Modeling and simulation of the horizontal component of the geomagnetic field by fractional stochastic differential equations in conjunction with empirical mode decomposition

Zu-Guo Yu
Vo Anh
University of Central Florida
Yang Wang
Dong Mao
James Wanliss

Find similar works at: https://stars.library.ucf.edu/facultybib2010
University of Central Florida Libraries http://library.ucf.edu

This Article is brought to you for free and open access by the Faculty Bibliography at STARS. It has been accepted for inclusion in Faculty Bibliography 2010s by an authorized administrator of STARS. For more information, please contact STARS@ucf.edu.

Recommended Citation
Yu, Zu-Guo; Anh, Vo; Wang, Yang; Mao, Dong; and Wanliss, James, "Modeling and simulation of the horizontal component of the geomagnetic field by fractional stochastic differential equations in conjunction with empirical mode decomposition" (2010). Faculty Bibliography 2010s. 1002.
https://stars.library.ucf.edu/facultybib2010/1002
Modeling and simulation of the horizontal component of the geomagnetic field by fractional stochastic differential equations in conjunction with empirical mode decomposition

Zu-Guo Yu,1,2 Vo Anh,1,3 Yang Wang,4 Dong Mao,4 and James Wanliss5

Received 15 December 2009; revised 7 June 2010; accepted 21 June 2010; published 9 October 2010.

[1] In this paper, we investigate the characteristics and develop a stochastic model for the horizontal component B_x of the magnetic field at 22 stations of the global near-real-time magnetic observatory network INTERMAGNET. The model is in the form of a fractional stochastic differential equation. A method to estimate the parameters on the basis of observed data and to simulate the data using the model is given. The degree of fractional differentiation and the alpha-stability exponent of the process are employed to cluster the stations. The B_x time series possess pronounced local trends, which must be removed before modeling and simulation can be performed. This trend removal is carried out by an empirical mode decomposition. An outcome is an efficient method to simulate the B_x time series by empirical mode decomposition and fractional stochastic differential equation. The numerical results indicate the existence of two distinct clusters of the INTERMAGNET: one in the mid- and low latitudes consistent with the D_{st} index, and the other above geomagnetic latitude 60°N consistent with the $A E$ index. This clustering corresponds to the inner magnetosphere and the outer magnetosphere, respectively.

1. Introduction

[2] Earlier works by Consolini et al. [1996], Uritsky and Pudovkin [1998], Chapman et al. [1998], and Chang [1999] in modeling the magnetosphere in the framework of self-organized criticality (SOC) motivated many recent studies on stochastic properties of the magnetosphere and related geomagnetic indices. In an SOC model, simple local interactions produce complex global signatures of a system. These signatures may appear in the form of power law scaling in the probability distributions or in the power spectra. For example, Freeman and Watkins [2002] noted that the probability distribution of the time when the $A E$ index exceeds a given threshold follows a power law distribution. In investigations of the spatial structure of the aurora using ultraviolet images from NASA’s POLAR spacecraft, Lai et al. [2000] found a power law relationship between the number of bright spots and their area, and Uritsky et al. [2002] found power laws for the probability distribution of bright spot lifetime and maximum dissipated energy. An explanation of some aspects of these power laws was given by Klimas et al. [2004] in an SOC-like reconstruction-based model. A review on the scaling in the $A E$ and other geomagnetic indices was provided by Watkins et al. [2005].

[3] Pulkkinen et al. [2006] developed an Itô-type stochastic model for the $A E$ index to investigate the role of stochastic fluctuations in the global dynamics of the magnetosphere-ionosphere system. Anh et al. [2008] provided a fractional stochastic differential equation (FSDE) for the hourly $A E$ index for the period 1978–1987. The memory of the $A E$ time series is represented by a fractional derivative, and its heavy-tailed behavior is modeled by a Lévy noise with inverse Gaussian marginal distribution. The equation has the form of the classical Stokes-Boussinesq-Basset equation of motion for a spherical particle in a fluid with retarded viscosity. The fractional degree of the equation conforms with the previous finding [Pulkkinen et al., 2006] that the fluctuations of the magnetosphere-ionosphere system as seen in the $A E$ reflect the fluctuations in the solar wind: They both possess the same extent of fractional differentiation.

[4] The high-latitude fluctuations, which typically occur above geomagnetic latitude 60°N as manifested in the $A E$ index, reflect solar wind conditions. On the other hand, low-latitude geomagnetic fluctuations, as seen in the D_{st} index, are believed to reflect the inner magnetosphere. Wanliss and

1Discipline of Mathematical Science, Faculty of Science and Technology, Queensland University of Technology, Brisbane, Australia.
2Also at School of Mathematics and Computational Science, Xiangtan University, Hunan, China.
3Also at Florida Space Institute, University of Central Florida, Orlando, Florida, USA.
4Department of Mathematics, Michigan State University, East Lansing, Michigan, USA.
5Presbyterian College, Clinton, South Carolina, USA.

