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ABSTRACT

Cooperation is the hallmark human trait which has allowed us to congregate into the vast, continent-

sprawling societies we live in today. Yet, the precise social, environmental, and cognitive mecha-

nisms which enable this cooperation are not fully understood. Toward this, lucrative insights have

been borne through the use of formal computational models of socio-cognitive phenomena: In

simulating our own cooperative behavior, we can better deduce the exact factors which cause it.

The combined knowledge of these factors and ability to computationally simulate them allows us

to further two goals: First, it empowers us with the knowledge of how to modify our social systems

to better human well-being and promote more sustainable, equitable, and compassionate societies.

Second, the computational aspect allows us to more directly create artificial, socially competent

companions—whether robotic or entirely digital—to cooperate with us in the real world in achiev-

ing the first goal. In this thesis, I contribute to the development of artificial social cognition by

examining two case studies of cooperation dilemmas: a game of social team cooperation inference

known as stag-hunt, and a stylized cooperative irrigation system. Specifically, I show causal, gen-

erative models encoding hypotheses on actual mechanisms in the human mind which are able to

outperform the extant state-of-the-art models in both of these cases. In the second case, I show

how models like this can be automatically discovered through an algorithm known as evolutionary

model discovery, greatly expediting the deduction of new models in similar domains. The results

have implications not only for understanding the dynamics of human teaming and irrigation sys-

tems (the humans in algorithms), but also broader human socio-cognitive mechanisms contributing

to cooperation (the algorithms in humans)—all while simultaneously allowing these mechanisms

to be encoded into socially competent AI.
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CHAPTER 1: INTRODUCTION

Since the start of the Holocene, above nearly everything else, it has been our ability to cooperate

with each other in groups large and small that has most thoroughly permeated the human expe-

rience and led to the planet-enveloping societies which we live in today (Ostrom, 1990; Turchin,

2016). As our social world becomes ever more complex by the day, so do our problems: We now

face global-scale challenges such as the climate crisis, global inequality, pandemics, and existen-

tial risks which require us to cooperate with each other at greater scale and effectiveness than we

ever have before (Michelozzi and De’Donato, 2021; Bostrom, 2013). Pursuant to this, it is more

critical than ever that we have a precise understanding of cooperation and its mechanisms so that

we might leverage it to save ourselves and better our world.

Yet, the precise social, environmental, and cognitive mechanisms which enable and dictate the

outcome of cooperative efforts—mechanisms which constantly interact with and mutually shape

each other—are not fully understood (Ostrom, 1990; Ostrom et al., 1999; Turchin, 2016; Dietz

et al., 2003; Baggio et al., 2015). Toward developing a formal understanding of these mecha-

nisms, we begin with the source: The human mind. Complex social phenomena and cooperative

megaprojects such as space stations and countries governing millions of people all begin with sim-

ple, individual interactions between many human minds (Epstein, 2014, 1999). It therefore stands

to reason that by more precisely understanding socio-cognitive processes and how they interact

between individuals, we can understand how to influence the emergent behavior at the macro-scale

where our global problems reside.

Toward this, lucrative insights have been borne through the use of formal computational models

of such phenomena (Epstein, 2014; Baggio et al., 2015; Gunaratne and Garibay, 2020; Gunaratne

et al., 2021; Rabkina, 2020). Causal, generative models—and, more specifically, their inverse
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discovery—represent a new generation of modelling techniques for not only socio-cognitive pro-

cesses but of any complex process emerging from small-scale interactions (Garibay et al., 2021).

In this thesis, we present two case studies of advances of this kind of model: An intent recogni-

tion model for observing stag-hunt, a simple multiplayer game where agents must cooperate to

maximize rewards, and a model of agent interaction for a social irrigation system.

