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ABSTRACT 

Similar to how electrocardiographic waves are the pace making signals of the heart, slow waves 

are the pace making signals of the intestines. Slow waves are electrical signals in the intestines 

that determine the speed at which food can move through the intestine ensuring proper digestion 

and uptake of nutrients. It has been shown that slow waves can be measured in adults using non-

invasive, surface electrodes. However, no study has investigated the measurements of slow waves 

in neonates, specifically pre-term neonates. Around 7% of pre-term neonates suffer from 

necrotizing enterocolitis (NEC) which is a condition that causes damage to the intestinal tract and 

often death of intestinal tissue. NEC affects around 9,000 neonates each year with a survival rate 

estimated to be between 60%-80%. Currently, there are no non-invasive, early-stage indicators of 

NEC. This pilot study aims to create a non-invasive measurement setup to measure and 

characterize slow wave activity in neonates. 
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CHAPTER 1:   INTRODUCTION 

The use of surface electrodes to measure internal electrophysiological signals has been widely 

applied to common medical measurements like the electrocardiogram (EKG) and 

electroencephalogram (EEG). Surface electrode measurements are also used for some less 

common medical measurements like electrooculogram (EOG), electromyography (EMG) and 

electrogastrogram (EGG). Another, though less widely known, surface electrode measurement is 

the Electroenterogram (EEnG) which has been well understood in research but is not widely used 

in the medical field. EEnG can be measured invasively by surgically placing electrodes directly 

on the small intestine. This leads to high quality signals which has been used to evaluate motility 

typically in gastroparetic patients [1]. Of course, for most applications an invasive approach is not 

viable so surface electrodes must be used instead. 

 

Surface EEnG is more difficult to measure than internal EEnG due to high electrode impedance as 

well as interference from EKG and respiratory signals. As a result, time domain analysis of EEnG 

waveforms typically has limited use for direct viewing and spectral content must be observed 

instead. Studies have found in humans [1] and in beagles [2] that the spectra observed by surface 

electrodes is correlated to the spectra observed by internal electrodes placed directly on the small 

intestine. In one study they found the correlation to be between 0.5 and 0.7 depending on the 

placement of the internal and external electrodes. In this study, surface electrodes will be used to 

measure slow waves in neonates and the frequency spectra will be used to determine the presence 

of slow waves. 
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CHAPTER 2:  MEASUREMENT SETUP 

The measurement shown in Figure 1 is meant to acquire EEnG, EKG and respiratory. EKG and 

respiratory are taken in addition to EEnG since the artifacts of both signals tend to interference 

with EEnG and must be accounted for. The electrode measurements (EKG and EEnG) all run 

though Grass P511kk AC pre-amplifiers which provide variable low and high pass filtering as well 

as a notch filter at 60 Hz and amplification. Two EEnG measurements are taken both to investigate 

better electrode placement and to provide reduce the chances of a fluke measurement (both 

electrodes should measure similar frequencies). EKG is taken in the standard fashion across the 

chest and is typically taken in addition the EKG provided at the hospital due to incompatibilities 

between measurements systems. Respiratory is taken via an accelerometer which also allows for 

the monitoring and removal of motion artifacts in post processing. The accelerometer provides X, 

Y and Z components which are all filtered and amplified with a custom front end discussed further 

in the subsections. After all analog signals are filtered and amplified, they are fed into an NI-6008 

data acquisition unit (DAQ) which provides the analog to digital conversion. A computer then 

pulls the data from the DAQ and displays it to the user via custom software along with the fast 

Fourier transform (FFT) on the EEnG for identification of frequency components. The software 

stores all data to file for post processing after the measurement is taken. 
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Figure 1. Simplified diagram of the complete measurement setup 
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2.1 Filters and Amplifiers 

Grass P511k AC preamplifiers were used because they are IEC-60601 compliant which is an 

international human rating standard for research instruments. Currently, the only active 

manufacturer with IEC-60601 rating is AD-Instruments. Grass Instruments was purchased was 

purchased by Natus from Astro-Med in 2012 at which point the P511K amplifier was discontinued, 

and the Grass website was taken down. As such there is limited information available online related 

to P511ks amplifiers, but a manual can be obtained by calling Natus. 

 

 

Figure 2. Four Grass P511K amplifiers stacked atop a IPS 115 isolated power supply, all fastened 

to a 6U rack 
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2.2 Electrodes 

Electrodes for measuring EKG neonates are plentiful, so a snap based connector was chosen to 

maintain compatibility with the EEnG electrodes (also snap based). The EKG electrodes were also 

chosen to be a wet gel-based electrode since it allows for lower impedance and the short duration 

of the study ensured the electrodes would not dry out. Neuroline 720 electrodes were chosen due 

to their small size and gentle adhesive. Three of these electrodes were used in each measurement, 

the third was used as a ground both for EKG and EEnG. 

 

 

Figure 3. Neuroline 720 gel-based electrode, top (left) and bottom (right) 

 

A previous study [3]found that the optimum electrode for measuring slow wave activity is a 

concentric electrode with a 30 mm outer diameter and a 10 mm inner diameter. The study found 

that concentric electrodes reduced interference due to EKG and respiratory signals when compared 
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to two bipolar electrodes. The 30 mm outer diameter electrode was found to be the best tradeoff 

between good signal integrity and spatial resolution. Commercial electrodes (CODE5000S0) were 

found with a 30 mm outer diameter and 10 mm inner diameter from Spes Medica in Italy. They 

are flexible and composed of a silver chloride compound (as found in the study). The electrodes 

have received FDA approval and as a result made IRB approval easier. The adhesive was found to 

be strong enough to allow for a good surface impedance without being too strong for neonate’s 

delicate skin. 

 

 

Figure 4. Spes Medica bipolar concentric electrode top (left) and bottom (right) 
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2.3 Cabling 

 

Figure 5. Medical cable (left) and the custom cable (right) 

 

Due to the fact that the measured signals are on the order of 10 µVp-p, proper cabling is essential 

to avoiding noise overriding the signals. In an initial setup, a custom cable was made with simple 

PET outer coating, inner braided shield and highly flexible wires with silicon insulation as is shown 

in Figure 6.  The cable was very flexible, which was the objective in order to avoid significant 

cable forces pushing or pulling on the electrodes. The outershield helped reduce EMI which 

primarily originated from 60 Hz noise from the power outlets since higher frequencies are filtered. 

Unfortunately, the interactions between the outer housing and conductor housing caused 

triboelectric charging and created charge buildup. This is because the inner conductor insulation 
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was made from a highly electronegative material: silicon. The creation of these charges due to 

motion on the cable induced significant currents in the conductors which flowed into the large 

impedance of the amplifiers and generated voltages in the 10 mV range for significant cable 

movements. These motion artifacts on the cable due to the triboelectric effect were enough to 

completely obscure the signal of interest which led to further cable investigation 

 

 

Figure 6. Original cable used with a simple PET outer coating, inner braided shield and highly 

flexible wires with silicon insulation 

 

Medical cables strive to reduce the effect of the triboelectric effect and achieve this by adding an 

additional inner housing that conforms to the inner conductors and is also relatively conductive at 

around 100 Ohms/inch. This inner housing helps pull charge from the insulation of the inner 

conductors when it is created to prevent charge buildup which can induce currents. This reduces 

the motion artifacts due to triboelectric effect by several orders of magnitude to around 10-20 µVp-p 

for significant cable movements. It is worth noting that this is still on the same order of magnitude 
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as the signal, so care must be taken to reduce large cable movements, while small movements may 

not significantly affect the signal. 