Copyright 2010 by the American Geophysical Union. 0148-0227/10/2009JA015206
Reynolds [2003] suggested that “examination of low-latitude ground magnetometer signals can provide clues as to whether the magnetosphere is inherently self-organized.” Wanliss and Reynolds [2003, p. 2025] analyzed hourly magnetometer measurements of total magnetic field strength from six stations at low latitudes over the period 13–18 January 1993. Using spectral analysis and rescaled range analysis, they found, at this hourly resolution, a relative increase of the Hurst exponent with latitude. With regard to the D_{at} itself, Wanliss [2004, 2005] and Wanliss and Dobias [2007] found that the D_{at} index exhibits a power law spectrum with the Hurst parameter varying over different segments of the time series. This behavior indicates that D_{at} is a multifractal process.

[5] Fractal and multifractal approaches have been quite successful in extracting salient features of physical processes responsible for the near-Earth magnetospheric phenomena [Lui, 2002]. Heavy-tailed Lévy-type behavior has been observed in the interplanetary medium and the magnetosphere [Burlaga, 1991, 2001; Burlaga et al., 2003; Kab and Papatashvili, 1998; Lui et al., 2000, 2003]. A method to describe the multiple scaling of the measure representation of the D_{at} time series was provided by Wanliss et al. [2005]. A prediction method was detailed by Anh et al. [2005], together with some numerical results evaluating its performance. A two-dimensional chaos game representation of the D_{at} index and prediction of geomagnetic storm events was proposed by Yu et al. [2007]. The spatiotemporal scaling properties of the ground geomagnetic field variations from individual magnetometer stations were studied by Pulkkinen et al. [2005] and Cerisimos and Wanliss [2007]. Anh et al. [2007] used multifractal detrended fluctuation analysis (MF-DFA) to analyze ground magnetic fluctuations for the year 2000. Yu et al. [2009] found the storm–flare class dependence through the measure representation [Yu et al., 2001a] and multifractal analysis.

[6] In this paper, we examine ground magnetometer measurements, at high, mid-, and low latitudes, of the horizontal component B_x of the magnetic field. We use the B_x data at 22 stations of the global near-real-time magnetic observatory network INTERMAGNET to classify its different behaviours corresponding to different regions of the magnetosphere.

[7] The Earth’s magnetic fluctuations are measured almost continuously by arrays of magnetometers located around the world. The INTERMAGNET program has established a global network of cooperating digital magnetic observatories that currently comprises over 108 observatories. Typical measured parameters include the north (B_x) and east (B_y) components of the horizontal intensity, and the vertical intensity (B_z), or some combination of these. By constantly measuring the magnetic field through programs such as INTERMAGNET, researchers can observe how the field is changing over a period of years and use it to derive a mathematical representation of the Earth’s magnetic field and how it is changing. It is noted that the D_{at} is calculated as an hourly average of the horizontal component B_x of the magnetic field at four observatories, namely, Hermanus (33.3° south, 80.3° in magnetic dipole latitude and longitude), Kakioka (26.0° north, 206.0°), Honolulu (21.0° north, 266.4°), and San Juan (29.9° north, 3.2°). These four observatories were chosen because they are close to the magnetic equator and thus are not strongly influenced by auroral current systems. In this paper, we use the horizontal component B_x at 22 stations of INTERMAGNET covering six distinct regions, namely, southwest North America, northeast North America, central Europe, northern Europe, Australasia, and Asia.

[8] The time series of B_x at each station is modeled as the solution of a fractional stochastic differential equation (FSDE) of the form (1) defined in the next section. In this paper, we pay particular attention to the degree of fractional differentiation ν and the α-stability exponent of the noise process $L(t)$ driving equation (1). These two parameters, which express the scaling and fractal behavior of the magnetic field at different locations, can be employed to cluster the stations. We show that the B_x component possesses local trends, which must be removed before the FSDE modeling and simulation can be performed. This trend removal is carried out by an empirical mode decomposition (EMD). The parameter ν is estimated by a detrended fluctuation analysis (DFA), while the parameter α is obtained by fitting the empirical probability density function (PDF) of the data.

[9] The next section details a description of equation (1) and the needed techniques of DFA and EMD. An estimation of equation (1) is then performed for each station. The numerical results are reported in Tables 1 and 2 in section 3 for the cases of raw data without detrending and trend removed, respectively. We show that the estimates of the α-stability exponent are almost similar in both cases and yield consistent clustering. The estimates of the scaling exponent after trend removal supports this clustering. Good simulation of the observed B_x time series is achieved after trend removal. Hence an outcome of the approach of this paper is an efficient method and algorithm for simulation of magnetometer time series by EMD and FSDE. A discussion of the results and some conclusions is given in section 4.

