
University of Central Florida University of Central Florida

STARS STARS

Electronic Theses and Dissertations

2006

A Third-order Differential Steering Robot And Trajectory A Third-order Differential Steering Robot And Trajectory

Generation In The Presence Of Moving Obstacles Generation In The Presence Of Moving Obstacles

Vatana An
University of Central Florida

 Part of the Electrical and Electronics Commons

Find similar works at: https://stars.library.ucf.edu/etd

University of Central Florida Libraries http://library.ucf.edu

This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for

inclusion in Electronic Theses and Dissertations by an authorized administrator of STARS. For more information,

please contact STARS@ucf.edu.

STARS Citation STARS Citation
An, Vatana, "A Third-order Differential Steering Robot And Trajectory Generation In The Presence Of
Moving Obstacles" (2006). Electronic Theses and Dissertations. 1007.
https://stars.library.ucf.edu/etd/1007

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
https://network.bepress.com/hgg/discipline/270?utm_source=stars.library.ucf.edu%2Fetd%2F1007&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/1007?utm_source=stars.library.ucf.edu%2Fetd%2F1007&utm_medium=PDF&utm_campaign=PDFCoverPages

A THIRD-ORDER DIFFERENTIAL STEERING ROBOT
AND TRAJECTORY GENERATION IN THE PRESENCE

OF MOVING OBSTACLES

by

VATANA AN
B.S.C.E. University of Florida, 2002
B.S.E.E. University of Florida, 2002

A thesis submitted in partial fulfillment of the requirements
for the degree of Master of Science

in the Department of Electrical and Computer Engineering
in the College of Engineering and Computer Science

at the University of Central Florida
Orlando, Florida

Fall Term
2005

© 2005 Vatana An

 ii

ABSTRACT

In this thesis, four robots will be used to implement a collision-free trajectory

planning/replanning algorithm. The existence of a chained form transformation so that

the robot's model can be control in canonical form will be analyzed and proved. A

trajectory generation for obstacles avoidance will be derived, simulated, and

implemented. A specific PC based control algorithm will be developed.

Chapter two describes two wheels differential drive robot modeling and existence of

controllable canonical chained form. Chapter 3 describes criterion for avoiding dynamic

objects, a feasible collision-free trjectory parameterization, and solution to steering

velocity. Chapter 4 describes robot implementation, pc wireless interface, and strategy to

send and receive information wirelessly. The main robot will be moving in a dynamically

changing environment using canonical chained form. The other three robots will be used

as moving obstacles that will move with known piecewise constant velocities, and

therefore, with known trajectories. Their initial positions are assumed to be known as

well. The main robot will receive command from the computer such as how fast to move

and to turn in order to avoid collision. The robot will autonomously travel to the desired

destination collision-free.

 iii

ACKNOWLEDGMENTS

I would like to express my thankfulness to my advisor, Dr. Zhihua Qu, for giving me

suggestions, direction, and support, and my committee members, Dr. Wasfy Mikhael and

Dr. Michael Haralambous, for their assistance and advice. I would like to thank the

control and robotic lab fellows, Dr. Jing Wang, Mr. Jian Yang, and Mr. Ernesto Inoa for

meaningful discussion on different research topics and applications. I also would like to

thank my parents, my aunt, and my uncle for giving me constant financial support,

spiritual support, and most important of all their unconditional love. Finally I would like

to thank my brilliant sisters, Ratha, Borey, and Vithia, for their love and their

encouragement.

 iv

TABLE OF CONTENTS

LIST OF FIGURES…………………………………………………………………...…vii

LIST OF TABLES ………………………………………………………...…………... ix

1 INTRODUCTION…………………………………………….………………………..1

2 THEORETICAL BACKGROUNDS …...……….……………………………………..3

 2.1 Introduction……………………….………………………………………………..3

 2.2 Definition………………..…………………………………..……………………..3

 2.3 Modeling a Two-Wheel Differential Drive Robot……………….………………..4

 2.4 Chained Form...……………………………………………………..……………..6

 2.5 Proof………….…………………………………………………………...……….7

3 TRAJECTORY GENERATION …………………………….………………………...9

 3.1 Introduction ……………………………………………....………….……………9

 3.2 Criterion For Avoiding Dynamic Objects………………....…….……………….10

 3.3 A Feasible Collision-Free Trajectory Parameterization…...…………………….11

 3.4 Solution to Steering Velocity ……………………………………………………14

 3.5 Simulation……………...………………………………………..….……………17

4 IMPLEMENTATION ……..……………………………………...…………………..29

 4.1 Introduction…….………………………………….……………….…………….29

 4.2 Robot Hardware ………………………….…………………..………………….29

 4.3 PC Interface………………………………………………………………..…….40

 v

 4.4 Transmitting and Receiving Protocals……………….…………..………………43

 4.5 Result…………………………………………………………………………….51

5 CONCLUSION……………………………….………………….……………………53

APPENDIX A: CONTROL ALGORITHM CODE IN MATLAB..…………………….54

APPENDIX B: ROBOTS' CODES FOR OOPIC-R….…….……….……….…….……69

APPENDIX C: ROBOT'S CODE FOR BRAINSTEM.………………...………………90

LIST OF REFERENCE…………………………………………….…………………..102

 vi

LIST OF FIGURES

Figure 1: A Simple model of two wheels robot………………………………………...…4

Figure 2: A robot in the presence of moving obstacles………………………………….10

Figure 3: A robot in the presence of “static” obstacles………………….………………11

Figure 4: Wheels at different velocities…………….……………………………………17

Figure 5: Determining and calculating a4, u1, u2, and theta…………………………….18

Figure 6: Robot and moving obstacles’ trajectories………………..……………………19

Figure 7: Robot’s trajectory for the second sampling instant……………………………21

Figure 8: Robot’s trajectory for the third sampling instant… …...………………………21

Figure 9: Robot’s trajectory for the fourth sampling instant …………….……………...22

Figure 10: Robot’s trajectory for the fifth sampling instant …………………………….22

Figure 11: Robot’s trajectory for the sixth sampling instant …………...…………….…23

Figure 12: Robot’s trajectory for the seventh sampling instant …..…….……………….23

Figure 13: Robot’s trajectory for the eighth sampling instant ….……………………….24

Figure 14: Robot’s trajectory for the ninth sampling instant ……………………………24

Figure 15: Robot’s trajectory for the tenth sampling instant …….……….…………..…25

Figure 16: Robot’s trajectory for the eleventh sampling instant …..…………………….25

Figure 17: Robot’s trajectory for the last sampling instant …….………………….…….26

Figure 18: Speed Control (inch/second)………….……………………………………...26

Figure 19: Steering Control (radian/second)…………………………………………..…20

Figure 20: Angle in degree……………..……………………………….…………….…20

Figure 21: An OOPic-R………………………………………………………………….30

 vii

Figure 22: BrainStem Moto 1.0 Board……………………………….….………………31

Figure 23: FWCM……………….………………………………………………………32

Figure 24: Encoder Set…………….………………………………..……………………33

Figure 25: Obstacle 1's DC Motors Characteristic ……………………..………….……34

Figure 26: Obstacle 2's DC Motors Characteristic………………………………………34

Figure 27: Obstacle 3's DC Motors Characteristic………………………………………35

Figure 28: Main Robot's DC Motors Characteristic…………………..…………………35

Figure 29: Main Robot's Hardware Interface…………………….……………………...36

Figure 30: Obstacles' Hardware Interface……..…………………………………………37

Figure 31: Main Robot………………………………………………………………..…38

Figure 32: The Three Obstacles…………………………………...…….………………39

Figure 33: PC-FWCM Interface…………………….…………………………………...40

Figure 34: PC-OOPic R Interface……………..…………………………………………41

Figure 35: PC-PID Interface…………………………………………………………..…41

Figure 36: PC-Brainstem Interface………………………………...…….………………42

Figure 37: PC to Robot control architecture….…………………………………………43

Figure 38: PC to Robot and Obstacles control architecture……………….……….……44

Figure 39: OOPic-R Interface……………………………………..………..……………50

 viii

LIST OF TABLES

Table 1 A Snapshot of Obstacles Detection and the Resulting a4…………………….…28

 ix

1 INTRODUCTION

In theory, a robot or other objects to be control can be assumed perfect. Re-

alistically, even with today’s reasonable price devices, a robot may not behave

as well as desired. Typical problems include motor’s slow rate of convergence,

compass’ and encoder’s resolution, uneven weight, wear, rounding problem,

and uneven floor. However, under empirical experimentations, a robot can

be controlled to perform exceptionally well. In [4] and [5], a two-wheel robot

was used to implement different control laws. Even when theoretical result

guarantee some form of local asymptotic stability or convergence, practical

implementations may show sign of oscillatory or even unstable behavior.

In this thesis, a two-wheel differential robot will be used to implement a tra-

jectory generation in the presence of moving obstacles algorithm. A two-wheel

differential drive robot to be controlled will be represented by a third order

canonical chained form. A robot’s trajectory can be generated between any

two points as long as its boundary conditions and kinematic constraint are not

violate. Obstacle avoidance techniques will be used to steer the robot so that

collision-free trajectory can be achieved. Obstacles can be detect on the fly

when they come within sensing range. However, for simplicity, the robot are

assumed to know the paths of all the obstacles that come within sensing range.

The two wheels robot and moving obstacles will be wirelessly controlled from

a PC using a Fast Wireless Communication Module (FWCM). A PC is the

central processor that send/receive update information to/from the robot. All

robot and obstacles have on board microcontroller (OOPIC-R), magnetic com-

1

pass, encoder, and FWCM.

2

2 THEORETICAL BACKGROUNDS

2.1 Introduction

Murray and Sastry introduced chained form in [3] to steer nonholonomic car-

like robot from point A to point B. As will be seen in this chapter, chained form

is highly nonlinear. Traditional control technique for linear system cannot be

used to study chained form. Fortunately, chained form can be study by using

nonlinear tool, Lie Bracket. A model on a two-wheel differential robot is the

same as a four-wheel differential robot and will be derived and transformed

into chained form. A few terms will be defined in the next section to study

chained form.

2.2 Definition

The following terms are very important in studying chained form, which is

highly nonlinear.

Controllability : Controllability refers to a system that has input u(t) that

is able to drive a system from an initial state to a desired state.

Diffeomorphism : A diffeomorphism is a map between manifolds which is

differentiable and has a differentiable inverse.

Involutivity: A distribution is involutive if it is closed under Lie Bracket

operations.

Lie Bracket : A Lie Bracket takes two n dimensional vectors and returns a

new n-vector of linearly independent columns, it satisfies skew symmetry and

Jacobi identity.

Linear Independence: A set of n vectors v1, v2, ..., vn is linearly independent

if and only if the matrix rank of the matrix 4o = (v1v2...vn) is n.

3

Nonholonomic System : A nonholonomic system can instantly move for-

ward and backward, but cannot move to the right or to the left without wheels

slipping. To go to the right, the robot must turn right then drive forward.

Rank : The rank of any matrix A is the maximum number of linearly inde-

pendent columns in the matrix.

Span: The span of a set of vector v1, v2, ..., vn is the set of all their linear

combinations.

2.3 Modeling A Two-Wheel Differential Drive Robot

The complicity of robot modeling range from simple to complicate systems.

A car with one trailer as in [10] is a fifth order kinematic model. A car-like

robot as in [1] is a fourth order kinematic model. In this thesis a two-wheel

differential drive robot is a third order kinematic model. Unlike modeling of

a car-like robot, a two-wheel differential drive robot is very easy to model as

seen in figure 1.

L

GP

y

x

Figure 1: A simple model of two wheels robot

4

The following equations are obtained from figure 1:

ẋ = u1cos(θ),
ẏ = u1sin(θ),

θ̇ = u2,
(2.1)

where u1 and u2 represent speeding and turning respectively. Direct control on

ẋ can be done by letting vc1 = u1cos(θ), and u2 is to be determined. Equations

in (2.1) can be rewritten as

ẋ = vc1,
ẏ = vc1tanθ,

θ̇ = u2.
(2.2)

To obtain a canonical chained form, let z3 = y. Section 2.5 will show why

z3 = y is chosen to begin with. Taking derivative on both sides yield

ż3 = vc1tanθ. (2.3)

But ż3 = vc1z2 according to a chained form format that will be discussed in the

next section, section 2.4. Therefore z2 is equal to tanθ in (2.3). The sufficient

conditions that the assumption can be make will be proved in the next section.

Taking derivative of z2 yield

ż2 = sec2θθ̇,
ż2 = sec2θu2,

and by letting vc2 = sec2θu2, the following transformation will yield the canon-

ical chained form:

z1 = x,
z2 = tanθ,
z3 = y,
u1 = vc1secθ,
u2 = vc2cos

2θ.

(2.4)

Replacing u2 in term of vc2 in (2.2) yields

ẋ = vc1,
ẏ = vc1tanθ,

θ̇ = vc2cos
2θ.

(2.5)

5

Equations above can be transform into the following form, the third order

chained form:

ż1 = vc1,
ż2 = vc2,
ż3 = z2vc1.

(2.6)

2.4 Chained Form

Chained form is a nilpotent form that can be used as a canonical form to

describe nonholonomic system. Many mechanical systems with nonholonomic

constraints can be locally or globally converted to chained form through co-

ordinate change and control mapping. A canonical form allows one to design

open-loop or closed-loop controls for a whole class of nonholonomic systems.

A closed form kinematic model of chained form mobile robot is very useful for

kinematic analysis, design, and modeling of similar structures.

A chained form, a special triangular form, for n order

ż1 = vc1,
ż2 = vc2,
ż3 = z2vc1,

...
żn = zn−1vc1,

(2.7)

can be obtained from system of the form

ζ̇ = g1(ζ)u1 + g2(ζ)u2. (2.8)

The requirement is that (2.8) must be locally feedback transformable given

4o := span{g1, g2, adg1g2, · · ·, ad n−2
g1 g2},

41 := span{g2, adg1g2, · · ·, ad n−2
g1 g2},

42 := span{g2, adg1g2, · · ·, ad n−3
g1 g2}.

(2.9)

6

4o(ζ) = <n for all ζ in open set U ⊂ <n and 41 is involutive on U. A locally

feedback transformation will be in the following form:

z = φ(ζ)
vc = β(ζ, u).

(2.10)

Note that equations (2.4) are in the same form as equations (2.10). Rewriting

(2.5) in the following form

ζ̇(x, y, θ, u) =

1
tanθ

0

 vc1 +

0
0

cos2θ

 vc2, (2.11)

a systematic proof can be done to show that it can be locally feedback trans-

form into a third order chained form.

2.5 Proof

If ∆1 is an involutive distribution of dimension n-2, there exists a function h

such that dh · ∆2 = 0 and dh · adn−2
g1

g2 6= 0 that map ζ → z as

z1 = x,
z2 = Ln−2

g1
h

·
·
·

zn = y.

Since n = 3 for a third order system, z3 is chosen to be y as suggested under

equations (2.2). Using Lie Bracket, Lg1g2 is obtained as

Lg1
g2 =

∂g2

∂ζ
g1 −

∂g1

∂ζ
g2, (2.12)

Lg1
g2 =

0
−1
0

 .

7

From (2.8), (2.9), and (2.12)

∆o =

1 0 0
tanθ 0 −1

0 cos2θ 0

 ,

∆1 =

0 0
0 −1

cos2θ 0

 ,

∆2 =

0
0

cos2θ

 .

If h1 = x1 is chosen, then

dh1 · ∆1 = 0,

dh1 · g1 = 1,

dh1 · ∆2 = 0,

dh2 · ∆2 = 0,

dh2 · adn−2
g1

g2 6= 0,

ensure that there exists a locally feedback transformation.