 

 

Figure 7. Breakdown of the low noise medical cabling used 

 

There is a medical standard, AAMI ANSI EC53, which defines the maximum amount of 

triboelectric noise to be 50 µV “peak to trough” when a weight equal to 40x the weight of 1 ft of 

wire is dropped on the center of a 7 foot wire with 5 feet of play. For the purposes of this study, it 

was not necessary to characterize the exact triboelectric noise of the setup. However, in order to 

compare the performance of the custom-made cables without the internal conductive housing to 

the true medical cables, a similar setup was performed as shown in Figure 8.  
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Figure 8. Medical and custom cable hung across the cubicle for drop testing 

 

The cables were secured to either side of a cubicle which was about 3.5 ft apart with 4 ft of cable 

between. The cables were then dropped simultaneously with a 100 g weight attached to each. As 

can be seen in Figure 9, the custom cable experienced about a 3.805 mV peak to trough jump while 

the medical cable experienced about a 0.739 mV peak to trough jump. These jumps are not as 

precise as a true ANSI measurement since the ends of the cable were not carefully fixed and the 

weight of each cable was not considered. However, this shows how much cable structure and 

materials matter is reducing triboelectric noise.  
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Figure 9. Comparison of the triboelectric noise due to a cable drop between a custom-made cable 

(blue) and a true medical cable (orange) 

 

The overall takeaway from the cable discussion is to ensure good medical cables are used with low 

triboelectric noise which drastically reduces the noise due to motion artifact in the cable. 
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2.4 DAQ Box 

 

Figure 10. DAQ box with the accelerometer and USB cable connected 

 

The DAQ box is simply a box that houses the DAQ as well as the amplifiers and filters for the 

accelerometer measurement. The output of the top Grass P511k amplifier (EEnG 1 or the left 
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EEnG) is connected to channel 0, the second Grass amplifier (EEnG 2 or the right EEnG) is 

connected to channel 1 and the third Grass amplifier (EKG) is connected to channel 2. Channels 

3, 4 and 5 take the output from the amplifier and filter PCBs which are connected to the 

accelerometer. As can be seen from the wiring and composition of the box (plastic), interference 

is not a major concern since the accelerometer inputs are biased and fairly large (mV range) and 

the inputs of the biological signals have already been filtered and amplified. This setup could be 

improved by using PCB edge mount connectors and then interfacing everything via PCB traces 

which could be better isolated. A metal box would also act as a faraday cage reducing interference. 

These additional measures weren’t taken due to time and significant interreference was not created 

from this part of the measurement chain.  
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Figure 11. Labeled diagram of the DAQ box which includes the DAQ and the accelerometer front 

end hardware 

 

2.5 Accelerometer and Frontend 

An accelerometer was desired in order to detect when the patient moved in order to be able to mark 

that data as contaminated when performing the post processing. In addition to detecting motion 

artifacts, the accelerometer could also be used to detect the respiratory rate. If an accelerometer 

with sufficiently low frequency response and sensitivity was selected, and paired with appropriate 

filtering and amplification, respiratory rate could be detected by the rising and falling of the 

diaphragm when placed appropriately. Previous studies [3] used an ADXL 335 triaxial 

accelerometer from Analog instruments to measure movements and their results showed that 

accurate respiration was also picked up by the accelerometer though they don’t mention what 
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amplification and filtering was applied to the accelerometer signals. Looking online for 

approximate breathing rates allowed for proper tuning of the filters while in person testing was 

used to find the necessary gain as is shown in the following sections. 

 

An inexpensive ADXL335 evaluation module was purchased which includes the ADXL335 as 

well as the necessary decoupling capacitors and a low drop out linear regulator which regulates an 

input voltage of ~3.3 V – 9 V down to the 3.3 V required for operation while also providing reverse 

polarity protection. Due to the fact that the accelerometer needs to be used in a hospital 

environment, it was sealed and connected to a medical grade shielded cable as shown in Figure 

12. 

 

 

Figure 12. ADXL335 accelerometer evaluation module (left) and ADXL335 packaged and 

connected to a shielded cable (right) 
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2.5.1 Accelerometer Filter Design 

Adults tend to have a breathing rate around 12 - 20 breaths/minute [4] which corresponds to 0.1 – 

0.33 Hz, while neonates tend to have a breathing rate that is much higher, 45 – 60 breaths/minute 

or 0.66 – 1 Hz. As such the filtering function should be able to accommodate all breathing 

frequency ranges while rejecting DC and higher frequencies. To summarize, a filter is desired with 

a pass band from 0.1 – 2 Hz with a really flat pass band and reasonably good out of band rejection. 

This filter can be designed using equations, but with an abundance of online calculators it is not 

necessary. Analog Instruments offers a nice online filter design tool which can be found from the 

following link (https://tools.analog.com/en/filterwizard/). If the values in Table 1 are used as the 

input for the tool, it will generate the component values needed for both a Bessel filter and 

Butterworth filter. Those component values are then adjusted to match the values that are available 

in the resistor and capacitor kits available in the lab. 

 

Table 1. Filter design parameters using the Analog Instruments filter design tool 

Gain 0 dB 

Passband (-3 dB) 2 Hz 

Stopband (-60 dB) 1 KHz 

Center Frequency 0.5 Hz 

 

The circuits were then simulated in LTSpice simulation software as shown below, in order to 

determine the filter characteristics. As is well known in filter design, the Butterworth filter offers 

https://tools.analog.com/en/filterwizard/
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a sharper roll off rate than the Bessel filter while sacrificing phase linearity. This is shown in Figure 

14 which compares the simulated frequency response of the Butterworth and Bessel filters.  

 

 

Figure 13. Schematic and values of the 6th order Bessel filter (top) and 6th order Butterworth filter 

(bottom) 

 

As shown in Figure 13, the first stage of the filter is a second order high pass filter and the next 

two stages are second order lower pass filters. Since there are two low pass stages, the high side 

of the bandpass filter has a sharper roll off rate than the low side. This was done to ensure that the 

filter showed strong rejection at high frequencies like 60 Hz while it was not so critical to reject 

lower frequencies that were below the 0.1 Hz cutoff. As is shown in the left side of Figure 14, the 

frequency response clearly shows the non-symmetry of the filter with respect to the roll off rate on 

the high and low side. As previously mentioned, the Butterworth filter has a slightly better role off 
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rate than the Bessel filter. However, since the order of the filter is high enough, this additional roll 

off is not needed and the slightly better phase performance of the Bessel filter is chosen in order 

to reduce distortion.  

 

Figure 14. Frequency response (left) and step response (right) of the Bessel filter (green) and 

Butterworth filter (blue) 

 

The right side of Figure 14 shows the filter response in the time domain to an infinite impulse. 

This allows the time constant of the filters to be determined. Both filters stabilize about 12 s after 

an impulse is applied so neither filter choice greatly improves the time constant performance. A 

smaller time constant is desired because large movements create a sharp voltage spike and render 

the circuit useless until the filter unwinds. 
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2.5.2 Accelerometer Amplifier Selection 

The ADXL335 has acceleration sensitivity of approximately 0.3 V/g (g being 9.8 m/s2) in all 3 

axis with the Z axis being the most sensitive. Testing of the accelerometer placed on the abdomen 

showed that breathing creates around a 5-10 mV signal which will require an amplifier gain of 

approximately 100 to put the signal into the range of the ADC (-1 V to 1 V). A low frequency 

instrumentation amplifier is the ideal for this application since they offer high gain, linearity, and 

common mode rejection. The AD620 from analog instruments is a popular choice for this 

application and has been used in other studies for many biometric signals like EEG [5] and EKG 

[6]. The AD620 is also available in many evaluation modules which made getting a simple setup 

up and running quite easy. 

 

The AD620 evaluation module is show in Figure 15 along with each of its features. The evaluation 

module includes a HT7660 which is operated in the inverting charge pump configuration to 

provide the inverse of the input voltage. This allows the AD620 to operate from -5 V – +5 V and 

is also used to power the op-amps for the filters shown in the previous section. The module also 

uses an LM358 op-amp in order to provide DC offset which allows for tuning to get the output 

exactly at 0 V even if the input has some DC drift. The evaluation module also uses a potentiometer 

as the gain resistor for the AD620 which allows for variable gain and a potentiometer to set the 

DC offset. The board also allows for the AD620 to be operated in differential mode with a S+ and 

S- input, but S- is tied to ground since the filter implementation is single ended.  

