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ABSTRACT

Even though most of the properties of optical �elds, such as wavelength, polarization,

wavefront curvature or angular spectrum, have been commonly manipulated in a variety of

remote sensing procedures, controlling the degree of coherence of light did not �nd wide

applications until recently. Since the emergence of optical coherence tomography, a growing

number of scattering techniques have relied on temporal coherence gating which provides

e¢ cient target selectivity in a way achieved only by bulky short pulse measurements. The

spatial counterpart of temporal coherence, however, has barely been exploited in sensing

applications. This dissertation examines, in di¤erent scattering regimes, a variety of inverse

scattering problems based on variable spatial coherence gating.

Within the framework of the radiative transfer theory, this dissertation demonstrates that

the short range correlation properties of a medium under test can be recovered by varying

the size of the coherence volume of an illuminating beam. Nonetheless, the radiative transfer

formalism does not account for long range correlations and current methods for retrieving

the correlation function of the complex susceptibility require cumbersome cross-spectral den-

sity measurements. Instead, a variable coherence tomographic procedure is proposed where

spatial coherence gating is used to probe the structural properties of single scattering media

over an extended volume and with a very simple detection system.

Enhanced backscattering is a coherent phenomenon that survives strong multiple scat-

tering. The variable coherence tomography approach is extended in this context to di¤usive

iii



media and it is demonstrated that speci�c photon trajectories can be selected in order to

achieve depth-resolved sensing. Probing the scattering properties of shallow and deeper

layers is of considerable interest in biological applications such as diagnosis of skin related

diseases.

The spatial coherence properties of an illuminating �eld can be manipulated over dimen-

sions much larger than the wavelength thus providing a large e¤ective sensing area. This

is a practical advantage over many near-�eld microscopic techniques, which o¤er a spatial

resolution beyond the classical di¤raction limit but, at the expense of scanning a probe over

a large area of a sample which is time consuming, and, sometimes, practically impossible.

Taking advantage of the large �eld of view accessible when using the spatial coherence gat-

ing, this dissertation introduces the principle of variable coherence scattering microscopy. In

this approach, a subwavelength resolution is achieved from simple far-zone intensity mea-

surements by shaping the degree of spatial coherence of an evanescent �eld.

Furthermore, tomographic techniques based on spatial coherence gating are especially at-

tractive because they rely on simple detection schemes which, in principle, do not require any

optical elements such as lenses. To demonstrate this capability, a correlated lensless imaging

method is proposed and implemented, where both amplitude and phase information of an

object are obtained by varying the degree of spatial coherence of the incident beam.

Finally, it should be noted that the idea of using the spatial coherence properties of �elds

in a tomographic procedure is applicable to any type of electromagnetic radiation. Operat-
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ing on principles of statistical optics, these sensing procedures can become alternatives for

various target detection schemes, cutting-edge microscopies or x-ray imaging methods.

iv



In memory of my brother, Pierre

To my parents

v



ACKNOWLEDGMENTS

I wish to acknowledge my advisor, Dr. Aristide Dogariu, for his support, guidance,

and above all, his friendship, which has made this PhD an unforgettable journey. It was a

pleasure and an honor to work with him.

I am grateful to Professor Emil Wolf for his kind and continuous encouragements.

The RandomGroup has been a place of countless captivating discussions and interactions.

Thanks to all of the current and former members for their priceless support.

A mi familia cubana, gracias por el recibimiento tan acogedor y por su hospitalidad.

Gracias por todo.

Merci à toute ma famille pour leur soutient tout au long de ma thèse. Un gros bisou à

Papa et Maman pour leur patience et leurs encouragements. Sans vous tous, rien de tout

cela ne serait arrivé.

Thank you Clara for being with me. . .

vi



TABLE OF CONTENTS

LIST OF FIGURES : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : xii

LIST OF SYMBOLS : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : xxi

CHAPTER 1 INTRODUCTION : : : : : : : : : : : : : : : : : : : : : : : : : : 1

CHAPTER 2 SPATIAL COHERENCEPROPERTIES AND SCATTERING

OF PARTIALLY COHERENT BEAMS : : : : : : : : : : : : : : : : : : : : : : 7

2.1 Second-order coherence properties of partially coherent �elds . . . . . . . . . 8

2.1.1 Space-frequency representation of partially coherent �elds . . . . . . . 8

2.1.2 Angular correlation of partially coherent �elds . . . . . . . . . . . . . 10

2.1.3 Quasi-homogeneous �elds . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Scattering of partially coherent �elds in random media . . . . . . . . . . . . 17

2.2.1 Scalar scattering theory . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.2 Perturbation theory and the �rst-order Born approximation . . . . . 19

2.2.3 Multiple scattering and the �eld moments . . . . . . . . . . . . . . . 23

2.2.4 The radiative transfer equation . . . . . . . . . . . . . . . . . . . . . 26

2.2.5 The di¤usion equation . . . . . . . . . . . . . . . . . . . . . . . . . . 28

vii



CHAPTER 3 TRANSPORT EQUATION OF THE COHERENCE FUNC-

TION : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 32

3.1 Wigner distribution - Transport equation: the small angle approximation . . 34

3.2 Divergence of a partially coherent beam . . . . . . . . . . . . . . . . . . . . . 36

3.3 Propagation of a partially coherent beam in a particulate medium . . . . . . 39

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

CHAPTER 4 VARIABLE COHERENCE TOMOGRAPHY : : : : : : : : : 47

4.1 Spatial coherence shaping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2 Variable coherence tomography �Principle . . . . . . . . . . . . . . . . . . . 53

4.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3.1 Construction of a correlated scattering system . . . . . . . . . . . . . 56

4.3.2 Synthesis of the partially coherent probe beam . . . . . . . . . . . . . 58

4.3.3 Scattering potential reconstruction using variable coherence tomography 60

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

CHAPTER 5 ENHANCED BACKSCATTERING WITH SHAPED PAR-

TIALLY COHERENT LIGHT : : : : : : : : : : : : : : : : : : : : : : : : : : : : 67

5.1 Enhanced coherent backscattering . . . . . . . . . . . . . . . . . . . . . . . . 68

5.1.1 Multiple scattering and weak localization of light . . . . . . . . . . . 68

viii



5.1.2 Angular dependence in the di¤usion approximation . . . . . . . . . . 71

5.1.3 Polarization of the enhanced backscattering peak . . . . . . . . . . . 75

5.2 Enhanced backscattering of partially coherent light . . . . . . . . . . . . . . 76

5.3 Experimental results for a di¤usive medium . . . . . . . . . . . . . . . . . . 85

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

CHAPTER 6 VARIABLE COHERENCE SCATTERING MICROSCOPY 92

6.1 Spatial coherence shaping of an evanescent �eld . . . . . . . . . . . . . . . . 93

6.2 Experimental results on a monolayer of microspheres . . . . . . . . . . . . . 98

6.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

CHAPTER 7 CORRELATED IMAGINGWITH SHAPED SPATIALLYPAR-

TIALLY COHERENT LIGHT : : : : : : : : : : : : : : : : : : : : : : : : : : : : 105

7.1 Correlated imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.1.1 Correlated imaging with a classical source . . . . . . . . . . . . . . . 106

7.1.2 Correlated imaging with shaped spatially partially coherent light . . . 111

7.1.3 Klyshko�s geometrical optics approach . . . . . . . . . . . . . . . . . 119

7.1.4 Duality between classical and two-photon correlated imaging . . . . . 121

7.2 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

ix



CHAPTER 8 SUMMARY OF ORIGINAL CONTRIBUTIONS AND CON-

CLUSIONS : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 132

APPENDIX: PUBLICATIONS AND PRESENTATIONS : : : : : : : : : : 137

LIST OF REFERENCES : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 142

x



LIST OF FIGURES

2.1 Typical scattering experiment con�guration. . . . . . . . . . . . . . . . . . . 21

3.1 Illustration of the notation relating to the propagation of the beam. . . . . . 35

3.2 Experimental setup used to study the scattering of partially coherent beams. 40

3.3 Three-dimensional representation of the angular intensity I(s)(�) recorded by

the CCD detector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4 Divergence for partially coherent beams with di¤erent coherence parameters.

The dots are the experimental data and the continuous curve represents the

result of calculations based on Eq. (3.2). . . . . . . . . . . . . . . . . . . . . 42

3.5 Normalized angular scattered intensity for an incident beam with a diameter

of 9mm and a coherence parameter �� = 390�m (A) and for �� = 57�m (B).

Solid curves, the experimental results; Dashed curves, the calculations based

on Eq. (3.2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.6 The rms angular spread of the beam after the particulate medium relative

to its initial value. The coherence length �� of the partially coherent beam

ranges from 1.3mm to 57�m: . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1 Typical scattering con�guration for variable coherence tomography. . . . . . 49

4.2 Intensity pattern in the plane (�; �) of the source. . . . . . . . . . . . . . . . 51

xii



4.3 Degree of spatial coherence �(i)(�x;�y;�z) of the incident �eld plotted as a

function of the two points separation �y and �z and for �x = 0: . . . . . . 52

4.4 Schematic representation of the scattering medium. . . . . . . . . . . . . . . 57

4.5 Experimental setup for variable coherence tomography. . . . . . . . . . . . . 59

4.6 Oscillating part of the scattered intensity for x0 = 0:2mm and three di¤erent

values of y0. From top to bottom, y0 = �3mm, y0 = �3:3mm, y0 = �2:6mm

. The dashed line is the intensity envelope. . . . . . . . . . . . . . . . . . . . 62

4.7 Envelopes of the scattered intensity for x0 = 0:2mm and y0 = �3mm, y0 =

�3:3mm and y0 = �2:6mm. . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.1 (a) Scattering trajectory contributing to the incoherent background intensity.

(b) Time reciprocal path at the origin of coherent enhanced backscattering. . 69

5.2 Angular intensity � (sb; sa) backscattered from a di¤usive medium character-

ized by lt = 100�m and illuminated by a monochromatic plane wave at normal

incidence, i.e. sa = z. The albedo is normalized to the background intensity

at large angles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3 Schematic of the experimental setup used for enhanced backscattering with

shaped spatially partially coherent light. . . . . . . . . . . . . . . . . . . . . 76

5.4 Normalized representation of the coherence function g de�ned in Eq. (5.14)

and plotted for the parameters R = 1:5mm, � = 532nm and f = 200mm. . . 78

xiii



5.5 (a) Scattering paths contributing to the coherent backscattering peak when

the incident light has a shaped degree of spatial coherence. (b) Photon migra-

tion path distributions for the light entering and exiting at points separated

by �0 [75]. The medium occupies the half space z � 0 and the coordinate

units are normalized to the di¤usive light migration length Leff = 1=�eff . . 83

5.6 Distribution of backscattered intensity Ib (s;�0) normalized to the background

intensity. The calculation is performed for an incident �eld characterized by

the angular distribution I (s0;�0) with �0 = 100�m (top) and �0 = 200�m

(bottom). The di¤usive medium has a transport mean free path lt = 100�m

while the source, with a radius set to Rs = 1:5mm, is located at a focal

distance f = 200mm from Ls. . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.7 Angular intensity distribution I (s0;�0) of the incident partially coherent beam

when the distance between correlated speckle is �0 = 220�m. . . . . . . . . . 85

5.8 Schematic of the experimental detection setup used for enhanced backscatter-

ing with shaped spatially partially coherent light. . . . . . . . . . . . . . . . 87

5.9 (solid line) Modulated part eIc (sx;�0) of the angular scattered intensity mea-
sured for �0 = 72�m and �0 = 142�m, respectively. (dashed lined) Fit of the

experimental data with a cosine function in order to determine the amplitude

of the modulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

xiv



5.10 Experimental measurement of P (�) as a function of the transverse separation

�. The dashed curves correspond to the analytical solution for P (�) obtained

from Eqs. (5.10) and (5.12) for lt = 70, 100 and 130�m. . . . . . . . . . . . 89

6.1 Normalized cross-spectral density of the evanescent �eld as evaluated from

Eq. (6.3) for z1 = z2 = 0, Q (q) = 1 and k0 � jqj � nk0. . . . . . . . . . . . . 96

6.2 Schematic of the setup used to generate evanescent waves with transverse

wave vectors k0 � jqj � nk0: . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.3 High spatial frequency content of the intensity I(m) (ksz;q) scattered by a

monolayer of 0:97�m diameter particles. The solid line represents the results

of the Hankel transform of the measured intensity I(s)(ksz;��0) whereas the

dashed line corresponds to the analytical result obtained as explained in the

text. The inset shows part of the normalized intensity I(s)(ksz;��0) obtained

experimentally for 0 � ��0 � 10�m. . . . . . . . . . . . . . . . . . . . . . . 102

7.1 Schematic of the setup used for correlated imaging. The source is thermal,

quasi monochromatic and spatially incoherent with a uniform intensity distri-

bution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.2 Schematic of the setup used for correlated imaging with shaped spatially par-

tially coherent light. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

xv



7.3 Reference intensity as a function of the coherence parameter �r0 and nor-

malized to its asymptotic limit g (0). The wavelength is � = 532nm and the

source parameters are f = 62mm, m = 1, � = 0 and R = 2mm. . . . . . . . 117

7.4 Measurement of the intensities hI1imeas, hI2imeas, and the coincidence counts

G
(2)
meas as a function of the position r2 of the detector D2. The number of

counts hI1imeas and hI2imeas are normalized to their average value and then

shifted in the graph for better legibility. G(2)meas was normalized to its average

background value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.5 Scheme (a) corresponds to the unfolded representation of the setup used in

conventional correlated imaging where the spatially incoherent source S has a

uniform intensity distribution. In scheme (b), the intensity distribution across

S is modulated according to Eq. (7.17). . . . . . . . . . . . . . . . . . . . . . 121

7.6 Unfolded representation of the two-photon correlated imaging setup. The

complex Fourier transform of the object is reconstructed by using a biphoton

source with adjustable degree of entanglement. . . . . . . . . . . . . . . . . . 122

7.7 Schematic of the experimental setup used for correlated imaging with shaped

spatially partially coherent light. . . . . . . . . . . . . . . . . . . . . . . . . 127

xvi



7.8 Coincidence countsG(2) and intensities in the object arm (I1) and the reference

arm (I2) measured as a function of the source parameter �r0 for � = 0 (solid

curve) and � = � (dotted curve) when the grating is in the position T (0) = 0.

The intensities are normalized with respect to the values obtained without

the object and for �r0 � 200�m. . . . . . . . . . . . . . . . . . . . . . . . . 128

7.9 The analytic Fourier transform of the grating�s transmittance is shown in

graphic (a1) for the case T (0) = 1. The measured amplitude j�ej
2 and the

phase cosine are represented in plots (a2) and (a3), respectively. As shown in

(b2) and (b3), the same measurements were performed in the case T (0) = 0

corresponding to the analytic Fourier transform plotted in (b1). . . . . . . . 129

xvii



LIST OF SYMBOLS

� Wavelenght

k Wave vector

! Frequency

W Cross-spectral density

J1 First order Bessel function

W Wigner distribution function

�s; �a Scattering and absorption coe¢ cients

ls Scattering mean free path

lt Transport mean free path

xxi



CHAPTER 1

INTRODUCTION

The �uctuations in the optical properties of random media usually prevent direct imaging

techniques from providing relevant structural information. Instead, optical sensing proce-

dures based on statistical approaches must be considered in order to target speci�c properties,

which are pertinent to the material system under test. In this respect, a signi�cant e¤ort

has been devoted to relate the descriptors of a scattered wave to the e¤ective parameters

such as the particle sizes, the transport mean-free-path or the correlation of the scattering

potential.

Usually, in addition to characterizing the scattered �eld, solving the inverse scattering

problem requires varying one of the properties of the incident wave such as wavelength, polar-

ization, angle of incidence, wavefront curvature or angular spectrum. For instance, Mueller

polarimetry operates by controlling the state of polarization of the illuminating beam while

polarimetric measurements are performed on the scattered �eld [1]. Spectroscopic proce-

dures are based on changing the wavelength of the incoming light. A recently introduced

backscattering technique relies on adjusting the angular momentum of an incident vortex

beam in order to retrieve the scattering parameters of a di¤usive medium [2]. Di¤raction

tomography permits the reconstruction of deterministic and weakly scattering objects by

changing the direction of the illuminating plane wave [3]. In the case of random media, mea-
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suring the correlation function of the scattering potential is performed using fully coherent

plane waves illuminating the object at di¤erent angles of incidence and then measuring the

cross-spectral density of the �eld scattered in two di¤erent planes [4]. In multiple scattering

media, various positions of the light sources are needed to be able to solve the di¤usion

equation and reconstruct biological images [5].

Whereas most of the optical �eld�s properties mentioned above have been commonly

manipulated in a variety of remote sensing procedures, controlling the degree of coherence

of light did not �nd wide applications until recently with the emergence of optical coherence

tomography [6]. In this procedure, temporal coherence gating isolates the single scattering

contributions from a di¤use signal to produce, for example, depth resolved images of the

retina [7]. Since the introduction of optical coherence tomography, a growing number of

scattering techniques have relied on temporal coherence gating, which provides path-length

resolved measurements of scattering trajectories [8] in a way achieved only by cumbersome

short pulse measurements [9].

Even though the scattering of spatially partially coherent �elds has been extensively

studied [10] and the relationship between spatial coherence and radiometry has received

considerable attention [11, 12], the spatial counterpart of temporal coherence gating has

been given little consideration in sensing applications. A notable accomplishment is the

so-called �uctuation microscopy where higher order correlation of a distribution of atoms

is probed by varying the spatial coherence volume of an electron beam and recording the

scattered intensity [13]. Recently, a tomographic technique has been developed based on
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the energy theorem for scattering of spatially partially coherent beams [14]. This method

avoids the problem of phase measurement encountered in di¤raction tomography and allows

for determining the absorptive part of the susceptibility for a deterministic scatterer or the

�uctuation strength of a quasi-homogeneous random medium. Notably, one experiment has

relied on shaping, in the longitudinal direction, the degree of spatial coherence of the incident

�eld [15]. However, this technique was applied to pro�lometry and the interaction of the

incident �eld with a scattering medium was not considered.

Based on shaping the spatial coherence of the incident radiation, this dissertation pro-

poses and demonstrates several novel procedures for solving inverse problems related to the

scattering of light in scattering media. A number of sensing techniques applicable to dif-

ferent scattering regimes are introduced. We demonstrate that imaging, characterization of

structural properties, or depth sensitive sensing in both deterministic and random media can

be achieved using very simple detection schemes.

After introducing the general formalism necessary for describing spatial properties of

partially coherent �elds, Chapter 2 of this dissertation presents the basis of the variable co-

herence tomographic approach and focuses on the fundamental role of second-order coherence

properties in the scattering of light in random media. An overview of the multiple scattering

theory establishes the main concepts which link a rigorous description of the scattered �eld

to the conventional radiative transfer approach.

Although it was already shown in the late 1960�s that the small angle approximation of

the radiative transfer equation accounts for the partial coherence of the �eld [16], there is
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limited experimental data that demonstrate the e¤ect of the degree of spatial coherence on

the propagation of a beam in a particulate media. Using the radiative transfer formalism,

we show in Chapter 3 that both the density and the size of particles in a multiple scattering

medium can be measured by varying the size of the coherence volume of the incident �eld.

Unfortunately, the radiative transfer equation only accounts for small range correlation in

the inhomogeneities and a di¤erent approach must be considered in order to evaluate the

long-range structural properties of a scattering system.

Based on the concept of spatial coherence gating, Chapter 4 introduces the concept of

variable coherence tomography. Using the �rst order Born approximation, we show that

coherent scattering can be induced from di¤erent regions of a medium by shaping the degree

of spatial coherence of the illuminating beam. The structural characteristics of the medium,

given by the second-order statistical properties of the complex susceptibility, are then recov-

ered from far-�eld intensity measurements performed in a single direction. Thus, variable

coherence tomography is based on a much simpler detection scheme in comparison to other

approaches which require evaluating the cross-spectral density in di¤erent planes [4].

Since the �rst Born approximation is only valid in the single scattering regime, vari-

able coherence tomography can hardly be generalized to higher order scattering regimes.

However, in highly di¤usive media, the in�uence of long-range correlations is enhanced in

the exact backscattering direction as a result of constructive interferences between time re-

versal trajectories. Experimentally however, current techniques do not have the ability to

di¤erentiate between the di¤erent scattering paths. Measurements of long-range correlations

4



are either integrated over all scattering paths or relates only to the super�cial layers of the

medium [17]. After brie�y reviewing the phenomenon of enhanced backscattering [18], we

demonstrate in Chapter 5 that spatial coherence gating o¤ers the possibility to select of

speci�c photon trajectories, thus providing a depth sensitive measurement.

Superresolution is the ultimate goal in microscopy. Methods based on spatial coherence

gating are particularly attractive since the resolution is de�ned by the size of the coherence

volume while the active sensing area is determined by the extended spatial dimensions of the

illuminating beam. In classical microscopic techniques, on the other hand, high resolution

imaging is achieved by using spatial gating techniques which rely on either the focusing ca-

pability of a coherent �eld or the con�nement of light at the end of a �ber tip as, for instance,

in near-�eld optical scanning microscopy [19]. However, because a scanning operation is re-

quired to build up the image point by point, the approach is time consuming and, moreover,

it is practically restricted to imaging of very small areas. In Chapter 6, we introduce and

demonstrate the principle of variable coherence scattering microscopy, where an object under

test is probed by an evanescent �eld which has its spatial coherence properties adjustable

at subwavelength scales. The results are remarkable in the sense that the subwavelength

resolution is achieved over a large �eld of view from simple far zone intensity measurements.

Notably, this technique can be implemented without any moving parts for both illuminating

the sample and detecting the scattered light.