Intent recognition—the human ability to utilize social and behavioral cues to infer each other’s

intents, infer motivations, and predict future actions—is a central process to human social life,

and governs our fundamental ability to cooperate with each other (Jara-Ettinger et al., 2020). In

addition to contributing to the study of cooperation, artificial agents with greater social intelli-

gence have wide-ranging applications from enabling the collaboration of human-AI teams (Fiore

et al., 2010; Fiore and Wiltshire, 2016) to improving the effectiveness of socially assistive robots

(Winkle et al., 2021). In chapter 2, we show that the Naı̈ve Utility Calculus generative model

(Jara-ettinger et al., 2016; Jara-Ettinger et al., 2020) is capable of competing with leading models

in intent recognition and action prediction when observing stag-hunt, a simple multiplayer game

where agents must infer each other’s intentions to maximize rewards. Moreover, we show that the

model is the first with the capacity to out-compete human observers in intent recognition after the

first round of observation. The chapter concludes with a discussion on implications for the Naı̈ve

Utility Calculus and of similar generative models in general.

Small-scale irrigation systems which require cooperation from multiple users to maintain are a

common feature of many small farms (Cifdaloz et al., 2010; Anderies et al., 2013). Small farms

are thought to produce around a third of the global crop supply, but they are also likely to be

increasingly vulnerable to changes in the spatial and temporal availability of water (Anderies et al.,

2013; Janssen et al., 2012). In this context, it is key to assess the effect of the social mechanisms

which promote resilience in small-scale irrigation systems and, more widely, in complex social-

ecological dilemmas under changing conditions. Small-scale irrigation systems are characterized
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by upstream farmers having prevailing access to a canal’s resources, yet all farmers along the

canal must contribute to maintaining the irrigation infrastructure. In chapter 3, to further assess

the ensemble of social mechanisms promoting the resilience of irrigation systems, we build on

previous work in which a stylized irrigation dilemma was simulated via a social lab experiment

(Anderies et al., 2013). Studies of the data produced from this experiment modeled participants’

behavior with multiple, theoretically grounded agent-based models (ABMs) (Baggio and Janssen,

2013; Janssen and Baggio, 2017). These models encode causal, human-interpretable hypotheses

of decision making which generates the real-world behavior observed in the experiment. However,

the accuracy of these models in fitting the experimental data is limited. Using Evolutionary Model

Discovery, a recent algorithm for inverse generative social science (iGSS) (Gunaratne and Garibay,

2020), we show the ability to automatically generate a wide variety of unique new ABMs which fit

the experimental data more accurately and robustly than the original, manually-constructed ABMs.

To do this, we algorithmically explore the space of possible behavioral rules for agents choosing

how to contribute to the maintenance of the irrigation infrastructure. We find that, in contrast to the

original models, our best-performing models typically have an additional element of stochasticity

and favor factors such as other-regarding preferences and perceived relative income. Given that

this change in just a small part of the original model has yielded such an advance,

Our results suggest that causal generative models and iGSS methods have great potential for con-

tinuing to derive more accurate models of complex emergent phenomena, be it for social inference,

the sustainability of agricultural systems, or any application beyond.

Statement of Originality

Parts of this work have been included in conference presentations and a work under review for

journal publication. Other than the work discussed in the following manuscripts, the rest of this
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CHAPTER 2: CASE STUDY 1: INTENT RECOGNITION IN STAG HUNT

Introduction

A fundamental process in our everyday life is our ability to observe peoples’ actions, infer their

beliefs, desires, and intentions, and predict what they will do next.

Consider this example: Your roommate mentions they are hungry and gets up from their seat. You

infer they are headed to the kitchen. You may know from observing their past behavior that, at this

time of day, they are likely to get a bowl of cereal. You may, then, decide to inform them that all

of the bowls are currently unwashed. Having been informed thus, your roommate decides they are

not hungry enough to bother putting forth the effort to wash a bowl, and they slump back into their

chair.

