data mining techniques

may enable one to obtain accurate predictions on those parameters from massive amounts

of data available nowadays. Note that when incentive is allowed and the influence weights

and thresholds are considered known in the problem, the influence propagation is no longer

submodular, thus, a greedy algorithm is not applicable for arbitrary graphs. However, the

problem is still challenging to solve due to the combinatorial nature. The minimum subset of

nodes required under dynamic activation is also referred to as the dynamic monopoly, where
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nodes become activated if at least half of the neighbors are activated in the previous time

period. Hence, an extra index of time is incorporated into the integer programming formu-

lation to describe step-by-step activation of nodes, see [40, 41, 55]. We do not consider time

dynamics in our problem despite the fact that the influence propagation occurs in discrete

steps. Moreover, the induced optimal influence propagation graph for LCIM in the static

network setting given by the mixed-integer programming formulation is known to be acyclic

[18].

Even though IM, TSS and LCIM problems share certain similarities, most of the

previous studies on IM or TSS mainly focus on developing degree-based or centrality-based

metaheuristics and approximation algorithms. Existing studies on using exact mixed-integer

optimization techniques for LCIM under deterministic data settings are relatively limited.

The computational complexity of LCIM is established in [26]. In particular, they show

that LCIM is NP-hard on arbitrary graphs and bipartite graphs for both equal and unequal

influence when 100% penetration rate is not required. They also give a greedy algorithm

and a total unimodular formulation for LCIM with equal influence on a tree and 100%

penetration rate. Günneç et al. [25] develop a branch-and-cut algorithm using this total

unimodular formulation for LCIM on arbitrary graphs. Fischetti et al. [18] present a novel

set covering formulation for a generalized LCIM, where the activation function can be ad-

justed to be nonlinear in order to capture the situation of diminishing marginal influences

or over-proportional effect from peers. They propose strengthened generalized propaga-

tion inequalities and a price-cut-and-branch algorithm to deal with the exponential number

of variables and constraints. Recent developments on using exact mixed-integer optimiza-

tion methods for stochastic influence maximization problem include a delayed constraint

generation algorithm for a two-stage stochastic influence maximization problem [60] and a

branch-cut-and-price algorithms for robust a influence maximization, where node thresholds

and arc influence factors are subject to budget uncertainty [43].
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3.1.1 Notation and problem definition

For convenience, we use the notation [a, b] to denote the set {a, a + 1, . . . , b} for a ≤ b,

and [a, b] = ∅ for a > b. For a set R ⊆ Rn, we use conv (R) to denote its convex hull of

solutions. Formally, an oriented network (e.g., a social network) is represented by a graph

G = (V,E) with the set of nodes V := {1, . . . , n} corresponding to people or users and

the set of bidirectional arcs E ⊆ {(i, j) ∈ V × V : (j, i) ∈ V × V, i 6= j} with cardinality m

corresponding to connections and influence directions between people in the network. Hence,

each node has identical number of predecessors and successors, denoted by vi: vi = |N(i)|,

where N(i) := {j ∈ V : (j, i) ∈ E}. Each node i ∈ V has a threshold value hi measuring

the “difficulty level” of an individual to be “activated”. Each arc (i, j) ∈ E is associated with

an influence weight dij. The coverage (penetration) rate is denoted by a, where 0 < a ≤ 1

is assumed. We also assume that dij and hi are positive integers such that max{dji : j ∈

N(i)} ≤ hi and
∑

j∈N(i) dji > hi for all i ∈ V such that |N(i)| ≥ 2 throughout this chapter

to omit trivial cases. For any dji > hi and |N(i)| = 1 for some i ∈ V , we pre-process the

data to set dji = hi. All nodes are assumed inactive initially and nodes remain active once

influences from neighbors and incentives reach or exceed the threshold. For each node i ∈ V ,

let nonnegative continuous variables xi be the amount of partial incentives given to user i,

binary variables yij indicate whether influence is exerted from node i to j nor not, and binary

variables zi indicate whether node i is activated or not. The arc-based formulation of static
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LCIM is given by

(LCIM) min
x,y,z

∑
i∈V

xi

s.t. xi +
∑
j∈N(i)

djiyji ≥ hizi ∀i ∈ V (3.1a)

yij + yji ≤ zi ∀(i, j) ∈ E (3.1b)∑
i∈V

zi ≥ b (3.1c)

∑
(i,j)∈C

yij ≤
∑

i∈V (C)\{k}

zi ∀k ∈ V (C),∀ cycles C ⊆ E (3.1d)

x ∈ Rn
+

y ∈ Bm, z ∈ Bn.

Node propagation constraints (3.1a) follow the linear threshold model by evaluating the total

incoming influence from neighbor plus the incentives given to a node. Constraints (3.1b) state

that for every two nodes with bidirectional arcs, the influence exertion is allowed in one way

only. The cardinality constraint (3.1c) describes the desired number of activated nodes given

a predetermined penetration rate a, where b = dane and 1 ≤ b ≤ n. Constraints (3.1d) are

generalized cycle elimination constraints (GCEC) where V (C) = {i ∈ V : (i, j) ∈ C}. They

are necessary to produce the acyclic optimal influence propagation graph. Note that the

arc-based formulation proposed by [1] is different from this chapter as the influence weights

in their model are coming solely from their neighbors without incentives. Fischetti et al.

[18] adopt this arc-based formulation on arbitrary graphs for computational performance

comparison, but possible values of incentives are discretized by a set of an exponential

number of binary variables.
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3.1.2 Main contributions

The key contributions of this chapter are summarized as follows. We conduct a polyhedral

study for the hidden mixed 0-1 knapsack substructure in (3.1a) of LCIM. We propose three

classes of strong valid inequalities, namely, the continuous cover, continuous packing and the

minimum influencing subset inequalities from this substructure and specify the conditions

under which they are facet-defining. The coefficient of these inequalities can be adjusted

to equal influence assumption directly. We have improved the run time of the separation

algorithm for the the continuous cover and continuous packing inequalities compared with

our preliminary results presented in [11]. In addition, we provide a polynomial-size complete

linear description of the polyhedron of LCIM on a tree when equal influence weights for every

node and 100% coverage are assumed. For LCIM on arbitrary bidirectional network graphs,

we derive a novel class of strong valid inequalities called the the (U,C) inequalities and show

they dominate the general cycle elimination constraints. Finally, we augment the preliminary

computations in [11] with different formulations, cutting plane strategies, density and scale

of networks in extensive computational experiments.

3.1.3 Outline

The remainder of this chapter is organized as follows. In Section 3.2, we derive strong valid

inequalities from the mixed 0-1 knapsack substructure and give an exact polynomial time

separation algorithm for these inequalities. In Section 3.3, we discuss an O(n) time dynamic

programming recursion for LCIM on a simple cycle. We propose the (U,C) inequalities

for arbitrary bidirectional graphs and develop a polynomial time separation algorithm via

solving the longest path problem on a directed acyclic graph. We present the convex hull

description of LCIM on a special case in Section 3.4. Finally, we illustrate the effectiveness of

our proposed valid inequalities in the computational experiments in Section 3.5 and conclude
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with Section 3.6.

3.2 Valid inequalities based on mixed 0-1 knapsack polyhedron

To develop a strong formulation for LCIM, we study the polyhedral structure of constraints

(3.1a). For i ∈ V , let

Pi =

(xi, y, zi) ∈ R+ × Bvi+1 : xi +
∑
j∈N(i)

djiyji ≥ hizi

 .

The set Pi is a mixing set with a binary variable on the right-hand side value. For any

inequality that is facet-defining for conv (Pi), it is facet-defining for conv (∩i∈VPi) as well.

Therefore, we now consider a single node propagation by dropping the subscript i and obtain

the following set

P =

{
(x, y, z) ∈ R+ × Bv+1 : x+

∑
j∈N

djyj ≥ hz

}
.