It should be pointed out that, from a practical perspective, tomographic techniques based

on variable coherence are especially appealing because they rely on a simple detection scheme
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which, potentially, does not require any optical elements such as lenses. In the last Chapter

of this dissertation, we propose and implement a correlated lensless imaging method where

both the amplitude and phase information about the spatial frequencies of an object can be

recovered by varying the degree of spatial coherence of the incident beam.
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CHAPTER 2

SPATIAL COHERENCE PROPERTIES AND SCATTERING

OF PARTIALLY COHERENT BEAMS

The �rst part of this chapter is devoted to the statistical representation of partially

coherent �elds in the frame work of the coherence theory [20]. We introduce the general

concepts of cross-spectral density and angular correlation, which are then applied to the

particular case of quasi-uniform �elds. In the second part, we study the scattering of partially

coherent �elds by inhomogeneous media. Starting from the scalar wave scattering theory in

random inhomogeneous media, a general solution for the scattered �eld is introduced based

on perturbation theory. Within the limits of the single scattering regime, this result is applied

to relate the scattered intensity to the coherence properties of the incident �eld. Using the

equations for the statistical moments of the wave �eld, the main approximations leading

to the expression of the radiative transfer equation are then presented. This formulation

permits treating the propagation of the second-order coherence properties of the �eld in a

multiple scattering regime.
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2.1 Second-order coherence properties of partially coherent �elds

2.1.1 Space-frequency representation of partially coherent �elds

An electromagnetic �eld at a position vector r and a time t can be represented by the real

variable V (r) (r;t). In any realistic situation where the light originates from a thermal source

or a laser, V (r) is a random variable which �uctuates as a function of time and, therefore,

only a statistical approach can be considered. It is mathematically convenient to use the

analytic signal V (r;t) associated with the real �eld variable V (r) (r;t) [21]. One can regard

V (r;t) as a particular member of the ensemble fV (r;t)g composed of all the possible �eld

realizations. Since the oscillations of an optical �eld are too fast to be recorded by any

detector, the measured quantity is often proportional to the intensity, which depends on the

second-order correlation of the �eld at two space-time points. The correlation between the

�uctuations V (r1;t1) of the �eld at position r1 and time t1 and the �uctuation V (r2;t2) at

position r2 and time t2 is evaluated by the cross-correlation function de�ned as

� (r1; r2; t1; t2) = hV � (r1;t1)V (r2;t2)i ; (2.1)

where h:::i denotes the ensemble average over the �eld realizations.

In most applications the �eld is considered to be stationary, at least in the wide sense,

meaning that the random process is independent of the origin of time and that the cross-

correlation function depends only on the time di¤erence � = t1 � t2. Moreover, the �eld is

assumed to be ergodic and therefore the ensemble average is equivalent to a time average.
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Consequently, � (r1; r2; t1; t2) can be replaced by the mutual coherence function [21]

� (r1; r2; �) = hV � (r1;t)V (r2;t+ �)it ; (2.2)

where h:::it denotes the time average of the random process. As the instantaneous intensity

is de�ned as I (r;t) = V � (r;t)V (r;t), we deduce from Eq. (2.2) that � (r; r; 0) represents the

average intensity at point r.

Because the �eld �uctuates in time, it cannot be considered monochromatic and, accord-

ing to the generalized Wiener-Khintchine theorem, its properties may be characterized by

the cross-spectral density function

W (r1; r2; !) =

Z 1

�1
� (r1; r2; �) exp (i!t) dt: (2.3)

It has been shown that W (r1; r2; !) represents the correlation between two monochromatic

members of a suitably constructed ensemble fU (r; !) exp (�i!t)g composed of all the mono-

chromatic realizations of the �eld [22]. The cross-spectral density takes then the form

W (r1; r2; !) = hU� (r1; !)U (r2; !)i! ; (2.4)

where h:::i! is the statistical average over the frequency-dependant realizations ensemble.

The cross-spectral density depends on the intensity�s spatial distribution and, in order

to characterize the spatial coherence of the �eld, it is useful to normalize W (r1; r2; !) by

de�ning the spectral degree of coherence:

�(r1; r2; !) =
W (r1; r2; !)p

hI (r1; !)i hI (r2; !)i
; (2.5)
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where hI (r; !)i � W (r; r; !) is the averaged spectral density of the �eld at position r and

frequency !.

Very often an electromagnetic �eld propagates close to a given direction and can be

considered as a beam. It follows that the electric �eld mainly lays in a plane transverse to

the direction of propagation. The correlation between two orthogonal components of the

electric �eld characterizes the polarization of the beam. In general, the beam is described

by the 2� 2 cross-spectral density matrix [23]

W � Wij(r1; r2; !) = hU�i (r1; !)Uj (r2; !)i ; (2.6)

where i and j are two orthogonal directions in a plane transverse to the beam axis. A scalar

treatment of the �eld will be considered in the subsequent sections of this dissertation.

2.1.2 Angular correlation of partially coherent �elds

When propagating into the half-space z � 0 free of sources, the monochromatic wave�eld

realization U (r; !) can be decomposed in terms of its angular spectrum of planes waves [24]

U (r; !) =

ZZ 1

�1
a (p; q;!) exp [ik (px+ qy +mz)] dpdq; (2.7)

where r =(x; y; z) is the space position vector, k = !=c is the wave number and a (p; q;!)

is the spectral-amplitude in the plane-wave mode decomposition of the �eld. The plane

wave modes can be regrouped into two categories. The propagating or homogeneous waves
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satisfy p2 + q2 � 1 with m =
p
1� p2 � q2, while the evanescent or inhomogeneous waves

correspond to p2 + q2 > 1 with m = i
p
p2 + q2 � 1.

Substituting Eq. (2.7) into Eq. (2.4), the cross-spectral densityW (r1; r2; !) at two points

r1 = (x1; y1; z1) and r2 = (x2; y2; z2) in the half space z � 0 becomes

W (r1; r2; !) =

ZZZZ 1

�1
A (p1; q1; p2; q2;!) (2.8)

� exp [�ik (p1x1 + q1y1 +m�
1z1 � p2x2 � q2y2 �m2z2)] dp1dq1dp2dq2;

where the angular correlation function of the �eld A (p1; q1; p2; q2;!) is de�ned as

A (p1; q1; p2; q2;!) = ha� (p1; q1;!) a (p2; q2;!)i : (2.9)

From Eq. (2.8), W (r1; r2; !) can be regarded as a superposition of mutually correlated

plane waves. The correlation between the di¤erent homogeneous and evanescent plane waves

is characterized by the function A.

2.1.3 Quasi-homogeneous �elds

In a typical scattering experiment, where a partially coherent �eld is incident upon a

particle, two simple mechanisms can in�uence the scattering process [25]. One relates to

the modulation of intensity over the object, while the other is associated with the spatial

coherence characteristic of the �eld. In order to remove the former e¤ect and obtain a

scattering process dependant only on the coherence properties, we consider an incident �eld
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with a uniform average intensity hI0i, at least in the volume occupied by the object in the

absence of inhomogeneities. It follows from Eq. (2.8) that the angular correlation function

must satisfy the relation

hI0(!)i =

ZZZZ 1

�1
A (p1; q1; p2; q2;!)

� exp f�ik [x (p1 � p2) + y (q1 � q2) + z (m�
1 �m2)]g dp1dq1dp2dq2; (2.10)

where I0(!) is independent of x, y and z. This last relation must also hold for the particular

case where z = 0, and de�ning the new variables �p = p1�p2, �q = q1�q2, p = (p1 + p2) =2

and q = (q1 + q2) =2, Eq. (2.10) becomes

hI0(!)i =

ZZZZ 1

�1
A (p; q;�p;�q;!)

� exp [�ik (x�p+ y�q)] dpdqd�pd�q: (2.11)

Noting that the integration with respect to the coordinate di¤erence and the mean position

separates, one can rewrite Eq. (2.11) in the form

hI0(!)i =

ZZ 1

�1
A (�p;�q;!)

� exp [�ik (x�p+ y�q)] d�pd�q; (2.12)

where

A (�p;�q;!) =
ZZ 1

�1
A (p; q;�p;�q;!) dpdq: (2.13)

According to Eq. (2.12), A must be of the form

A (�p;�q;!) / � (�p) � (�q) ; (2.14)
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with � being the Dirac delta function. It follows from Eqs. (2.13) and (2.14) that the angular

correlation function can be expressed as

A (p; q;�p;�q;!) = hIa (p; q;!)i � (�p) � (�q) ; (2.15)

where hIa (p; q;!)i = ha� (p; q;!) a (p; q;!)i is the spectral intensity of the plane wave de�ned

by the wave vector k =(p; q;m).

The expression of A in Eq. (2.15) demonstrates that, in order to have a constant intensity

in the plane (x; y; z = 0), the �eld must be composed of mutually uncorrelated plane waves.

Indeed, any correlation between the plane waves would create interferences and therefore

modulation would appear in the average intensity. Experimentally, such �elds can be gener-

ated by placing, in the focal plane of a lens, a spatially incoherent source such as a thermal

source or a laser beam impinging upon a rotating di¤user.

In order to deduce general properties about the degree of spatial coherence from the

expression of the angular correlation function obtained in Eq. (2.15), we are considering

in the next sections two special cases, one where only propagating waves are present and a

second case where the �eld is only evanescent.

2.1.3.1 Degree of coherence of propagating �elds

When measurements are performed su¢ ciently far from the source, evanescent waves can

be neglected and the �eld is only composed of propagating plane waves with wave vector k
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such that m�
1 = m2 =

p
1� p2 � q2. Consequently, substituting Eq. (2.15) into Eq. (2.10),

the average intensity hI0(!)i becomes

hI0(!)i =
ZZ 1

�1
hIa (p; q;!)i dpdq: (2.16)

Equation (2.16) shows that, as desired, the average intensity hI0(!)i is independent of x,

y and z. Furthermore, using Eq. (2.5) and inserting Eq. (2.15) into Eq. (2.8), we obtain

the following expression for the degree of spatial coherence:

�(r1; r2; !) =
1

hI0(!)i

ZZ 1

�1
hIa (p; q;!)i

� exp f�ik [p (x1 � x2) + q (y1 � y2) +m (z1 � z2)]g dpdq: (2.17)

One can see from Eq. (2.17) that the function �(r1; r2; !) is homogeneous meaning that it

depends on r1 and r2 only through the di¤erence r1� r2. Fields with such spatial coherence

property are known as Schell-model �elds [26]. Furthermore, when the intensity variations

are much slower than the variations of �(r1 � r2; !) as a function of r1 � r2, Schell-model

�elds are called quasi-uniform or quasi-homogeneous [27]. Since, in our case, the intensity

is constant, the incident cross-spectral density inside the volume occupied by the scattering

object can be written as

W (r1; r2; !) = hI0 (!)i�(r1 � r2; !): (2.18)
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According to Eq. (2.17), W (r1; r2; !) is related to the plane wave spectral intensity

hIa (p; q;!)i through a Fourier transform relationship:

W (r1; r2; !) =

ZZ 1

�1
hIa (p; q;!)i

� exp [�ik (p�x+ q�y +m�z)] dpdq; (2.19)

where �x = x1 � x2, �y = y1 � y2 and �z = z1 � z2. Equation (2.19) corresponds to

the van Cittert-Zernike theorem for an incoherent source with e¤ective source distribution

hIa (p; q;!)i [28]. Since W (r1; r2; !) depends only on the coordinate di¤erence �x, �y and

�z, the cross-spectral density is invariant upon propagation [29]. This involves that, in the

case where such a �eld illuminates an object, the scattering process does not depend on

the relative position of the object in the incident �eld. This property has the advantage of

relaxing the alignment constrains in an experimental procedure.

2.1.3.2 Degree of coherence of evanescent �elds

If the �eld in Eq. (2.7) is only composed of evanescent waves, then we have �m�
1 =

m2 = i
p
p2 + q2 � 1. Substituting Eq. (2.15) into Eq. (2.10), the average intensity hIe(!)i

becomes

hIe(z; !)i =
ZZ 1

�1
hIa (p; q;!)i exp (�2
z) dpdq; (2.20)

where 
 = k
p
p2 + q2 � 1.
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As expected from an evanescent �eld, there is an exponential decay of the intensity along

the z direction for each plane wave composing the �eld. However, the average intensity

hI0(z; !)i is constant in any plane (x; y) with constant height z � 0. Using Eq. (2.5) and

substituting Eq. (2.15) into Eq. (2.8), the degree of spatial coherence takes the form

�(r1; r2; !) =
1p

hIe(z1; !)i hIe(z2; !)i

ZZ 1

�1
hIa (p; q;!)i exp [�
 (z1 + z2)]

� exp f�ik [p (x1 � x2) + q (y1 � y2)]g dpdq: (2.21)

It follows from Eq. (2.21) that the degree of spatial coherence �(r1; r2; !) is not homoge-

neous in the z direction but depends only on the transverse separation�� = r?1� r?2 with

r? being the projection of r onto the (x; y) plane. Fields with such degree of coherence can

be called transversely quasi-homogeneous and their cross-spectral density is expressed as

W (r1; r2; !) =
p
hIe(z1; !)i hIe(z2; !)i�(��;z1; z2; !): (2.22)

By considering an evanescent �eld with a constant average intensity hIe(!)i in the plane

(x; y; z = 0), we showed that the cross-spectral density is invariant transversely but depends

on the vectors positions along the z axis. However, since hIe(z; !)i decays exponentially,

the extend of cross-spectral density along the direction z is limited to a fraction of the

wavelength, which essentially makes W (r1; r2; !) a transverse or two dimensional quantity.

In order to obtain a scattering process depending only on the spatial coherence properties

of the �eld, we have considered an average intensity constant at least in the plane (x; y; z = 0).

From this assumption, we have demonstrated that the �eld is composed of uncorrelated plane

waves and is quasi-homogeneous for propagating waves and transversely quasi-homogeneous
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for evanescent waves. This demonstration generalizes to uniform-intensity �elds the conclu-

sions drawn in reference [30] for the case of uniform-intensity and Schell-model �elds. In

the next section, we will show how the spatial coherence properties of the �eld a¤ects the

scattering process.

2.2 Scattering of partially coherent �elds in random media

2.2.1 Scalar scattering theory

Let us consider a wave incident upon an object occupying a �nite domainD. The medium

is considered linear and is described by a dielectric constant " and a magnetic permeability

� with local and instantaneous response in the spectral range considered. The electric and

magnetic components of the �eld obey the wave equation

52 p (r;t)� n2 (r)

c2
@ttp (r;t) = Q (r;t) ; (2.23)

where n (r) =
p
" (r)� (r) is the refractive index, p represents either the electric or mag-

netic �eld and Q is a source term assumed external and independent from the medium.

We consider both a monochromatic wave p (r;t) = u (r) exp (�i!t) of frequency ! and a

monochromatic source Q (r;t) = q (r) exp (�i!t), thus Eq. (2.23) becomes

52 u (r) + k20 [1 + 4�� (r)]u (r) = q (r) ; (2.24)

with k0 being the wave number and � = (n2 � 1) =4� being the dielectric susceptibility.
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Equation (2.24) describes the propagation of a partially coherent wave characterized by

the random variable u in a scattering medium de�ned by the random variable �. The source

term q generating the �eld incident onto the medium is also considered to be a random

variable. In general, solving Eq. (2.24) is a complicated task and one has to perform some

approximations in order to obtain a solution in terms of the �rst and second moments of the

�eld.

Let�s consider the operator form of the �eld equation (2.24):

bLu � �bL0 � bV �u = q; (2.25)

where bL0 = 52 + k20 is the free-space propagator and bV is a random operator describing

inhomogeneities in the medium. The operator bV acts on the �eld as

bV u (r) = Z
D

V (r; r0)u (r0) d3r0 = �k204�� (r)u (r) ; (2.26)

where the kernel of bV is de�ned as V (r; r0) = �k204�� (r) � (r; r0). The inverse of the operator
bL0 is represented by the free-space Green operator bL�10 = bG0, with the nucleus of bG0 given
by

G0 (r; r
0) = G0 (r� r0) =

exp (ik0 jr� r0j)
jr� r0j : (2.27)

The general solution of the scattering problem de�ned by Eq. (2.25) is obtained from

the unknown Green�s operator bL�1 = bG so that the total �eld can be expressed as

u = bGq: (2.28)

Inserting Eq. (2.28) into Eq. (2.25), multiplying both sides by bG0 and diving by q, we obtain
the following relation for the random media propagator bG:
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bG = bG0 + bG0bV bG: (2.29)

According to Eq. (2.29), the propagation of the �eld characterized by the propagator bG is

composed of a free propagation bG0 in a medium without inhomogeneities and a scattering

part corresponding to bG0bV bG. It follows from Eqs. (2.28) and (2.29) that the total �eld u

becomes

u = bG0q + bG0bV u; (2.30)

where bG0q = ui relates to the incident wave and bG0bV u = us corresponds to the scattered

wave, which can also be written in the integral form [31]

us (r) = k2
Z
D

� (r0)u (r0)G0 (r� r0) d3r0: (2.31)

No general solution exists for the integral equation (2.31) or the operator bG. However,
depending on the type of scattering regime considered, certain assumptions can be made in

order to deduce an approximate expression for the scattered �eld.

2.2.2 Perturbation theory and the �rst-order Born approximation

In order to evaluate the operator bG, we consider the following series expansion in powers
of bV [12] obtained by iterating Eq. (2.29)

bG = bG0 + bG0bV bG0 + bG0bV bG0bV bG0 + ::: =

1X
n=0

bG0 �bV bG0�n : (2.32)
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The series expansion method assumes that bV describes a small variation of the refractive

index in the medium and, therefore, Eq. (2.32) is understood as a perturbation series. The

�rst term of the series (2.32) relates to propagation of the �eld in the absence of inhomo-

geneities, the second term n = 1 corresponds to the incident �eld scattered only one time,

the third term n = 2 describes double scattering, and so on for larger n values. Solving the

scattering problem becomes increasingly complex as more and more terms are retained in

the series (2.32). The simplest approximation considers only single scattering by keeping the

�rst two terms in Eq. (2.32):

bG � bG0 + bG0bV bG0: (2.33)

This last expansion is known as the �rst-order Born approximation and the scattered �eld

takes the integral form

us (r) = k2
Z
D

� (r0)ui (r0)G0 (r� r0) d3r0: (2.34)

Comparing the scattered �eld expressions in Eq. (2.31) and Eq. (2.34), we notice that

the total �eld u has been replaced by the incident �eld ui. This approximation is valid when

the scattering is su¢ ciently weak in the sense that the incident �eld is not perturbed by the

medium and it dominates the scattered �eld. Using the fact that ui and � are independent

random processes in Eq. (2.34), the second moment of the scattered �eld takes the form [32]

W (s)(r1; r2) = k4
ZZ

D

C(r; r0)W (i) (r; r0)G�0 (r1�r)G0 (r2�r0) d3rd3r0; (2.35)
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where W (i) (r; r0) = hui� (r)ui (r0)i is the incident cross-spectral density and C is the second-

order moment of �:

C(r1; r2) = h�� (r1) � (r2)i : (2.36)

Figure 2.1: Typical scattering experiment con�guration.

Equation (2.35) expresses the cross-spectral density of the scattered �eld at any two

points r1 and r2. AlthoughW (s)(r1; r2) can be determined directly [33, 34], its measurement

requires a complicated detection system. In a typical experiment, as represented in Fig. 2.1,

the scattered intensity is easily accessed at a distance r in the far zone and along a direction

given by the unit vector u. Under these conditions, the asymptotic approximation for the

Green�s function

G0 (ru� r0) =
exp (ikr)

r
exp (�iku � r0) (2.37)
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can be used. Considering Eqs. (2.35) through (2.37), the scattered intensity I(s)(ru) �

W (s) (ru; ru) in the far zone at a distance r and in the direction u becomes

I(s)(ru) =
k4

r2

ZZ
D

C(r; r0)W (i) (r; r0) exp [iku ��r0] d3rd3r0; (2.38)

where �r = r� r0.

Equation (2.38) constitutes the basis for tomographic procedures when both the incident

�eld and the scattering medium are �uctuating. Because the dimensionality of the measured

cross-spectral density is smaller than that of the unknown second-order moment C, the

problem was shown to be in general underdetermined unless the random object is quasi-

homogeneous as we will see in Chapter 4. Even under these conditions, the measurement

procedure is quite challenging since the detection system needs access to a wide range of

scattering angles in order to provide su¢ cient data for a robust inversion process [3]. It

has been proposed [4] that one can obtain C by taking a fully coherent incident plane wave

and then measuring the cross-spectral density of the scattered �eld in certain planes and for

di¤erent angles of illumination. Inspecting further Eq. (2.38), one can immediately observe

that another possibility exists to obtain the correlation function C. Instead of determining

the scattered intensity at di¤erent angles, one can measure the intensity scattered in a single

direction while varying the coherence properties of the incident �eld, which are described by

W (i). This represents the basis of the variable coherence tomography technique as it will be

discussed in details in Chapters 4 and 6.
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2.2.3 Multiple scattering and the �eld moments

By retaining the �rst three terms in the series expansion (2.32), the scattered �eld can

be computed taking into account single and double scattering events. However the problem

becomes practically impossible for n � 3. Instead of estimating the scattered �eld by means

of a power expansion like in Eq. (2.32), one can consider the solution for the moments of

the �eld. In this approach, perturbation theory is used to evaluate the e¤ective medium�s

parameters without assuming a small scattered �eld [12].

The �rst moment or the average of the �eld satis�es the Dyson equation [12] obtained

by ensemble averaging of Eq. (2.25)

bD hui = �bL0 � bVeff� hui = hqi : (2.39)

In Eq. (2.39), bD is the Dyson operator and bVeff is the mass operator or operator of e¤ective
medium�s inhomogeneity, de�ned as

DbV uE = bVeff hui. The mean Green�s function D bGE
in the scattering medium satis�es bD D bGE = b1 so that the average of the �eld is given
by the relation hui =

D bGE hqi. The mean propagator D bGE depends on the moments of
the random operator bV , which are usually expanded in a sum of cumulants of bV , also called
correlation functions [35]. Calculating hui reduces to the evaluation of the cumulant functions

which measure the statistical coupling between the di¤erent inhomogeneities composing the

medium.

In order to study the light scattered by a random medium, one needs to consider the

equation for the second moment of the �eld, or cross-spectral density W (r1; r2), known as
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the Bethe-Salpeter equation [12]

� bD�
1
bD2 � bK12

�
hu�1u2i = hq�1q2i ; (2.40)

where we have used the subscript notation 1 and 2 to signify hu�1u2i = hu� (r1)u2 (r2)i.

The operator bDi acts only on the variable ui whereas bK12 acts on both variables u1 and

u2. The intensity operator bK12 relates to the inhomogeneities of the medium acting on the

correlation of the �eld. The solution of Eq. (2.40) is given by the average operator
D bG�1 bG2E

describing the propagation of the cross-spectral density in the inhomogeneous medium, where

bG1 and bG2 are the random propagators of the �elds u1 and u2 in the inhomogeneous medium,
respectively. From Eq. (2.40),

D bG�1 bG2E satis�es a recurrence relation similar to Eq. (2.29),
which, by iteration, can be expressed as a series expansion similar to Eq. (2.32)

D bG�1 bG2E =
D bG�1ED bG2E+ D bG�1ED bG2E bK12

D bG�1ED bG2E (2.41)

+
D bG�1ED bG2E bK12

D bG�1ED bG2E bK12

D bG�1ED bG2E+ :::

According to Eq. (2.41), the propagation of the coherence function can be seen as a succession

of independent propagations
D bG�1E and D bG2E of the �elds in an e¤ective medium followed

by a scattering event characterized by bK12, which a¤ects the correlation between u1 and u2.