8

3 TRAJECTORY GENERATION

3.1 Introduction

In [1] the authors stated that a trajectory is feasible if the boundary conditions

and kinematic constraints are satisfy. In that paper, a fourth order chained

form was used to study in determining trajectories in the presence of boundary

constraints, kinematic constraints, and moving obstacles. In this thesis, the

same idea will be applying on a third order chained form.

Lemma 1: For the kinematic model in chained form (2.6), there exist

two inputs vc1 and vc2. To obtain a feasible trajectory z3 = F (z1) between two

boundary conditions z(to) = zo = [zo
1, z

o
2, z

o
3]

T and z(tf) = zf = [zf
1 , zf

2 , zf
3]T ,

the following must hold:

zo
1 6= zf

1 .

If zo
1 = zf

1 , there must be an intermediate point zm with zm 6= zo
1 = zf

1 so that

singularity can be avoided. From (2.4), the boundary conditions in chained

form are

zo
1 = xo, zo

3 = F (zo
1) = yo,

dz3

dz1

∣

∣

∣

∣

z1=zo
1

= tan(θo), (3.1)

zf
1 = xf , zf

3 = F (zf
1) = yf ,

dz3

dz1

∣

∣

∣

∣

z1=z
f
1

= tan(θf). (3.2)

9

3.2 Criterion For Avoiding Dynamic Objects

Consider time interval t ∈ [to+kTs, to+(k+1)Ts] that the robot is at coordinate

(x(t), y(t)) and the ith obstacle is at coordinate (xi(t), yi(t)) in the figure below.

The robot is moving with to be determined vector velocity vr
4
= [ẋ(t) ẏ(t)]T .

vry

vrx

O2(k) = (x2(to+kTs), y2(to+kTs))

O1(k) = (x1(to+kTs), y1(to+kTs))

Figure 2: A robot in the presence of moving obstacles

The time-varying obstacle can be model as a moving point at initial location

Oi = (xk
i , y

k
i) with radius r, where xk

i = xi(to + kTs) and yk
i = yi(to + kTs).

The point Oi is moving at a known constant velocity vk
i

4
= [vk

i,x vk
i,y]

T .

The relative velocity between the robot and the ith obstacle is defined as

vk
r,i

4
= vr − vk

i . (3.3)

Considering relative velocity concept, figure 2 can be view as figure 3 in which

obstacles are ”static.”

10

x

R r2

R r1

ý y viy
k

x vix
k

O2(k) = (x2(to+kTs), y2(to+kTs))

O1(k) = (x1(to+kTs), y1(to+kTs))

(x',y’)

Figure 3: A robot in the presence of ”static” obstacles

Clearly seen from figure 3, there will be no collision for x′
i ∈ [x′

i, x
′
i] if

(y′

i − yk
i)2 + (x′

i − xk
i)

2 ≥ (ri + R)2, (3.4)

where x′
i = xk

i − ri − R, x′
i = xk

i + ri + R, x′
i = x − vk

i,xτ , y′
i = y − vk

i,yτ , and

τ = t − (to + kTs) for t ∈ [to + kTs, to + T]. In term of state transformation

(2.4), (3.4) become

(z′

3,i − yk
i)2 + (z′

1,i − xk
i)

2 ≥ (ri + R)2, (3.5)

where z′
1,i = z1 − vk

i,xτ and z′
3,i = z3 − vk

i,yτ .

3.3 A Feasible Collision-Free Trajectory Parameteriza-

tion

The time when a robot first start to move can assume to be 0. So for the first

sampling instant, the robot move from 0 to kTs. Using the first equation in

11

(2.6) where dz1 = vc1dt, z1 can be find by integrating both sides:
∫ kTs

0

dz1 =

∫ kTs

0

vc1dt.

Letting zk
i = zi(to + kTs) and zk−1

i = zi(to + (k − 1)Ts), the above equation

become

zk
1 = zo

1 + k
zf
1 − zo

1

k̄
,

z1(t) = zk
1 +

zf
1 − zo

1

T
(t − to − kTs) ∀t ∈ [to + kTs, tf].

From the second equation in (2.6)

∫ to+kTs

to+(k−1)Ts

dz2 =

∫ to+kTs

to+(k−1)Ts

vc2dt,

zk
2 − zk−1

2 =

∫ to+kTs

to+(k−1)Ts

vc2dt,

zk
2 = zk−1

2 +

∫ to+kTs

to+(k−1)Ts

vc2dt.

From the third equation in (2.6)

dz3

dt
= z2vc1,

zk
3 = zk−1

3 + vc1

∫ to+kTs

to+(k−1)Ts

zk
2ds. (3.6)

Replacing vc1 and zk
2 from above,

zk
3 = zk−1

3 + vc1z
k−1
2 (to + kTs − (to + (k − 1)Ts)) + vc1

∫ to+kTs

to+(k−1)Ts

∫ s

to+(k−1)Ts

vk−1
c2 dsdt,

zk
3 = zk−1

3 + vc1z
k−1
2 Ts + vc1

∫ to+kTs

to+(k−1)Ts

∫ s

to+(k−1)Ts

vk−1
c2 dsdt. (3.7)

Following the same proposition as in [1], a class of feasible and collision-free

trajectories can be parameterized in polynomial and matric form as

zk
3 (z1) = ak

o + ak
1z1 + ak

2z
2
1 + ak

3z
3
1 + ak

4z
4
1 , (3.8)

z3(z1) = F (z1) = akf(z1), (3.9)

12

respectively, where ak is a constant vector to be determined, and f(z1) is a

vector composed of basis function z1(t):

ak = [ak
o , a

k
1, a

k
2, a

k
3, a

k
4],

f(z1) = [1, z1(t), (z1(t))
2, (z1(t))

3, (z1(t))
4]T .

Taking derivative of (2.6) with respect to z1 yields

dzk
3

dzk
1

= ak
1 + 2ak

2z
k
1 + 3ak

3(z
k
1)2 + 4ak

4(z
k
1)3, (3.10)

where dzk
3/dzk

1 can be found from (2.5) as

dzk
3

dzk
1

=
zk
2v

k
c1

vk
c1

,

dzk
3

dzk
1

= zk
2 ,

zk
2 = ak

1 + 2ak
2z

k
1 + 3ak

3(z
k
1)2 + 4ak

4(z
k
1)3. (3.11)

From (3.1) and (3.2), the initial and the final boundary conditions are given

as follow

zk
3 = ak

o + ak
1z

k
1 + ak

2(z
k
1)2 + ak

3(z
k
1)3 + ak

4(z
k
1)4,

zk
2 = ak

1 + 2ak
2z

k
1 + 3ak

3(z
k
1)2 + 4ak

4(z
k
1)3,

zf
3 = ak

o + ak
1(z

f
1) + ak

2(z
f
1)2 + ak

3(z
f
1)3 + ak

4(z
f
1)4,

zf
2 = ak

1 + 2ak
2z

f
1 + 3ak

3(z
f
1)2 + 4ak

4(z
f
1)3.

(3.12)

When ak
4 is determined, the remaining a coefficients can be found from the

four equations four unknown variables in (3.12). Matrically,

Y k = (Bk)[ak
o , a

k
1, a

k
2, a

k
3]

T + Akak
4, (3.13)

where

Y k =

zk
3

zk
2

zf
3

zf
2

, Ak =

zk
1

4

4(zk
1)3

zf
1

4

4(zf
1)3

,

13

and

Bk =

1 zk
1 (zk

1)2 (zk
1)3

0 1 2zk
1 3(zk

1)2

1 zf
1 (zf

1)2 (zf
1)3

0 1 2zf
1 3(zf

1)2

.

Solving for [ak
o , a

k
1, a

k
2, a

k
3]

T in (3.12), we have

[ak
o , a

k
1, a

k
2, a

k
3]

T = (Bk)−1(Y k − Akak
4). (3.14)

3.4 Solution To Steering Velocity

From (3.5)

(z3 − vk
i,yτ − yk

i)2 + (z1 − vk
i,xτ

′ − xk
i)

2 ≥ (ri + R)2. (3.15)

The key to simplify the above equation is by simplifying z3. Rewriting (3.8)

as

zk
3 (z1) =

[

1 z1 z2
1 z3

1

]

ak
o

ak
1

ak
2

ak
3

+ ak
4z

4
1 . (3.16)

Replacing (3.14) in the above equation, we have

zk
3 (z1) = f(z1)(B

k)−1(Y k − Akak
4) + ak

4z
4
1 .

Or

zk
3 (z1) = f(z1)(B

k)−1Y k + (z4
1 − f(z1)(B

k)−1Ak)ak
4. (3.17)

Where f(z1) =
[

1 z1 z2
1 z3

1

]

. Replacing (3.17) in (3.15) yields a second

order polynomial

min
t∈[t∗i ,t

∗

i]
g2(z1(t), k)(ak

4)
2 + g1,i(z1(t), k, τ)ak

4 + g0,i(z1(t), k, τ)

∣

∣

∣

∣

τ=t−t0−kTs

≥ 0,

(3.18)

14

where

g2(z1(t), k) =
[

(z1(t))
4 − f(z1(t))(B

k)−1Ak
]2

,

g1,i(z1(t), k, τ) = 2
[

(z1(t))
4 − f(z1(t))(B

k)−1Ak
] [

f(z1(t))(B
k)−1Y k − yk

i − vk
i,yτ

]

,

g0,i(z1(t), k, τ) =
[

f(z1(t))(B
k)−1Y k − yk

i − vk
i,yτ

]2
+ (z1(t) − xk

i − vk
i,xτ)2 − (ri + R)2.

The next step is to determine the steering control input vc2. vk
c1 = C is assumed

to be a known constant, although it can be made varying as long as it does

not violate integration rule. Let vk
c2 = Ck

o +Ck
1 (t− to−kTs)+Ck

2 (t− to−kTs)
2,

where Ck
i , i = 0, 1, 2 are constants. Directly integrating (2.6) yields equations

that will lead to solution for steering velocity:

z1(t) = zk
1 + C(t − to − kTs),

z2(t) = zk
2 + Co(t − to − kTs) +

C1

2
(t − to − kTs)

2 +
C2

3
(t − to − kTs)

3,

z3(t) = zk
3 + Czk

2 (t − to − kTs) +
CoC

2
(t − to − kTs)

2 +
C1C

6
(t − to − kTs)

3

+
C2C

12
(t − to − kTs)

4, (3.19)

for t ∈ (to + kTs, to + (k + 1)Ts]. Substituting z1(t) = zk
1 + C(t− to − kTs) into

z3 = akf(z1) yields

z3(t) = bo + b1(t − to − kTs) + b2(t − to − kTs)
2

+b3(t − to − kTs)
3 + b4(t − to − kTs)

4,

where

bo = ak
o + ak

1z
k
1 + ak

2(z
k
1)2 + ak

3(z
k
1)3 + ak

4(z
k
1)4,

b1 = ak
1C + 2ak

2z
k
1C + 3ak

3(z
k
1)2C + 4ak

4(z
k
1)3C,

b2 = ak
2C

2 + 3ak
3z

k
1C

2 + 6ak
4(z

k
1)2C2,

b3 = 4ak
4z

k
1C

3 + ak
3C

3,

b4 = ak
4C

4. (3.20)

15

Comparing (3.19) and (3.20), the followings are obtained:

Ck
o = 2ak

2C + 6ak
3z

k
1C + 12ak

4(z
k
1)2C,

Ck
1 = 6ak

3C
2 + 24ak

4z
k
1C

2,

Ck
2 = 12ak

4C
3. (3.21)

Equations above result in steering inputs to achieve obstacle avoidance path

(3.9). For t ∈ (to + kTs, (k + 1)Ts],

vk
c1(t) =

zf
1 − zo

1

T
,

vk
c2(t) = (2ak

2 + 6ak
3z

k
1 + 12ak

4(z
k
1)2)C

+(6ak
3 + 24ak

4z
k
1)(t − to − kTs)C

2

+12ak
4(t − to − kTs)

2C3.

which result in the real and steering velocities of u1 and u2 respectively.

Based on the observation from the figure below, we can use u1 and u2 to find

the speed of left and right wheels of the robot.

θ̇ = (VR − VL)/L. (3.22)

Since the guide point is at the center of the robot,

u1 = (VR + VL)/2. (3.23)

16

L

Theta

VR - VL

VL

VR

Figure 4: Wheels at different velocities

3.5 Simulation

The second order inequality polynomial that dictate the solution of a4 has

three different scenarios: both a4min and a4max are positive, both a4min and

a4max are negative, and both are of different signs. When both a4min and a4max

are positive or both are negative, a4(k) can be chosen to be zero. When both

have different signs, a4(k) is the one with smaller magnitude. Appendix A

contains code that can easily be changed to different dynamic setting. The

code in appendix A follows the methodology displayed in figure 4.

17

boundary conditions
robot's parameters

obstacles' parameters if exist
sensing range

time to maneuver

Obstacle?
Yes No

 Is obs1 in
Rs?

 Is obs2 in
Rs?

 Is obs3 in
Rs?

NoYes Yes YesNo No

Time? Time? Time?Yes Yes YesNo No No

Calculate
a41min(k)
a41max(k)

object1(k)=1

Calculate
a42min(k)
a42max(k)

object2(k)=1

a41min(k)=0
a42max(k)=0
object1(k) = 0

a42min(k)=0
a42max(k)=0
object2(k) = 0

a43min(k)=0
a43max(k)=0
object3(k) = 0

a41min(k)=0
a42max(k)=0
object1(k) = 0

a42min(k)=0
a42max(k)=0
object2(k) = 0

Calculate
a43min(k)
a43max(k)

object3(k)=1

a43min(k)=0
a43max(k)=0
object3(k) = 0

a4(k) = 0
Calculate

u1(j)
u2(j)

theta(j)

How many
object?

Determine
a4(k)
u1(j)
u2(j)

theta(j)

01 or more

a4(k) = 0
Calculate

u1(j)
u2(j)

theta(j)

Figure 5: Determining and Calculating a4, u1, u2, and theta

18

For simplicity, all moving obstacles are assume to start from fixed locations as

shown in the figure below:

−20 0 20 40 60 80 100 120 140
−10

0

10

20

30

40

50

60

70

80

x (k=1)

y

Robot’s Start
Position

Obstacle 1’s Start Position

Obstacle 2’s Start Position

Obstacle 3’s
Start Position

Figure 6: Robot and moving obstacles’ trajectories

The trajectory of the robot is denoted by a solid blue line. The trajectory

of the first obstacle is denoted by a dotted light-blue line. The trajectory of

the second obstacle is denoted by a dash red line. The trajectory of the third

obstacle is denoted by dash light-blue line. Along each trajectory, there exist

10 circles representing the robot’s or obstacle’s position during that sampling

time. Placement of obstacles and robot was designed so that different inter-

esting cases are shown. Below are the setting used to obtained the figure above:

oRobot Parameter: R = 5

oBoundary Condition: q0 = (0, 0, 0) and qf = (70, 120, pi/4)

19

oMoving Obstacles: n = 3

O1(to) = [0, 20]T , O2(to) = [63, 35]T , O3(to) = [31, 60]T , and ri = 5 for i = 1,

2, 3.

oDesign Parameters: to = 0, T = 40 seconds, and Ts = 3 seconds.

oSpeed of Obstacles:

v0
1 = v1

1 = v2
1 = [0, 2.4]T , v3

1 = v4
1 = v5

1 = [3, 1.2]T , v6
1 = v7

1 = v8
1 = v9

1 = v10
1 =

[1.2, 1.2]T , and v11
1 = [0, 0]T ,

v0
2 = v1

2 = [−4.1, 0]T , v2
2 = [−3, 0]T , and v3

2 = v4
2 = v5

2 = v6
2 = v7

2 = v8
2 = v9

2 =

v10
2 = v11

2 = [3.6, 0.6]T ,

v0
3 = v1

3 = v2
3 = v3

3 = v4
3 = v5

3 = [−1.34, 0]T , and v6
3 = v7

3 = v8
3 = v9

3 = v10
3 =

v11
3 = [0, 0.85]T .

oThe Solution to the parameterized trajectory is listed in table 1.