 



20 

 

 

Figure 15. Labeled AD620 evaluation board 

 

The evaluation board works well for this application and allowed for faster iteration, but it comes 

with one small drawback. The HT7660 is obviously a switched mode device, and it operates at 10 

kHz. The ripple shown on the output is very small, typically around 20 – 30 mV, but it still has the 

potential to show up on the output. The AD620 has excellent CMRR, around 100 dB, which means 

that the effect of the ripple should be on the order of 0.04 – 0.06 mV which is quite small compared 
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with typical output voltages of 1 V – 2 V. Nevertheless, if this board were redesigned it would 

likely to be wise to go with a linear based inverter in order to ensure no noise on the output.  

 

2.6 Software 

The purpose of the software is to pull data from the DAQ, display all channels in a manner that is 

easy to understand, display the frequency spectrum of EEnG and to reliably save all data to file. 

This isn’t a very significant task and can be completed in an environment such as National 

Instruments (NI) LabVIEW. LabVIEW wasn’t chosen for this application due to the cost of the 

software, the undesirable appearance and lack of control over the data acquisition process. Instead, 

the acquisition software was written in Python due to is broad acceptance as well as the availability 

of modules to perform data acquisition from the DAQ (nidaqmx) and modules to create a nice 

frontend user interface (kivy). The code is available on GitHub 

(https://github.com/gmgoodale/Bioamp) and is also included in the appendix. 

 

2.6.1 Data Acquisition 

NI provides a python module called nidaqmx which allows for both discrete and continuous analog 

and digital acquisition from NI products. The module places the c API in a wrapper, so the NI-

DAQmx software needs to be installed for python to interface with the c drivers. NI-DAQmx is 

available for Linux and Windows, but only a basic version is available for Mac which doesn’t 

support most NI products. As such, this code is compatible with Windows and Linux, but not Mac.  

https://github.com/gmgoodale/Bioamp


22 

 

Data acquisition is performed in a continuous fashion using the StreamReader functionality 

provided in the nidaqmx module. That means that the DAQ continues to push data into its IO 

buffer regardless of the IO read rate and without the computer requesting it. If the computer is 

unable to keep up with the output from the DAQ then the internal buffer on the DAQ overflows 

and causes an error. In order to ensure that the computer reads from the DAQ promptly, a dedicated 

process was used for the purpose to push the data to internal memory. This needs to be a dedicated 

process and not a thread in Python because Python only runs one thread at a time, so it is not truly 

parallel. This is due to the global interpreter lock (GIL) which simply doesn’t support concurrent 

multithreading.  

 

Multithreading does still have some benefits in Python though because when one thread isn’t 

actively using CPU Python will switch to another waiting thread which still improves throughput 

compared to a purely sequential program. For that reason, the main thread which is responsible for 

updating the GUI is kept separate from the DAQ thread which is responsible for reading in the 

data from the DAQ process. Moving data between python process is limited to certain 

multiprocessor data types which is why a regular queue is used in this part of the code whereas a 

double ended queue (deque) is used for buffering the data in the main process.  
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Figure 16. Simplified diagram of the process, threads and tasks 

 

2.6.2 GUI 

The GUI is responsible for displaying the time domain and frequency domain waveforms as well 

as gathering the patient number and starting and stopping the recording. Much more additional 

functionality could be added in the future to allow for things like modifying the bounds on the 

graphs (both X and Y) as well as changing the sampling rate, file saving location, or even 
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controlling the gain and filter settings if digital enabled amplifiers were used. However, for the 

time being the GUI was kept very simple to ensure reliable functionality. The GUI was written 

using a GUI module for Python called kivy. Kivy supports basic GUI functionality like buttons, 

labels and media, but also has plugins from the “kivy garden” which can be used for more niche 

functionality. Kivy garden contains a graph plugin which is used for the graphing functionality of 

the time domain signals and FFT.  

 

 

Figure 17. GUI asking for patient number after start 

 

As is shown in Figure 17, whenever a measurement is started (the start button is pressed), a popup 

will appear asking for a patient number which can be any string used to identify the patient. Since 
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most studies require deidentified data, this is typically some long string generated by the liaison at 

the hospital. The patient number is often an integer number but it is stored as a string so it really 

can contain any Unicode character so long as they are not illegal directory characters (like “/” or 

“.”). The string is used to create a directory within the “/Bioamp/Data” folder which will be named 

after string entered for the patient. Whenever that patient number is entered, the recorded files will 

be saved in that patient’s directory. 

 

 

Figure 18. Labeled GUI, EEnG 1 (light blue), EEnG 2 (red), ECG (green), X (dark blue), Y 

(purple) and Z (white) 

 

As can be seen in Figure 18, the GUI has a control bar on top which is created using the 

“ActionBar” functionality from kivy which create a nice auto sizing bar to place buttons and other 
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useful things (like search) in. The top window displays the EEnG 1 and 2 signals, the second 

window contains the EKG and accelerometer data and the third window contains FFT on the EEnG 

signals. FFT is only performed on the EEnG for practical and performance reason as will be 

covered in the FFT section. 

 

 

Figure 19. The GUI when gathering data 

 

2.6.3 FFT 

Live FFT is performed on the EEnG time domain data in order to see what frequencies are present. 

As has been shown in previous studies [1], slow waves typically have a frequency of around 9-13 



27 

 

cycles per minute (CPM) or 0.15 – 0.2 Hz. Performing a live FFT quickly allows the operator to 

determine if the measurement seems to be working in real time without having to wait until post 

processing the data. The FFT algorithm has been heavily optimized though the years and 

specifically for Python. As such, many fast implementations exist with the fastest (for most even 

numbered data sets) being the FFT from the scipy module which was used for this application.  

 

In order to give some concept of the logic for the updating times used in the program, some run 

times are stated in this paragraph. However, it is important to note that the run times stated are for 

a specific Windows 10 computer which had 16 GB of RAM and a Ryzen 5 3400G processor. 

Times on other systems may vary due to hardware variations and even from run to run since 

Windows is not a real time operating system. Now, with that aside, the scipy module is quite fast, 

typically on the order of 1 – 2 ms for datasets of around 4,000 data points. However, some of the 

support operations required to run FFT involved converting the DEQs to NumPy arrays and 

interlacing two lists which takes an additional 3 – 5 ms. The clocked update time for the time 

domain graphs on the GUI is every 50 ms (20 Hz) in order to give a smooth viewing experience. 

Since other tasks must be performed during the 50 ms needed to update the graphs, the 4 – 7 ms 

taken by the FFT can often become too much and slow the update speed of the GUI down giving 

a suboptimal viewing experience. The FFT does not need to be updated as often since it doesn’t 

have the same smooth scrolling nature as the time domain graphs, so the update time for the FFT 

is dropped to 500 ms which allows for smooth operation of the program. 
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The sampling rate of the DAQ is held at 1 kHz which based on the Nyquist theorem allows 

frequencies up to 500 Hz to be detected. Of course, as mentioned previously the frequencies of 

interest are at less than 1 Hz. Additionally, FFT performs a better approximation of the frequencies 

present when more cycles of that frequency are available. At a frequency of 0.1 Hz, one cycle only 

occurs every 10 s, so a 10 s FFT window would barely be able to approximate that frequency. As 

such, a large window of around 40 s is desired, but running FFT on 40,000 points would also be 

quite slow. The solution is to reduce the sampling rate for the data that FFT is run on. It is still 

desired to store the data from a 1 kHz sampling rate such that more analysis can be run later, but 

the processed FFT data can be sampled at a much lower rate of say 100 Hz which still leads to a 

buffer size of 4,000 but a window size of 40 s. This is what is done, there is a parameter in the 

main.py script called “FFTSampleReduction” which reduces the sampling rate by whatever integer 

that is set to. The default value is 10, which reduces the sampling rate from 1 kHz to 100 Hz and 

results in the scenario mentioned before. 