Unfortunately, the series (2.41) was shown to be divergent [35]. Indeed, as the number of

scatterer increases in the expansion of
D bG�1 bG2E, the number of possibilities for the statistical

coupling between scatterers increases very rapidly. A useful approximation considers keeping

only the �rst order cumulants when calculating the moments of the operators bVeff and bK12.

In this, so called, single-group approximation, the operators bV 1gr
eff and bK1gr

12 describe indepen-
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dent e¤ective inhomogeneities characterized by dimensions on the order of the correlation

diameter lc of the medium�s inhomogeneities. In order for the single-group approximation to

be applicable, the mean scattering free path length ls must be much larger than lc and the

radiation�s wavelength �. It follows that the scattering centers can be seen in the far-�eld

from one another. If the random medium obeys Gaussian statistic, the single-group approx-

imation is know as the Bourret approximation for bV 1gr
eff and the ladder approximation for

bK1gr
12 .

Furthermore, considering a statistically uniform and stationary scattering medium, the

kernels of the operators of e¤ective inhomogeneities bV 1gr
eff and bK1gr

12 can be expressed as

V 1gr
eff (r1; r2) = V 1gr

eff (�r) ; (2.42)

K1gr
12 (r1; r

0
1; r2; r

0
2) = K1gr

12 (R�R0;�r;�r0) ;

where �r = r1�r2 and �r0= r01�r02 are the coordinate di¤erences and R =(r1 + r2) =2 and

R0=(r01 + r
0
2) =2 are the average positions. Both functions V

1gr
eff (�r) andK

1gr
12 (R�R0;�r;�r0)

vanish when the separations �r and �r0 exceeds the coherence length lc. This quasi-uniform

assumption is one of the necessary conditions that will allow us to treat the propagation of

a partially coherent beam in a multiple scattering medium in terms of the radiative transfer

equation.
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2.2.4 The radiative transfer equation

Bethe-Salpeter equation (2.40) for the second-order moment of the �eld is a rigorous

integral equation whose kernel is di¢ cult to compute explicitly and a general solution is un-

available at present. However, it was demonstrated that using the one group approximation,

and under the condition that the extinction length is much larger than the wavelength, this

equation simpli�es and leads to an expression equivalent to the radiative transport equation

[12].

The assumption of statistical uniformity of the medium, along with the approximate ex-

pressions (2.42) of the kernels of bV 1gr
eff and bK1gr

12 , implies that the second moment hu� (r1)u2 (r2)i =

W (r1; r2) satis�es the inequality [12]����@RW �
R+

�r

2
;R� �r

2

������ ����@�rW �
R+

�r

2
;R� �r

2

����� : (2.43)

Equation (2.43) characterizes a quasi-homogeneous �elds and signi�es that W (r1; r2) varies

much faster as a function of the coordinate di¤erence �r = r1� r2 than as a function of the

average positionR =(r1 + r2) =2. To a good approximation, it follows that the cross-spectral

density may be expressed in the form [26]

W

�
R+

�r

2
;R� �r

2

�
= I (R)� (�r) ; (2.44)

where I (R) is the intensity at position R and � is the degree of spatial coherence. Note that

the expression (2.44) of the cross-spectral density inside the scattering medium is similar to

the form of the incident cross-spectral density given in Eq. (2.18). Assuming I (R) constant
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in Eq. (2.44) leads to a scattering process dependant only on the spatial coherence properties

of the �eld.

At this point, it is convenient to introduce the Wigner distribution function de�ned as

W(R;k) =
ZZZ

W (R+
�r

2
;R� �r

2
) exp(�ik��r)d

3�r

(2�)3
; (2.45)

and which corresponds to a local spectrum of quasi-homogeneous radiations. In addition

to naturally include the coherence properties of the �eld, the Wigner distribution function

has the advantage of relating directly to measurable quantities such as spatial or angular

intensities. Using the one group approximation of the Dyson equation (2.39) and the Bethe-

Salpeter equation (2.40) along with the quasi-uniform assumptions for the operators bV 1gr
eff

and bK1gr
12 in Eq. (2.42) and the �eld in (2.43), it has been shown that the Wigner distribution

function veri�es the radiative transfer equation (RTE) , which, in the steady state, can be

expressed as [12]

k

jkj � 5RW(R;k) = � (�a + �s)W(R;k) +
�s
4�

Z
4�

p (k;k0)W(R;k0)d
k0 : (2.46)

In this equation, p (k;k0) is the phase function of one particle. If the medium is composed of

non identical particles, then p is a weighted sum of the di¤erent phase functions corresponding

to each type of particle. The scattering and absorption coe¢ cients �s and �a are associated

with the scattering and absorption mean free paths ls = ��1s and la = ��1a , respectively. The

mean separation ls between two consecutive and independent scattering events is related to

the scattering cross-section �s of the particle by the relation

ls =
1

N�s
; (2.47)
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where N is the number density of the scatterers [36].

First introduced in the context of radiophysics, the RTE was initially derived using a

phenomenological approach of local radiative energy balance [37]. In this derivation, the

radiance or speci�c intensity L (r;u) replaces the Wigner distribution function W(R;k) in

Eq. (2.46). For a time dependant process, the radiometric quantity L (r;u;t) represents

the power �owing at a time t, in a direction u within a di¤erential solid angle, through a

elementary area located at the position r. Despite the usual understanding of the RTE as a

radiometric equation, we have seen that, in the previous two sections, the origin of the RTE

from the rigorous equations of the �eld�s moments enables a partially coherent description of

the �eld. The solution of the RTE depends on the boundary conditions, which, apart from

the geometry of the sample under test, vary with the coherence properties of the source. As

we will see in Chapter 3, it becomes then possible to establish an inversion procedure in a

multiple scattering experiment based on using the degree of coherence of the incident �eld

as an adjustable parameter.

2.2.5 The di¤usion equation

Except in a very limited number of situations, the radiative transfer equation cannot be

solved analytically and one has to resort to elaborate and time consuming computational

methods. As we will see in the next chapter, the small angle approximation is a simpli�ca-

tion of the RTE which provides fast numerical results valid when a beam propagates in a
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turbulent atmosphere or in media composed of large particles. However, this approximation

loses its accuracy as the propagation distance increases beyond a certain point where the di-

vergence of the �eld becomes too large due to multiple scattering. Indeed, depending on the

concentration and on the size of the scatterers, there is a propagation distance after which

the light forgets the direction of the initial wave and the radiation can then be considered

incoherent and nearly isotropic. Under this condition, it becomes convenient to approximate

the radiance L by the sum [38]

L (r;u; t) � � (r; t) + 3

4�
J (r; t) � u; (2.48)

where � (r; t) is the isotropic radiation de�ned as

� (r; t) =
1

4�

Z
4�

L (r;u; t) d
; (2.49)

and J (r; t) accounts for the small anisotropy in the radiance and corresponds to the average

�ux of scattered energy

J (r; t) =

Z
4�

L (r;u; t)ud
: (2.50)

Equation (2.48) is a valid approximation provided that the intensity varies slowly in space

and time. In this framework, the radiation can only be characterized at long time t, far from

both the source and the boundaries of the medium. Moreover, the scattering mean free path

ls needs to be much greater than the absorption length la in order to avoid large gradient of

intensity and keep the term J (r; t) � u small in comparison to � (r; t) in Eq. (2.48).

Substituting the Wigner distribution function W in Eq. (2.46) by the expression (2.48)

and performing the integration over the angular space, one obtains the di¤usion equation
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which, for a time dependent process, gives [38]

1

c

@� (r; t)

@t
�Dr2� (r; t) + �a� (r; t) = q (r; t) : (2.51)

In Eq. (2.51), c is the speed of light in the medium, q (r; t) is an isotropic source term and

D is the di¤usion coe¢ cient de�ned as

D =
1

3 [�a + �s (1� g)]
: (2.52)

The coe¢ cient g in Eq. (2.52) measures the anisotropy of the phase function p (u � u0), which

is assumed to depend only on the scattering angle u � u0 = cos (�) between the incident and

scattered �elds directions u and u0, respectively. In average, the cosine of the scattering

angle is [36]

g = hcos (�)i =
Z
4�

u � u0p (u � u0) d
u0 ; (2.53)

which equals zero for isotropic scattering and approaches one when the scattering is mainly

forward.

The length D de�ned in Eq. (2.52) is proportional to the transport mean free path

lt = 3D, which, in the case of a non absorbing medium, relates to both the scattering mean

free path ls and the anisotropy factor g as

lt =
ls

1� g
: (2.54)

The parameter lt is the minimum length scale on which the transport of radiation can be

described by the di¤usion equation. It corresponds to the distance travelled by the wave

after which the direction of propagation is randomized.

30



Contrary to the radiative transfer equation, analytical results can be obtained from the

di¤usion equation in many practical situations [39]. The validity of this approximation

has been tested repeatedly in highly multiple scattering media and it has been successfully

applied in biological imaging [5], rheology of complex �uids [40] or in the measurement

of optical path-length distribution using low coherence interferometry [8]. The path of a

photon in the di¤usion approximation is e¤ectively a random walk and, consequently, the

propagation of the �eld can be regarded as an incoherent transport of energy. Even though

the di¤usion equation ignores the coherence properties of light, its results can be used to

interpret several coherent e¤ects as it will be shown in Chapter 5.
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CHAPTER 3

TRANSPORT EQUATION OF THE COHERENCE FUNCTION

Although the in�uence of atmospheric turbulence and aerosol scattering on either spa-

tially fully coherent or fully incoherent beams has been a subject of active research [41, 42, 43],

limited experimental data has been produced on the e¤ect of scattering by aerosols and par-

ticulates on partially coherent beams (PCB). Previous research in this area focused on de-

scribing how the initially in�nite spatial coherence is lost through propagation and scattering

and indicated that, when coherent waves propagate through turbid media, the wavefront

phase uniformly degrades much faster than the wave intensity decays when the propagation

distance is increased [44, 45]. Recent works [46, 47, 48] have shown that the divergence

of beams propagating through turbulences strongly depends on their initial degree of spa-

tial coherence. It was noted that PCB are relatively less a¤ected by turbulences than fully

coherent beams.

In describing the optical properties of particulate media, just a few studies have addressed

the in�uence of spatial coherence on the power of the scattered radiation. Notably, the optical

theorem has been generalized to include scattering of a �eld with any state of coherence [49,

50] and, more recently, the in�uence of spatial coherence has been studied in the framework

of the radiative transfer equation [25]. Scattering experiments have also been conducted to
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evaluate the e¤ect of the spatial coherence of an incident Gaussian Schell-model beam on

the angular distribution of the scattered intensity [51].

From the results obtained in all these studies, one can conclude that a random scattering

potential a¤ects the spatial coherence of an incident �eld. Consequently, one can, in prin-

ciple, recover the scattering potential from measurements of spatial coherence properties.

As discussed in the previous chapter, the equation of radiation transfer is suitable for de-

scribing the propagation of second-order coherence properties of the �eld through a multiple

scattering medium. We will demonstrate that the density and the size of the particles in a

random medium can be evaluated from measurements of the angular intensity of the PCB

after propagation through the scattering medium. We will also show here that upon prop-

agation through a particulate medium, the PCB have a better stability �in terms of their

divergence �than beams which are initially fully spatially coherent. Solving the transport

equation in the paraxial approximation is simpli�ed signi�cantly and its solution, written

in the formalism of the Wigner distribution function, agrees quantitatively with our experi-

mental data.
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3.1 Wigner distribution - Transport equation: the small angle

approximation

Let us consider a partially coherent beam propagating along the z direction and incident

upon a multiple scattering medium con�ned between the planes z = 0 and z = L. The �eld is

characterized by the cross-spectral densityW (r1; r2; z = 0), where r1 and r2 are two position

vectors in the transverse plane z = 0. Using Eq. (2.45), the Wigner distribution function

W(R;k?; z) of the incident �eld in a plane z can be expressed as the Fourier transform of

the cross-spectral density W (R+�r=2;R��r=2; z) relative to �r [52]:

W(R;k?; z) =
1

(2�)2

Z
W (R+

�r

2
;R� �r

2
; z) exp(�i�r:k?)d2�r; (3.1)

where R =(r1 + r2) =2 and �r = r1 � r2 are the average position and coordinate di¤erence

of r1 and r2, respectively (see Fig. 3.1). The vector k? corresponds to the projection onto

the (x; y) plane of the wave vector k associated with the angular spectrum decomposition of

the �eld.

Substituting Eq. (3.1) into Eq. (2.46) and assuming that the scattering is mainly forward,

we obtain the small angle approximation of the radiative transfer equation [16, 52, 53, 54]:

(c@z +
c

k
k?:5R)W(R;k?; z) =

Z
d2k0? eF (k? � k0?)W(R;k0?; z); (3.2)

where c is the speed of the wave in the medium characterized by the refractive index n0 and

the kernel eF depends on the propagation parameters describing the energy transport
eF (�k?) = �c�T �2(�k?) + cN

k2
d�(�k?)

d

: (3.3)
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Figure 3.1: Illustration of the notation relating to the propagation of the beam.

In Eq. (3.3), �T = N(�A + �S) is the total extinction coe¢ cient, where N is the number

density of scattering events, while �A and �S are the absorption and scattering cross-sections,

respectively. The condition of forward scattering in Eq. (3.2) implies that the di¤erential

cross section d�(�k?)=d
 of the particles composing the medium is primarily de�ned in the

region j�k?j � k = 2�n0=�, where � relates to the wavelength of the �eld. The vector

�k? = k? � k0? de�nes the transfer of transverse momentum between the incident and

scattered vectors k and k0, respectively.

On the basis of the solution of the transport equation [45, 53], one can evaluate the mean

irradiance distribution I(s) of the light leaving the scattering medium in the direction k

I(s)(k?) =

Z
exp [�� (�r; 0; L)]H(�r; 0; L) exp(�ik?:�r)d2�r; (3.4)

with

�(�r; 0; L) =
L

c
F (�r) = �TL�

LN

k2

Z
d�(�k?)

d

exp(i�r:�k?)d

2�k?; (3.5)
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and

H(�r; 0; L) =
1

(2�)2

Z
W (R0 +

�r

2
;R0 � �r

2
; 0)d2R0: (3.6)

It has been shown in Ref. [53] Appendix A that a result similar to Eq. (3.4) can be

obtain using the extended Huygens-Fresnel principle. A closed-form solution for the Wigner

distribution function has been derived in the general case of an ABCD optical system through

random media. A comparison between Eqs. (3.4), (3.5) and (3.6) and Ref. [53] shows that

the ABCD coe¢ cients for a scattering medium of length L are : A = 1, B = L, C = 0 and

D = 1. As expected, these coe¢ cients correspond to a translation matrix.

3.2 Divergence of a partially coherent beam

The divergence of the mean irradiance distribution can be expressed as

�� =
1

k

sR
k2?I

(s)(k?)d2k?R
I(s)(k?)d2k?

: (3.7)

Using Eqs. (3.4)-(3.7), the mean square divergence becomes

��2 =
1

k2Sout

�
H(0; 0; L)52

�r exp [��(�r; 0; L)]
��
�r=0

+ exp [��(0; 0; L)]52
�rH(�r; 0; L)

��
�r=0

	
;

(3.8)

where 5�r:::j�r=0 is the gradient relative to the vector �r taken at the point �r = 0 and

Sout, de�ned as Sout =
R
I(s)(k?)d

2k?, is the total intensity of the beam leaving the scattering

medium. The term H(0; 0; L) =
R
W (R0;R0; 0)d2R0=(2�)2 corresponds to the total intensity

Sin of the beam entering the scattering medium. Integrating Eq. (3.4) over k? gives the
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classic Beer-Lambert exponential law Sout = Sin exp (�NL�A). Using now the de�nition

of �(�r; 0; L) given in Eq. (3.5), we obtain the following expression for the mean square

divergence:

��2 =
LN

k4

Z
�k2?

d�(�k?)

d

d2�k? +

1

k2Sin
52
�r (H(�r; 0; L))�r=0: (3.9)

This last equation can also be written as

��2 = LN�S��
2
S +��

2
0; (3.10)

where

��20 =
1

k2Sin
52
�rH(�r; 0; L)

��
�r=0

; (3.11)

and

��2S =

R
�k2?

d�(�k?)
d


d2�k?

k4
R d�(�k?)

d

d2�k?

=

R
�k2?

d�(�k?)
d


d2�k?

k4�S
: (3.12)

The term ��2S on the right hand side of Eq. (3.10) includes only the properties of

the scattering medium and it corresponds to the mean square divergence of the scattering

function. The second term, ��20, represents the mean square divergence of the incident

PCB. Equation (3.10) is similar to Eq. (20a) in Ref. [47] where the divergence of a PCB

was derived in the case of propagation through turbulent media. In that case, the spectral

density of the refractive index �uctuation is replaced by the scattering function d�(�k?)=d
.

Note that the term LN�S equals the average number of scattering events, which means that

the medium is equivalent to a succession of layers [55], each one of them adding ��2S to the

mean square divergence.
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We are interested in the variation of the angular spreading of a beam which propagates

through a random scattering medium. Therefore, we consider the ratio D between the rms

divergence of the beam leaving the random medium and the beam entering it. This ratio

quanti�es the angular degradation of the beam when propagating through the medium:

D =

s
��2

��20
=

s
LN�S��

2
S +��

2
0

��20
=

s
1 +

LN�S��
2
S

��20
: (3.13)

One can see that D decreases as the initial divergence ��0 increases; consequently it can

be of interest to adjust ��0 to obtain a desired ratio D. A simple way to adjust ��0 is by

changing the coherence properties of the beam. It has already been shown (see for example

Ref. [46, 47]) that for a Gaussian Schell-model source, with a cross-spectral density in two

points r1 and r2 of the form

W (r1; r2) = exp(�
r21 + r

2
2

w20
) exp(�jr1 � r2j

2

2�2�
); (3.14)

the angular spread is

��20 =
2

k2
(
1

�2�
+
1

w20
); (3.15)

where w20 and �
2
� are the waist of the intensity in the source plane and the variance of the

degree of spatial coherence, respectively. One can control in this way the initial divergence

by adjusting ��:
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3.3 Propagation of a partially coherent beam in a particulate

medium

A systematic series of experiments has been performed and compared with the predictions

of the model presented in Section 3.1. The experimental setup is schematically depicted in

Fig. 3.2. The TM00 beam of a cw Ti:Sapphire laser (� = 800nm) is focused by the lens

L1 on a rotating di¤user and the spot size can be adjusted by moving the lens L1 mounted

on a translation stage. The light emerging from the rotating di¤user can be regarded as a

secondary, spatially incoherent source. Most of the scattered light is collected by a second lens

L2 placed at a focal distance from the di¤user. Therefore, the beam after L2 is a collimated

partially coherent beam with a degree of coherence that can be continuously adjusted by

moving the lens L1. A �eld aperture placed just in front of the scattering medium creates a

beam of 9mm in diameter with a constant intensity over the entire aperture. The scattering

medium is a cuvette (L = 10mm) �lled with an aqueous solution of polystyrene microspheres.

The beam exiting the scattering medium is then collected by the lens L3 and a CCD camera

placed in the focal plane of this lens records the far-�eld angular distribution of the beam

exciting the random medium.

A typical intensity distribution of the scattered beam that is collected in the focal plane

of L3 is presented in Fig. 3.3. To obtain an average intensity, the exposure time was set to

be around 30 seconds, while the scattering solution in the cuvette was sonicated to avoid

sedimentation of the particles. From this data, we reconstructed the angular intensity I(s)(�)
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Figure 3.2: Experimental setup used to study the scattering of partially coherent beams.

by expressing the spatial position on the CCD in terms of the angle � = jk?j =k using the

value of the focal length of L3.

In a �rst round of experiments, the divergence of the input beam was measured as

a function of its state of coherence. Note that a direct comparison with the prediction

of the model developed in Section 3.1 can be made by simply setting the concentration

number density N = 0. Because the intensity impinging on the di¤user has a Gaussian

pro�le, according to van Cittert-Zernike theorem, the degree of coherence has also a Gaussian

distribution, as the di¤user is placed in the focal plane of L2. In the plane of the �eld aperture,

the incident beam has a radius w0 = 4:5mm and its intensity distribution is described by the

function Q, de�ned as Q(r) = 1 for jrj � w0 and equals zero otherwise. The cross-spectral

density of the beam impinging on the cuvette has therefore the following form

W (r1; r2) =
p
Q (r1)Q (r2) exp(�

jr1 � r2j2

2�2�
); (3.16)

where �� the variance of the degree of spatial coherence.
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Figure 3.3: Three-dimensional representation of the angular intensity I(s)(�) recorded by the CCD

detector.

The value of �� changes between 1300�m and 57�m when the lens L1 is translated during

the experiment: In Fig. 3.4, the beam divergence is plotted versus the coherence parameter

��2� . The divergence was calculated using Eq. (3.7) and, in order to reduce the e¤ect of the

background noise, the intensity signal of the CCD was set to zero for values below 1% of the

maximum value. To have a fair comparison with the model, we also set to zero the values

of the irradiance given by Eq. (3.4) that are below 1% of the maximum irradiance. This

procedure was applied for the calculation of all the divergences.

The experimental �� is calculated as �� = �f= (�w), where f is the focal length of the

lens L2, � is the free space wavelength, and w is the waist of the beam focused on the di¤user.

We estimated the waist w by considering a Gaussian beam propagating toward and focused

by the lens L1.
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Figure 3.4: Divergence for partially coherent beams with di¤erent coherence parameters. The dots

are the experimental data and the continuous curve represents the result of calculations

based on Eq. (3.2).

A remarkable agreement is obtained between the experimentally measured divergences

and the model predictions, proving that the description of the cross-spectral density at the

entrance of the random medium is realistic.

Next, the scattering medium (the aqueous solution of polystyrene microspheres) is in-

troduced as shown in Fig. 3.2 and the procedure for measuring the divergence is followed

again. In Fig. 3.5, the normalized angular intensity is shown for beams propagating through

a water suspension of 280�m diameter polystyrene microspheres (Duke Scienti�c Corpora-

tion, size distribution 13:5�m, index of refraction n = 1:59, and scattering cross section

�S = 1:24 � 10�7m2). The volume fraction of the suspension was 6:2% corresponding to

an average of 6:6 scattering events. The angular intensity was recorded for di¤erent values
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of the degree of coherence �� in the range of 57�m to 1300�m: Also shown in Fig. 3.5, is

the numerical solution derived from Eq. (3.2) calculated for 6:6 scattering events and for a

di¤erential scattering cross-section as predicted by Mie theory for the spheres considered.
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Figure 3.5: Normalized angular scattered intensity for an incident beam with a diameter of 9mm

and a coherence parameter �� = 390�m (A) and for �� = 57�m (B). Solid curves, the

experimental results; Dashed curves, the calculations based on Eq. (3.2).