2. Methods

2.1. α-Stable Distribution

[10] The Lévy α-stable distribution is defined by the Fourier transform of its characteristic function [Nolan, 2009]

$$f(x; \alpha, \beta, \gamma, \delta) = \int_{-\infty}^{\infty} \varphi(x)e^{-|\omega|t}dt,$$

where $\varphi(t)$ is given by

$$\varphi(t) = \exp\{\beta t - \gamma |t|^\alpha [1 + i\beta \text{sign}(t)\text{w}(t, \alpha)]\},$$

and

$$w(t, \alpha) = \begin{cases} \tan \frac{\pi \alpha}{2}, & \text{if } \alpha \neq 1, \\ \frac{\log |t|}{\alpha}, & \text{if } \alpha = 1, \\ 1, & \text{if } t > 0, \\ -1, & \text{if } t < 0. \end{cases}$$

Here, γ is the scale parameter, α the stability exponent, δ the shift parameter, and β the skewness parameter. The exponent
controls the kurtosis and lies in the range (0, 2]. The value
− lies in the range \(\gamma = 2 \) corresponds to a Gaussian distribution (for any
− \(\theta / \alpha \)
D
\(n \)
\(\nu \)
\(\kappa \)
\(t \)
\(\frac{dX}{dt} + \kappa \mathcal{D}^{\nu} X(t) = \eta \frac{dL}{dt}, \nu \geq 0, \)
\(\mathcal{D}^{\nu} \xi(t) = \frac{1}{(n-\nu)} \int_0^t (t-\tau)^{n-\nu-1} \frac{d\xi(\tau)}{d\tau} d\tau, \)
\(11 \)
\(\)
\[11\] 0 < \nu \leq n \text{ and } n = 1, 2, \ldots, \Gamma \text{ is the gamma function,}
\frac{df}{dt} \text{ is Lévy noise defined in the distribution sense [see Mueller, 1998, for example], and } \kappa, \eta \text{ are constants.}
\text{Specifically for } B_x \text{ data, the Lévy noise of equation (1) is assumed to have an}\alpha\text{-stable distribution suggested by the form of their empirical PDF. Note that for } \nu = 0 \text{ and } \frac{df}{dt} = \frac{df}{dt},
\text{equation (1) is the classical Langevin equation. If the value of } \nu \text{ is equal to } \frac{1}{2}, \text{ the equation for the time series then takes the form}
\frac{dX}{dt} + \kappa D_\nu^\tau X(t) = \eta \frac{df}{dt}, \quad (3)
\text{which is the Stokes-Boussinesq-Basset equation in hydrodynamics (driven by Gaussian noise).}
\text{[14] An algorithm to get an approximate solution of equation (1) is given in Anh and McVinish [2003] and Anh et al. [2008]. The algorithm plays an essential role in the estimation of the parameters of the FSDE described below.}
\text{[15] A way to random simulate variables from the }\alpha\text{-stable distribution is as follows [see Chambers et al., 1976]:}
\text{[16] 1. Generate } V \text{ from a uniform distribution on } [-\pi/2, \pi/2] \text{ and } W \text{ from an exponential distribution with mean 1.}
\text{[17] 2. For } \alpha \neq 1, \text{ compute}
X = S_{\alpha, \beta} \sin\left(\alpha (V + B_{\alpha, \beta})\right) \left[\cos(V - \alpha (V + B_{\alpha, \beta}))\right]^{(1/\alpha)} \left[\cos(V)\right]^{(1/\alpha)},
\text{where}
B_{\alpha, \beta} = \frac{\arctan\left(\beta \tan\left(\frac{\pi}{\alpha}\right)\right)}{\alpha},
S_{\alpha, \beta} = \left[1 + \beta^2 \tan^2\left(\frac{\pi}{2}\right)\right]^{1/(2\alpha)};
\text{for } \alpha = 1, \text{ compute}
X = \frac{2}{\pi} \left(\frac{\pi}{2} + \beta V\right) \tan V - \beta \ln\left(\frac{\pi W \cos V}{\pi + 2\beta V}\right).
\text{Then the stable variable } Y \text{ can be computed as}
Y = \begin{cases}
\gamma X + \delta, & \text{if } \alpha \neq 1, \\
\gamma X + \frac{\beta}{\gamma} \ln \gamma + \delta, & \text{if } \alpha = 1.
\end{cases}
\text{Sample paths of the corresponding Lévy motion can then be generated as}
L(nh) = \sum_{i=1}^{n} h^{1/\alpha} Y_i, \quad (4)
\text{where the } Y_i \text{ have an } \alpha\text{-stable distribution. This algorithm is needed in the simulation of paths of equation (1).}
\text{2.3. Detrended Fluctuation Analysis}
\text{[19] To estimate the degree of the fractional derivative, we performed a detrended fluctuation analysis (DFA) [Peng et al., 1994; Yu et al., 2001b, 2006, 2009] of the time series. The DFA is the special case when } q = 2 \text{ of the multifractal detrended fluctuation analysis (MF-DFA) detailed in Kantelhardt et al. [2002]. We adopt the algorithm in Kantelhardt et al. [2002] and Movahed et al. [2006] to estimate the exponent of DFA in this paper. The procedure consists of five steps. Let } \{X_i\}_{i=1}^{N} \text{ be a time series of length } N.