 

2.6.4 File Saving 

File saving is fairly straight forward process, but there are a few nuances that should be noted. File 

saving is a slow I/O operation, so it is ensured that the file I/O takes place on a separate thread 

than the one running the GUI, so the GUI continues to be responsive during each file save. Saving 

a line to a file in Python using a method like “file.write()” theoretically stores that values to file, 

but sometimes the OS will just keep them in a buffer in memory until the program stops running. 

This defeats the purpose of saving the data to a non-volatile memory space in the event of a power 
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outage or other failure. As such, the “os.fsync” function should be used in order to ensure the data 

is written to disk. This should be run occasionally to ensure the data is written to file. Using the 

clock scheduler from kivy, this task is run about every 5 s to ensure no more than 5 s of data can 

be lost in the event of a failure. 
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CHAPTER 3:  SYSTEM TESTING 

Before patient tests were performed, the system needed to be validated to ensure all the 

measurements were working as expected. Many tests were performed on subsystems to improve 

their individual performance, but this section focuses on two tests that were performed on a 

complete system for final system functionality. 

 

3.1 Motion Artifacts 

Motion artifacts are a well-known phenomenon in the biomedical space. This section aims to 

describe the motion artifacts encountered in testing and some methods that were used to reduce 

them. As mentioned in the earlier cabling section, motion artifacts can be manifested in cabling 

due to the triboelectric effect and the cabling was changed in order to reduce that source, but 

motion artifacts also originate from changing of electrode-body impedance. That is, as the 

electrode moves, the contact resistance changes between the skin and the electrode which results 

in motion artifacts. This was minimized by resting cables with proper slack between the cable and 

patient to reduce cable forces on the electrode. Obviously gel based electrodes reduce impedance 

and even using a gel based electrode for ground greatly improved the performance of the dry 

electrodes used for EEnG. Beyond that, motion artifacts were able to be easily identified by the 

correlation between the biometric signals and the accelerometer signals as can be seen in Figure 

20. Once motion artifacts were identified they had to be manually removed in post processing. 
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Figure 20. Time domain data from EEnG, EKG and accelerometer highlighting motion artifacts 

 

3.2 Bipolar Concentric Electrode Testing 

As mentioned previously, many studies [1] [2] [3] have measured slow waves in adults. 

Particularly [3], which used similar, flexible concentric electrodes to measure slow waves. As 

such, a measurement was taken on an adult in order to compare the results to the study to confirm 

the setup is working as expected. 
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3.2.1 Measurement Configuration 

Similar to [3], a bipolar concentric electrode (CODE5000S0) was placed below the naval for the 

EEnG measurement. The ground electrode was place on the left hip, EKG electrodes were placed 

on the chest and an accelerometer was connected to measure breathing. As mentioned earlier Grass 

P511k amplifiers were used for the EEnG and EKG while a custom filter and amplifier circuit was 

used for the accelerometer. The EEnG measurement was amplified with a gain of 20,000 which 

was the highest value that allowed the signal to be within bounds of the ADC without significant 

noise levels. The EKG signal was amplified by 2,000 which was the correct value to keep it in 

bounds of the ADC. Both EKG and EEnG were run through a bandpass filter from 0.1 Hz – 30 Hz 

before amplification. The accelerometer signals were run through a bandpass filter from 0.1 Hz – 

3 Hz before and then amplified by 100. Recording took place for 10 minutes in which the patient 

was kept still and advised to breathe normally. The Grass P511k amplifier settings are summarized 

in Table 2. 
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Table 2. Setting used for the analog filters and amplifiers 

 

 

 

Figure 21. Electrode and accelerometer placement for an adult test to compare system performance 

 



34 

 

3.2.2 Results 

 

Figure 22. 30 s view of the raw time domain waveforms collected from the EEnG electrode (top), 

the EKG electrodes (center) and the accelerometer (bottom) all without gain normalization 

 

The results were first normalized by gain in order to get the proper amplitude of each signal and 

then digitally band pass filtered by a bidirectional 4th order Butterworth filter which was 

implemented using the “butter” and “filtfilt” functions in Matlab. EKG was filtered between 0.1 – 

10 Hz, EEnG was filtered between 0.1 – 0.5 Hz and respiratory was filtered between 0.1 – 3 Hz. 

The signals were then resampled at a lower frequency. EKG was resampled at 10 Hz, EEnG was 
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resampled at 4 Hz and respiratory was resampled at 10 Hz. The post processed signals are shown 

in Figure 23. 

 

 

Figure 23. 30 s view of the time domain waveforms of post processed data collected from the 

EEnG electrode (top), the EKG electrodes (center) and the accelerometer (bottom) with gain 

normalization 

 

As can be seen in the top plot of Figure 23, the EEnG signal shows significant respiratory artifacts 

which make it difficult to make out the overall trend of the data. As a result, spectral analysis is 

used in order to determine the frequency components present in the EEnG signal and determine 
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the frequency of the slow wave signal. In order to get reasonable frequency resolution (0.5 CPM) 

while avoiding significant non-stationarities, a window size of 120 s was chosen for the spectral 

analysis which is consistent with previous published work.  

 

 

Figure 24. 120 s view of the time domain waveforms of post processed data collected from the 

EEnG electrode (top), the EKG electrodes (center) and the accelerometer (bottom) with gain 

normalization 

 

The autoregressive Yule-Walker method was used to go from the time domain to the spectral 

domain due to its unconditional stability. The order chosen for the EEnG signal was 120 (the length 
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of the window in seconds) and the order for EKG and respiratory was chosen as 3,000 since the 

sampling rate for both signals was 25 times higher than EEnG. The autoregressive order can be as 

large as the number of samples in the window (480), as which point further increasing order will 

yield no further changes. The order of 120 was chosen because it provides a good tradeoff between 

resolving all peaks without adding additional noise, which is why it has been chosen in other papers 

The results of the PSD are shown in Figure 25. 

 

Figure 25. PSD of the adult test using a bipolar concentric electrode 
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As expected from visual inspection of the EEnG, the respiratory frequencies are present in the 

EEnG spectrum in addition to the slow waves. The 10.5 CPM peak is attributed to the slow wave 

and is consistent with previous studies which have found slow waves to be between 10 – 12 CPM 

in adults. There is a peak below the primary slow wave peak that is around 7 CPM. This lower 

frequency may be due to the colon or may be due to baseline drift in the signal but is not regarded 

as the slow wave frequency due to it’s lower amplitude.  

 

3.3 Noise Measurement Test 

To validate that the frequencies observed during measurement were of biological origin and not 

an artifact of the system, a measurement was performed where there were no signals. Two 

electrodes were placed atop a damp paper towel with their plastic backing still on. The damp paper 

towels provided a weak amount of grounding to wick away charge and prevent significant charge 

buildup. The plastic backing was left on so the electrodes could be used for further experiments 

later and because the high resistance of the plastic made the experiment noisier if anything. The 

amplifiers were then set to the same settings as the previous section and the data was post processed 

in the same way in order to provide a direct comparison between the spectrum of a noise 

measurement and an actual measurement. Performing the data analysis in the same way also 

allowed as a check to ensure that the spectra observed were not a result of the post processing. 
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Figure 26. Concentric electrodes used for measuring EEnG placed  

 

As can be seen in Figure 27, the noise measurement is more than an order of magnitude below the 

measured signal in the time domain and 3-4 orders of magnitude smaller in the frequency domain. 