Observing the figure above which illustrated the first sampling instant, the

robot would collide with obstacle one at time k = 5. The following two figures

still illustrate the collision between the robot and obstacle one. At k = 4,

when the robot detect that collision will occur, the algorithm generate a new

trajectory to avoid collision. See the figure at k = 4.

20

−20 0 20 40 60 80 100 120 140
−10

0

10

20

30

40

50

60

70

80

x (k=2)

y

Figure 7: Robot’s trajectory for the second sampling instant

−20 0 20 40 60 80 100 120 140
−10

0

10

20

30

40

50

60

70

80

x (k=3)

y

Figure 8: Robot’s trajectory for the third sampling instant

21

−20 0 20 40 60 80 100 120 140
−10

0

10

20

30

40

50

60

70

80

x (k=4)

y

Figure 9: Robot’s trajectory for the fourth sampling instant

−20 0 20 40 60 80 100 120 140
−10

0

10

20

30

40

50

60

70

80

x (k=5)

y

Figure 10: Robot’s trajectory for the fifth sampling instant

22

−20 0 20 40 60 80 100 120 140
−10

0

10

20

30

40

50

60

70

80

x (k=6)

y

Figure 11: Robot’s trajectory for the sixth sampling instant

−20 0 20 40 60 80 100 120 140
−10

0

10

20

30

40

50

60

70

80

x (k=7)

y

Figure 12: Robot’s trajectory for the seventh sampling instant

23

−20 0 20 40 60 80 100 120 140
−10

0

10

20

30

40

50

60

70

80

x (k=8)

y

Figure 13: Robot’s trajectory for the eighth sampling instant

−20 0 20 40 60 80 100 120 140
−10

0

10

20

30

40

50

60

70

80

x (k=9)

y

Figure 14: Robot’s trajectory for the ninth sampling instant

24

−20 0 20 40 60 80 100 120 140
−10

0

10

20

30

40

50

60

70

80

x (k=10)

y

Figure 15: Robot’s trajectory for the tenth sampling instant

−20 0 20 40 60 80 100 120 140
−10

0

10

20

30

40

50

60

70

80

x (k=11)

y

Figure 16: Robot’s trajectory for the eleventh sampling instant

25

−20 0 20 40 60 80 100 120 140
−10

0

10

20

30

40

50

60

70

80

x (k=12)

y

Figure 17: Robot’s trajectory for the last sampling instant

The control inputs that drive the robot from specified initial location to de-

sired location collision free are shown below.

0 5 10 15 20 25 30 35 40
0

1

2

3

4

5

6

u1

Time (sec)

Figure 18: Speed Control (inch/second)

26

0 5 10 15 20 25 30 35 40
−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

u2

Time (sec)

Figure 19: Steering Control (inch/second)

0 5 10 15 20 25 30 35 40
−60

−40

−20

0

20

40

60

80

th
et

a

Time (sec)

Figure 20: Angle in degree

27

In table 1, the 1 or 0 value under obstacle columns represent that obstacle is

being seen by the robot or not being seen by the robot during time interval k.

Table 1: A Snapshot of Obstacles Detection and the Resulting a4
k Object1(k) Object2(k) Object3(k) a4(k) * 104

1 1 0 0 0
2 1 1 0 0
3 1 1 0 0
4 1 1 0 −0.0996
5 1 1 0 −0.1282
6 1 1 0 −0.1708
7 1 1 0 −0.2276
8 1 1 0 −0.3046
9 1 1 0 −0.3685
10 1 1 0 −0.3736
11 1 1 1 −0.3736
12 1 1 1 −0.3736

28

4 IMPLEMENTATION

4.1 Introduction

Global positioning system (GPS) allows a relatively precise dynamic measure-

ment in the open considering how big the Earth is. Using a combination of

GPS, inertial sensor, compass, and encoder, a desired precision can be ob-

tained. Unfortunately, GPS does not work inside a building. So dynamic

measurement has to be done based on dead-reckoning technique that depend

on the assumption that the robot know where it begin. As the wheel roll,

encoder records the distance and direction travel. At the same time a com-

pass and inertial sensor do their part by measuring the bearing and the rate

of turn respectively. Combining all values obtained by encoder, compass, and

inertial sensor, a precise measurement allow accurate determination and better

control of the robot’s movement. However, under careful experimentation, an

exceptional result can be obtained without the use of inertial sensor, especially

when the robot is very slow.

To communicate between the pc and a robot, a wireless system based on

frequency modulation is used. A specific pc interface is written in C++ to

communicate with the robots and all of the obstacles. The robot’s and ob-

stacles’ code are written in Visual Basic. The way pc communicate with the

robot and obstacles will be discussed in section 4.4.

4.2 Robot Hardware

Every robot and obstacle contains a microcontroller (OOPIC-R), a fast wire-

less communication module (FWCM), a magnetic compass, and an encoder.

29

They will be described in the following order: microcontroller, FWCM, en-

coder set, and dc motors.

Microcontroller

The OOPic-R board includes a serial port, 16 bidirection lines, serial LCDs,

I2C network, two voltage regulators, three programmable push buttons, three

indicator LED’s, a speaker, and the OOPic2+ firmware built on the capabili-

ties of the PIC16F877. Below is a picture of an OOPic-R microcontroller:

Figure 21: an OOPic-R

30

The BrainStem Moto 1.0 Module offers two channels of high resolution motion

control. The two channel offer flexible pulse width modulation or proportional

integral derivative control of motors with various types of feedback including

encoders, quadrature encoders, analog input, and Back-EMF speed control.

Figure 22: BrainStem Moto 1.0 Board

31

Wireless Communication Module

Fast Wireless Communication Module or FWCM can communicate with up to

255 other FWCMs as far away as 300 meters. FWCM can transmit or receive

9 bytes at a time in just 200 milliseconds. Having 100 percent data accuracy

with packet checking and error correction and anti-collision, FWCM is an ideal

choice for this experimentation. There are 3 available modes in FWCM such

as normal, broadcast, and autonomous. Any mode can be used at any time,

but only normal and broadcast mode allow a network of up to 255 nodes. In

autonomous mode, no more than 4 nodes network is allowed. Normal mode

allows bidirectional transmission among nodes, but only two nodes at a time.

Broadcast mode allows a node to communicate up to 254 other nodes at one

time. The protocal to communicate with other FWCM will be discussed in

section 4.4.

Figure 23: FWCM

32

Encoder

Encoder below is specifically for standard servo motors which have been mod-

ified to dc motors. It produces standard channel A/channel B raw quadrature

outputs, decoded clock, and direction signals. With just channel A/channel

B outputs, speed and distance travel can be measured. In each rotation of a

wheel, 128 clock ticks is counted. Since the wheel of a robot and obstacles

have a diameter of approximately 2.63 inches, the circumference of each wheel

is 8.23 inches. Therefore, 15.5 clock ticks is equal to an inch.

Figure 24: Encoder Set

DC Motor

The dynamic of each motor is very similar to each other. The dc motors used

in robot 1, robot 2, robot 3, and robot 4 have characteristics as illustrated by

the following figures:

33

Robot 1's DC Motors Characteristic

0

1

2

3

4

5

6

140 160 180 200 220 240 260

PWM

D
is

ta
nc

e
(in

ch
/s

ec
on

d)

Left Motor

Right Motor

Figure 25: Obstacle 1’s DC Motors Characteristic

Robot 2's DC Motors Characteristic

0

1

2

3

4

5

6

140 160 180 200 220 240 260

PWM

D
is

ta
nc

e
(in

ch
/s

ec
on

d)

Left Motor

Right Motor

Figure 26: Obstacle 2’s DC Motors Characteristic

34

Robot 3's DC Motors Characteristic

0

1

2

3

4

5

6

140 160 180 200 220 240 260

PWM

D
is

ta
nc

e
(in

ch
/s

ec
on

d)

Right Motor

Left Motor

Figure 27: Obstacle 3’s DC Motors Characteristic

Robot 4's DC Motors Characteristic

0

1

2

3

4

5

6

140 160 180 200 220 240 260

PWM

D
is

ta
nc

e
(in

ch
/s

ec
on

d)

Right Motor

Left Motor

Figure 28: Main Robot’s DC Motors Characteristic

35

Left encoder
Right encoder's

interface is similar to left
encoder

Serial

FWCM

direction

PWM

quadrature B

quadrature A

Brainstem

 channel 1

channel 0

H-Bridge
8-volt

regulator

Left motor
 Right motor's

interface is
similar to left motor

5V from OOPic-R

ground

Regulated 5V

serial

OOPic-R

Figure 29: Main Robot’s Hardware Interface

36

Left encoder Right encoder

Serial

FWCM

8-volt
regulator

Left motor Right motor

ground

OOPic-R

Figure 30: Obstacles’ Hardware Interface

37

Figure 31: Main Robot

38

Figure 32: The Three Obstacles

39

Figure 33: PC-FWCM Interface

4.3 PC Interface

There are four different PC interfaces for this application. The first is a spe-

cific pc interface between the pc and FWCM I wrote for this experimentation.

The second one is the oopic interface which is provided by www.oopic.com. It

is used to write basic program and download into the oopic− r’s eeprom. The

third one is the moto interface provided by www.acroname.com to tune the

pid velocity control of both wheels. The last one is the console interface pro-

vided by www.acroname.com to program the Brainstem moto 1.0 module and

download the code into the board. Below are pictures of all of the interfaces

mentioned above:

40

Figure 34: PC-OOPic R Interface

Figure 35: PC-PID Interface

41

Figure 36: PC-Brainstem Interface

42

4.4 Transmitting And Receiving Protocals

Figure 33 illustrates a methodological controlling structure from a pc to the

robot. Figure 34 illustrates the bigger picture of how a pc communicate with

the robot and moving obstacles. In this experimentation, there are only 3

moving obstacles. However, the number of moving obstacles can be expanded

to 253 if there are only one robot and only one computer controlling them.

Follow are top down approaches for the PC to communicate with a robot and

obstacles.

FWCM

OOPic-R FWCM

Brainstem
moto 1.0

PID

Left DC Motor Left Wheel

Quadrature
Encoder

Right DC Motor Right Wheel

Quadrature
Encoder

PC
Control

Algorithm

Wireless 19200 bits
per second

100% data transmission
accuracy

I2C

I2C

Eight bytes per 200 ms

Figure 37: PC to Robot control architecture

43

Robot

PC
Control

Algorithm

Wireless 19200 bits
per second

Moving
obstacle 1

Moving
Obstacle 2

Moving
Obstacle 3

Moving
Obstacle n

 ……...

Figure 38: PC to Robot and Obstacles control architecture

PC-FWCM Side

A protocal to send data from a PC to the robot and other obstacles is very

simple. First a pc, a robot, and obstacles must have node addresses that are

within range of 1 and 255. Their node address cannot be the same if they are

to be unique. However, their node addresses can be the same if they are used

in broadcast mode and if they are using the same data. To send data from a

PC to FWCM through serial port, the following must be pre-configure:

Comport = any,

Rate = 19200,

Stopbits = 1,

Parity = No.

FWCM can send and receive up to 9 bytes in 200 ms. To send data, two

steps must be followed. First set up a protocal to send one byte or more from

44

a pc side. In C++Builder, a buffer to hold integers to be send to remote node

must be declare as unsigned char send[18],

send[0] = 91,

send[1] = 192,

send[2] = 0,

send[3] = 7,

send[4] = 254,

send[5] = 3,

send[6] = byte1,

send[7] = 7,

send[8] = byte2,

send[9] = byte3,

send[10]= byte4,

send[11]= byte5,

send[12]= byte6,

send[13]= byte7,

send[14]= byte8,

send[15]= byte9,

send[16]= 93,

send[17]= 93.

The second step is to send the buffer by issue the command

ComPort− >Write(send,18). send[0] contains 91 which is the start bit. send[1]

contains 192 which is the PC’s FWCM address. send[2] contains 0 which is the

register to configure the node address of the PC’s FWCM stored in send[3].

45

The node address of the PC is 7 which is in send[3]. send[4] contains the

remote node address of the robot or obstacles, the value in send[4] can be any

integer from 1 to 255. send[5] contains timeout value in millisecond. send[6],

send[8], send[9], up to send[15] are the bytes to be received by remote robot or

remote obstacles. send[7] points to the 7th register. When the 7th register is

pointed at, the 8th up to the 15th register will be available to store data. If the

8th register up to the 15th register contain valid value, a valid value is a value

in the range from 1 to 255, then the 2nd up to the 9th byte will be store in send

buffer to be send to remote node. If any register from register 8 to register 15

contain invalid data, then nothing will be send to remote node when a write

command is issued. If send[7] is not declare, then the send buffer only send

the first byte when a write command is issued. send[16] and send[17] contain

93 which is the end sequence. FWCM needs 2 end sequences.

Robot-FWCM Side

If sending data from the robot’s node is desired, then the same concept above

apply. If the PC is wanting to receive data from the robot, the following con-

cept will also apply. To receive data from the pc’s node, several steps must

be done. For simplicity, a simple and specific example is written to be ana-

lyze. The first line defines i2c object so that the OOPic-R can communicate

with FWCM. Line 2 defines local node address of the robot or the obstacle.

Line 3 to 11 define data the robot expected to receive from the PC. Line

12 defines FWCM’s address. The rest are switch statements. Just like most

programming languages, Visual Basic require a main prototype.

46

 1 Dim FWCM As New oi2c
 2 Dim LocNode As New oByte
 3 Dim byte1 As New oByte
 4 Dim byte2 As New oByte
 5 Dim byte3 As New oByte
 6 Dim byte4 As New oByte
 7 Dim byte5 As New oByte
 8 Dim byte6 As New oByte
 9 Dim byte7 As New oByte
10 Dim byte8 As New oByte
11 Dim byte9 As New oByte
12 Dim ReadAdr As New oByte
13 Dim Error As New oBit
14 Dim OError As New oBit
15 Dim ReadOK As New oBit
16 Dim Done As New oBit
17 Dim TOut As New oByte

1 Sub Main()
2 oopic.delay = 200
3 LocNode = 2
4 RemNode = 7
5 Const WriteTOut = 3
6 Const FWCMAdr = &h61
7 Call SetUpFWCM
8 Call Read_Data
9 End Sub

It take 2 seconds to initialize the FWCM as seen at line 2 above. Lines 3

and 4 assign local and remote node addresses or robot and the pc’s node

addresses respectively. Line 5 assigns timeout to be 3 milliseconds. Line 6

assigns FWCM’s address. Lines 7 and 8 call other functions. The functions

below are very much selves explanatory.

47

Sub Read_Data()
1 Do
2 do
3 call ReadFWCM
4 loop until ReadOK = cvTrue
5 loop 'keep reading
End Sub
Sub SetUpFWCM()
8 FWCM.Node = FWCMAdr 'Setup I2C address for FWCM
9 'Setup I2C addressing to FWCM
10 FWCM.Width = cv8bit 'Control Info is 1-byte
11 FWCM.Mode = cv10bit 'I2C mode is 10-Bit Addressing
12 FWCM.NoInc = cvFalse 'Increment on every read/write
13 FWCM.Location = 0 'point to local node address
14 FWCM.Value = LocNode 'and write local node address
End Sub

The function above is the most important function. The purpose of the Read-

FWCM is to receive meaningful and useful data. No data can be lost. The

received data will be used to drive the robot and obstacles. Line 6 in the

function above pointed to register 20 so that up to 9 bytes can be read and

store. It is analogous to register 7 for writing up to 9 bytes.