Observe that the set P contains a mixed 0-1 knapsack structure. Let set P obtained from

P by setting yj = 1− yj, j ∈ N and z = 1, then we have a mixed 0-1 knapsack set P with

weight dj for each item j ∈ N and the capacity of knapsack
∑

j∈N dj−h plus an unbounded

continuous variable x in the following

P =

{
(x, y, z) ∈ R+ × Bv × {1} :

∑
j∈N

djyj ≤

(∑
j∈N

dj − hz

)
+ x

}
.

The mixed 0-1 knapsack set P is a special case of traditional 0-1 knapsack problem

where the knapsack size is expanded with additional capacity. Observe that dim(P) is

full-dimensional and contains the origin. There are trivial facets for conv (P) and their

verification is straightforward.
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Proposition 3. The following facet-defining inequalities for conv (P) are trivial.

(i) The inequality x +
∑

j∈N djyj ≥ hz is facet-defining for conv (P) if dj ≤ h for all

j ∈ N .

(ii) The inequality x ≥ 0 is facet-defining for conv (P) if dj ≤ h for all j ∈ N .

(iii) The inequality yj ≥ 0 is facet-defining for conv (P).

(iv) The inequality yj ≤ 1 is facet-defining for conv (P).

Marchand and Wolsey [37] propose two classes of valid inequalities for P based on

mixed-integer rounding and lifting function, namely, the continuous cover and continuous

packing (reversed cover) inequalities. We follow a similar idea to strengthen the formulation

for LCIM, with moderate modification as P ⊂ P . Applications of continuous cover and con-

tinuous packing inequalities for P can be seen in delay management for public transportation

[15], job scheduling with uncertain multiple resources [29], discrete lot sizing [35] and single-

item capacitated lot sizing [39]. They can also be extended to solve general mixed-integer

optimization that contains mixed 0-1 knapsack set with bounded continuous variables, see

[44, 51, 52].

3.2.1 Continuous cover and continuous packing inequalities

Consider a continuous cover S := {1, . . . , s} ⊆ N such that h+
∑

j∈S dj −
∑

j∈N dj = π > 0

and h +
∑

j∈S\{k} dj −
∑

j∈N dj < 0 for any k ∈ S. Let dj ∈ S be in non-increasing order

with d1 ≥ . . . ≥ dr > π ≥ dr+1 ≥ . . . ≥ ds, Dj =
∑j

k=1 dk for j ≤ r and D0 = 0.

Proposition 4. The continuous cover inequality

x+
∑
j∈S

min{π, dj}yj +
∑
j∈N\S

Φ(dj)yj ≥

min
j∈S
{π, dj}+

∑
j∈N\S

Φ(dj)

 z (3.2)
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where

Φ(d) =


jπ Dj ≤ d ≤ Dj+1 − π, j ∈ [0, r − 1]

jπ + d−Dj Dj − π ≤ d ≤ Dj, j ∈ [1, r − 1]

rπ + d−Dr Dr − π ≤ d,

(3.3)

is valid for P.

Similarly, consider a continuous packing L := {1, . . . , l} ⊆ N such that
∑

j∈L dj−h =

λ > 0 and
∑

j∈L\{k} dj − h < 0 for any k ∈ L. Let dj ∈ L be in non-increasing order with

d1 ≥ . . . ≥ dr > λ ≥ dr+1 ≥ . . . ≥ dl, Dj =
∑j

k=1 dk for j ≤ r and D0 = 0.

Proposition 5. The continuous packing inequality

x+
∑
j∈L

max{0, dj − λ}yj +
∑
j∈N\L

Ψ(dj)yj ≥

(∑
j∈L

max{0, dj − λ}

)
z (3.4)

where

Ψ(d) =


d− jλ Dj ≤ d ≤ Dj+1 − λ, j ∈ [0, r − 1]

Dj − jλ Dj − λ ≤ d ≤ Dj, j ∈ [1, r − 1]

Dr − λr Dr − λ ≤ d,

(3.5)

is valid for P.

Here we omit the proofs as the validity of inequalities (3.2) and (3.4) and their facet-

defining conditions for conv (P) directly follow from [37] when z = 1, while when z = 0, we

must have yj = 0 for all j ∈ N , both inequalities are trivially satisfied and facet-defining

according to Proposition 3.
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Example 2. Let d = (7, 6, 5, 4) and h = 8, we list the facet-defining inequalities of inequal-

ity (3.2) and (3.4) in Table 3.1. For example, for S = {1, 2, 4}, we have π = 3 and r = 3.

Then the lifting function Φ is given by

Φ(d) =



0 0 ≤ d ≤ 4

3 7 ≤ d ≤ 10

6 13 ≤ d ≤ 14

d− 4 4 ≤ d ≤ 7

d− 7 10 ≤ d ≤ 13

d− 8 14 ≤ d

Hence, the coefficient of y3 is Φ(d3) = Φ(5) = 5− 4 = 1, which generates

x+ 3y1 + 3y2 + y3 + 3y4 ≥ 4z.
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Table 3.1: Continuous cover and continuous packing inequalities of Example 2

x+ 7y1 + 6y2 + 5y3 + 4y4 ≥ 8z

set facet-defining inequality

S = {2, 3, 4}, L = {1, 2} x+ y1 + y2 + y3 + y4 ≥ 2z

S = {1, 3, 4}, L = {1, 2} x+ 2y1 + y2 + 2y3 + 2y4 ≥ 3z

S = {1, 2, 4}, L = {1, 3} x+ 3y1 + 3y2 + y3 + 3y4 ≥ 4z

S = {1, 2, 3}, L = {1, 4} x+ 4y1 + 4y2 + 4y3 + y4 ≥ 5z

S = {1, 2, 4}, L = {2, 3} x+ 4y1 + 3y2 + 2y3 + 3y4 ≥ 5z

S = {1, 2, 3}, L = {2, 4} x+ 5y1 + 4y2 + 4y3 + 2y4 ≥ 6z

S = {1, 2, 3}, L = {3, 4} x+ 6y1 + 5y2 + 4y3 + 3y4 ≥ 7z

Essentially, the continuous cover inequalities (3.2) and packing inequalities (3.4) are

not sufficient to describe conv (P), as the additional binary variable z creates new extreme

points. Next, we introduce a new class of valid inequalities for P that utilizes the concept

of minimal influencing set.

3.2.2 Minimum influencing subset inequalities

We use the definition of minimal influencing set from [18], which we include here for the

reader’s convenience.

Definition 10 ([18]). Let pi ∈ [0, hi − 1] be an incentive payment to node i ∈ V and

M ⊆ N(i) be a set of active neighbors of node i ∈ V , such that pi +
∑

j∈M dji = hi. We say

M is a minimal influencing subset for node i ∈ V if and only if for a fixed incentive payment

pi, it satisfies pi +
∑

j∈M dji = hi and pi +
∑

j∈M\{k} dji < hi for any k ∈M . In other words,

a strict subset of M with the same incentive payment is not sufficient to activate node i.
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Proposition 6. Let M ⊆ N be a minimum influencing subset with an incentive payment

p = h−
∑

j∈M dj. The minimal influencing subset inequality

x+
∑

j∈N\M

min{dj, p}yj ≥ pz (3.6)

is valid for P.

Proof. If z = 0 then inequality (3.6) is trivially satisfied. If yj = 0 for all j ∈ N \M , either

x = 0 for z = 0 or x = p for z = 1. Assume that none of these cases hold, given a p > 0,

rewrite the left term of the inequality in the following form:

x+
∑
j∈N

djyj

= x+
∑

j∈N\M :dj≤p

djyj + p
∑

j∈N\M :dj>p

yj +
∑
j∈M

djyj ≥ h,

which implies

x+
∑

j∈N\M :dj≤p

djyj + p
∑

j∈N\M :dj>p

yj ≥ h−
∑
j∈M

djyj ≥ h−
∑
j∈M

dj = p.