Here, from just a few observations of your roommate’s behavior, you made a correct inference of

their desires and propagated that inference to predict their plan of future actions. You performed an

intervention—mentioning the dirty bowls—and this provided them with new information on how

to act on their desires. Your roommate, thus, determined that the reward gained from eating a bowl

of cereal was less than the cost of washing a bowl. In other words, your roommate determined

their plan of action had a negative subjective utility—so they chose not to act.

If one may see the great complexity of mental inferences in this simple social interaction, it is

easy to appreciate the great difficulty (and powerful consequences) of creating an algorithm ca-

pable of replicating these processes. Indeed, a great many algorithms have been created, studied,

and used for just this type of intent recognition in a variety of domains and contexts (Sukthankar

et al., 2014; Demiris, 2007; Qi and Zhu, 2018); this chapter principally focuses on evaluating a

novel computational framework (the Naı̈ve Utility Calculus) in inferring cooperative intent among
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multiple agents in a shared environment.

One application of immediate interest for this particular inference problem is its use in human-AI

teaming. Algorithmic intent recognition of cooperation between humans is critical to developing

AI that can enhance teams’ coordination and efficacy in performing complex tasks such as urban

search-and-rescue (Fiore et al., 2010; Fiore and Wiltshire, 2016; Barnes et al., 2017) or socially

assist people in a variety of therapeutic and care contexts Winkle et al. (2021). Furthermore, there

has been a shift in recent years in scholars beginning to view cognitive science and generative

social science as interdependent fields (Orr et al., 2018), and many models have been advanced

by using more complex and realistic cognitive architectures for agents (Epstein, 2014; Gunaratne

et al., 2021; Baggio and Janssen, 2013; Schlüter et al., 2017). Thus, improving these cognitive

architectures has consequences for, for example, detecting and preventing threats to public safety

(Demiris, 2007) such as the spread of disinformation on social media (Garibay et al., 2020; Rajabi

et al., 2020), or informing policy to better deal with the effects of the global climate crisis (Freeman

et al., 2020; Elsawah et al., 2020).

Research in cognitive psychology indicates that the paradigm of assuming agents act to maximize

utility—while not a very accurate model of actual cognitive processes—might, in fact, be a good

approximation of the mind’s process of inferring other minds’ intentions (Jara-ettinger et al., 2015,

2016; Jara-Ettinger et al., 2020). Formally, such a utility function is simply defined as

Utility(plan, outcome) = Reward(outcome)− Cost(plan) (2.1)

The Naı̈ve Utility Calculus (NUC), a recently formalized framework for action-understanding,

utilizes this paradigm as the basis of its function (Jara-Ettinger et al., 2020). While, prior to this

work, the NUC displayed much promise as a general model for action-understanding, it had only
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been put to use in a single-agent setting with limited inferences on social behavior.

Thus, this chapter is presented with the primary purpose of testing the Naı̈ve Utility Calculus in

a multi-agent setting with greater requirements on social inference. To do this, we utilize a well-

studied cooperative action game known as stag-hunt. Stag-hunt is a multiplayer game where agents

work to maximize their rewards by choosing to pursue and capture either a high-reward stag or a

low-reward hare. While low-reward hares can be captured individually, agents must work together

in order to capture a high-reward stag. Thus, critical to performing well in the game is the ability

to infer other players’ intentions to determine whether pursuing a stag is worth the effort.

While stag-hunt was introduced by Skyrms (2003) and famously used via a Minecraft implemen-

tation known as Pig Chase by the Microsoft Malmo Collaborative AI Challenge (Johnson et al.,

2016), this work primarily draws on a version of stag-hunt used to more directly test general mod-

els of artificial theory of mind. This version, introduced by Shum et al. (2019), includes data from

human subjects performing the same tasks as their computational model, which relies on Bayesian

inference over a generative model encoding relations known as Composable Team Hierarchies

(CTHs). Further utilized by Rabkina and Forbus (2019) with the introduction of a model known as

Analogical Reasoning, this version of stag-hunt allows for a streamlined, simple experiment with

directly comparable results between competing models.

