
University of Central Florida University of Central Florida

STARS STARS

Electronic Theses and Dissertations, 2020-

2022

A Measurement System for Detection of Intestinal Motility in A Measurement System for Detection of Intestinal Motility in

Neonates by Monitoring Slow Wave Activity Neonates by Monitoring Slow Wave Activity

Garett Goodale
University of Central Florida

 Part of the Bioelectrical and Neuroengineering Commons, and the Electrical and Electronics

Commons

Find similar works at: https://stars.library.ucf.edu/etd2020

University of Central Florida Libraries http://library.ucf.edu

This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for

inclusion in Electronic Theses and Dissertations, 2020- by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

STARS Citation STARS Citation
Goodale, Garett, "A Measurement System for Detection of Intestinal Motility in Neonates by Monitoring
Slow Wave Activity" (2022). Electronic Theses and Dissertations, 2020-. 1014.
https://stars.library.ucf.edu/etd2020/1014

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd2020
https://network.bepress.com/hgg/discipline/231?utm_source=stars.library.ucf.edu%2Fetd2020%2F1014&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/270?utm_source=stars.library.ucf.edu%2Fetd2020%2F1014&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/270?utm_source=stars.library.ucf.edu%2Fetd2020%2F1014&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd2020
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd2020/1014?utm_source=stars.library.ucf.edu%2Fetd2020%2F1014&utm_medium=PDF&utm_campaign=PDFCoverPages

A MEASUREMENT SYSTEM FOR DETECTION OF INTESTINAL MOTILITY IN

NEONATES BY MONITORING SLOW WAVE ACTIVITY

BY

GARETT GOODALE

B.S. UNIVERSITY OF CENTRAL FLORIDA, 2020

A thesis submitted in partial fulfillment of the requirements

for the degree of Master of Science

in the Department of Electrical and Computer Engineering

in the College of Engineering and Computer Science

at the University of Central Florida

Orlando, Florida

Spring Term

2022

ii

© 2022 Garett Goodale

iii

ABSTRACT

Similar to how electrocardiographic waves are the pace making signals of the heart, slow waves

are the pace making signals of the intestines. Slow waves are electrical signals in the intestines

that determine the speed at which food can move through the intestine ensuring proper digestion

and uptake of nutrients. It has been shown that slow waves can be measured in adults using non-

invasive, surface electrodes. However, no study has investigated the measurements of slow waves

in neonates, specifically pre-term neonates. Around 7% of pre-term neonates suffer from

necrotizing enterocolitis (NEC) which is a condition that causes damage to the intestinal tract and

often death of intestinal tissue. NEC affects around 9,000 neonates each year with a survival rate

estimated to be between 60%-80%. Currently, there are no non-invasive, early-stage indicators of

NEC. This pilot study aims to create a non-invasive measurement setup to measure and

characterize slow wave activity in neonates.

iv

ACKNOWLEDGMENTS

Thank you to Dr. Reza for all of his support and mentorship throughout my time at UCF, I would

not be here without him. Thank you to Dr. Sreekanth Viswanathan at Nemours Children’s hospital

for suggesting this research project and for pushing the project forward at Nemours. Thank you to

Dr. Javier Garcia-Casado at Universitat Politècnica de València in Spain for his work in the field

of slow wave measurements and for his help in advising on the measurement setup and data

analysis. I also have much appreciation for my lab mates at the Dynamic Microsystems Lab for

their intriguing conversations and support in this project.

v

TABLE OF CONTENTS

LIST OF FIGURES ... viii

LIST OF TABLES ...xi

LIST OF ACRONYMS .. xii

CHAPTER 1: INTRODUCTION ... 1

CHAPTER 2: MEASUREMENT SETUP .. 2

2.1 Filters and Amplifiers ... 4

2.2 Electrodes .. 5

2.3 Cabling .. 7

2.4 DAQ Box .. 12

2.5 Accelerometer and Frontend ... 14

2.5.1 Accelerometer Filter Design ... 16

2.5.2 Accelerometer Amplifier Selection .. 19

2.6 Software .. 21

2.6.1 Data Acquisition ... 21

2.6.2 GUI ... 23

2.6.3 FFT .. 26

vi

2.6.4 File Saving .. 28

CHAPTER 3: SYSTEM TESTING .. 30

3.1 Motion Artifacts .. 30

3.2 Bipolar Concentric Electrode Testing ... 31

3.2.1 Measurement Configuration ... 32

3.2.2 Results ... 34

3.3 Noise Measurement Test... 38

CHAPTER 4: PATIENT TESTING ... 43

4.1 Measurement Configuration ... 43

4.2 Post Processing Methods .. 45

4.3 Results ... 46

4.4 Results Discussion .. 51

CHAPTER 5: CONCLUSION .. 53

5.1 Accomplishments .. 53

5.2 Future Works .. 53

APPENDIX A CODE DAQ.KV ... 55

APPENDIX B CODE MAIN.PY .. 60

vii

APPENDIX C IRB EXEMPTION .. 71

REFERENCES .. 73

viii

LIST OF FIGURES

Figure 1. Simplified diagram of the complete measurement setup .. 3

Figure 2. Four Grass P511K amplifiers stacked atop a IPS 115 isolated power supply, all fastened

to a 6U rack ... 4

Figure 3. Neuroline 720 gel-based electrode, top (left) and bottom (right) 5

Figure 4. Spes Medica bipolar concentric electrode top (left) and bottom (right) 6

Figure 5. Medical cable (left) and the custom cable (right) .. 7

Figure 6. Original cable used with a simple PET outer coating, inner braided shield and highly

flexible wires with silicon insulation .. 8

Figure 7. Breakdown of the low noise medical cabling used ... 9

Figure 8. Medical and custom cable hung across the cubicle for drop testing 10

Figure 9. Comparison of the triboelectric noise due to a cable drop between a custom-made cable

(blue) and a true medical cable (orange)... 11

Figure 10. DAQ box with the accelerometer and USB cable connected 12

Figure 11. Labeled diagram of the DAQ box which includes the DAQ and the accelerometer front

end hardware ... 14

Figure 12. ADXL335 accelerometer evaluation module (left) and ADXL335 packaged and

connected to a shielded cable (right) .. 15

Figure 13. Schematic and values of the 6th order Bessel filter (top) and 6th order Butterworth filter

(bottom)... 17

ix

Figure 14. Frequency response (left) and step response (right) of the Bessel filter (green) and

Butterworth filter (blue) .. 18

Figure 15. Labeled AD620 evaluation board .. 20

Figure 16. Simplified diagram of the process, threads and tasks .. 23

Figure 17. GUI asking for patient number after start.. 24

Figure 18. Labeled GUI, EEnG 1 (light blue), EEnG 2 (red), ECG (green), X (dark blue), Y

(purple) and Z (white) ... 25

Figure 19. The GUI when gathering data ... 26

Figure 20. Time domain data from EEnG, EKG and accelerometer highlighting motion artifacts

... 31

Figure 21. Electrode and accelerometer placement for an adult test to compare system performance

... 33

Figure 22. 30 s view of the raw time domain waveforms collected from the EEnG electrode (top),

the EKG electrodes (center) and the accelerometer (bottom) all without gain normalization 34

Figure 23. 30 s view of the time domain waveforms of post processed data collected from the

EEnG electrode (top), the EKG electrodes (center) and the accelerometer (bottom) with gain

normalization .. 35

Figure 24. 120 s view of the time domain waveforms of post processed data collected from the

EEnG electrode (top), the EKG electrodes (center) and the accelerometer (bottom) with gain

normalization .. 36

Figure 25. PSD of the adult test using a bipolar concentric electrode .. 37

x

Figure 26. Concentric electrodes used for measuring EEnG placed .. 39

Figure 27. Time domain and spectral density of noise measurement (left) and a real measurement

(right) .. 40

Figure 28. Comparison between noise (left) and measurement (right) when a high pass filter is

applied at 3 CPM to remove DC offset ... 41

Figure 29. Electrode placement on a neonate ... 44

Figure 30. Raw signals from 90 minutes of recording.. 45

Figure 31. Time domain data of the filtered and resampled EEnG (top), ECG (middle) and

respiratory (bottom) .. 47

Figure 32. PSD on 120 s window of the ECG (top), respiratory (middle) and EEnG (bottom) ... 48

Figure 33. PSD on 480 s window of the ECG (top), respiratory (middle) and EEnG (bottom) ... 50

Figure 34. Diagram of the abdomen showing the relative scale of the EEnG electrodes to the

intestines ... 52

xi

LIST OF TABLES

Table 1. Filter design parameters using the Analog Instruments filter design tool 16