Proposition 7. Inequality (3.6) is facet-defining for conv (P) if and only if p > 0. More-

over, for a given i ∈ V and a set N(i), for each M ⊆ N(i) such that hi−
∑

j∈M dji = pi > 0,

the minimal influencing subset inequality

xi +
∑

j∈N(i)\M

min{dji, pi}yji ≥ pizi (3.7)

is facet-defining for conv (∩i∈VPi).
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Proof. Recall that p ∈ [0, h−1] by definition. If p = 0, then inequality (3.6) reduces to x ≥ 0;

therefore, p > 0 is necessary. To show the sufficiency that inequality (3.6) is facet-defining

for conv (P), we exhibit v + 1 linearly independent points (x,y, z) on the face defined by

inequality (3.6). Let ej ∈ Bv be the unit vector corresponding to yj for j ∈ N . Consider

the two feasible points (p,
∑

j∈M ej, 1) and (0,
∑

j∈M ej, 0), then, consider the v − 1 feasible

points (0,
∑

j∈M(ej + ek), 1) for k ∈ L \M . It is straightforward to verify that these v + 1

points are linearly independent and satisfy inequality (3.6) at equality. To prove the second

part of this proposition, let ηi ∈ B2n+m, µij ∈ B2n+m, and ζi ∈ B2n+m for i ∈ V, j ∈ N(i) be

the unit vectors corresponding to variables xi, yij, and zi, respectively. The component of ηi

is 1 if it has the same position with xi in the feasible solution; all other components of ηi

are 0. Similar setting is made to µij for yij and ζi for zi, respectively. For i ∈ V , consider

the n points piηi +
∑

j∈M µji + ζi, also, consider the n points
∑

j∈M µji. For i ∈ V and

k ∈ L \M , consider the m − 1 points
∑

j∈M(µji + µki) + ζi. These 2n + m − 1 points are

linearly independent and satisfy inequality (3.7) at equality, which completes the proof.

Example 1 (Continued). The facet-defining inequalities of (3.6) for Example 2 are listed

in Table 3.2.

Table 3.2: Minimal influencing subset inequalities of Example 2

x+ 7y1 + 6y2 + 5y3 + 4y4 ≥ 8z

set facet-defining inequality

M = {1} x+ y2 + y3 + y4 ≥ z

M = {2} x+ 2y1 + 2y3 + 2y4 ≥ 2z

M = {3} x+ 3y1 + 3y2 + 3y4 ≥ 3z

M = {4} x+ 4y1 + 4y2 + 4y3 ≥ 4z
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Although inequalities (3.2), (3.4) and (3.6) define a large number of facets for conv (P),

they are not sufficient to completely describe conv (P) in its original space of variables. Par-

ticularly, the following inequality is valid and facet-defining for Example 2 but can not be

obtained through either inequalities (3.2), (3.4) or (3.6):

x+ 3y1 + 2y2 + 2y3 + 2y4 ≥ 4z.

3.2.3 Separation of minimal influencing subset inequalities

In this section, we give an exact polynomial time separation algorithm for finding the most

violated minimal influencing subset inequality. From inequality (3.7), we observe that finding

the most violated inequality for a given fractional solution (x∗,y∗, z∗) ∈ R2n+m
+ consists of

choosing a set M ⊆ N(i) such that pizi −
∑

j∈N(i)\M min{dji, pi}yji is maximized. Let

v̂ := max{vi : i ∈ V }.

Proposition 8. Given a fractional solution (x∗,y∗, z∗) ∈ R2n+m
+ from solving LCIM, there

exists an O(nv̂ log v̂) time separation algorithm for inequality (3.7).

Proof. A violated inequality (3.7) can be found if

pi

z∗i − ∑
j∈N(i)\M :dji>pi

y∗ji

− ∑
j∈N(i)\M :dji≤pi

djiy
∗
ji > x∗i ,

which implies that it suffices to consider y∗ji for some j ∈ N(i) such that z∗i −
∑

j∈N(i) y
∗
ji > 0

and pi > 0. To do so, we sort y∗ji in non-decreasing order for j ∈ N(i) with indices j1, j2, . . . , jv

such that y∗j1i ≤ y∗j2i ≤ . . . ≤ y∗jvi. For j1 ≤ jk ≤ jv, we sum up first k elements, then we check

if z∗i −
∑k

`=1 y
∗
j`i
> 0 and p′i = hi−

∑v
`=k+1 dj`i > 0, until z∗i −

∑k+1
`=1 y

∗
j`i
< 0. These k elements

constitute the subset M and N(i) \ M simultaneously and ensure z∗i −
∑

j∈N(i)\M y∗ji >

0 and pi > 0 in order to generate a violated cut. The set M corresponds to the most
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violated cut can be determined by evaluating max{0, p′i(z∗i −
∑k

`=1 y
∗
j`i

) : k ∈ [1, v]}. If

max{0, p′i(z∗i −
∑k

`=1 y
∗
j`i

) : k ∈ [1, v]} = 0, then there are no violated cuts. The sorting

process runs in O(v̂ log v̂) time and the evaluation takes O(v̂), since we have to check for

every node i ∈ V , overall the separation algorithm runs in O(nv̂ log v̂) time.

3.2.4 Separation of continuous cover and continuous packing inequalities

Up to this point, we presented an exact polynomial time separation algorithm for inequalities

(3.7). Next, we show that a violated continuous cover inequality for conv (∩i∈VPi) can be

identified by exploiting the result of Proposition 8. Then we can obtain a violated continuous

packing inequality in polynomial time after finding a violated continuous cover inequality.

We first formally establish the relationship between S, L and M in the following lemma.

Lemma 1. If p = h−
∑

j∈M dj > 0 and there exists k ∈ N \M such that
∑

j∈M∪{k} dj > h

and
∑

j∈M∪{k}\{`} dj < h for any ` ∈M , then p = π, S = N \M ,
∑

j∈M∪{k} dj − h = λ and

L = M ∪ {k}.

Proof. By rearranging the terms in the definition of p,

p = h−
∑
j∈M

dj > 0

= h+
∑

j∈N\M

dj −
∑
j∈N

dj > 0

= h+
∑
j∈S

dj −
∑
j∈N

dj > 0.

Hence, we can see that S is equivalent to N \M and p = π if p > 0. Next, if there exists

an element k ∈ N \M such that
∑

j∈M∪{k} dj > h, immediately we have M ∪ {k} = L by

definition and
∑

j∈M∪{k} dj − h = λ. Since N \M ∪ {M ∪ {k}} = N , we have S ∪ L = N ,

S ∩ L = {k}, and L \ {k} = N \ S = M .
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Following Lemma 1, we present an efficient separation procedure to determine violated

continuous cover and continuous packing inequalities by using the information of the set M .

Note that here we add an index i to inequalities (3.2) similar to (3.7) for all i ∈ V .

Proposition 9. There exists a violated continuous cover inequality if a violated inequality

(3.7) is identified.

Proof. Recall that inequality (3.7) is violated if

pi

z∗i − ∑
j∈N(i)\M :dji>pi

y∗ji

− ∑
j∈N(i)\M :dji≤pi

djiy
∗
ji > x∗i ,

or equivalently by Lemma 1,

πiz
∗
i − πi

∑
j∈S:dji>πi

y∗ji −
∑

j∈S:dji≤πi

djiy
∗
ji > x∗i .

Now, a continuous cover inequality for a fixed node i ∈ V is violated if

min
j∈S
{πi, dji}z∗i +

∑
j∈N(i)\S

Φ(dji)(z
∗
i − y∗ji)−

∑
j∈S

min{πi, dji}y∗ji > x∗i .

Suppose dji > πi for all j ∈ S, then the left term of the continuous cover inequality can be

further written as

πiz
∗
i +

∑
j∈N(i)\S

Φ(dji)(z
∗
i − y∗ji)− πi

∑
j∈S:dji>πi

y∗ji −
∑

j∈S:dji≤πi

djiy
∗
ji.

Since (z∗i − y∗ji) ≥ 0 holds and the lifting function Φ is nonnegative, the rest of the terms

already violate the current solution (x∗,y∗, z∗), we then obtain a violated continuous cover

inequality with πi being the minimum among min{πi, dji : j ∈ S}. This suggests that,

when a violated inequality (3.7) is found, it suffices to generate a violated continuous cover
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inequality concurrently.