As shown in Fig. 3.5, a good agreement is obtained between the experimental data and

the theoretical predictions indicating that the transport equation for the Wigner distribution

function is applicable in all cases studied. Knowing the spatial coherence length �� of the

incident beam, it is then possible to retrieve both the concentration and the size of the

particles by �tting the measured divergence of the output intensity with the mean irradiance

distribution I(s) derived form the transport equation. It is interesting to note that, for the

results in (B), the spatial coherence length �� was signi�cantly smaller than the size of the

particles composing the random medium. In fact, there are several coherence areas within
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the projected surface of a scattering sphere but results derived from the Mie scattering theory

are still appropriate in the contest of radiative transport equation. On the other hand, for

the results in (A) , the coherence area largely exceeds the size of a particle which is in this

case practically exposed to a plane wave [50].

The angular degradation ratio D, de�ned in Eq.(3.13), is plotted in Fig. 3.6 as a function

of the coherence parameter ��2� of the initial beam. One can clearly see that the beam with

the lowest degree of coherence is the least a¤ected with the smallest D. A better stability

of the divergence is therefore obtained in the case of PCB in comparison with the situation

where a fully spatially coherent beam is incident on the scattering medium. This corroborate

the conclusions stated in Ref. [47], which apply to turbulent media.

Figure 3.6: The rms angular spread of the beam after the particulate medium relative to its initial

value. The coherence length �� of the partially coherent beam ranges from 1.3mm to

57�m:
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3.4 Conclusion

The spectral theory of radiative transport in the paraxial approximation makes a good

description of the experiment when the rms width �� of the degree of coherence ranges from

values larger to smaller than the size of the scatters. Both the concentration and the size of

the particles can be determined from �tting the angular output intensity with the solution of

the radiative transport equation obtained by using the incident cross-spectral density func-

tion. We have found an expression for the rms width of a PCB propagating in a particulate

media that is similar to that already suggested for propagation through atmospheric turbu-

lent media. Our results demonstrate that, in the case of particulate media, the increase of

divergence relative to the divergence of the initial beam is signi�cantly smaller in the case

of beams which are, initially, less spatially coherent. This suggest new possibilities of con-

trolling the divergence of beams propagating through scattering media with inhomogeneous

properties and should be of interest for applications including guiding and tracking as well

as active remote sensing through long atmospheric paths. Understanding the subtle e¤ects

of coherence could also lead to novel approaches for solving inverse problems associated with

beams propagation and scattering.

As discussed in Chapter 2, the main approximation, which leads to the radiative transfer

equation, assumes that the correlation radius of the medium�s �uctuations is on the order

of the size of e¤ective inhomogeneities and it is much smaller than the free path length

in the medium. Consequently, the radiative transfer formalism can only account for the
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short-range correlation lengths related to the size of the particles. In order to estimate the

second-order statistical properties of a random scattering potential, a method sensitive to

long-range correlations will be presented in the next chapter.
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CHAPTER 4

VARIABLE COHERENCE TOMOGRAPHY

The reconstruction of a three-dimensional scattering object is usually done by either

computed tomography or di¤raction tomography [3]. Traditionally, these methods have been

applied to solve inverse problems involving deterministic objects. However, a large number

of random media can only be characterized by their statistical properties and, in many

applications, the main interest is in �nding the pair-correlation function of the scattering

potential. Conventionally, the correlation function of the scattering potential can be obtained

by using a fully coherent plane wave illuminating with di¤erent angles of incidence and

measuring the cross-spectral density of the �eld scattered in two di¤erent planes [4]. However,

in many practical cases, the cross-spectral density is di¢ cult to evaluate because it requires

the use of interferometric methods and direct intensity measurements are preferred.

In this chapter, we describe a di¤erent approach where the degree of spatial coherence

of a quasi-monochromatic beam is shaped such that the �elds in two separate volumes are

correlated [15, 56]. The spatial separation between these volumes can be varied continuously

in order to induce coherent scattering from di¤erent parts of the medium. Using the spatial

properties of the incident beam, we propose and demonstrate a tomographic procedure for

determining the correlation function of a scattering potential. A notable feature is the simple
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detection con�guration which only requires to measure the intensity along a single direction

of scattering.

4.1 Spatial coherence shaping

Let us consider the experimental setup sketched in Fig. 4.1 where a quasi-monochromatic

spatially incoherent source S, placed in the focal plane of a collecting lens Ls, generates a

partially coherent beam propagating along the z axis and incident upon a scattering volume

D. The source is considered to be a collection of independent radiative points emitting

uniformly in the direction of Ls. As a result, the intensity across the beam is constant and

one can consider the incident �eld to be quasi-homogeneous with a cross-spectral density of

the form [27]

W (i) (r1; r2) = I(i) (R)�(i) (�r) ; (4.1)

where �r = r1 � r2, R = (r1 + r2) =2, �(i) (�r) is the degree of spatial coherence of the

incident beam and I(i) (r) is the intensity at position r.

A large class of random media have a degree of spatial correlation �� (r1; r2) that depends

only on the separation�r = r1�r2 between the two points P1 and P2 (see Fig. 4.1) and not on

their average location R = (r1 + r2) =2. Such media are quasi-homogeneous and the second

moment of the spatial correlation of the complex susceptibility � (r) is well approximated by
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Figure 4.1: Typical scattering con�guration for variable coherence tomography.

the expression [57]

C (r1; r2) = h�� (r1) � (r2)i� � S� (R)�� (�r) ; (4.2)

where h:::i� denotes the ensemble averaging over the realizations of � (r) and S� (r) = C (r; r)

is the second moment of � (r).

Substituting Eqs. (4.1) and (4.2) into Eq. (2.38), the expression for the intensity scattered

by a weakly scattering medium in a direction u and at a distance r becomes

I(s)(ru) =
k4

r2

ZZ
D

S� (R)�� (�r) I
(i) (R)�(i) (�r) exp [iku ��r] d3r1d3r2: (4.3)

Our scope is to obtain �� and for this purpose we propose to shape the coherence volume

de�ned by �(i) (�r) such that the �eld coherent within a certain volume Vc1 is correlated

with the �eld in a volume Vc2 centered at a position �r0 away from Vc1. As a result, �elds

originating at scattering centers located in Vc1 interfere with each other and also with the

�elds generated by scatterers in Vc2. Therefore, the interference in the scattered �eld carries
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information about the correlation function of the complex susceptibility. Recently, it has

been suggested [15, 56] that �r0 can take values along the axis of propagation of certain

beams such that the �eld is coherent at a pair of points separated longitudinally. We will now

demonstrate that, in general, �r0 can take any value along or transversely to the propagation

axis of specially designated beams.

In order to shape the coherence volume, let us examine the situation where the source S

has an intensity distribution I0(�; �) at the location de�ned by � and �. Within the paraxial

approximation, the degree of spatial coherence [15, 58, 59] of this incident �eld at two points

P1 and P2 located at r1 and r2 (see Fig. 4.1) is

�(i) (�r) = exp [�ik�z]

ZZ
S

I0(�; �) exp
h
i k
fs
(��x+ ��y) + ik�z

2f2s

�
�2 + �2

�i
d�d�ZZ

S

I0(�; �)d�d�

; (4.4)

where fs is the focal length of Ls and �x, �y and �z are the projections of the vector �r

onto the coordinate unit vectors x, y and z.

To be able to generate a �eld coherent at a speci�c pair of points [60], let us consider

that the intensity pro�le in the source plane is similar to a Newton rings pattern (see Fig.

4.2) centered at (x0; y0) and extended up to the radius R:

I0(�; �) =
1

2

 
1 +m cos

"
2�
(� � x0)

2 + (� � y0)
2

�2
� �

#!
Q

�q
�2 + �2

�
: (4.5)

In Eq. (4.5), m is a modulation factor taking values between 0 and 1, R is the radius of the

source and the function Q is de�ned as Q (x) = 1 for x < R and equals zero otherwise. The

phase of the cosine at x0 and y0 is given by �, while the size of the rings is adjusted by the

parameter �.
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Figure 4.2: Intensity pattern in the plane (�; �) of the source.

Substituting Eq. (4.5) into Eq. (4.4), one can show that the degree of spatial coherence

�(i) (�r) of the incident �eld is of the form

�(i) (�r) = exp [�ik�z] g(�r) + m

2
exp [i f� (�r0)� k�zg] g(�r+�r0) (4.6)

+
m

2
exp [�i f� (�r0) + k�zg] g(�r��r0);

with the phase parameter � (�r0) = 2� (x20 + y20) =�
2 � �. The spatial separation vector

�r0=
2�f

�2
(�x0x�y0y+fz) (4.7)

determines the distance between the two separate volumes where the �eld is correlated.

When there is no intensity modulation across the source, i.e. when the parameter m

equals zero in Eq. (4.5), the function g in Eq. (4.6) corresponds to the degree of spatial

coherence of the incident beam:

g (�r) =

ZZ
1
2
Q
�p

�2 + �2
�
exp

h
i k
fs
(��x+ ��y) + ik�z

2f2s

�
�2 + �2

�i
d�d�ZZ

I0(�; �)d�d�

: (4.8)
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A typical degree of spatial coherence �(i) (�r) described in Eq. (4.6) is plotted in Fig.

4.3. Note that the �eld is coherent at a pair of points if their separation is close to zero as

described by the main peak in Fig. 4.3, or if their spatial separation is close to �r0 which

corresponds to the position of the smaller peak in Fig. 4.3. Because �(i) (�r) is Hermitian,

we also have correlation if the points separation is close to ��r0. The shape of each peak

is expressed by the function g (�r) in Eq. (4.8). For transversal coherence, i.e. �z = 0, the

expression of g (�r) is J1 (�) =� and its FWHM is approximately �f= (2R). In the case of

longitudinal coherence, i.e. �x = 0 and �y = 0, g (�r) takes the form [15] sin (�) =� and its

FWHM is approximately 2�f 2=R2.

Figure 4.3: Degree of spatial coherence �(i)(�x;�y;�z) of the incident �eld plotted as a function

of the two points separation �y and �z and for �x = 0:
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4.2 Variable coherence tomography �Principle

To this point, we have been able to create a �eld with a spatial degree of coherence

composed of two peaks mutually coherent and with an adjustable separation as described in

Eq. (4.6) and plotted in Fig. 4.3. One can use now the special form for �(i) described in Eq.

(4.6) in order to obtain, from Eq. (4.3), a new expression for the scattered intensity. If we

consider that the incident beam and the random medium are both quasi-homogeneous, the

functions S� (r) and I(i) (r) vary more slowly with r than �� and �
(i). As a result, one can

separate S� and I(i) from �� and �
(i) in the integration in Eq. (4.3). Then, using Eq. (4.6),

one can show that the scattered intensity becomes

I(s)(ru;�r0) = DIf
Z
�� (�r) g(�r) exp [ik (u� z) ��r] d3�r

+
m

2
exp [i� (�r0)]

Z
�� (�r) g(�r+�r0) exp [ik (u� z) ��r] d3�r

+
m

2
exp [�i� (�r0)]

Z
�� (�r) g(�r��r0) exp [ik (u� z) ��r] d3�rg; (4.9)

where

DI =
k4

r2

Z
D

S� (r
0
2) I

(i) (r02) d
3r02: (4.10)

Using the Hermitian properties of �� and g in Eq. (4.9), it follows, after straightforward

calculations, that the scattered intensity can be written as

I(s)(ru;�r0) = DIG (ku;0) (4.11)

�
�
1 +m

����G (ku;�r0)G (ku;0)

���� cos [k (u� z) ��r0 � � (�r0)� �G (ku;�r0) + �G (ku;0)]

�
:
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In Eq. (4.11), �G (ku;�r0) is the argument of the function G (ku;�r0) representing the

convolution between the two functions �� (r) and g(r) exp [ik (u� z) � r]:

G (ku;�r0) =

Z
�� (r��r0) g(r) exp [ik (u� z) � r] d3r: (4.12)

The expression for the scattered intensity in Eq. (4.11) constitutes our main result.

Within the �rst Born approximation, the incident �eld induces coherent scattering in the

medium for points that are separated by �r0. Therefore, if the complex susceptibility has

a degree of correlation �� di¤erent from zero at �r0, the scattered intensity will oscillate

depending on the values of�r0 and the direction u. In an experiment, one can then vary�r0

and record the scattered intensity I(s)(ru;�r0) in a single direction u. From this, G (ku;�r0),

can be recovered using conventional envelope and phase reconstruction [20]. The degree of

spatial correlation of the scattering medium �� (�r0) is then obtain from Eq. (4.12).

Let us consider the case of a scattering potential of the form

�� (r) = � (r) +m�� (r+�rscat) +m�� (r��rscat) (4.13)

where 0 � m� � 1 is the amplitude of the correlation at r = ��rscat and � (r) is the delta

function. Using Eq. (4.13) and for the case �r0 6= 0, Eq. (4.12) becomes

G (ku;�r0) = g(�r0) exp [ik (u� z) ��r0] (4.14)

+m�g(�r0 ��rscat) exp [ik (u� z) � (�r0 ��rscat)]

+m�g(�r0 +�rscat) exp [ik (u� z) � (�r0 +�rscat)] :
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When discussing the distance between the two coherence volumes where the �eld was

correlated, we implicitly assumed that the volumes were distinct meaning that the width of

g is small compared to the distance j�r0j, i.e. g(�r0) ' 0. If the dimensions of these volumes

are too large, the volumes overlap and cannot be di¤erentiated anymore. We will therefore

assume in the following that �r0 is always large enough so that we can neglect g(�r0) ' 0

in Eq. (4.14). Since the degree of coherence is Hermitian, i.e. �� (�rscat) = ��� (��rscat), in

order to avoid the ambiguity on the sign of �rscat, we set the convention that �rscat � z and

�r0 � z are both greater than zero. It also follows that one cannot have �r0 + �rscat = 0

meaning that g(�r0 +�rscat) ' 0 in Eq. (4.14) which now can be written as

G (ku;�r0) ' m�g(�r0 ��rscat) exp [ik (u� z) � (�r0 ��rscat)] : (4.15)

If �r0 = 0, it follows from Eqs. (4.12) and (4.13) that G (ku;0) = g(0). According to

the expression of the degree of spatial coherence in Eq. (4.6) and using the approximation

g(�r0) ' 0, we obtain �(i) (0) = g(0). Since, by de�nition, �(i) (0) = 1, it follows that

g(0) = 1. Then, using Eq. (4.15), one can show that the scattered intensity in Eq. (4.11)

becomes

I(s)(ru;�r0) = DIf1+ (4.16)

m�m jg(�r0 ��rscat)j cos [k (u� z) ��r0 � � (�r0)� �G (ku;�r0) + �G (ku;0)]g:

One can clearly see now that the envelope of the oscillations in I(s)(ru;�r0) has an

amplitude directly proportional to the modulus jg(�r0 ��rscat)j. Since jg(0)j = 1, the

maximum amplitude of the oscillations is m�m.
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4.3 Experimental results

In a proof-of-concept experiment, an intensity distribution was generated over a spatially

incoherent source in order to create a partially coherent beam with a degree of spatial

coherence as described in Eq. (4.6). This beam illuminated a scattering medium with

a scattering potential correlation �� (r) of the type given by Eq. (4.13). Measuring the

scattered intensity along one direction, we were then able to reconstruct the degree of spatial

correlation �� (r) following the procedure outlined in Section 4.2.

4.3.1 Construction of a correlated scattering system

In order to create a scattering medium with a degree of spatial correlation �� (r) of the

form given in Eq. (4.13), we used a thin glass plate GP (see Fig. 4.4) covered on one side

with a random layer of polystyrene spheres of diameter 3�m. The glass plate GP makes an

angle ��scat with z, the axis of propagation of the incident beam. Parallel to the plate, a

mirrorMs is located at a distance �Lscat from GP along z. The mirror creates an image GP 0

of the glass plate and we denote �rscat = (�xscat;�yscat;�zscat) as the separation between

a particle S on the glass plate and its image S 0 in the plane GP 0 (see Fig. 4.4). As we will

see in Section 4.3.2, the incident �eld has a coherence volume signi�cantly larger than the

size of the spheres; hence, we can represent a sphere by a delta function. Accordingly, the
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scattering potential is given by

� (r) =
X
i

� (r� ri) + � (r� ri ��rscat) ; (4.17)

where ri and ri +�rscat are the positions of the particle i and its image on the planes GP

and GP 0 respectively.

Figure 4.4: Schematic representation of the scattering medium.

The spheres are randomly placed on GP and, from Eq. (4.17), it follows that the second

moment of the spatial correlation of the scattering potential is proportional to

C (r1;r2) / � (�r) +
1

2
� (�r+�rscat) +

1

2
� (�r��rscat) ; (4.18)

with �r = r1 � r2.

We recognize that the correlation in Eq. (4.18) has the same form as in Eq. (4.13)

where the parameter m� equals 1=2. The relations between the geometrical parameters
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�xscat; �yscat; �zscat; �Lscat and ��scat describing the scattering medium are �zscat =

2�Lscat cos
2 (��scat), �yscat = 2�Lscat cos (��scat) sin (��scat) and �xscat = 0. Accordingly,

by measuring �Lscat and ��scat, we inferred that �zscat = 1:7mm and �yscat = 0:08mm.

4.3.2 Synthesis of the partially coherent probe beam

In order to recover the function C from a scattering experiment, we generated a beam

with a degree of coherence given by Eq. (4.6). For this purpose, we use a Nd:YAG laser

doubled in frequency at � = 532nm to generate the intensity pro�le given in Eq. (4.5).

The laser beam passes through a concave lens L0 (see Fig. 4.5) and illuminates a Michelson

interferometer. The intensity pattern described in Eq. (4.5) is generated by detuning the

two mirrors M1 and M2 by a distance �L from the zero path position. The output beam is

then focused by the lens Lc and re�ected by the mirrorM3. A circular aperture A is located

in the focal plane of the lens Lc. The superposition of the �elds coming from the two arms

of the Michelson generates an interference pattern with an intensity pro�le in the plane of

the aperture similar to a Newton�s rings pattern:

IA(x; y) =
1

2

 
1 + cos

"
2�

�
�L

(x� xA)
2 + (y � yA)

2

f 2c
� 4�

�
�L

#!
; (4.19)

where x and y are the coordinate in the plane of the aperture A with their origin taken at

the center of the aperture, xA and yA are the coordinate of the rings center.
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One can see that Eqs. (4.19) and (4.5) have similar forms. The periodicity of the rings

in the intensity pattern is adjusted by the location �L of the mirrorM1 whereas the relative

position rA between the center of the rings and the �xed center of the aperture A depends

on the angular inclination �� of the mirror M3 which is controlled by two motors. Using

the cube beam splitter CB2, the lens L1 images, with a magni�cation � = 1:1, the plane

of the aperture A onto the plane of the rotating di¤user. Therefore, the intensity pro�le on

the di¤user is given by IA(r=�) which corresponds to the expression in Eq. (4.5) with the

parameters � = �fc
p
�=�L, � = 4��L=�, x0 = �xA and y0 = �yA. The parameter R in

Eq. (4.5) is the radius of the image by L1 of the aperture A.

Figure 4.5: Experimental setup for variable coherence tomography.

The di¤user is a slightly rough piece of aluminum which backscatters the light uniformly

in the direction of the lens Ls. The di¤user can therefore be considered as a spatially
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incoherent secondary source with an intensity pro�le given by Eq. (4.5). The backscattered

light from the di¤user passes through the cube beam splitter CB2 and is collimated by the

lens Ls. The beam emerging from Ls is our probe �eld which has a spatial degree of coherence

given by Eq. (4.6). The focal length of Ls is fs = 62:9mm and we use R = 3mm. Using

these parameters, one can evaluate the size of the volume of coherence given by jg(�r)j. Its

transversal width at half maximum is approximately �fs= (2R) ' 6�m and its longitudinal

length at half maximum is around 2�f 2s =R
2 = 470�m. Note that the coherence volume

is larger than the micro-spheres composing the scattering medium which allows using the

approximation of Eq. (4.17).

4.3.3 Scattering potential reconstruction using variable coherence tomography

The experimentally designed partially coherent beam presented in Section 4.3.2 illumi-

nates the correlated scattering system after passing through the beam splitter BS (see Fig.

4.5). The scattered intensity is then re�ected on BS and collected by the lens LPMT . A

photomultiplier tube (PMT) reads the intensity passing through a pinhole located in the

focal plane of LPMT : The position of this pinhole is such that only the scattered intensity

is detected. The PMT signal is recorded as a function of the position �L of the mirror

M1, while the center of the intensity pattern x0 and y0 is kept �xed. Then the scanning is

repeated for the same set of values of �L but for di¤erent values of x0 and y0 which are

controlled by the position of the mirror M3.
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According to Eq. (4.16), we have to adjust the coherence properties of the incident beam

such that jg(�r0 ��rscat)j is maximum. Consequently, we need �r0 = �rscat in order to

have a high interference modulation. Using Eq. (4.7) and the relation � = �fc
p
�=�L from

Section 4.3.2, it follows that

� 2fs�L
(�fc)2

x0 = �xscat; �
2fs�L

(�fc)2
y0 = �yscat;

2f 2s�L

(�fc)2
= �zscat: (4.20)

We have experimentally measured the intensity and, for each scanning set of �L, we

calculated the average intensity DI . We then divided the measured intensity by DI and

subtracted 1 in order to obtain the oscillating part of the intensity according to Eq. (4.16).

The experimental measurements are displayed in Fig. 4.6 for three di¤erent values of y0. On

each curve, we superposed its envelope calculated from the Hilbert transform of the oscillating

part of I(s) (ru;�r0). One can see from Fig. 4.6 that, in each plot, the intensity �uctuates as

�L changes. However, the oscillations of the scattered intensity have a larger amplitude for a

certain range of �L. According to Eq. (4.16), the envelope of the oscillations corresponds to

jg(�r0 ��rscat)j; the oscillation amplitude is therefore larger when �r0��rscat approaches

zero.