We find the Naı̈ve Utility Calculus model is, in terms of both accurately recognizing intent and

predicting actions, comparable to these prior two models—with the exception of intent recognition

after the first timestep. Intriguingly, after observation of this timestep, NUC significantly outper-

forms both prior models and the human subjects in intent recognition.

We begin by giving an overview of each of the three models under comparison. We describe our

experimental setup in detail and the modifications required to adapt the existing NUC implemen-

tation to a multi-agent setting. Lastly, we compare results to that of the prior two models and the
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human subjects.

Background

The Naı̈ve Utility Calculus

The Naı̈ve Utility Calculus (NUC) is a recently formalized framework for action-understanding

(Jara-Ettinger et al., 2020). It operates under the assumption that agents tend to choose their

actions in order to maximize some notion of subjective utility. Research in childhood psychology

indicates that this paradigm is likely a good approximation of how individuals reason about the

behavior of others (Jara-ettinger et al., 2015, 2016).

Within NUC, agents are treated as boundedly rational. The calculus itself is implemented as a

generative model of each agents’ mental processes. The model details that agents first begin by

observing their environment. From this observation, the agent determines their beliefs about the

environment and the costs of performing available actions. The agent’s desires (rewards) are com-

bined with their world belief to form possible goals to pursue. These goals are then considered

alongside the costs of the actions needed to meet those goals, and an intention (plan of actions)

is formed. This plan is then followed to perform actions themselves, but is subject to change

should any part of the environment also change and cause the agent to re-evaluate beliefs and costs

(Jara-Ettinger et al., 2020).

Observers, however, are not aware of the underlying cost and reward functions that other agents

are using to decide on the actions they take. Thus, given only the actions that an agent has taken,

Bayesian inference may be run over the model to produce inferred estimates of the agent’s cost and

reward functions. These estimated functions may then be used as input to the generative model,

producing a predicted set of actions the agent will take (Jara-Ettinger et al., 2020).
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In Jara-Ettinger et al. (2020), the authors introduced a formal computational model of the Naı̈ve

Utility Calculus and extensively tested it in a series of single-agent experiments. In each of these

experiments, both the model and human observers were presented with images of an astronaut

exploring an extra-terrestrial grid world with various types of terrain, collectible “care packages,”

and goal locations. The experiments found that, in this simple setting, the model was sufficient for

matching the abilities of human subjects to estimate the utility function of a single agent in a variety

of scenarios. However, the implications of social reasoning for these experiments are limited—

only a semi-social scenario is created during a single experiment where “collectible packages”

are replaced with “rescuable astronauts.” However, “other agents” were merely treated as part

of the environment—the same as care packages—and thus did not constitute a true multi-agent

environment.

In this work, we pit the Naı̈ve Utility Calculus up against two prior models tested in the multi-agent

stag-hunt game. Analogical Reasoning, the most recent of these models, is likewise a computa-

tional formalization of qualitative theory from research in childhood psychology, but it instead for-

malizes the separate cognitive process of analogical thinking (Rabkina and Forbus, 2019; Rabkina,

2020). The second model is a hierarchical Bayesian model introduced by Shum et al. (2019) that

explicitly encodes causal models known as Composable Team Hierarchies (CTHs) to aid in coop-

eration inferences.

Analogical Reasoning

The Analogical Reasoning model (Rabkina and Forbus, 2019), similar to NUC, is a computational

formulation inspired by findings in cognitive psychology. It takes after the process of human

reasoning known by the same name. The basic idea is that an observer learns a set of relations in

one case (the base) and, when they encounter a previously unobserved case (the target), supposes
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that this same set of relations holds. Hence, the observer is reasoning by analogy (Falkenhainer

et al., 1989).