On the other hand, a violated continuous packing inequality can not be obtained

directly from separating inequality (3.7). However, when a violated continuous cover in-

equality is found, we can check every element in S to see if there exists an element k such

that
∑

j∈N\S∪{k} dji > hi. For every k satisfying this condition, the packing set L is then

determined. A violated continuous packing inequality is found if

∑
j∈L

max{0, dji − λi}(z∗i − y∗ji)−
∑

j∈N(i)\L

Ψ(dji)y
∗
ji > x∗

holds. Furthermore, suppose Ŝ = max{|S| : S ⊆ N(i), i ∈ V }, the process of checking

elements in S takes O(Ŝ) time and the function Ψ can be constructed in O(v̂ log v̂) time

using binary search proposed in [44].

3.3 Valid inequalities for LCIM with cycles

In this section, we expand the study of conv (∩i∈VPi) to incorporate the remaining constraints

in LCIM on an arbitrary bidirectional graph that contains cycles. The polyhedron that

describes the intersection of these constraints is

Q =
{

(x, y, z) ∈ Rn
+ × Bn+m : (3.1a)− (3.1d)

}
.

To simplify the notation, we let α and β be the coefficients associated with variables

y and z corresponding to continuous cover and continuous packing inequalities. In other

words, we express them in the following form:

xi +
∑
j∈N(i)

αjiyji ≥ βizi, (3.8)
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and it is facet-defining for conv (Q). Due to the straightforward structure of a cycle, the

minimum incentive of the influence propagation can be easily characterized. Raghavan and

Zhang [50] give an O(n) time algorithm for the weighted target set selection problem on

a cycle. We also present a polynomial time dynamic programming to solve LCIM on a

simple cycle. Then we give a class of exponential number of valid inequalities that forms

acyclic influence propagation by exploiting inequality (3.8) as the base inequality. We also

demonstrate that the separation for this class of valid inequalities can be done in polynomial

time for arbitrary bidirectional graphs that contain cycles.

3.3.1 Dynamic programming recursion for LCIM on a simple cycle

Without loss of generality, we assume |V (C)| = |V | = n in this section. Hence, for a smple

cycle graph, we have V = V (C) = n, E = C and |E| = 2n with vi = 2 for all i ∈ V .

We still use V (C) for the set of all nodes and C for set of all bidirectional arcs to focus

on the discussion of LCIM on a simple cycle for consistency. Observe that due to the cycle

structure, the influence propagation occurs on an induced path of a cycle as it is one-way

and consecutive after a particular node is activated by paying full incentive to it. Given

the cardinality requirement b ≤ n − 1, the cost of activating other nodes on this path is

equivalent to the threshold of the inactivated node minus the influence weights exerted from

the activated predecessor on the side. For b = n, the cost of activating the last node is

zero as it receives influence exertion from both its predecessor and the firstly activated node.

Therefore, we only need to evaluate the cases for b ≤ n− 1.
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Figure 3.1: An induced subgraph of a cycle is an one-way path

Given b ≤ n − 1, for i ∈ V (C), construct a node set
−→
V ib that contains node i

with forward arcs connecting nodes starting from i with total number of nodes equals to b.

Let i1, i2, . . . , ib−1, ib be the indices in
−→
V ib. The corresponding set of forward arcs is then

−→
C ib = {(ij, ij+1) : j ∈ [1, b − 1]} as illustrated in Figure 3.1. We apply the similar logic for

backward set of nodes
←−
V ib and arcs

←−
C ib. Let F (i, b) denote the minimum cost of activating b

nodes on the cycle beginning with node i. For 1 ≤ b ≤ n−1, the minimum cost of activating

b nodes on a cycle is given by

min
i∈V (C)

F (i, b) (3.9)

where

F (i, b) = min

hi +
∑

(j,k)∈
−→
C ib

(hk − djk), hi +
∑

(j,k)∈
←−
C ib

(hk − djk)

 . (3.10)

Proposition 10. The dynamic programming recursion given by (3.9) and (3.10) solves

LCIM on a simple cycle in O(n) time.

Proof. The recursion (3.10) evaluates the minimum cost of activating b nodes on a path

beginning with node i on both directions. As we only need to compare the minimum of

(3.10) for every node, we obtain the optimal objective function of LCIM on a simple cycle
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in O(n) time.

3.3.2 Valid inequalities for influence propagation over a cycle

Since every network consists of trees and cycles as substructures, observe that for every

cycle in the network, at least one node is either paid with full incentive or the activation

requires influence exertion from nodes outside the cycle. Fischetti et al. [18] first recognized

this observation and proposed a generalized propagation constraints in a different space

of variables. Here we propose an exponential class of valid inequalities that captures this

observation as well as ensures the influence propagation is acyclic for conv (Q).

Proposition 11. Given an inequality (3.8) and a cycle with set of nodes V (C) and set of

arcs C, for U ⊆ V (C), the (U,C) inequality

∑
i∈U

γi

xi +
∑
j∈N(i)

αjiyji − βizi

 ≥ δ(U)

1−
∑

(k,`)∈C:`/∈U

(z` − yk`)

 (3.11)

is valid for Q, where

(i) ωi = hi − βi +
∑

j∈N(i):j /∈V (C)(αji − dji),

(ii) δ(U) = ωi if |U | = 1,

(iii) δ(U) computes the least common multiple of ωi for i ∈ U if |U | ≥ 2,

(iv) γi = δ(U)
ωi

.

Proof. Due to constraint (3.1c), there exists zi = 1 for some i ∈ V (C). Let H = {(k, `) ∈

C : ` /∈ U}. We partition H into two disjoint sets H0 and H1 such that H = H0 ∪H1 and

H0 ∩ H1 = ∅, where H0 = {(k, `) ∈ H : k /∈ U} and H0 = {(k, `) ∈ H : k ∈ U}. We

distinguish two main cases:
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Case 1. We first consider zi = 0 for all i ∈ U and zi = 1 for all i ∈ V (C) \ U . In this

case, the left hand side of the inequality is equal to 0, whereas in the right hand side, we

have k ∈ V (C) \ U and ` ∈∈ V (C) \ U , if there exists at least one yk` = 1, we must have

zk = z` = 1, which leads to |V (C) \ U | > |H0|. Consequently,

δ(U)

1−
∑

i∈V (C)\U

zi +
∑

(k,`)∈H0

yk`

 < 0

holds, inequality (3.11) is thus valid.

Case 2. Next we consider zi = 1 for all i ∈ U and zi = 0 for all i ∈ V (C) \ U . In this

case, we must have yk` = 0 for all (k, `) ∈ H as influence exertion towards nodes belong to

V (C) \ U is unnecessary. Then the inequality reduces to

∑
i∈U

γi

xi +
∑
j∈N(i)

αjiyji − βi

 ≥ δ(U).

Regardless of whether yji = 0 for all i ∈ N(i) or yji = 1 for some j ∈ N(i), there exists at

least one i ∈ U such that xi = hi and yji = 0. In other words, at least one node is activated

with full incentive payment in order to launch the propagation for nodes in U . For other

nodes that receive partial or zero incentives, their corresponding term in the left hand side is

zero. To compute the possible range of the left hand side, we rearrange the terms and obtain

the following

∑
i∈U

γi(hi − βi)

=
∑
i∈U

δ(U)

(hi − βi)
(hi − βi)

=
∑
i∈U

δ(U).
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Consequently, the left hand side is at most |U |δ(U) and at least δ(U) with one particular

node with full incentive xi = hi, which is valid. This completes the proof.

Example 3. Consider a graph G illustrated in Figure 3.2. The number next to each arc

is the influence weight dij, while the number inside the brackets next to each node is the

threshold hi.

Figure 3.2: A social network with n = 5.

For node 2, take L = {1, 3, 5} with λ2 = 3 + 4 + 5 − 10 = 2, the corresponding

continuous packing inequality (3.8) is

x2 + y12 + 2y32 + 3y52 ≥ 6z2.

Similarly, for node 3, take L = {1, 2} with λ3 = 6 + 3− 7 = 2, the corresponding continuous

packing inequality (3.8) is

x3 + y13 + 4y23 ≥ 5z3.