The envelopes of the intensity for the three di¤erent values of y0 are also plotted in

Fig. 4.7. The positions of the maxima are di¤erent, as they depend on the shape of the

function g (r). However, one can see that the envelope corresponding to y0 = �3mm has

the highest maximum value because it corresponds to the situation in which �r0 ' �rscat

at the maximum position. We experimentally measured that x0 = 0:2mm, y0 = �3mm
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Figure 4.6: Oscillating part of the scattered intensity for x0 = 0:2mm and three di¤erent values of

y0. From top to bottom, y0 = �3mm, y0 = �3:3mm, y0 = �2:6mm . The dashed line

is the intensity envelope.

and �L = 5:6mm. Since � = 1:1, fs = 62:9mm and fc = 150mm, we deduced that

�xscat = 0:005mm,�yscat = 0:08mm and�zscat = 1:63mm. A good agreement is found with

the value of �rscat measured directly: �xscat = 0mm, �yscat = 0:08mm, �zscat = 1:7mm.

The results in Fig. 4.7 clearly show that the correlation function of the complex sus-

ceptibility can be estimated from the envelope of the variations in the scattered intensity as

the parameter �r0 is changed. We obtained a fairly good signal to noise ratio in our ex-

periment since the maximum modulation is around 0.11 (see Fig. 4.7) and the background

signal is about 0.015. From Eq. (4.16), one can see that the maximum scattered intensity

modulation is m�m. In Section 4.3.1, we have established that m� = 0:5, and assuming an
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Figure 4.7: Envelopes of the scattered intensity for x0 = 0:2mm and y0 = �3mm, y0 = �3:3mm

and y0 = �2:6mm.

ideal case where the intensity pattern on the di¤user is fully modulated, i.e. m = 1, the

maximum scattered intensity modulation is 0:5. However, this estimation does not account

for multi-scattering e¤ects which can be considered as an incoherent background intensity

that is independent of �r0 and that reduces the amplitude of the modulation.

Note also that in Fig. 4.7 the FWHM of the envelope with the highest maximum

value is � 400�m. In the longitudinal direction, the FWHM of jg(r)j is the largest and

it was evaluated to be 470�m. We experimentally varied �r0 and measured the envelope

of jg(�r0 ��rscat)j. Since �rscat has components along the unit vectors x, y and z, the

envelope of jg(�r0 ��rscat)j was practically evaluated in a direction di¤erent from the lon-

gitudinal axis. For this reason, the measured width is smaller than the longitudinal one.
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Furthermore, because the z component of �rscat is much larger than the x and y compo-

nents, there is a small angle between the longitudinal axis and the direction along which

the envelope of jg(�r0 ��rscat)j was evaluated. For this reason, the measured value of the

FWHM is rather close to the longitudinal FWHM value.

4.4 Conclusion

Variable coherence tomography introduced in this chapter is a novel approach for solving

the inverse problem associated with scattering from a random potential. In this method, the

shape of the degree of spatial coherence of a beam is varied such that the �eld is correlated

in two separate volumes with an adjustable spatial separation. We have demonstrated that

such optical �elds with special coherence properties can be further used in a tomographic

procedure based on variable coherence. We successfully recovered experimentally the degree

of correlation of the complex susceptibility by varying only the shape of the degree of coher-

ence of the incident beam and measuring the scattered intensity in a single direction. Our

method for determining the pair-correlation function of a scattering potential is practically

appealing because intensity measurements are always easier to implement than measure-

ments of cross-spectral density. Furthermore, the approach requires only an incoherent light

source with adjustable intensity distribution that can be easily obtained using, for instance,

a spatial light modulator.
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In the experiments described here, the resolution is given by the dimensions of the co-

herence volume of the incident beam, which are large in comparison to the wavelength,

especially in the longitudinal direction. The longitudinal size �z of the coherence volume is

indeed related to the transverse dimension �x by the relation �z = 8�x2=�. From this last

expression, we see that, unless �x is on the order of the wavelength, �z is much larger than

�x. Moreover, the use of a beam as a probing �eld limits our treatment to paraxial angles

meaning that �x cannot be smaller than 10� and, therefore, the value of �z is at least

103�. However, we note that our method is not limited to optical �elds and it could �nd

applications, for instance, in electron microscopy where the wavelength used can be much

less than 1�A. Instead of limiting the probing �eld to small angles of incidence, one could use

a larger number of incident angles in order to improve the resolution as it will be discussed

in Chapter 6.

The reconstruction method of variable coherence tomography is based on the single

scattering approximation. In general, unfortunately, the long-range coherence properties

of the �eld do not survive multiple scattering since the visibility of the signal originating

from the single scattering is signi�cantly reduced by the incoherent intensity background.

On the other hand, as we have seen in Section 2.2.4, the radiative transfer formalism is valid

in the multiple scattering regime but it does not account for long-range correlations. Fur-

thermore, the method discussed in Chapter 3 relies on the small angle approximation which

limits the �eld propagation in the medium to distances smaller than the transport mean free

path. To bridge the gap between these extremes, we will use an approach similar to variable
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coherence tomography and we will introduce in the next chapter a sensing method capable

of probing highly di¤usive media.
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CHAPTER 5

ENHANCED BACKSCATTERING WITH SHAPED

PARTIALLY COHERENT LIGHT

As mentioned in the previous chapter, the interaction between optical waves and random

media is often developed in a multiple scattering regime. In this context, much attention has

been paid recently to the phenomenon of enhanced coherent backscattering (CBS). Since the

coherence properties of the incident �eld were shown to a¤ect the shape of the backscattering

peak [61, 62], several sensing procedures have focused on varying the degree of coherence

in order to infer various information about the target medium. For instance, broadband

sources with reduced temporal coherence length have been used to probe super�cial layers

in biological tissues [17]. Very recently, the spatial coherence properties of an incident

singular beam were changed in order to deduce the transport mean free path of a scattering

medium without measuring the background intensity level as required in conventional CBS

experiments [2].

After reviewing the origin and the basic concepts of CBS, we will show in this chapter

that both the transport mean free path and the probability of radial intensity distribution

can be retrieved by illuminating a di¤usive medium with a spatially partially coherent beam.

Similarly to the procedure of variable coherence tomography introduced in Chapter 4, the

spatial coherence properties of the incident beam are shaped such that the �eld is correlated
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in two distinct volumes separated by an adjustable distance. Notably, our technique does

not require measuring the background intensity level and it can be quite easily applied to

evaluate anisotropic di¤usion coe¢ cients.

5.1 Enhanced coherent backscattering

5.1.1 Multiple scattering and weak localization of light

Coherent enhanced backscattering originates from the constructive interferences of the

scattered waves which generate, in the far-�eld , an enhancement of intensity over the di¤use

background [63]. These interferences are produced in the exact backscattering direction

by the light following time reversal paths in the medium; it is the only coherent e¤ect

that survives the ensemble averaging over the medium�s realizations. The radiative transfer

equation fails to predict enhanced backscattering since the ladder diagrams used in this

formalism only consider short-range correlations occurring at scales on the order of the

inhomogeneities size [12]. The maximally crossed or cyclical diagrams need to be introduced

in the derivation of the scattered �eld in order to account for the long-range correlations

between the waves following identical paths but in reverse sequence of scattering events [18].

Even though the �rst clear experimental demonstration of CBS using light was made in

1984 [64], an analogous phenomenon referred to as weak Anderson localization was observed

earlier in the �eld of solid state physics in the case of electronic transport in metals. Recent
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experimental measurements on the correlation between the spatial and angular distribution

of the backscattered �eld have demonstrated the phase conjugation e¤ect of CBS [65]. It

follows that a di¤usive scattering medium acts as coherent imaging system free of aberration.

However, as it was shown in a double passage con�guration, the contrast of the image is

reduced by the background intensity [66].

Figure 5.1: (a) Scattering trajectory contributing to the incoherent background intensity. (b) Time

reciprocal path at the origin of coherent enhanced backscattering.

Let us consider a monochromatic plane wave characterized by the wave vector ka and

incident upon a multiple scattering media. In order to analyze the complete scattering

mechanism, we �rst follow the trajectory of the light along the scattering sequence composed

of the particles 1, 2, :::, n as illustrated in Fig. 5.1. The light enters the medium at the

location ri of the particle 1 and exits at the location rj of the particle n with a direction
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de�ned by the wave vector kb. The contribution of this scattering sequence to the total

complex amplitude of the �eld leaving the medium in the direction kb can be expressed as

�mijA (kb;ka) = pm exp (i�m) exp (ika � ri � ikb � rj) ; (5.1)

with pm and �m being the amplitude and the dynamical phase introduced during the

scattering process. Summing Eq. (5.1) over all the possible paths m which lead from the

initial point ri to the �nal point rj, we obtain the following amplitude

�ijA (kb;ka) =
X
m

pm exp (i�m) exp (ika � ri � ikb � rj) (5.2)

of the �eld which emerges at rj with the wave vector kb due to the impulse response of

the incident �eld at point ri. The total �eld scattered by the medium in the direction kb

corresponds to the integration of �ijA (kb;ka) over all coordinates of the initial and �nal

points ri and rj. Consequently, using Eq. (5.2), the average total intensity scattered along

kb becomes



jA (kb;ka)j2

�
=
X
i;j;k;l

hf � (ri; rj) f (rk; rl) exp [ika � (rk � ri)� ikb � (rl � rj)]i ; (5.3)

where h:::i denotes the ensemble averaging over the medium�s realizations and

f (ri; rj) =
X
m

pm exp (i�m) : (5.4)

Because of the random phase introduced by the di¤erent con�gurations of the particles

between realizations, the only terms which survive the ensemble averaging process correspond

to the situations (i = k; l = j) and (i = j; k = l). Equation (5.3) can then be written as



jA (kb;ka)j2

�
=
X
i;j

P (ri; rj) f1 + cos [(ka + kb) � (rj � ri)]g ; (5.5)
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where P (ri; rj) =


jf (ri; rj)j2

�
represents the probability distribution of intensity transfer

from point ri to the location rj.

The �rst component in the summation (5.5) is an incoherent term, independent of kb,

which corresponds to the case illustrated in Fig. 5.1(a), where conjugated waves follow the

same scattering sequence. These trajectories are the only ones taken into account by the

radiative transfer equation or the di¤usion equation. In addition to this constant intensity

background, the second component in the summation (5.5) relates to the interference between

waves travelling along reciprocal paths as shown in Fig. 5.1(b). If ka + kb 6= 0 or, more

precisely, if the angle � represented in Fig. 5.1(b) is larger than, typically, few degrees as we

will see in the next section, then the summations over rj and ri average the cosine term to zero

and only the incoherent background intensity remains. However, in the exact backscattering

direction, i.e. ka = �kb, the cosine function is identically 1 and the wave travelling along a

scattering sequence interfere constructively in the far-�eld with the conjugated wave which

follows the same sequence in reverse order. The intensity in the backscattering direction is

then enhanced and its value is twice the value of the background intensity.

5.1.2 Angular dependence in the di¤usion approximation

The exact shape of the re�ected intensity


jA (kb;ka)j2

�
, also called albedo �, depends

on the nature of the medium and the form of the probability distribution P (ri; rj). In

general, P (ri; rj) obeys a transport equation which is well approximated by the di¤usion
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equation when considering multiple scattering trajectories far enough from the interface.

The evaluation of P (ri; rj) reduces then to a random walk problem where the probability

of joining the points ri and rj without crossing the interface of the medium needs to be

evaluated. In the case of a semi-in�nite disordered medium occupying the half space z � 0,

the di¤usion equation (2.51) gives [67]

P (�; zi; zj) =
1

4�cD

24 1q
�2 + (zi � zj)

2
� 1q

�2 + (zi + zj + 2z0)
2

35 ; (5.6)

where D is the di¤usion coe¢ cient, c is the wave speed and the parameter z0 = 2lt=3 is

imposed by the boundary conditions and depends on the transport mean free path lt. In

Eq. (5.6), the medium was assumed to be homogeneous such that P is a function of the

transverse separation �= ri?�rj?, where r? is the projection of r onto the interface � of

the medium de�ned by the plane (x; y).

Using Eq. (5.5) and accounting for the attenuation of the incident and emerging waves

by an exponential factor, the albedo can be expressed as [18, 67]

� (sb; sa) =
c

4�l2s

ZZ 1

0

Z
�

exp

�
� zi
�als

�
exp

�
� zj
�bls

�
P (�; zi; zj) (5.7)

� f1 + cos [k (sb? + sa?) � �+k (�a � �b) (zi � zj)]g d2�dzidzj;

where s? is the projection onto the plane (x; y) of the unit vector s along k and � = jcos (�)j

is the absolute value of the projection of s along z. Equation (5.7) was derived for isotropic

scattering and, in this case, ls represents the scattering mean free path. Moreover, considering

paraxial directions for the incident and scattered �elds, we have, in a good approximation,
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�a = �b = 1 in Eq. (5.7). The albedo can then be written as

� (sb; sa) = �d + �c (sb; sa) ; (5.8)

with the incoherent albedo �d de�ned as

�d =
c

4�l2s

Z
�

P (�) d2�; (5.9)

and the coherent albedo �c (sb; sa) which takes the form

�c (sb; sa) =
c

4�l2s
Re

�Z
�

P (�) exp [ik (sb? + sa?) � �] d2�
�
: (5.10)

As one can recognize from Eq. (5.10), the shape �c of the coherent backscattering cone

is proportional to the Fourier transform of the function

P (�) =

ZZ 1

0

exp

�
�zi + zj

ls

�
P (�; zi; zj) dzidzj; (5.11)

which constitutes the probability distribution of joining two points at the surface of the

medium separated by the vector �. The integral in Eq. (5.10) can also be seen as an

in�nite superposition of interference patterns generated by Young pinholes separated by the

distance �. For each pair of pinholes, the periodicity of the modulation is set by � while the

amplitude depends on P (�). The integration over � and the ensemble averaging over the

medium realizations wash out the interferences except in the exact backscattering direction

where the �elds interfere constructively.

Substituting Eq. (5.6) into Eq. (5.7), the albedo � (sb; sa) becomes [68]

� (sb; sa) =
3

8�

�
1 +

2z0
lt
+

1

(1 + k?lt)
2

�
1 +

1� exp (�2�k?lt)
k?lt

��
; (5.12)
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where k? = k jsb? � sa?j and the scattering mean free path ls has been replaced by lt based

on heuristic arguments in order to allow for anisotropic scattering when the particles size

is of the order or larger than the wavelength. The albedo, calculated using Eq. (5.12), is

represented in Fig. 5.2 for a plane wave coming at normal incidence on a di¤usive medium

characterized by the transport mean free path lt = 100�m. We observe that the intensity at

s? = 0 is twice the background intensity at large angles. The angular width of the cone is

on the order of �= (2�lt) [68].
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Figure 5.2: Angular intensity � (sb; sa) backscattered from a di¤usive medium characterized by

lt = 100�m and illuminated by a monochromatic plane wave at normal incidence, i.e.

sa = z. The albedo is normalized to the background intensity at large angles.

The absorption of the medium can also be taken into account by formally replacing

k? by
p
k2? + 3= (lalt), with la being the absorption length [18]. Further treatments have
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introduced corrections to the shape (5.12) of the coherent backscattering peak due to total

internal re�ection and boundary e¤ects [69, 70].

5.1.3 Polarization of the enhanced backscattering peak

The previous description of CBS was based on the scalar approximation, which arises

from the use of the di¤usion equation. In this framework, the polarization of the incoming

�eld is neglected, as well as the changes in the polarization state of the photons travelling

along the scattering trajectories. Due to multiple scattering, the polarization of the �eld

becomes randomized after some propagation length [71]. This depolarization process modi�es

the exact reciprocity of the time reversal paths, therefore modifying the interference e¤ect.

Consequently, the vectorial nature of the electromagnetic �eld needs to be considered in

order to account for the depolarizing e¤ect of multiple scattering [72, 73].

The coherent albedo �kc observed in the co-polarized channel can be expressed as a super-

position of the scalar coherent albedo de�ned in Eq. (5.10) and a broad contribution due to

scattering paths shorter than the depolarization length [18, 74]. The cross-polarized coherent

albedo �?c depends on the transfer of intensity from one polarization to the other. For the

case of Rayleigh scattering, the enhancement between �?c and the incoherent background is

smaller than for the co-polarized channel. However, as the size of the scatterers increases,

the di¤erence between �kc and �?c reduces. In general, however, Eq. (5.12) gives good results

if the backscattered intensity is examined in the co-polarized channel at small angles [18].
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5.2 Enhanced backscattering of partially coherent light

Figure 5.3: Schematic of the experimental setup used for enhanced backscattering with shaped

spatially partially coherent light.

Let us consider the experimental setup sketched in Fig. 5.3 where a quasi-monochromatic

spatially incoherent source S with intensity distribution Q (x) is placed in the focal plane

of a collecting lens Ls. The second-order coherence properties of the beam generated after

Ls are characterized by the cross-spectral density W (r; r0) = hE� (r)E (r0)i where r and r0

are position vectors in space and the averaging h:::i is taken over the stationary ensemble

fE (r)g of �eld realizations. Using the van Cittert-Zernike theorem expressed in Eq. (2.19),

76



W (r; r0) depends on Q (x) according to the relation

W (r; r0) =

Z
S

Q (x) exp

�
i
k

f
x � (r� r0)

�
d2x; (5.13)

where k is the wave number and f is the focal length of Ls. As one can see from Eq. (5.13),

W (r; r0) depends only on the separation �= r� r0, thus one can de�ne W (r; r0) = g(�).

Considering a source of radius R with intensity distribution such that Q (x) = 1 if jxj � R

and equals zero otherwise, the function g illustrated in Fig. 5.4 satis�es

g(�) = 4�R2
J1 (u)

u
; (5.14)

with J1 being the �rst order Bessel function and u = kR j�j =f . In a plane transverse to

the direction of propagation of the beam, the width of g(�) is approximately �f= (2R) and

relates to the transverse coherence length of the �eld.

As represented in Fig. 5.3, a polarizer P1 and a quarter-wave plate placed after Ls allow

us to vary the state of polarization of the beam before it enters the shear interferometer

composed of a polarizing cube beam splitter PBS and two mirrors M1 and M2. At the

output of the interferometer, the resulting beam is a superposition of two overlapping replicas

of the incident �eld propagating along the same mean direction z and spatially separated by

an adjustable distance �0. The two orthogonally polarized replicas are projected along the

same polarization state by a second polarizer P2. The resulting beam has a cross-spectral

density of the form

W�0 (�) = g(�) +
m

2
exp (i�) g(�� �0) +

m

2
exp (�i�) g(�+ �0); (5.15)
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Figure 5.4: Normalized representation of the coherence function g de�ned in Eq. (5.14) and plotted

for the parameters R = 1:5mm, � = 532nm and f = 200mm.

where m = 2
p
I1I2= (I1 + I2) accounts for the modulation and � for the phase of the fringe

pattern generated by the interference between the two �elds of intensity I1 and I2 corre-

sponding to the two paths of the interferometer. The phase � can be adjusted by varying

the orientation of the quarter wave plate and the polarizers. Using Eq. (2.19), the beam

characterized by the cross-spectral density W�0 can equivalently be described as a superpo-

sition of uncorrelated plane waves with propagating direction s0 and an average intensity

given by

I (s0;�0) =
1

2
Q (fs0?) [1 +m cos (ks0?��0 � �)] ; (5.16)

where s0? is the projection of s0 along z.
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The beam is incident upon a scattering medium characterized by the albedo � (s; s0),

where s and s0 relate to the propagation direction of the scattered and incident �elds,

respectively. The intensity Ib of the �eld backscattered in the direction s and averaged over

both the incident �eld and di¤erent realizations of the scattering medium can be expressed

as a convolution [61]

Ib (s;�0) =

Z
js0?j�1

� (s; s0) I (s0;�0) d
2s0?; (5.17)

between the angular spectrum I (s0;�0) of the incident �eld and the albedo � (s; s0). Substi-

tuting Eqs. (5.8) and (5.16) into Eq. (5.17), the distribution of the backscattered intensity

can be expressed as

Ib (s;�0) =
1

2

Z
js0?j�1

�dQ (fs0?) [1 +m cos (ks0?��0 � �)] d2s0?

+
1

2

Z
js0?j�1

�c (s; s0)Q (fs0?) d
2s0?

+
m

2

Z
js0?j�1

�c (s; s0)Q (fs0?) cos (ks0?��0 � �) d2s0?: (5.18)

Equivalently, Ib can be written as a superposition of three di¤erent intensity terms

Ib (s;�0) = Id (�0) + Ic (s) + eIc (s;�0) ; (5.19)

where Id, Ic and eIc correspond to the �rst, second and third integrals in Eq. (5.18), re-
spectively. In the decomposition (5.19) of the backscattered intensity Ib, the �rst term Id

is a di¤use background independent of the scattering angle and proportional to the total

intensity of the incident beam. Using Eq. (5.13), Id can be expressed as

Id (�0) = �d
�
g(0) +m jg (�0)j cos

�
 g (�0)� �

�	
; (5.20)

79



where  g is the phase of g. Note that  g = 0 in the case where g is real and takes the form

of Eq. (5.14); however, the function g might also be complex if Q (x) is not constant for

jxj � R.

The second term Ic in the right hand side of Eq. (5.19) relates to the coherent backscat-

tering enhancement of intensity, which is observed when m = 0 in Eq. (5.16). En-

hanced backscattering of partially coherent light has been studied previously for an incident

Gaussian-type cross-spectral density [61]. This situation is equivalent to having an inten-

sity distribution Q (fs0?) across the source with a Gaussian pro�le. Partially coherent light

was shown to reduce and deform the shape of the enhancement peak as compared to the

situation where a plane wave is incident upon the di¤usive medium [61]. This suppression

of the constructive interference of time reversed paths in the medium is due to the lack of

spatial coherence in the phase of the incident �eld for distances longer or on the order of the

transport mean free path. Only small scattering trajectories, where the �eld enters and exits

within one coherence area, maintain their phase relationship and contribute to the coherent

backscattering. The peak generated in this case has a reduced amplitude and a broader

angular width. Using Eqs. (5.10) and (5.13), the intensity Ic takes the form

Ic (s) =
c

4�l2s

Z
P (�) g (�) exp [iks? � �] d2�: (5.21)

Note that Ic (s) is real since g is Hermitian. Because the amplitude of g goes to zero as

� increases, g acts as a �ltering function in the integral (5.21). It follows that only the

trajectories with entry and exit points separated by a distance � smaller than the width of

g (�) will contribute to the enhancement peak Ic (s).

80



Finally, the third term eIc in the right hand side of Eq. (5.19) is an angularly modulated
intensity whose amplitude of modulation is proportional to the probability P (�0) for the

light to enter the medium at a point r and exit at the location r+ �0. Substituting Eq.

