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ABSTRACT 

Since the beginning of project management, people have been asked to perform “more with 

less” in expeditious time while attempting to balance the inevitable challenge of the 

time/cost tradeoff.  This is especially true within the Department of Defense today in 

prosecuting the Global War on Terrorism both in Afghanistan and Iraq.  An unprecedented 

and consistent level of Operational Tempo has generated heavy demands on current 

equipment and has subsequently forced the need to recapitalize several legacy systems 

until suitable replacements can be implemented.  

 

This paper targets the UH-60A:A Recapitalization Program based at the Corpus Christi 

Army Depot in Corpus Christi, Texas.  More specifically, we examine one of the nine 

existing project sub-networks within the UH-60A:A program, the structural/electrical upgrade 

phase.  In crashing (i.e. adding manpower or labor hours) the network, we determine the 

minimal cost required to reduce the total completion time of the 68 activities within the 

network before a target completion time.  A linear programming model is formulated and 

then solved for alternative scenarios.  The first scenario is prescribed by the program 

manager and consists of simply hiring additional contractors to augment the existing 

personnel.  The second and third scenarios consist of examining the effects of overtime, 

both in an aggressive situation (with limited longevity) and a more moderate situation 

(displaying greater sustainability over time). 

 

The initial linear programming model (Scenario 1) is crashed using estimates given from the 

program scheduler.  The overtime models are crashed using reduced-time crash estimates.  
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For Scenarios 2 and 3, the crashable times themselves are reduced by 50% and 75%, 

respectively. 

 

Initial results indicate that a completion time of 79.5 days is possible without crashing any 

activities in the network.  The five-year historical average completion time is 156 days for 

this network.  We continue to crash the network in each of the three scenarios and 

determine that the absolute shortest feasible completion times, 73 days for Scenario 1, 76 

days for Scenario 2, and 77.5 days for Scenario 3.  We further examine the models to 

observe similarities and differences in which activities get targeted for crashing and how 

that reduction affects the critical path of the network.  

 

These results suggests an in-depth study of using linear programming and applying it to 

project networks to grant project managers more critical insight that may help them better 

achieve their respective objectives.  This work may also be useful as the groundwork for 

further refinement and application for maintenance managers conducting day-to-day unit 

level maintenance operations. 
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CHAPTER 1:  OVERVIEW 

1.1  Introduction 

 

Both in February and March, 1999, the Honorable Paul J. Hoeper, Assistant Secretary of 

the Army and Army Acquisition Executive, addressed the 106th Congress detailing the 

significant modernization challenges facing the United States Army.  With modernization 

funding at an all time low (65% decrease from the funding supplied in 1985 and the lowest 

“real term” level since 1960 (Hoeper, 1999)), Mr. Hoeper first addressed the funding 

challenges stretching programs to great lengths and beyond.  He described the struggle of 

sustaining and recapitalizing selected equipment (i.e. tanks, helicopters, vehicles) while 

simultaneously developing complementary replacements in the early part of the 21st 

Century.  This ominous and continuous challenge, also called the “death spiral,” exists 

because aging equipment invariably requires additional maintenance thereby increasing 

critical operations and support costs (O&S) that ultimately drain the modernization budget.  

Lieutenant General John C. Coburn, added that “the issue is so serious that, if not properly 

addressed and corrected, it will inevitably result in degradation in the Army’s ability to 

maintain its readiness.” (Hoeper, 1999) 

 

Dr. Jacques Gansler, an expert in acquisition matters, offered that the key to avoiding this 

“death spiral” comes in the way of acquisition reform – a critical component to increase the 

efficiencies of the Army’s internal operations to produce savings that could be applied in 

modernization efforts.  In optimizing its overall performance, a program could now generate 

its own savings and provide an overarching benefit to the Army’s collective effort.  Seven 
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years following his comments, we are now beginning to realize the power of Dr. Gansler’s 

ideas. 

 

Two years later, and four months prior to terror attacks of September 11, 2001, the Vice 

Chief of Staff of the Army approved a program specifically targeting the recapitalization of 

the UH-60A “Blackhawk” helicopter.  Little did he know at the time the importance of this 

program for accomplishing the following mission statement. 

 
Mission:  UH-60A:A Recapitalization Program produces 20 aircraft per year within the 
parameters of a $1.3 Billion Dollar Budget, a 12 year schedule (2002-2013), and various 
performance measures such as managing the recapitalization baseline and providing 
overhauled components to the UH-60 fleet. 
 
Endstate:  A total of 193 UH-60A:A aircraft are recapitalized. 

 

Executing five years of the UH-60A:A Program in parallel to the prosecution of the Global 

War on Terrorism has validated LTG Coburn’s claim that meeting equipment challenges is 

every bit as serious as fighting a tough and determined enemy on many fronts.   If you do 

not address the former, you most certainly cannot succeed in the latter.  Unprecedented 

operational tempo over the past five years has demanded a significant increase of 

maintenance requirements on an already aging fleet of UH-60 Sikorsky aircraft, the largest 

fleet of aircraft in the Army (1585 Helicopters).   

 

Today, the UH-60A:A Program attacks the inevitable and day-to-day “death spiral” within 

the framework of the Army Modernization Plan and National Sustainment Maintenance to 

address readiness within fiscal constraints and maintenance workload management, 

respectively.  In doing so, project managers strive to balance rising O&S costs, the need for 
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modernizing equipment, and the demands of maintaining a readiness posture suitable to 

prosecuting the Global War on Terrorism.   

 

Army Modernization Plan 

The UH-60 “Blackhawk,” Army Aviation’s workhorse in its 28th year of production, has flown 

well over 200,000 flight hours in support of Operation Enduring Freedom and Operation 

Iraqi Freedom.   

 
Figure 1:  Soldiers prepare to board a UH-60A in support of Operation Iraqi Freedom 

Each year, over twenty aircraft are inducted into the UH-60A:A program for overhaul.   

Simultaneously, twenty aircraft are scheduled to be released back into the operating forces 

after recapitalization completion.  More often than not, this is accomplished by executing the 

“more with less” maxim in solving the aforementioned dilemma.  A program manager’s 
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ability to effectively balance cost constraints, a demanding schedule, and various 

performance measures in the most effective manner is vital to protecting our nation’s 

interests and sustaining land force dominance. 

 

The Army’s Modernization Plan addresses the critical balance of current and future 

readiness within fiscal constraints by emphasizing recapitalization of our aging equipment.  

The UH-60A:A Program addresses three of the five major goals in the Army Modernization 

Plan.  By performing structural and component upgrades to five different parts of the aircraft, 

the program ensures compliance with Goal #1: to maintain combat overmatch.  Goal #2, 

recapitalize the force, is achieved by extending the service life of the aircraft by 10-15 years.  

Finally, this program successfully accomplishes Goal #3 by integrating active and reserve 

components by servicing each organization and the airframes that accompany them.  

Achieving each of these three goals mitigates the readiness impact by aging equipment 

through reduction in O&S costs and improvement of current readiness through timely 

delivery of overhauled airframes. 

 

National Sustainment Maintenance (NSM) 

The NSM is an overarching maintenance management umbrella to distribute maintenance 

workload executed above the tactical level, affording the United States government the 

ability to efficiently workload its depots in recapitalizing the aging equipment fleet (Hoeper, 

1999).  This aggressive program targets O&S costs directly to target reduction through 

sustainment efforts on the remanufacture, rebuilding, and overhaul of systems.  Further, it 

provides significant and lasting benefits by optimizing the core depot capability.   
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Corpus Christi Army Depot (CCAD), a successful depot executing a sound national 

sustainment maintenance program, improves overall reliability, reduces O&S costs, and 

provides opportunities and efficiencies for technology insertion in accordance with the 

recapitalization initiative.  By performing range of maintenance from minor repair through 

complete overhaul of equipment not reparable by unit/intermediate maintenance, the depot 

relieves a significant maintenance manpower burden from the war fighter.  The depot also 

performs original equipment manufacturer (OEM) maintenance and other specific actions 

that cannot be completed at the unit level based on maintenance policies.   

 

Recapitalization 

Without question, the need to retain legacy UH:60A’s equates to an overall increase in 

average age of the airframe.  Although an increasing average age of aircraft is inversely 

proportional to the decreasing overall performance edge, the Army must continue to 

address the issues at hand.  The UH-60A:A Program recapitalizes its equipment through a 

combination of refurbishment and replacement initiatives that comprise 9 sub-networks (in a 

large overall project network) to extend useful life and reduce O&S costs.   Each of the sub-

networks is listed below, and heretofore referred to as a numbered network for the 

remainder of this paper. 

. 

• Network 1:  Disassembly       Network 2: Clean / PMB   Network 3:  PSA  

• Network 4:  Struct/Elect         Network 5:  Prime Paint   Network 6: Assembly 

• Network 7:  Final Paint           Network 8:  Flight Test     Network 9:  Delivery 
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This paper specifically targets “Network 4” (Structural/Electrical) to reduce the total cost in 

reducing network turn-around-time (TAT) through the application of a linear programming 

model for project crashing.  By crashing various activities in the project network, valuable 

insight into the optimal time/cost tradeoff is presented.  A five-year performance summary of 

TAT by fiscal year is presented in Table 1.  Although the overall Program TAT average has 

been decreasing consistently, there is still room for improvement within a few specified 

networks.  

 

Table 1:  Five Year Turn Around Time Summary of UH-60A:A Recap Program (Days) 

Network 5-Year Average FY02 FY03 FY04 FY05 FY06
1 15 16 16 18 13 11 
2 17 13 14 21 17 19 
3 11 8 8 17 10 11 
4 156 251 207 144 101 129 
5 17 36 27 8 11 8 
6 97 82 119 91 80 51 
7 7 12 8 7 7 7 
8 27 38 27 22 32 30 
9 9 8 11 9 8 4 

TOTAL 345 449 437 337 274 252 
 

We target Network 4 (Structural/Electrical) because of its variability and overall program 

contribution.  First, significant variability exists with respect to TAT over the course of the 

past five reporting years.  Secondly, and most importantly, improving Network 4 yields the 

highest improvement dividends as it is the most influential aspect of the program network, 

with 46% of the entire program time processed resting within its 68 activities.  To gain a 

better understanding of the many factors influencing this network, we further consider three 

other factors that impact the total number of days to complete the process. 

 

Table 2:  Five Year Summary of Network 4 
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Network 4 5- Year Average FY02 FY03 FY04 FY05 FY06 
Structural/Electrical 113 138 150 97 87 98 

Network Total 156 251 207 144 101 129 
 

Three additional sub-categories within Network 4, “excess work in progress”, “work 

stoppage”, and “over and above,” are not shown in Table 2 but account for the discrepancy 

between the Structural/Electrical totals and the Network Total.  The difference will be 

discussed in detail in Chapter 6 of this paper.  For example, the FY02 data shows a large 

increase from structural/electrical to network total.  This is mostly attributed to excessive 

work stoppage due to a lagging logistics system as the program transitioned from a truly 

infant state.  Although this is a large factor in any aircraft maintenance scenario, 48 month’s 

worth of successful lean events from the depot, more proactive parts tracking from the 

Program Executive Office (PEO), and better understanding of the requirements in 

supporting the Global War on Terrorism have matured with time and have mitigated its 

overall impact. 
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1.2  Goals of the Present Study 

 

Even if all of the modernization and recapitalization programs achieve 100% success over 

the next 20 years, it is critically important to understand that 70% of the Army’s total force 

structure in 2020 will be comprised of legacy systems (Hoeper, 1999).  Therefore, it is 

unrealistic to believe that the “death spiral” dilemma will truly ever be solved.  With that 

understanding, the goal of this study is two-fold. 

 

First, we seek to apply a methodology of linear programming for project scheduling that is 

applicable to any project with an existing network structure consisting of numerous 

interrelated activities.  The goal is to schedule the activities in the network to achieve the 

least costly completion of the project by a specified deadline.  Using this approach, we 

supply “crash” time estimates to normal activity times in order to achieve project completion 

by a specified time at minimum cost.  With the existing project structure, we create a 

network representation of the constituent activities to identify critical tasks, key in 

subsequent analysis as these tasks may change as crashing begins.  Although the number 

of scenarios one could consider is virtually limitless, we address three scenarios (Scenario 

#1 driven from the program manager and Scenarios #2 and #3 offered as alternatives 

developed in consultation with the program manager).   

 

• Scenario #1:  Crash the existing network by hiring 55 additional contractor 

employees.  This course of action is the current accepted practice as CCAD is 

pursuing hiring additional contractors to work on the program.  The activity crash 
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estimates are provided from the master scheduler for the program.  The cost is 

measured in labor costs with respect to 2006 wage rates by grade. 

 

• Scenario #2:  Crash the existing network using overtime (60 total work hours per 

person per week).  This course of action examines using the existing work force in 

an overtime scenario to avoid paying exorbitant contractor costs.  The activity crash 

estimates are derived by decreasing the contractor crash estimates by 50% as 

approved by the master scheduler for the program.  The cost is measured in labor 

costs times 1.5 to address overtime hours (i.e. hours worked in excess of 40/week). 

 

• Scenario #3:  Crash the existing network using overtime (50 total work hours per 

person per week). This course of action examines using the existing work force in a 

reduced overtime scenario to avoid paying exorbitant contractor costs.  The activity 

crash estimates are derived by reducing the contractor crash estimates by 75% as 

approved by the master scheduler for the program.  The cost is measured in labor 

costs times 1.5 to address overtime hours (i.e. hours worked in excess of 40/week). 

 

Through these three scenarios we seek to provide enough information in addressing the 

critical tradeoffs between time and cost – applicable in any project in any program.  

 

In accomplishing the first goal, we desire to achieve a second goal of providing a simplistic 

and user-friendly methodology for use within the operating forces of the United States Army 

for future applications.   We utilize Microsoft Project and Microsoft Excel because of their 

availability, ease of use, and universal familiarity with the target audience of the United 
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States Army.  Although this study is focused on Army helicopters, this model and this 

approach can be applied to any system with a set of interdependent tasks to better solve 

the challenges presented in the “death spiral.” 
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1.3  Organization of Thesis 

 

The remainder of this document is divided into five additional chapters.  Chapter 2 primarily 

addresses an accompanying literature review with respect to linear programming and the 

critical path method, the cost of crashing various activities in the network, and its 

applications within the Department of Defense and United States Army Aviation.  We further 

address various aviation maintenance challenges that rest within a depot maintenance 

facility.  Chapter 3 discusses and defines the proposed model to solve this problem, the 

derivation of the input parameters and a supporting explanation of data collection.  Chapter 

4 focuses solely on the three scenarios evaluated within the framework of the linear 

programming model, while Chapter 5 examines the results, primarily focusing on the 

investigation of how each model targets the crash variables within the network and the 

associated critical path for each scenario as we attempt to find the best tradeoff between 

cost, schedule, and performance.  Finally, Chapter 6 summarizes the findings while 

providing recommendations, conclusions, and suggestions for future work. 
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CHAPTER 2:  LITERATURE REVIEW 

 

Although the United States Army and the Department of Defense has been utilizing linear 

programming for a variety of purposes for many years, very little evidence exists within the 

context of applying a linear program to an existing aviation maintenance schedule to 

minimize program cost while reducing total TAT.  This is, in large part, because historical 

deterministic CPM presents few problems of interest (Haga, 2004).  We, for the purposes of 

this study, feel differently and hope to lay the framework for an eventual application adopted 

by the mainstream maintenance managers across the Army.   