\text{[19] Step 1. The time series is integrated as } Y(i) = \sum_{k=1}^{i} [X_k - X_{\text{ave}}], i = 1, 2, \ldots, N, \text{ where } X_{\text{ave}} \text{ is the sample mean over the whole time period.}
\text{[20] Step 2. The integrated time series is divided into } N_s = [N/s] \text{ nonoverlapping segments of equal length } s. \text{ Here, } [N/s] \text{ is the integer part of } N/s. \text{ Since the length } N \text{ of the series is often not a multiple of time scale } s, \text{ a short part of length } I_s = N - N_s s \text{ at the end of } Y(i) \text{ may remain. In order not to disregard this part, the same procedure is repeated starting from the opposite end. Therefore, } 2N_s \text{ segments are obtained altogether.}
\text{[21] Step 3. Calculate the local trend for each of the } 2N_s \text{ segments by a least-squares fit of the series, then determine the variance}
F^2(s, \nu) = \frac{1}{2} \sum_{i=1}^{N_s} \{Y([\nu - 1]s + i) - y_s(i)\}^2, \quad (5)
\text{for each segment } \nu = 1, 2, \ldots, N_s, \text{ and}
F^2(s, \nu) = \frac{1}{2} \sum_{i=1}^{N_s} \{Y([\nu - N_s]s + i + I_s) - y_s(i)\}^2, \quad (6)
\text{for each segment } \nu = N_s + 1, N_s + 2, \ldots, 2N_s. \text{ Here } I_s = N - N_s s, \text{ and } y_s(i) \text{ is the first-order polynomial fitting in the } \nu\text{th segment.}
\text{[22] Step 4. Average over all segments to get the second-order fluctuation function}
F(s) = \left\{\frac{1}{2N_s} \sum_{i=1}^{N_s} \left[F^2(s, \nu) \right] \right\}^{1/2}. \quad (7)
\text{By construction, } F(s) \text{ is only defined for } s \geq 3.
\text{[23] Step 5. Determine the scaling behavior of the fluctuation function by analyzing the log-log plots of } F(s) \text{ versus } s, \text{i.e., the power law}
F(s) \propto s^h, \quad (8)
in some range of time scale } s.
\text{[24] Kantelhardt et al. [2002] pointed out that for stationary time series, the exponent } h \text{ for small time scales is identical to the well-known Hurst exponent } H; \text{ for nonstationary signals, the relation between the exponent } h \text{ for small scales and the Hurst exponent } H \text{ is } H = h - 1. \text{ It is well known that for uncorrelated series, the scaling exponent } H \text{ equals 0.5; the range } 0.5 < H < 1 \text{ indicates long memory or persistence; and the range } 0 < H < 0.5 \text{ indicates short memory or antipersistence. Hence we can use the value of } H \text{ calculated from } h \text{ to detect the nature of memory in time series.}
\text{[25] When equation (1) has a stationary solution, Anh et al. [2008] suggested a method to estimate the fractional order } \nu \text{ on the basis of an estimation of the scaling exponent } h, \text{ namely, by the relationship } \nu = h - \frac{1}{2}.
\text{2.4. Algorithm for Simulation of Fractional Stochastic Differential Equation}
\text{[26] First, the empirical PDF of the given time series is computed. We denote this empirical PDF as } f_0(x). \text{ The}
parameters \(\alpha, \beta, \gamma, \) and \(\delta \) of the \(\alpha \)-stable distribution are then estimated by maximum likelihood. Then we use the DFA to estimate the parameter \(h \) and get an estimate for the parameter \(\nu \) by the relationship \(\nu = h - 1/2 \). Setting initial values for \(\kappa \) and \(\eta \), we then generate a sample path of the process \(X(t) \) by the approximation algorithm given in [Anh and McVinish, 2003] or [Anh et al., 2008] on the basis of these estimated values for \(\alpha, \beta, \gamma, \delta, \) and \(\nu \) in the FSDE (1). Another empirical PDF based on this path of \(X(t) \) is then computed.