The reason that the noise appears to have similar spectral content is because of filtering and FFT 

binning. Since both signals are band pass filtered between 0 CPM – 30 CPM (0.1 – 0.5 Hz), their 

spectra only shows up in that range, and the noise appears to have peaks because frequency 

resolution is only 0.5 CPM so noise that is in-between gets grouped into those peaks. 3 – 4  orders 

of magnitude is considered to be a high enough margin for this measurement and proves that the 

measurement is more than just noise. 
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Figure 27. Time domain and spectral density of noise measurement (left) and a real measurement 

(right) 

 

Figure 27 is a nice comparison because it shows the difference between a real signal and a noise 

signal when all signal processing has been applied. This allows the effects of both the system and 

signal processing to be seen, but some may wonder what the entire spectrum looks like when 

filtering is not applied. That is to say, noise doesn’t really look like noise when it is being filtered 

because then it is not strewn across the measured spectrum as is typically expected. To satisfy this 

curiosity, the results were analyzed with a high pass filter instead of a bandpass filter in order to 

see the rest of the spectrum and the AR order was increased from 120 to 480 to give maximum 

resolving in order to see all peaks. 
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Figure 28. Comparison between noise (left) and measurement (right) when a high pass filter is 

applied at 3 CPM to remove DC offset 

 

As can be seen in Figure 28, the time domain and frequency domain look quite different without 

the bandpass. In the noise measurement on the left, if can be seen from the time domain that EEnG1 

is much quieter than EEnG2 which is not as apparent when the bandpass filter is applied because 

it filters the frequencies that show up more strongly in EEnG2. The other thing that can be seen is 

that with the higher frequencies present in EEnG2, the order of the amplitude is similar to the 

amplitude of our measured signal. This is a bit concerning, but it must be remembered that this 

higher amplitude frequencies get filtered out and the frequencies of interest are still much smaller 

in amplitude. The other good news is that while the noise measurement does have a surprising 

number of distinct peaks, they do not occur in the measurement range of interest and are likely 

random. The final thing to consider is that the actual noise floor in a real measurement is somewhat 

lower that what is shown here. This is because the outer and inner conductors of the electrodes 
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have a very high impedance between them in this measurement and a much lower impedance in 

an actual measurement. This high impedance makes the electrodes much more susceptible to noise.  
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CHAPTER 4:  PATIENT TESTING 

Measurements were taken over a 90-minute period occurring just after feeding. This was done for 

logistical reasons; the neonate is typically awake for feeding which is a good time to place 

electrodes and the neonate typically sleeps after feeding which helps reduce motion artifacts. All 

patient testing was performed at Nemours Children’s Hospital (Orlando, FL) in the neonatal 

intensive care unit (NICU). Deidentified data was provided from the measurements for further 

analysis which will be presented in this section.  

 

4.1 Measurement Configuration 

As described in the measurement setup section, two bipolar concentric electrodes were placed on 

either side of the naval to measure EEnG. EKG electrodes were placed on the chest, slightly to the 

side so as not to disturb the EKG electrodes placed by the hospital. The grounding electrode was 

placed on the side and the accelerometer was placed in the middle of the abdomen where 

respiration displacement appeared to be the greatest. The two EEnG signals were amplified by 

20,000 and band pass filtered before amplification from 0.1 Hz – 30 Hz. EKG signals were 

amplified by 10,000 and also bandpass filtered between 0.1 Hz – 30 Hz. Both EKG and EEnG 

were filtered and amplified with P511k amplifiers. The accelerometer signals were amplified by 

100 and pass filtered before amplification from 0.1 Hz – 3 Hz using custom hardware.  
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Figure 29. Electrode placement on a neonate 

 

Most neonates were awake after feeding and took some time to settle down which led to 30 – 50 

minutes of artifacted data at the beginning of the measurement. Some neonates had mild gastric 

distress which would result in motion every few minutes to pass gas which also resulted in motion 

artifacts. Overall, it was difficult to get long periods of artifact free data which limited the data 

analysis to artifact free windows.  
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Figure 30. Raw signals from 90 minutes of recording  

 

As can be seen in Figure 30, there are significant motion artifacts in the first 60 minutes of 

recording. The motion artifacts can be easily identified because they appear both on the 

accelerometer and electrode measurements. The analysis for this particular measurement took 

place on data from the last 20 minutes and the same is true for most other measurements.   

 

4.2 Post Processing Methods 

The signals from the patients were processed in the same way as the results from an adult in Bipolar 

Concentric Electrode Testing. To avoid regurgitating the same sentences the parameters are 
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summarized in Table 3. The same processing methods are used for all patient data when analyzing 

120 s windows.  

Table 3. Post processing parameters used for 120 s windows of data 

 

 

4.3 Results 

The resampled and filtered time domain data is show in Figure 31 for EEnG, ECG and respiratory 

signals. The time domain data for the neonates (patients) is somewhat different than the data 

collected from adults shown in earlier section. The most notable difference is that the ECG and 

respiratory signals are much higher in frequency. ECG is on the order of 150 CPM instead of 50 

CPM and respiratory is around 50 CPM instead of 25 CPM. As such, ECG and respiratory can be 

easily filtered out from EEnG using the bandpass Butterworth filter which allows for more clear 

viewing of the slow waves in the time domain. Since the EEnG signal has still been highly filtered 

Parameter Value

Data Size 120 s

ECG Filter 0.1 - 10 Hz

Resp Filter 0.1 - 3 Hz

ENG Filter 0.1 - 0.5 Hz

ECG Sampling Rate 100 Hz

Resp Sampling Rate 100 Hz

ENG Samplin Rate 4 Hz

ECG AR Order 3000

Resp AR Order 3000

ENG AR Order 120

PSD Method Yule-Walker

Post Processing Parameters
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the slow waves appear more sinusoidal in nature than when compared to the slow waves measured 

directly on the small intestine.  

 

 

Figure 31. Time domain data of the filtered and resampled EEnG (top), ECG (middle) and 

respiratory (bottom) 

 

Again, moving to the spectral domain provides some insight into what signals are present in the 

measurement. As mentioned earlier, the ECG and respiratory in neonates is quite high compared 

to adults, 130.5 CPM and 46 CPM respectively. The slow wave frequency measured on both the 

right and the left electrode were the same at 9.5 CPM.  
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Figure 32. PSD on 120 s window of the ECG (top), respiratory (middle) and EEnG (bottom) 

 

As is well known in signal processing, frequency resolution is directly related to the window size. 

In Figure 32, a 120 s window is being evaluated which results in a frequency resolution of 0.5 

CPM. This results in some “frequency binning” issues as alluded to in the noise measurement 

section. Even though we see a peak a 9.5 CPM all spectral content between 9.25 CPM and 9.75 

CPM is being placed into that signal peak, so the peak location and height may differ.  
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𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 =
 𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑅𝑎𝑡𝑒

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑎𝑚𝑝𝑙𝑒𝑠
=

4 (𝐻𝑧)

480 
= 0.0083 (𝐻𝑧) = 0.5 (𝐶𝑃𝑀)  

Equation 1. Frequency resolution of a FFT transform 

 

In order to increase the frequency resolution, the window size was increased from 120 s to 480 s 

which improves the frequency resolution from 0.5 CPM to 0.125 CPM. This allow for better 

resolution in the peaks which can be seen in Figure 33. The trouble with larger window sizes is 

that it is more difficult to find artifact free windows and non-stationarities become more 

significant. The peak of EEnG1 moves from 9.5 to 9.75 CPM and the peak on EEnG2 moves from 

9.5 CPM to 9.125 CPM. 

 



50 

 

 

Figure 33. PSD on 480 s window of the ECG (top), respiratory (middle) and EEnG (bottom) 

 

Three more measurements of neonates were taken in the same fashion as the initial measurement 

and with the same post processing. The primary peak in EEnG was identified for the 120 s 

recording window and summarized in Table 4.  
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Table 4. Summary of patient slow wave frequencies 

 

 

4.4 Results Discussion 

As mentioned previously, the range of slow waves in adults is between 8 CPM – 12 CPM, which 

places the measured result within range. One interesting observation is that in two of the four 

measurement, the signal on the right electrode (EEnG2) showed a lower frequency than the signal 

on the left electrode (EEnG1). This is slightly surprising because the right electrode should be 

closer to the duodenum which is the top of the small intestine. Generally, the frequency of the slow 

waves decreases when moving down the small intestine [7]. However, since the electrodes are 

being placed relative to the naval without any ultrasound or other locating method, it is possible 

that the left electrode is far enough below the duodenum that it primarily picks up signal from the 

jejunum. Overall, the frequencies observed are consistent with previous studies in adults and align 

with the expected values. 