 

Over the past several years, the distinction between the PERT and CPM approaches have 

become increasingly blurred.  Surprisingly, little work has been done in the area of the time-

cost tradeoff problem (Haga, 2004), even though PERT and CPM have been around since 

the 1950’s.  Therefore, the following literature review offers a basic history and 

understanding of linear programming and some of the key findings over the past 60 years 

that are pertinent to this work.  The remainder of the review consists of various key 

snapshots of historical Department of Defense applications and a recent history of depot 

level maintenance and the associated challenges dealing with the time/cost balance.  Each 

of the topics presented are applicable to the areas of emphasis targeted by this study. 
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2.1  History of Linear Programming 

 

Any historical summary of linear programming (LP) must first begin with Professor George 

B. Dantzig as he contributed more than any other researcher to this discipline’s 

development.  The problem that started his research is still one that we grapple with today – 

the problem of planning or scheduling dynamically over time.  Dantzig’s background in the 

Department of Defense is of particular interest in this case, as he was addressing one of the 

same issues (rapid computation of time-staged development, training and logistical supply 

program) that effects the project presented in this paper (Lenstra, 2002).  In fact, the 

somewhat confusing name of “linear programming” is based on the military definition of 

program (Lenstra, 2002).  

 

Dantzig’s simplex algorithm solves LP problems by constructing an admissible solution at a 

vertex of the polyhedron, and then moving along its edges to the vertices with successively 

higher values of the objective function until the optimal solution is reached.  Many 

successful applications of LP are found in the literature. 

 

Van Slyke (1963) demonstrated several advantages of applying simulation techniques to 

PERT, including more accurate estimates of true project length.  This is especially 

applicable in this case as the linear program is only as good as the “crash estimates” 

provided from the scheduler.  Although our study is not a simulation, much can be learned 

from Van Slyke’s work in overall understanding of a scientific way to estimate project 

completion time.  Instead of using a simplistic “trial and error” approach, Van Slyke offered 

various distributions for activity times and a way to calculate “criticality indexes.” 



 14

 

Karmarkar (1984) proposed the first algorithm for LP that performs well both in theory and in 

practice.  This method falls within the class of interior point methods and was the first 

reasonably efficient algorithm that solves LP problems in polynomial time.  Since then, 

many interior point methods have been proposed and analyzed as alternatives to the 

simplex method.  

 

Ramini (1986) proposed an algorithm for crashing PERT networks with the use of criticality 

indices, but no results were ever reported.  The most important takeaway from this work is 

that it did not account for bottlenecks.  Every schedule has bottlenecks, including the 

schedule examined in this study.  However, even when project managers build time buffers 

into their completion time estimates, the potential for late projects still exists largely because 

of deviation from timetables and budget constraints. Both of these areas will be addressed 

later in this chapter. 

 

Ameen’s (1987) work with computer assisted PERT simulation actually inspired and refined 

this study.  It is first important to understand that there are numerous critical paths within a 

given project schedule, once that schedule becomes subject to crashing its activities.  

Because crashing a given activity by one time period will not necessarily reduce the 

completion time of the project by one time period, it is critical to utilize Ameen’s instructional 

tool to teach project management techniques.  This is clearly the crux of the time-cost 

problem and the need to understand the relationships and tradeoffs for each project 

manager. 
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Four years later, Badiru (1991) developed another simulation program called STARC that 

affords the user the opportunity to calculate the probability of completing the project by a 

specified deadline.  This speaks more to pessimistic and optimistic estimates and again 

affords insight into the overall complexity of executing a program schedule.  For purposes of 

this paper, we utilized the crash estimates given by the program scheduler as well as the 

five-year historical data to obtain the most feasible TAT completion target goal.  

  

Feltz (1970) presents an interesting application of the critical path method to explore the 

overall cost of crashing.  He determined that the critical path method was the most likely 

management technique for controlling costs and deadlines because CPM provided the 

opportunity to separate planning and scheduling functions.  He uses a sequential algorithm 

for selecting the activities of achieving a target for total project duration.  He then 

sequentially expedites activities on the critical path in the order of increasing cost rates.  

Although not applied in this case, this method could be applied to delve deeper into a better 

understanding of the cost of crashing. 

 

Nearly thirty years later, Roemer and Ahmadi (2000) refined Feltz’s model to present a 

formal model that addressed both the overlapping of development stages and crashing of 

development times with respect to product development.  This application may apply if this 

study were addressing the entire nine phase program and offers future potential for 

research as Roemer and Ahmadi’s results exhibited the necessity of addressing 

overlapping and crashing concurrently as well as general characteristics of optimal 

overlapping/crashing policies.   
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Premachandra (1992) presents a goal-programming model for activity crashing in project 

networks that speaks specifically to the importance of understanding the goals of a 

respective PERT/CPM problem.  Because project management often has several objectives, 

goal programming is utilized to handle multi-criteria situations within the general framework 

of linear programming.  This is especially important in providing the project manager options 

in crashing various activities in the network because often it is not responsible to assume 

that equal priority is given to crash each activity.  With respect to minimizing cost, an LP 

model may provide a solution which falls outside of the intended budget or project cost.  

This model considers both under- and overachievement for each of the specified goals as 

well as assigning a priority factor for each goal.  The result is a solution requiring multiple 

interpretations to ensure the specified goals were properly addressed.   Again, this is 

extremely valuable in situations where managers make decisions subject to many criteria to 

obtain a more practically feasible solution to the program manager. 

 

Love and Drew (2000) examine the effects of progressively long overtime that generates 

quality problems like rework and the commitment of additional resources.  For purposes of 

this study, we assume an overall low rework percentage although there is currently no 

measure in place to accurately present the total amount of rework performed per year in the 

UH-60A:A Program.  With that said, there is validity in modeling the complex nature of 

attaining a tradeoff between working overtime and the procurement of additional resources 

such as hiring contractors.  Love and Drew use system dynamics modeling to examine the 

effects of overtime work on project cost and quality.  

 

Love and Drew (2000) conclude that prolonged overtime working may cause declines in 

productivity and performance and those findings drove us to refine our original crash 
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estimates in both overtime scenarios.  Love and Drew’s paper was the first attempt to 

analytically determine the effects of overtime and can be used to mitigate delays of large 

projects and projects with confined shifts and sites, projects like UH-60A:A.  Determining 

the most appropriate combination of prescribing overtime work and injecting additional 

resources is very significant and often will determine the level to which cost savings are 

achieved. 

 

This study focuses on one of the special cases of linear programming in addressing a 

network scheduling problem, a topic that led to research on many of the previously 

presented specialized algorithms.  The current common opinion is that the efficiency of 

good implementation of the simplex-based methods and interior point methods is similar for 

routine applications of linear programming.  Even though there are a multitude of LP solvers 

to address various problems in industry, we have chosen the Microsoft Excel compatible 

Premium Solver developed by Frontline Systems.  
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2.2  Department of Defense Applications 

 

Early applications of PERT within the Department of Defense can be traced back to the 

Polaris Project in the 1950’s and the Army LANCE missile system.  A study presented in 

1964 regarding the LANCE project highlights the early beginnings of the same challenges 

we continue to grapple with today:  defining and serving organizational goals in concert with 

a program mission statement while simultaneously reducing cost and continually 

redesigning a project network (Borgman, 1975). The application of PERT aided greatly in 

the redesign of the missile container system within the LANCE project. 

 

Whiton (1971) offers interesting insight into the four major large-scale linear programming 

models in current usage 30 years ago within the Department of Defense.  Each of these 

models displays the baseline PERT models employed at the highest levels within the DOD 

specifically targeting personnel assignments, resource allocations for training, logistics 

issues in streaming the supply chain, and other large scale decisions involving base 

realignment and closure (Whiton, 1971).  We learn a great deal from the past as he offers 

key analysis on the developmental problems encountered between the early model 

developers and the users.  He also speaks to the various applications of extensions from 

the four large-scale models discussed in the paper. 

 

Parallel work from the Department of the Army was also performed in 1975 with their advent 

of the Total Risk Assessing Cost Estimate (TRACE) program whose goal was to develop a 

new program cost-estimation procedure for research, development, test and evaluation cost 

realism (Cockerham, 1976).  Although not applied to an existing production network, this 



 19

approach is applicable in this study as it addresses uncertainties that could possibly be 

applied to current schedules.  Applying the essential elements of the TRACE concept yields 

two very important models: a cost impact model and a schedule variance model.  Each and 

every schedule possesses variance within the estimates and the UH-60A:A Program could 

benefit from researching variance models in refining the network.  Additional applications of 

this procedure exist within the NASA/Army Tilt Rotor Research Aircraft Project back in 1975. 

 

In 1987, the United States Army Logistics and Management Center at Fort Lee, Virginia, 

developed an application with PERT principles called the Venture Evaluation Review 

Technique (VERT).  This valuable management tool focused on modeling program cost, 

schedule, and performance risk (McGowen, 1987).  Although very similar in concept, VERT, 

a computer-supported network modeling and simulation technique, possesses far greater 

modeling and analysis capabilities to PERT.  McGowen (1987) presents VERT’s capabilities 

in comparison to PERT techniques in addition to offering the latest version of VERT, VERT-

PC, for review. 

 

Like the Logistics and Management Center at Fort Lee, the United States Army Corps of 

Engineers Construction Engineering Research Lab continues to utilize and develop PERT 

systems.  In 1994, they developed an information system called CAPPB (Computer-

Assisted Planning, Programming, and Budgeting System).  CAPPB assists in gathering and 

providing detailed resource programming information for the military engineer to plan and 

defend resource requirements (Goettel, 1994). The single biggest strength of this 

application is that it includes links to several other Army systems to improve data 

consistency and to avoid duplication of data entry.  In our study, we utilize the Premium 
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Solver package developed by Frontline Systems as it is embedded in the widely utilized 

Microsoft Excel software.   

 

In 1999, the United States Army deployed and tested a multiple objective model for 

manpower planning in a company-sized, 100-soldier, military reserve unit.  This model 

involved 5 objectives and consisted of over 1,150 decision variables and 650 constraints 

over a 12-month planning horizon (Reeves, 1999).  Although our model is reduced in scale, 

this research and application is very applicable to our study as it generated model solutions 

using two different procedures, providing valuable insight to the employment of reserve 

personnel.  Ironically, this information proved critical given the role of the United States 

reserve forces in support of the Global War on Terrorism.  Instead of learning through the 

painful experience of the past, we envision using the current wartime setting to establish a 

credible model that provides the decision maker with as much pertinent information as 

possible to handle any contingency and any challenge regarding time and money.  

Ultimately, this manpower model was extremely effective in solving manpower challenges. 
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2.3  Depot Level Maintenance 

 

Over the past 10 years, there has been a series of reports published by the General 

Accounting Office (GAO), the investigative arm of Congress charged with examining 

matters relating to the receipt and payment of public funds.  The GAO has published reports 

highlighting deficiencies in the spare parts supply system, as well as the management of 

government funding to effectively achieve the collective mission of depot level maintenance 

repairs such as recapitalization. 

 

Although the practice of “cannibalizing” aircraft parts from one aircraft to another has been 

around since the advent of Army Aviation, the most recent literature addressing this 

phenomenon is found in 2001.  This practice, valuable in limited situations, ultimately 

causes many second and third order effects and eventually creates more problems than it 

solves.  The primary effect from these practices results in higher maintenance costs due to 

increased mechanics' workloads (Curtin, 2001).  This is especially important when dealing 

with the size and scope of the mission statement presented in Chapter 1.  Even if a program 

has the money to offset the higher labor costs, they can expect an overall reduction in 

performance from the work force due to decreased morale.  It is extremely frustrating for a 

maintainer to enter “work stoppage” on a task due to limited parts.  It is even more 

frustrating for that same maintainer to work additional man hours in removing a functional 

part from another aircraft and then reinstalling that same part on the aircraft in maintenance.  

Lastly, and most importantly, cannibalization may solve a problem in the short-term, but 

ultimately the long-term result will be extensive delays in multiple aircraft, therefore failing to 

accomplish the mission that cannibalization was supposed to originally solve.   
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However, it is important to study and review this aspect of the literature because strong 

incentives exist for cannibalizing aircraft.  Often, maintenance managers are so discouraged 

with the supply system that they lose the vision necessary to identify the shortfalls and use 

cannibalization as a crutch to meet readiness and operational needs (Curtin, 2001).  Using 

linear programming to better understand a schedule will ultimately channel the energy 

toward addressing logistics shortfalls and developing specific strategies to reduce 

cannibalizations and the associated maintenance hours. 

 

Just two months after the UH-60A:A program was initiated, the GAO further highlighted 

maintenance shortcomings in the military’s ability to carry out future operational missions.  

Because we cannot predict when and where we, as a nation, go to war, it is crucial to 

identify and source the proper number of adequate spare parts within the supply system for 

all levels of maintenance and repairs.  

 

From a financial perspective, the GAO concludes that parts shortages are a key indicator 

that the billions of dollars being spent on these parts are not being used effectively, 

efficiently, and economically.  For many years, including 2001, Congress continually 

supplied additional funding to aid in the money intensive arena of aviation maintenance 

(Warren, 2001).  This report further highlights spare parts shortages for many aircraft 

including the UH-60 Blackhawk and further addresses the issue of cannibalization as an 

inefficient practice that results in double work for the maintenance personnel, masks parts 

shortages, and lowers morale.  
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The “parts problem” has been around for decades and can be attributed to many things 

including higher-than-expected demand, delays in obtaining factory direct parts, and various 

problems with overhaul and maintenance.  Moreover, the Army’s inability to forecast and 

obtain parts for aging fleets whose original providers have long since gone out of business 

represents another key factor (Warren, 2001).  In late 2001, the Army and the Defense 

Logistics Agency went “under the microscope” to improve the availability of aviation spare 

parts, subject to periodic review from the GAO.  The improvement has been slow and 

steady at best. 

 

Nearly three years and two wars later, the Defense Department began to come to grips with 

the massive maintenance demands produced from one year’s worth of consistent combat 

operations.  This is not surprising because they never truly had the peacetime solution.  

Why should we expect them to possess the wartime solution?  In 2004, the GAO concluded 

that it will take “months or years to get aircraft fleets back to acceptable levels” (Wall, 2004).  