Table 2. Setting used for the analog filters and amplifiers ... 33

Table 3. Post processing parameters used for 120 s windows of data .. 46

Table 4. Summary of patient slow wave frequencies ... 51

xii

LIST OF ACRONYMS

AAMI Association for the Advancement of Medical Instrumentation

AC Alternating Current

ADC Analog to Digital Converter

ANSI American National Standards Institute

CMRR Common Mode Rejection Ratio

CPM Cycles Per Minute

CPU Central Processing Unit

DAQ Data Acquisition Unit

DC Direct Current

EEnG Electroenterogram

EGG Electrogastrogram

EKG Electrocardiogram

EMG Electromyography

EMI Electromagnetic Interference

EOG Electrooculogram

FDA Food and Drug Admistration

FFT Fast Fourier Transform

GIL Global Interpreter Lock

GUI Graphical User Interface

IEC International Electrotechnical Commission

xiii

IO Input Output

IPS Isolated Power Supply

IRB Internal Review Board

NEC Necrotizing Enterocolitis

NI National Instruments

NICU Neonatal Intensive Care Unit

OS Operating System

PCB Printed Circuit Board

PET Polyethylene Terephthalate

RAM Random Access Memory

USB Universal Serial Bus

1

CHAPTER 1: INTRODUCTION

The use of surface electrodes to measure internal electrophysiological signals has been widely

applied to common medical measurements like the electrocardiogram (EKG) and

electroencephalogram (EEG). Surface electrode measurements are also used for some less

common medical measurements like electrooculogram (EOG), electromyography (EMG) and

electrogastrogram (EGG). Another, though less widely known, surface electrode measurement is

the Electroenterogram (EEnG) which has been well understood in research but is not widely used

in the medical field. EEnG can be measured invasively by surgically placing electrodes directly

on the small intestine. This leads to high quality signals which has been used to evaluate motility

typically in gastroparetic patients [1]. Of course, for most applications an invasive approach is not

viable so surface electrodes must be used instead.

Surface EEnG is more difficult to measure than internal EEnG due to high electrode impedance as

well as interference from EKG and respiratory signals. As a result, time domain analysis of EEnG

waveforms typically has limited use for direct viewing and spectral content must be observed

instead. Studies have found in humans [1] and in beagles [2] that the spectra observed by surface

electrodes is correlated to the spectra observed by internal electrodes placed directly on the small

intestine. In one study they found the correlation to be between 0.5 and 0.7 depending on the

placement of the internal and external electrodes. In this study, surface electrodes will be used to

measure slow waves in neonates and the frequency spectra will be used to determine the presence

of slow waves.

2

CHAPTER 2: MEASUREMENT SETUP

The measurement shown in Figure 1 is meant to acquire EEnG, EKG and respiratory. EKG and

respiratory are taken in addition to EEnG since the artifacts of both signals tend to interference

with EEnG and must be accounted for. The electrode measurements (EKG and EEnG) all run

though Grass P511kk AC pre-amplifiers which provide variable low and high pass filtering as well

as a notch filter at 60 Hz and amplification. Two EEnG measurements are taken both to investigate

better electrode placement and to provide reduce the chances of a fluke measurement (both

electrodes should measure similar frequencies). EKG is taken in the standard fashion across the

chest and is typically taken in addition the EKG provided at the hospital due to incompatibilities

between measurements systems. Respiratory is taken via an accelerometer which also allows for

the monitoring and removal of motion artifacts in post processing. The accelerometer provides X,

Y and Z components which are all filtered and amplified with a custom front end discussed further

in the subsections. After all analog signals are filtered and amplified, they are fed into an NI-6008

data acquisition unit (DAQ) which provides the analog to digital conversion. A computer then

pulls the data from the DAQ and displays it to the user via custom software along with the fast

Fourier transform (FFT) on the EEnG for identification of frequency components. The software

stores all data to file for post processing after the measurement is taken.

3

Figure 1. Simplified diagram of the complete measurement setup

4

2.1 Filters and Amplifiers

Grass P511k AC preamplifiers were used because they are IEC-60601 compliant which is an

international human rating standard for research instruments. Currently, the only active

manufacturer with IEC-60601 rating is AD-Instruments. Grass Instruments was purchased was

purchased by Natus from Astro-Med in 2012 at which point the P511K amplifier was discontinued,

and the Grass website was taken down. As such there is limited information available online related

to P511ks amplifiers, but a manual can be obtained by calling Natus.

Figure 2. Four Grass P511K amplifiers stacked atop a IPS 115 isolated power supply, all fastened

to a 6U rack

5

2.2 Electrodes

Electrodes for measuring EKG neonates are plentiful, so a snap based connector was chosen to

maintain compatibility with the EEnG electrodes (also snap based). The EKG electrodes were also

chosen to be a wet gel-based electrode since it allows for lower impedance and the short duration

of the study ensured the electrodes would not dry out. Neuroline 720 electrodes were chosen due

to their small size and gentle adhesive. Three of these electrodes were used in each measurement,

the third was used as a ground both for EKG and EEnG.

Figure 3. Neuroline 720 gel-based electrode, top (left) and bottom (right)

A previous study [3]found that the optimum electrode for measuring slow wave activity is a

concentric electrode with a 30 mm outer diameter and a 10 mm inner diameter. The study found

that concentric electrodes reduced interference due to EKG and respiratory signals when compared

6

to two bipolar electrodes. The 30 mm outer diameter electrode was found to be the best tradeoff

between good signal integrity and spatial resolution. Commercial electrodes (CODE5000S0) were

found with a 30 mm outer diameter and 10 mm inner diameter from Spes Medica in Italy. They

are flexible and composed of a silver chloride compound (as found in the study). The electrodes

have received FDA approval and as a result made IRB approval easier. The adhesive was found to

be strong enough to allow for a good surface impedance without being too strong for neonate’s

delicate skin.

Figure 4. Spes Medica bipolar concentric electrode top (left) and bottom (right)

7

2.3 Cabling

Figure 5. Medical cable (left) and the custom cable (right)

Due to the fact that the measured signals are on the order of 10 µVp-p, proper cabling is essential

to avoiding noise overriding the signals. In an initial setup, a custom cable was made with simple

PET outer coating, inner braided shield and highly flexible wires with silicon insulation as is shown

in Figure 6. The cable was very flexible, which was the objective in order to avoid significant

cable forces pushing or pulling on the electrodes. The outershield helped reduce EMI which

primarily originated from 60 Hz noise from the power outlets since higher frequencies are filtered.

Unfortunately, the interactions between the outer housing and conductor housing caused

triboelectric charging and created charge buildup. This is because the inner conductor insulation

8

was made from a highly electronegative material: silicon. The creation of these charges due to

motion on the cable induced significant currents in the conductors which flowed into the large

impedance of the amplifiers and generated voltages in the 10 mV range for significant cable

movements. These motion artifacts on the cable due to the triboelectric effect were enough to

completely obscure the signal of interest which led to further cable investigation

Figure 6. Original cable used with a simple PET outer coating, inner braided shield and highly

flexible wires with silicon insulation

Medical cables strive to reduce the effect of the triboelectric effect and achieve this by adding an

additional inner housing that conforms to the inner conductors and is also relatively conductive at

around 100 Ohms/inch. This inner housing helps pull charge from the insulation of the inner

conductors when it is created to prevent charge buildup which can induce currents. This reduces

the motion artifacts due to triboelectric effect by several orders of magnitude to around 10-20 µVp-p

for significant cable movements. It is worth noting that this is still on the same order of magnitude

9

as the signal, so care must be taken to reduce large cable movements, while small movements may

not significantly affect the signal.

Figure 7. Breakdown of the low noise medical cabling used

There is a medical standard, AAMI ANSI EC53, which defines the maximum amount of

triboelectric noise to be 50 µV “peak to trough” when a weight equal to 40x the weight of 1 ft of

wire is dropped on the center of a 7 foot wire with 5 feet of play. For the purposes of this study, it

was not necessary to characterize the exact triboelectric noise of the setup. However, in order to

compare the performance of the custom-made cables without the internal conductive housing to

the true medical cables, a similar setup was performed as shown in Figure 8.

10

Figure 8. Medical and custom cable hung across the cubicle for drop testing

The cables were secured to either side of a cubicle which was about 3.5 ft apart with 4 ft of cable

between. The cables were then dropped simultaneously with a 100 g weight attached to each. As

can be seen in Figure 9, the custom cable experienced about a 3.805 mV peak to trough jump while

the medical cable experienced about a 0.739 mV peak to trough jump. These jumps are not as

precise as a true ANSI measurement since the ends of the cable were not carefully fixed and the

weight of each cable was not considered. However, this shows how much cable structure and

materials matter is reducing triboelectric noise.

11

Figure 9. Comparison of the triboelectric noise due to a cable drop between a custom-made cable

(blue) and a true medical cable (orange)

The overall takeaway from the cable discussion is to ensure good medical cables are used with low

triboelectric noise which drastically reduces the noise due to motion artifact in the cable.