There are two cycles {(1, 2), (2, 3), (3, 1)} and {(1, 3), (3, 2), (2, 1)} in Figure 3.2. For U =

{2, 3} with cycle C = {(1, 2), (2, 3), (3, 1)}, we have ω2 = 10− 6 + 3− 5 = 2, ω3 = 7− 5 = 2,
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δ({2, 3}) = lcm(2, 2) = 2, then the (U,C) inequality is

(x2 + y12 + 2y32 + 3y52 − 6z2) + (x3 + y13 + 4y23 − 5z3) ≥ 2(1− z1 + y31).

Furthermore, consider the cycle C = {(1, 3), (3, 2), (2, 1)} from another direction, the (U,C)

inequality is

(x2 + y12 + 2y32 + 3y52 − 6z2) + (x3 + y13 + 4y23 − 5z3) ≥ 2(1− z1 + y21).

Next, we study the strength of inequality (3.11). Note that conv (Q) is full-dimensional

and does not pass through the origin. Without loss of generality, we assume that δ(U) = 1

for U = ∅.

Proposition 12. Inequality (3.11) with U = ∅ dominates the generalized cycle elimina-

tion constraint.

Proof. Consider a particular cycle C, the GCEC can be states as

∑
(i,j)∈C

(zj − yij) ≥ zk,

where k ∈ V (C) is an arbitrary choice of index among V (C). For a (U,C) inequality (3.11)

with U = ∅ on this cycle, we obtain

∑
(i,j)∈C

(zj − yij) ≥ 1.

Clearly, the GCEC is weaker then the (U,C) inequality unless z∗k = 1. Furthermore, if we

have
∑

(i,j)∈C(zj − yij) < zk, then
∑

(i,j)∈C(zj − yij) < 1 must hold. This implies that there

exist violated (U,C) inequalities for every violated cycle C identified.
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Figure 3.3: Graph D for separation of inequality (3.11)

3.3.3 Separation of (U,C) inequalities

Since the size of of inequalities (3.11) is exponential, we explore a separation scheme to find

the most violated inequality corresponding to set U in polynomial time. We again assume

that |V (C)| = n in this section.

Proposition 13. Separation problem for inequality (3.11) can be solved in O(n3 log n)

time.

Proof. Inequality (3.11) is violated if

δ(U)

1−
∑

(k,`)∈C:`/∈U

(z∗` − y∗k`)

−∑
i∈U

γi

x∗i +
∑
j∈N(i)

αjiy
∗
ji − βiz∗i

 > 0. (3.12)

For a given fractional point (x∗,y∗, z∗) ∈ Q, we determine sets U ⊆ V (C) such that the left

hand side of (3.12) is maximized. With the observation in Proposition 12, for every violated

cycle detected, we construct a longest path problem on a directed acyclic network to solve

the separation problem.

Consider a directed acyclic network D = (V ,A) with a source vertex 0 ∈ V and a

sink vertex n + 1 ∈ V . Define θi = x∗i +
∑

j∈N(i) αjiy
∗
ji − βiz∗i for all i ∈ [1, n]. It is possible
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that there exists multiple inequality (3.8) for a fixed i. We select the one with the minimum

value of θi accordingly. Let index set {i′ : i ∈ [1, n]} such that θ1′ ≤ θ2′ ≤ . . . ≤ θn′ . Node

i′ is sorted according the the value of θi and each node i′ ∈ V has a unique mapping to

each node i ∈ V (C). The node set V is then {0, n + 1} ∪ {i′ : i ∈ [1, n]}. The arc set is

A = {(0, n+ 1)} ∪ {(0, 1′)} ∪ {(i′, (i+ 1)′) : i ∈ [1, n− 1]} ∪ {(i′, n+ 1) : i ∈ [1, n]}.

Next, we assign length on each arc in A. For arc (0, n+ 1), we let

f0,n+1 = max

ωi
1−

∑
(k,`)∈C:`6=i

(z` − yk`)

− θi : i ∈ V (C)

 .

Let f0,1′ = θ1′ . For arcs {(i′, (i+ 1)′) : i ∈ [1, n− 1]}, we set the length fi′,(i+1)′ = θ(i+1)′ . For

arcs {(i′, n+ 1) : i ∈ [1, n]}, we set the length

fi′,n+1 =

δ({ωj}i
′

j=1′)

1−
∑

(k,`)∈C:`/∈{j}i′
j=1′

(z∗` − y∗k`)

− i′∑
k=1′

(
δ({ωj}i

′

j=1′)

ωk
+ 1

)
θk.

This longest path problem depicted in Figure 3.3 can be solved by Dijkstra’s algorithm.

There exists a violated inequality (3.11) if and only if the longest path is strictly positive

and the nodes on this path determine the elements in set U . The sorting process of θi takes

O(n log n) time, the evaluation of f0,n+1 takes O(n) time, and the longest path on a directed

acyclic graph takes O(n) time as there are n+2 nodes and 2n+1 arcs. Since we have to solve

this problem for every violated cycle found by Dijkstra algorithm, the separation algorithm

runs O(n3 log n) time overall.

Example 4. Consider solving LCIM with b = 3 on a graph depicted in Figure 3.2. The

initial linear programming relaxation solution without enumerating any cycle elimination
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Figure 3.4: A DAG for separating inequality (3.11) in Example 4

constraints is

(x∗1, x
∗
2, x
∗
3, x
∗
4, x
∗
5) = (0, 4.92, 0.6, 3, 0),

(z∗1 , z
∗
2 , z
∗
3 , z
∗
4 , z
∗
5) = (0.6, 0.6, 0.6, 0.6, 0.6),

(y∗12, y
∗
13, y

∗
14, y

∗
21, y

∗
23, y

∗
25, y

∗
31, y

∗
32, y

∗
41, y

∗
52) = (0.36, 0, 0, 0.24, 0.6, 0.6, 0.6, 0, 0.6, 0),

and the objective function value is 8.52. The violated cycle is {(1, 2), (2, 3), (3, 1)} for this

solution. Then we obtain θ1 = −0.72, θ2 = 1.68 and θ3 = 0 and sort them in non-decreasing

order. Since θ1 < θ3 < θ2, the set {1′, 2′, 3′} is corresponding to the original node set

{1, 3, 2}. This leads to a directed acyclic network illustrated in Figure 3.4 with new node

set V = {0, 1′, 2′, 3′, 4}. The length of f0,1′ , f1′,2′ and f2′,3′ are θ1, θ3 and θ2, respectively. The

lengths of the remaining arcs are

f0,4 = max{3(1− 0.24)− (−0.72), 2− 1.68, 2} = 3,

f1′,4 = 3(1− 0.24)− (
3

3
+ 1)(−0.72) = 3.72,

f2′,4 = 6(1− 0.24)− (
6

3
+ 1)(−0.72) = 6.72,

f3′,4 = 6− (
6

3
+ 1)(−0.72)− (

6

2
+ 1)(1.68) = 1.44.
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The longest path is 0→ 1′ → 2′ → 4, which determines U = {1, 3} with maximum violation

6. We add the following violated inequality (3.11)

2(x1 + 2y21 + 4y31 + 6y41 − 12z1) + 3(x3 + y13 + 4y23 − 5z3) ≥ 6(1− z2 + y12)

to cut off this fractional solution. We then obtain the new objective function value 10.2 and

the solution sets

(x∗1, x
∗
2, x
∗
3, x
∗
4, x
∗
5) = (0, 6, 2.2, 2, 0),

(z∗1 , z
∗
2 , z
∗
3 , z
∗
4 , z
∗
5) = (0.6, 0.6, 0.6, 0.6, 0.6),

(y∗12, y
∗
13, y

∗
14, y

∗
21, y

∗
23, y

∗
25, y

∗
31, y

∗
32, y

∗
41, y

∗
52) = (0, 0, 0.2, 0.6, 0.6, 0.6, 0.6, 0, 0.4, 0),

which is very close to the true optimal objective function value 11 in this example.