(5.10) into the last integral of Eq. (5.19), eIc can be expressed as
eIc (s;�0) = m

2

c

4�l2s

Z
js0?j�1

Z
�

Q (s0)P (�) (5.22)

� cos [k (s? + s0?) � �] cos (ks0?��0 � �) d2�d2s0?:

Using Eq. (5.13) in combination with the identity 2 cos (a) cos (b) = cos (a+ b) + cos (a� b)

and the Hermitian property of the function g, the relation (5.22) becomes

eIc (s;�0) = m
c

4�l2s
Re

�Z
P (�) g (�� �0) exp (iks? � �+i�) d2�

�
: (5.23)

De�ning the new variable u = �� �0, Eq. (5.23) can then be written as

eIc (s;�0) = m j� (s;�0)j cos [ks?��0 +  (s;�0) + �] ; (5.24)

where  (s;�0) is the phase of the function � de�ned as

� (s;�0) =
c

4�l2s

Z
g(�)P (�+ �0) exp [iks?��] d2�: (5.25)

In Eq. (5.25), g(�) acts as a �ltering function which, in the integral, selects only values of

j�j smaller than the width of g. Assuming that the variations of P are much slower than the

variations of g or, in other words, g is narrow in comparison to P , then � (s;�0) will depends

on the value of P (�) for � � �0. Furthermore, in the limiting case where the transverse

coherence of the incident �eld tends to zero, the function g is well approximated by a Delta
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function in Eq. (5.25) and we obtain

� (s;�0) =
c

4�l2s
P (�0) : (5.26)

The intensity eIc is modulated angularly according to the cosine function in Eq. (5.24).
The periodicity of the modulation is inversely proportional to �0 while the amplitude is given

by the modulus of � (s;�0), which is proportional to P (�0) in the limiting case where g is

a narrow function compared to P . Consequently, measuring the amplitude of the modu-

lated intensity eIc leads directly to the value P (�0) of the probability for the light to enter
at a location r and exit at the point r+ �0. This result di¤ers from the typical coherent

backscattering experiment, where a single plane wave illuminates the sample. In this situa-

tion, the coherent albedo de�ned in Eq. (5.10) receives contributions from all the possible

time reversal trajectories and, therefore, it does not provide directly the resolved probability

P (�).

The two types of scattering trajectories contributing to the enhanced coherent peak are

illustrated in Fig. 5.5(a). The intensity Ic (s) in Eq. (5.19) corresponds to the short-time

reciprocal paths denoted as P1. For these scattering trajectories, the light enters and exits

within one speckle B and the constructive interferences generate in the far zone an intensity

enhancement with the same angular width as the source. The term eIc (s;�0) relates to the
longer reciprocal paths P2 where the light enters at a speckle A and leave the medium within

a speckle B located at a distance �0 from A. Since the �elds in A and B are correlated,

the waves travelling along P2 produce, in the far zone, a modulated interference pattern
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whose periodicity depends on the separation �0. In Fig. 5.5(b), the photon path distribution

function is illustrated for the light entering and exiting the medium at two locations separated

by �0. As the amplitude of �0 increases, the light probes deeper layers inside the di¤usive

sample, thus providing depth sensitivity to our technique.

Figure 5.5: (a) Scattering paths contributing to the coherent backscattering peak when the incident

light has a shaped degree of spatial coherence. (b) Photon migration path distributions

for the light entering and exiting at points separated by �0 [75]. The medium occupies

the half space z � 0 and the coordinate units are normalized to the di¤usive light

migration length Leff = 1=�eff .

Using Eqs. (5.13) and (5.25) and substituting Eqs. (5.20), (5.21) and (5.24) into Eq.

(5.19), the distribution of total backscattered intensity becomes

Ib (s;�0) = �dW�0 (0) + � (s;0) +m j� (s;�0)j cos [ks � �0 +  (s;�0) + �] : (5.27)
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The �rst term in the right hand side of Eq. (5.27) is the di¤use background intensity

while the two last terms corresponds to the modulated enhanced backscattering peak. As

shown in Fig. 5.6, Ib (s;�0) is evaluated using Eq. (5.17) and the expression (5.12) for the

albedo � (s; s0). The calculation is performed for two con�gurations of the source, with the

distance between correlated speckles set to �0 = 100�m and �0 = 200�m, respectively. In

both situations, the transport mean free path is lt = 100�m. As expected for the case of an

incident partially coherent �eld [61], the magnitude of the coherent peak is greatly reduced

and reaches only a few percent compared to the factor two enhancement obtained when the

incident �eld is a plane wave. Since the magnitude of P (�0) decreases as �0 increases, we

observe a reduction of the modulation amplitude when �0 is varied from 100�m to 200�m.

5.3 Experimental results for a di¤usive medium

To demonstrate the feasibility of the inversion procedure, an experiment was conducted

on a water suspension of 200nm diameter polystyrene microspheres. The transport mean

free path in the solution was evaluated to be lt = 100�m. The spatially incoherent source was

generated by illuminating a rotating di¤user with a coherent laser beam at the wavelength

� = 532nm. The di¤user was placed in front of a circular aperture with radius R = 1:5mm,

which was itself located at a focal distance f = 200mm from the lens Ls. The degree

of spatial coherence of the incident partially coherent beam (PCB) was shaped using the

interferometer illustrated in Fig. 5.3 and the direction of linear polarization of the beam

84



s0x [mrad]

s 0y
 [

m
ra

d
]

­10 0 10

­10

­5

0

5

10
­40 ­20 0 20 40

1

1.01

1.02

sx [mrad]

s0x [mrad]

s 0y
 [

m
ra

d
]

­10 0 10

­10

­5

0

5

10
­40 ­20 0 20 40

1

1.01

1.02

sx [mrad]

Figure 5.6: Distribution of backscattered intensity Ib (s;�0) normalized to the background inten-

sity. The calculation is performed for an incident �eld characterized by the angular

distribution I (s0;�0) with �0 = 100�m (top) and �0 = 200�m (bottom). The di¤usive

medium has a transport mean free path lt = 100�m while the source, with a radius set

to Rs = 1:5mm, is located at a focal distance f = 200mm from Ls.
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was set by the polarizer P2. The experimental angular intensity spectrum of the PCB is

represented in Fig. 5.7 for the interferometer detuned such that �0 = 220�m.
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Figure 5.7: Angular intensity distribution I (s0;�0) of the incident partially coherent beam when

the distance between correlated speckle is �0 = 220�m.

As illustrated in Fig. 5.8, the PCB goes through a non polarizing beam splitter NPBS

before illuminating the scattering medium. The diameter of the beam impinging on the

cuvette was around 2cm. The re�ected part of the PCB by the NPBS was dumped so that

it would not to a¤ect the measurements. Furthermore, to avoid a direct re�ection from

the air-glass interface, the 10mm long cuvette containing the water suspension was slightly

titled. After re�ection from the NPBS, the scattered light was collected by the lens Lc

with focal length fc = 200mm. Using a half-wave plate �=2 and a polarizing beam splitter

PBS, the scattered light was separated into a co-polarized and a cross-polarized channel. In

the co-polarized channel, the intensity pro�le Ib (s;�0) of the coherent backscattering peak
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was measured along the axis x in the focal plane of Lc with a photomultiplier tube (PMT)

connected to a scanning �ber. Located away from the focal plane of Lc in the cross-polarized

channel, another PMT acted as a reference detector and recorded the variations of the total

intensity Iref . The intensities recorded were averaged over the ensemble of realizations by

setting the PMTs�integration time much larger than the time scale of the �uctuations of

both the scattering medium and the PCB. In addition to the time averaging, the extended

size of the beam incident on the cuvette provided also a spatial averaging.

Figure 5.8: Schematic of the experimental detection setup used for enhanced backscattering with

shaped spatially partially coherent light.

The measured intensity Ib (sx;�0) was divided by Iref in order to eliminate unwanted

�uctuations of intensity, which might be caused by �uctuations in the power of the laser,

vibrations of the rotating di¤user, or changes in the particles density due to uneven mixing.
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Moreover, since the di¤erent collecting optics were all tilted in order to avoid undesired

re�ections, the angular intensity response was not constant across the considered range

�10mrad. To compensate for this e¤ect, the detector was scanned in the focal plane of Lc

when the source was not modulated, i.e. m = 0. The measured intensity Ib (sx)
��
m=0

served

as a baseline and the corrected backscattered intensity pro�le became

Ib (sx;�0)
��
corr

=
Ib (sx;�0)

Iref Ib (sx)
��
m=0

: (5.28)

The modulated intensity eIc (sx;�0) is then proportional to Ib (sx;�0)��corr � Is, where Is is

the average of Ib (sx;�0)
��
corr

over sx.
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Figure 5.9: (solid line) Modulated part eIc (sx;�0) of the angular scattered intensity measured for
�0 = 72�m and �0 = 142�m, respectively. (dashed lined) Fit of the experimental data

with a cosine function in order to determine the amplitude of the modulation.

The intensities from the two detectors were recorded for di¤erent separations �0 between

correlated speckles. The resulting intensity eIc (sx;�0) is shown in Fig. 5.9 for �0 = 72�m and

88



�0 = 142�m, respectively. The amplitude j� (s;�0)j of the modulation was deduced by �tting

the data with the function A cos (ksx�0 + �) + B, where A needs to be determined, and, B

and � are unknown parameters which compensate for a possible shift of the measurements.

The �tting functions correspond to the dashed curves in Fig. 5.9 and the results for the

amplitude A are illustrated in Fig. 5.10. The validity of the experimental data was checked

by comparing it with the analytical solution for P (�) obtained from the Fourier transform of

Eq. (5.10) using Eq. (5.12). The numerical calculation was performed for lt = 70, 100 and

130�m and the results were all multiplied by the same constant factor in order to compare

the curves with the normalized experimental data.
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Figure 5.10: Experimental measurement of P (�) as a function of the transverse separation �. The

dashed curves correspond to the analytical solution for P (�) obtained from Eqs. (5.10)

and (5.12) for lt = 70, 100 and 130�m.

89



Figure 5.10 illustrates the good agreement between the analytical and experimental data,

demonstrating that the probability of radial intensity distribution P (�) can be retrieved by

shaping the degree of spatial coherence of the illuminating �eld. The noise of the photon

counting detectors was close to shot noise; consequently, the dynamic range of the measure-

ment was limited by the maximum frequency rating of the PMTs. However, the intensity

resolution can be improved using a fast detector and modulating the direction of detection

s with, for instance, a scanning mirror.

5.4 Conclusion

In this chapter, we have demonstrated that shaping the degree of spatial coherence of

the incident light enables the selection of speci�c photon trajectories in a multiple scattering

medium. Contrary to recent techniques using a low temporal coherence illumination [17]

or an incident vortex beam [2] where only shallow layers are being probed, our procedure

can selectively target both shallow and deep layers, which are associated with short and

long scattering paths, respectively. The principle of enhanced backscattering with shaped

partially coherent light is similar to the sensing procedure where the light emitted from a

source �ber is collected by a detector �ber, both �bers being located at the surface of a

sample and separated by an adjustable distance [76]. In our technique however, there is an

inherent advantage due to the signi�cant spatial averaging obtained by using an extended

incident beam where each pair of correlated speckles behaves as a pair of source-detector
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�bers. A more accurate measurement of the scattering parameters is then expected. The

depth resolved capability of our procedure may be of great interest for structural studies of

multilayered or anisotropically inhomogeneous materials which are usually encountered in

biomedical applications.

Finally, it should be noted that the correlated speckles composing the partially coherent

incident �eld had the same polarization in our experiment. Using a similar polarized Sagnac

interferometer, correlated speckles with orthogonal states of polarization could also be gen-

erated. Time reversal paths with cross-polarized entering and exiting photons would then

be preferentially excited, thus, revealing the polarized nature of the photon di¤usion. Other

coherent manifestations of the localization of light, such as long-range correlations or the

memory e¤ect, also appear in multiple scattering media in both the forward and backward

directions [67]. Following the same principle introduced in this chapter, an incident �eld

with shaped degree of spatial coherence could be used to enhance the in�uence of speci�c

light trajectories. However, these coherent e¤ects depend on the probability of scattering

paths crossing, which is extremely small when the transport mean free path is much larger

than the wavelength. Localization of light is yet to be observed and this subject remains a

very active research topic [77].

In both variable coherence tomography and the coherent backscattering technique pre-

sented in this chapter, the resolution was determined by the average size of the speckle which

is typically larger than 10� in the transversal dimension. By increasing the angular spec-
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trum of the incident �eld, we will demonstrate in the next chapter that the spatial correlation

properties of a medium can be reconstructed with subwavelength resolution.
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CHAPTER 6

VARIABLE COHERENCE SCATTERING MICROSCOPY

Optical techniques for imaging and structural characterization are widespread. In the

preceding chapters, we have demonstrated a number of sensing methods based on using

the spatial coherence properties of optical radiations. In general, imaging techniques rely

on propagating �elds and, therefore, their spatial resolution is limited by the radiation�s

wavelength. Recent advances in near-�eld optics have led to the development of many

microscopy techniques for achieving imaging with a spatial resolution beyond the classical

di¤raction limit. Atomic-force microscopy, near-�eld scanning optical microscopy [19] and

photon scanning tunneling microscopy [78] have been successful in recovering images of

subwavelength objects. However, this improved resolution comes at the expense of the most

appealing characteristic of optical imaging, namely its parallel processing capability. Because

a scanning probe operation is required to build up the image point by point, the approach

is time consuming and, moreover, it is practically restricted to imaging of very small areas.

In many situations of practical interest, where conventional imaging is irrelevant, devel-

oping a tomographic procedure with subwavelength resolution and being able of measuring

the second-order statistics of optical properties can be of considerable interest. This could

be especially bene�cial in determining structural organizational information about objects

such as large nanostructure arrays. For instance, correlation measurements on monolayers of
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biological cells have been recently performed demonstrating the increased medical interest in

investigating the morphology of subcellular structures as well as long-range correlations be-

tween cells [79]. In this last experiment, however, the proposed method was model dependant

and could hardly be applied to arbitrary scattering objects. Nevertheless, the development

of nondestructive microscopic techniques is of major interest for characterizing biological me-

dia. In this context, it is worth mentioning that total internal re�ection tomography [80] is

an interesting approach which, unfortunately, requires challenging measurements of the opti-

cal �elds. We note that an alternative method [81] based on power extinction measurements

has been proposed but not demonstrated.

In this chapter, we introduce and demonstrate the principle of variable coherence scattering

microscopy (VCSM). In this novel microscopy, the object under test is probed by an evanes-

cent �eld which has its spatial coherence properties adjustable at subwavelength scales. Our

results are remarkable in the sense that subwavelength resolution is achieved from simple

far zone intensity measurements. Notably, the technique we are illustrating here can be

implemented without any moving parts for both illuminating the sample and detecting the

scattered light.

6.1 Spatial coherence shaping of an evanescent �eld

We have demonstrated in Chapter 4 that the degree of spatial correlation of a quasi-

homogeneous scattering medium can be retrieved from simple intensity measurements [60].
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The resolution of the reconstruction was limited by the size of the coherence volume, whose

dimensions can exceed many wavelengths in the case of a propagating beam-like �eld. Ex-

ploiting the high frequency content of evanescent waves, a spatial resolution beyond the

di¤raction limit can be achieved [80, 82]. In the newly proposed method, an ensemble of

evanescent waves are incoherently superposed in order to generate a �eld of speckles smaller

than the wavelength. Moreover, in this �eld, the correlation properties can be adjusted

between speckles separated by distances as large as several tens of wavelengths.

Let us consider an incoherent superposition of evanescent plane waves de�ned by their

complex wave vectors k =(q;i
) where q is the transverse part and 
 =
p
q2 � k20. Evanes-

cent waves are generated at the interface (x; y; z = 0) between air (z � 0) and a dielectric

medium (z < 0) with a refractive index n. Consequently, the modulus of the transverse wave

vector q is con�ned to the region � de�ned by k0 � jqj � nk0. Let us further consider that

the intensity of the evanescent �eld is modulated in the k domain so that the plane wave

de�ned by the transverse wave vector q has the intensity

Ie (q) =
1

2
Q (q) (1 +m cos [q ���0 � �]) ; (6.1)

where m is a modulation factor taking values between 0 and 1, and Q (q) is positive if q 2 �

and equals zero otherwise. The periodicity of the intensity modulation is adjusted by the

value of the vector ��0, while the phase � is determined by the condition q ���0 = 0.

Substituting Eq. (6.1) into Eqs. (2.21) and (2.22), the cross-spectral density of the �eld

resulting from the incoherent superposition of evanescent plane waves with intensity Ie (q)

95



takes the form

W (i) (r1; r2) = � (��; z1; z2) +
m

2
exp [�i�]� (�����0; z1; z2) (6.2)

+
m

2
exp [i�]� (��+��0; z1; z2) ;

where z1 and z2 are the projections of r1 and r2 along the z axis, and �� = r?1 � r?2 with

r? being the projection of r onto the (x; y) plane. When the modulation factor m equals

zero in Eq. (6.1), the incident �eld is spatially coherent in a volume de�ned by the function

�:

� (��; z1; z2) =
1

2

ZZ 1

�1
Q (q) exp [�
 (z1 + z2)] exp [�iq ���] d2q: (6.3)

The cross-spectral densityW (i) (r1; r2) of the evanescent �eld in the plane of the interface

z = 0 is illustrated in Fig. 6.1. When the intensity Ie (q) is modulated, i.e. whenm is greater

than zero, a secondary peak of coherence arises at a position ��0 from the main coherence

peak centered at �� = 0. The separation ��0 can be continuously adjusted by varying the

intensity Ie (q). The incident �eld induces coherent scattering from regions in the medium

which are separated by a distance of several wavelengths corresponding to the norm j��0j.

Due to the evanescent nature of the incident �eld, only the high frequency components of

the complex susceptibility corresponding to subwavelength features are excited during the

scattering process.

For subwavelength structures and optically thin media it is appropriate to regard the

scattering as being weak and therefore the �rst-order Born approximation can be used. The

intensity scattered in the direction of the wave vector ks and at a distance r in the far zone
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Figure 6.1: Normalized cross-spectral density of the evanescent �eld as evaluated from Eq. (6.3)

for z1 = z2 = 0, Q (q) = 1 and k0 � jqj � nk0.

of the medium is given by Eq. (2.38)

I(s)(ks) =
k20
r2

ZZ
D

C (r1; r2)W
(i) (r1; r2) exp [iks � (r1 � r2)] d3r1d3r2; (6.4)

where C (r1; r2) is the spatial correlation of the complex susceptibility � (r) de�ned in Eq.

(2.36):

C (r1; r2) = h�� (r1) � (r2)i� : (6.5)

From Eq. (6.2), one can see that the cross-spectral density W (i) (r1; r2) depends only

on the transverse separation �� = r?1 � r?2. It is therefore relevant to consider a quasi-

homogeneous medium [4] with transversely invariant statistical properties, namelyC (r1; r2) =

A [(r?1 + r?2) =2]� (��; z1; z2) where � is the degree of spatial correlation of the complex

susceptibility and A (r?) = C (r?; r?) is the second moment of C in the plane z = 0. The

function A (r?) is assumed to vary more slowly with r? than the variation of � (��; z1; z2)
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with ��. From Eqs.(6.4) and (6.2), it follows that the scattered intensity depends on ��0

as

I(s)(ks;��0) = G(ks;0) +m jG(ks;��0)j cos [ks? ���0 � �+ �G(ks;��0)] ; (6.6)

with �G(ks;��0) being the argument of the function G(ks;��0) de�ned as

G(ks;��0) =
k20
r2
A0

ZZ 1

�1

ZZ zm

0

� (�����0; z1; z2)� (��; z1; z2) (6.7)

� exp [iks? ���+iksz (z1 � z2)] d
2��dz1dz2:

In Eq. (6.7), zm is the longitudinal extend of the medium. The integration over ��

can be extended to in�nity because, in practice, the transverse dimensions of the object are

much larger than both the transverse width of � (��; z1; z2) and the range of values taken by

j��j for which � (��; z1; z2) is nonzero. The proportionality factor A0 is de�ned as A0 =
R

A (r?) d
2 r? and is proportional to the transverse area of the object if A is constant.

Equation (6.6) along with Eq. (6.7) constitutes the basis of the variable coherence

scattering microscopy. As the coherence properties of the illuminating evanescent �eld are

varied, the scattered intensity in any given direction �uctuates accordingly to the correlation

properties of the medium. Conventional envelope and phase reconstruction can be used to

recover G(ks;��0) and to infer information about the degree of spatial correlation �. Al-

though a complete inversion of Eq. (6.7) requires a priori knowledge about the z dependence

of � (��; z1; z2), some practical situations could lead to a simpler expression of Eq. (6.7),

which can be readily inverted. This is indeed the case if the correlation function is inde-

pendent of z or if the sample is much thinner than the wavelength and no correlation along
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the z direction can be assumed. However, even in the general case, structural informations

about the sample can be obtained from the expression of G(ks;��0) as we will show in the

next section.

6.2 Experimental results on a monolayer of microspheres

To demonstrate the feasibility of the inversion procedure, a proof-of concept experiment

has been conducted. In order to generate evanescent waves with transverse wave vectors

q 2 �, we used the spherical geometry shown in Fig. 6.2. The light emitted by a hemi-

spherical secondary source H is collected by a hemisphere prism L concentric with H. The

dimensions of H and L are such that the surface of the source lays in the focal surface of the

prism. The radius and the refractive index of L are respectively RL = 21:5mm and n = 1:78.

The intensity distribution across the source is modulated according to Eq. (6.1). Conse-

quently, the light originating from a point on the spherical source H generates an evanescent

plane wave at the planar interface (x; y) of the prism. The spatial incoherence of the source

is obtained by slightly vibrating H with a much smaller time scale than the duration of the

intensity measurements.

A frequency doubled Nd:Yag laser (� = 532nm) and a Sagnac interferometer were used

to generate the fringe pattern which was then projected onto a hemispherical di¤user used

as a secondary source. In order to adjust the modulation frequency ��0 of the intensity

Ie (q) in Eq. (6.1), the spacing of the fringes was varied by translating one of the mirrors of
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the Sagnac interferometer. The light scattered by the sample in the z direction, i.e. ks? = 0,

is collected by a multimode �ber located in the focal plane of a 10x microscope objective.

The objective was placed above the object for convenience but the detection could have been

done as well from below as represented in Fig. 6.2. The diameter of the �eld of view seen

by the �ber was around 1mm.