12

2.4 DAQ Box

Figure 10. DAQ box with the accelerometer and USB cable connected

The DAQ box is simply a box that houses the DAQ as well as the amplifiers and filters for the

accelerometer measurement. The output of the top Grass P511k amplifier (EEnG 1 or the left

13

EEnG) is connected to channel 0, the second Grass amplifier (EEnG 2 or the right EEnG) is

connected to channel 1 and the third Grass amplifier (EKG) is connected to channel 2. Channels

3, 4 and 5 take the output from the amplifier and filter PCBs which are connected to the

accelerometer. As can be seen from the wiring and composition of the box (plastic), interference

is not a major concern since the accelerometer inputs are biased and fairly large (mV range) and

the inputs of the biological signals have already been filtered and amplified. This setup could be

improved by using PCB edge mount connectors and then interfacing everything via PCB traces

which could be better isolated. A metal box would also act as a faraday cage reducing interference.

These additional measures weren’t taken due to time and significant interreference was not created

from this part of the measurement chain.

14

Figure 11. Labeled diagram of the DAQ box which includes the DAQ and the accelerometer front

end hardware

2.5 Accelerometer and Frontend

An accelerometer was desired in order to detect when the patient moved in order to be able to mark

that data as contaminated when performing the post processing. In addition to detecting motion

artifacts, the accelerometer could also be used to detect the respiratory rate. If an accelerometer

with sufficiently low frequency response and sensitivity was selected, and paired with appropriate

filtering and amplification, respiratory rate could be detected by the rising and falling of the

diaphragm when placed appropriately. Previous studies [3] used an ADXL 335 triaxial

accelerometer from Analog instruments to measure movements and their results showed that

accurate respiration was also picked up by the accelerometer though they don’t mention what

15

amplification and filtering was applied to the accelerometer signals. Looking online for

approximate breathing rates allowed for proper tuning of the filters while in person testing was

used to find the necessary gain as is shown in the following sections.

An inexpensive ADXL335 evaluation module was purchased which includes the ADXL335 as

well as the necessary decoupling capacitors and a low drop out linear regulator which regulates an

input voltage of ~3.3 V – 9 V down to the 3.3 V required for operation while also providing reverse

polarity protection. Due to the fact that the accelerometer needs to be used in a hospital

environment, it was sealed and connected to a medical grade shielded cable as shown in Figure

12.

Figure 12. ADXL335 accelerometer evaluation module (left) and ADXL335 packaged and

connected to a shielded cable (right)

16

2.5.1 Accelerometer Filter Design

Adults tend to have a breathing rate around 12 - 20 breaths/minute [4] which corresponds to 0.1 –

0.33 Hz, while neonates tend to have a breathing rate that is much higher, 45 – 60 breaths/minute

or 0.66 – 1 Hz. As such the filtering function should be able to accommodate all breathing

frequency ranges while rejecting DC and higher frequencies. To summarize, a filter is desired with

a pass band from 0.1 – 2 Hz with a really flat pass band and reasonably good out of band rejection.

This filter can be designed using equations, but with an abundance of online calculators it is not

necessary. Analog Instruments offers a nice online filter design tool which can be found from the

following link (https://tools.analog.com/en/filterwizard/). If the values in Table 1 are used as the

input for the tool, it will generate the component values needed for both a Bessel filter and

Butterworth filter. Those component values are then adjusted to match the values that are available

in the resistor and capacitor kits available in the lab.

Table 1. Filter design parameters using the Analog Instruments filter design tool

Gain 0 dB

Passband (-3 dB) 2 Hz

Stopband (-60 dB) 1 KHz

Center Frequency 0.5 Hz

The circuits were then simulated in LTSpice simulation software as shown below, in order to

determine the filter characteristics. As is well known in filter design, the Butterworth filter offers

https://tools.analog.com/en/filterwizard/

17

a sharper roll off rate than the Bessel filter while sacrificing phase linearity. This is shown in Figure

14 which compares the simulated frequency response of the Butterworth and Bessel filters.

Figure 13. Schematic and values of the 6th order Bessel filter (top) and 6th order Butterworth filter

(bottom)

As shown in Figure 13, the first stage of the filter is a second order high pass filter and the next

two stages are second order lower pass filters. Since there are two low pass stages, the high side

of the bandpass filter has a sharper roll off rate than the low side. This was done to ensure that the

filter showed strong rejection at high frequencies like 60 Hz while it was not so critical to reject

lower frequencies that were below the 0.1 Hz cutoff. As is shown in the left side of Figure 14, the

frequency response clearly shows the non-symmetry of the filter with respect to the roll off rate on

the high and low side. As previously mentioned, the Butterworth filter has a slightly better role off

18

rate than the Bessel filter. However, since the order of the filter is high enough, this additional roll

off is not needed and the slightly better phase performance of the Bessel filter is chosen in order

to reduce distortion.

Figure 14. Frequency response (left) and step response (right) of the Bessel filter (green) and

Butterworth filter (blue)

The right side of Figure 14 shows the filter response in the time domain to an infinite impulse.

This allows the time constant of the filters to be determined. Both filters stabilize about 12 s after

an impulse is applied so neither filter choice greatly improves the time constant performance. A

smaller time constant is desired because large movements create a sharp voltage spike and render

the circuit useless until the filter unwinds.

19

2.5.2 Accelerometer Amplifier Selection

The ADXL335 has acceleration sensitivity of approximately 0.3 V/g (g being 9.8 m/s2) in all 3

axis with the Z axis being the most sensitive. Testing of the accelerometer placed on the abdomen

showed that breathing creates around a 5-10 mV signal which will require an amplifier gain of

approximately 100 to put the signal into the range of the ADC (-1 V to 1 V). A low frequency

instrumentation amplifier is the ideal for this application since they offer high gain, linearity, and

common mode rejection. The AD620 from analog instruments is a popular choice for this

application and has been used in other studies for many biometric signals like EEG [5] and EKG

[6]. The AD620 is also available in many evaluation modules which made getting a simple setup

up and running quite easy.

The AD620 evaluation module is show in Figure 15 along with each of its features. The evaluation

module includes a HT7660 which is operated in the inverting charge pump configuration to

provide the inverse of the input voltage. This allows the AD620 to operate from -5 V – +5 V and

is also used to power the op-amps for the filters shown in the previous section. The module also

uses an LM358 op-amp in order to provide DC offset which allows for tuning to get the output

exactly at 0 V even if the input has some DC drift. The evaluation module also uses a potentiometer

as the gain resistor for the AD620 which allows for variable gain and a potentiometer to set the

DC offset. The board also allows for the AD620 to be operated in differential mode with a S+ and

S- input, but S- is tied to ground since the filter implementation is single ended.

20

Figure 15. Labeled AD620 evaluation board

The evaluation board works well for this application and allowed for faster iteration, but it comes

with one small drawback. The HT7660 is obviously a switched mode device, and it operates at 10

kHz. The ripple shown on the output is very small, typically around 20 – 30 mV, but it still has the

potential to show up on the output. The AD620 has excellent CMRR, around 100 dB, which means

that the effect of the ripple should be on the order of 0.04 – 0.06 mV which is quite small compared

21

with typical output voltages of 1 V – 2 V. Nevertheless, if this board were redesigned it would

likely to be wise to go with a linear based inverter in order to ensure no noise on the output.

2.6 Software

The purpose of the software is to pull data from the DAQ, display all channels in a manner that is

easy to understand, display the frequency spectrum of EEnG and to reliably save all data to file.

This isn’t a very significant task and can be completed in an environment such as National

Instruments (NI) LabVIEW. LabVIEW wasn’t chosen for this application due to the cost of the

software, the undesirable appearance and lack of control over the data acquisition process. Instead,

the acquisition software was written in Python due to is broad acceptance as well as the availability

of modules to perform data acquisition from the DAQ (nidaqmx) and modules to create a nice

frontend user interface (kivy). The code is available on GitHub

(https://github.com/gmgoodale/Bioamp) and is also included in the appendix.

2.6.1 Data Acquisition

NI provides a python module called nidaqmx which allows for both discrete and continuous analog

and digital acquisition from NI products. The module places the c API in a wrapper, so the NI-

DAQmx software needs to be installed for python to interface with the c drivers. NI-DAQmx is

available for Linux and Windows, but only a basic version is available for Mac which doesn’t

support most NI products. As such, this code is compatible with Windows and Linux, but not Mac.

https://github.com/gmgoodale/Bioamp

22

Data acquisition is performed in a continuous fashion using the StreamReader functionality

provided in the nidaqmx module. That means that the DAQ continues to push data into its IO

buffer regardless of the IO read rate and without the computer requesting it. If the computer is

unable to keep up with the output from the DAQ then the internal buffer on the DAQ overflows

and causes an error. In order to ensure that the computer reads from the DAQ promptly, a dedicated

process was used for the purpose to push the data to internal memory. This needs to be a dedicated

process and not a thread in Python because Python only runs one thread at a time, so it is not truly

parallel. This is due to the global interpreter lock (GIL) which simply doesn’t support concurrent

multithreading.

Multithreading does still have some benefits in Python though because when one thread isn’t

actively using CPU Python will switch to another waiting thread which still improves throughput

compared to a purely sequential program. For that reason, the main thread which is responsible for

updating the GUI is kept separate from the DAQ thread which is responsible for reading in the

data from the DAQ process. Moving data between python process is limited to certain

multiprocessor data types which is why a regular queue is used in this part of the code whereas a

double ended queue (deque) is used for buffering the data in the main process.