The U.S. Army is feeling the greatest burden as they are maintaining the delicate balancing 

act in running a massive repair and overhaul effort for helicopters returning from the combat 

zone, while continuing to operate more than 600 aircraft in Iraq and Afghanistan (Wall, 

2004).  These operational demands prevented the UH-60A:A program from getting the 

jumpstart it needed and can be directly cited for the  program’s overall sluggish start with 

respect to higher than necessary TAT.   

 

In aggressively attacking Secretary Hoeper’s challenging “death spiral,”  the GAO further 

cited in 2004, that the U.S. Army was borrowing production money from its next five-year 

budget plan to pay development costs for an additional four programs in its Future Combat 

System (FCS) project (Fulgham, 2004).  This is yet another example of the challenges that 
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exist on a day-to-day basis as the FCS initial budget for design and development was 

twenty times greater than the entire UH-60A:A Program.  Army leadership, heavily criticized 

in the past for its long-term neglect of aviation modernization and for using aviation funding 

to pay for other high-profile programs such as armor, reshuffled four programs and 

accelerated four additional programs to combat the discrepancy (Fulgham, 2004). 

 

In 2005, the GAO took a hard look at the activities involved within depot maintenance.  GAO 

identified four management weaknesses that are impairing the efficiency and effectiveness 

of Army depot maintenance operations. The activity group's average sales price increased 

from $111.87 per hour for fiscal year 2000 to $147.07 per hour for fiscal year 2005--a 31 

percent increase (21 percent if adjusted for inflation) (Kutz, 2005).  An increase in material 

costs was the major driver of the sales price increase.  The Army has identified some 

causes of the higher material costs, but it has not completed a comprehensive analysis of 

material cost increases.  Consequently, the Army failed to take proactive steps to control 

rising material costs.  This finding further validates the notion of reducing total labor costs as 

a means for acquisition programs to help their potential funding problems.   

 

GAO analysis showed that in setting future prices, the Army spread depot maintenance 

reported gains and losses across all depots rather than allocating them to the individual 

depot that incurred the gains or losses (Kutz, 2005).  While DOD policy does not specify 

how to allocate gains and losses at the depot level, this practice does not provide the right 

incentives to the depots to set prices correctly.  This larger problem and root cause of 

setting prices correctly will continue to fester and create heartache within the program until 

remedied. 
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Figure 2:  Forward View of Electrical Upgrades to UH-60A 
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2.4  Time/Cost Challenge 

 

As stated, the cost of prosecuting the Global War on Terrorism on two fronts has challenged 

every arm of the Department of Defense.  Aviation Week and Space Technology cited a 

GAO estimate that the DOD was overspending its $65 billion appropriation for the fiscal 

year 2004 by $12.3 billion, or nearly 19% (Bond, 2004).  Each of the four major services’ 

operations and maintenance accounts were overrunning and subsequently demanding a 

deferral of additional activity to fiscal year 2005.  This is a common practice with the 

Department of Defense and often one way to deal with the time/cost challenge.  Program 

managers must understand this tactic and safeguard against it.  For if their respective 

program is not on time and on budget at each critical point of the year, then they may miss 

critical performance goals and measures.  Often, the first to feel the effects of cutbacks to 

compensate for overspending is peacetime operations, depot maintenance, and contractor 

logistics support (Bond, 2004).  Cuts in depot maintenance and contractor logistics support 

have impacted depot programs like UH-60A:A, regardless of the services they perform.   

 

Therefore, within an aviation maintenance situation like UH-60A:A, it is even more critical to 

produce “more with less” for as fast and as long as you can.  For the GAO’s chief concern 

of deferrals causing second and third order effects haunts every project manager.  These 

effects could fester into a "bow wave" of unfinished business extending past the subsequent 

fiscal year, ultimately resulting in a collective “two footed” leap into the inevitable “death 

spiral.” 
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CHAPTER 3:  PROPOSED MODEL 

 

3.1  Justification for Proposed Model 

 

This problem addresses the inevitable challenge facing every program manager in the world:  

What is the optimum balance between expediting an existing schedule and its 

corresponding impact on the framework of a fixed budget?  Although not necessarily 

constrained to a tangible fixed monetary budget, this dilemma can be extended to the desk 

of nearly every maintenance manager in every aircraft hangar in the United States Army.  

Although these problems could be and are often modeled analytically using mean values, 

common knowledge, and the ever scientific “this is how we did it last time approach,”  a 

decision model using a common and existing software package like Microsoft Excel could 

prove invaluable in maximizing total efficiency within any project network.  This model aims 

to provide realistic and easily interpreted results while holding true to critical factors like 

system variability and flexibility to input a large number of diverse input parameters. 

 

The overarching intent of the model is to present an approach that is mathematical in nature 

and logical in its approach.  Additionally, the aforementioned model must be “experimentally 

friendly” in affording the user a complete understanding of the model’s power with limited 

training.  Once this understanding is gained, the user possesses the ability to change input 

parameters quickly and efficiently to draw critical conclusions about enhancing the 

performance of the given network.  These conclusions afford the user the ultimate ability to 

implement necessary, priority-driven changes necessary to achieve optimal results. 
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 Linear programming is extremely applicable in the PERT/CPM type applications like project 

networks where a series of interdependent tasks are performed simultaneously in order to 

achieve a common end state.  The notion of critical path is also applicable in these types of 

scenarios as much can be learned from its examination and understanding the tradeoff 

between time and cost.   
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3.2  Description of Proposed Model 

 

After an initial dialogue from March, 2006 to May 2006, we gained approval to model 

portions of the UH-60A:A Program from the product manager for UH-60A/L, Mr. Eric 

Edwards,  located in Huntsville, AL and the Program Manager, Mrs. Jackie Gibson, located 

in Corpus Christ, TX.  The following represents the step by step process of developing the 

linear programming model in accordance with the methods presented by Anderson, 

Sweeney, and Williams (2005).   

 

Step 1 – Description and Definition of Targeted Network 

As stated, the focus of this effort is to model the aforementioned “Network 4” within the UH-

60A:A Recapitalization Program.  This 68-task (activity) network is comprised of structural 

and electrical upgrades and replacements as well as various modifications and/or 

improvements to extend the service life of the airframe 10 to 15 years.  The completion 

times of these tasks were defined as the “decision variables” and labeled with 

corresponding X1 through X68 nomenclature (See Appendix A for a list of decision 

variables.)  Telephone calls, email consultation, and two on-site visits with the program 

manager and chief project scheduler in Corpus Christi, TX aided in accomplishing the next 

several steps of the process. 

 

Currently, the UH-60 A:A Program consists of two eight-hour shifts manned with 53 workers 

on first shift and 52 workers on second shift.  For purposes of discussion, we have grouped 

the 105 workers into one pool for analysis.  There are two types of workers from four 
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different pay grades who are about evenly distributed over eight different work teams.  The 

first type of worker represents the government employees (63 total) who earn one of three 

wages in accordance of their classification, either Wage Grade 5, Wage Grade 8, or Wage 

Grade 10.  The second type of worker represents contracted civilian employees (42 total) 

who earn a different flat rate fee per hour.  Each worker performs 40 hours of work in a 

given work week without any scheduled overtime.  Table 3 details the total personnel 

breakdown by team and wage as well as current wage rates for government employees and 

contractors.  It is assumed that each team works on different aspects of the network within 

the hangar floor and, if there is any work stoppage in a given area, that the workers are 

redistributed to the most critical aspect of the program within the given time. 

 

Table 3:  2006 Wage Rates for Government Employees and Contracted Civilians  

 Grade 5 Grade 8 Grade 10 Contractor 
Wage Rate/Hr $18.29 $21.45 $23.47 $128.70 

Team 1 1 1 6 5 
Team 2 1 1 6 5 
Team 3 1 1 6 5 
Team 4 1 1 6 5 
Team 5 1 1 6 5 
Team 6 1 1 6 5 
Team 7  2 6 6 
Team 8  2 5 6 
TOTALS 6 10 47 42 

Source:  DoD Civilian Personnel Management Federal Wage Table (2006), CCAD 
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Step 2 – Derivation of the Network Diagram, Determination of Predecessors 

After inputting the network data (normal activity start times, normal activity finish times, and 

immediate predecessors) into Microsoft Project 2003, we then determined the network 

diagram as well as the critical path and associated critical activities.  This accurate network 

diagram highlighted the immediate predecessors necessary for deriving the constraints for 

the linear program.  Understanding the critical path is essential and an integral step in 

proceeding with the analysis of the results, as this path will most likely change for each of 

the three scenarios.  Detailed analysis of the critical path will be presented in Chapter 6. 

 

Step 3 – Estimation of Activity Completion Times in a Normal Environment  

With the network diagram complete (See Appendix B for network diagram) and the normal 

activity start and finish times known, the framework for the derivation of the constraints was 

in place.  The program scheduler estimated the “activity normal times” (An) for each task.   

 

Step 4 – Estimation of Activity Completion Times in a “Crashed” Environment 

The program scheduler then identified 24 of the 68 tasks in the network that could be 

crashed by applying additional resources (manpower) to complete the task faster.  It is 

important to note that we define “crashing” as allocating additional resources to a specific 

activity of the network to reduce overall completion time.  Table 4 depicts the activity normal 

completion times (An) (in hours) for each task as well as the “crashed” activity completion 

times (Ac) (in hours) for each of the previously identified 24 activities or tasks for Scenario 1.  

The variables associated with activities that may be crashed are highlighted in bold. 
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Table 4:  Summary of Activity Normal Times (hours) and Activity Crash Times (hours) 

Variable Normal 

Time      

(Hrs) 

Crash 

Time 

(Hrs) 

Variable Normal 

Time       

(Hrs) 

Crash 

Time 

(Hrs) 

Variable Normal 

Time       

(Hrs) 

Crash 

Time 

(Hrs) 

X1 8  X24 32  X47 24  
X2 8  X25 8  X48 24  
X3 8  X26 24  X49 24  
X4 16 12 X27 24  X50 32  
X5 56  X28 56  X51 40  
X6 104  X29 152  X52 24 16 
X7 8 6 X30 24 15 X53 24 16 
X8 16  X31 24 16 X54 8 6 
X9 16  X32 16  X55 24 16 
X10 24  X33 8 6 X56 16 10 
X11 80  X34 8 6 X57 16 10 
X12 16 12 X35 24  X58 8 6 
X13 64 56 X36 32  X59 40 32 
X14 24  X37 24 16 X60 4 3 
X15 72  X38 24 16 X61 32  
X16 48  X39 56  X62 4 3 
X17 240  X40 32  X63 80 60 
X18 8  X41 8 6 X64 8  
X19 24  X42 56  X65 8  
X20 8  X43 16 10 X66 8  
X21 48  X44 40  X67 16 12 
X22 32  X45 16  X68 4  
X23 64  X46 8     
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Step 5 – Calculation of the Normal Cost/Hr Worked and Crash Cost/Hr Worked 

With the estimates for activity completion times under normal and “crashing” conditions 

complete, we now must calculate the average cost/hr worked under both normal and 

crashed conditions.  In accordance with guidance from the program manager, we examined 

Scenario 1 (Crashing the Network by hiring 55 additional contractors to the existing eight 

teams).  First, we had to compute the “total cost per hour worked under normal conditions” 

per team (Ctn).  Once computed, we summed the eight values for Ctn to find the value for 

Cn (total network cost per hour worked under normal conditions). The actual values for 

calculating Cn are listed in Table 5 below.   

  

Table 5:  Derivation of Total Network Cost per Hour Worked under Normal Conditions 

 WGrade 5 WGrade 8 WGrade 10 Contractor Hourly  
 Total Cost Total Cost Total Cost Total Cost Team Cost 

Team 1 $18.29 $21.45 $140.82 $643.50 $824.06 
Team 2 $18.29 $21.45 $140.82 $643.50 $824.06 
Team 3 $18.29 $21.45 $140.82 $643.50 $824.06 
Team 4 $18.29 $21.45 $140.82 $643.50 $824.06 
Team 5 $18.29 $21.45 $140.82 $643.50 $824.06 
Team 6 $18.29 $21.45 $140.82 $643.50 $824.06 
Team 7  $42.90 $140.82 $772.70 $955.92 
Team 8  $42.90 $117.35 $772.70 $932.45 
TOTALS     $6,832.73 

 

Ctn = #WG5*$18.29 + #WG8*$21.45 + #WG10*23.47 + #Cont*$128.70 

Cn = Ctn1 + Ctn2 + Ctn3 + Ctn4 + Ctn5 + Ctn6 + Ctn7 + Ctn8 = $6,832.73 

Once calculated, we applied the Cn value to each of the tasks to determine the total task 

cost under normal conditions.  This value will be critical when determining the total crash 

cost per hour. 
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The additional 55 contractors were distributed across each of the eight teams and the “total 

cost per hour worked under crash conditions per team” (Ctc) was computed, yielding an 

increased cost for contractor column of the aforementioned table.  Once Ctc was computed, 

we summed the eight values for Ctc to find the value for Cc (total network cost per hour 

worked under crashed conditions). The actual values for calculating Cc is listed in Table 6 

below. 

 

Table 6:  Derivation of Total Network Cost per Hour Worked under Crashing Conditions 

 WGrade 5 WGrade 8 WGrade 10 Contractor Hourly  
 Total Cost Total Cost Total Cost Total Cost Team Cost 

Team 1 $18.29 $21.45 $140.82 $1,544.40 $1,724.96 
Team 2 $18.29 $21.45 $140.82 $1,544.40 $1,724.96 
Team 3 $18.29 $21.45 $140.82 $1,544.40 $1,724.96 
Team 4 $18.29 $21.45 $140.82 $1,544.40 $1,724.96 
Team 5 $18.29 $21.45 $140.82 $1,544.40 $1,724.96 
Team 6 $18.29 $21.45 $140.82 $1,544.40 $1,724.96 
Team 7  $42.90 $140.82 $1,544.40 $1,856.82 
Team 8  $42.90 $117.35 $1,673.10 $1,833.35 
TOTALS     $14,039.93 

 

Ctc = #WG5*$18.29 + #WG8*$21.45 + #WG10*23.47 + #Cont*$128.70 

Cc = Ctc1 + Ctc2 + Ctc3 + Ctc4 + Ctc5 + Ctc6 + Ctc7 + Ctc8 = $14,039.93 
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Tables 7 outlines the total overtime cost utilized in Scenarios 2 and 3.  We simply multiply 

each of the WGrade hourly costs listed above by 1.5 to account for overtime pay.  The 

contractor hourly cost is multiplied by 1.8 to account for overtime and other benefit costs not 

associated with government workers. 