[27] The procedure is continued for different sets of values of the parameters \((\kappa, \eta) \), and we denote the resulting empirical PDF in each iteration as \(f(x) \). The estimates of the parameters of equation (1) are those corresponding to

\[
\min_{\kappa, \eta} \sum_{i=1}^{N} \left(f_0(x_i) - \tilde{f}(x_i) \right)^2, \tag{9}
\]

where \(N \) is the number of points on the PDF curve we selected.

[28] We solve problem (9) by using the function \texttt{fminsearch} in MATLAB version 7.1. This algorithm finds the minimum of a scalar function of several variables based on the Nelder-Mead simplex search method [Lagarias et al., 1998]. It should be noted that for each initial set of parameters, the PDF \(f(x) \) may have to be computed a large number of times before the minimum is reached.

[29] A solution path of equation (1) on the basis of these estimates is generated. To compare the patterns of the original and simulated series, we replaced values higher than the minimum value or less than the minimum value of the original time series by a uniformly random number between the minimum value and the maximum value.

2.5. Empirical Mode Decomposition

[30] Lin et al. [2009] described the traditional empirical mode decomposition (EMD) and presented a new approach to EMD. We outline the method of Lin et al. [2009] here. The traditional EMD for data, which is a highly adaptive scheme serving as a complement to Fourier and wavelet transforms, was originally proposed by Huang et al. [1998]. In EMD, a complicated data set is decomposed into a finite, often small, number of components called intrinsic mode functions. EMD has been used successfully in many applications in analyzing a diverse range of data sets in biological and medical sciences, geology, astronomy, engineering, and other fields [e.g., Janosi and Muller, 2005; Shi et al., 2008].

[31] The original EMD is obtained through a sifting algorithm: Let \(\{t_j \} \) be the local maxima of a signal \(X(t) \). The cubic spline \(E_U(t) \) connecting the points \(\{(t_j, X(t_j))\} \) is referred to as the upper envelope of \(X \). The lower envelope \(E_L(t) \) is similarly obtained from the local minima \(\{s_j \} \) of \(X(t) \). Then we define the operator \(S \) by

\[
S(X) = X - \frac{1}{2}(E_U + E_L).
\]

In the so-called sifting algorithm, the first intrinsic mode function the EMD is given by

\[
I_1 = \lim_{h \to \infty} S^h(X).
\]

Subsequent intrinsic mode functions in the EMD are obtained recursively by

\[
I_k = \lim_{h \to \infty} S^h(X - I_1 - \ldots - I_{k-1}).
\]

The process stops when \(Y = X - I_1 - I_2 - \ldots - I_m \) has at most one local maximum or local minimum. This function \(Y(t) \) denotes the local trend in \(X(t) \).

[32] Lin et al. [2009] proposed a new algorithm called iterative filtering for EMD. Instead of using the envelopes generated by spline in the sifting algorithm, in this new algorithm a low-pass filter is used to generate a moving average to replace the mean of the envelopes. The essence of the sifting algorithm remains. Let \(\mathcal{L} \) be an operator that is a low-pass filter, for which \(S(X)(t) \) represents the moving average of \(X \). We now define

\[
T(X) = X - \mathcal{L}(X).
\]

In this approach, the low-pass filter \(\mathcal{L} \) is dependent on the data \(X \). For a given \(X(t) \), we choose a low-pass filter \(\mathcal{L}_1 \) accordingly and set \(T_1 = X - \mathcal{L}_1 \), where \(I \) is the identity operator. The first intrinsic mode function in the new EMD is given by \(\lim_{m \to \infty} \mathcal{T}^m(X) \), and subsequently the \(k \)-th intrinsic mode function \(I_k \) is obtained first by selecting a low-pass filter \(\mathcal{L}_k \) according to the data \(X - I_1 - I_2 - \ldots - I_{k-1} \) and iterations \(I_k = \lim_{m \to \infty} \mathcal{T}^m(X - I_1 - I_2 - \ldots - I_{k-1}) \), where \(T_k = X - \mathcal{L}_k \). Again, the process stops when \(Y = X - I_1 - I_2 - \ldots - I_m \) has at most one local maximum or local minimum. Lin et al. [2009] suggested using the filter \(Y = \mathcal{L}(X) \) having the form \(Y(n) = \sum_{j=-m}^{m} a_j X(n+j) \) and proved the convergence of the sifting algorithm for a class of filters. We choose the filter given by \(a_j = \frac{m+1}{m+1-j} \), \(j = -m, \ldots, m \) for this study, which is simple but works well and is shown to converge [Lin et al., 2009].