23

Figure 16. Simplified diagram of the process, threads and tasks

2.6.2 GUI

The GUI is responsible for displaying the time domain and frequency domain waveforms as well

as gathering the patient number and starting and stopping the recording. Much more additional

functionality could be added in the future to allow for things like modifying the bounds on the

graphs (both X and Y) as well as changing the sampling rate, file saving location, or even

24

controlling the gain and filter settings if digital enabled amplifiers were used. However, for the

time being the GUI was kept very simple to ensure reliable functionality. The GUI was written

using a GUI module for Python called kivy. Kivy supports basic GUI functionality like buttons,

labels and media, but also has plugins from the “kivy garden” which can be used for more niche

functionality. Kivy garden contains a graph plugin which is used for the graphing functionality of

the time domain signals and FFT.

Figure 17. GUI asking for patient number after start

As is shown in Figure 17, whenever a measurement is started (the start button is pressed), a popup

will appear asking for a patient number which can be any string used to identify the patient. Since

25

most studies require deidentified data, this is typically some long string generated by the liaison at

the hospital. The patient number is often an integer number but it is stored as a string so it really

can contain any Unicode character so long as they are not illegal directory characters (like “/” or

“.”). The string is used to create a directory within the “/Bioamp/Data” folder which will be named

after string entered for the patient. Whenever that patient number is entered, the recorded files will

be saved in that patient’s directory.

Figure 18. Labeled GUI, EEnG 1 (light blue), EEnG 2 (red), ECG (green), X (dark blue), Y

(purple) and Z (white)

As can be seen in Figure 18, the GUI has a control bar on top which is created using the

“ActionBar” functionality from kivy which create a nice auto sizing bar to place buttons and other

26

useful things (like search) in. The top window displays the EEnG 1 and 2 signals, the second

window contains the EKG and accelerometer data and the third window contains FFT on the EEnG

signals. FFT is only performed on the EEnG for practical and performance reason as will be

covered in the FFT section.

Figure 19. The GUI when gathering data

2.6.3 FFT

Live FFT is performed on the EEnG time domain data in order to see what frequencies are present.

As has been shown in previous studies [1], slow waves typically have a frequency of around 9-13

27

cycles per minute (CPM) or 0.15 – 0.2 Hz. Performing a live FFT quickly allows the operator to

determine if the measurement seems to be working in real time without having to wait until post

processing the data. The FFT algorithm has been heavily optimized though the years and

specifically for Python. As such, many fast implementations exist with the fastest (for most even

numbered data sets) being the FFT from the scipy module which was used for this application.

In order to give some concept of the logic for the updating times used in the program, some run

times are stated in this paragraph. However, it is important to note that the run times stated are for

a specific Windows 10 computer which had 16 GB of RAM and a Ryzen 5 3400G processor.

Times on other systems may vary due to hardware variations and even from run to run since

Windows is not a real time operating system. Now, with that aside, the scipy module is quite fast,

typically on the order of 1 – 2 ms for datasets of around 4,000 data points. However, some of the

support operations required to run FFT involved converting the DEQs to NumPy arrays and

interlacing two lists which takes an additional 3 – 5 ms. The clocked update time for the time

domain graphs on the GUI is every 50 ms (20 Hz) in order to give a smooth viewing experience.

Since other tasks must be performed during the 50 ms needed to update the graphs, the 4 – 7 ms

taken by the FFT can often become too much and slow the update speed of the GUI down giving

a suboptimal viewing experience. The FFT does not need to be updated as often since it doesn’t

have the same smooth scrolling nature as the time domain graphs, so the update time for the FFT

is dropped to 500 ms which allows for smooth operation of the program.

28

The sampling rate of the DAQ is held at 1 kHz which based on the Nyquist theorem allows

frequencies up to 500 Hz to be detected. Of course, as mentioned previously the frequencies of

interest are at less than 1 Hz. Additionally, FFT performs a better approximation of the frequencies

present when more cycles of that frequency are available. At a frequency of 0.1 Hz, one cycle only

occurs every 10 s, so a 10 s FFT window would barely be able to approximate that frequency. As

such, a large window of around 40 s is desired, but running FFT on 40,000 points would also be

quite slow. The solution is to reduce the sampling rate for the data that FFT is run on. It is still

desired to store the data from a 1 kHz sampling rate such that more analysis can be run later, but

the processed FFT data can be sampled at a much lower rate of say 100 Hz which still leads to a

buffer size of 4,000 but a window size of 40 s. This is what is done, there is a parameter in the

main.py script called “FFTSampleReduction” which reduces the sampling rate by whatever integer

that is set to. The default value is 10, which reduces the sampling rate from 1 kHz to 100 Hz and

results in the scenario mentioned before.

2.6.4 File Saving

File saving is fairly straight forward process, but there are a few nuances that should be noted. File

saving is a slow I/O operation, so it is ensured that the file I/O takes place on a separate thread

than the one running the GUI, so the GUI continues to be responsive during each file save. Saving

a line to a file in Python using a method like “file.write()” theoretically stores that values to file,

but sometimes the OS will just keep them in a buffer in memory until the program stops running.

This defeats the purpose of saving the data to a non-volatile memory space in the event of a power

29

outage or other failure. As such, the “os.fsync” function should be used in order to ensure the data

is written to disk. This should be run occasionally to ensure the data is written to file. Using the

clock scheduler from kivy, this task is run about every 5 s to ensure no more than 5 s of data can

be lost in the event of a failure.

30

CHAPTER 3: SYSTEM TESTING

Before patient tests were performed, the system needed to be validated to ensure all the

measurements were working as expected. Many tests were performed on subsystems to improve

their individual performance, but this section focuses on two tests that were performed on a

complete system for final system functionality.

3.1 Motion Artifacts

Motion artifacts are a well-known phenomenon in the biomedical space. This section aims to

describe the motion artifacts encountered in testing and some methods that were used to reduce

them. As mentioned in the earlier cabling section, motion artifacts can be manifested in cabling

due to the triboelectric effect and the cabling was changed in order to reduce that source, but

motion artifacts also originate from changing of electrode-body impedance. That is, as the

electrode moves, the contact resistance changes between the skin and the electrode which results

in motion artifacts. This was minimized by resting cables with proper slack between the cable and

patient to reduce cable forces on the electrode. Obviously gel based electrodes reduce impedance

and even using a gel based electrode for ground greatly improved the performance of the dry

electrodes used for EEnG. Beyond that, motion artifacts were able to be easily identified by the

correlation between the biometric signals and the accelerometer signals as can be seen in Figure

20. Once motion artifacts were identified they had to be manually removed in post processing.

31

Figure 20. Time domain data from EEnG, EKG and accelerometer highlighting motion artifacts

3.2 Bipolar Concentric Electrode Testing

As mentioned previously, many studies [1] [2] [3] have measured slow waves in adults.

Particularly [3], which used similar, flexible concentric electrodes to measure slow waves. As

such, a measurement was taken on an adult in order to compare the results to the study to confirm

the setup is working as expected.

32

3.2.1 Measurement Configuration

Similar to [3], a bipolar concentric electrode (CODE5000S0) was placed below the naval for the

EEnG measurement. The ground electrode was place on the left hip, EKG electrodes were placed

on the chest and an accelerometer was connected to measure breathing. As mentioned earlier Grass

P511k amplifiers were used for the EEnG and EKG while a custom filter and amplifier circuit was

used for the accelerometer. The EEnG measurement was amplified with a gain of 20,000 which

was the highest value that allowed the signal to be within bounds of the ADC without significant

noise levels. The EKG signal was amplified by 2,000 which was the correct value to keep it in

bounds of the ADC. Both EKG and EEnG were run through a bandpass filter from 0.1 Hz – 30 Hz

before amplification. The accelerometer signals were run through a bandpass filter from 0.1 Hz –

3 Hz before and then amplified by 100. Recording took place for 10 minutes in which the patient

was kept still and advised to breathe normally. The Grass P511k amplifier settings are summarized

in Table 2.

33

Table 2. Setting used for the analog filters and amplifiers

Figure 21. Electrode and accelerometer placement for an adult test to compare system performance

34

3.2.2 Results

Figure 22. 30 s view of the raw time domain waveforms collected from the EEnG electrode (top),

the EKG electrodes (center) and the accelerometer (bottom) all without gain normalization

The results were first normalized by gain in order to get the proper amplitude of each signal and

then digitally band pass filtered by a bidirectional 4th order Butterworth filter which was

implemented using the “butter” and “filtfilt” functions in Matlab. EKG was filtered between 0.1 –

10 Hz, EEnG was filtered between 0.1 – 0.5 Hz and respiratory was filtered between 0.1 – 3 Hz.

The signals were then resampled at a lower frequency. EKG was resampled at 10 Hz, EEnG was

35

resampled at 4 Hz and respiratory was resampled at 10 Hz. The post processed signals are shown

in Figure 23.