Figure 6.2: Schematic of the setup used to generate evanescent waves with transverse wave vectors

k0 � jqj � nk0:

The scattering system exempli�ed here is a monolayer of polystyrene microspheres of di-

ameter d = 0:97�m and index of refraction ns = 1:59. Using conventional imaging analysis,

we estimated the packing fraction to be � = 0:7 by taking several microscope images of the

sample. The angular light scattered from such a monolayer of spheres is well described in

the single scattering approximation [83] and it can be expressed as the product between the
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single particle phase function P (K) and the structure factor S (K) describing the spheres�

arrangement in the monolayer. We denote as I(m) (ksz;q) = P (ksz;q)S (q)Q (q) the inten-

sity scattered in the direction z by the monolayer of spheres illuminated by an evanescent

waves with incident wave vector k =(q;i
) and intensity Q (q). The expression for the scat-

tered intensity in Eq. (6.4) establishes the following relationship between I(m) (ksz;q) and

an e¤ective spatial correlation function C describing the medium:

I(m) (ksz;q) =
k20
r2

Z
D

Z
D

C (r1; r2)W
(i)
p (r1; r2) exp [iksz (z1 � z2)] d

3r1d
3r2: (6.8)

In formula (6.8), W (i)
p (r1; r2) = Q (q) exp [�iq� (r?1 � r?2)] exp [� (z1 + z2) 
] represents

the cross-spectral density of an evanescent plane wave with incident wave vector k =(q;i
)

and intensity Q (q). Using Eqs. (6.3), (6.7), (6.8) and the expression for W (i)
p , the function

G(ksz;��0) can be regarded as the Fourier transform of I(m) (ksz;q) with respect to q,

namely

G(ksz;��0) =

Z 1

�1
I(m) (ksz;q) exp (�iq ���0) d2q: (6.9)

Being proportional to Q (q), I(m) (ksz;q) vanishes for q =2 � in the previous integral. More-

over, since the function I(m) (ksz;q) is real and even with respect to q, G(ksz;��0) is real

and, using Eq. (6.6), the intensity I(s)(ksz;��0) scattered in the z direction becomes

I(s)(ksz;��0) = G(ksz;0) +mG(ksz;��0) cos (�) : (6.10)

It follows that I(m) (ksz;q) can be determined by Fourier transforming G(ksz;��0) ob-

tained from the intensity data I(s)(ksz;��0). Since the function I
(m) (ksz;q) depends only

101



on the modulus jqj, the procedure is further simpli�ed using a Hankel transform of zero

order and the inversion formula becomes

I(m) (ksz;q) =
1

m cos (�)

1Z
0

�
I(s)(ksz;��0)�G(ksz;0)

�
J0 (q��0)��0d��0; (6.11)

where G(ksz;0) is the value of the scattered intensity for large ��0 where the function

G(ksz;��0) is assumed to vanish.

I(s)(ksz;��0) was experimentally measured for��0 ranging from 0 to 30�m and I
(m) (ksz;q)

was obtained as a the result of the Hankel transform according to Eq. (6.11). The result of

this procedure is presented in Fig. 6.3 for q ranging from k0 = 11:8nm
�1 to nk0 = 21nm�1.

Also shown as an inset is the normalized intensity I(s) obtained experimentally. In order to

check the validity of the experimental data, a comparison was made with available analyt-

ical expressions for P (ksz;q), S (q) and Q (q). The scattering of an evanescent wave from

a homogeneous sphere including multiple scattering components was calculated in terms of

the partial wave expansion [81]

P (ksz;q) = exp

�
�2zs

q
q2 � k20

� �����
1X
l=0

(2l + 1)AlPl

�bksz � bk�
�����
2

; (6.12)

where Pl are the Legendre polynomials, bk and bksz are the normalized incident and scattered
wave vectors and Al are the partial wave expansion coe¢ cients for a sphere of diameter

d = 0:97�m and index of refraction ns = 1:59. The structure factor S (q) was computed using

the Percus-Yevick approximation for the system of hard disks with a packing fraction � = 0:7

[84]. Since the hemispherical source H emits light isotropically, the intensity Q (q) of the
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evanescent plane waves illuminating the sample is simply proportional to the corresponding

Fresnel transmission coe¢ cient for unpolarized light [85].

Figure 6.3: High spatial frequency content of the intensity I(m) (ksz;q) scattered by a monolayer

of 0:97�m diameter particles. The solid line represents the results of the Hankel trans-

form of the measured intensity I(s)(ksz;��0) whereas the dashed line corresponds to

the analytical result obtained as explained in the text. The inset shows part of the

normalized intensity I(s)(ksz;��0) obtained experimentally for 0 � ��0 � 10�m.

The good agreement between the experimental and analytical data showed in Fig. 6.3

clearly demonstrates that the high spatial frequency content of the scattered intensity can

be retrieved using VCSM. Our technique is therefore sensitive to the structural properties

of subwavelength features over an extended �eld of view, which, in our experiment, had a

diameter of 1mm but could, in principle, be even larger. Because the light scattered from

the sample can be detected from either above or below the sample, as shown in Fig. 6.2,
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VCSM can be easily integrated with other types of microscopies for a more comprehensive

measurement capability.

6.3 Conclusion

In this chapter, we introduced the concept of a novel microscopy technique based on

controlling the spatial coherence properties of the illuminating �eld at subwavelength scale.

We have demonstrated that the high spatial frequency components of the sample can be

reconstructed from simple far zone intensity measurements. Most importantly, subwave-

length resolution is obtained over a very large �eld of view without using a scanning probe.

Contrary to standing-wave total internal re�ection �uorescence imaging [86], VCSM does

not require �uorophore tagging of biological specimens. We also note that our technique

is implemented without any moving parts, which makes VCSM an ideal candidate for high

throughput sensing and screening for various applications in biology and medicine.

The method introduced in this chapter is of general importance because it demonstrates a

modality of solving an inverse problem based only on far-�eld intensity data while achieving

a resolution better than the radiation�s wavelength. Finally, we would like to point out

that, in the tomographic procedures introduced in this chapter and also in Chapter 4, the

autocorrelation of the complex susceptibility � was retrieved. While, in these methods,

the amplitude of the Fourier transform of � can be calculated, the phase is practically
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lost. However, we will demonstrate in the following chapter that both amplitude and phase

information can still be recovered by using a beam of adjustable degree of spatial coherence.
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CHAPTER 7

CORRELATED IMAGING WITH SHAPED SPATIALLY

PARTIALLY COHERENT LIGHT

Much attention has been paid recently to the correlated imaging protocol in which the

image of an object is retrieved non-locally by correlating the intensity �uctuations of two

spatially correlated beams. The �rst experimental demonstration of two-photon imaging

[89] and Fourier imaging [90] involved a pair of entangled photons generated by spontaneous

down-conversion. In these experiments, one of the photon was directed in the path containing

an object and a �xed detector, while, in the path of the other photon, a detector was scanned

in order to reproduce a sharp image of the object or its Fourier transform. Ghost imaging

was shown to persist for arbitrary down-conversion e¢ ciency [91] and, more interestingly, it

was experimentally demonstrated that classical incoherent sources could be used to mimic

the procedure of quantum coincidence imaging [92, 93, 94]. Applications of this technique

can be found in x-ray di¤raction since a lensless Fourier-transform image can be obtained

using a spatially incoherent source [95].

However, in both correlated imaging and Fourier imaging, only the modulus of the trans-

mittance or the amplitude of the spatial frequencies of the object are measured. One proce-

dure has been successful in recovering phase information [96], yet it requires a cumbersome

homodyne detection. In this chapter, we propose and demonstrate an alternative way to ob-
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tain both amplitude and phase information about the spatial frequencies of an object. Using

a shaped partially coherent beam and measuring the correlation of intensity �uctuations, we

show that the complex Fourier transform of an object can be recovered.

7.1 Correlated imaging

7.1.1 Correlated imaging with a classical source

Let us consider the experimental setup sketched in Fig. 7.1. The light emitted by a

quasi-monochromatic and spatially incoherent source S, located in the focal plane of a lens

Ls, is separated in two distinct optical paths by a non-polarizing beam splitter BS. One

path contains an object of complex transmittance T located at a distance h from Ls. A

�xed pinhole detector D1 is placed on the optical axis at a distance d from the object. In

the reference path, another pinhole detector D2 is scanned in the transverse plane located

at a distance d + h from Ls. The outputs of the two intensity detectors are multiplied and

the resulting signal is proportional to the second-order intensity correlation function

G(2) (r1; r2) = hI (r1) I (r2)i ; (7.1)

where I (r) is the intensity at position r and h:::i denotes the ensemble average over the �eld

realizations. Expressing the intensity I as a sum of its average value and a �uctuating part

107



such that I = hIi+�I, Eq. (7.1) becomes

G(2) (r1; r2) = hI (r1)i hI (r2)i+ h�I (r1)�I (r2)i : (7.2)

In Eq. (7.2), the second term �G(2) (r1; r2) = h�I (r1)�I (r2)i measures the correlation of

intensity �uctuations.

Figure 7.1: Schematic of the setup used for correlated imaging. The source is thermal, quasi mono-

chromatic and spatially incoherent with a uniform intensity distribution.

In order to relate the second-order intensity correlation function expressed in Eqs. (7.1)

and (7.2) to the transmittance T of the object, we �rst consider one monochromatic real-

ization E0 (r) of the incident �eld ensemble in the transverse planes located at a distance h

from Ls in both arms. Propagating E0 (r) to the detection plane in the reference arm leads

to

E2 (r2) =

Z
E0 (r)h2 (r2; r) d

2r; (7.3)
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where h2 (r2; r) is the deterministic impulse response function of the reference system. Con-

sidering a thin screen object and a deterministic impulse response function h1 (r1; r0), the

�eld in the detection plane of the object arm becomes

E1 (r1) =

Z
E0 (r

0)T (r0)h1 (r1; r
0) d2r0: (7.4)

Since the intensities detected at points r1 and r2 depend on the �elds as I1 (r1) = jE1 (r1)j2

and I2 (r2) = jE2 (r2)j2, substituting Eqs. (7.3) and (7.4) into Eq. (7.1), we obtain the

following expression for the second-order intensity correlation function

G(2) (r1; r2) =

Z
hE�0 (r0)E0 (r00)E�0 (r)E0 (r0)iT � (r)T (r0) (7.5)

� h�2 (r2; r0)h2 (r2; r
0
0)h

�
1 (r1; r)h1 (r1; r

0) d2r0d
2r00d

2rd2r0:

As one can see from Eq. (7.5), G(2) depends on the fourth-order correlation function of the

incident �eld which, in general, cannot be expressed in terms of the second-order correlation

function W0 (r; r
0) = hE�0 (r)E0 (r0)i. However, since our source is spatially incoherent, it

can be regarded as a superposition of a large number of independent radiating elements, and

the �eld E0 obeys Gaussian statistic. The moment theorem can then be applied to relate

the second-order to the fourth-order correlation function. It follows:

hE�0 (r0)E0 (r00)E�0 (r)E0 (r0)i = hE�0 (r0)E0 (r00)i hE�0 (r)E0 (r0)i (7.6)

+ hE�0 (r0)E0 (r0)i hE�0 (r)E0 (r00)i :

Substituting Eq. (7.6) into Eq. (7.5), G(2) can then be expressed as

G(2) (r1; r2) = hI1 (r1)i hI2 (r2)i+ jW (r1; r2)j2 ; (7.7)

109



where the cross-correlation function W (r1; r2) = hE�1 (r1)E2 (r2)i takes the form [99]

W (r1; r2) =

ZZ
W0 (r; r

0)T (r0)h�2 (r2; r)h1 (r1; r
0) d2rd2r0: (7.8)

Equation (7.7) is known as the Siegert relation [97] and is applicable in the case of quasi-

thermal light. The �rst element of the sum (7.7) is an incoherent background term which orig-

inates from accidental coincidence counts, while the second term�G(2) (r1; r2) = jW (r1; r2)j2

corresponds to the correlation of intensity �uctuations. In conventional two-photon and cor-

related imaging [95], the spatially incoherent source has a uniform intensity distribution.

Consequently, when varying the positions r1 and r2 of the detectors in the reference and

object arms, the measurements of the average intensities hI1 (r1)i and hI2 (r2)i are constant

and therefore do not provide su¢ cient information in order to reconstruct the transmittance

of the object [98]. However, as one can see from Eq. (7.8), the correlation between the

intensity �uctuations in both arms depends on T .

In order to simplify the relation between �G(2) (r1; r2) and T , we further consider the

free space Fresnel approximation for the impulse response functions h1 and h2 so that

hi (ri; r) =
exp (ikd)

i�d
exp

�
i
k

2d

�
r2i + r

2
��
exp

�
�ik
d
ri�r
�
; (7.9)

where k is the wave vector and i = 1; 2. Without loss of generality, the detector D1 is set at

a �xed position r1 = 0. Equations (7.8) and (7.9) then yield

W (0; r2) = exp

�
�i k
2d
r22

� ZZ
W0 (r; r

0)T (r0) exp

�
i
k

2d

�
r02 � r2

�
+ i

k

d
r2�r

�
d2rd2r0: (7.10)

According to Eq. (4.4), the cross-spectral density of the incident �eld in the transverse

plane of the object is related to the intensity distribution Is (�) across the source by the
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relation

W0 (r; r
0) =

Z
S

Is (�) exp

�
i
k

f
� � (r� r0)

�
d�; (7.11)

where f is the focal length of Ls. W0 (r; r
0) depends only on the transverse separation

�r = r� r0, and considering a circular source of radius R with uniform intensity distribution

so that Is (�) = 1 if j�j � R and equals zero otherwise, the cross-spectral density takes the

form

W0 (�r) = 4�R
2J1 (x) =x; (7.12)

with J1 being the �rst order Bessel function and x = kR j�rj =f . The width of W0 (�r) is

approximately �f= (2R) and relates to the transverse coherence length of the beam, which

determines the resolution of the imaging scheme [99]. Assuming that the smallest features

of the object are larger than the transverse coherence length of the incident �eld, W0 is well

approximated by a Delta function in Eq. (7.10) and we obtain

W (0; r2) = exp

�
�i k
2d
r22

� Z
T (r) exp

�
i
k

d
r2�r

�
d2r: (7.13)

De�ning the Fourier transform of T as

eT (q) = Z T (r) exp (�iq � r) d2r; (7.14)

the relation (7.13) between W (0; r2) and T (r) can be expressed as

jW (0; r2)j2 =
���� eT ��kdr2

�����2 : (7.15)

According to Eq. (7.15), measuring the excess coincidence counts �G(2) (0; r2) as a func-

tion of the detector�s position r2 in the reference arm yields the amplitude of the Fourier
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transform of the object�s transmittance. Even though the incident �eld is spatially incoher-

ent, coherent Fourier imaging is achieved by correlating the intensity �uctuations in both

arms. Also referred as "ghost imaging", since eT is recovered by scanning the detector in

the arm which does not contain the object, correlated imaging is a technique particularly

attractive for lensless applications and situations, such as x-ray imaging [95], where only

spatially incoherent sources are available.

One of the main limitation of correlated imaging is the lack of phase information since

only the amplitude of the Fourier transform is retrieved. In order to overcome this drawback,

we propose in the next section to modulate the intensity distribution across the source and

shape the degree of spatial coherence of the incident �eld. Moreover, we will show that the

reconstruction of the Fourier transform can be achieved in a robust manner with two �xed

detectors.

7.1.2 Correlated imaging with shaped spatially partially coherent light

Let us consider in Fig. 7.2 the new con�guration for the correlated imaging setup, where

both detectors D1 and D2 are now �xed on the optical axis. The expression given in Eq.

(7.8) for the cross-spectral density of the �elds at the locations r1 = 0 and r2 = 0 in the

detectors�plane becomes

W (0;0) =

ZZ
W0 (r; r

0)T (r0)h�2 (0; r)h1 (0; r
0) d2rd2r0: (7.16)
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Figure 7.2: Schematic of the setup used for correlated imaging with shaped spatially partially

coherent light.

In the previous section, the Fourier transform of T was evaluated by scanning D2 in the

reference arm. Our approach considers measuring the coincidence rate of two �xed detectors,

while varying the coherence properties of the incident �eld described by W0 in Eq. (7.16).

For this purpose, we consider the following modulated intensity distribution across the source

Is (�) =
1

2
Q (�)

�
1 +m cos

�
k

f
� ��r0 � �

��
; (7.17)

where m is a modulation factor with 0 � m � 1, R is the source�s radius and Q (x) = 1 if

x � R and equals zero otherwise. The periodicity of the intensity modulation is adjusted

by the value of the vector �r0, while � is an adjustable phase term. Using the van Cittert-
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Zernike theorem expressed in Eq. (2.19), the coherence function of the �eld after Ls becomes

W0 (r; r
0) = g(�r) +

m

2
exp (i�) g(�r��r0) +

m

2
exp (�i�) g(�r+�r0); (7.18)

where �r = r� r0 and

g(�r) = 2�R2J1 (x) =x; (7.19)

with x = kR j�rj =f . Similarly to the width of W0 (�r) de�ned in Eq. (7.12), the width of

g(�r) is approximately �f= (2R) and relates to the resolution of the imaging scheme [99].

The �eld commonly used in correlated imaging corresponds to the case m = 0 in Eq. (7.18).

As seen in Chapter 4, modulating the intensity distribution across the source generates

a �eld composed of correlated volumes of coherence, which introduce coherent scattering

from parts of the object separated by a distance �r0 [60]. Substituting Eq. (7.18) into Eq.

(7.16) and using the Fresnel approximation expressed in Eq. (7.9), we obtain the resulting

correlation of intensity �uctuations

�G(2) (0;0) =

�������������

ZZ
g(�r)T (r0) exp

�
�i k

2d
(�r2 + 2r0 ��r)

�
d2r0d2�r

+m exp(i�)
2

ZZ
g(�r��r0)T (r0) exp

�
�i k

2d
(�r2 + 2r0 ��r)

�
d2r0d2�r

+m exp(�i�)
2

ZZ
g(�r+�r0)T (r

0) exp
�
�i k

2d
(�r2 + 2r0 ��r)

�
d2r0d2�r

�������������

2

:

(7.20)

Recognizing the Fourier transform of T de�ned in Eq. (7.14), Eq. (7.20) becomes

�G(2) (0;0) =

������������

R
g(�r)eT �k

d
�r
�
exp

�
�i k

2d
�r2

�
d2�r

+m exp(i�)
2

R
g(�r��r0)eT �kd�r� exp ��i k2d�r2� d2�r

+m exp(�i�)
2

R
g(�r+�r0)eT �kd�r� exp ��i k2d�r2� d2�r

������������

2

: (7.21)
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In the second and third integrals of Eq. (7.21), we de�ne, respectively, the new variables

�r0 =�r��r0 and �r00 =�r+�r0 so that �G(2) (0;0) can be written as

�G(2) (0;0) =

������������

R
g(�r)eT �k

d
�r
�
exp [� (�r;0)] d2�r

+m exp(i�+i )
2

R
g(�r0)eT �k

d
(�r0+�r0)

�
exp [� (�r0;�r0)] d

2�r0

+m exp(�i�+i )
2

R
g(�r00)eT �k

d
(�r00��r0)

�
exp [� (�r00;��r0)] d2�r00

������������

2

;

(7.22)

with  = �k�r20= (2d) and

� (�r;�r0) = �i
k

2d
�r2 � i

k

d
�r ��r0: (7.23)

Corresponding to the �rst element in the right hand side of Eq. (7.23), the phase term

exp
�
�ik�r02= (2d)

�
in Eq. (7.22) can be neglected since d is usually on the order of few

centimeters and the range of values of�r is limited by the width of g, which does not exceed

10�m in a typical experiment. This approximation results in the following correlation of

intensity �uctuations

�G(2) (0;0) = j�e (0) +m exp (i ) [�e (�r0) cos (�)� �o (�r0) sin (�)]j
2 ; (7.24)

with �e and �o being the even and odd parts of � de�ned as

� (�r0) =

Z
g(�r0)eT �k

d
(�r0 ��r0)

�
exp

�
i
k

d
�r0��r0

�
d2�r0: (7.25)

Furthermore, in the limiting case where the transverse coherence of the incident �eld tends

to zero, the function g is well approximated by a Delta function in Eq. (7.25) and we obtain

� (�r0) = eT (�k�r0=d) : (7.26)
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Measuring �G(2) (0;0) as a function of �r0 for � = 0, �, �=2 and ��=2, leads to a

linear system of equations (see Section 7.1.2.1) from which one can calculate independently���j (�r0)�� as well as the quantity cos [ (�r0) + �j (�r0)� �e (0)] related to the arguments

�j of �j, where j = e, o. Contrary to conventional correlated imaging, where only the

modulus of eT is recovered, the special structure of the incident coherence function allows

also phase information to be obtained.

7.1.2.1 Calculation of the Fourier transform of the transmittance from ex-

perimental intensity measurements

This section provides speci�c details about the system of equations one needs to solve

in order to retrieve the amplitude and the phase information of �. The intensity-intensity

correlation G(2)meas measured experimentally is related to the average intensities hI1 (r1 = 0)i

and hI2 (r2 = 0)i, and to the correlation of intensity �uctuations �G(2) (0;0) by the relation

G(2)meas = A hI1 (0)i hI2 (0)i+ A��G(2) (0;0) : (7.27)

In this last equation, A and � are unknown proportionality coe¢ cients. Equation (7.27)

di¤ers from the Siegert relation expressed in Eq. (7.7) by the term � satisfying 0 � � � 1.

The reason of this discrepancy originates from the �nite response time of the detection

system. In our case, fast detectors able to resolve in time the �uctuations of intensity

were not used. Instead, the intensity measurements were performed using photomultiplier

tubes (PMT) and the number of detected photons within one gate time were recorded. A
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coincidence circuit and a photon counter were then used to obtain the number of coincident

counts G(2)meas. With Tr and Tc being the resolution time of the circuit and the coherence

time of the source, respectively, � satis�es the relation [97]

� = Tc=Tr; (7.28)

valid only for Tc � Tr. Even though the two PMTs used were identical, a mismatch in the

electronic would introduce a time delay between the two arms of the interferometer. This

delay would further reduce � and the e¢ ciency of the coincidence circuit.

The average numbers of counts measured by the PMTs D1 and D2 are related to the

average intensities hI1 (r1 = 0)i and hI2 (r2 = 0)i by the unknown proportionality coe¢ cients

A1 and A2: 8>><>>:
hI1imeas = A1 hI1 (0)i

hI2imeas = A2 hI2 (0)i
: (7.29)

In Eqs. (7.27) and (7.29), A, A1 and A2 need to be determined in order to recover �G(2)

from Eq. (7.27). Using Eqs. (7.3) and (7.18), the intensity in the reference arm can be

shown to depend on �r0 as follow

hI2 (0)i = g(0) +mRe [g(�r0) exp (�i�)] : (7.30)

As represented in Fig. 7.3, hI2 (0)i is calculated as a function of the coherence parameter

�r0 using Eq. (7.19). Because of the Bessel function in the expression (7.19) of g, the

intensity hI2 (0)i oscillates with �r0. However, for large values of j�r0j, hI2 (0)i tends to

an asymptotic limit g(0). The reference intensity is normalized to this asymptotic value,
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which is experimentally measured by setting a large value for j�r0j. Similarly and keeping

the same source con�guration, hI1imeas is normalized after removing the object.
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Figure 7.3: Reference intensity as a function of the coherence parameter�r0 and normalized to its

asymptotic limit g (0). The wavelength is � = 532nm and the source parameters are

f = 62mm, m = 1, � = 0 and R = 2mm.