48

Sub ReadFWCM()
 1 FWCM.Location = 2 'Start at read status flag (R2)
 2 If FWCM.Value = 255 then 'Has data been received (R2) ?
 3 If FWCM.Value = 0 then 'Is there overflow?
 4 ReadAdr = FWCM.Value 'If not then store FWCM address
 5 byte1 = FWCM.Value
 6 FWCM.Location = 20
 7 byte2 = FWCM.Value
 8 byte3 = FWCM.Value
 9 byte4 = FWCM.Value
10 byte5 = FWCM.Value
11 byte6 = FWCM.Value
12 byte7 = FWCM.Value
13 byte8 = FWCM.Value
14 byte9 = FWCM.Value
15 OError = cvFalse 'Indicate no overflow error
16 ReadOK = cvTrue 'Indicate data has been read and stored
17 else
18 OError = cvTrue 'Indicate overflow error has occured
19 ReadOK = cvTrue 'Indicate data has been read
20 ReadAdr = FWCM.Value
21 end if
22 else
23 OError = cvFalse 'If no data read then no error
24 ReadOK = cvFalse 'and no data
25 end if
End Sub

49

OOPic-R and Brainstem Communication

The OOPic − R and Brainstem communicate with each other through I2C

protocal in the same way that OOPic − R communicate with FWCM. Just

like the OOPic−R’s way of obtaining its data from FWCM, the Brainstem’s

way of obtaining the data from the OOPic−R is the same way. Follow is an

example of how the OOPic − R and the Brainstem communicate with each

other.

The figure below is the program that have to be downloaded to the OOPic−R.

Figure 39: OOPic-R Interface

Line number 5 enable I2C communication with any device, the Brainstem

in this case, that have I2C network. The address of the I2C network on

the oopic − R is set to 4. The oByte i address which is assigned by the

OOPic − R compiler is 126. The figure below is the program that have to

be downloaded to the brainstem. All of the functions seen in that figure are

50

provided by Acroname. The first argument in aOOPic−WriteChar(ADDR−

OOPIC, (char)ADDR − I − V ALUE, 0, 2) is the address of the OOPic − R

as seen by the Brainstem; it is 8 in this example. I2C networking require the

address to be shifted left by 1 bit. The purpose of the example illustrated here

is to show how the byte i in an OOPic − R can be alter to any 8-bit value

by the Brainstem. The first alteration was done when the Brainstem write a

value of 2 to the OOPic − R. The second time, the Brainstem write a value

of 20. Note that the fourth argument in the aOOPic−WriteChar(ADDR−

OOPIC,(char)ADDR − I − V ALUE,0,2) is the written values.

4.5 Result

All of the components used to build the robot has some errors associate with

them. The robot platform contribute some errors such as slight different in

wheels and the plate that support the robot. This is known as a kinematic

imperfection of a mobile robot. The error can be reduce by following the

51

method used in [11]. A major error contributor is the rounding error. The

OOPic controller is configure to use an eight-bit integer, although it can be

difficultly configure to use as sixteen-bit integer. Since a lot of rounding were

made, a noticeable error is seen. Although there are problem from each and

every component, the algorithm provide a very good experimentation result

in locally closed loop control at the robot’s end.

52

5 CONCLUSION

The algorithm in [1] is indeed a very useful algorithm that provide analytical

solution to a class of nonholonomic system. From a simple two-wheel robot,

mathematical equations representing the robot’s kinematic and dynamic move-

ment were derived, proved, analyzed, simulated, and implemented successfully.

The algorithm, although very good, can be improved so that the robot can

take less time to avoid the obstacle.

My contributions include designing and building wireless mini robots, writ-

ing pc interface in C++ Builder, then matlab, and writing codes to programs

the robot and moving obstacles to perform a collision-free trajectory gener-

ation. The robot and moving obstacles can easily be reprogram to perform

other useful tasks such as formation control. This thesis provided me a lot of

experience and insight into theoretical research and practical implementation.

53

APPENDIX A: CONTROL ALGORITHM CODE IN MATLAB

 54

matlab code

clc;

global Fx0 Fy0 Fxf Fyf Ftheta0 Fthetaf p1x p1y p2x p2y p3x p3y p1vx1 p1vx2 p1vx3 p1vy1
p1vy2 p1vy3
global p2vx1 p2vx2 p2vx3 p2vy1 p2vy2 p2vy3 p3vx1 p3vx2 p3vx3 p3vy1 p3vy2 p3vy3
global p1vx4 p1vy4 p2vx4 p2vy4 p3vx4 p3vy4 ratio VR VL Tmedium
%Sensing Range
obstacle = 1;
Rs = 25;

%The boundary conditions in original space
%q0=(x0,y0,theta0)^T;
x0 = Fx0;
y0 = Fy0;
theta0 = Ftheta0*pi/180;

xf = Fxf;
yf = Fyf;
thetaf = Fthetaf*pi/180;

%The boundary conditions in transformed space
%initial point: z0
[z10, z20, z30] = ChainedTransform(x0, y0, theta0);

%final point: zf
[z1f, z2f, z3f] = ChainedTransform(xf, yf, thetaf);

%Time to steer the robot from initial point to final point
T = 40;

%Robot speed
C = (z1f - z10)/T;

%The vector of sampling time instant
Ts = [0 3 6 9 12 15 18 21 24 27 30 33 40];

%We observe the velocity change of objects every 3 seconds.

vo1x = [p1vx1 p1vx1 p1vx1 p1vx2 p1vx2 p1vx2 p1vx3 p1vx3 p1vx3 p1vx4 p1vx4 0*ratio];
vo1y = [p1vy1 p1vy1 p1vy1 p1vy2 p1vy2 p1vy2 p1vy3 p1vy3 p1vy3 p1vy4 p1vy4 0*ratio];

%Robot4

 55

%-3*ratio
vo2x = [p2vx1 p2vx1 -3*ratio p2vx2 p2vx2 p2vx2 p2vx3 p2vx3 p2vx3 p2vx4 p2vx4 p2vx4];
vo2y = [p2vy1 p2vy1 p2vy1 p2vy2 p2vy2 p2vy2 p2vy3 p2vy3 p2vy3 p2vy4 p2vy4 p2vy4];

%Robot6
vo3x = [p3vx1 p3vx1 p3vx1 p3vx2 p3vx2 p3vx2 p3vx3 p3vx3 p3vx3 p3vx4 p3vx4 p3vx4];
vo3y = [p3vy1 p3vy1 p3vy1 p3vy2 p3vy2 p3vy2 p3vy3 p3vy3 p3vy3 p3vy4 p3vy4 p3vy4];

%Computing step time
T1 = 1;%1;
tt = 0:T1:T;

%radius of obstacles
r = 5;
%radius of the robot
R = 5;

%initial position of moving obstacles
%Robot 5
xo10 = p1x;
yo10 = p1y;

%obstacle 6
xo20 = p2x;
yo20 = p2y;

%Robot 2
xo30 = p3x;
yo30 = p3y;

%Path of obstacles
xo1(1) = xo10;
yo1(1) = yo10;

xo2(1) = xo20;
yo2(1) = yo20;

xo3(1) = xo30;
yo3(1) = yo30;

%initial states
z1(1) = z10;
z2(1) = z20;
z3(1) = z30;

 56

x(1) = x0;
y(1) = y0;
theta(1) = theta0;

%initialize a4 of all 3 obstacles
a41max = 0;
a41min = 0;

a42max = 0;
a42min = 0;

a43max = 0;
a43min = 0;

a4max = 0;
a4min = 0;

clc;
c = fix(clock);
fprintf('started at %2i.%2i.%2i\n\n', ...
 c(4),c(5),c(6));

%checking for each time interval

for k=1:(length(Ts)-1)
 a4min = 0;
 a4max = 0;
 acommon1(k) = 0; %set to 1 if obstacle 1 is detected during time k
 acommon2(k) = 0; %set to 1 if obstacle 2 is detected during time k
 acommon3(k) = 0; %set to 1 if obstacle 3 is detected during time k
 %index of changing initial condition
 index = Ts(k)/T1+1;

 [B, Y, A] = CalculateBYA(index, z1, z1f, z3, z3f, z2, z2f);

%11

 if (obstacle == 0)
 a4(k) = 0;
 else

 if ((z3(index)- yo1(index))^2 + (z1(index) - xo1(index))^2) <= (Rs-r)*(Rs-r)
 [tmin1, tmax1] = TimeCheck(xo1, z10, k, index, vo1x, Ts, C, R, r, T);

 if ((tmin1 >=Ts(k)) || (tmax1 <=T))

 57

 acommon1(k) = 1; % a switch statement used to check the number of obstacle being seen at
anytime interval
 [a41min, a41max] = DetermineA4(tmin1, tmax1, z10, C, B, A, Y, k, index, xo1, yo1,
a41min, a41max, Ts, vo1x, vo1y, r, R);

 else acommon1(k) = 0;
 a41min = 0;
 a41max = 0;
 end
 else acommon1(k) = 0;
 a41min = 0;
 a41max = 0;
 end

%22

 if ((z3(index)- yo2(index))^2 + (z1(index) - xo2(index))^2) <= (Rs-r)*(Rs-r)
 [tmin2, tmax2] = TimeCheck(xo2, z10, k, index, vo2x, Ts, C, R, r, T);

 if ((tmin2 >=Ts(k)) || (tmax2 <=T))
 acommon2(k) = 1; % a switch statement used to check the number of obstacle if any
being detected at anytime interval
 [a42min, a42max] = DetermineA4(tmin2, tmax2, z10, C, B, A, Y, k, index, xo2, yo2,
a42min, a42max, Ts, vo2x, vo2y, r, R);
 else acommon2(k) = 0;
 a42min = 0;
 a42max = 0;
 end

 else acommon2(k) = 0;
 a42min = 0;
 a42max = 0;
 end

%33
 if ((z3(index)- yo3(index))^2 + (z1(index) - xo3(index))^2) <= (Rs-r)*(Rs-r)
 [tmin3, tmax3] = TimeCheck(xo3, z10, k, index, vo3x, Ts, C, R, r, T);

 if ((tmin3 >=Ts(k)) || (tmax3 <=T))
 acommon3(k) = 1; % a switch statement used to check the number of obstacle being
seen at anytime interval
 [a43min, a43max] = DetermineA4(tmin3, tmax3, z10, C, B, A, Y, k, index, xo3, yo3,
a43min, a43max, Ts, vo3x, vo3y, r, R);
 else acommon3(k) = 0;
 a43min = 0;

 58

 a43max = 0;
 end
 else
 acommon3(k) = 0;
 a43min = 0;
 a43max = 0;
 end

%%
%%%%%%%%%%%%%%%%%%%%%
%check the number of obstacle during each time interval and calculate
%a4(k), obstacle avoidance variable, accordingly.

 if ((acommon1(k) == 0) && (acommon2(k) == 0) && (acommon3(k) == 0)) % if no obstacle
is detected at k interval
 a4(k) = 0; %no need to avoid obstacle
 end
 if ((acommon1(k) == 0) && (acommon2(k) == 0) && (acommon3(k) == 1)) %if only
obstacle 3 is detected
 %find a4(k) based on second order nonlinear inequality
 a4(k) = DetermineA4k(a43min, a43max);
 end
 if ((acommon1(k) == 0) && (acommon2(k) == 1) && (acommon3(k) == 0)) %if only
obstacle 2 is detected
 %find a4(k) based on second order nonlinear inequality
 a4(k) = DetermineA4k(a42min, a42max);
 end
 if ((acommon1(k) == 0) && (acommon2(k) == 1) && (acommon3(k) == 1)) %if only 2
obstacles, 2 and 3, are detected
 %find a4(k) based on 2 second order nonlinear inequalities
 a4(k) = DetermineA4k2(a42min, a42max, a43min, a43max, a4min, a4max);
 end
 if ((acommon1(k) == 1) && (acommon2(k) == 0) && (acommon3(k) == 0)) %if only
obstacle 1 is detected
 %find a4(k) based on 2 second order nonlinear inequalities
 a4(k) = DetermineA4k(a41min, a41max);
 end
 if ((acommon1(k) == 1) && (acommon2(k) == 0) && (acommon3(k) == 1)) %if only 2
obstacles, 1 and 3, are detected
 %find a4(k) based on 2 second order nonlinear inequalities
 a4(k) = DetermineA4k2(a41min, a41max, a43min, a43max, a4min, a4max);
 end
 if ((acommon1(k) == 1) && (acommon2(k) == 1) && (acommon3(k) == 0)) %if only 2
obstacles, 1 and 2, are detected
 %find a4(k) based on 2 second order nonlinear inequalities

 59

 a4(k) = DetermineA4k2(a41min, a41max, a42min, a42max, a4min, a4max);
 end
 if ((acommon1(k) == 1) && (acommon2(k) == 1) && (acommon3(k) == 1)) %if all 3
obstacles, 1, 2, and 3, are detected
 %find a4(k) based on 3 second order nonlinear inequalities
 a4(k) = DetermineA4k3(a41min, a41max, a42min, a42max, a43min, a43max, a4min, a4max)
 end

end %end if there is obstacle or no obstacle

% calculate the remaining coefficients a0 to a3
 a0123=inv(B)*Y-inv(B)*A*a4(k); % 4x1 matrix
 a0(k)=a0123(1);
 a1(k)=a0123(2);
 a2(k)=a0123(3);
 a3(k)=a0123(4);

% calculate the steering inputs:
 C0(k)=2*a2(k)*C+ 6*a3(k)*z1(index)*C + 12*a4(k)*z1(index)^2*C;
 C1(k)=6*a3(k)*C^2 + 24*a4(k)*z1(index)*C^2;
 C2(k)=12*a4(k)*C^3;

% Produce the trajectory history of robot and obstacles

 for j=index:length(tt)
 % the trajectory in z plane

 z1(j) = z10+C*tt(j);
 z2(j) = z2(index)+C0(k)*(tt(j)-tt(index))+C1(k)*(tt(j)-tt(index))^2/2+...
 C2(k)*(tt(j)-tt(index))^3/3 ;
 z3(j) = z3(index)+C*z2(index)*(tt(j)-tt(index))+C*C0(k)*(tt(j)-tt(index))^2/2+...
 C*C1(k)*(tt(j)-tt(index))^3/6+C*C2(k)*(tt(j)-tt(index))^4/12;

 % the trajectory in x-y plane
 theta(j)=atan(z2(j));
 Tita(j) = theta(j)*180/pi;
 x(j)=z1(j);
 y(j)=z3(j);

 % steering input
 v1(j)=C;
 v2(j)=C0(k)+C1(k)*(tt(j)-tt(index))+C2(k)*(tt(j)-tt(index))^2;

 % real input
 u1(j)=v1(j)*sec(theta(j));

 60

 u2(j)=v2(j)*(cos(theta(j)))^2;

 % the motion of obstacles:
 xo1(j)=xo1(index)+vo1x(k)*(tt(j)-tt(index)); % The current position of obstacle 1;
 yo1(j)=yo1(index)+vo1y(k)*(tt(j)-tt(index));

 xo2(j)=xo2(index)+vo2x(k)*(tt(j)-tt(index)); % The current position of obstacle 2;
 yo2(j)=yo2(index)+vo2y(k)*(tt(j)-tt(index));

 xo3(j)=xo3(index)+vo3x(k)*(tt(j)-tt(index)); % The current position of obstacle 3;
 yo3(j)=yo3(index)+vo3y(k)*(tt(j)-tt(index));
 end

DTita(1) = atan2((y(2)-y(1)),(x(2)-x(1)))-0;

for i=1:(length(tt) - 2)
 angel1(i)=atan2((y(i+2)-y(i+1)),(x(i+2)-x(i+1)))*180/pi;
 angel2(i)=atan2((y(i+1)-y(i)),(x(i+1)-x(i)))*180/pi;
 DTita(i+1) = (angel1(i)-angel2(i));
end

for i=1:(length(tt) - 1)