Figure 23. 30 s view of the time domain waveforms of post processed data collected from the

EEnG electrode (top), the EKG electrodes (center) and the accelerometer (bottom) with gain

normalization

As can be seen in the top plot of Figure 23, the EEnG signal shows significant respiratory artifacts

which make it difficult to make out the overall trend of the data. As a result, spectral analysis is

used in order to determine the frequency components present in the EEnG signal and determine

36

the frequency of the slow wave signal. In order to get reasonable frequency resolution (0.5 CPM)

while avoiding significant non-stationarities, a window size of 120 s was chosen for the spectral

analysis which is consistent with previous published work.

Figure 24. 120 s view of the time domain waveforms of post processed data collected from the

EEnG electrode (top), the EKG electrodes (center) and the accelerometer (bottom) with gain

normalization

The autoregressive Yule-Walker method was used to go from the time domain to the spectral

domain due to its unconditional stability. The order chosen for the EEnG signal was 120 (the length

37

of the window in seconds) and the order for EKG and respiratory was chosen as 3,000 since the

sampling rate for both signals was 25 times higher than EEnG. The autoregressive order can be as

large as the number of samples in the window (480), as which point further increasing order will

yield no further changes. The order of 120 was chosen because it provides a good tradeoff between

resolving all peaks without adding additional noise, which is why it has been chosen in other papers

The results of the PSD are shown in Figure 25.

Figure 25. PSD of the adult test using a bipolar concentric electrode

38

As expected from visual inspection of the EEnG, the respiratory frequencies are present in the

EEnG spectrum in addition to the slow waves. The 10.5 CPM peak is attributed to the slow wave

and is consistent with previous studies which have found slow waves to be between 10 – 12 CPM

in adults. There is a peak below the primary slow wave peak that is around 7 CPM. This lower

frequency may be due to the colon or may be due to baseline drift in the signal but is not regarded

as the slow wave frequency due to it’s lower amplitude.

3.3 Noise Measurement Test

To validate that the frequencies observed during measurement were of biological origin and not

an artifact of the system, a measurement was performed where there were no signals. Two

electrodes were placed atop a damp paper towel with their plastic backing still on. The damp paper

towels provided a weak amount of grounding to wick away charge and prevent significant charge

buildup. The plastic backing was left on so the electrodes could be used for further experiments

later and because the high resistance of the plastic made the experiment noisier if anything. The

amplifiers were then set to the same settings as the previous section and the data was post processed

in the same way in order to provide a direct comparison between the spectrum of a noise

measurement and an actual measurement. Performing the data analysis in the same way also

allowed as a check to ensure that the spectra observed were not a result of the post processing.

39

Figure 26. Concentric electrodes used for measuring EEnG placed

As can be seen in Figure 27, the noise measurement is more than an order of magnitude below the

measured signal in the time domain and 3-4 orders of magnitude smaller in the frequency domain.

The reason that the noise appears to have similar spectral content is because of filtering and FFT

binning. Since both signals are band pass filtered between 0 CPM – 30 CPM (0.1 – 0.5 Hz), their

spectra only shows up in that range, and the noise appears to have peaks because frequency

resolution is only 0.5 CPM so noise that is in-between gets grouped into those peaks. 3 – 4 orders

of magnitude is considered to be a high enough margin for this measurement and proves that the

measurement is more than just noise.

40

Figure 27. Time domain and spectral density of noise measurement (left) and a real measurement

(right)

Figure 27 is a nice comparison because it shows the difference between a real signal and a noise

signal when all signal processing has been applied. This allows the effects of both the system and

signal processing to be seen, but some may wonder what the entire spectrum looks like when

filtering is not applied. That is to say, noise doesn’t really look like noise when it is being filtered

because then it is not strewn across the measured spectrum as is typically expected. To satisfy this

curiosity, the results were analyzed with a high pass filter instead of a bandpass filter in order to

see the rest of the spectrum and the AR order was increased from 120 to 480 to give maximum

resolving in order to see all peaks.

41

Figure 28. Comparison between noise (left) and measurement (right) when a high pass filter is

applied at 3 CPM to remove DC offset

As can be seen in Figure 28, the time domain and frequency domain look quite different without

the bandpass. In the noise measurement on the left, if can be seen from the time domain that EEnG1

is much quieter than EEnG2 which is not as apparent when the bandpass filter is applied because

it filters the frequencies that show up more strongly in EEnG2. The other thing that can be seen is

that with the higher frequencies present in EEnG2, the order of the amplitude is similar to the

amplitude of our measured signal. This is a bit concerning, but it must be remembered that this

higher amplitude frequencies get filtered out and the frequencies of interest are still much smaller

in amplitude. The other good news is that while the noise measurement does have a surprising

number of distinct peaks, they do not occur in the measurement range of interest and are likely

random. The final thing to consider is that the actual noise floor in a real measurement is somewhat

lower that what is shown here. This is because the outer and inner conductors of the electrodes

42

have a very high impedance between them in this measurement and a much lower impedance in

an actual measurement. This high impedance makes the electrodes much more susceptible to noise.

43

CHAPTER 4: PATIENT TESTING

Measurements were taken over a 90-minute period occurring just after feeding. This was done for

logistical reasons; the neonate is typically awake for feeding which is a good time to place

electrodes and the neonate typically sleeps after feeding which helps reduce motion artifacts. All

patient testing was performed at Nemours Children’s Hospital (Orlando, FL) in the neonatal

intensive care unit (NICU). Deidentified data was provided from the measurements for further

analysis which will be presented in this section.

4.1 Measurement Configuration

As described in the measurement setup section, two bipolar concentric electrodes were placed on

either side of the naval to measure EEnG. EKG electrodes were placed on the chest, slightly to the

side so as not to disturb the EKG electrodes placed by the hospital. The grounding electrode was

placed on the side and the accelerometer was placed in the middle of the abdomen where

respiration displacement appeared to be the greatest. The two EEnG signals were amplified by

20,000 and band pass filtered before amplification from 0.1 Hz – 30 Hz. EKG signals were

amplified by 10,000 and also bandpass filtered between 0.1 Hz – 30 Hz. Both EKG and EEnG

were filtered and amplified with P511k amplifiers. The accelerometer signals were amplified by

100 and pass filtered before amplification from 0.1 Hz – 3 Hz using custom hardware.

44

Figure 29. Electrode placement on a neonate

Most neonates were awake after feeding and took some time to settle down which led to 30 – 50

minutes of artifacted data at the beginning of the measurement. Some neonates had mild gastric

distress which would result in motion every few minutes to pass gas which also resulted in motion

artifacts. Overall, it was difficult to get long periods of artifact free data which limited the data

analysis to artifact free windows.

45

Figure 30. Raw signals from 90 minutes of recording

As can be seen in Figure 30, there are significant motion artifacts in the first 60 minutes of

recording. The motion artifacts can be easily identified because they appear both on the

accelerometer and electrode measurements. The analysis for this particular measurement took

place on data from the last 20 minutes and the same is true for most other measurements.

4.2 Post Processing Methods

The signals from the patients were processed in the same way as the results from an adult in Bipolar

Concentric Electrode Testing. To avoid regurgitating the same sentences the parameters are

46

summarized in Table 3. The same processing methods are used for all patient data when analyzing

120 s windows.

Table 3. Post processing parameters used for 120 s windows of data

4.3 Results

The resampled and filtered time domain data is show in Figure 31 for EEnG, ECG and respiratory

signals. The time domain data for the neonates (patients) is somewhat different than the data

collected from adults shown in earlier section. The most notable difference is that the ECG and

respiratory signals are much higher in frequency. ECG is on the order of 150 CPM instead of 50

CPM and respiratory is around 50 CPM instead of 25 CPM. As such, ECG and respiratory can be

easily filtered out from EEnG using the bandpass Butterworth filter which allows for more clear

viewing of the slow waves in the time domain. Since the EEnG signal has still been highly filtered

Parameter Value

Data Size 120 s

ECG Filter 0.1 - 10 Hz

Resp Filter 0.1 - 3 Hz

ENG Filter 0.1 - 0.5 Hz

ECG Sampling Rate 100 Hz

Resp Sampling Rate 100 Hz

ENG Samplin Rate 4 Hz

ECG AR Order 3000

Resp AR Order 3000

ENG AR Order 120

PSD Method Yule-Walker

Post Processing Parameters

47

the slow waves appear more sinusoidal in nature than when compared to the slow waves measured

directly on the small intestine.

Figure 31. Time domain data of the filtered and resampled EEnG (top), ECG (middle) and

respiratory (bottom)

Again, moving to the spectral domain provides some insight into what signals are present in the

measurement. As mentioned earlier, the ECG and respiratory in neonates is quite high compared

to adults, 130.5 CPM and 46 CPM respectively. The slow wave frequency measured on both the

right and the left electrode were the same at 9.5 CPM.

48

Figure 32. PSD on 120 s window of the ECG (top), respiratory (middle) and EEnG (bottom)

As is well known in signal processing, frequency resolution is directly related to the window size.