 

Table 7:  Derivation of Total Network Cost per Hour Worked under Normal Conditions 

 WGrade 5 WGrade 8 WGrade 10 Contractor Hourly  
 Total Cost Total Cost Total Cost Total Cost Team Cost 

Team 1 $27.44 $32.18 $211.23 $1158.30 $1429.14 
Team 2 $27.44 $32.18 $211.23 $1158.30 $1429.14 
Team 3 $27.44 $32.18 $211.23 $1158.30 $1429.14 
Team 4 $27.44 $32.18 $211.23 $1158.30 $1429.14 
Team 5 $27.44 $32.18 $211.23 $1158.30 $1429.14 
Team 6 $27.44 $32.18 $211.23 $1158.30 $1429.14 
Team 7  $64.32 $211.23 $1389.96 $1665.54 
Team 8  $64.32 $176.03 $1389.96 $1630.34 
TOTALS     $11,870.72 

 
Ctc = #WG5*$27.44 + #WG8*$32.18 + #WG10*35.21 + #Cont*$231.66 

Cc = Ctc1 + Ctc2 + Ctc3 + Ctc4 + Ctc5 + Ctc6 + Ctc7 + Ctc8 = $11,870.72 

 

Once we have derived the three cost values (Normal Labor, Crash Contractor Labor, and 

Overtime Labor) we can now present the crash costs for each of three scenarios listed in 

Table 8 below. 
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Table 8:  Summary of Crash Costs for Each Scenario 

 Normal Cost Contractor Cost Overtime Cost Total Crash Cost 
Scenario 1 $6,832.73 $14,039.93 N/A $14,039.93 
Scenario 2 $6,832,73 N/A $11, 870.72 $8,512.06 
Scenario 3 $6,832.73 N/A $11, 870.72 $7,840.33 

 
 

The total crash cost values for Scenario 2 and Scenario 3 are computed by multiplying the 

applicable percentage of each value worked within the outlined parameters. 

 

Scenario 2 = .66($6,832.73) + .33($11,870.72) = $8,512.06 

Scenario 3 = .80($6,832.73) + .20($11,870.72) = $7,840.33 

 

Step 6 – Calculation of Maximum Reduction in Time (M) and Crash Cost/Hr (K) 

Combining the computed data of normal cost per hour (Cn) and crash cost per hour (Cc) 

with the estimates for activity normal time (An) and activity crash time (Ac) allows us the 

opportunity to compute the maximum reduction in time (M) and then subsequently compute 

the crash cost/hour (K) for each crashable activity.  The equations used for calculating 

maximum reduction time (M) and crash cost per hour (K) are listed below. 

• M = An – Ac  

• K = (Cc – Cn)/M  

Tables 9, 10, and 11 listed below detail the data used for Scenarios 1, 2, and 3 
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Table 9:  Summary of Scenario 1 

Task M Cc ($) Cn ($) K ($) Task M Cc ($) Cn ($) K ($) 

X1 0 112319.44 54661.84   X35 0 336958.32 163985.52   
X2 0 112319.44 54661.84   X36 0 449277.76 218647.36   
X3 0 112319.44 54661.84   X37 8 224638.88 163985.52 7581.67 
X4 4 168479.16 109323.68 14788.87 X38 8 224638.88 163985.52 7581.67 
X5 0 786236.08 382632.88   X39 0 786236.08 382632.88   
X6 0 1460152.72 710603.92   X40 0 449277.76 218647.36   
X7 2 84239.58 54661.84 14788.87 X41 2 84239.58 54661.84 14788.87 
X8 0 224638.88 109323.68   X42 0 786236.08 382632.88   
X9 0 224638.88 109323.68   X43 6 140399.30 109323.68 5179.27 

X10 0 336958.32 163985.52   X44 0 561597.20 273309.20   
X11 0 1123194.40 546618.40   X45 0 224638.88 109323.68   
X12 4 168479.16 109323.68 14788.87 X46 0 112319.44 54661.84   
X13 8 786236.08 437294.72 43617.67 X47 0 336958.32 163985.52   
X14 0 336958.32 163985.52   X48 0 336958.32 163985.52   
X15 0 1010874.96 491956.56   X49 0 336958.32 163985.52   
X16 0 673916.64 327971.04   X50 0 449277.76 218647.36   
X17 0 3369583.20 1639855.20   X51 0 561597.20 273309.20   
X18 0 112319.44 54661.84   X52 8 224638.88 163985.52 7581.67 
X19 0 336958.32 163985.52   X53 8 224638.88 163985.52 7581.67 
X20 0 112319.44 54661.84   X54 2 84239.58 54661.84 14788.87 
X21 0 673916.64 327971.04   X55 8 224638.88 163985.52 7581.67 
X22 0 449277.76 218647.36   X56 6 140399.30 109323.68 5179.27 
X23 0 898555.52 437294.72   X57 6 140399.30 109323.68 5179.27 
X24 0 449277.76 218647.36   X58 2 84239.58 54661.84 14788.87 
X25 0 112319.44 54661.84   X59 8 449277.76 273309.20 21996.07 
X26 0 336958.32 163985.52   X60 1 42119.79 27330.92 14788.87 
X27 0 336958.32 163985.52   X61 0 449277.76 218647.36   
X28 0 786236.08 382632.88   X62 1 42119.79 27330.92 14788.87 
X29 0 2134069.36 1038574.96   X63 20 842395.80 546618.40 14788.87 
X30 9 210598.95 163985.52 5179.27 X64 0 112319.44 54661.84   
X31 8 224638.88 163985.52 7581.67 X65 0 112319.44 54661.84   
X32 0 224638.88 109323.68   X66 0 112319.44 54661.84   
X33 2 84239.58 54661.84 14788.87 X67 4 168479.16 109323.68 14788.87 
X34 2 84239.58 54661.84 14788.87 X68 0 56159.72 27330.92   
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Table 10:  Summary of Scenario 2 

Task M Cc ($) Cn ($) K ($) Task M Cc ($) Cn ($) K ($) 

X1 0 68096.48 54661.84   X35 0 204289.44 163985.52   
X2 0 68096.48 54661.84   X36 0 272385.92 218647.36   
X3 0 68096.48 54661.84   X37 4 170241.20 163985.52 1563.92
X4 2 119168.84 109323.68 4922.58 X38 4 170241.20 163985.52 1563.92
X5 0 476675.36 382632.88   X39 0 476675.36 382632.88   
X6 0 885254.24 710603.92   X40 0 272385.92 218647.36   
X7 1 59584.42 54661.84 4922.58 X41 1 59584.42 54661.84 4922.58
X8 0 136192.96 109323.68   X42 0 476675.36 382632.88   
X9 0 136192.96 109323.68   X43 3 110656.78 109323.68 444.37

X10 0 204289.44 163985.52   X44 0 340482.40 273309.20   
X11 0 680964.80 546618.40   X45 0 136192.96 109323.68   
X12 2 119168.84 109323.68 4922.58 X46 0 68096.48 54661.84   
X13 4 510723.60 437294.72 18357.22 X47 0 204289.44 163985.52   
X14 0 204289.44 163985.52   X48 0 204289.44 163985.52   
X15 0 612868.32 491956.56   X49 0 204289.44 163985.52   
X16 0 408578.88 327971.04   X50 0 272385.92 218647.36   
X17 0 2042894.40 1639855.20   X51 0 340482.40 273309.20   
X18 0 68096.48 54661.84   X52 4 170241.20 163985.52 1563.92
X19 0 204289.44 163985.52   X53 4 170241.20 163985.52 1563.92
X20 0 68096.48 54661.84   X54 1 59584.42 54661.84 4922.58
X21 0 408578.88 327971.04   X55 4 170241.20 163985.52 1563.92
X22 0 272385.92 218647.36   X56 3 110656.78 109323.68 444.37
X23 0 544771.84 437294.72   X57 3 110656.78 109323.68 444.37
X24 0 272385.92 218647.36   X58 1 59584.42 54661.84 4922.58
X25 0 68096.48 54661.84   X59 4 306434.16 273309.20 8281.24
X26 0 204289.44 163985.52   X60 0 34048.24 27330.92   
X27 0 204289.44 163985.52   X61 0 272385.92 218647.36   
X28 0 476675.36 382632.88   X62 0 34048.24 27330.92   
X29 0 1293833.12 1038574.96   X63 10 595844.20 546618.40 4922.58
X30 4.5 165985.17 163985.52 444.37 X64 0 68096.48 54661.84   
X31 4 170241.20 163985.52 1563.92 X65 0 68096.48 54661.84   
X32 0 136192.96 109323.68   X66 0 68096.48 54661.84   
X33 1 59584.42 54661.84 4922.58 X67 2 119168.84 109323.68 4922.58
X34 1 59584.42 54661.84 4922.58 X68 0 34048.24 27330.92   
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Table 11:  Summary of Scenario 3 

Task M Cc ($) Cn ($) K ($) Task M Cc ($) Cn ($) K ($) 

X1 0 62722.64 54661.84   X35 0 188167.92 163985.52   
X2 0 62722.64 54661.84   X36 0 250890.56 218647.36   
X3 0 62722.64 54661.84   X37 2 172487.26 163985.52 4250.87
X4 1 117604.95 109323.68 8281.27 X38 2 172487.26 163985.52 4250.87
X5 0 439058.48 382632.88   X39 0 439058.48 382632.88   
X6 0 815394.32 710603.92   X40 0 250890.56 218647.36   
X7 .5 58802.48 54661.84 8281.27 X41 .5 58802.48 54661.84 8281.27
X8 0 125445.28 109323.68   X42 0 439058.48 382632.88   
X9 0 125445.28 109323.68   X43 1.5 113684.79 109323.68 2907.40

X10 0 188167.92 163985.52   X44 0 313613.20 273309.20   
X11 0 627226.40 546618.40   X45 0 125445.28 109323.68   
X12 1 117604.95 109323.68 8281.27 X46 0 62722.64 54661.84   
X13 2 486100.46 437294.72 24402.87 X47 0 188167.92 163985.52   
X14 0 188167.92 163985.52   X48 0 188167.92 163985.52   
X15 0 564503.76 491956.56   X49 0 188167.92 163985.52   
X16 0 376335.84 327971.04   X50 0 250890.56 218647.36   
X17 0 1881679.20 1639855.20   X51 0 313613.20 273309.20   
X18 0 62722.64 54661.84   X52 2 172487.26 163985.52 4250.87
X19 0 188167.92 163985.52   X53 2 172487.26 163985.52 4250.87
X20 0 62722.64 54661.84   X54 .5 58802.48 54661.84 8281.27
X21 0 376335.84 327971.04   X55 2 172487.26 163985.52 4250.87
X22 0 250890.56 218647.36   X56 1.5 113684.79 109323.68 2907.40
X23 0 501781.12 437294.72   X57 1.5 113684.79 109323.68 2907.40
X24 0 250890.56 218647.36   X58 .5 58802.48 54661.84 8281.27
X25 0 62722.64 54661.84   X59 2 297932.54 273309.20 12311.67
X26 0 188167.92 163985.52   X60 0 31361.32 27330.92   
X27 0 188167.92 163985.52   X61 0 250890.56 218647.36   
X28 0 439058.48 382632.88   X62 0 31361.32 27330.92   
X29 0 1191730.16 1038574.96   X63 5 588024.75 546618.40 8281.27
X30 2.25 178367.51 163985.52 11505.59 X64 0 62722.64 54661.84   
X31 2 172487.26 163985.52 4250.87 X65 0 62722.64 54661.84   
X32 0 125445.28 109323.68   X66 0 62722.64 54661.84   
X33 .5 58802.48 54661.84 8281.27 X67 1 117604.95 109323.68 8281.27
X34 .5 58802.48 54661.84 8281.27 X68 0 31361.32 27330.92   
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Step 7 – Definition of the Crash Variables 

As previously stated, the decision variables for this problem have been defined as X1 

through X68 for each of the 68 activities in the network.  Now, we must also define the 

crash variables as they will also impact the constraints.  For ease and consistency, we have 

identified the letter “y” to denote a crash variable.  Referencing Table 4 above, we simply 

then append the corresponding “x” number to the crash letter y to derive the following 24 

crash variables.  In total, there are 92 decision variables for this problem in the following 

nomenclature: 

 

X1, X2, X3,….., X66, X67, X68 and Y2, Y4, Y8, Y9, Y11, Y12, Y13, Y14, Y16, Y17, Y19, 

Y20, Y21, Y22, Y23, Y24, Y26, Y27, Y28, Y30, Y32, Y37, Y40, Y42 

Complete description and definition of all decision variables is listed in Appendix A. 

 

Step 8 – Definition of the Constraints 

With all variables defined, all activity normal times specified, and all activity crash times 

estimated for each scenario, we can now define each of the constraints for this problem.  In 

this case, the constraints are classified in three categories: “crash constraints,” “interference 

constraints,” and “TAT constraint.”  

 

First, the crash constraints simply represent a mathematical way to express that each of the 

24 crash variables cannot exceed the maximum estimated allowable crash time for each of 

their respective activities.  For example, if Activity 2 can be crashed a maximum of 4 total 
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hours, then Y2 < 4 must be enforced.  Tables 12, 13, and 14 detail the crash constraints for 

each scenario.  Each scenario possesses a different set of crash constraints.   

 

On the other hand, the interference constraints are all based on the activity normal time and 

therefore remain consistent throughout each of the scenarios.  When deriving the 

interference constraints, we reference activity finish time, earliest start time and activity 

normal time.  Consider Activity 7, an activity that cannot be crashed.  It takes 8 hours to 

complete, and its earliest start time is the completion time for its predecessor, Activity 6.  In 

this case, the finish time must be greater than or equal to the sum of the earliest start time 

and the activity time for the given task.  Because we do not know ahead of time whether an 

activity will start at its earliest start time, we use an inequality of the greater than or equal to 

variety.  For clarity, the constraint is listed below. 

 

X7 > X6 + 8 simplified to X7 – X6 > 8 

 

For activities that can be crashed, consider Activity 8, an activity that can be crashed by 20 

hours, takes 80 hours to complete, and whose earliest start time is the completion of its 

predecessor, Activity 7.  The same rules apply except for the addition of a parenthetical 

expression for the difference between the normal time for the activity and the amount that 

the activity is crashed.  There are a total of 103 constraints for this problem.   The constraint 

described is listed below. 

 

X8 > X7 + (80 – Y8) simplified to X8 – X7 + Y8 > 80 
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Lastly, we must add the final TAT constraint.  This is simply one constraint that targets our 

goal of reducing the total TAT of the project.  For purposes of each scenario, we are using 

80 days or 640 hours as the maximum amount of time for the completion of all activities 

within the network.  Therefore, our final task, represented by X68, must be completed within 

the target time of 640 hours.  This constraint is consistent for each scenario and will be 

modified accordingly as we examine just how far this network can be crashed and still 

maintain a feasible solution.  This constraint is listed last in Tables 12, 13, and 14. 