 Tmedium(i) = 1;

 if (u2(i) > 0)

 %speed in term of inch/second
 VR(i) = ((2*u1(i)+u2(i)*4.74)/2); %Turn is Right Wheel
 VL(i) = (2*u1(i) - VR(i)); %Tturn is Left Wheel

 %speed in term of setpoint
 VR(i) = round(VR(i)*(128/(8.23))); %128 is the number of clock ticks per wheel revolution
 VL(i) = round(VL(i)*(128/(8.23))); %8.23 is the 2*pi*r (r=1.31 inches)
 %wireless data exchange only work with integer and with number
 %greater than 0

 if (VR(i) < 0)
 VR(i) = 0;
 end

 if (VL(i) < 0)
 VL(i) = 0;
 end

 61

 end

 if (u2(i) < 0)

 %speed in term of inch/second
 VL(i) = (0.5*(abs(u2(i))*4.74 + 2*u1(i)));
 VR(i) = (2*u1(i) - VL(i));

 %speed in term of setpoing
 VR(i) = round(VR(i)*(128/(8.23))); %128 is the number of clock ticks per wheel revolution
 VL(i) = round(VL(i)*(128/(8.23))); %8.23 is from 2*pi*r (r=1.31 inches)

 if (VR(i) < 0)
 VR(i) = 0;
 end

 if (VL(i) < 0)
 VL(i) = 0;
 end

 end

 VR(i) = VR(i) + 1;
 VL(i) = VL(i) + 1;
 end

 for p=1:40
 VL(p)
 end

 % keep the comparision trajectories
 if k==1
 x1=x;
 y1=y;
 end
 if k==2
 x2=x;
 y2=y;
 end
 if k==3

 62

 x3=x;
 y3=y;
 end
 if k==4
 x4=x;
 y4=y;
 end
 if k==5
 x5=x;
 y5=y;
 end
 if k==6
 x6=x;
 y6=y;
 end
 if k==7
 x7=x;
 y7=y;
 end
 if k==8
 x8=x;
 y8=y;
 end
 if k==9
 x9=x;
 y9=y;
 end
 if k==10
 x10=x;
 y10=y;
 end
 if k==11
 x11=x;
 y11=y;
 end
 if k==12
 x12=x;
 y12=y;
 end

end %k=1:(length(Ts)-1)
Limit = T/4;
c=fix(clock);
fprintf('end at %2i.%2i.%2i\n\n', ...
 c(4),c(5),c(6));

 63

for j=1:length(tt) % length(tt) = 401
 ttt(j)=tt(j);
end

R=2*R;
r=2*r;
figure
plot(x1,y1,'b-', xo1, yo1,'g:', xo2, yo2, 'r-.', xo3, yo3,'c--');
hold on
for i=1:Limit

 index1=4/T1*(i-1)+1; % every 3 sec, draw position of robot and objects
 rectangle('Curvature',[1 1],'EdgeColor','b', 'Position', [x1(index1)-R/2 y1(index1)-R/2 R R]);

 %if (obstacle ~= 0)
 rectangle('Curvature',[1 1], 'EdgeColor','g', 'Position', [xo1(index1)-r/2 yo1(index1)-r/2 r r]);
 rectangle('Curvature',[1 1], 'EdgeColor','r', 'Position', [xo2(index1)-r/2 yo2(index1)-r/2 r r]);
 rectangle('Curvature',[1 1], 'EdgeColor','c', 'Position', [xo3(index1)-r/2 yo3(index1)-r/2 r r]);
 %end

end
hold off

xlabel('x'); % (k=1)
ylabel('y');

figure
plot(x4,y4,'b-', xo1, yo1,'g:', xo2, yo2, 'r-.', xo3, yo3,'c--');
%x1,y1,'-', x2, y2, '-', x3,y3, '-',

hold on
for i=1:Limit

 index1=4/T1*(i-1)+1; % every 3 sec, draw position of robot and object

 rectangle('Curvature',[1 1], 'EdgeColor','b','Position', [x4(index1)-R/2 y4(index1)-R/2 R R]);
 %if (obstacle ~= 0)
 rectangle('Curvature',[1 1], 'EdgeColor','g', 'Position', [xo1(index1)-r/2 yo1(index1)-r/2 r r]);
 rectangle('Curvature',[1 1], 'EdgeColor','r', 'Position', [xo2(index1)-r/2 yo2(index1)-r/2 r r]);
 rectangle('Curvature',[1 1], 'EdgeColor','c', 'Position', [xo3(index1)-r/2 yo3(index1)-r/2 r r]);
 % end
end
hold off
xlabel('x');% (k=4)

 64

ylabel('y');

figure
plot(x12,y12,'b-', xo1, yo1,'g:', xo2, yo2, 'r-.', xo3, yo3,'c--');
%x8,y8,'-', x9,y9,'-', x10,y10,'-', x11,y11,'-',
hold on
for i=1:Limit

 index1=4/T1*(i-1)+1; % every 3 sec, draw position of robot and object

 rectangle('Curvature',[1 1], 'EdgeColor','b','Position', [x12(index1)-R/2 y12(index1)-R/2 R R]);
 %if (obstacle ~= 0)
 rectangle('Curvature',[1 1], 'EdgeColor','g', 'Position', [xo1(index1)-r/2 yo1(index1)-r/2 r r]);
 rectangle('Curvature',[1 1], 'EdgeColor','r', 'Position', [xo2(index1)-r/2 yo2(index1)-r/2 r r]);
 rectangle('Curvature',[1 1], 'EdgeColor','c', 'Position', [xo3(index1)-r/2 yo3(index1)-r/2 r r]);
 % end
end
hold off
xlabel('x'); % (k=12)
ylabel('y');

figure
stem(ttt,theta*180/pi);
ylabel('theta');
xlabel('Time (sec)');

figure
stem(ttt, u2, ':');
ylabel('u2');
xlabel('Time (sec)');

figure
stem(ttt,u1,'-');
ylabel('u1');
xlabel('Time (sec)');

function [B, Y, A] = CalculateBYA(index, z1, z1f, z3, z3f, z2, z2f);
%As its name implied, this function is used to calculate matrices: B,Y,A

 B=[1 z1(index) (z1(index))^2 (z1(index))^3;
 0 1 2*z1(index) 3*(z1(index))^2;
 1 z1f z1f^2 z1f^3;
 0 1 2*z1f 3*z1f^2];

 Y=[z3(index); z2(index); z3f; z2f];

 65

 A=[(z1(index))^4; 4*(z1(index))^3; z1f^4; 4*(z1f)^3];

function [z1, z2, z3] = ChainedTransform(x, y, theta);
%This function is used to transform the given space into chained form space
 z1 = x;
 z2 = tan(theta);
 z3 = y;

function [a4min, a4max, g0] = DetermineA4(tmin, tmax, z10, C, B, A, Y, k, index, xo, yo,
a4min, a4max, Ts, vox, voy, r, R);
%As its name implied, this function is used to determine a4min and a4max for all
%obstacles with the many given input parameters

 tau=tmin:0.1:tmax;

 for i=1:length(tau)
 z(i)=z10+C*tau(i);
 g2=(z(i)^4-[1 z(i) z(i)^2 z(i)^3]*inv(B)*A)^2;
 g1=2*(z(i)^4-[1 z(i) z(i)^2 z(i)^3]*inv(B)*A)*([1 z(i) z(i)^2 z(i)^3]*inv(B)*Y-
voy(k)*(tau(i)-Ts(k))-yo(index));
 g0=([1 z(i) z(i)^2 z(i)^3]*inv(B)*Y-voy(k)*(tau(i)-Ts(k))-yo(index))^2+(z(i)-xo(index)-
vox(k)*(tau(i)-Ts(k)))^2-(r+R)^2;
 b4ac=g1^2-4*g2*g0;

 if (g2 ~= 0)
 if b4ac>=0
 if (sign((-g1-sqrt(b4ac))/(2*g2)) ~= sign((-g1+sqrt(b4ac))/(2*g2)))
 if (-g1-sqrt(b4ac))/(2*g2)<a4min
 a4min=(-g1-sqrt(b4ac))/(2*g2);
 end
 if (-g1+sqrt(b4ac))/(2*g2)>a4max
 a4max=(-g1+sqrt(b4ac))/(2*g2);
 end
 end
 end
 end

 if ((g2 == 0) || (b4ac < 0))
 a4min = 0;
 a4max = 0;
 end

 end

 66

function a4k = DetermineA4k2(a4imin, a4imax, a4jmin, a4jmax, a4min, a4max);

if min([a4imin, a4jmin]) < a4min
 a4min = min([a4imin, a4jmin]);
end
if max([a4imax, a4jmax]) > a4max
 a4max = max([a4imax, a4jmax]);
end
if (sign(a4min) == sign(a4max))
 a4k = 0;
else
 if abs(a4min) <= abs(a4max)
 a4k = a4min;
 else
 a4k = a4max;
 end
end

function a4k = DetermineA4k3(a4imin, a4imax, a4jmin, a4jmax, a4kmin, a4kmax, a4min,
a4max);

if min([a4imin, a4jmin, a4kmin]) < a4min
 a4min = min([a4imin, a4jmin, a4kmin]);
end
if max([a4imax, a4jmax, a4kmax]) > a4max
 a4max = max([a4imax, a4jmax, a4kmax]);
end
if (sign(a4min) == sign(a4max))
 a4k = 0;
else
 if abs(a4min) <= abs(a4max)
 a4k = a4min;
 else
 a4k = a4max;
 end
end

function a4k = DetermineA4k(a4imin, a4imax);

if (sign(a4imin) == sign(a4imax))
 a4k = 0;
else
 if abs(a4imin) <= abs(a4imax)
 a4k = a4imin;
 else

 67

 a4k = a4imax;
 end
end

function [tmin, tmax] = TimeCheck(x, z10, k, index, v, Ts, C, R, r, T);
%This function is used to find two boundary time constraints: tmin, tmax

 if ((C-v(k)) == 0) v(k) = v(k) - 0.0001;
 end

 time1 =(x(index) - z10 - r - R - v(k)*Ts(k))/(C-v(k));
 time2 =(x(index) - z10 + r + R - v(k)*Ts(k))/(C-v(k));

 if time2>time1
 if time1 < Ts(k)
 tmin = Ts(k);
 else
 tmin = time1;
 end
 if time2 > T
 tmax = T;
 else
 tmax = time2;
 end
 else
 if time2 < Ts(k)
 tmin = Ts(k);
 else
 tmin = time2;
 end
 if time1 > T
 tmax = T;
 else
 tmax = time1;
 end
 end

 68

APPENDIX B: ROBOTS’ CODES FOR OOPIC-R

 69

Main Robot’s code
'Variables and Memories Allocation

'Value stored to be transfer to the Stem as setpoint speed
'for both left and right wheels

Dim VR1 As New oByte
Dim VR2 As New oByte
Dim VR3 As New oByte
Dim VR4 As New oByte
Dim VL1 As New oByte
Dim VL2 As New oByte
Dim VL3 As New oByte
Dim VL4 As New oByte

'Temporary values transfer from the pc to the oopic-r
'these value will be store in V1 up to V8. T9 is not used.

Dim T1 As New oByte
Dim T2 As New oByte
Dim T3 As New oByte
Dim T4 As New oByte
Dim T5 As New oByte
Dim T6 As New oByte
Dim T7 As New oByte
Dim T8 As New oByte
Dim T9 As New oByte

'condition varible used to communicate with the stem

Dim ReadAllow As New oByte

'number of 8-byte set expected to receive from the pc

Dim Count As New oByte

'Neccessary variables needed for communication between the oopic-r and fwcm.

Dim FWCM As New oi2c
Dim LocNode As New oByte 'Local node address
Dim RemNode As New oByte 'Remote node address to write to
Dim ReadAdr As New oByte 'Node address of remote node value came from
Dim Error As New oBit
Dim OError As New oBit
Dim ReadOK As New oBit
Dim Done As New oBit
Dim TOut As New oNibble

'LED is used for human to see that data transfer has complete.

Dim LED As New oDio1
Dim MoveAllow As New oByte

Sub Main()

 led.ioline = 6
 led.direction = cvOutput

 70

 led.value = 0
 MoveAllow = 0

 oopic.delay = 200 'Wait 2 seconds for FWCM to initialise

 OOPic.Node = 4

 LocNode = 2 'Define robot node
 RemNode = 7 'Define pc node
 Const WriteTOut = 8 'Define write timeout in seconds (0-15)
 Const FWCMAdr = &h61 'FWCM A0 & A1 jumpers ON (Range &h60-&h63)
 Call SetUpFWCM 'Setup FWCM for communication

Count = 1
ReadAllow = 0

Do

 '1st 8 bytes
 call data 'after call data, T1 to T8 are data received from the pc.

 VR1 = T1 - 1
 VR2 = T2 - 1
 VR3 = T3 - 1
 VR4 = T4 - 1
 VL1 = T5 - 1
 VL2 = T6 - 1
 VL3 = T7 - 1
 VL4 = T8 - 1

 ReadAllow = 1
 oopic.delay = 10

 Do

 Loop Until (ReadAllow = 0)

 Count = Count + 1

Loop Until (Count = 11)

Do
call data
Loop Until ((T1=1) and (T2=2) and (T3=4) and (T4=8) and (T5=16) and (T6=32) and (T7=64) and (T8=128))

MoveAllow = 1

led.value = 1

End Sub

Sub SetUpFWCM()

 'Set the DS-FWCM I2C address shifted right by 1 bit

 71

 FWCM.Node = FWCMAdr 'Setup I2C address for FWCM

 'Setup I2C addressing to FWCM

 FWCM.Width = cv8bit 'Control Info is 1-byte
 FWCM.Mode = cv10bit 'I2C mode is 10-Bit Addressing
 FWCM.NoInc = cvFalse 'Increment on every read/write
 FWCM.Location = 0 'Specifiy local node address location
 FWCM.Value = LocNode 'and write local node address

End Sub
'
' Subroutine to write data to remote FWCM (RemNode) address and upon
' confirmation that data has been written store remote node
' ADC values in RemADC0 - RemADC3
' On exit 'Error' = False if write completed OK
'
Sub WriteFWCM()

 FWCM.Location = 7 'Set the FWCM to write to extended registers
 'FWCM.Value = WriteVal2 '2nd byte of data to remote node
 'FWCM.Value = WriteVal3
 'FWCM.Value = WriteVal4
 'FWCM.Value = WriteVal5
 'FWCM.Value = WriteVal6
 'FWCM.Value = WriteVal7
 'FWCM.Value = WriteVal8
 'FWCM.Value = WriteVal9 '9th byte of data to remote node
 oopic.delay = 10
 FWCM.Location = 0 '1 'Start at remote node address
 FWCM.Value = LocNode
 FWCM.Value = RemNode 'Set remote node address to write to
 FWCM.Value = WriteTOut 'Set write timeout value 1-15 seconds
 'FWCM.Value = WriteVal1 'Send 1st byte of data to remote node

 call WaitFWCM 'Wait for confirmation or error

End Sub
'
' Subroutine to check for data from remote FWCM(s) and upon
' confirmation that data has arrived store data in 'ReadVal' and
' remote FWCM address in 'ReadAdr'.
' On exit 'ReadOK' = True if data was read and 'OError' = True
' if internal data register has overflowed i.e. one or more data
' bytes may have been lost
'
Sub ReadFWCM()