In Figure 32, a 120 s window is being evaluated which results in a frequency resolution of 0.5

CPM. This results in some “frequency binning” issues as alluded to in the noise measurement

section. Even though we see a peak a 9.5 CPM all spectral content between 9.25 CPM and 9.75

CPM is being placed into that signal peak, so the peak location and height may differ.

49

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 =
 𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑅𝑎𝑡𝑒

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑎𝑚𝑝𝑙𝑒𝑠
=

4 (𝐻𝑧)

480
= 0.0083 (𝐻𝑧) = 0.5 (𝐶𝑃𝑀)

Equation 1. Frequency resolution of a FFT transform

In order to increase the frequency resolution, the window size was increased from 120 s to 480 s

which improves the frequency resolution from 0.5 CPM to 0.125 CPM. This allow for better

resolution in the peaks which can be seen in Figure 33. The trouble with larger window sizes is

that it is more difficult to find artifact free windows and non-stationarities become more

significant. The peak of EEnG1 moves from 9.5 to 9.75 CPM and the peak on EEnG2 moves from

9.5 CPM to 9.125 CPM.

50

Figure 33. PSD on 480 s window of the ECG (top), respiratory (middle) and EEnG (bottom)

Three more measurements of neonates were taken in the same fashion as the initial measurement

and with the same post processing. The primary peak in EEnG was identified for the 120 s

recording window and summarized in Table 4.

51

Table 4. Summary of patient slow wave frequencies

4.4 Results Discussion

As mentioned previously, the range of slow waves in adults is between 8 CPM – 12 CPM, which

places the measured result within range. One interesting observation is that in two of the four

measurement, the signal on the right electrode (EEnG2) showed a lower frequency than the signal

on the left electrode (EEnG1). This is slightly surprising because the right electrode should be

closer to the duodenum which is the top of the small intestine. Generally, the frequency of the slow

waves decreases when moving down the small intestine [7]. However, since the electrodes are

being placed relative to the naval without any ultrasound or other locating method, it is possible

that the left electrode is far enough below the duodenum that it primarily picks up signal from the

jejunum. Overall, the frequencies observed are consistent with previous studies in adults and align

with the expected values.

Patinet Number EEnG 1 (CPM) EEnG2 (CPM)

1 9.5 9.5

2 9 8.5

3 10.5 8.5

4 8.5 8.5

52

Figure 34. Diagram of the abdomen showing the relative scale of the EEnG electrodes to the

intestines

ENG 1ENG 2

53

CHAPTER 5: CONCLUSION

5.1 Accomplishments

A custom system was built with the capability to measure ECG, respiratory and EEnG and to

record and display those signals in live time. The system was validated on adults and shown to

align with results from previous studies in adults and shown that the measured results were not a

function of system noise. The system was then used to perform measurements of EEnG in neonates

resulting in the first slow waves measured in neonates.

5.2 Future Works

Significant work still remains in this area, primarily in relation to improving the measurement

setup. Motion artifacts remain a prominent issue which may require the use of an “active

electrode,” that is a PCB that can stack atop the electrodes and provide amplification and possibly

transmit via a current loop transmitter. Smaller electrodes are another possible improvement which

would allow for more localized signals. Additionally, electrode arrays might allow for both

localization and phase of signal to “follow” slow waves through the intestines. Some smaller

improvements could be made in terms of integrating the system into a single PCB which would

shrink it’s size significantly.

As far as the non-technical future work goes, more measurements need to be taken to confirm that

the slow waves measured at statistically significant. Once slow waves have been thoroughly vetted

in healthy neonates, continuous monitoring will need to take place in neonates that are at high risk

54

for NEC. Continuous monitoring over long periods will allow for trends in slow wave frequency

to be observed. These trends can then be correlated to the baby’s health to determine if slow wave

frequency trends relate to abdominal swelling and NEC.

55

APPENDIX A

CODE DAQ.KV

56

#:kivy 1.0.9

#:import MeshLinePlot kivy.garden.graph.MeshLinePlot

#:import Factory kivy.factory.Factory

#:import datetime datetime

<PatientPopup@Popup>:

 title: "Enter Patient Number"

 auto_dismiss: False

 size_hint: (0.25, 0.25)

 BoxLayout:

 orientation: "vertical"

 AnchorLayout:

 TextInput:

 id: input

 hint_text:'Enter Patient Number'

 multiline: False

 size_hint: 0.95, 0.7

 anchor_x: 'right'

 anchor_y: 'bottom'

 AnchorLayout:

 Button:

 id: pButton

 text: 'Start'

 size_hint: 0.75, 0.8

Define your background color Template

<BackgroundColor@Widget>

 background_color: 1, 1, 1, 0.1

 canvas.before:

 Color:

 rgba: root.background_color

 Rectangle:

 size: self.size

 pos: self.pos

Now you can simply Mix the `BackgroundColor` class with almost

any other widget... to give it a background.

<BackgroundLabel@Label+BackgroundColor>

 background_color: 0, 0, 0, 0

 # Default the background color for this label

 # to r 0, g 0, b 0, a 0

<GraphValues>:

57

 eng_graph: ENG

 vitals_graph: ECG_ACCEL

 frequency_graph: FFT

 patient_popup: Factory.PatientPopup()

 BoxLayout:

 size: root.width, root.height

 orientation: "vertical"

 ActionBar:

 size_hint: (1, 0.05)

 ActionView:

 ActionPrevious:

 with_previous: False

 app_icon: ''

 ActionButton:

 id: start_button

 text: "START"

 on_press: root.start()

 disabled: False

 ActionButton:

 id: pause_button

 text: "PAUSE"

 on_press: root.pause()

 disabled: True

 ActionButton:

 id: stop_button

 text: "STOP"

 on_press: root.stop()

 disabled: True

 Graph:

 id: ENG

 size_hint: (1, 0.3)

 plot: MeshLinePlot

 background_color: [0.15, 0.15, 0.17, 1]

 ylabel:'Amplitude (V)'

 #x_ticks_major:1

 y_ticks_major:1

 y_grid_label:True

 x_grid_label:True

 padding: 5

 x_grid:True

 y_grid:True

58

 xmin:root.xMin

 xmax:root.xMax

 ymin:-2

 ymax:2

 Graph:

 id: ECG_ACCEL

 size_hint: (1, 0.3)

 plot: MeshLinePlot

 background_color: [0.15, 0.15, 0.17, 1]

 ylabel:'Amplitude (V)'

 #x_ticks_major:1

 y_ticks_major:1

 y_grid_label:True

 x_grid_label:True

 padding: 5

 x_grid:True

 y_grid:True

 xmin:root.xMin

 xmax:root.xMax

 ymin:-2

 ymax:2

 # Time axis labels

 BoxLayout:

 size_hint: (1, 0.05)

 orientation: "horizontal"

 BackgroundLabel

 text: str(datetime.timedelta(seconds=root.xMin))[0:10] + ' '

 background_color: [0.15, 0.15, 0.17, 1]

 text_size: self.size

 halign: 'left'

 valign: 'top'

 padding: (40, 0)

 BackgroundLabel

 text: "Time (S)"

 background_color: [0.15, 0.15, 0.17, 1]

 text_size: self.size

 halign: 'center'

 valign: 'top'

 BackgroundLabel

 text: str(datetime.timedelta(seconds=root.xMax))[0:10] + ' '

59

 background_color: [0.15, 0.15, 0.17, 1]

 text_size: self.size

 halign: 'right'

 valign: 'top'

 Graph:

 id: FFT

 size_hint: (1, 0.3)

 plot: MeshLinePlot

 background_color: [0.15, 0.15, 0.17, 1]

 xlabel:'Frequency (Hz)'

 ylabel:'Amplitude (dB)'

 x_ticks_major:2

 y_ticks_major:10

 y_grid_label:True

 x_grid_label:True

 padding:5

 x_grid:True

 y_grid:True

 xmin:0

 xmax:10

 ymin:0

 ymax:100

60

APPENDIX B

CODE MAIN.PY

61

NI imports

import nidaqmx

from nidaqmx.stream_readers import (AnalogSingleChannelReader,

AnalogMultiChannelReader)

from nidaqmx.constants import (AcquisitionType, CountDirection, Edge,

 READ_ALL_AVAILABLE, TaskMode, TriggerType, TerminalConfiguration)

General imports

import collections

import numpy

import time

from threading import Thread

import threading

import multiprocessing

from copy import copy

from datetime import datetime

import os

from scipy.fftpack import fft

import queue

Kivy imports

from kivy.app import App

from kivy.lang import Builder

from kivy.garden.graph import MeshLinePlot, Graph

from kivy.clock import Clock

from kivy.uix.widget import Widget

from kivy.properties import (NumericProperty, ReferenceListProperty,

 ObjectProperty)

from kivy.uix.boxlayout import BoxLayout

class FFT:

 # Takes in a deq in the time domain and returns a list of tuples (freq, mag)

 @staticmethod

 def FFTFromDEQ(timeDEQs, samplingRate):

 # Convert to a numpy array and take the fft for each channel

 chFrequencies = []

 i = 0

 for DEQ in timeDEQs:

 timeArray = numpy.asarray(DEQ)[:,1]

 chFrequencies.append(numpy.abs(fft(timeArray)))