3.4 LCIM under equal influence and 100% adoption

Since the optimal propagation subgraph of LCIM is acyclic, the solution of LCIM on a tree

provides a valid lower bound for LCIM on a graph with cycles. Moreover, in practical appli-

cations, it is common to assume that both threshold and influence exertion are identical for

every node, due to simplicity or lack of accurate estimation. For example, in the unanimous

threshold model [13], hi = vi for all i ∈ V is assumed. This diffusion model is normally

considered as the most influence resistant one, and it has applications in complex computer

network security problems. In addition, the majority threshold model [58] assumes hi = dvi
2
e

for all i ∈ V . Both information diffusion models assume that dij = 1 for all (i, j) ∈ E.

In this special case of LCIM where equal influence is assumed for all i ∈ V and 100%

coverage is required on a tree, we have dij = di for all i ∈ V and GCEC can be discarded.

The LCIM formulation corresponding to equal influence and 100% coverage on a tree graph
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is given by

(LCIM-TE) min
x,y

∑
i∈V

xi

s.t. xi + di
∑
j∈N(i)

yji ≥ hi ∀i ∈ V (3.13a)

yij + yji = 1 ∀(i, j) ∈ E : i < j (3.13b)

x ∈ Rn
+ (3.13c)

y ∈ Bm. (3.13d)

Let S denote the set of feasible solutions to LCIM-TE on a tree graph and let R denote the

set of feasible solutions to the linear programming relaxation of (3.13a) - (3.13d). Günneç

et al. [26] prove that LCIM-TE is polynomial solvable on a tree graph. They propose a

compact extended formulation with total unimodular constraints. However, the extended

formulation can not be applied to unequal influence weights directly. We give the complete

linear description of conv (S) in the original space of variables with additional O(n) con-

straints and show they are a special case of the continuous cover and continuous packing

inequalities by adjusting the influence weights.

Proposition 14. Let σi = dhi
di
e and gi = hi − (σi − 1)di for all i ∈ V , the inequality

xi + min{gi, di}
∑
j∈N(i)

yji ≥ giσi (3.14)

is facet-defining for conv (S) if and only if gi < di and σi ≥ 2. Furthermore, the complete

linear description of conv (S) is given by

conv (S) =

(x, y) ∈ R : xi + min{gi, di}
∑
j∈N(i)

yji ≥ giσi ∀i ∈ V

 .
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Proof. If gi = di, then hi = σidi and inequality (3.14) coincides with (3.13a). Similarly, if

σi = 1, we also have gi = hi = di and inequality (3.14) is reduced to (3.13a). To prove the

sufficiency, we demonstrate that inequality (3.14) is a special case of the continuous cover

and continuous packing inequalities. Observe that σi is the minimum number that exceeds

hi if multiplied by di, which implies that hi− (σi− 1)di > 0. Therefore, σi is the cardinality

of set L corresponding to the continuous packing inequality with equal influence weights.

We thus obtain λi = diσi − hi and gi = di − λi. Equivalently,

gi = hi − (σi − 1)di

= hi + [|N(i)| − σi + 1− |N(i)|] di

= πi,

hence |N(i)| − σi + 1 is the cardinality of set S in the continuous cover inequality. Following

the result of Lemma 1 for the interchangeable relationship between sets S and L, gi and giσi

coincide with the coefficients of the continuous cover and continuous packing inequalities,

respectively.

For the second part of this Proposition, we assume gi < di and giσi < hi holds

for all i ∈ V without loss of generality. Observe that for i ∈ V , the possible values of

xi = max{0, hi − (σi − w)di} for w ∈ [0, σi], where σi − w is an implicit upper bound of

number of activated neighbors for node i, namely,
∑

j∈N(i) yji ≤ σi − w. We prove that for

any choice of w ∈ [0, σi], we must have integral (x,y) in the following three cases:

Case 1. Suppose w = 0 and xi = 0. Inequality (3.13a) is reduced to
∑

j∈N(i) yji ≥
hi
di
,

which is dominated by inequality (3.14) with
∑

j∈N(i) yji ≥ σi. There exist at least σi acti-

vated neighbors that exert influence toward node i. Moreover, from the implicit upper bound∑
j∈N(i) yji ≤ σi, we have

∑
j∈N(i) yji = σi. Since xi = 0 we must have yij = 0 and yji = 1
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such that |{j : j ∈ N(i)}| = σi due to constraints (3.13b).

Case 2. Suppose w = σi and xi = hi. Inequality (3.13a) becomes
∑

j∈N(i) yji ≥ 0, which

dominates inequality (3.14) with
∑

j∈N(i) yji ≥ σi − hi
gi

as the right hand side here is strictly

negative. Similar to Case 1, we must have yji = 0 and yij = 1 for all j ∈ N(i) due to the

implicit upper bound
∑

j∈N(i) yji ≤ 0 and constraints (3.13b).

Case 3. Suppose w ∈ [1, σi − 1]. First, let w = 1, then xi = gi = hi − (σi − 1)di. We

have
∑

j∈N(i) yji ≥ σi − 1 in both inequality (3.13a) and inequality (3.14). Following Case 1

and Case 2, we have
∑

j∈N(i) yji = σi − 1 with yji = 1 and yij = 0 for some j ∈ N(i) such

that |{j : j ∈ N(i)}| = σi − 1. Next, let w = 2 and
∑

j∈N(i) yji ≥ σi − 2 holds in inequality

(3.13a). While in inequality (3.14),

∑
j∈N(i)

yji ≥
giσi − hi + diσi − 2di

gi

≥ σi − 1− di
gi
.

Since we assume gi < di, inequality (3.13a) dominates inequality (3.14). By mathematical

induction, for w ∈ [1, σi − 1], we conclude that inequality (3.13a)
∑

j∈N(i) yji ≥ w always

dominates inequality (3.14). Furthermore, we must have
∑

j∈N(i) yji = w from the implicit

upper bound and the value of yij and yji are either 0 or 1 following Case 1 and Case 2. We

have now demonstrated that inequality (3.14) is facet-defining and (x,y) are integral for any

choice of w ∈ [0, σi], thus the proof is completed.

We close this section by noting that the (U,C) inequalities (3.11) and the separation

algorithm in Section 3.3.3 can be directly applied to LCIM-TE on a graph with cycles.
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Proposition 15. The (U,C) inequality for equal influence weights of a cycle is given by

∑
i∈U

γi

xi + αi
∑
j∈N(i)

yji − βi

 ≥ δ(U)

1− |V (C)|+ |U |+
∑

(k,`)∈C:`6=i

yk`

 (3.15)

for conv (S).

Proof. The result is deduced from Proposition 11 by fixing zi to 1 for all i ∈ V and substi-

tuting the coefficients accordingly. The definition of γi and δ(U) follows Proposition 11. Let

ωi = hi − βi + |{j ∈ N(i) : j /∈ V (C)}|(αi − di) for all i ∈ V (C). The right hand side of the

inequality is equivalent to fix zi = 1 for i /∈ U . Finally, let αi = min{gi, di} and βi = giσi as

in inequality (3.14).

3.5 Computational Experiments

In this section, we give a detailed description of the data generation and algorithm settings.

We test the effectiveness of a delayed cut generation algorithm that incorporates the proposed

valid inequalities in solving LCIM under different conditions. All the experiments were

conducted on a single thread of a Windows 10 Enterprise server with Intel(R) Core i7-4770

CPU at 3.40 GHz x-64 based processor and 8GB of RAM using Python 3.8 and Gurobi 9.1.2

with default settings as the optimization solver. A 3600 seconds time limit was imposed for

each experiment.

3.5.1 Data generation and algorithm settings

We follow the exact data generation scheme in [18], except for the fact that we generate bidi-

rectional arcs between every two nodes. The small-world network topology for each instance

is generated based on watts_strogatz_graph function in the NetworkX package of Python.

The instances have the following properties: size of node set n ∈ {50, 75, 100}, average node
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degree v ∈ {4, 8, 12, 16}, rewiring probability q ∈ {0.1, 0.3} and we set penetration rate

a ∈ {0.1, 0.25, 0.5, 0.75, 1}. Influence weight dij for all (i, j) ∈ E are generated from discrete

uniform distribution between 1 and 10. Let ∆i =
∑

j∈N(i) dji and Υi be a random variable fol-

lows normal distribution N (0.7∆i,∆i/vi) for all i ∈ V . We set hi = dmax{1,min{Υi,∆i}}e.