FWCM.Location = 2 'Start at read status flag (R2)
If FWCM.Value = 255 then 'Has data been received (R2) ?
 If FWCM.Value = 0 then 'If so has overflow error occured (R3) ?
 ReadAdr = FWCM.Value 'If not then store FWCM address data came from
 T1 = FWCM.Value 'and store data
 FWCM.Location = 20 'Set the FWCM to read back from register 20
 T2 = FWCM.Value 'Read reg 20 and put in byte
 T3 = FWCM.Value 'Read reg 21 and put in byte
 T4 = FWCM.Value 'Read reg 22 and put in byte
 T5 = FWCM.Value 'Read reg 23 and put in byte

 72

 T6 = FWCM.Value 'Read reg 24 and put in byte
 T7 = FWCM.Value 'Read reg 25 and put in byte
 T8 = FWCM.Value 'Read reg 26 and put in byte
 T9 = FWCM.Value 'Read reg 27 and put in byte
 OError = cvFalse 'Indicate no overflow error
 ReadOK = cvTrue 'Indicate data has been read and stored
 else
 OError = cvTrue 'Indicate overflow error has occured
 ReadOK = cvTrue 'Indicate data has been read
 ReadAdr = FWCM.Value 'Store FWCM address data came from
 VR1 = FWCM.Value 'and store data
 end if
else
 OError = cvFalse 'If no data read then no error
 ReadOK = cvFalse 'and no data
end if

End Sub

' Subroutine to wait for confirmation that data has been successfully sent to
' the remote node or that a timeout error has occured

Sub WaitFWCM()

Done = cvFalse
do
 FWCM.Location = 0 'Start at write completion status flag (R0)
 If FWCM.Value = 255 then 'Has write been completed (R0) ?
 If FWCM.Value = 0 then 'Has write resulted in error (R1) ?
 Error = cvFalse 'Indicate no error has resulted
 Done = cvTrue 'and request exit from sub-routine
 else
 Error = cvTrue 'If so then indicate error
 Done = cvTrue 'and request exit from sub-routine
 end if
 else

 If FWCM.Value = 255 then 'Has write resulted in error (R1) ?
 Error = cvTrue 'If so then indicate error
 Done = cvTrue 'and request exit from sub-routine
 end if
end if
loop until Done = cvTrue
End Sub

Sub data()
'read 9 bytes send by a pc
 do
 call ReadFWCM
 loop until ReadOK = cvTrue
'After performing ReadFWCM, T1...T8 are stored
End Sub

Obstacle 1’s code
Dim T1 As New oByte
Dim T2 As New oByte
Dim T3 As New oByte

 73

Dim T4 As New oByte
Dim T5 As New oByte
Dim T6 As New oByte
Dim T7 As New oByte
Dim T8 As New oByte
Dim T9 As New oByte

Dim FWCM As New oi2c
Dim LocNode As New oByte 'Local node address
Dim RemNode As New oByte 'Remote node address to write to
Dim ReadAdr As New oByte 'Node address of remote node value came from
Dim Error As New oBit
Dim OError As New oBit
Dim ReadOK As New oBit
Dim Done As New oBit
Dim TOut As New oNibble
Dim LED1 As New oDio1
Dim LED2 As New oDio1
Dim LED3 As New oDio1

Dim A As New oFreq
Dim B As New oFreq

Dim RWheel As New oDCMotor2
Dim LWheel As New oDCMotor2

Dim REncoder As New oQencode
Dim LEncoder As New oQencode

Dim LTen As New oByte
Dim LRemainder As New oByte
Dim LCounter As New oByte

Dim RTen As New oByte
Dim RRemainder As New oByte
Dim RCounter As New oByte
Dim Speed As New oByte

Dim Button As New oDio1

Sub Main()

oopic.delay = 200 'Wait 2 seconds for FWCM to initialise

SetLED
SetWheel

 LocNode = 1 'Define robot node
 RemNode = 7 'Define pc node
 Const WriteTOut = 8 'Define write timeout in seconds (0-15)
 Const FWCMAdr = &h61 'FWCM A0 & A1 jumpers ON (Range &h60-&h63)
 Call SetUpFWCM 'Setup FWCM for communication

Do
call data
Loop Until ((T1=1) and (T2=2) and (T3=4) and (T4=8) and (T5=16) and (T6=32) and (T7=64) and (T8=128))

 74

LED1.value = 1
LED2.value = 1
LED3.value = 1

'Button.IOLine = 6
'Button.Direction = cvInput
'Button = 0

'Do
'Loop Until (Button = 1)

call speed2_4
oopic.delay = 900

turnright '56 delay

call speed3_23
oopic.delay = 900

turnleft '19 delay
stop
oopic.delay = 29

call speed2_83
oopic.delay = 500
oopic.delay = 500
oopic.delay = 500

call stop

End Sub

Sub SetUpFWCM()
 'Set the DS-FWCM I2C address shifted right by 1 bit
 FWCM.Node = FWCMAdr 'Setup I2C address for FWCM
 'Setup I2C addressing to FWCM
 FWCM.Width = cv8bit 'Control Info is 1-byte
 FWCM.Mode = cv10bit 'I2C mode is 10-Bit Addressing
 FWCM.NoInc = cvFalse 'Increment on every read/write
 FWCM.Location = 0 'Specifiy local node address location
 FWCM.Value = LocNode 'and write local node address
End Sub

' Subroutine to write data to remote FWCM (RemNode) address and upon
' confirmation that data has been written store remote node
' ADC values in RemADC0 - RemADC3
' On exit 'Error' = False if write completed OK
'
Sub WriteFWCM()
 FWCM.Location = 7 'Set the FWCM to write to extended registers
 'FWCM.Value = WriteVal2 '2nd byte of data to remote node
 'FWCM.Value = WriteVal3
 'FWCM.Value = WriteVal4

 75

 'FWCM.Value = WriteVal5
 'FWCM.Value = WriteVal6
 'FWCM.Value = WriteVal7
 'FWCM.Value = WriteVal8
 'FWCM.Value = WriteVal9 '9th byte of data to remote node
 oopic.delay = 10
 FWCM.Location = 0 '1 'Start at remote node address
 FWCM.Value = LocNode
 FWCM.Value = RemNode 'Set remote node address to write to
 FWCM.Value = WriteTOut 'Set write timeout value 1-15 seconds
 'FWCM.Value = WriteVal1 'Send 1st byte of data to remote node
 call WaitFWCM 'Wait for confirmation or error
End Sub
'
' Subroutine to check for data from remote FWCM(s) and upon
' confirmation that data has arrived store data in 'ReadVal' and
' remote FWCM address in 'ReadAdr'.
' On exit 'ReadOK' = True if data was read and 'OError' = True
' if internal data register has overflowed i.e. one or more data
' bytes may have been lost
'
Sub ReadFWCM()
FWCM.Location = 2 'Start at read status flag (R2)
If FWCM.Value = 255 then 'Has data been received (R2) ?
 If FWCM.Value = 0 then 'If so has overflow error occured (R3) ?
 ReadAdr = FWCM.Value 'If not then store FWCM address data came from
 T1 = FWCM.Value 'and store data
 FWCM.Location = 20 'Set the FWCM to read back from register 20
 T2 = FWCM.Value 'Read reg 20 and put in byte
 T3 = FWCM.Value 'Read reg 21 and put in byte
 T4 = FWCM.Value 'Read reg 22 and put in byte
 T5 = FWCM.Value 'Read reg 23 and put in byte
 T6 = FWCM.Value 'Read reg 24 and put in byte
 T7 = FWCM.Value 'Read reg 25 and put in byte
 T8 = FWCM.Value 'Read reg 26 and put in byte
 T9 = FWCM.Value 'Read reg 27 and put in byte
 OError = cvFalse 'Indicate no overflow error
 ReadOK = cvTrue 'Indicate data has been read and stored
 else
 OError = cvTrue 'Indicate overflow error has occured
 ReadOK = cvTrue 'Indicate data has been read
 ReadAdr = FWCM.Value 'Store FWCM address data came from
 T9 = FWCM.Value 'and store data
 end if
else
 OError = cvFalse 'If no data read then no error
 ReadOK = cvFalse 'and no data
end if
End Sub

' Subroutine to wait for confirmation that data has been successfully sent to
' the remote node or that a timeout error has occured

Sub WaitFWCM()
Done = cvFalse
do
 FWCM.Location = 0 'Start at write completion status flag (R0)
 If FWCM.Value = 255 then 'Has write been completed (R0) ?
 If FWCM.Value = 0 then 'Has write resulted in error (R1) ?
 Error = cvFalse 'Indicate no error has resulted

 76

 Done = cvTrue 'and request exit from sub-routine
 else
 Error = cvTrue 'If so then indicate error
 Done = cvTrue 'and request exit from sub-routine
 end if
 else
 If FWCM.Value = 255 then 'Has write resulted in error (R1) ?
 Error = cvTrue 'If so then indicate error
 Done = cvTrue 'and request exit from sub-routine
 end if
end if
loop until Done = cvTrue
End Sub

Sub data()
'read 9 bytes send by a pc
 do
 call ReadFWCM
 loop until ReadOK = cvTrue
'After performing ReadFWCM, T1...T8 are stored
End Sub

sub speed2_4()
LWheel.Direction = 1
RWheel.Direction = 1
LWheel = 71
RWheel = 67
RWheel.Operate = 1
LWheel.Operate = 1
End Sub

sub speed3_23()
LWheel.Direction = 1
RWheel.Direction = 1
LWheel = 73
RWheel = 71
RWheel.Operate = 1
LWheel.Operate = 1
End Sub

sub speed2_83()
LWheel.Direction = 1
RWheel.Direction = 1
LWheel = 70
RWheel = 68
RWheel.Operate = 1
LWheel.Operate = 1
End Sub

sub turnleft()

LWheel.Direction = 1
RWheel.Direction = 1
LWheel = 0
RWheel = 100
RWheel.Operate = 1

 77

LWheel.Operate = 1
 oopic.delay = 19 '272 delay turn left 360
'turn left 25.68 degrees

end sub

sub turnright()
RWheel.Direction = 1
LWheel.Direction = 1
LWheel = 100
RWheel = 0
RWheel.Operate = 1
LWheel.Operate = 1
 oopic.delay = 56 '286 delay turn right 360
'turn right 70 degrees
end sub

Sub SetWheel()
 RWheel.IOLineP = 18
 RWheel.IOLine1 = 26
 RWheel.IOLine2 = 27
 LWheel.IOLineP = 17
 LWheel.IOLine1 = 24
 LWheel.IOLine2 = 25
 RWheel.Unsigned = 1
 RWheel.PreScale = 1
 RWheel.Period = 100
 RWheel.Direction = 1
 RWheel.Brake = cvOff
 LWheel.Unsigned = 1
 LWheel.PreScale = 1
 LWheel.Period = 100
 LWheel.Direction = 1
 LWheel.Brake = cvOff
End Sub

Sub SetLED()
 LED1.IOLine = 5
 LED1.direction = cvOutput
 LED1.value = 0
 LED2.IOLine = 6
 LED2.direction = cvOutput
 LED2.value = 0
 LED3.IOLine = 7
 LED3.direction = cvOutput
 LED3.value = 0
End Sub

Sub stop()
RWheel.Operate = 0
LWheel.Operate = 0
End Sub

Obstacle 2’s code

Dim T1 As New oByte

 78

Dim T2 As New oByte
Dim T3 As New oByte
Dim T4 As New oByte
Dim T5 As New oByte
Dim T6 As New oByte
Dim T7 As New oByte
Dim T8 As New oByte
Dim T9 As New oByte

Dim FWCM As New oi2c
Dim LocNode As New oByte 'Local node address
Dim RemNode As New oByte 'Remote node address to write to
Dim ReadAdr As New oByte 'Node address of remote node value came from
Dim Error As New oBit
Dim OError As New oBit
Dim ReadOK As New oBit
Dim Done As New oBit
Dim TOut As New oNibble
Dim LED1 As New oDio1
Dim LED2 As New oDio1
Dim LED3 As New oDio1

Dim A As New oFreq
Dim B As New oFreq

Dim RWheel As New oDCMotor2
Dim LWheel As New oDCMotor2

Dim REncoder As New oQencode
Dim LEncoder As New oQencode

Dim LTen As New oByte
Dim LRemainder As New oByte
Dim LCounter As New oByte

Dim RTen As New oByte
Dim RRemainder As New oByte
Dim RCounter As New oByte
Dim Speed As New oByte
Dim Button As New oDio1

Sub Main()

 'Button.IOLine = 6
 SetLED
 SetWheel

 oopic.delay = 200 'Wait 2 seconds for FWCM to initialise
 LocNode = 2 'Define robot node
 RemNode = 7 'Define pc node
 Const WriteTOut = 8 'Define write timeout in seconds (0-15)
 Const FWCMAdr = &h61 'FWCM A0 & A1 jumpers ON (Range &h60-&h63)
 Call SetUpFWCM 'Setup FWCM for communication

Do

 79

call data
Loop Until ((T1=1) and (T2=2) and (T3=4) and (T4=8) and (T5=16) and (T6=32) and (T7=64) and (T8=128))

LED1.value = 1
LED2.value = 1
LED3.value = 1

'Button.Direction = cvInput
'Do
'Loop Until (Button = 1)
'oopic.delay = 200

speed4_1
oopic.delay = 600

speed3_0
oopic.delay = 300

turnleft 'delay = 7

stop
oopic.delay = 49

speed3_1
oopic.delay = 300

speed3_65
oopic.delay = 600

stop
oopic.delay = 48

speed3_65

oopic.delay = 400
oopic.delay = 500
oopic.delay = 500
oopic.delay = 400
'oopic.delay = 200
stop
 End Sub

Sub SetUpFWCM()
 'Set the DS-FWCM I2C address shifted right by 1 bit
 FWCM.Node = FWCMAdr 'Setup I2C address for FWCM
 'Setup I2C addressing to FWCM
 FWCM.Width = cv8bit 'Control Info is 1-byte
 FWCM.Mode = cv10bit 'I2C mode is 10-Bit Addressing
 FWCM.NoInc = cvFalse 'Increment on every read/write
 FWCM.Location = 0 'Specifiy local node address location
 FWCM.Value = LocNode 'and write local node address
End Sub
'
' Subroutine to write data to remote FWCM (RemNode) address and upon
' confirmation that data has been written store remote node
' ADC values in RemADC0 - RemADC3
' On exit 'Error' = False if write completed OK
'

 80

Sub WriteFWCM()
 FWCM.Location = 7 'Set the FWCM to write to extended registers
 'FWCM.Value = WriteVal2 '2nd byte of data to remote node
 'FWCM.Value = WriteVal3
 'FWCM.Value = WriteVal4
 'FWCM.Value = WriteVal5
 'FWCM.Value = WriteVal6
 'FWCM.Value = WriteVal7
 'FWCM.Value = WriteVal8
 'FWCM.Value = WriteVal9 '9th byte of data to remote node
 oopic.delay = 10
 FWCM.Location = 0 '1 'Start at remote node address
 FWCM.Value = LocNode
 FWCM.Value = RemNode 'Set remote node address to write to
 FWCM.Value = WriteTOut 'Set write timeout value 1-15 seconds
 'FWCM.Value = WriteVal1 'Send 1st byte of data to remote node
 call WaitFWCM 'Wait for confirmation or error
End Sub
'
' Subroutine to check for data from remote FWCM(s) and upon
' confirmation that data has arrived store data in 'ReadVal' and
' remote FWCM address in 'ReadAdr'.
' On exit 'ReadOK' = True if data was read and 'OError' = True
' if internal data register has overflowed i.e. one or more data
' bytes may have been lost
'
Sub ReadFWCM()