 # Logarithimic mode, this is a bit slower

62

 #chFrequencies.append(20*numpy.log10(numpy.abs(fft(timeArray))))

 i+=1

 # Generate the X axis values which are the discrete frequency values

 N = len(chFrequencies[0])

 n = numpy.arange(N)

 T = N/samplingRate

 freqValues = n/T

 # Generate a list of tuples from the X and Y values for graphing

 freqGraphs = []

 for ch in chFrequencies:

 freqGraphs.append(tuple(zip(freqValues, ch)))

 return freqGraphs

class FileHandling:

 def __init__(self, patientNumber, numChannels):

 self.patientNumber = str(patientNumber)

 self.numChannels = numChannels

 self.fileName = str(patientNumber) + "_" + str(datetime.now().strftime("%Y_%m_%d

%I_%M")) + ".csv"

 self.directory = str(os.getcwd()) + "\\Data\\" + str(patientNumber) + "\\"

 # Make the directory for the patient if it doesn't exist already

 if (not os.path.isdir(self.directory)):

 os.mkdir(self.directory)

 # Create the file, I suppose this could be done inline instead

 self.CreateFile()

 def CreateFile(self):

 self.file = open(self.toRaw(self.directory + self.fileName), "x")

 headerLine = "Time"

 for channel in range(self.numChannels):

 headerLine = ''.join([headerLine, ",Ch", str(channel)])

 headerLine = ''.join([headerLine, "\n"])

 self.file.write(headerLine)

63

 def SaveData(self, time, samplesRead):

 dataLine = str(time)

 for sample in samplesRead:

 dataLine = ''.join([dataLine, ",", str(sample)])

 dataLine = ''.join([dataLine, "\n"])

 self.file.write(dataLine)

 def Close(self):

 # Flush the buffer and ensure everything is saved to disk before closing

 self.file.flush()

 os.fsync(self.file.fileno())

 self.file.close()

 def FileSync(self):

 self.file.flush()

 os.fsync(self.file.fileno())

 def toRaw(self, string):

 return fr"{string}"

Responsible for getting data from the NI DAQ and storing it

If a new DAQ is used, write a new DAQ class and as long as it has channel

buffers as deques it will be compatible with all of the code

class NIDAQ:

 def __init__(self, device, numChannels = 1, samplingRate = 5, histLen = 20,

FFTSampleReduction = 4, FFTChannels = 2, fileName = "01"):

 self.device = device

 self.samplingRate = samplingRate # Sampling rate in Hz

 self.historyLength = histLen # Number of samples in buffer to be displayed

 self.numberOfChannles = numChannels # Assumes channels are 0 -> numberOfChannles

 self.minVal = -2 # Sets the range for the DAQ in volts, reducing range increases precision

 self.maxVal = 2

 self.timeElapsed = 0 # Keeps track of how long data has been recorded

 self.sampsAtATime = 4 # This sets the number of samples to grab at a time

 self.FFTLen = histLen

 self.FFTSampleReduction = FFTSampleReduction

 self.FFTChannels = FFTChannels

 self.DAQThread = None

 self.process = None

64

 # This creates a list of FIFO buffers of a fixed size, these buffers are how you access the

channel data

 self.channelBuffers = []

 for i in range(self.numberOfChannles):

 # deque(dataype, maxlen of deque), note [(0,0)] is a list of tuples

 self.channelBuffers.append(collections.deque([(0, 0)], self.historyLength))

 # This creates a list of buffers for FFT since FFT may require more data

 self.FFTBuffers = []

 for i in range(self.FFTChannels):

 # deque(dataype, maxlen of deque), note [(0,0)] is a list of tuples

 self.FFTBuffers.append(collections.deque([(0, 0)], self.FFTLen))

 # Run the file creation tool for file handling

 self.file = FileHandling(fileName, self.numberOfChannles)

 # This sets up the daq task and then spins out a process and thread to read from the DAQ

 def startUpdatingChannels(self):

 self.queues = []

 self.queues.append(queue.Queue())

 self.queues.append(queue.Queue())

 # Sets up a process to collect from the daq

 self.queues = []

 for i in range(self.numberOfChannles):

 self.queues.append(multiprocessing.Queue(maxsize=2*self.historyLength))

 self.process = multiprocessing.Process(target=NIDAQ.readFromDaqContinuosly,

 args=(self.numberOfChannles, self.device, self.samplingRate,

 self.minVal, self.maxVal, self.sampsAtATime, self.queues))

 self.process.start()

 # Starts a thread to read from the DAQ process

 self.DAQThread = Thread(target=self.readIntoBuffersContinuosly)

 self.DAQThread.start()

 # Stops the recording process by killing the thread and the process

 def stopUpdatingChannels(self):

 # The thread must be terminated first or the queue.put waits for more items

 if (self.DAQThread != None):

 self.DAQThread.continueRunning = False

65

 time.sleep(0.05)

 self.DAQThread.join()

 # Like the thread, only terminate if it was defined

 if (self.process != None):

 self.process.terminate()

 time.sleep(0.05)

 self.process.join()

 # Close the fileno

 self.file.Close()

 # Must be called called on an individual thread to handle constant updating

 def readIntoBuffersContinuosly(self):

 # This allows the thread to be stopped from the function that called it

 NIDAQThread = threading.currentThread()

 flag = 0

 while getattr(NIDAQThread, "continueRunning", True):

 channelValues = []

 for i in range(self.numberOfChannles):

 daqValue = self.queues[i].get()

 self.channelBuffers[i].append((self.timeElapsed, daqValue))

 channelValues.append(daqValue)

 # Ensures FFT buffer saves some smaller number of samples

 if (flag == self.FFTSampleReduction):

 self.FFTBuffers[i].append((self.timeElapsed, daqValue))

 # Ensures all channels are updated before resetting

 if (i == self.FFTChannels - 1):

 flag = 0

 self.file.SaveData(self.timeElapsed, channelValues)

 flag += 1

 self.timeElapsed += (1/self.samplingRate)

 # Must be called called on an individual process to handle constant updating

 @staticmethod

 def readFromDaqContinuosly(numChannels, device, samplingRate, minVal, maxVal,

sampsAtATime, queues):

 # Create a new task to perform the reading, this task will die when this method ends

 with nidaqmx.Task() as readTask:

 # Add all of the channels up to the self.number of channels

66

 for i in range(numChannels):

 # RSE = reference single ended

 readTask.ai_channels.add_ai_voltage_chan(device + "ai" + str(i),

 max_val=maxVal, min_val=minVal,

 terminal_config=TerminalConfiguration.RSE)

 # This ensures that the DAQ is constantly sampling without prompt

 readTask.timing.cfg_samp_clk_timing(samplingRate,

 sample_mode=AcquisitionType.CONTINUOUS, samps_per_chan=samplingRate)

 readTask.start()

 # Stream reading allows for more elegant acquition at high rates

 reader = AnalogMultiChannelReader(readTask.in_stream)

 # Streamreader requires a numpy array to save values to

 holderArray = numpy.zeros((numChannels, sampsAtATime),

 dtype=numpy.float64)

 # Must be terminated by the parent process

 while (True):

 # Returns the number of samples read (same for each channel)

 # Waits until sampsAtATime number of samples are availabe

 reader.read_many_sample(holderArray,

number_of_samples_per_channel=sampsAtATime)

 # Append read values into the queues for each channel to be read

 # by the parent process

 for i in range(len(queues)):

 for j in range(sampsAtATime):

 queues[i].put(holderArray[i][j])

Responsible for displaying and updating the data to graph

class GraphValues(Widget):

 patient_popup = ObjectProperty(None)

 eng_graph = ObjectProperty(None)

 vitals_graph = ObjectProperty(None)

 frequency_graph = ObjectProperty(None)

 xMin = NumericProperty(0)

 xMax = NumericProperty(1)

 # Init must take in *kwargs for some reason. Something to do with inheriting from the Widget

class

67

 def __init__(self, NIDevice, **kwargs):

 super(GraphValues, self).__init__(**kwargs)

 self.patientNumber = "01"

 self.NIDevice = NIDevice

 self.DAQSampleRate = 1000

 self.histLen = 4000

 self.firstStart = True

 # DAQSampleRate/FFTSampleReduction = rate at which the fft is resamples. This reduces

computation

 self.FFTSampleReduction = 4

 # All of these channels will run a recording and get saved to file you cannot skip channels

(i.e [0, 1, 3] is not allowed, nor is [1, 2, 3] becase 0 is skipped)

 self.channelsToRecord = [0, 1, 2, 3, 4, 5] # Typically [ENG1, ENG2, ECG, X, Y, Z]

 # These are the channels that will show up on the top ENG plot, must be a subset of

channels to record

 self.engChannelsToPlot = [0, 1]

 # These are the channels that will show up on the middle vitals plots, must be a subset of

channels to record

 self.vitalsChannelsToPlot = [2, 3, 4, 5]