For each setting, we generate three instances and report the average.

The effectiveness of two delayed cut generation algorithms and one alternative refor-

mulation are compared in our study:

1. DEF: formulation LCIM given by (3.1a) - (3.1c),

2. CB: formulation LCIM with cut-and-branch enhancement, and

3. LN: layered-network formulation.

To implement the delayed cut generation, the GCEC (3.1d) is separated via lazy

constraint callback only for integer solutions for DEF and CB. Grötschel et al. [24] give

a shortest path algorithm for separating (3.1d) and we utilize the existing shortest path

function dijkstra_path in the NetworkX package to perform such task. For the cut-and-

branch enhancement in algorithm CB, we add the proposed inequalities via user-cut callback

at the root node to tighten the linear programming relaxation of formulation LCIM.

We use the layered-network formulation proposed by [36] to replace (3.1d) in al-

gorithm LN as this formulation gives a directed acyclic graph with the additional layer

assignment variables li for all i ∈ V . We are interested in testing whether this cycle-free

formulation is beneficial to solve LCIM compared with GCEC (3.1d). In addition, this for-

mulation allows us to keep the mixed 0-1 knapsack substructure so the valid inequalities can

be applied to it directly. In our preliminary experiments, we observe that this formulation

does not produce better optimality gap for a ∈ {0.1, 0.25, 0.5, 0.75} by relaxing constraints

(3.16a) compared with DEF and CB (average optimality gap > 90%), hence, we only report
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the computation for a = 1 (b = n). The layered-network formulation used in algorithm LN

is given by

min

{∑
i∈V

xi : (x, y, z) satisfies (3.1a), (3.1c), (3.16a)− (3.16c)

}
,

where

yij + yji = 1 ∀(i, j) ∈ E (3.16a)

yji − (n− 1)yij ≤ lj − li ∀(i, j) ∈ E (3.16b)

1 ≤ li ≤ n ∀i ∈ V. (3.16c)

3.5.2 Analysis of results

We summarize our computational results in TABLE 3.3, 3.4 and 3.5 under various settings

of (n,m, v, q, a). We report the average number of branch-and-cut tree nodes explored in

the column Nodes. The column Cuts shows the average number of Gurobi cuts added

during the optimization process. In column Time[Gap]* we report the average solution

time (in seconds) of the instances that are solved to optimality, and the average of the

optimality gap of the instances that are not solved to optimality when reaching time limit

(in brackets). Each asterisk sign indicates an unsolved instance and the gap is calculated by

100× (ub− lb)/lb where ub and lb are the best integer feasible solution obtained and best

lower bound generated by the algorithm within time limit, respectively.

We observe that the major factor that contributes to the unsolved instances with pos-

itive optimality gap is the average node degree rather than the number of nodes. This obser-

vation can be justified by comparing the instances (n, v,m) = (100, 4, 400) and (n, v,m) =

(50, 8, 400), as the former is easier to solve than the later. A similar observation is also

established in [18] in their set covering formulation using the price-cut-and-branch algo-
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Table 3.3: Computational performance comparing MIP nodes, cuts, time and unsolved in-
stances on network with n = 50.

n = 50 Nodes Cuts Time[Gap]*
v −m q a DEF CB LN DEF CB LN DEF CB LN

4-200 0.1

0.1 18 12 12 12 0.30 0.31
0.25 121 53 25 15 0.45 0.40
0.5 492 254 52 21 0.84 0.65
0.75 1562 1680 76 45 2.53 2.74
1 921 636 1041 70 27 233 1.15 0.78 17.84

4-200 0.3

0.1 1 5 5 4 0.29 0.20
0.25 1 1 13 3 0.33 0.27
0.5 33 9 28 10 0.41 0.39
0.75 129 99 45 18 0.61 0.56
1 207 1 140 47 16 83 0.57 0.42 5.02

8-400 0.1

0.1 85 115 18 15 1.02 1.71
0.25 429 392 14 14 2.41 2.85
0.5 6077 8831 57 65 19.08 27.31
0.75 457292 196845 189 169 1367.06[7.31]* 682.35
1 838587 658888 69506 339 341 2491 [8.22]*** [4.70]*** [8.56]***

8-400 0.3

0.1 104 85 19 14 0.96 1.49
0.25 375 497 17 18 2.50 3.81
0.5 3009 3592 35 40 15.88 31.34
0.75 323777 185520 148 170 2028.51[5.11]* 1486.88
1 418483 404013 57946 297 265 2372 [10.47]*** [7.13]*** [12.08]***

rithm. Despite the average number of nodes and cuts are the greatest in LN for n = 50,

there exists no clear domination relationship in columns Nodes and Cuts between DEF,

CB and LN for n = 75 or 100. Moreover, the average number of cuts added is not very

large, which indicates that Gurobi cuts do not complement the optimization process. For

the unsolved instances in Table 3.3 and 3.4, CB outperforms DEF and LN except for in-

stances (n, v,m, q, a) = (75, 12, 900, 0.1, 0.5) and (75, 12, 900, 0.3, 0.5). In Table 3.5 where

n=100, CB still outperforms DEF and LN for v ∈ {4, 8, 12} except for one instance

(100, 12, 1200, 0.3, 0.5), where the optimality gap difference is 0.92%. The common setting

a = 0.5 shared in these exceptions suggests that the symmetry created by the cardinality

constraint requires additional improvement. We also notice that LN produces better opti-
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Table 3.4: Computational performance comparing MIP nodes, cuts, time and unsolved in-
stances on network with n = 75.

n = 75 Nodes Cuts Time[Gap]*
v −m q a DEF CB LN DEF CB LN DEF CB LN

4-300 0.1

0.1 91 17 11 8 0.57 0.31
0.25 833 742 46 22 1.87 1.35
0.5 1094 1543 82 48 2.11 3.17
0.75 3378 1880 119 69 5.92 4.17
1 1753 1384 1252 130 69 366 2.08 2.15 18.39

4-300 0.3

0.1 10 12 17 9 0.64 0.70
0.25 309 76 34 13 0.85 0.71
0.5 805 151 78 21 1.78 1.24
0.75 1537 604 80 37 3.50 2.66
1 976 965 1067 107 53 445 2.44 2.12 16.63

8-600 0.1

0.1 229 195 13 10 2.73 3.45
0.25 3178 912 26 20 18.82 7.81
0.5 216230 212500 192 78 227.75[4.77]* 857.06
0.75 564387 348760 248 169 [6.15]*** 508.18[3.36]**
1 360594 379776 50255 368 324 2923 [9.50]*** [5.71]*** [9.64]***

8-600 0.3

0.1 214 127 13 5 2.10 2.78
0.25 1078 1224 19 15 10.54 10.27
0.5 9948 3776 68 75 129.29 113.47
0.75 161508 223027 184 194 [5.00]*** 3489.72[1.99]**
1 191592 167297 41342 266 356 2701 [9.48]*** [6.38]*** [10.30]***

12-900 0.1

0.1 812 635 9 10 13.93 18.00
0.25 1803 2376 18 13 53.28 62.91
0.5 369964 229309 36 63 2803.78[2.11]* [2.96]***
0.75 18614 31354 111 144 [13.68]*** [10.28]***
1 48188 33974 26375 228 230 3317 [16.49]*** [16.18]*** [17.85]***

12-900 0.3

0.1 1163 1275 10 2 15.08 30.70
0.25 3757 5019 42 19 115.19 224.71
0.5 27217 22714 35 48 1363.66[2.83]* 1827.81[9.39]*
0.75 11042 12625 58 120 [24.75]*** [15.69]***
1 20954 25899 23253 199 283 3071 [22.71]*** [17.21]*** [26.88]***

mality gap than DEF for instances (100, 8, 800, 0.1, 1) and (100, 12, 1200, 0.1, 1). However,