 

Patinet Number EEnG 1 (CPM) EEnG2 (CPM)

1 9.5 9.5

2 9 8.5

3 10.5 8.5

4 8.5 8.5
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Figure 34. Diagram of the abdomen showing the relative scale of the EEnG electrodes to the 

intestines 

 

ENG 1ENG 2
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CHAPTER 5:  CONCLUSION  

5.1 Accomplishments 

A custom system was built with the capability to measure ECG, respiratory and EEnG and to 

record and display those signals in live time. The system was validated on adults and shown to 

align with results from previous studies in adults and shown that the measured results were not a 

function of system noise. The system was then used to perform measurements of EEnG in neonates 

resulting in the first slow waves measured in neonates. 

 

5.2 Future Works 

Significant work still remains in this area, primarily in relation to improving the measurement 

setup. Motion artifacts remain a prominent issue which may require the use of an “active 

electrode,” that is a PCB that can stack atop the electrodes and provide amplification and possibly 

transmit via a current loop transmitter. Smaller electrodes are another possible improvement which 

would allow for more localized signals. Additionally, electrode arrays might allow for both 

localization and phase of signal to “follow” slow waves through the intestines. Some smaller 

improvements could be made in terms of integrating the system into a single PCB which would 

shrink it’s size significantly.  

 

As far as the non-technical future work goes, more measurements need to be taken to confirm that 

the slow waves measured at statistically significant. Once slow waves have been thoroughly vetted 

in healthy neonates, continuous monitoring will need to take place in neonates that are at high risk 
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for NEC. Continuous monitoring over long periods will allow for trends in slow wave frequency 

to be observed. These trends can then be correlated to the baby’s health to determine if slow wave 

frequency trends relate to abdominal swelling and NEC. 

 



55 

 

APPENDIX A 

CODE DAQ.KV 
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#:kivy 1.0.9 

#:import MeshLinePlot kivy.garden.graph.MeshLinePlot 

#:import Factory kivy.factory.Factory 

#:import datetime datetime 

 

<PatientPopup@Popup>: 

    title: "Enter Patient Number" 

    auto_dismiss: False 

    size_hint: (0.25, 0.25) 

    BoxLayout: 

        orientation: "vertical" 

        AnchorLayout: 

            TextInput: 

                id: input 

                hint_text:'Enter Patient Number' 

                multiline: False 

                size_hint: 0.95, 0.7 

                anchor_x: 'right' 

                anchor_y: 'bottom' 

        AnchorLayout: 

            Button: 

                id: pButton 

                text: 'Start' 

                size_hint: 0.75, 0.8 

 

# Define your background color Template 

<BackgroundColor@Widget> 

    background_color: 1, 1, 1, 0.1 

    canvas.before: 

        Color: 

            rgba: root.background_color 

        Rectangle: 

            size: self.size 

            pos: self.pos 

# Now you can simply Mix the `BackgroundColor` class with almost 

# any other widget... to give it a background. 

<BackgroundLabel@Label+BackgroundColor> 

    background_color: 0, 0, 0, 0 

    # Default the background color for this label 

    # to r 0, g 0, b 0, a 0 

 

<GraphValues>: 
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    eng_graph: ENG 

    vitals_graph: ECG_ACCEL 

    frequency_graph: FFT 

    patient_popup: Factory.PatientPopup() 

 

    BoxLayout: 

        size: root.width, root.height 

        orientation: "vertical" 

        ActionBar: 

            size_hint: (1, 0.05) 

            ActionView: 

                ActionPrevious: 

                    with_previous: False 

                    app_icon: '' 

                ActionButton: 

                    id: start_button 

                    text: "START" 

                    on_press: root.start() 

                    disabled: False 

                ActionButton: 

                    id: pause_button 

                    text: "PAUSE" 

                    on_press: root.pause() 

                    disabled: True 

                ActionButton: 

                    id: stop_button 

                    text: "STOP" 

                    on_press: root.stop() 

                    disabled: True 

        Graph: 

            id: ENG 

            size_hint: (1, 0.3) 

            plot: MeshLinePlot 

            background_color: [0.15, 0.15, 0.17, 1] 

            ylabel:'Amplitude (V)' 

            #x_ticks_major:1 

            y_ticks_major:1 

            y_grid_label:True 

            x_grid_label:True 

            padding: 5 

            x_grid:True 

            y_grid:True 
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            xmin:root.xMin 

            xmax:root.xMax 

            ymin:-2 

            ymax:2 

 

        Graph: 

            id: ECG_ACCEL 

            size_hint: (1, 0.3) 

            plot: MeshLinePlot 

            background_color: [0.15, 0.15, 0.17, 1] 

            ylabel:'Amplitude (V)' 

            #x_ticks_major:1 

            y_ticks_major:1 

            y_grid_label:True 

            x_grid_label:True 

            padding: 5 

            x_grid:True 

            y_grid:True 

            xmin:root.xMin 

            xmax:root.xMax 

            ymin:-2 

            ymax:2 

 

        # Time axis labels 

        BoxLayout: 

            size_hint: (1, 0.05) 

            orientation: "horizontal" 

            BackgroundLabel 

                text: str(datetime.timedelta(seconds=root.xMin))[0:10] + ' ' 

                background_color: [0.15, 0.15, 0.17, 1] 

                text_size: self.size 

                halign: 'left' 

                valign: 'top' 

                padding:  (40, 0) 

            BackgroundLabel 

                text: "Time (S)" 

                background_color: [0.15, 0.15, 0.17, 1] 

                text_size: self.size 

                halign: 'center' 

                valign: 'top' 

            BackgroundLabel 

                text: str(datetime.timedelta(seconds=root.xMax))[0:10] + ' ' 
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                background_color: [0.15, 0.15, 0.17, 1] 

                text_size: self.size 

                halign: 'right' 

                valign: 'top' 

 

        Graph: 

            id: FFT 

            size_hint: (1, 0.3) 

            plot: MeshLinePlot 

            background_color: [0.15, 0.15, 0.17, 1] 

            xlabel:'Frequency (Hz)' 

            ylabel:'Amplitude (dB)' 

            x_ticks_major:2 

            y_ticks_major:10 

            y_grid_label:True 

            x_grid_label:True 

            padding:5 

            x_grid:True 

            y_grid:True 

            xmin:0 

            xmax:10 

            ymin:0 

            ymax:100 
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APPENDIX B 

CODE MAIN.PY 
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# NI imports 

import nidaqmx 

from nidaqmx.stream_readers import (AnalogSingleChannelReader, 

AnalogMultiChannelReader) 

from nidaqmx.constants import (AcquisitionType, CountDirection, Edge, 

    READ_ALL_AVAILABLE, TaskMode, TriggerType, TerminalConfiguration) 

 

# General imports 

import collections 

import numpy 

import time 

from threading import Thread 

import threading 

import multiprocessing 

from copy import copy 

from datetime import datetime 

import os 

from scipy.fftpack import fft 

import queue 

 

# Kivy imports 

from kivy.app import App 

from kivy.lang import Builder 

from kivy.garden.graph import MeshLinePlot, Graph 

from kivy.clock import Clock 

from kivy.uix.widget import Widget 

from kivy.properties import (NumericProperty, ReferenceListProperty, 

    ObjectProperty) 

from kivy.uix.boxlayout import BoxLayout 

 

class FFT: 

    # Takes in a deq in the time domain and returns a list of tuples (freq, mag) 

    @staticmethod 

    def FFTFromDEQ(timeDEQs, samplingRate): 

 