 

 
Figure 3:  UH-60A Aft View with Tail Boom Detached 
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Table 12:  Constraints for Scenario 1 

X3 – X1                        > 8 X32 – X23                    > 16 X63 – X62 +Y63           > 80 
X4 – X1 + Y4                > 16 X33 – X30 + Y33          > 8 X65 – X63                     > 8 
X2 – X3                        > 8 X46 – X45                    > 8 X64 – X63                      > 8 
X2 – X4                         > 8 X36 – X28                    > 32 X67 – X65 +Y67           > 16 
X5 – X3                        > 56 X44 – X29                    > 40 X67 – X64 +Y67           > 16 
X5 – X4                        > 56 X34 – X31 + Y34           > 8 X66 – X64                     > 8 
X6 – X3                       >104 X35 – X32                    > 24 X68 – X67                     > 4 
X6 – X4                       >104 X47 – X46                    > 24 X68 – X66                     > 4 
X7 – X2 + Y7                > 8 X39 – X36                    > 56 X62 – X61 +Y62           > 4 
X8 – X2                        > 16 X48 – X44                    > 24 Y4                                 < 4 
X9 – X2                        > 16 X37 – X35 + Y37          > 24 Y7                                 < 2 
X10 – X2                      > 24 X50 – X47                    > 32 Y12                               < 4 
X11 – X2                      > 80 X42 – X39                    > 56 Y13                               < 8 
X18 – X5                      > 8 X51 – X48                    > 40 Y30                               < 9 
X25 – X6                      > 8 X38 – X37 + Y38          > 24 Y31                               < 8 
X12 – X7 + Y12            > 16 X53 – X50 + Y53          > 24 Y33                               < 2 
X13 – X7 + Y13            > 64 X49 – X42                    > 24 Y34                               < 2 
X14 – X8                      > 24 X55 – X51 + Y55          > 24 Y37                               < 8    
X15 – X9                      > 72 X40 – X38                    > 32 Y38                               < 8 
X16 – X10                    > 48 X56 – X53 + Y56         >16 Y41                               < 2 
X19 – X18                    > 24 X52 – X49 + Y52          > 24 Y43                               < 6 
X26 – X25                    > 24 X57 – X55 + Y57          > 16 Y52                               < 8 
X20 – X13                    > 8 X41 – X40 + Y41          > 8 Y53                               < 8 
X17– X14                   > 240 X54 – X52 + Y54          > 8 Y54                               < 2 
X24 – X15                  > 32 X43 – X41 + Y43          > 16 Y55                               < 8 
X21 – X16                    > 48 X58 – X20 + Y58          > 8 Y56                               < 6 
X27 – X22                    > 24 X58 – X34 + Y58          > 8 Y57                               < 6 
X27 – X21 + Y27         > 24 X58 – X56 + Y58          > 8 Y58                               < 2 
X23 – X19                    > 64 X58 – X57 + Y58          > 8 Y59                               < 8 
X29 – X25                   >104 X58 – X54 + Y58          > 8 Y60                               < 1 
X30 – X26 + Y30         > 24 X58 – X43 + Y58          > 8 Y62                               < 1 
X45 – X17                   > 16 X59 – X58 + Y59          > 40 Y63                               < 20 
X28 – X24                   > 56 X60 – X59 + Y60          > 4 Y67                               < 4 
X29 – X21                  > 152 X60 – X33 + Y60          > 4 TAT Constraint 
X31 – X27 + Y31        > 24 X61 – X60                    > 32 Y68                             < 640 
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Table 13:  Constraints for Scenario 2 

X3 – X1                        > 8 X32 – X23                    > 16 X63 – X62 +Y63           > 80 
X4 – X1 + Y4                > 16 X33 – X30 + Y33          > 8 X65 – X63                     > 8 
X2 – X3                        > 8 X46 – X45                    > 8 X64 – X63                      > 8 
X2 – X4                         > 8 X36 – X28                    > 32 X67 – X65 +Y67           > 16 
X5 – X3                        > 56 X44 – X29                    > 40 X67 – X64 +Y67           > 16 
X5 – X4                        > 56 X34 – X31 + Y34           > 8 X66 – X64                     > 8 
X6 – X3                       >104 X35 – X32                    > 24 X68 – X67                     > 4 
X6 – X4                       >104 X47 – X46                    > 24 X68 – X66                     > 4 
X7 – X2 + Y7                > 8 X39 – X36                    > 56 X62 – X61 +Y62           > 4 
X8 – X2                        > 16 X48 – X44                    > 24 Y4                                 < 2 
X9 – X2                        > 16 X37 – X35 + Y37          > 24 Y7                                 < 1 
X10 – X2                      > 24 X50 – X47                    > 32 Y12                               < 2 
X11 – X2                      > 80 X42 – X39                    > 56 Y13                               < 4 
X18 – X5                      > 8 X51 – X48                    > 40 Y30                              < 4.5 
X25 – X6                      > 8 X38 – X37 + Y38          > 24 Y31                               < 4 
X12 – X7 + Y12            > 16 X53 – X50 + Y53          > 24 Y33                               < 1 
X13 – X7 + Y13            > 64 X49 – X42                    > 24 Y34                               < 1 
X14 – X8                      > 24 X55 – X51 + Y55          > 24 Y37                               < 4    
X15 – X9                      > 72 X40 – X38                    > 32 Y38                               < 4 
X16 – X10                    > 48 X56 – X53 + Y56         >16 Y41                               < 1 
X19 – X18                    > 24 X52 – X49 + Y52          > 24 Y43                               < 3 
X26 – X25                    > 24 X57 – X55 + Y57          > 16 Y52                               < 4 
X20 – X13                    > 8 X41 – X40 + Y41          > 8 Y53                               < 4 
X17– X14                   > 240 X54 – X52 + Y54          > 8 Y54                               < 1 
X24 – X15                  > 32 X43 – X41 + Y43          > 16 Y55                               < 4 
X21 – X16                    > 48 X58 – X20 + Y58          > 8 Y56                               < 3 
X27 – X22                    > 24 X58 – X34 + Y58          > 8 Y57                               < 3 
X27 – X21 + Y27         > 24 X58 – X56 + Y58          > 8 Y58                               < 1 
X23 – X19                    > 64 X58 – X57 + Y58          > 8 Y59                               < 4 
X29 – X25                   >104 X58 – X54 + Y58          > 8 Y60                               < 0 
X30 – X26 + Y30         > 24 X58 – X43 + Y58          > 8 Y62                               < 0 
X45 – X17                   > 16 X59 – X58 + Y59          > 40 Y63                               < 10 
X28 – X24                   > 56 X60 – X59 + Y60          > 4 Y67                               < 2 
X29 – X21                  > 152 X60 – X33 + Y60          > 4 TAT Constraint 
X31 – X27 + Y31        > 24 X61 – X60                    > 32 Y68                             < 640 
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Table 14:  Constraints for Scenario 3 

X3 – X1                        > 8 X32 – X23                    > 16 X63 – X62 +Y63           > 80 
X4 – X1 + Y4                > 16 X33 – X30 + Y33          > 8 X65 – X63                     > 8 
X2 – X3                        > 8 X46 – X45                    > 8 X64 – X63                      > 8 
X2 – X4                         > 8 X36 – X28                    > 32 X67 – X65 +Y67           > 16 
X5 – X3                        > 56 X44 – X29                    > 40 X67 – X64 +Y67           > 16 
X5 – X4                        > 56 X34 – X31 + Y34           > 8 X66 – X64                     > 8 
X6 – X3                       >104 X35 – X32                    > 24 X68 – X67                     > 4 
X6 – X4                       >104 X47 – X46                    > 24 X68 – X66                     > 4 
X7 – X2 + Y7                > 8 X39 – X36                    > 56 X62 – X61 +Y62           > 4 
X8 – X2                        > 16 X48 – X44                    > 24 Y4                                 < 1 
X9 – X2                        > 16 X37 – X35 + Y37          > 24 Y7                                 < .5 
X10 – X2                      > 24 X50 – X47                    > 32 Y12                               < 1 
X11 – X2                      > 80 X42 – X39                    > 56 Y13                               < 2 
X18 – X5                      > 8 X51 – X48                    > 40 Y30                            < 2.25 
X25 – X6                      > 8 X38 – X37 + Y38          > 24 Y31                               < 2 
X12 – X7 + Y12            > 16 X53 – X50 + Y53          > 24 Y33                               < .5 
X13 – X7 + Y13            > 64 X49 – X42                    > 24 Y34                               < .5 
X14 – X8                      > 24 X55 – X51 + Y55          > 24 Y37                               < 2    
X15 – X9                      > 72 X40 – X38                    > 32 Y38                               < 2 
X16 – X10                    > 48 X56 – X53 + Y56         >16 Y41                               < .5 
X19 – X18                    > 24 X52 – X49 + Y52          > 24 Y43                              < 1.5 
X26 – X25                    > 24 X57 – X55 + Y57          > 16 Y52                               < 2 
X20 – X13                    > 8 X41 – X40 + Y41          > 8 Y53                               < 2 
X17– X14                   > 240 X54 – X52 + Y54          > 8 Y54                               < .5 
X24 – X15                  > 32 X43 – X41 + Y43          > 16 Y55                               < 2 
X21 – X16                    > 48 X58 – X20 + Y58          > 8 Y56                              < 1.5 
X27 – X22                    > 24 X58 – X34 + Y58          > 8 Y57                              < 1.5 
X27 – X21 + Y27         > 24 X58 – X56 + Y58          > 8 Y58                               < .5 
X23 – X19                    > 64 X58 – X57 + Y58          > 8 Y59                               < 2 
X29 – X25                   >104 X58 – X54 + Y58          > 8 Y60                               < 0 
X30 – X26 + Y30         > 24 X58 – X43 + Y58          > 8 Y62                               < 0 
X45 – X17                   > 16 X59 – X58 + Y59          > 40 Y63                               < 5 
X28 – X24                   > 56 X60 – X59 + Y60          > 4 Y67                               < 1 
X29 – X21                  > 152 X60 – X33 + Y60          > 4 TAT Constraint 
X31 – X27 + Y31        > 24 X61 – X60                    > 32 Y68                             < 640 
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Step 9 – Definition of the Objective Function of the Linear Program 

The final step in this process is to develop the objective function for the model.  In this case, 

we desire to minimize the total cost required to complete the network by the specified TAT.  

Since we estimated the hourly crash cost per task, we can then determine the total cost 

required to achieve that level of reduction.  The objective function for each of the three 

scenarios is listed in Tables 15, 16, and 17 below.   

Table 15:  Objective Function for Scenario 1 (Minimize Total Cost) 

Variable Coefficient 
All X Values (X1..X68) 0 
Y4 = Inventory Upgrade Kits 14788.87 
Y7 = Remove Landing Gear 14788.87 
Y12 = Inspect Landing Gear Fittings 14788.87 
Y13 = Inspect Reassemble Landing Gear 43617.67 
Y30 = Recheck Structural – Nose Section 5179.27 
Y31 = Recheck Structural – Cockpit Section 7581.67 
Y33 = Recheck Electrical – Nose Section 14788.87 
Y34 = Recheck Electrical – Cockpit Section 14788.87 
Y37 = Recheck Structural – Roof Section 7581.67 
Y38 = Structural Repair – Firewalls 7581.67 
Y41 = Recheck Structural – Firewalls 14788.87 
Y43 = Recheck Electrical – Roof Section 5179.27 
Y52 = Recheck Structural – Tail Cone Section 7581.67 
Y53 = Recheck Structural – Transition Section 7581.67 
Y54 = Recheck Structural – Tail Cone Section 14788.87 
Y55 = Recheck Structural – Cabin 7581.67 
Y56 = Recheck Electrical – Transition Section 5179.27 
Y57 = Recheck Electrical – Cabin 5179.27 
Y58 = Remove Fuselage from Work Stands 14788.87 
Y59 = Wire Alignment 21996.07 
Y60 = All Structural Repairs Complete 14788.87 
Y62 = Move Fuselage to Final ATC 14788.87 
Y63 = Final ATC 14788.87 
Y67 = Clean and Close 14788.87 
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Table 16:  Objective Function for Scenario 2 (Minimize Total Cost) 

Variable Coefficient 
All X Values (X1..X68) 0 
Y4 = Inventory Upgrade Kits 4922.58 
Y7 = Remove Landing Gear 4922.58 
Y12 = Inspect Landing Gear Fittings 4922.58 
Y13 = Inspect Reassemble Landing Gear 18357.22 
Y30 = Recheck Structural – Nose Section 444.37 
Y31 = Recheck Structural – Cockpit Section 1563.92 
Y33 = Recheck Electrical – Nose Section 4922.58 
Y34 = Recheck Electrical – Cockpit Section 4922.58 
Y37 = Recheck Structural – Roof Section 1563.92 
Y38 = Structural Repair – Firewalls 1563.92 
Y41 = Recheck Structural – Firewalls 4922.58 
Y43 = Recheck Electrical – Roof Section 444.37 
Y52 = Recheck Structural – Tail Cone Section 1563.92 
Y53 = Recheck Structural – Transition Section 1563.92 
Y54 = Recheck Structural – Tail Cone Section 4922.58 
Y55 = Recheck Structural – Cabin 1563.92 
Y56 = Recheck Electrical – Transition Section 444.37 
Y57 = Recheck Electrical – Cabin 444.37 
Y58 = Remove Fuselage from Work Stands 4922.58 
Y59 = Wire Alignment 8281.24 
Y60 = All Structural Repairs Complete 0.00 
Y62 = Move Fuselage to Final ATC 0.00 
Y63 = Final ATC 4922.58 
Y67 = Clean and Close 4922.58 
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Table 17:  Objective Function for Scenario 3 (Minimize Total Cost) 

Variable Coefficient 
All X Values (X1..X68) 0 
Y4 = Inventory Upgrade Kits 8281.27 
Y7 = Remove Landing Gear 8281.27 
Y12 = Inspect Landing Gear Fittings 8281.27 
Y13 = Inspect Reassemble Landing Gear 24402.87 
Y30 = Recheck Structural – Nose Section 11505.59 
Y31 = Recheck Structural – Cockpit Section 4250.87 
Y33 = Recheck Electrical – Nose Section 8281.27 
Y34 = Recheck Electrical – Cockpit Section 8281.27 
Y37 = Recheck Structural – Roof Section 4250.87 
Y38 = Structural Repair – Firewalls 4250.87 
Y41 = Recheck Structural – Firewalls 8281.27 
Y43 = Recheck Electrical – Roof Section 2907.40 
Y52 = Recheck Structural – Tail Cone Section 4250.87 
Y53 = Recheck Structural – Transition Section 4250.87 
Y54 = Recheck Structural – Tail Cone Section 8281.27 
Y55 = Recheck Structural – Cabin 4250.87 
Y56 = Recheck Electrical – Transition Section 2907.40 
Y57 = Recheck Electrical – Cabin 2907.40 
Y58 = Remove Fuselage from Work Stands 8281.27 
Y59 = Wire Alignment 12311.67 
Y60 = All Structural Repairs Complete 0.00 
Y62 = Move Fuselage to Final ATC 0.00 
Y63 = Final ATC 8281.27 
Y67 = Clean and Close 8281.27 
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Step 10 – Compute the Cost using the Objective Function of the Linear Program 

In order to discuss the time/cost tradeoff, we must utilize the objective function for each of 

the scenarios.  A generic approach is presented below including only the 24 crash variables 

within the problem.  Crash cost per hour (K) was already computed in Step 6 and is now 

utilized to determine the overall increase to the project given the solution from Step 9.  Cost 

results for each of the three scenarios are presented in Chapter 5. Before we attempt to 

solve this 92-variable, 103-constraint deterministic linear programming model using the 

premium Microsoft Excel Solver, we must first revisit each of the input parameters, a 

general mathematic formulation, and some thoughts about the critical path.   
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3.3  Summary of Input Parameters 

 

An = Activity Normal Completion Time (in hours) for each activity in the Network 

Ac = Activity Crash Completion Time (in hours) for each activity in the Network 

Ctn = Total Cost per Hour Worked by team under Normal Conditions 

Cn = Total Network Cost per Hour Worked under Normal Conditions  

Cc/hr = Activity Cost/hour (in dollars) for 105 workers to work 1 hour in the Network 

Ctc = Total Cost per Hour Worked by team under Crash Conditions 

Cc = Total Network Cost per Hour Worked under Crash Conditions  

M = Maximum Reduction in Time (in hours) for each activity in the Network 

K = Crash Cost per Hour (in dollars) for each activity in the Network 
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3.4  General Mathematic Formulation 

 

A general mathematic formulation to outline the mechanics of this study is offered below 

using the nomenclature defined in paragraph 3.3 above.  Recall that xi is defined as the 

finish time for activity i and yi is defined as the time by which activity i is crashed. 
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Further clarification is given below with respect to the constraints and how they were 

derived using the network diagram.  In total, this problem included 103 constraints, 54 using 

the framework of the “beginning” nodes, and 24 using the framework of the precedence 

nodes listed below. 
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3.5  Critical Path 

Although one could compute the critical path manually, we choose to utilize the associated 

network diagram in Microsoft Project to analyze the initial critical path.  In computing the 

critical path, the software traverses all paths in the network in order to complete the project, 

searching for the paths that consume the most time.  It does this because all other paths 

are shorter in duration and the longest path determines the total time to complete the 

project.  If the activities residing on the longest path are delayed, then the project is delayed.  