FWCM.Location = 2 'Start at read status flag (R2)
If FWCM.Value = 255 then 'Has data been received (R2) ?
 If FWCM.Value = 0 then 'If so has overflow error occured (R3) ?
 ReadAdr = FWCM.Value 'If not then store FWCM address data came from
 T1 = FWCM.Value 'and store data
 FWCM.Location = 20 'Set the FWCM to read back from register 20
 T2 = FWCM.Value 'Read reg 20 and put in byte
 T3 = FWCM.Value 'Read reg 21 and put in byte
 T4 = FWCM.Value 'Read reg 22 and put in byte
 T5 = FWCM.Value 'Read reg 23 and put in byte
 T6 = FWCM.Value 'Read reg 24 and put in byte
 T7 = FWCM.Value 'Read reg 25 and put in byte
 T8 = FWCM.Value 'Read reg 26 and put in byte
 T9 = FWCM.Value 'Read reg 27 and put in byte
 OError = cvFalse 'Indicate no overflow error
 ReadOK = cvTrue 'Indicate data has been read and stored
 else
 OError = cvTrue 'Indicate overflow error has occured
 ReadOK = cvTrue 'Indicate data has been read
 ReadAdr = FWCM.Value 'Store FWCM address data came from
 T9 = FWCM.Value 'and store data
 end if
else
 OError = cvFalse 'If no data read then no error
 ReadOK = cvFalse 'and no data
end if
End Sub

' Subroutine to wait for confirmation that data has been successfully sent to
' the remote node or that a timeout error has occured

 81

Sub WaitFWCM()
Done = cvFalse
do
 FWCM.Location = 0 'Start at write completion status flag (R0)
 If FWCM.Value = 255 then 'Has write been completed (R0) ?
 If FWCM.Value = 0 then 'Has write resulted in error (R1) ?
 Error = cvFalse 'Indicate no error has resulted
 Done = cvTrue 'and request exit from sub-routine
 else
 Error = cvTrue 'If so then indicate error
 Done = cvTrue 'and request exit from sub-routine
 end if
 else

 If FWCM.Value = 255 then 'Has write resulted in error (R1) ?
 Error = cvTrue 'If so then indicate error
 Done = cvTrue 'and request exit from sub-routine
 end if
end if
loop until Done = cvTrue
End Sub

Sub data()
'read 9 bytes send by a pc
 do
 call ReadFWCM
 loop until ReadOK = cvTrue
'After performing ReadFWCM, T1...T8 are stored
End Sub

Sub Turnleft()
LWheel.Direction = 0
RWheel.Direction = 1
LWheel = 0
RWheel = 100
RWheel.Operate = 1
LWheel.Operate = 1
 oopic.delay = 7
 '258 is 360 degrees turn
End Sub

Sub Stop()
 RWheel.Operate = 0 'stop the wheel and check distance traveled
 LWheel.Operate = 0
End Sub

Sub SetWheel()
 RWheel.IOLineP = 18
 RWheel.IOLine1 = 26
 RWheel.IOLine2 = 27
 LWheel.IOLineP = 17
 LWheel.IOLine1 = 24
 LWheel.IOLine2 = 25
 RWheel.Unsigned = 1

 82

 RWheel.PreScale = 1
 RWheel.Period = 100
 RWheel.Direction = 1
 RWheel.Brake = cvOff
 LWheel.Unsigned = 1
 LWheel.PreScale = 1
 LWheel.Period = 100
 LWheel.Direction = 1
 LWheel.Brake = cvOff
End Sub

Sub SetLED()
 LED1.IOLine = 5
 LED1.direction = cvOutput
 LED1.value = 0

 LED2.IOLine = 6
 LED2.direction = cvOutput
 LED2.value = 0

 LED3.IOLine = 7
 LED3.direction = cvOutput
 LED3.value = 0
End Sub

Sub speed4_1()
LWheel.Direction = 0
RWheel.Direction = 0
LWheel = 73
RWheel = 68
RWheel.Operate = 1
LWheel.Operate = 1
End Sub

Sub speed3_1()
LWheel.Direction = 1
RWheel.Direction = 1
LWheel = 67
RWheel = 61
RWheel.Operate = 1
LWheel.Operate = 1
End Sub

Sub speed3_65()
LWheel.Direction = 1
RWheel.Direction = 1
LWheel = 70
RWheel = 65
RWheel.Operate = 1
LWheel.Operate = 1
End Sub

Sub speed3_0()
LWheel.Direction = 0
RWheel.Direction = 0
LWheel = 67
RWheel = 62
RWheel.Operate = 1

 83

LWheel.Operate = 1
End Sub

Obstacle 3’s Code

Dim T1 As New oByte
Dim T2 As New oByte
Dim T3 As New oByte
Dim T4 As New oByte
Dim T5 As New oByte
Dim T6 As New oByte
Dim T7 As New oByte
Dim T8 As New oByte
Dim T9 As New oByte

Dim FWCM As New oi2c
Dim LocNode As New oByte 'Local node address
Dim RemNode As New oByte 'Remote node address to write to
Dim ReadAdr As New oByte 'Node address of remote node value came from
Dim Error As New oBit
Dim OError As New oBit
Dim ReadOK As New oBit
Dim Done As New oBit
Dim TOut As New oByte
Dim LED1 As New oDio1
Dim LED2 As New oDio1
Dim LED3 As New oDio1

Dim A As New oFreq
Dim B As New oFreq

Dim RWheel As New oDCMotor2
Dim LWheel As New oDCMotor2

Dim REncoder As New oQencode
Dim LEncoder As New oQencode

Dim LTen As New oByte
Dim LRemainder As New oByte
Dim LCounter As New oByte

Dim RTen As New oByte
Dim RRemainder As New oByte
Dim RCounter As New oByte
Dim Speed As New oByte

Dim Button As New oDio1

Sub Main()

 SetLED
 SetWheel
' Button.IOLine = 6

 84

' Button.Direction = cvInput

 oopic.delay = 200 'Wait 2 seconds for FWCM to initialise

 LocNode = 3 'Define robot node
 RemNode = 7 'Define pc node
 Const WriteTOut = 8 'Define write timeout in seconds (0-15)
 Const FWCMAdr = &h61 'FWCM A0 & A1 jumpers ON (Range &h60-&h63)
 Call SetUpFWCM 'Setup FWCM for communication

Do
call data
Loop Until ((T1=1) and (T2=2) and (T3=4) and (T4=8) and (T5=16) and (T6=32) and (T7=64) and (T8=128))

LED1.value = 1
LED2.value = 1
LED3.value = 1

'Button = 0

'Do
'Loop Until (Button = 1)

'oopic.delay = 200

speed1_19
oopic.delay = 900

stop
oopic.delay = 56

speed1_19
oopic.delay = 900

turnright '90 degrees

speed1_19
oopic.delay = 500
oopic.delay = 500
oopic.delay = 500
oopic.delay = 300

stop

End Sub

Sub SetUpFWCM()

 'Set the DS-FWCM I2C address shifted right by 1 bit

 FWCM.Node = FWCMAdr 'Setup I2C address for FWCM

 85

 'Setup I2C addressing to FWCM

 FWCM.Width = cv8bit 'Control Info is 1-byte
 FWCM.Mode = cv10bit 'I2C mode is 10-Bit Addressing
 FWCM.NoInc = cvFalse 'Increment on every read/write
 FWCM.Location = 0 'Specifiy local node address location
 FWCM.Value = LocNode 'and write local node address

End Sub
'
' Subroutine to write data to remote FWCM (RemNode) address and upon
' confirmation that data has been written store remote node
' ADC values in RemADC0 - RemADC3
' On exit 'Error' = False if write completed OK
'
Sub WriteFWCM()

 FWCM.Location = 7 'Set the FWCM to write to extended registers
 'FWCM.Value = WriteVal2 '2nd byte of data to remote node
 'FWCM.Value = WriteVal3
 'FWCM.Value = WriteVal4
 'FWCM.Value = WriteVal5
 'FWCM.Value = WriteVal6
 'FWCM.Value = WriteVal7
 'FWCM.Value = WriteVal8
 'FWCM.Value = WriteVal9 '9th byte of data to remote node
 oopic.delay = 10
 FWCM.Location = 0 '1 'Start at remote node address
 FWCM.Value = LocNode
 FWCM.Value = RemNode 'Set remote node address to write to
 FWCM.Value = WriteTOut 'Set write timeout value 1-15 seconds
 'FWCM.Value = WriteVal1 'Send 1st byte of data to remote node

 call WaitFWCM 'Wait for confirmation or error

End Sub
'
' Subroutine to check for data from remote FWCM(s) and upon
' confirmation that data has arrived store data in 'ReadVal' and
' remote FWCM address in 'ReadAdr'.
' On exit 'ReadOK' = True if data was read and 'OError' = True
' if internal data register has overflowed i.e. one or more data
' bytes may have been lost
'
Sub ReadFWCM()

FWCM.Location = 2 'Start at read status flag (R2)
If FWCM.Value = 255 then 'Has data been received (R2) ?
 If FWCM.Value = 0 then 'If so has overflow error occured (R3) ?
 ReadAdr = FWCM.Value 'If not then store FWCM address data came from
 T1 = FWCM.Value 'and store data
 FWCM.Location = 20 'Set the FWCM to read back from register 20
 T2 = FWCM.Value 'Read reg 20 and put in byte
 T3 = FWCM.Value 'Read reg 21 and put in byte
 T4 = FWCM.Value 'Read reg 22 and put in byte
 T5 = FWCM.Value 'Read reg 23 and put in byte
 T6 = FWCM.Value 'Read reg 24 and put in byte
 T7 = FWCM.Value 'Read reg 25 and put in byte

 86

 T8 = FWCM.Value 'Read reg 26 and put in byte
 T9 = FWCM.Value 'Read reg 27 and put in byte
 OError = cvFalse 'Indicate no overflow error
 ReadOK = cvTrue 'Indicate data has been read and stored
 else
 OError = cvTrue 'Indicate overflow error has occured
 ReadOK = cvTrue 'Indicate data has been read
 ReadAdr = FWCM.Value 'Store FWCM address data came from
 T9 = FWCM.Value 'and store data
 end if
else
 OError = cvFalse 'If no data read then no error
 ReadOK = cvFalse 'and no data
end if

End Sub

' Subroutine to wait for confirmation that data has been successfully sent to
' the remote node or that a timeout error has occured

Sub WaitFWCM()

Done = cvFalse
do
 FWCM.Location = 0 'Start at write completion status flag (R0)
 If FWCM.Value = 255 then 'Has write been completed (R0) ?
 If FWCM.Value = 0 then 'Has write resulted in error (R1) ?
 Error = cvFalse 'Indicate no error has resulted
 Done = cvTrue 'and request exit from sub-routine
 else
 Error = cvTrue 'If so then indicate error
 Done = cvTrue 'and request exit from sub-routine
 end if
 else

 If FWCM.Value = 255 then 'Has write resulted in error (R1) ?
 Error = cvTrue 'If so then indicate error
 Done = cvTrue 'and request exit from sub-routine
 end if
end if
loop until Done = cvTrue
End Sub

Sub data()
'read 9 bytes send by a pc
 do
 call ReadFWCM
 loop until ReadOK = cvTrue
'After performing ReadFWCM, T1...T8 are stored
End Sub

Sub SetLED()
 LED1.IOLine = 5
 LED1.direction = cvOutput
 LED1.value = 0
 LED2.IOLine = 6
 LED2.direction = cvOutput

 87

 LED2.value = 0
 LED3.IOLine = 7
 LED3.direction = cvOutput
 LED3.value = 0
End Sub

Sub Stop()
 RWheel.Operate = 0 'stop the wheel and check distance traveled
 LWheel.Operate = 0
End sub

Sub TurnLeft()
LWheel.Direction = 0
RWheel.Direction = 1
LWheel = 80 '60
RWheel = 80 '68
RWheel.Operate = 1
LWheel.Operate = 1
oopic.delay = 146 '180 make a robot turn 360 left
End Sub

Sub Turnright()
LWheel.Direction = 1
RWheel.Direction = 1
LWheel = 100 '60
RWheel = 0 '68
RWheel.Operate = 1
LWheel.Operate = 1
oopic.delay = 48 '193 make a robot turns 360 right
End Sub

Sub speed1_19()
LWheel.Direction = 1
RWheel.Direction = 1
RWheel = 60 '68
LWheel = 60 '60
RWheel.Operate = 1
LWheel.Operate = 1
oopic.delay = 1
LWheel = 29
RWheel = 57
End Sub

Sub SetWheel()
 RWheel.IOLineP = 18
 RWheel.IOLine1 = 26
 RWheel.IOLine2 = 27
 LWheel.IOLineP = 17
 LWheel.IOLine1 = 24
 LWheel.IOLine2 = 25

 RWheel.Unsigned = 1
 RWheel.PreScale = 1
 RWheel.Period = 100
 RWheel.Direction = 1

 88

 RWheel.Brake = cvOff

 LWheel.Unsigned = 1
 LWheel.PreScale = 1
 LWheel.Period = 100
 LWheel.Direction = 1
 LWheel.Brake = cvOff
End Sub

 89

APPENDIX C: ROBOT’S CODE FOR BRAINSTEM

 90

/* Test.tea */
/* tests 1-byte transfers between BrainStem and OOPic */
#include <aCore.tea>
#include <aPrint.tea>
#include <aMotion.tea>
#defineADDR_OOPIC 8

void aOOPic_WriteChar(char oopic, char addr, char mask, char data)
{
 asm
 {
 pushsb 6 /* OOPic address */
 pushlb 3 /* command data size */
 pushsb 7 /* data address */
 pushsb 7 /* bit mask */
 pushsb 7 /* data */
 pushlb 5 /* total command size */
 popcmd /* send command */
 }
}

char aOOPic_ReadChar(char oopic, char addr)
{
 char c=0;
 asm
 {
 pushsb 5 /* OOPic address */
 pushlb 1 /* command data size */
 pushsb 6 /* data address */
 pushlb 3 /* total command size */
 popcmd /* send command */

 pushsb 5 /* OOPic address */
 pushlb 1 /* set low bit for read */
 orb
 pushlb 1 /* number of bytes to read */
 popsm aPortIICRead /* do the read */

 popbs 1 /* set return value */
 }
 return c;
}

void main()

 91

{
char l1, l2, l3, l4, l5, l6, l7, l8, l9, l10, l11, l12, l13, l14, l15, l16, l17, l18, l19, l20;
char l21, l22, l23, l24, l25, l26, l27, l28, l29, l30, l31, l32, l33, l34, l35, l36, l37, l38, l39, l40;
char r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20;
char r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40;
char stop, ReadAllow, MoveAllow;

 stop = 0;
 ReadAllow = 0;
 MoveAllow = 0;

 aCore_Sleep(10000);

 ReadAllow = aOOPic_ReadChar(ADDR_OOPIC,(char)221);

 while (ReadAllow != 1)
{
 aCore_Sleep(100);
 ReadAllow = aOOPic_ReadChar(ADDR_OOPIC,(char)221);

}

 r1=aOOPic_ReadChar(ADDR_OOPIC,(char)255);
 r2=aOOPic_ReadChar(ADDR_OOPIC,(char)253);
 r3=aOOPic_ReadChar(ADDR_OOPIC,(char)251);
 r4=aOOPic_ReadChar(ADDR_OOPIC,(char)249);
 l1=aOOPic_ReadChar(ADDR_OOPIC,(char)247);
 l2=aOOPic_ReadChar(ADDR_OOPIC,(char)245);
 l3=aOOPic_ReadChar(ADDR_OOPIC,(char)243);
 l4=aOOPic_ReadChar(ADDR_OOPIC,(char)241);

aCore_Sleep(100);
aOOPic_WriteChar(ADDR_OOPIC,(char)221,0,0);
aCore_Sleep(100);

 ReadAllow = aOOPic_ReadChar(ADDR_OOPIC,(char)221);

 92

 while (ReadAllow != 1)
{
 aCore_Sleep(100);
 ReadAllow = aOOPic_ReadChar(ADDR_OOPIC,(char)221);