        # Convert to a numpy array and take the fft for each channel 

        chFrequencies = [] 

        i = 0 

        for DEQ in timeDEQs: 

            timeArray = numpy.asarray(DEQ)[:,1] 

            chFrequencies.append(numpy.abs(fft(timeArray))) 

            # Logarithimic mode, this is a bit slower 
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            #chFrequencies.append(20*numpy.log10(numpy.abs(fft(timeArray)))) 

            i+=1 

 

        # Generate the X axis values which are the discrete frequency values 

        N = len(chFrequencies[0]) 

        n = numpy.arange(N) 

        T = N/samplingRate 

        freqValues = n/T 

 

        # Generate a list of tuples from the X and Y values for graphing 

        freqGraphs = [] 

        for ch in chFrequencies: 

            freqGraphs.append(tuple(zip(freqValues, ch))) 

 

        return freqGraphs 

 

class FileHandling: 

 

    def __init__(self, patientNumber, numChannels): 

        self.patientNumber = str(patientNumber) 

        self.numChannels = numChannels 

        self.fileName = str(patientNumber) + "_" + str(datetime.now().strftime("%Y_%m_%d 

%I_%M")) + ".csv" 

        self.directory = str(os.getcwd()) + "\\Data\\" + str(patientNumber) + "\\" 

 

        # Make the directory for the patient if it doesn't exist already 

        if (not os.path.isdir(self.directory)): 

            os.mkdir(self.directory) 

 

        # Create the file, I suppose this could be done inline instead 

        self.CreateFile() 

 

    def CreateFile(self): 

        self.file = open(self.toRaw(self.directory + self.fileName), "x") 

 

        headerLine = "Time" 

        for channel in range(self.numChannels): 

            headerLine = ''.join([headerLine, ",Ch", str(channel)]) 

 

        headerLine = ''.join([headerLine, "\n"]) 

        self.file.write(headerLine) 
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    def SaveData(self, time, samplesRead): 

        dataLine = str(time) 

 

        for sample in samplesRead: 

            dataLine = ''.join([dataLine, ",", str(sample)]) 

 

        dataLine = ''.join([dataLine, "\n"]) 

        self.file.write(dataLine) 

 

    def Close(self): 

        # Flush the buffer and ensure everything is saved to disk before closing 

        self.file.flush() 

        os.fsync(self.file.fileno()) 

        self.file.close() 

 

    def FileSync(self): 

        self.file.flush() 

        os.fsync(self.file.fileno()) 

 

    def toRaw(self, string): 

        return fr"{string}" 

 

# Responsible for getting data from the NI DAQ and storing it 

# If a new DAQ is used, write a new DAQ class and as long as it has channel 

# buffers as deques it will be compatible with all of the code 

class NIDAQ: 

 

    def __init__(self, device, numChannels = 1, samplingRate = 5, histLen = 20, 

FFTSampleReduction = 4, FFTChannels = 2, fileName = "01"): 

        self.device = device 

        self.samplingRate = samplingRate  # Sampling rate in Hz 

        self.historyLength =  histLen # Number of samples in buffer to be displayed 

        self.numberOfChannles = numChannels # Assumes channels are 0 -> numberOfChannles 

        self.minVal = -2 # Sets the range for the DAQ in volts, reducing range increases precision 

        self.maxVal = 2 

        self.timeElapsed = 0 # Keeps track of how long data has been recorded 

        self.sampsAtATime = 4 # This sets the number of samples to grab at a time 

        self.FFTLen = histLen 

        self.FFTSampleReduction = FFTSampleReduction 

        self.FFTChannels = FFTChannels 

        self.DAQThread = None 

        self.process = None 
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        # This creates a list of FIFO buffers of a fixed size, these buffers are how you access the 

channel data 

        self.channelBuffers = [] 

        for i in range(self.numberOfChannles): 

            # deque(dataype, maxlen of deque), note [(0,0)] is a list of tuples 

            self.channelBuffers.append(collections.deque([(0, 0)], self.historyLength)) 

 

        # This creates a list of buffers for FFT since FFT may require more data 

        self.FFTBuffers = [] 

        for i in range(self.FFTChannels): 

            # deque(dataype, maxlen of deque), note [(0,0)] is a list of tuples 

            self.FFTBuffers.append(collections.deque([(0, 0)], self.FFTLen)) 

 

        # Run the file creation tool for file handling 

        self.file = FileHandling(fileName, self.numberOfChannles) 

 

    # This sets up the daq task and then spins out a process and thread to read from the DAQ 

    def startUpdatingChannels(self): 

        self.queues = [] 

        self.queues.append(queue.Queue()) 

        self.queues.append(queue.Queue()) 

 

        # Sets up a process to collect from the daq 

        self.queues = [] 

        for i in range(self.numberOfChannles): 

            self.queues.append(multiprocessing.Queue(maxsize=2*self.historyLength)) 

 

        self.process = multiprocessing.Process(target=NIDAQ.readFromDaqContinuosly, 

                args=(self.numberOfChannles, self.device, self.samplingRate, 

                        self.minVal, self.maxVal, self.sampsAtATime, self.queues)) 

        self.process.start() 

 

        # Starts a thread to read from the DAQ process 

        self.DAQThread = Thread(target=self.readIntoBuffersContinuosly) 

        self.DAQThread.start() 

 

    # Stops the recording process by killing the thread and the process 

    def stopUpdatingChannels(self): 

        # The thread must be terminated first or the queue.put waits for more items 

        if (self.DAQThread != None): 

            self.DAQThread.continueRunning = False 
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            time.sleep(0.05) 

            self.DAQThread.join() 

 

        # Like the thread, only terminate if it was defined 

        if (self.process != None): 

            self.process.terminate() 

            time.sleep(0.05) 

            self.process.join() 

 

        # Close the fileno 

        self.file.Close() 

 

    # Must be called called on an individual thread to handle constant updating 

    def readIntoBuffersContinuosly(self): 

        # This allows the thread to be stopped from the function that called it 

        NIDAQThread = threading.currentThread() 

        flag = 0 

        while getattr(NIDAQThread, "continueRunning", True): 

 

            channelValues = [] 

            for i in range(self.numberOfChannles): 

                daqValue = self.queues[i].get() 

                self.channelBuffers[i].append((self.timeElapsed, daqValue)) 

                channelValues.append(daqValue) 

                # Ensures FFT buffer saves some smaller number of samples 

                if (flag == self.FFTSampleReduction): 

                    self.FFTBuffers[i].append((self.timeElapsed, daqValue)) 

                    # Ensures all channels are updated before resetting 

                    if (i == self.FFTChannels - 1): 

                        flag = 0 

 

            self.file.SaveData(self.timeElapsed, channelValues) 

            flag += 1 

            self.timeElapsed += (1/self.samplingRate) 

 

    # Must be called called on an individual process to handle constant updating 

    @staticmethod 

    def readFromDaqContinuosly(numChannels, device, samplingRate, minVal, maxVal, 

sampsAtATime, queues): 

        # Create a new task to perform the reading, this task will die when this method ends 

        with nidaqmx.Task() as readTask: 

            # Add all of the channels up to the self.number of channels 
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            for i in range(numChannels): 

                # RSE = reference single ended 

                readTask.ai_channels.add_ai_voltage_chan(device + "ai" + str(i), 

                    max_val=maxVal, min_val=minVal, 

                    terminal_config=TerminalConfiguration.RSE) 

 

            # This ensures that the DAQ is constantly sampling without prompt 

            readTask.timing.cfg_samp_clk_timing(samplingRate, 

                sample_mode=AcquisitionType.CONTINUOUS, samps_per_chan=samplingRate) 

            readTask.start() 

 

            # Stream reading allows for more elegant acquition at high rates 

            reader = AnalogMultiChannelReader(readTask.in_stream) 

 

            # Streamreader requires a numpy array to save values to 

            holderArray = numpy.zeros((numChannels, sampsAtATime), 

                dtype=numpy.float64) 

 

            # Must be terminated by the parent process 

            while (True): 