The activities on the critical path can also be referred to as critical activities.  As we crash 

the network, we may or may not see a change in the critical path for the given scenario.  

The initial critical path is presented in Chapter 5 along with the associated critical path for 

each of the scenarios at their shortest completion time.   

 

The premium version of Microsoft Excel Solver is capable of solving problems with up to 

200 decision variables and 200 constraints.  A complete summary of results for each of the 

three scenarios is discussed in Chapter 4.  It is important to note that the linear 

programming solution provides the revised activity times.  From these times, a revised 

schedule must be developed and a new critical path must be calculated. 
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CHAPTER 4:  EXPERIMENTS 

 

4.1  Assumptions 

 

Before we provide an overview of the results for the three scenarios, we first present  some 

overall considerations for optimization using linear programming and address four implicit 

assumptions; proportionality, additivity, divisibility, and deterministic. 

 

Regarding proportionality, we assume that increasing a decision variable by an amount, q, 

will affect the objective function and constraints proportionally with respect to q.  Additionally, 

we assume that the total contribution of the variables in the objective function and the 

constraints is the sum of the individual contributions for the objective function and the 

constraints, respectively.   Further, we assume that fractional values are acceptable for 

decision variables.   Lastly, we assume that all data are known, and there are no 

probabilistic or stochastic elements in the problem.  This is especially applicable in terms of 

the various crashing estimates for each activity. 
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4.2  General Overview 

 

The purpose of this problem is to provide insight on the time/cost tradeoff with respect to 

project management.  Understanding that there are an infinite number of possibilities to 

consider, we defined the scenarios to capture two different options in attacking the primary 

controllable variables that affect the program budget – the work force.  In examining the 

work force, there are truly only two options that exist to a program manager: 1) Hire 

additional contractors, or 2) Work the current force additional hours.  Because both 

situations represent an increase in cost, we chose to compare the two scenarios by 

incorporating realistic cost estimates into alternative linear programming model formulations.  

The ultimate practical feasibility of these overtime approaches may be dependent on their 

extended sustainability.   

 

4.3  Normal Activity Model “Crashed” with CCAD Estimates 

 

Scenario 1 addresses the current program request of examining the addition of 55 

contracted civilians to the project, increasing the total personnel from 105 to 160.  This 

assumes an even division of the workers across the 8 teams performing duties over two 

identical eight hour shifts.  The crash estimates were provided from the program scheduler 

at Corpus Christi Army Depot. 
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4.4  Normal Activity Model “Crashed” with Extensive Overtime 

 

Scenario 2 consists of adding pure man hours in the form of an aggressive overtime plan.  

This scenario utilizes the existing 105 workers about evenly divided across 8 teams by 

increasing the total number of hours worked per week.  Instead of working the current work 

week of four identical ten-hour days, we examined a scenario of increasing the number of 

workdays to five and the number of work hours per day to 12.  This applies 60 hour 

workweeks to the problem and dictates an increase in total pay.  We applied time-and-a-half 

to each of the 20 hours worked past the original 40 hours.  With respect to crash estimates, 

we hypothesized decreases in the maximum crash time for each of the activities referencing 

in Scenario 1 of 50%.  For example, if a task in Scenario 1 could be crashed 4 hours, we 

estimated that it could be crashed 2 hours in Scenario 2.   We further apply the opinions of 

the project manager and experience of the work force to justify these estimates.  The initial 

crash estimates were approved by the program scheduler at Corpus Christi Army Depot.  

This scenario is most likely not sustainable for extended periods of time, but provides the 

program manager appreciates the flexibility to understand the time/cost tradeoff in mass 

production situations. 
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4.5  Normal Activity Model “Crashed” with Moderate Overtime 

 

Scenario 3 also examines the notion of adding man hours, this time in the form of a 

moderate overtime plan.  In this case, we again utilize the current manpower of 105 workers 

about evenly divided across 8 teams and increase their total hours worked per week.  

Instead of working the current work week of four identical ten-hour days, we examined a 

scenario of increasing the number of workdays to five while holding the current man hours 

per day constant.  This applies 50 hour workweeks to the problem and dictates an increase 

in total pay.  We applied time-and-a-half rates to each of the 10 hours worked past the 

original 40 hours.  With respect to crash estimates, we simply decreased the maximum 

crash time for each of the activities referenced in Scenario 1 by 75%.  For example, if a task 

in Scenario 1 could be crashed 4 hours, we estimated that it could be crashed 1 hour in 

Scenario 3.  As with the logic presented in reducing crash estimates from Scenario 1 to 

Scenario 2, we again apply the same approach from Scenario 2 to Scenario 3, assuming 

that utilizing the same workforce for an extended period of time would, on average, show 

inferior performance to an increased number of skilled workers who performed duties over a 

shorter period of time.  These crash estimates were also approved by the program 

scheduler at Corpus Christi Army Depot. 
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CHAPTER 5:  RESULTS 

 
Before the results of the three aforementioned scenarios are presented, we offer a 

summary of each course of action with respect to the total number and types of workers as 

well as a composite hourly wage rate for all workers involved.  Recall that Scenario 1 adds 

additional employees to the existing workforce while Scenarios 2 and 3 do not.   

 

The linear program will determine the minimum crash cost with respect to a specified 

reduction in the time to complete the project network.  We present a summary of the total 

time reduction for each scenario.  Understanding the results offer insight into just how 

quickly this network can be realistically completed.  If every activity were crashed by its 

maximum value, we could reduce the entire project duration no more than 17.13 days as 

illustrated in Table 18 for Scenario 1.  However, the LP model must find feasible solutions 

and will most likely yield a time reduction value much smaller than the aforementioned 

17.13 days.  Table 18 highlights the scenario summary data. 

 

Table 18:  Scenario Summary Data 

 Scenario #1 
Add Contractors 

Scenario #2 
Aggressive OT 

Scenario #3 
Moderate OT 

# Government 
Employees 

63 63 63 

# Contracted 
Employees 

97 42 42 

Average Hourly Wage 
Rate 

$14,039.93 $8,512.06 $7,840.33 

Maximum Reduction 
Time 

137 Hours 
(17.13 Days) 

67.5 Hours 
(8.44 Days) 

32.75 Hours 
(4.09 Days) 
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The computation of the average hourly wage rates was outlined in Chapter 3.  In dealing 

with the overtime scenarios, we applied the normal rate ($6,832.73) to the first 40 hours and 

the overtime rate ($11,870.72) to the last 10 or 20 hours, respective to each scenario. 

 

Quickly viewing Table 18 may lead one to infer that Scenario 3 will always cost less than 

the other two scenarios based on it possessing the smallest average hourly rate.  Similarly, 

one may infer that Scenario 1 > Scenario 2 > Scenario 3 in all cases.  However, we observe 

fluctuation based on the desired TAT end state throughout each of the trials.  In fact, 

throughout each incremental reduction, each of the three scenarios is most expensive at 

least once compared to the other two.  This occurs for a few reasons.   

 

First, we must understand how the “K” values are calculated because each of the K values 

dictates the overall cost within each scenario.  The denominator of each K value is based 

on maximum crash time compared to the normal activity time.  In our case, we have 

systematically reduced the maximum crash time from Scenario 1 to Scenario 2 by 50% and 

from Scenario 2 to Scenario 3 by another 50%.  Therefore, Scenario 1’s maximum crash 

time is four times greater than Scenario 3 and the overall cost relationship between the 

three scenarios is 1:1/2:1/4 for Scenario 1, Scenario 2, and Scenario 3, respectively.  In 

order to observe the inferred dominance relationship between each scenario 100% of the 

time, we would have to expect the numerator (based on cost) to hold the similar 1:1/2:1/4 

relationship.  

 

Within our work, it is impossible for the numerators of our K values to hold that relationship 

because the average hourly crash costs for each scenario do not hold the 1:1/2:1/4 

relationship.  Our crash costs ($14,039, $8,512, $7,840) hold a 1:60/100:55/100 relationship.  
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These types of observations further substantiate the overall importance and value of this 

work to any program manager. 

 

The initial TAT target value (i.e. maximum network completion time) given from the program 

manager was 80 days.  Since many of the activities could only be reduced by hours instead 

of days, we converted that value and utilized the target value of 640 total work hours.  Given 

that value, the linear program presented an optimal solution of 636 hours (79.5 work days) 

without “crashing” any additional tasks.  This finding, referred to as Finding 1, will be further 

analyzed in Chapter 6 of this document.  After acknowledging Finding 1, we then began to 

reduce the maximum completion time in increments of 8 hours for each of the three 

scenarios until the linear program could no longer find a feasible solution.  A complete 

summary of each scenario is listed in Table 19.   



 60

Table 19:  Consolidated Summary of Results 

 Scenario #1 
Add  Contractors 

Scenario #2 
Aggressive Overtime 

Scenario #3 
Moderate Overtime 

632 Hrs  
(79 Days) 

$20,717.08 $6,255.69 $25,064.27 

624 Hrs 
(78 Days) 

$119,808.84 $45,636.33 $91,314.49 

616 Hrs 
(77 Days) 

$238,119.80 $85,016.97 $124,439.51 
620 Hours 

608 Hrs 
(76 Days) 

$356,430.76 $134,473.59 No Feasible Solution 

600 Hrs 
(75 Days) 

$474,741.72 No Feasible Solution No Feasible Solution 

592 Hrs 
(74 Days) 

$593,052.68 No Feasible Solution No Feasible Solution 

584 Hrs 
(73 Days) 

$769,021.24 No Feasible Solution No Feasible Solution 

580 Hrs 
(72 Days) 

No Feasible Solution No Feasible Solution No Feasible Solution 

 

5.1  Scenario 1 

 

Before we present the observations in each of the three Scenarios, we observe that each of 

the three models only chooses to crash 9 of the 24 “crash variables” available,   with seven 

of the nine crashed variables residing at the tail end of the network.  This is consistent 

throughout all three scenarios and will be highlighted further as Finding 2 in Chapter 6.   

 

On average, Scenario 1 is the most costly and most flexible of the three scenarios.  The 

maximum completion time for the network can be reduced by up to 7 days more than the 

target goal of 80 days, and an additional 3 extra days more than any other scenario in the 

study.  However, the exceptionally high wage rate for the contractors drives the additional 
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cost significantly as the model squeezes every piece of available slack time from non-

binding activities.  It is interesting to note that it is cheaper than Scenario 2 for the first 

iteration.  This is a direct result of each model (with different crash costs) targeting different 

crash variables to reach the optimal solution of 79 days. 

 

In total, this scenario has 69 of its 103 constraints binding.  This number is ultimately 

increased to a total of 80 of 103 binding constraints at 584 hours or 73 days.  Table 20 

below summarizes a snapshot of the priority activities targeted by the model in reducing the 

total time (shown in hours) within the framework of an optimal solution for each duration (in 

days).  As each iteration (defined as a reduction in 8 hours project time) is processed, you 

will notice which variables the model targets to achieve the desired reduction. 

 

Table 20:  Summary of Target Variables 

Days Y4 Y54 Y57 Y58 Y59 Y60 Y62 Y63 Y67 
79   4       
78   6     6  
77  2 6 2  1  1 8 
76 4  6 2    20  
75   6 2  1  19 8 
74 4  6 2  1 1 20 8 
73 4 2 6 2 8 1 1 20 8 

 

We then classified each of the values listed above in a “priority framework” in order to 

illustrate to the program manager which activities and at what levels could be targeted for 

reduction.  Although not true sensitivity analysis by definition, we can learn a great deal 

from observing the pattern listed in Table 20.  The “tiered” priorities are listed in Table 21.  

We will draw additional conclusions when comparing each of the priority tier lists for each of 

the three scenarios considered. 
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Table 21:  Priority Tier List for Crash Variables in Scenario 1 

Priority Tier 1: Y57 
Priority Tier 2: Y63 
Priority Tier 3: Y58, Y60, Y67 
Priority Tier 4:  Y4, Y62 
Priority Tier 5:  Y54 
Priority Tier 6:  Y59 

 

Although the model targets Y54 (Final/Recheck Electrical – Tail Cone Section) in the “third 

iteration,” we list that activity as priority tier 5 because the model does not hold that 

reduction consistent from iterations 3 to 7, instead choosing to utilize slack from Y63 (Final 

ATC) to fill the void.  We also classify Y63 in priority tier 2 because the model does not 

begin to consistently rely on its slack until iteration 4. 

 

Therefore, if looking to reduce maximum completion time in Scenario 1, we first look to 

activity Y57 (Final Recheck-Cabin).  As duration reduction, resources, time, and priority 

dictates, we recommend stepping down the priority tiers listed in Table 21 until the desired 

results are achieved.  It is important to note that the activity with the least priority for 

crashing is Y59 (Wire Alignment) and should only be addressed if absolutely necessary. 