The primary reasoning engine used by Rabkina and Forbus (2019) is a modern iteration of an ana-

logical reasoning algorithm known as the Structure-Mapping Engine (Forbus et al., 2017). Cases

in stag-hunt are represented in the form of how the spatial relationships between agents change

over each timestep in addition to several non-spatial events such as a target being captured. Ana-

logical Reasoning is a traditional machine learning method; the authors trained and tested their

model via leave-one-out cross validation over the nine scenarios (i.e., for each scenario, the model

was trained on the eight other scenarios and tested on the one).

Composable Team Hierarchies

Like NUC, the Composable Team Hierarchies (CTH) model presented in Shum et al. (2019) is

a generative model over which Bayesian inference may be performed. Instead of encoding the

internal mental state of agents, however, the CTH model assumes that agent actions are based

around a certain team hierarchy and encodes a causal model of how a given team structure would

dictate agents’ future actions. Bayesian inference over the model accepts observations of agent

actions to infer a team hierarchy (e.g., Players A and C are teaming up against Player B), and that

inferred team hierarchy is then used to predict agent actions (e.g., Players A and C will pursue a

stag, Player B will pursue a hare).

Experiment

We test the abilities of the Naı̈ve Utility Calculus using observations of the multi-agent stag-hunt

game à la Rabkina and Forbus (2019) and Shum et al. (2019). Originally introduced as an alter-
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Figure 2.1: The nine scenarios of the stag-hunt game. Used with permission from Rabkina and
Forbus (2019), originally adapted from Shum et al. (2019).

native to the prisoners dilemma (Skyrms, 2003), the stag-hunt presents a simple, effective, spatial

schema to test inference in a variety cooperative and non-cooperative scenarios.

The game operates on the premise that a group of hunters must each choose to attempt to capture

either a hare or a stag. Hares provide a low reward and can be captured by a single hunter. Stags

provide a much higher reward but require a team of two or more hunters to be captured. There is

no penalty for not capturing a target. Thus, it is critical for a successful hunter to determine which

other hunters intend to cooperate if they wish to maximize their reward by capturing a stag.

The version of the game used here places three hunters, two stags, and two hares into a 5x7 grid

world. In this grid world, there are traversable white tiles (“floors”) and non-traversable black tiles

(“walls”). At each timestep, hunters may move up, down, left, or right, but not diagonally. Hares

are stagnant, and the movement of stags is pre-determined as part of the map structure. In general,

stags attempt to move away from pursuing hunters.

11



This configuration is used to construct nine unique scenarios that each encode different possibilities

of agent cooperation and non-cooperation. For each scenario, three timesteps of agent movement

are encoded. Successful stag captures occur in five scenarios (Fig. 2.1 a, c, d, g, i), indicating

cooperation, while only hares are captured in the other four scenarios (Fig. 2.1 b, e, f, h), indicating

no cooperation.

Following in the steps of Shum et al. (2019) and Rabkina and Forbus (2019), these board states

are used on two fronts: Firstly, the game encodes sufficient information for an observer to deduce

each agent’s goal by the third time step, and, consequentially, information to see which agents are

cooperating to capture a stag (and which are not). Indeed, in Shum and colleagues’ trials with

real human observers, cooperation inferences were made correctly 100% of the time by the third

timestep. The challenge lies in inferring each agent’s goal before this final timestep.

Secondly is the prediction of agents’ future actions. As this version of the game only runs for three

timesteps, this is done in three cases: Board state predictions can be made for the second timestep

and the third timestep having only observed the first timestep, and a prediction can be made for

the third timestep having seen the first two timesteps. This is not a task fully encompassed by

either Shum and colleagues’ model or human subjects, thus our accuracy metric for this task is

only compared against Rabkina and Forbus’s model.

Methods

We utilize the same existing implementation of the Naı̈ve Utility Calculus used by Jara-Ettinger

et al. (2020). This implementation is in the form of a Python 2.7 package known as Bishop

(https://github.com/julianje/Bishop/). In this study, we have adapted Bishop to

use in the multi-agent setting without any modifications to the base package. This was possible
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as Bishop is uniquely suited for studying this version of stag-hunt, as it is designed specifically

for observations of a single agent in a grid world with various objectives that may be obtained.