Still without the test object, the detector D2 in the reference arm is detuned from its

position r2 = 0. Represented in Fig. 7.4 are the intensities hI1imeas, hI2imeas, and the

coincidence counts G(2)meas measured experimentally for r2 ranging from �40�m to 40�m. As

expected, hI1imeas and hI2imeas are constant while G
(2)
meas is enhanced by a factor � = 0:28

for r2 � 0. The width of the enhancement is around 13�m and corresponds to the width

�f= (2R) of the function g. If D2 is detuned to a position jr2j >> �f= (2R) so that jr2 � r1j

is much larger than the width of g, then we have �G(2) (0; r2) = 0. It follows that the

number of coincidence count is directly proportional to hI1 (0)i hI2 (0)i and the recorded
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value G(2)meas
���
Norm

is used to normalize the measured intensity correlation G(2)meas. The object

is then put back in place and D2 is set again at the position r2 = 0. From now on, G(2)meas,

hI1imeas, and hI2imeas refers to the normalized pulse measurements. The excess coincidence

counts is then calculated from the relation

��G(2) (0;0) = G(2)meas � hI1imeas hI2imeas : (7.31)
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Figure 7.4: Measurement of the intensities hI1imeas, hI2imeas, and the coincidence counts G
(2)
meas as

a function of the position r2 of the detector D2. The number of counts hI1imeas and

hI2imeas are normalized to their average value and then shifted in the graph for better

legibility. G(2)meas was normalized to its average background value.

In order to recover the even part of �, the quantities G(2)meas, hI1imeas, and hI2imeas are

measured as a function of �r0 for the di¤erent phases � = 0 and � = �. Substituting Eq.
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(7.24) into Eq. (7.27), a set of two equations is then obtained8>><>>:
��G(2) (0;0)

��
�=0

= � j�e (0)j
2 + �m2 j�e (�r0)j

2 + 2�mRe [exp (i )�e (�r0)�
�
e (0)]

��G(2) (0;0)
��
�=�

= � j�e (0)j
2 + �m2 j�e (�r0)j

2 � 2�mRe [exp (i )�e (�r0)��e (0)]
:

(7.32)

The modulation parameter m is retrieved by measuring m = hI2 (0)ij�r0=0� 1. Further-

more, considering the value of�G(2) (0;0) at�r0 = 0 in both equations of the system (7.32),

one can calculate independently j�e (�r0)j as well as the quantity cos [ (�r0) + �e (�r0)� �e (0)].

In the situation where �e (0) = 0, only j�e (�r0)j can be retrieved; however, this di¢ culty

can be easily resolved by placing one of the detectors at a transverse position rD such that

eT (�krD=d) 6= 0. A linear system of equations similar to the previous one is then obtained.

Deducing the amplitude and phase information of the odd part of � from the experimental

intensity measurements follows a similar procedure. In this case, the source phase parameter

needs to be set to � = �=2 and � = ��=2.

7.1.3 Klyshko�s geometrical optics approach

To better understand the e¤ect of using an incident partially coherent �eld in the cor-

related imaging scheme, we consider Klyshko�s geometrical optics approach for two-photon

imaging [89, 100]. In this method, the setups represented in Figs. 7.1 and 7.2 are unfolded

with respect to the source S and D1 acts as a point source illuminating the object. As

shown in Figs. 7.5(a) and 7.5(b), the right hand side of S corresponds to the reference arm
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whereas the object arm is located on the left hand side of S. In Fig. 7.5(a), the intensity

distribution across S is not modulated, i.e. m = 0 in Eq. (7.17), and the source behaves

as a phase conjugation mirror [93]. The position of D2 corresponds to the location of the

Fourier plane � of the object T and the image T 0 of T by the source is located at a distance

d in front of D2. When Is is modulated, as represented in Fig. 7.5(b), S acts as a grating

phase conjugation mirror with transmission given by Eq. (7.17). The light originating from

D1 is then di¤racted in one order 0 and two orders +1 and �1 with phase shift �� and

�, respectively. Without the object, the orders +1 and �1 converge in the plane � at the

positions �r0 and ��r0, respectively, as shown in Fig. 7.5(b).

When the object�s image T 0 is illuminated by a spherical wave focusing at a position�r0

in the plane �, the �eld U0� (r2;�r0) in the plane � takes the form

U0� (r2;�r0) =
eT �k

d
(r2 ��r0)

�
exp

�
ik
r22
2d
+ i 

�
; (7.33)

and corresponds to the Fourier component eT [k (r2 ��r0) =d] multiplied by a spherical car-
rier wave centered on axis at the image plane of T and with phase shift  = �k�r20= (2d).

It follows that the �eld at r2 = 0 consists of contributions from three spatial frequencies of

T and, accounting for the phase shifts of orders +1 and �1, the total �eld UT
� becomes

UT
� (0) = U0� (0) +

m

2
exp (�i�)U0� (0;�r0) +

m

2
exp (i�)U0� (0;��r0) : (7.34)

Substituting Eq. (7.33) into Eq. (7.34), taking the modulus square of UT
� (0) and sepa-

rating eT into the odd and even parts, one obtains the same expression given in Eq. (7.24).
Therefore, the possibility of recovering the phase information originates from the grating
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Figure 7.5: Scheme (a) corresponds to the unfolded representation of the setup used in conventional

correlated imaging where the spatially incoherent source S has a uniform intensity

distribution. In scheme (b), the intensity distribution across S is modulated according

to Eq. (7.17).

structure of S, which produces at the detector an interference between the spatial compo-

nents eT (0), eT (k�r0=d) and eT (�k�r0=d).

7.1.4 Duality between classical and two-photon correlated imaging

The duality between partial coherence and partial entanglement [101] allows us to con-

ceive a quantum imaging scheme equivalent to using a thermal source with adjustable inten-

sity distribution in order to obtain both amplitude and phase information about the object.
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In this con�guration, the source consists of a monochromatic pump �eld Ep with angular

frequency !p illuminating a thin nonlinear crystal. A two-photon entangled state is then

generated by spontaneous parametric down-conversion [89]. In the unfolded representation

of the setup in Fig. 7.6, the signal photon with angular frequencies !s and wave vector ks

propagates to the left of the source while the idler photon with angular frequencies !i and

wave vector ki propagates to the right. The source lays in the focal plane of a lens Ls with

focal length f . The object T is located at a distance f from Ls in the signal arm while the

detector D1 is placed at a distance d away from the object.

Figure 7.6: Unfolded representation of the two-photon correlated imaging setup. The complex

Fourier transform of the object is reconstructed by using a biphoton source with ad-

justable degree of entanglement.

In analogy with the classical case (see Fig. 7.5(b)), where the intensity distribution Is

across the classical source was modulated according to Eq. (7.17), we consider a pump �eld
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Ep with transverse spatial distribution

Ep (q) = 1 +m cos [q ��� �] ; (7.35)

where � is the spatial frequency of the modulation, m is the modulation amplitude taking

values between 0 and 1, and � is a �xed phase term. For a thin crystal, the conservation

of momentum involves that ki? + ks? = n� with n = 0, 1 or �1, and where ki? and ks?

correspond to the transverse wave vectors of the idler and signal photons, respectively. The

spatial modulation of the pump �eld leads to the emission of a photon pair in a partially

entangled state

j	i =
X
s;i

�!� (ki? + ks?) jksi 
 jkii

+
m

2
exp (i�)

X
s;i

�!� (ki? + ks? ��) jksi 
 jkii

+
m

2
exp (�i�)

X
s;i

�!� (ki? + ks? +�) jksi 
 jkii ; (7.36)

where the Delta function �! = � (!s + !i � !p) derives from the energy conservation. The

state (7.36) is a superposition of two-photon probability amplitudes. However, contrary to

purely entangled photons, the momentum measurement of one photon does not yield with

certainty the momentum of the other photon. Instead, the wave vector of the second photon

can take three di¤erent values ks? = �ki?+n� with n = 0, 1 or �1. Using the van Cittert-

Zernike theorem for biphoton source [101], it follows that the biphoton wave function takes

the form

 0 (�) / h (�) +
m

2
exp (i�)h (� � �0) +

m

2
exp (�i�)h (� + �0) ; (7.37)
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where �0 = f� and � = ksrs+kiri with rs and ri being two position vectors in the transverse

planes located at a distance f from Ls in the signal and idler arms, respectively. To take into

account the �nite extend of the pump beam, Ep (q) is multiplied by a Gaussian transverse

pro�le exp
�
�q2=

�
2�2p
��
of width �p. The �nite size of the pump results in an imperfect

two-photon momentum correlation characterized by the function

h (�) = ��2p exp
�
��2p�2=

�
2f 2
��
: (7.38)

The duality between the van Cittert-Zernike theorem for biphoton sources and classical

sources [101] is illustrated by the similarity between expression (7.37) of the biphoton wave

function and the form of the coherence function in Eq. (7.18).

In absence of transverse modulation of the pump �eld, i.e. m = 0, the crystal acts as a

mirror in Klyshko�s representation of the imaging setup in Fig. 7.6. In order to observe the

di¤raction pattern of T , a lens LR is inserted in the idler arm at a distance d1 + f from Ls.

The Fourier transform eT is then observed in the plane � when the distance d2 between LR
and the detector D2 satis�es the thin-lens equation

1

d2
+
1

z
=
1

fR
; (7.39)

where fR is the focal length of LR and z = d1+dks=ki. WhenEp is modulated, the crystal acts

as a grating with transmission given by Eq. (7.35). Similarly to the expression of the classical

�eld in Eq. (7.34), the value of the biphoton wave function at the positions of D1 and D2 is a

superposition of three di¤raction patterns eT (0), eT [ks�0= (diki)] and eT [�ks�0= (diki)]. The
rate of coincidence counts is then identical to the expression of the correlation of intensity
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�uctuations in Eq. (7.24) for the classical case. The function �j (�r0) in Eq. (7.25) is now

replaced with

�qj (�0) =

Z
h (�) eT [ks (� � �0) = (diki)] exp [i� � �0= (diki)] d2�: (7.40)

The capability of inferring phase information about eT is due to the partial entanglement

of the two photons, which results in an interference between the three possible states one

photon can take when the other one has already been measured.

Ignoring the di¤raction limit imposed by the �nite size of the imaging lenses, the un-

certainty in the reconstruction of eT results from the imperfect two-photon momentum cor-

relation and is quanti�ed by the width of h (�). In the degenerate case where ks = ki

and �� = k�(rs+ri), the uncertainty is �(rs+ri) = f= (k�p). For a classical source, the

resolution is related to the transverse coherence length of the �eld given by the variance

�(r� r0) = f= (k�s) of the function g (r� r0). In this case, g is de�ned as

g(r� r0) = �R2 exp

"
�k2�2s

(r� r0)2

2f 2

#
; (7.41)

where we have considered Q (�) = exp
�
��2= (2�2s)

�
in Eq. (7.17), �s being the size of the

source. Similarly to the conclusions reached by D�Angelo [102], the resolutions in both cases

are comparable. Apart from the lower visibility originating from the �rst term in the right

hand side of Eq. (7.7), classical correlated imaging can mimic all the features of two-photon

imaging [103].
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7.2 Experimental results

In order to demonstrate the possibility of retrieving both the amplitude and the phase

information of an object using a partially coherent beam, a correlated imaging experiment

has been conducted. As illustrated in Fig. (7.7), a linearly polarized laser operating at

� = 532nm and a Sagnac interferometer composed of a polarizing beam splitter PBS and

two mirrors M1 and M2 were used to generate the fringe pattern that was projected onto

a rotating di¤user in order to create a thermal-like secondary source. The periodicity of

the fringes was adjusted by scanning the mirror M2 with a computer controlled translation

stage. The radius of the source set to R = 2mm was adjusted by the circular aperture A

located in the focal plane of L1 and imaged onto the di¤user placed in the focal plane of the

lens L2. In order to cancel the wavefront deformation introduced by the imperfect mirrors,

and obtain a fringe pattern as identical as the expected interference �eld, the laser beam

was focused by L1 in the center of the Sagnac interferometer.

The phase � of the intensity distribution on the secondary source was controlled by a

half and quarter-wave plates placed after L1. The modulation of the interference pattern

was adjusted by the orientation of the polarizer P . The half-wave plate, the polarizing beam

splitter and the quarter-wave plate located after P and before the di¤user were arranged

in order to maximize the power of the scattered light collected by the lens Ls. The 25mm

diameter lens Ls had a focal length of f = 62mm.
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Figure 7.7: Schematic of the experimental setup used for correlated imaging with shaped spatially

partially coherent light.

The partially coherent beam generated after Ls was divided in two identical replicas

by a non-polarizing beam splitter NPBS. The object was a 500�m pitch step amplitude

transmission grating located at a distance d = 5cm from D1. The light was detected by

two photomultipliers connected with two �bers having a collection area smaller than the

transverse coherence area of the incident beam. A coincidence circuit and three separate

pulse counters were used simultaneously to record the intensities in both arms and the

coincidence counts.

To demonstrate the phase sensitivity, the experiment was conducted for two di¤erent

positions of the grating. The grating was �rst centered on the optical axis with minimum
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Figure 7.8: Coincidence counts G(2) and intensities in the object arm (I1) and the reference arm

(I2) measured as a function of the source parameter �r0 for � = 0 (solid curve) and

� = � (dotted curve) when the grating is in the position T (0) = 0. The intensities

are normalized with respect to the values obtained without the object and for �r0 �

200�m.

transmission, i.e. T (0) = 0. As shown in Fig. 7.8, the coincidence rate as well as the intensity

in both arms were measured for � = 0 and � = � as a function of the coherence parameter

�r0 for values ranging from 0 to 140�m. In this con�guration, the �rst harmonic of eT is

negative as represented in Fig. 7.9(b1). The second position of the grating corresponds to

maximum transmission of the grating on the optical axis, i.e. T (0) = 1. As shown in Fig.

7.9(a1), the �rst harmonic is positive in this case. Note that in both con�gurations of the
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Figure 7.9: The analytic Fourier transform of the grating�s transmittance is shown in graphic (a1)

for the case T (0) = 1. The measured amplitude j�ej2 and the phase cosine are rep-

resented in plots (a2) and (a3), respectively. As shown in (b2) and (b3), the same

measurements were performed in the case T (0) = 0 corresponding to the analytic

Fourier transform plotted in (b1).
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object, eT is even, and, since Is is constant for m = 0, the function g is real and �e relates

directly to the even part of eT . Only measurements for � = 0 and � = � are then necessary.

Using Eq. (7.24), we computed j�e (�r0)j
2 and cos [ (�r0) + �e (�r0)� �e (0)] for both

con�gurations. As expected, j�ej
2 is not modi�ed between the two grating�s positions, as

represented in Figs. 7.9(a2) and 7.9(b2). However, between the two cases in Figs. 7.9(a3) and

7.9(b3), we observe a di¤erence in the phase term around �r0 � 50�m where the harmonic�s

sign changes. This demonstrates the phase sensitivity of our procedure to the object�s spatial

frequencies. While our reconstruction was 1D, measuring a 2D Fourier transform requires

rotating �r0, which can easily be done using, for instance, a spatial light modulator.

7.3 Conclusion

In this chapter, we have demonstrated that, by varying the intensity distribution over an

incoherent source, amplitude and phase information about the spatial frequencies of an object

can be obtained from correlation measurements of intensity �uctuations. Since the detectors

are �xed in both reference and object arms, our approach constitutes a robust detection

scheme which could be of interest when environmental constrains do not permit the use of

complex optical systems. This technique is also particularly attractive for x-ray di¤raction

because of the incoherence of most x-ray sources and the di¢ culty of fabricating lenses for

such short wavelengths [95]. Finally, considering the duality between partial coherence and

partial entanglement [101], an equivalent scheme using a biphoton source has been presented.
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Even though the resolution in both schemes was demonstrated to be similar, entangled

photon sources allow higher signal visibilities because the background noise inherent to quasi-

thermal sources is absent.
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CHAPTER 8

SUMMARY OF ORIGINAL CONTRIBUTIONS AND

CONCLUSIONS

In many situations, the stochastic nature of electromagnetic radiation and the �uctua-

tions in the optical properties of media in which this radiation propagates preclude a de-

terministic description and one must resort to a statistical characterization of the scattered

�elds. In this situation, light scattering approaches are used to determine the structural

properties of heterogeneous media as described by statistical descriptors such as the corre-

lation of its scattering potential. Although many sensing methods rely on measuring the

coherence properties of scattered �elds, the use of a variable spatial coherence gating has

not been previously considered in the context of inverse scattering. In this dissertation, we

have discussed and demonstrated a number of optical sensing techniques based on shaping

the degree of spatial coherence of a quasi-homogeneous incident �eld.

Depending on the structural properties of an optically inhomogeneous medium, its com-

plex susceptibility can have a correlation length either on the order or much larger than the

inhomogeneities�size. The �rst situation is typical of a medium composed of a collection of

independent particles. In this case, we have demonstrated experimentally that the radiative

transfer equation makes a good description of the scattering process when the incident beam

is partially coherent. By varying the coherence volume between limits, which are much larger
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or smaller than the particle diameter, we have been able to recover both the concentration

and the scattering cross-section of scattering particles1. Furthermore, understanding the

subtle e¤ect of coherence could also lead to novel approaches for controlling the divergence

of beams propagating through scattering media and should be of interest for applications

including guiding and tracking, and also active remote sensing through long atmospheric

paths.

On the other hand, when the particles composing the medium possess a certain degree

of correlation, the radiative transfer equation fails to accurately describe the propagation of

the �eld. Using the �rst order Born approximation, we have introduced the principle of vari-

able coherence tomography2, where the structural properties of a medium are recovered by

shaping the degree of spatial coherence of the incident beam and therefore inducing coherent

scattering from di¤erent regions of the object. Our approach is appealing from a practical

point of view because it requires only a spatially incoherent source with adjustable intensity

distribution and far-�eld intensity measurements, which are much easier to implement than

cross-spectral density measurements3.

Since the Born approximation cannot be practically generalized to scattering orders

higher than two, variable coherence tomography is not suited to measure long-range cor-

relation properties of the complex susceptibility in multiple scattering media. However,

1E. Baleine, A. Dogariu, �Propagation of partially coherent beam through particulate media�, J. Opt.
Soc. Am. A 11, 2041-2045 (2003)

2E. Baleine, A. Dogariu, �Variable coherence tomography�, Opt. Lett. 29, 1233-1235 (2004)
3E. Baleine, A. Dogariu, "Variable coherence tomography for inverse scattering problems", J. Opt. Soc.

Am. A 21, 1917-1923 (2004)
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spatial coherence gating can be applied to enhance the long-range correlation of the �eld

scattered from a di¤usive medium. Using the phenomenon of coherent backscattering, we

have demonstrated that speci�c scattering trajectories can be isolated by manipulating the

degree of spatial coherence of the illuminating beam. As a result, depth resolved sensing

of the scattering properties can be obtained, which is of great interest for the detection of

subsurface hidden objects and the structural studies of multilayered or anisotropically inho-

mogeneous materials4. Moreover, considering an incident �eld composed of cross-polarized

correlated speckles, our approach could be generalized to examine the polarized nature of

the photon di¤usion.

When using spatial coherence gating, each pair of correlated speckles relates to a par-

ticular scattering path or a speci�c pair of scatterers. Nevertheless, the recorded signal is a

contribution from the scattered intensities originating from all the correlated speckle pairs

composing the incident �eld. Consequently, the medium�s parameters retrieved are spatially

averaged over the size of the illuminating beam, thus, providing a robust description of the

statistical properties of the object. While the �eld of view in the inversion procedure is set

by the dimension of the incident �eld, the resolution is independently determined by the

width of the coherence volume. This characteristic is quite di¤erent from conventional mi-

croscopic techniques, where the �eld of view observed decreases as the resolution improves.

There is however another way to obtain high resolution independently of the �eld of view:

in the practice of near-�eld optics, a small probing tip is scanned over a �nite area. The

4E. Baleine, A. Dogariu, "Variable coherence enhanced backscattering", (in preparation).
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resolution is determined by the size of the tip but the scanning mechanism over the sample

limits practically the imaging area. To overcome this limitation and taking advantage of

the parallel processing capability of spatial coherence gating, we have introduced the prin-

ciple of variable coherence scattering microscopy5 (VCSM), where the structural properties

of subwavelength features are recovered by shaping the degree of coherence of an evanescent

�eld. Remarkably, in this novel approach for solving the inverse problem, the subwavelength

resolution is achieved from simple far-zone measurements. Besides, the technique does not

require any moving parts, therefore making VCSM a good candidate for high throughput

sensing and screening for various applications in biology and medicine, where current mi-

croscopic approaches rely on isolating small volumes of analyte or require high-resolution

scanning over minute dimensions of a sample6.

Because variable coherence tomography relies on spatially incoherent sources and simple

detection schemes, this technique is particularly attractive for x-ray di¤raction. However,

using this tomographic procedure, only the amplitude of the Fourier frequencies of the com-

plex susceptibility can be obtained. In order to also recover the phase information, we have

introduced a lensless correlated imaging technique, where the Fourier transform of an ob-

ject is retrieved by modulating the intensity distribution across a spatially incoherent source

and measuring the correlation of intensity �uctuations recorded by two di¤erent detectors7.

5E. Baleine, A. Dogariu, "Variable coherence scattering microscopy", Phys. Rev. Lett. 95, 193904 (2005)
6E. Baleine, A. Dogariu, "Variable coherence allows sensing with subwavelength resolution", Optics &

Photonics News (OPN), Optics in 2006, Vol. 17, No. 12 (2006).
7E. Baleine, G. S. Agarwal, A. Dogariu, "Correlated imaging with shaped spatially partially coherent

light", Opt. Lett. 31, 2124-2126 (2006)
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Using the duality between partial coherence and partial entanglement, we have proposed an

equivalent scheme where the degree of entanglement between two photons is shaped.

In closing, we emphasize that the idea of using the spatial coherence properties of ra-

diation in tomographic procedures is applicable to any type of electromagnetic radiation.

Operating on principles of statistical optics, such a sensing approach can become an al-

ternative for various target detection schemes, cutting-edge microscopies or x-ray imaging

methods.
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