}

 r5=aOOPic_ReadChar(ADDR_OOPIC,(char)255);
 r6=aOOPic_ReadChar(ADDR_OOPIC,(char)253);
 r7=aOOPic_ReadChar(ADDR_OOPIC,(char)251);
 r8=aOOPic_ReadChar(ADDR_OOPIC,(char)249);
 l5=aOOPic_ReadChar(ADDR_OOPIC,(char)247);
 l6=aOOPic_ReadChar(ADDR_OOPIC,(char)245);
 l7=aOOPic_ReadChar(ADDR_OOPIC,(char)243);
 l8=aOOPic_ReadChar(ADDR_OOPIC,(char)241);

aCore_Sleep(100);
aOOPic_WriteChar(ADDR_OOPIC,(char)221,0,0);
aCore_Sleep(100);

 ReadAllow = aOOPic_ReadChar(ADDR_OOPIC,(char)221);

 while (ReadAllow != 1)
{
 aCore_Sleep(100);
 ReadAllow = aOOPic_ReadChar(ADDR_OOPIC,(char)221);

}

 r9=aOOPic_ReadChar(ADDR_OOPIC,(char)255);
 r10=aOOPic_ReadChar(ADDR_OOPIC,(char)253);
 r11=aOOPic_ReadChar(ADDR_OOPIC,(char)251);
 r12=aOOPic_ReadChar(ADDR_OOPIC,(char)249);
 l9=aOOPic_ReadChar(ADDR_OOPIC,(char)247);
 l10=aOOPic_ReadChar(ADDR_OOPIC,(char)245);
 l11=aOOPic_ReadChar(ADDR_OOPIC,(char)243);
 l12=aOOPic_ReadChar(ADDR_OOPIC,(char)241);

aCore_Sleep(100);
aOOPic_WriteChar(ADDR_OOPIC,(char)221,0,0);
aCore_Sleep(100);

 93

 ReadAllow = aOOPic_ReadChar(ADDR_OOPIC,(char)221);

 while (ReadAllow != 1)
{
 aCore_Sleep(100);
 ReadAllow = aOOPic_ReadChar(ADDR_OOPIC,(char)221);

}

 r13=aOOPic_ReadChar(ADDR_OOPIC,(char)255);
 r14=aOOPic_ReadChar(ADDR_OOPIC,(char)253);
 r15=aOOPic_ReadChar(ADDR_OOPIC,(char)251);
 r16=aOOPic_ReadChar(ADDR_OOPIC,(char)249);
 l13=aOOPic_ReadChar(ADDR_OOPIC,(char)247);
 l14=aOOPic_ReadChar(ADDR_OOPIC,(char)245);
 l15=aOOPic_ReadChar(ADDR_OOPIC,(char)243);
 l16=aOOPic_ReadChar(ADDR_OOPIC,(char)241);

aCore_Sleep(100);
aOOPic_WriteChar(ADDR_OOPIC,(char)221,0,0);
aCore_Sleep(100);

 ReadAllow = aOOPic_ReadChar(ADDR_OOPIC,(char)221);

 while (ReadAllow != 1)
{
 aCore_Sleep(100);
 ReadAllow = aOOPic_ReadChar(ADDR_OOPIC,(char)221);

}

 r17=aOOPic_ReadChar(ADDR_OOPIC,(char)255);
 r18=aOOPic_ReadChar(ADDR_OOPIC,(char)253);
 r19=aOOPic_ReadChar(ADDR_OOPIC,(char)251);
 r20=aOOPic_ReadChar(ADDR_OOPIC,(char)249);
 l17=aOOPic_ReadChar(ADDR_OOPIC,(char)247);
 l18=aOOPic_ReadChar(ADDR_OOPIC,(char)245);
 l19=aOOPic_ReadChar(ADDR_OOPIC,(char)243);

 94

 l20=aOOPic_ReadChar(ADDR_OOPIC,(char)241);

aCore_Sleep(100);
aOOPic_WriteChar(ADDR_OOPIC,(char)221,0,0);
aCore_Sleep(100);

 ReadAllow = aOOPic_ReadChar(ADDR_OOPIC,(char)221);

 while (ReadAllow != 1)
{
 aCore_Sleep(100);
 ReadAllow = aOOPic_ReadChar(ADDR_OOPIC,(char)221);

}

 r21=aOOPic_ReadChar(ADDR_OOPIC,(char)255);
 r22=aOOPic_ReadChar(ADDR_OOPIC,(char)253);
 r23=aOOPic_ReadChar(ADDR_OOPIC,(char)251);
 r24=aOOPic_ReadChar(ADDR_OOPIC,(char)249);
 l21=aOOPic_ReadChar(ADDR_OOPIC,(char)247);
 l22=aOOPic_ReadChar(ADDR_OOPIC,(char)245);
 l23=aOOPic_ReadChar(ADDR_OOPIC,(char)243);
 l24=aOOPic_ReadChar(ADDR_OOPIC,(char)241);

aCore_Sleep(100);
aOOPic_WriteChar(ADDR_OOPIC,(char)221,0,0);
aCore_Sleep(100);

 ReadAllow = aOOPic_ReadChar(ADDR_OOPIC,(char)221);

 while (ReadAllow != 1)
{
 aCore_Sleep(100);
 ReadAllow = aOOPic_ReadChar(ADDR_OOPIC,(char)221);

}

 95

 r25=aOOPic_ReadChar(ADDR_OOPIC,(char)255);
 r26=aOOPic_ReadChar(ADDR_OOPIC,(char)253);
 r27=aOOPic_ReadChar(ADDR_OOPIC,(char)251);
 r28=aOOPic_ReadChar(ADDR_OOPIC,(char)249);
 l25=aOOPic_ReadChar(ADDR_OOPIC,(char)247);
 l26=aOOPic_ReadChar(ADDR_OOPIC,(char)245);
 l27=aOOPic_ReadChar(ADDR_OOPIC,(char)243);
 l28=aOOPic_ReadChar(ADDR_OOPIC,(char)241);

aCore_Sleep(100);
aOOPic_WriteChar(ADDR_OOPIC,(char)221,0,0);
aCore_Sleep(100);

 ReadAllow = aOOPic_ReadChar(ADDR_OOPIC,(char)221);

 while (ReadAllow != 1)
{
 aCore_Sleep(100);
 ReadAllow = aOOPic_ReadChar(ADDR_OOPIC,(char)221);

}

 r29=aOOPic_ReadChar(ADDR_OOPIC,(char)255);
 r30=aOOPic_ReadChar(ADDR_OOPIC,(char)253);
 r31=aOOPic_ReadChar(ADDR_OOPIC,(char)251);
 r32=aOOPic_ReadChar(ADDR_OOPIC,(char)249);
 l29=aOOPic_ReadChar(ADDR_OOPIC,(char)247);
 l30=aOOPic_ReadChar(ADDR_OOPIC,(char)245);
 l31=aOOPic_ReadChar(ADDR_OOPIC,(char)243);
 l32=aOOPic_ReadChar(ADDR_OOPIC,(char)241);

aCore_Sleep(100);
aOOPic_WriteChar(ADDR_OOPIC,(char)221,0,0);
aCore_Sleep(100);

 ReadAllow = aOOPic_ReadChar(ADDR_OOPIC,(char)221);

 while (ReadAllow != 1)

 96

{
 aCore_Sleep(100);
 ReadAllow = aOOPic_ReadChar(ADDR_OOPIC,(char)221);

}

 r33=aOOPic_ReadChar(ADDR_OOPIC,(char)255);
 r34=aOOPic_ReadChar(ADDR_OOPIC,(char)253);
 r35=aOOPic_ReadChar(ADDR_OOPIC,(char)251);
 r36=aOOPic_ReadChar(ADDR_OOPIC,(char)249);
 l33=aOOPic_ReadChar(ADDR_OOPIC,(char)247);
 l34=aOOPic_ReadChar(ADDR_OOPIC,(char)245);
 l35=aOOPic_ReadChar(ADDR_OOPIC,(char)243);
 l36=aOOPic_ReadChar(ADDR_OOPIC,(char)241);

aCore_Sleep(100);
aOOPic_WriteChar(ADDR_OOPIC,(char)221,0,0);
aCore_Sleep(100);

 ReadAllow = aOOPic_ReadChar(ADDR_OOPIC,(char)221);

 while (ReadAllow != 1)
{
 aCore_Sleep(100);
 ReadAllow = aOOPic_ReadChar(ADDR_OOPIC,(char)221);

}

 r37=aOOPic_ReadChar(ADDR_OOPIC,(char)255);
 r38=aOOPic_ReadChar(ADDR_OOPIC,(char)253);
 r39=aOOPic_ReadChar(ADDR_OOPIC,(char)251);
 r40=aOOPic_ReadChar(ADDR_OOPIC,(char)249);
 l37=aOOPic_ReadChar(ADDR_OOPIC,(char)247);
 l38=aOOPic_ReadChar(ADDR_OOPIC,(char)245);
 l39=aOOPic_ReadChar(ADDR_OOPIC,(char)243);
 l40=aOOPic_ReadChar(ADDR_OOPIC,(char)241);

 97

//aCore_Sleep(10000);

 while (MoveAllow != 1)
{
 aCore_Sleep(100);
 MoveAllow = aOOPic_ReadChar(ADDR_OOPIC,(char)221);

}

//aMotion_SetVelocity(Channel 0, Channel 1);
//Channel 1 is Right Wheel, Channel 0 is Left Wheel

//1-5

aMotion_SetVelocity(l1,r1);
aCore_Sleep(10000);

aMotion_SetVelocity(l2,r2);
aCore_Sleep(10000);

aMotion_SetVelocity(l3,r3);
aCore_Sleep(10000);

aMotion_SetVelocity(l4,r4);
aCore_Sleep(10000);

aMotion_SetVelocity(l5,r5);
aCore_Sleep(10000);

//6-10

aMotion_SetVelocity(l6,r6);
aCore_Sleep(10000);

aMotion_SetVelocity(l7,r7);
aCore_Sleep(10000);

aMotion_SetVelocity(l8,r8);
aCore_Sleep(10000);

 98

aMotion_SetVelocity(l9,r9);
aCore_Sleep(10000);

//pause for .56 of a second at the 9th second of running
aMotion_SetVelocity(0,0);
aCore_Sleep(5600);

aMotion_SetVelocity(l10,r10);
aCore_Sleep(10000);

//11-15

aMotion_SetVelocity(l11,r11);
aCore_Sleep(10000);

aMotion_SetVelocity(l12,r12);
aCore_Sleep(10000);

aMotion_SetVelocity(l13,r13);
aCore_Sleep(10000);

aMotion_SetVelocity(l14,r14);
aCore_Sleep(10000);

aMotion_SetVelocity(l15,r15);
aCore_Sleep(10000);

//16-20

aMotion_SetVelocity(l16,r16);
aCore_Sleep(10000);

aMotion_SetVelocity(l17,r17);
aCore_Sleep(10000);

aMotion_SetVelocity(l18,r18);
aCore_Sleep(10000);

//pause for .48 of 1 second
aMotion_SetVelocity(0,0);
aCore_Sleep(4800);

aMotion_SetVelocity(l19,r19);

 99

aCore_Sleep(10000);

aMotion_SetVelocity(l20,r20);
aCore_Sleep(10000);

//21-25

aMotion_SetVelocity(l21,r21);
aCore_Sleep(10000);

aMotion_SetVelocity(l22,r22);
aCore_Sleep(10000);

aMotion_SetVelocity(l23,r23);
aCore_Sleep(10000);

aMotion_SetVelocity(l24,r24);
aCore_Sleep(10000);

aMotion_SetVelocity(l25,r25);
aCore_Sleep(10000);

//26-30

aMotion_SetVelocity(l26,r26);
aCore_Sleep(10000);

aMotion_SetVelocity(l27,r27);
aCore_Sleep(10000);

aMotion_SetVelocity(l28,r28);
aCore_Sleep(10000);

aMotion_SetVelocity(l29,r29);
aCore_Sleep(10000);

aMotion_SetVelocity(l30,r30);
aCore_Sleep(10000);

//31-35

aMotion_SetVelocity(l31,r31);
aCore_Sleep(10000);

aMotion_SetVelocity(l32,r32);

 100

aCore_Sleep(10000);

aMotion_SetVelocity(l33,r33);
aCore_Sleep(10000);

aMotion_SetVelocity(l34,r34);
aCore_Sleep(10000);

aMotion_SetVelocity(l35,r35);
aCore_Sleep(10000);

//36-40

aMotion_SetVelocity(l36,r36);
aCore_Sleep(10000);

aMotion_SetVelocity(l37,r37);
aCore_Sleep(10000);

aMotion_SetVelocity(l38,r38);
aCore_Sleep(10000);

aMotion_SetVelocity(l39,r39);
aCore_Sleep(10000);

aMotion_SetVelocity(l40,r40);
aCore_Sleep(10000);

aMotion_SetVelocity(stop, stop);

}

 101

LIST OF REFERENCES

[1] Z. Qu, J. Wang, and C. E. Plaisted, “A New Analytical Solution to Mobile Robot Trajectory

Generation in the Presence of Moving Obstacles,” IEEE Transactions on Robotics and

Automation, Vol. 20, pp. 978-993, December 2004.

[2] S. Monaco and D. Normand-Cyrot, “An Introduction to Motion Planning Under Multirate

Digital Control,” in Proceedings of the 31st Conference on Decision and Control, Tucson,

Arizona, December 1992, pp. 1780-1785.

[3] R. M. Murray and S. S. Sastry, “Nonholonomic Motion Planning: Steering Using

Sinusoids,” IEEE Transaction on Automatic Control, Vol. 38, pp. 700-716, 1993.

[4] G. Oriolo, A. D. Luca, M. Vendittelli, “WMR Control Via Dynamic Feedback Linearization:

Design, Implementation, and Experimental Validation,” IEEE Transactions on Control Systems

Technology, Vol. 10, No. 6, November 2002.

[5] B. Kim and P. Tsiotras, “Controllers for Unicycle-Type Wheeled Robots: Theoretical Results

and Experimental Validation,” IEEE Transactions on Robots and Automation, Vol. 18, No. 3,

June 2002.

[6] J. Hollingworth, D. Butterfield, and B. Swart, J. Allsop, C++Builder 5, SAMS, 2000,

Indianapolis, Indiana.

 102

[7] D. Clark, Programming and Customizing the OOPic Microcontroller, McGrawHill, 2003,

New York, New York.

[8] J. S. Bay, Fundamentals of Linear State Space Systems, McGrawHill, 1999, Singapore.

[9] J. Borenstein and L. Feng, “Measurement and Correction of Systematic Odometry Errors in

Mobile Robots,” IEEE Journal of Robotics and Automation, May 1995.

[10] D. Tilbury, R. M. Murray, S. S. Sastry, “Trajectory generation for the N-trailer problem

using Goursat normal form,” Automatic Control, Vol. 40, pp. 802-819, May 1995.

 103

	A Third-order Differential Steering Robot And Trajectory Generation In The Presence Of Moving Obstacles
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	1 INTRODUCTION
	2 THEORETICAL BACKGROUNDS
	2.1 Introduction
	2.2 Definition
	2.3 Modeling A Two-Wheel Differential Drive Robot
	2.4 Chained Form
	2.5 Proof

	3 TRAJECTORY GENERATION
	3.1 Introduction
	3.2 Criterion For Avoiding Dynamic Objects
	3.3 A Feasible Collision-Free Trajectory Parameterization
	3.4 Solution To Steering Velocity
	3.5 Simulation

	4 IMPLEMENTATION
	4.1 Introduction
	4.2 Robot Hardware
	4.3 PC Interface
	4.4 Transmitting And Receiving Protocals
	4.5 Result

	5 CONCLUSION
	APPENDIX A
	APPENDIX B
	APPENDIX C
	LIST OF REFERENCES