LN suffers from slow improvement of both upper and lower bound and results in larger

ending gap in general in our experiments. We begin to see the degraded performance of

algorithm CB for instances with v = 16. A large number of valid inequalities added to the

root node could be a possible reason that decelerates the optimization process. Five out

of ten results generated by CB under this category are no better than DEF. Nevertheless,
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Table 3.5: Computational performance comparing MIP nodes, cuts, time and unsolved in-
stances on network with n = 100.

n = 100 Nodes Cuts Time[Gap]*
v −m q a DEF CB LN DEF CB LN DEF CB LN

4-400 0.1

0.1 28 1 11 4 0.95 0.85
0.25 148 118 50 12 1.24 1.09
0.5 1554 998 80 33 3.77 2.49
0.75 1705 834 128 61 6.58 3.62
1 669 1600 670 120 63 318 3.09 2.67 13.01

4-400 0.3

0.1 15 11 15 3 0.53 0.36
0.25 83 123 22 7 1.27 1.07
0.5 365 391 92 26 2.40 1.60
0.75 2045 697 117 53 8.55 2.92
1 904 213 994 124 42 383 3.84 1.52 18.65

8-800 0.1

0.1 511 295 17 7 7.11 7.28
0.25 16138 9611 16 59 96.09 88.48
0.5 364834 278716 297 157 1499.18[4.20]** 1247.35[2.37]*
0.75 175014 231825 282 306 [9.81]*** [7.10]***
1 121123 154716 46686 374 439 2988 [13.84]*** [8.39]*** [13.02]***

8-800 0.3

0.1 434 345 16 12 5.74 7.27
0.25 5682 4509 19 21 56.08 72.36
0.5 65328 25567 91 129 735.63[1.79]* 685.49
0.75 13119 37109 190 233 [14.13]*** [6.43]***
1 40550 68921 35379 261 407 2849 [15.19]*** [9.39]*** [17.02]***

12-1200 0.1

0.1 1866 1249 6 4 44.77 83.37
0.25 6425 6356 29 48 296.98 372.08
0.5 40341 41264 41 52 [11.17]*** [9.17]***
0.75 8292 7915 143 173 [19.69]*** [16.40]***
1 15506 16755 20873 187 388 4447 [29.78]*** [18.11]*** [20.74]***

12-1200 0.3

0.1 3984 2870 0 9 39.06 145.17
0.25 55111 33660 14 65 1187.31 2191.00
0.5 15457 11751 44 51 [21.00]*** [21.92]***
0.75 4426 5168 102 128 [30.63]*** [24.46]***
1 8704 10036 20128 174 241 3688 [21.11]*** [19.05]*** [21.31]***

16-1600 0.1

0.1 4585 5403 14 11 193.29 474.52
0.25 9590 11593 26 28 1244.07 2010.94
0.5 5384 4268 9 14 [22.36]*** [22.42]***
0.75 3360 3591 68 92 [32.71]*** [30.71]***
1 8464 6772 11907 148 158 3443 [22.47]*** [23.43]*** [24.10]***

16-1600 0.3

0.1 11982 13063 5 20 286.70 852.37
0.25 51785 23015 19 33 [19.46]*** [22.45]***
0.5 5271 4520 17 18 [34.36]*** [35.58]***
0.75 2636 2724 85 89 [42.24]*** [44.46]***
1 4441 4485 11802 78 91 3408 [25.78]*** [24.78]*** [25.79]***

the average optimality gap produced by CB for these five instances are 1.49% higher than

DEF. To sum up, although the linear programming relaxation of the arc-based formulation
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is very weak with zero objective function value in most cases, our proposed valid inequali-

ties significantly improve the strength of the lower bound and effectively reduce or close the

optimality gap.

3.6 Conclusion

We study the least cost influence maximization problem in social networks where the in-

fluence propagation behavior among users is captured by the deterministic linear threshold

model. A typical application of this problem is to obtain an estimation of the partial incen-

tives given to early product adopters in viral marketing while achieving a desired coverage

rate by the end of information spreading. We focus on the case where influence weights

exerted from peers are heterogeneous and derive several classes of valid inequalities from

the hidden mixed 0-1 knapsack substructure in the mixed-integer programming formulation.

Despite the fact that the set of feasible solutions is hard to convexify due to the knapsack

constraints and the linear programming relaxation being very weak, our computational ex-

periments show that the delayed cut generation algorithm exploiting these inequalities can

effectively reduce the optimality gap. For the case with equal influence weights and 100%

adoption on a tree, we characterize the complete linear description of the convex hull in

it in the natural space of incentive, arc propagation and activation variables. The convex

hull of the LCIM with equal influence weights and arbitrary adoption on a tree is still an

open question and requires further investigation. We observe that the bottleneck of com-

putational improvements are mostly in the instances where 100% adoption is not required.

A promising future research direction is to identify more explicit valid inequalities from the

intersections of the cardinality constraint that controls the penetration rate with the rest of

the formulation.
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CHAPTER 4: CONTRIBUTIONS AND FUTURE WORK

In this dissertation, we presented mathematical optimization models that describe different

types of cascading processes in interdependent infrastructure networks and social networks

with discrete decisions. We studied the polyhedral structure and propose exact solution al-

gorithms based on mixed-integer programming techniques, including dynamic programming,

cutting plane, strong formulation and delayed cut generation algorithm. In this concluding

chapter, we summarize our contributions and discuss some of the promising areas of future

research.

In Chapter 2, we proposed a novel mixed-integer optimization model for a two-layered

interdependent networks mitigation and restoration problem. The dynamic of the cascading

failure processes and the corresponding time and logical conditions are captured explicitly

in the model. Our model provides a guidance for the trade-off decision between mitigation

investment in advance and sequential post-disaster recovery actions, while minimizing the

damage caused by cascading failure. We propose valid inequalities and strong formulations

for the constraints of cascading process and capacity degradation, respectively. The compu-

tational results outperform the state-of-the-art commercial optimization solver in its default

settings. It should be noted, in general, that mixed integer optimization problems often

present significant computational challenges, which is also the case in the considered setup.

The results from these computationally challenging instances indicate that exploring effec-

tive decomposition methods (for instance, Lagrangian relaxation) and other techniques for

improving the computational performance is a promising future research direction.

In addition, from the perspective of modeling assumptions, other optimization mod-

els can be formulated and solved in related settings. Our model considers mitigation and

restoration with respect to nodes only, since the failure propagation mechanism in our model

is based on failed nodes between network layers. Another possible direction would be to con-
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sider restoration and hardening of the interdependent links, which would be suitable under

the assumptions that cascading failures propagate via link failures instead of (or in addition

to) node failures. Such models would require introducing a different set of variables and con-

straints in order to properly model the propagation of cascading failures in these settings,

and their properties may differ from the ones derived here for our model. Therefore, it would

be interesting to formulate and study these optimization problems in the future work.

In Chapter 3, we study the least cost influence maximization problem in social net-

works with the static cascading influence propagation processes. The mixed-integer opti-

mization formulation is challenging to solve as it contains a mixed 0-1 knapsack polyhedron,

cardinality constraint and an exponential number of cycle elimination constraints. We derive

strong valid inequalities from the intersections of the mixed 0-1 knapsack polyhedron and

cycle elimination constraints and utilize them in a delayed cut generation algorithm. Our

computational results show that they are very effective in solving the problem. While we

present a complete linear description of the convex hull for the problem with equal influence

weights and 100 % on a tree, the convex hull formulation for such case on arbitrary graphs

is still an open question and requires further investigation. When 100% adoption is not re-

quired, the cardinality constraint also creates a significant computational burden. It would

be interesting to find more explicit valid inequalities from the intersections of the cardlinaity

constraint with the rest of the formulation.

An alternative way to get rid of the exponential number of cycle elimination constraint

is to formulate the problem with time index. Such formulation can also be extended into

multistage setting with uncertain influence weights and threshold directly. In our preliminary

investigation, we observe the continuous cover and continuous packing inequalities are valid

for the time index formulation. It would be interesting to further investigate other valid

inequalities and develop a scalable decomposition algorithm to solve the multistage stochastic

counterpart of this problem.
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