 

Lastly, we examine the critical path in both the maximum and minimum TAT for Scenario 1.  

As you can see in Table 22, the critical path does not change even after the network is 

crashed to its maximum limit and TAT is reduced to 73 days.  This is somewhat surprising 

because activities X4, X54 and X57 are not on the critical path in any of the iterations within 

the scenario.  Further, crashing the variables listed in Table 20 does not yield any change in 

the critical path.  
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Table 22:  Critical Path Analysis for Scenario 1 

Sequence 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

640 Hrs X17 X45 X46 X47 X50 X53 X56 X58 X59 X60 X61 X62 X63 X64 X65 X67 X68 

584 Hrs X17 X45 X46 X47 X50 X53 X56 X58 X59 X60 X61 X62 X63 X64 X65 X67 X68 

 

5.2  Scenario 2 

 

As previously stated, Scenario 2 represents an aggressive overtime scenario that is simply 

designed to offer an alternative in situations where large quantities of work are required in 

less than optimal amounts of time.  When presenting the results for this course of action, we 

once again revisit portions of Table 19 in Table 23 to note observations. 

 

First, we notice that the aggressive overtime scenario, assumedly not sustainable over 

periods longer than one month, is actually the cheapest scenario for overall project time 

reduction.  In total, it is an average of 65% less cost than Scenario 1 and 53% less cost 

than Scenario 3.  However, the maximum reduction time for the network bottoms out at a 

value of 76 days as there is no feasible solution when reducing the target completion time in 

this scenario to 75 days. 

 

Table 23:  Consolidated Summary of Results (632 Hours to 600 Hours) 

 Scenario #1 
Add  Contractors 

Scenario #2 
Aggressive Overtime 

Scenario #3 
Moderate Overtime 

632 Hrs  
(79 Days) 

$20,717.08 $6,255.69 $25,064.27 

624 Hrs 
(78 Days) 

$119,808.84 $45,636.33 $91,314.49 

616 Hrs $238,119.80 $85,016.97 $124,439.51 
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(77 Days) 620 Hours 
608 Hrs 

(76 Days) 
$356,430.76 $134,473.59 No Feasible Solution 

600 Hrs 
(75 Days) 

$474,741.72 No Feasible Solution No Feasible Solution 

 

As we did above in Scenario 1, we again look at how the model chooses to target the slack 

activities in attempting to reach the maximum reduction of total completion time. 

 

Table 24:  Summary of Target Variables 

Days Y4 Y54 Y57 Y58 Y59 Y60 Y62 Y63 Y67 
79   3   1  
78   3   1 8 
77 2  3 1  10 6 
76 2 1 3 1 3 10 8 
75                               

 
Constraints 

Not  
Crashable 

 
74 
73 

NO FEASIBLE SOLUTION EXISTS 

 

Unlike the values presented in Scenario 1, Scenario 2 presents a different strategy and 

different set of priorities.  First, we notice fewer priority tiers (4) in this model compared to 

the 6 presented in Scenario 1.  This is expected for many reasons.  First, we notice that 

there are two less variables to choose from in this scenario as the X60 and X62 activities 

are not reducible in each of the overtime scenarios.  Further, this model possesses an 

overall reduced flexibility attributed to less flexible (reduced) crash estimates and an overall 

larger maximum reduction time value of 76 days. 

 

Table 25:  Priority Tier List for Crash Variables in Scenario 2 

Priority Tier 1: Y57, Y63 
Priority Tier 2: Y67 
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Priority Tier 3: Y4, Y58 
Priority Tier 4: Y54, Y59 
 

Just like Scenario 1, Scenario 2’s model tells us to first focus on Y57 (Final Recheck – 

Cabin).  However, this model also immediately targets Y63 (Final ATC) in the first iteration 

assigning it equal priority for attention.  We observe one additional similarity in the task of 

Y59 (Wire Alignment) resting in the lowest priority for the model.  We further observe that 

Y54 (Final/Recheck Electrical – Tail Cone Section) and Y4 (Inventory Upgrade Kits) are 

also a relatively low priority for reduction and therefore should not be reduced unless the 

program manager determines it is critical to do so. 
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Critical path analysis in this scenario is a bit different than Scenario1 in that an additional 

variable X66 (Install EMI Filters) is added to the critical path of the network.  As you notice 

in Table 26, this scenario, although not crashed as heavily, adds activity X66 to increase the 

critical path to 18 activities within the network of 68 activities.  No increase in Scenario 1 

and a minor increase in Scenario 2 imply an overall stability of the network and the 

soundness of the schedule. 

 

Table 26:  Critical Path Analysis for Scenario 2 

Sequence 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

640 Hrs X17 X45 X46 X47 X50 X53 X56 X58 X59 X60 X61 X62 X63 X64 X65 X67 X68  

608 Hrs X17 X45 X46 X47 X50 X53 X56 X58 X59 X60 X61 X62 X63 X64 X65 X66 X67 X68 

 

 
Figure 4:  UH-60A Undergoing Structural Upgrades 
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5.3  Scenario 3 

 

The last scenario observed in this study is an additional overtime study, this time 

representing a more feasibly sustainable situation.  When presenting the results for this 

course of action, we once again revisit portions of Table 19 in Table 27 to note observations. 

 

First, this scenario offers the least amount of flexibility in that it only reduces the optimal 

solution by 2.5 days or 20 hours to a total network completion time of 77.5 days.  This 

scenario is the second cheapest of those studied, but only for TAT times of 78 days or less.  

Over the course of the three iterations down from 636 to 620 hours, this scenario is an 

average of more than twice as expensive as Scenario 2.   

 

Table 27:  Consolidated Summary of Results (632 Hours to 608 Hours) 

 Scenario #1 
Add  Contractors 

Scenario #2 
Aggressive Overtime 

Scenario #3 
Moderate Overtime 

632 Hrs  
(79 Days) 

$20,717.08 $6,255.69 $25,064.27 

624 Hrs 
(78 Days) 

$119,808.84 $45,636.33 $91,314.49 

616 Hrs 
(77 Days) 

$238,119.80 $85,016.97 $124,439.51 
620 Hours 

608 Hrs 
(76 Days) 

$356,430.76 $134,473.59 No Feasible Solution 

 

As we did above in the previous two scenarios, we again look at how the model chooses to 

target the various slack activities in attempting to reach the maximum reduction of total 

completion time.  We expect the same or even fewer priority levels in this scenario given its 
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overall inflexible nature in addition to the overall reduction of crash variables due to Y60 and 

Y62 being unchanged during the crash estimates. 

 

Table 28:  Summary of Target Variables 

Days Y4 Y54 Y57 Y58 Y59 Y60 Y62 Y63 Y67 
79   1.5   2.5  
78   1.5 .5  5 5 
77 1 .5 1.5 .5  

Constraints 
Not  

Crashable 5 7.5 
76 
75 
74 
73 

 
NO FEASIBLE SOLUTION EXISTS 

 

In examining Table 28 above, we observe commonality among this model and the others 

with respect to Y63 (Final ATC) as it is placed in the top priority tier.  However, unlike the 

other models, Y59 (Wire Alignment) is never targeted in any iteration.   

 

Table 29:  Priority Tier List for Crash Variables in Scenario 3 

Priority Tier 1: Y57, Y63 
Priority Tier 2: Y58, Y67 
Priority Tier 3: Y4, Y54,  
Not Targeted by this Model:  Y59 
 

Further, it is important to note that this model does also attack Y57 (Final Recheck Electrical 

Cabin) in the first iteration.  However, unlike the approach in Scenario 1 and Scenario 2, this 

model cannot find a feasible solution using the 9 or 7 crash variables, respectively.  We 

note the absence of a feasible solution before the exhaustion of each crash variable.  These 

observations reveal another piece of analysis that will be addressed as Finding 3 in Chapter 

6.   
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As was the case in Scenario 2, the critical path added one activity (X66) in the maximum 

crash iteration.  This again supports stability in the network and is interesting when 

combined with the analysis of how the model attacks various activities differently between 

each of the three scenarios. 

  

Table 30:  Critical Path Analysis for Scenario 3 

Sequence 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

640 Hrs X17 X45 X46 X47 X50 X53 X56 X58 X59 X60 X61 X62 X63 X64 X65 X67 X68  

618 Hrs X17 X45 X46 X47 X50 X53 X56 X58 X59 X60 X61 X62 X63 X64 X65 X66 X67 X68 

 



 70

CHAPTER 6:  CONCLUSIONS AND RECOMMENDATIONS 

 
In Section 6.1, we present analysis and conclusions regarding the results and findings listed 

in Chapter 5.  Section 6.2 offers commentary presented in the format of 

Issue/Discussion/Recommendation in order to generate additional dialogue regarding this 

applicable and real-world problem.  Section 6.3 offers final thoughts and recommendations 

for future work. 

 

6.1 Conclusions 

 

Finding 1   

 
The current schedule of activities for Network 4, modeled by the linear program presented 

above, yielded a minimal solution time of 636 work hours or 79.5 days at no additional cost 

to the program.  As evident in Table 31, the shortest completion time for activities in 

Network 4 to date equaled no better than 87 days (FY05), not including the three additional 

subcategories affecting network completion time.  

 

Table 31:  External Factors adding to increased Turn Around Time for Network 4 

Network 4 5- Year Average FY02 FY03 FY04 FY05 FY06
Structural/Electrical 113 138 150 97 87 98 

Excess WIP 21 0 30 31 3 10 
Work Stoppage 8 90 8 0 0 7 
Over and Above 14 23 19 16 11 14 

Total 156 251 207 144 101 129 
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Excess WIP 

Over the past five years, excess WIP (work in progress) has added additional time to 

complete the network.  The majority of this can be attributed to unforeseen delays in 

replacing and/or repairing specialty parts.  For example, the installation of certain structural 

beams on the UH-60A is not always a clean and predictable process for all aircraft in the 

fleet.  Therefore, possible delays result depending on the complexity of the particular 

installation.  Like the logistics challenges, CCAD has improved greatly in this area over the 

past two fiscal years.  

 

Work Stoppage 

Any maintenance environment relies heavily on parts availability and a seamless logistical 

supply chain to sustain a consistent work flow.  This is especially critical in an aviation 

environment whose target airframe is nearly 20 years old.  We understand this 

phenomenon and acknowledge its impact on overall project completion time.  We also 

acknowledge previous issues dealing with an overall lack of Class IX critical parts as these 

parts are often exhausted within the logistics supply chain.  This challenge is further 

exacerbated by a constant modification of Congressional budgets leading to continuous 

starting and stopping due to funding.  However, as the program has matured, we have 

noticed an overall decrease in work stoppage days caused by impacts from incomplete 

structural kits, timeliness and availability of Class IX parts, and other factors contributing to 

an overall halt in network flow. 

 

 

Over and Above 
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Periodically throughout the project, workers will perform duties outside of the previously 

agreed upon work breakdown structure.  This work, classified as “over and above” is 

significant in that it adds overall time to the completion of the project.  Over the past 5 years, 

the completion of over and above tasks has added an additional three work weeks worth of 

man hours to the overall network equation.  However, these services are critical to the 

overarching intent of the program (i.e. to provide the best possible product to the war 

fighter).  The program manager must decide whether to “band aid” a repair at CCAD or to 

utilize precious time and resources to ensure the strongest possible service life upon 

departure.  Mostly, the project manager expends the resources in order to accomplish the 

task 100% correctly, the first time, thereby avoiding potential second and third order effects.  

This is especially necessary when speaking of electrical repairs that may fester for years if 

not addressed properly at the depot level. 

 

Table 32:  Average of Annual Over and Above Work Performed (FY04-FY06) 

Total Labor Hours Expended 10,563 Hours 
Total Labor Cost per Year $7,216,416 
Total Time Delay per Year 15.2 Days 
Total Number of Aircraft Serviced per Year 21 
 

The data presented in Table 32 is significant in that it draws resources (time and money) 

from the program.  However, the completion of this work is necessary for schedule 

completion and is an inevitable aspect of a successful and thorough maintenance program.  

Alarmingly, the total number of aircraft serviced per year equals the total number of aircraft 

completed per year by the program, ultimately proving that 100% of all aircraft receive some 

sort of over and above work. 
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Consequently, if we disregard the additional impacts made by the three previously 

described external factors, we still notice that the primary network can be refined to achieve 

the optimal state of 79.5 days.  At present, the three year average, although much improved, 

is missing this target goal by three full work weeks.  Some of this may be attributed to 

residual impacts felt from servicing excess WIP, work stoppage, and/or over and above 

requirements.  However, we understand that some challenges are outside of the purview of 

the program manager and often require higher level command emphasis.  
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Finding 2 

 
Before we proceed to Finding 3, we must first present a consolidated list of the activities in 

the network that could be “crashed” to examine their impact on the models in each of the 

three scenarios.  Table 33 below details the list of “crashable” activities.  The activities 

highlighted in bold represent the activities crashed in each of the three models.  

 

Table 33:  The 24 “crashable” activities listed in the Structural/Electrical Network 

Activity Priority Tier 
Y4 =  Inventory Upgrade Kits 4th, 3rd, 3rd 
Y7 =  Remove Landing Gear  
Y12 =  Inspect/Repair Landing Gear Fittings  
Y13 =  Inspect/Repair/Reassemble Landing Gear  
Y30 =  Final/Recheck Structural – Nose Section  
Y31 =  Final/Recheck Structural – Cockpit Section  
Y33 =  Final/Recheck Electrical – Nose Section  
Y34 =  Final/Recheck Electrical – Cockpit Section  
Y37 =  Final/Recheck Structural – Roof Section  
Y38 =  Structural Repair - Firewalls  
Y41 =  Final/Recheck Structural – Firewalls Section  
Y43 =  Final/Recheck Electrical – Roof Section  
Y52 =  Final/Recheck Structural – Tail Cone Section  
Y53 =  Final/Recheck Structural – Transition Section  
Y54 =  Final/Recheck Electrical – Tail Cone Section Last in all Scenarios 
Y55 =  Final/Recheck Structural - Cabin   
Y56 =  Final/Recheck Electrical – Transition Section  
Y57 =  Final/Recheck Electrical – Cabin Section First is all Scenarios 
Y58 =  Remove Fuselage from Work Stands 3rd, 3rd, 2nd  
Y59 =  Wire Alignment Last in all Scenarios 
Y60 =  All Structural Repairs Complete 2nd in Scenario 1 
Y62 =  Move Fuselage to Final ATC 4th in Scenario 1 
Y63 =  Final ATC 2nd, 1st, 1st  
Y67 =  Clean and Close 3rd, 2nd, 2nd 
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In examining the activities above, we first notice that the linear program chose to target only 

9 of the 24 tasks considered before it could no longer find a feasible solution.  We also 

notice that the majority of the tasks are targeted at the end of the network structure within 

the framework of the schedule.  This is encouraging in some regard in that this affords the 

program manager maximum flexibility as various aircraft flow through the schedule and 

shows that the network is well constructed in the initial phases, affording clean entry as it 

enables initial success upon induction. 