3. Data Analysis

[33] We use the above methods to model the hourly averaged time series \(B_w \) from 22 INTERMAGNET stations. We collect the stations into six groups for the year 2000: Southwest North America (NA1), Northeast North America (NA2), central Europe (CEUR), northern Europe (NEUR), Australasia (AUS), and Asia (ASIA). The NA1 group includes the stations Boulder (BOU), Fresno (FRN), Tucson (TUC), and Del Rio (DLR). The NA2 group includes the stations Fort Churchill (FCC), Poste-de-la-Baleine (PBQ), St. John’s (STJ), and Ottawa (OTT). The CEUR group includes the stations Niemegk (NGK), Budkov (BDV), Furstenfeldbruck (FUR), and Nagycenk (NCK). The NEUR group includes the stations Abisko (ABK), Sodankyla (SOD), Numijarvi (NUR), and Lovo (LOV). The AUS group includes the stations Kakadu (KDU), Charters Towers (CTA), and Alice Springs (ASP). The ASIA group includes the stations Memumbetsu (MMB), Beijing Ming Tombs (BMT), and Kakioka (KAK). The geomagnetic latitudes of the stations are listed in Table 1. The top of Figure 1 shows the time series from the BOU station in NA1 as an example.

[34] The empirical density of this time series, as shown in Figure 2, is consistent with a skewed \(\alpha \)-stable distribution. Hence we used maximum likelihood (implemented by the program STABLE downloaded from J. P. Nolan’s web site:...
http://www.academic2.american.edu/jpnolan) to estimate the parameters α, β, γ, and δ in the α-stable distribution and generate the corresponding PDF to fit the empirical density of the observed time series. We found that the α-stable distribution provides a reasonably good fit to the probability density of the data (see Figure 2). The estimated values of α, β, γ, and δ for B_x of these stations are given in Table 1.

Then we performed a DFA on the B_x data. For the given time series, we found good linear relationships of $\log_{10} F(s)$ versus $\log_{10} s$ in the time scale range of $5 \leq s \leq 25$ hours (almost a day). The estimated values of the exponent h for B_x are given in Table 1. As an example, the DFA slope estimation for the B_x at the BOU station is given in Figure 3. The h values of the B_x time series, which vary in the range $1.0 < h < 1.5$, indicate that the observed B_x time series are nonstationary. From the relationship $H = h - 1$ between the exponent h and the Hurst exponent H for the nonstationary case, the H values varying in the range $0 < H < 0.5$ indicate that the observed B_x time series are antipersistent.

Since the local trends are pronounced in the magnetic field data, we used the traditional EMD [Huang et al., 1998] and the new EMD developed by Lin et al. [2009] to get

![Figure 1. The hourly B_x component of the magnetic field for the year 2000 at station Boulder (BOU) and its fractional stochastic differential equation simulation.](image1)

![Figure 2. The α-stable fit for the probability density of the hourly component B_x at station Boulder (BOU).](image2)
these local trends. We found that both EMDs can trace out the trends, but the new EMD works slightly better. Hence we only show the results using the new EMD in the following. We used the new EMD to get the intrinsic mode functions as displayed in Figure 4, which show that the randomness becomes less from I_1 to I_4, and I_4 is relatively smooth. Hence we define the local trend of the magnetic field data as $Y = X - (I_1 + I_2 + I_3 + I_4)$ as in Shi et al. [2008].

We then removed the local trend from the raw data by $X - Y$ to get the detrended data $(I_1 + I_2 + I_3 + I_4)$, which appear to be stationary. As an example, we get the local trend of B_x data at the BOU station from the bottom of Figure 4 and show the detrended data in the top left column of Figure 5.

![Figure 3](image1.png)

Figure 3. Estimation of the h exponent via the slope of the regression $\log_{10}(F(s))$ vs. $\log_{10}(s)$ for the B_x time series at station Boulder (BOU) using detrended fluctuation analysis. The slope is the same as h in Table 1.

![Figure 4](image2.png)

Figure 4. The intrinsic mode functions and trend of the B_x data of station Boulder (BOU) using empirical mode decomposition.
distribution. Then we used the slope of DFA in the time scale range \(11 \leq s \leq 47\), which gives good linear relationships, to infer the exponent \(h\) and get an estimate of the parameter \(\nu\) by the relationship \(\nu = h - 1/2\). Last we fixed the estimated values of the parameters \(\alpha, \beta, \gamma, \delta, \) and \(\nu\) in the FSDE (1) and used the simulation algorithm given in Anh et al. [2008] to estimate the coefficients \(\kappa, \eta\) by equation (9). In the last step, we set the initial value of \((\kappa, \eta)\) as \((1.5, 1.5)\) for the NA2 and NEUR stations, and \((1.5, 2.5)\) for the other stations, respectively, and set \(N = 130\) in equation (9) (one can set the value of \(N\) as large as possible; usually a number larger than 100 is sufficient). We found that the FSDE simulates well all detrended \(B_x\) time series.