 # These are the channels that will be re-sampled and have FFT run, must be a subset of

channels to record

 self.FFTChannels = [0, 1]

 # Add the plots to the graphs

 self.engPlots = self.addGraphingPlots(self.engChannelsToPlot, self.eng_graph)

 self.vitalsPlots = self.addGraphingPlots(self.vitalsChannelsToPlot, self.vitals_graph)

 self.freqPlots = self.addGraphingPlots(self.FFTChannels, self.frequency_graph)

 # This adds plots to a kivy graph widget

 def addGraphingPlots(self, plotsToAdd, graphToAddTo):

 plots = []

 for ch in plotsToAdd:

 plot = MeshLinePlot(color=self.ColorGenerator(ch))

 plots.append(plot)

 graphToAddTo.add_plot(plot)

 return plots

 # Starts the DAQ and the plotting, reserves the DAQ and the buffers

68

 def start(self):

 # Disable the start button to avoid trying to reserve the DAQ again

 self.ids.start_button.disabled = True

 self.ids.stop_button.disabled = False

 self.ids.pause_button.disabled = False

 # Get the patient number for file directory to save to

 if (self.firstStart):

 self.firstStart = False

 self.patient_popup.open()

 self.patient_popup.ids.pButton.bind(on_press=self.startPopup)

 else:

 # This reseres the DAQ and it continusly gathers voltages in the buffers

 self.DAQ.startUpdatingChannels()

 # This gets the graph to update every 0.05 seconds

 Clock.schedule_interval(self.updateGraph, 0.05)

 Clock.schedule_interval(self.updateFFT, 1)

 Clock.schedule_interval(self.syncFile, 5)

 def startPopup(self, *args):

 # Store the input from the user as the patient number

 self.patientNumber = str(self.patient_popup.ids.input.text)

 # The popup should now disappear

 self.patient_popup.dismiss()

 # This instantiation is important, it sets up the number of channels, buffer size and things of

the like

 self.DAQ = NIDAQ(self.NIDevice, numChannels = len(self.channelsToRecord),

 samplingRate = self.DAQSampleRate, histLen = self.histLen,

 FFTSampleReduction = self.FFTSampleReduction,

 FFTChannels = len(self.FFTChannels), fileName = self.patientNumber)

 # This reseres the DAQ and it continusly gathers voltages in the buffers

 self.DAQ.startUpdatingChannels()

 # This gets the graph to update every 0.02 seconds

 Clock.schedule_interval(self.updateGraph, 0.05)

 Clock.schedule_interval(self.updateFFT, 0.5)

 Clock.schedule_interval(self.syncFile, 5)

 def pause(self):

69

 pass

 def stop(self):

 # Re-enable the start Button, disable stop button for aesthetics

 self.ids.start_button.disabled = False

 self.ids.stop_button.disabled = True

 # This stops the loop updating the buffer and waits for the thread to finish

 self.DAQ.stopUpdatingChannels()

 # This stops the graph from updating

 Clock.unschedule(self.updateGraph)

 Clock.unschedule(self.updateFFT)

 Clock.unschedule(self.syncFile)

 # The file has been closed so we will ask for a new patient number

 self.firstStart = True

 # dt is update time interval and must be passed to any funciton called from clock

 def updateGraph(self, dt):

 # Update the x boundaries to "follow" the graph

 self.xMin = self.DAQ.channelBuffers[0][0][0]

 self.xMax = self.DAQ.channelBuffers[0][0][0] + (self.histLen/self.DAQSampleRate)

 # Update the points on ENG graph on the top

 for plot, ch in zip(self.engPlots, self.engChannelsToPlot):

 plot.points = self.DAQ.channelBuffers[ch]

 # Update the points on vitals graph in the middle

 for plot, ch in zip(self.vitalsPlots, self.vitalsChannelsToPlot):

 plot.points = self.DAQ.channelBuffers[ch]

 def updateFFT(self, dt):

 #start = time.perf_counter()

 ffts = FFT.FFTFromDEQ(self.DAQ.FFTBuffers,

self.DAQSampleRate/self.FFTSampleReduction)

 #print("FFT Time: " + str(time.perf_counter() - start), flush=True)

 # Update the points on frequency graph on the bottom

 for plot, fft in zip(self.freqPlots, ffts):

 plot.points = fft

70

 # Ensures file save info gets pushed to disk

 def syncFile(self, dt):

 self.DAQ.file.FileSync()

 # This just returns a unique color for the first 5 channels, if there is a better way to do this,

please do

 def ColorGenerator(self, ch):

 if (ch == 0):

 return [0, 1, 1, 1]

 elif (ch == 1):

 return [1, 0, 0, 1]

 elif (ch == 2):

 return [0, 1, 0, 1]

 elif (ch == 3):

 return [0, 0, 1, 1]

 elif (ch == 4):

 return [1, 0, 1, 1]

 else:

 return [1, 1, 1, 1]

This is the main GUI function and must be named after the kivy file. (e.g. DaqApp -> Daq.kv)

class DaqApp(App, BoxLayout):

 def build(self):

 Window.bind(on_request_close=self.onClose)

 self.graphValues = GraphValues("Dev1/")

 return self.graphValues

 def onClose(self, *args):

 self.graphValues.DAQ.stopUpdatingChannels()

if __name__ == '__main__':

 # This must be imported after the main qualifer or it will create a seperate

 # blank window for every sub-process called. Poor implementation from Kivy

 # Documented at https://github.com/kivy/kivy/issues/4744

 from kivy.core.window import Window

 DaqApp().run()

71

APPENDIX C

IRB EXEMPTION

72

73

REFERENCES

[1] J. D. Z. Chen, B. D. Schirmer and R. W. McCallum, "Measurement of electrical activity of

the human small intestine using surface electrodes," IEEE Transactions on Biomedical

Engineering, vol. 40, pp. 598-602, 1993.

[2] J. Garcia-Casado, J. L. Martinez-de-Juan, J. Silvestre, J. Saiz, J. L. Ponce and G. Prats-Boluda,

"Relationship between intestinal motility indexes from internal and surface recordings of

electroenterogram," in 2001 Conference Proceedings of the 23rd Annual International

Conference of the IEEE Engineering in Medicine and Biology Society, 2001.

[3] V. Zena-Giménez, J. Garcia-Casado, Y. Ye-Lin, E. Garcia-Breijo and G. Prats-Boluda, "A

Flexible Multiring Concentric Electrode for Non-Invasive Identification of Intestinal Slow

Waves," Sensors, vol. 18, 2018.

[4] C. Chourpiliadis and A. Bhardwaj, "Physiology, Respiratory Rate," 21 September 2021.

[Online]. Available: https://www.ncbi.nlm.nih.gov/books/NBK537306/. [Accessed 23

Febuary 2022].

[5] B. Chatterjee, L. M. Saini and T. K. Gandhi, "Non-invasive wireless EEG monitor," in 2017

International Conference on Energy, Communication, Data Analytics and Soft Computing

(ICECDS), 2017.

74

[6] G. Prats-Boluda, Y. Ye-Lin, J. M. Bueno Barrachina, E. Senent, R. Rodriguez de Sanabria

and J. Garcia-Casado, "Development of a portable wireless system for bipolar concentric ECG

recording," Measurement Science and Technology, vol. 26, p. 075102, July 2015.

[7] S. Somarajan, N. D. Muszynski, J. D. Olson, L. A. Bradshaw and W. O. Richards,

"Magnetoenterography for the Detection of Partial Mesenteric Ischemia.," The Journal of

surgical research, vol. 239, pp. 31-37, July 2019.

[8] C. E. Bunker, L. P. Johnson and T. S. Nelsen, "Chronic in Situ Studies of the Electrical

Activity of the Small Intestine," Archives of Surgery, vol. 95, pp. 259-268, August 1967.

	A Measurement System for Detection of Intestinal Motility in Neonates by Monitoring Slow Wave Activity
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ACRONYMS
	CHAPTER 1: INTRODUCTION
	CHAPTER 2: MEASUREMENT SETUP
	2.1 Filters and Amplifiers
	2.2 Electrodes
	2.3 Cabling
	2.4 DAQ Box
	2.5 Accelerometer and Frontend
	2.5.1 Accelerometer Filter Design
	2.5.2 Accelerometer Amplifier Selection

	2.6 Software
	2.6.1 Data Acquisition
	2.6.2 GUI
	2.6.3 FFT
	2.6.4 File Saving

	CHAPTER 3: SYSTEM TESTING
	3.1 Motion Artifacts
	3.2 Bipolar Concentric Electrode Testing
	3.2.1 Measurement Configuration
	3.2.2 Results

	3.3 Noise Measurement Test

	CHAPTER 4: PATIENT TESTING
	4.1 Measurement Configuration
	4.2 Post Processing Methods
	4.3 Results
	4.4 Results Discussion

	CHAPTER 5: CONCLUSION
	5.1 Accomplishments
	5.2 Future Works

	APPENDIX A CODE DAQ.KV
	APPENDIX B CODE MAIN.PY
	APPENDIX C IRB EXEMPTION
	REFERENCES