                # Returns the number of samples read (same for each channel) 

                # Waits until sampsAtATime number of samples are availabe 

                reader.read_many_sample(holderArray, 

number_of_samples_per_channel=sampsAtATime) 

 

                # Append read values into the queues for each channel to be read 

                # by the parent process 

                for i in range(len(queues)): 

                    for j in range(sampsAtATime): 

                        queues[i].put(holderArray[i][j]) 

 

# Responsible for displaying and updating the data to graph 

class GraphValues(Widget): 

    patient_popup = ObjectProperty(None) 

    eng_graph = ObjectProperty(None) 

    vitals_graph = ObjectProperty(None) 

    frequency_graph = ObjectProperty(None) 

    xMin = NumericProperty(0) 

    xMax = NumericProperty(1) 

 

    # Init must take in *kwargs for some reason. Something to do with inheriting from the Widget 

class 
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    def __init__(self, NIDevice, **kwargs): 

        super(GraphValues, self).__init__(**kwargs) 

        self.patientNumber = "01" 

 

        self.NIDevice = NIDevice 

        self.DAQSampleRate = 1000 

        self.histLen = 4000 

        self.firstStart = True 

 

        # DAQSampleRate/FFTSampleReduction = rate at which the fft is resamples. This reduces 

computation 

        self.FFTSampleReduction = 4 

 

        # All of these channels will run a recording and get saved to file you cannot skip channels 

(i.e [0, 1, 3] is not allowed, nor is [1, 2, 3] becase 0 is skipped) 

        self.channelsToRecord = [0, 1, 2, 3, 4, 5] # Typically [ENG1, ENG2, ECG, X, Y, Z] 

        # These are the channels that will show up on the top ENG plot, must be a subset of 

channels to record 

        self.engChannelsToPlot = [0, 1] 

        # These are the channels that will show up on the middle vitals plots, must be a subset of 

channels to record 

        self.vitalsChannelsToPlot = [2, 3, 4, 5] 

        # These are the channels that will be re-sampled and have FFT run, must be a subset of 

channels to record 

        self.FFTChannels = [0, 1] 

 

        # Add the plots to the graphs 

        self.engPlots = self.addGraphingPlots(self.engChannelsToPlot, self.eng_graph) 

        self.vitalsPlots = self.addGraphingPlots(self.vitalsChannelsToPlot, self.vitals_graph) 

        self.freqPlots = self.addGraphingPlots(self.FFTChannels, self.frequency_graph) 

 

    # This adds plots to a kivy graph widget 

    def addGraphingPlots(self, plotsToAdd, graphToAddTo): 

        plots = [] 

        for ch in plotsToAdd: 

            plot = MeshLinePlot(color=self.ColorGenerator(ch)) 

            plots.append(plot) 

            graphToAddTo.add_plot(plot) 

 

        return plots 

 

    # Starts the DAQ and the plotting, reserves the DAQ and the buffers 
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    def start(self): 

        # Disable the start button to avoid trying to reserve the DAQ again 

        self.ids.start_button.disabled = True 

        self.ids.stop_button.disabled = False 

        self.ids.pause_button.disabled = False 

 

        # Get the patient number for file directory to save to 

        if (self.firstStart): 

            self.firstStart = False 

            self.patient_popup.open() 

            self.patient_popup.ids.pButton.bind(on_press=self.startPopup) 

        else: 

            # This reseres the DAQ and it continusly gathers voltages in the buffers 

            self.DAQ.startUpdatingChannels() 

            # This gets the graph to update every 0.05 seconds 

            Clock.schedule_interval(self.updateGraph, 0.05) 

            Clock.schedule_interval(self.updateFFT, 1) 

            Clock.schedule_interval(self.syncFile, 5) 

 

    def startPopup(self, *args): 

        # Store the input from the user as the patient number 

        self.patientNumber = str(self.patient_popup.ids.input.text) 

 

        # The popup should now disappear 

        self.patient_popup.dismiss() 

 

        # This instantiation is important, it sets up the number of channels, buffer size and things of 

the like 

        self.DAQ = NIDAQ(self.NIDevice, numChannels = len(self.channelsToRecord), 

                samplingRate = self.DAQSampleRate, histLen = self.histLen, 

                FFTSampleReduction = self.FFTSampleReduction, 

                FFTChannels = len(self.FFTChannels), fileName = self.patientNumber) 

 

        # This reseres the DAQ and it continusly gathers voltages in the buffers 

        self.DAQ.startUpdatingChannels() 

 

        # This gets the graph to update every 0.02 seconds 

        Clock.schedule_interval(self.updateGraph, 0.05) 

        Clock.schedule_interval(self.updateFFT, 0.5) 

        Clock.schedule_interval(self.syncFile, 5) 

 

    def pause(self): 
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        pass 

 

    def stop(self): 

        # Re-enable the start Button, disable stop button for aesthetics 

        self.ids.start_button.disabled = False 

        self.ids.stop_button.disabled = True 

 

        # This stops the loop updating the buffer and waits for the thread to finish 

        self.DAQ.stopUpdatingChannels() 

 

        # This stops the graph from updating 

        Clock.unschedule(self.updateGraph) 

        Clock.unschedule(self.updateFFT) 

        Clock.unschedule(self.syncFile) 

 

        # The file has been closed so we will ask for a new patient number 

        self.firstStart = True 

 

    # dt is update time interval and must be passed to any funciton called from clock 

    def updateGraph(self, dt): 

 

        # Update the x boundaries to "follow" the graph 

        self.xMin = self.DAQ.channelBuffers[0][0][0] 

        self.xMax = self.DAQ.channelBuffers[0][0][0] + (self.histLen/self.DAQSampleRate) 

 

        # Update the points on ENG graph on the top 

        for plot, ch in zip(self.engPlots, self.engChannelsToPlot): 

            plot.points = self.DAQ.channelBuffers[ch] 

        # Update the points on vitals graph in the middle 

        for plot, ch in zip(self.vitalsPlots, self.vitalsChannelsToPlot): 

            plot.points = self.DAQ.channelBuffers[ch] 

 

    def updateFFT(self, dt): 

        #start = time.perf_counter() 

        ffts = FFT.FFTFromDEQ(self.DAQ.FFTBuffers, 

self.DAQSampleRate/self.FFTSampleReduction) 

        #print("FFT Time: " + str(time.perf_counter() - start), flush=True) 

 

        # Update the points on frequency graph on the bottom 

        for plot, fft in zip(self.freqPlots, ffts): 

            plot.points = fft 
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    # Ensures file save info gets pushed to disk 

    def syncFile(self, dt): 

        self.DAQ.file.FileSync() 

 

    # This just returns a unique color for the first 5 channels, if there is a better way to do this, 

please do 

    def ColorGenerator(self, ch): 

        if (ch == 0): 

            return [0, 1, 1, 1] 

        elif (ch == 1): 

            return [1, 0, 0, 1] 

        elif (ch == 2): 

            return [0, 1, 0, 1] 

        elif (ch == 3): 

            return [0, 0, 1, 1] 

        elif (ch == 4): 

            return [1, 0, 1, 1] 

        else: 

            return [1, 1, 1, 1] 

 

# This is the main GUI function and must be named after the kivy file. (e.g. DaqApp -> Daq.kv) 

class DaqApp(App, BoxLayout): 

    def build(self): 

        Window.bind(on_request_close=self.onClose) 

        self.graphValues = GraphValues("Dev1/") 

        return self.graphValues 

 

    def onClose(self, *args): 

        self.graphValues.DAQ.stopUpdatingChannels() 

 

if __name__ == '__main__': 

    # This must be imported after the main qualifer or it will create a seperate 

    # blank window for every sub-process called. Poor implementation from Kivy 

    # Documented at https://github.com/kivy/kivy/issues/4744 

    from kivy.core.window import Window 

    DaqApp().run() 
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APPENDIX C 

IRB EXEMPTION  
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