As an example, we show the simulation of the detrended \(B_x\) at the BOU station in the left column of Figure 5 and the corresponding empirical density of the detrended data in its right column. The estimated values of all the parameters \(\alpha, \beta, \gamma, \delta, \nu, \kappa,\) and \(\eta\) with the error (i.e., the minimum value in equation (9)) for the detrended \(B_x\) at the selected stations are listed in Table 2. Since the statistical estimation of each FSDE is obtained via minimizing the mean square error between the empirical PDEs of the data and simulated paths as defined in equation (9), we evaluate its performance on the basis of the relative standard error (RSE) \(e\) defined as \(e_1/e_2\), where

\[
e_1 = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \left(f(x_i) - \bar{f}(x_i) \right)^2},
\]

\[
e_2 = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \left(f(x_i) - f_{\text{ave}} \right)^2}.
\]

Here, \(f(x)\) is the empirical PDF of the detrended data, with average value \(f_{\text{ave}}\), and \(\bar{f}(x)\) is the PDF of a simulated path. The goodness of fit is indicated by the result \(e < 1.0\) as pointed out by Anh et al. [2002a]. The values of the RSE \(e\)

Figure 5. (Left): the fractional stochastic differential equation simulation of the detrended data \(B_x - Y\) at station Boulder (BOU). (Right): the corresponding probability density of the detrended data.

Figure 6. The hourly \(B_x\) component for the year 2000 at station Nagycenk (NCK) and its fractional stochastic differential equation simulation (Left), and those at station Alice Springs (ASP) (Right).

for the detrended B_x at the selected stations are listed in Table 2. All the values of e are smaller than 1.0 in Table 2, and most are smaller than 0.5, indicating that the FSDE performs well in simulating detrended data.

If the FSDE simulation of the detrended data is denoted as \hat{X}_{detrend}, a simulation of each time series B_x is then obtained as the sum of such a simulated path \hat{X}_{detrend} and the fitted trend Y. As examples, we show the simulation of the B_x time series at the BOU station at the bottom of Figure 1 and the simulations of B_x time series at stations NCK and ASP in Figure 6. The simulated paths trace very well those of the observed time series. The results indicate that the FSDE (1) in combination with EMD provides a good method to model the B_x component of the magnetic field. In fact, we also tried the method on the B_y and B_z components, and the simulations are also excellent for all 22 stations.

A similar FSDE was considered by Anh et al. [2008] to model the AE index data. The difference between the FSDE in this paper and that used by Anh et al. [2008] is the Lévy noise term. The FSDE used by Anh et al. [2008] is driven by an inverse Gaussian marginal distribution, whereas the FSDE in this paper is driven by an α-stable distribution. This difference in the selection simply reflects the form of the empirical density in each case. Another difference is that the method used by Anh et al. [2008] uses FSDE alone, while we use FSDE and EMD together here. We also tried to simulate the B_x data using the method used by Anh et al. [2008], but the simulation results are inadequate. This indicates that the B_x time series are more complicated than the AE index.

4. Discussion

The 22 stations as listed in Table 1 together with their geomagnetic latitudes represent the low-latitude stations (the group AUS), the midlatitude stations (the groups NA1, CEUR, ASIA, and the stations STJ and OTT in NA2 and LOV and NUR in NEUR) and those above 60°N (the stations FCC and PBQ in NA2 and ABK and SOD in NEUR). For the purpose of clustering of these stations, the two most significant parameters are the stability exponent α and the degree of differentiation ν (or h as reported). When the time series is stationary, the value ν in the interval (0,1/2) signifies its long-range dependence [Anh et al., 2002b]. When ν tends to 1/2, the time series approaches nonstationarity. On the other hand, it was shown by Jaffard [1999] that an α-stable process has multifractal paths; but this multifractality is characterized by a linear singularity spectrum, whereas a typical multifractal process in turbulence has a nonlinear (concave) singularity spectrum.

The estimates of α reported in Table 2 based on the original time series clearly show two distinct clusters: those stations above 60°N (with $\alpha = 1.27$ for FCC and PBQ and α in the interval (0.94,0.98) for ABQ and SOD) and the remaining stations (with α in the interval (1.58, 1.71). This grouping based on the empirical densities of the B_x time series already supports the assertion that the statistical nature of the magnetospheric activities is different for latitudes above 60°N (high latitudes) and those below it (mid- and low latitudes). The high-latitude behavior is consistent with that of the AE, which is more strongly influenced by the solar wind, as indicated by the low values of α. On the other hand, similar values of the exponent α indicate that both mid- and low latitudes have the same statistical nature.