 

It is also clear that X4, X54 and X59 are not very significant during the crashing iterations in 

each scenario.  Scenario 3 never targets X59 in any of the iterations prior to failing to reach 

a feasible solution.  On the contrary, X57, X63, and X67 are very significant as they are 

targeted early and often throughout the process.  

 

Furthermore, 13 of the 24 tasks involve a final inspection and/or recheck of the electrical 

and structural portion of the airframe.  Our first inclination is that these tasks, although 

critical to the schedule, are built in with additional time assigned to provide additional 

flexibility to the program manager.  This additional time is often necessary and 

“untouchable” if a program manager intends to accomplish the schedule on time and budget.  

However, various situations may require that the program manager cut time off an activity in 

order to achieve program goals.  This is a challenging decision and situation and will be 

addressed further in Section 6.2.  
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Finding 3 

 
Building on what was already presented in Finding 2; we examine the inconsistency 

between where each model attacks each respective crash variable.  This implies potential 

schedule revisions, the existence of multiple optimal solutions, and the need to take a closer 

look at activity completion times.  We do not necessarily believe that each of the variables 

should rest within the identical target priorities of the other.  However, the inversion and 

fluctuating targeting of some of the variables like Activity X54 and Activity X57 requires 

additional consideration.  Additionally, we recommend revisiting the entire schedule of 68 

activities and reviewing which can be crashed may further aid in gaining an even better 

understanding of how to reduce completion time while minimizing cost.  

 
Figure 5:  UH-60A Prepares for Flight Test 
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6.2 Recommendations 

 

Issue:  Budget 

 
Discussion:  In any type of program, cost and fiscal responsibility is paramount.  

Prosecuting the Global War on Terror may have presented a skewed reality of funding 

applied to the program as the need for refurbished helicopters dictates significant funding.  

The inclusion of the National Guard as a relevant contributor to the Global War on Terror 

further validates this point.  To date, this program has served National Guard aircraft from 

14 states and has provided critical upgrades to the fleet.  Ultimately, most military programs 

endure reductions in budget once they begin to achieve steady state program maturity, 

regardless of the war time conditions.  It is important that the UH-60A:A program continues 

to safeguard and plan accordingly for inevitable reductions in their annual budget.    

 

Recommendation:  Continue to contingency plan for pending annual reductions in budget 

while attempting to maximize overall program output.  To date, this program has exceeded 

the mission statement and has provided 64 completed airframes over the course of five 

years.  For every aircraft produced outside of the target goal, they are reducing the overall 

budgeting requirements in concert with the “more with less” maxim.  Again, mastering the 

tricky balance between time and cost ultimately determines success and/or failure.  It is 

clear that this is the strength of this program. 
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Issue:  Overtime vs. Contracted Employees 

 
Discussion:  Much like the delicate balance between time and cost, a similar balance 

exists between balancing working overtime with the existing force workforce or simply hiring 

additional high-priced contractors to augment the schedule in limited duration. Of the many 

considerations in this dilemma, the notion of cost, the duration of new employees and 

overall worker expertise represent the critical contributing factors within this issue.   

 

Most likely, the primary consideration in this case is overall schedule performance.  If the 

program begins to lag and a backlog of various activities is present, the program manager 

must choose between hiring expertise in the form of contracted workers and pushing the 

existing force into an aggressive overtime scenario.  If the latter is chosen, one could expect 

second and third order effects on the network as those workers rebound from the 

aggressive schedule.  In cases of schedule backlog, cost becomes a secondary 

consideration and therefore this study is useful in minimizing the total cost incurred in 

crashing the schedule.  Further, the notion of hiring additional government employees 

becomes eliminated from the equation based on the urgency of the situation.  Ultimately, 

this level of the urgency dictates the flexibility in the hiring process.  

 

Recommendation:  This paper does not intend to make recommendations on how to run 

an already existing and very successful program.  Rather, we focus simply on highlighting 

the challenges and presenting all of the possible outcomes for each case. 
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Issue:  Chrome 6 and a Corrosive Environment 

 
Discussion:  Although we primarily addressed the reduction of cost in expediting the 

network, it is important to understand the critical importance of reducing the time exposed to 

the corrosive environmental elements inherent in the climate in Corpus Christi, TX.  Hangar 

#47, the primary hangar used for completion of Network 4, rests less than one tenth of one 

mile from the Corpus Christi Bay and the immense amount of salt water that it holds. 

Couple that location with the consistently tropical climate and there is significant cause for 

concern when dealing with aircraft electronics and structural components subject to 

corrosion.  Although the labor cost figures presented may seem large, they pale in 

comparison to the overall potential cost incurred by reworking a corrosion infected aircraft 

due to delays in overall completion time.   

 

ASM International present a report entitled, “The Effects and Economic Impact on 

Corrosion" that states “the annual costs of metallic corrosion were estimated to be about 4.2 

percent of the Gross National Product.” (Bradford, 1998)  The United States spends $350 

million annually to combat this significant threat and its associated ills. 

 

Recommendation:  Currently, CCAD and UH-60A:A is doing an outstanding job with their 

corrosive protection program.  ASM further stated that “$139 billion (40 %) of the corrosion 

costs could be avoided through application of existing technologies and best know 

practices.” (Bradford, 1998)  CCAD utilizes these practices daily and is well aware of this 

very important reason in expediting airframes through the existing schedule. 
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Issue:  Time/Cost Tradeoff 

 
Discussion:  Much like the overtime vs. contracted employee dilemma, a similar and 

always present challenge exists between schedule performance within a given budget.  

Knowing when and how to inject additional cost into a lagging program is perhaps one of 

the most critical attributes of any program manger.  In times of war, this may not be such an 

issue as supplemental funding at the end of a fiscal year is used to account for any budget 

inefficiencies.  However, as the program reaches steady state in concert with a reduction or 

steady state wartime funding, this issue takes greater significance. 

 

In situations where cost is not measured (i.e. on every aircraft maintenance hangar within 

the Department of Defense), this issue is also crucial to project completion.  Unlike a 

predominantly civilian manned organization working a consistent schedule, the average 

maintenance maintainer rarely enjoys the consistency of a certain number of workers 

performing within the framework of an established schedule.  As a result, this study is also 

very applicable in understanding the schedule and what is required to expedite the 

completion of any large scale maintenance task, such as a phase program, internal reset 

program, or various other large scale AVIM tasks. 

 

Recommendation:  As previously stated, the secondary goal of this study was to further 

develop a system that could be applied to the field army maintenance teams to better 

understand and manage their respective programs.  Understanding the time/cost tradeoff is 

the first core step in gaining this overall mastery and improving upon the existing practice.  

We speak more to this in the section 6.3. 



 81

6.3 Final Thoughts 

 

The single greatest value of project scheduling is that all of the activities, their relationships, 

and their durations must be determined or estimated.  Every program manager, 

maintenance manager, or individual responsible for completing a given set of tasks desires 

to complete an entire project in a reasonable time.  Learning how to minimize the time and 

reduce the cost is the key to a successful program. 

 

Understanding variability and its root cause within a program is also extremely important.  

UH-60A:A has already transitioned from an “on condition maintenance” (OCM) program to a 

more systematic and scheduled recapitalization program to reduce variability.  UH-60A:A 

can further reduce variability by studying the precedence relationships between some 

activities and capitalizing on the completion of concurrent activities.  By using the Critical 

Path Method they can find expected project duration, the critical activities and the critical 

path through the network.  We also highlight the potential slack activities that are not critical 

to the overall project which yield various opportunities for crashing those activities in the 

network.  This study represents a complimentary approach to the program and the next step 

in further understanding the network and ultimately reducing variability. 

 

The biggest challenge for any DOD organization is accurate reporting.  Often, this is an 

afterthought in the process and can often cause the generation of bad data or the existence 

of no available data presented.  It is important to understand that this bad data or lack of 

data can easily lead to poor analysis, poor decisions, and the implementation of ineffective 

courses of action.  Using and understanding linear programming to better understand a 



 82

schedule channels collective energy toward establishing reporting procedures, addressing 

logistics shortfalls, and developing collective strategies to reduce the various ills that result 

in increased maintenance hours.   

 

There are many additional opportunities for advancement of this work within the Department 

of Defense.  However, it is important to remain true to its simplistic nature both with respect 

to the software applications as well as the methodology presented.  Maintainers work best 

when there is a series of tasks listed in a checklist before them.  Similarly, maintenance 

managers effectively manage their networks by understanding the critical pieces that affect 

performance.  In refining those parameters, we can build upon the linear programming 

methodology to present a generically applicable model to any type of organization within the 

maintenance environment.  The next step with this work is to apply a graphic user interface 

on top of the Microsoft Excel Spreadsheet to make the program more user friendly and 

simplified for application.  Further, we would like to query actual field maintenance 

managers for their input in tailoring the linear programming approach to their every day 

business. 

 

This work will never eliminate the challenge of cost/schedule/performance within a program, 

as that represents the inevitable and timeless test to any project manager.   
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APPENDIX A:  DECISION VARIABLES 
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X1 =  Induct Aircraft to Structural/Electrical Phase 

X2 =  Raise Fuselage on Work Stands 

X3 =  Review Work Package, Inventory OCM Parts 

X4 =  Inventory Upgrade Kits 

X5 =  Structural Repair – Roof Section 

X6 =  Structural Repair – Nose Section 

X7 =  Remove Landing Gear 

X8 =  Remove Electrical Interference – Transition Section 

X9 =  Remove Electrical Interference – Tailcone Section 

X10 =  Remove Electrical Interference - Cabin 

X11 =  Structural Repair – Cockpit Section 

X12 =  Inspect/Repair Landing Gear Fittings 

X13 =  Inspect/Repair/Reassemble Landing Gear 

X14 =  Structural Repair – Transition Section 

X15 =  Structural Repair – Tail Cone Section 

X16 =  Structural Repair – Cabin Under Floor 

X17 =  SSI 50-6 Rework of Lower Aft Transition Section 

X18 =  Remove Electrical Interference – Roof Section 

X19 =  SSI 50-15 Installation of ESSS Doublers 

X20 =  Install Landing Gear 

X21 =  Structural Repair – Cabin Overhead 

X22 =  SSI 50-22 Modification of Cockpit Floor and Door Posts 

X23 =  SSI 50-16 Rework of Upper Plating and Doubler Installation 

X24 =  SSI 50-9 Modification of Drive Shaft Supports 

X25 =  SSI 50-35 Modification of Canopy Assembly, Nose Door Hinge Access 

X26 =  Electrical Repair – Nose Section 

X27 =  Electrical Repair – Cockpit Section 

X28 =  SSI 50-13 Installation of Tail Cone Plating Modification Kit 

X29 =  SSI 50-5 Installation of Side Fuselage Structural Reinforcement 

X30 =  Final/Recheck Structural – Nose Section 

X31 =  Final/Recheck Structural – Cockpit Section 

X32 =  SSI 50-30 Installation of HIRSS Repair Kit 
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X33 =  Final/Recheck Electrical – Nose Section 

X34 =  Final/Recheck Electrical – Cockpit Section 

X35 =  Electrical Repairs – Roof Section 

X36 =  SSI 50-17  Modification of Station 605.00 Bulkhead 

X37 =  Final/Recheck Structural – Roof Section 

X38 =  Structural Repair - Firewalls 

X39 =  SSI 50-24 Modification of Tail Cone 

X40 =  SSI 50-19 Modification of Left and Right Side Firewall Assemblies  

X41 =  Final/Recheck Structural – Firewalls Section 

X42 =  SSI 50-29 Modification of Tail Cone Shear Deck 

X43 =  Final/Recheck Electrical – Roof Section 

X44 =  SSI 50-7 Modification of Buttline 34.50 

X45 =  SSI 50-20 Modification of Tail Rotor Drive Shaft Support Brackets 

X46 =  SSI 50-34 Modification of Transition Station 485.00 

X47 =  SSI 50-21 Replacement of Vapor Barrier Support Structure 

X48 =  SSI 50-26 Modification of Station 379.00 Frame 

X49 =  Electrical Repair –Tail Cone Section 

X50 =  Electrical Repair – Transition Section 

X51 =  Electrical Repair – Cabin Section 

X52 =  Final/Recheck Structural – Tail Cone Section 

X53 =  Final/Recheck Structural – Transition Section 

X54 =  Final/Recheck Electrical – Tail Cone Section 

X55 =  Final/Recheck Structural - Cabin  

X56 =  Final/Recheck Electrical – Transition Section 

X57 =  Final/Recheck Electrical – Cabin Section 

X58 =  Remove Fuselage from Work Stands 

X59 =  Wire Alignment 

X60 =  All Structural Repairs Complete 

X61 =  Seam Seal Fuselage 

X62 =  Move Fuselage to Final ATC 

X63 =  Final ATC 

X64 =  Final Electrical Inspection 
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X65 =  Final Structural Inspection 

X66 =  Install EMI Filters  

X67 =  Clean and Close 

X68 = Move Fuselage to Retreat/Prime Paint 

Y4 =  The amount of time (in hours) that activity X4 can be crashed. 

Y7 =  The amount of time (in hours) that activity X7 can be crashed. 

Y12 =  The amount of time (in hours) that activity X12 can be crashed. 

Y13 =  The amount of time (in hours) that activity X13 can be crashed. 

Y30 =  The amount of time (in hours) that activity X30 can be crashed. 

Y31 =  The amount of time (in hours) that activity X31 can be crashed. 

Y33 =  The amount of time (in hours) that activity X33 can be crashed. 

Y34 =  The amount of time (in hours) that activity X34 can be crashed. 

Y37 =  The amount of time (in hours) that activity X37 can be crashed. 

Y38 =  The amount of time (in hours) that activity X38 can be crashed. 

Y41 =  The amount of time (in hours) that activity X41 can be crashed. 

Y43 =  The amount of time (in hours) that activity X43 can be crashed. 

Y52 =  The amount of time (in hours) that activity X52 can be crashed. 

Y53 =  The amount of time (in hours) that activity X53 can be crashed. 

Y54 =  The amount of time (in hours) that activity X54 can be crashed. 

Y55 =  The amount of time (in hours) that activity X55 can be crashed. 

Y56 =  The amount of time (in hours) that activity X56 can be crashed. 

Y57 =  The amount of time (in hours) that activity X57 can be crashed. 

Y58 =  The amount of time (in hours) that activity X58 can be crashed. 

Y59 =  The amount of time (in hours) that activity X59 can be crashed. 

Y60 =  The amount of time (in hours) that activity X60 can be crashed. 

Y62 = The amount of time (in hours) that activity X62 can be crashed. 

Y63 = The amount of time (in hours) that activity X63 can be crashed. 

Y67 = The amount of time (in hours) that activity X67 can be crashed.  
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APPENDIX B:  NETWORK DIAGRAM 
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