To further examine this latter assertion, we must look at the estimates of the scaling exponent h obtained from a DFA. The last column of Table 1 shows that the exponent h is similar for all the stations. This may be due to the dominance of the local trend component in each time series. This trend component is consistent with the storm pattern apparent in the D_n. We have captured this local trend in an empirical mode decomposition. Note that in this EMD approach, there is no need to select a wavelet-type function for the decomposition, and a smooth trend component is obtained after a reasonable number of steps (four intrinsic mode functions as exemplified in Figure 4). After removing this trend component, another DFA is performed on the detrended data; the results are shown in Table 2. It is interesting that the new estimates of the scaling exponent h now show two clear clusters: one consisting of NA1, CEUR, AUS, and ASIA with $h = 1$ approximately, and the other consisting of NA2 and NEUR with $h = 0.75$ approximately. This grouping again confirms that the mid- and low-latitude stations have the same scaling behavior, whereas those in NA2 and NEUR are more strongly influenced by the solar wind. The estimates of the α-stability exponent mostly remain the same for NA1, CEUR, AUS, and ASIA, as well as FCC and PBQ in NA2 and ABK and SOD in NEUR. Those stations STJ and OTT in NA2 and LOV and NUR in NEUR are slightly affected by the detrending. The results indicate that trend removal would not alter in any significant way the clustering obtained in phase 1 above.

Another purpose of this paper is to construct a stochastic model for the detrended (stationary) component of the B_x time series. The model suggested is the FSDE (1). The shape of the empirical density and the estimates of the parameters in Table 2 suggest the use of an α-stable noise to drive the equation. The estimates $h = 1$ then yield the Stokes-Boussinesq-Basset equation (3) for the mid- and low-latitude stations. As noted by Anh et al. [2008] in describing the motion of a spherical particle of mass m and radius a in a fluid with kinematic viscosity ν, Stokes [1850], Boussinesq [1885], and Basset [1888] proposed a retarded viscous force given by

$$F(t) = -\frac{1}{\mu} \frac{a}{\sqrt{\pi \nu}} \int_0^t \frac{1}{\sqrt{t-\tau}} \frac{d\xi}{d\tau} d\tau,$$

where $\xi(t)$ is the velocity of the particle and μ denotes the mobility coefficient. On the basis of Newton’s second law that force = mass \times acceleration, the equation of motion of the particle is described by

$$m \frac{d\xi}{dt} = -\frac{1}{\mu} \frac{a}{\sqrt{\pi \nu}} \int_0^t \frac{1}{\sqrt{t-\tau}} \frac{d\xi}{d\tau} d\tau + dL$$

where dL denotes a random force arising from rapid thermal fluctuations. Using the notation of fractional derivative (2) with $n = 1$, equation (10) is identical to equation (3) with suitably defined κ and η. The goodness of fit of the probability densities and realistic simulations from the model indicate that the mid- and low latitudes have the type of
dynamics and scaling as described by the Stokes-Boussinesq-Basset equation (3).

5. Conclusions

[46] The numerical results from DFA show that the B_x time series are nonstationary and antipersistent. The α-stable density fits their empirical densities very well. The time series have pronounced local tendencies. EMD is found to be a suitable technique to fit the local trends of B_x data. These local trends must be removed before an FSDE can be developed. It is also found that FSDE in combination with EMD simulate very well the B_x time series.

[47] Another finding of this paper is the presence of two distinct scaling behaviors, one in the mid- and low latitudes similar to that of the D_p index and the other above latitude 60°N consistent with that of the AE index. These scaling behaviors, as depicted by the α-stability exponent and the scaling exponent, are characteristic of the two clusters of the INTERMAGNET. They map into the inner magnetosphere and the outer magnetosphere, respectively.

[48] The results provide strong evidence that the statistical nature of magnetospheric activities, driven by the solar wind, is different from high latitudes to mid- and low latitudes. The dynamical properties of the magnetosphere are less complex at mid- and low latitudes and can thus be described by fewer degrees of freedom than the high-latitude magnetosphere.

Acknowledgments. This research was partially supported by the Australian Research Council grant DP0559807, the National Science Foundation grants ATM-0449403 and DMS-0813750, the Chinese Program for New Century Excellent Talents in University grant NCET-08-0868, Hunan Provincial Natural Science Foundation of China grant 10J17001, the Aim Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province of China, and Furong distinguished professor program of Hunan Province (China).

Philippa Browning thanks the reviewers for their assistance in evaluating this paper.

References

V. Anh and Z.-G. Yu, Discipline of Mathematical Science, Faculty of Science and Technology, Queensland University of Technology, GPO Box 2434, Brisbane, Q4001, Australia. (yuzg1970@yahoo.com)

D. Mao and Y. Wang, Department of Mathematics, Michigan State University, East Lansing, MI 48824-1027, USA.

J. Wanliss, Presbyterian College, 503 South Broad Street, Clinton, SC 29325, USA.