This was utilized in Jara-Ettinger and colleagues’ experiments where an astronaut is placed in an

extra-terrestrial world with various collectible care packages and observers are asked to infer the

astronaut’s package preference along with the cost associated with each terrain.

To adapt the usage of Bishop into a multi-agent setting, we simply encode the stag-hunt game into

a format that Bishop may read and run the program on each agent individually. Of note is that,

although, in theory, each player incorporates information on the other hunters to make their deci-

sions, an outside observer of the game does not necessarily need to incorporate the state of other

players into their inferences on each individual hunter. For example, if an observer is attempting

to determine whether Hunter B is trying to capture a hare or a stag, they do not necessarily need

to know the locations of Hunter A or Hunter C, as (at least in our nine scenarios) only Hunter

B’s movements are sufficient information to make the inference. Thus, in service to the limita-

tions of the existing implementation of Bishop, a separate “map” is created for each of the three

hunters between the nine scenarios, and Bishop’s inference functions are run on each of these maps

individually.

While previous inference engines working with stag-hunt may have explicitly encoded the meaning

of walls and floors, this information is not provided to the NUC. Rather, based on the agents’

movements, it is up to the NUC to determine the “cost” of traversing a floor tile versus traversing

a wall tile. In the traditional formulation of the game, the wall tiles are not traversable. Thus, the

NUC must determine a sufficiently, arbitrarily large cost of traversing a wall tile in order to learn

this rule for itself.

Lastly, we leave all specifiable hyperparameters within Bishop at their default values. All reported

results below are from 100 runs of NUC at 500 samples per run. All code and data is available via
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DOI: 10.5281/zenodo.4430598.

Results

Intent recognition

In line with Shum et al. (2019) and Rabkina and Forbus (2019), our primary metric for measuring

the accuracy of intent recognition is a pairwise count of which hunters are cooperating. That is,

there are three predictions per scenario at each timestep: whether there is cooperation between

Hunters A and B, Hunters A and C, and Hunters B and C. Model predictions are measured against

the true values to produce the accuracy metric.

The NUC’s predictions are summarized in Fig. 2.2. Note that the precise values for the Bayesian

and Human metrics are good-faith estimates from Shum and colleagues’ figures determined by

Rabkina and Forbus.

We find that, after the first timestep, the NUC outperforms human subjects and all other models

by a minimum of eight percentage points with a very high margin of certainty. The reason for

this is uncertain; one possible hypothesis to explain this is that human observers may have less

confidence in their judgement when possessing only limited information, and are therefore perhaps

not achieving the maximum possible inference accuracy.

After the second timestep, NUC performs better than Analogical Reasoning but not as well as

humans or the Bayesian model. After the final timestep, NUC outperforms the Bayesian model

and is roughly on par with Analogical Reasoning.
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Figure 2.2: Pairwise cooperation inference accuracy across each model and the human subjects.
Error bars on the NUC data indicate one standard error across 100 runs with 500 samples each.
Note that accuracies for human and CTH (Bayesian) model data are based on good-faith estimates
from the figures of Shum et al. (2019) and Rabkina and Forbus (2019)

Future action prediction

For the purposes of comparing NUC’s action prediction ability with Rabkina and Forbus’s (Rabkina

and Forbus, 2019) Analogical Reasoning, we replicate their metric of measuring prediction accu-

racy. Due to the limitations of the current implementation of Bishop, we do not calculate action

prediction accuracy in precisely the same way—while Rabkina and Forbus incorporate predict-

ing the actions of stags into their accuracy metric, here stags are necessarily treated as parts of

the environment rather than agents with predictable behavior. Thus, the metric is best used as an

15



NUC

NUC

NUC

NUC

Analogy

Analogy

Analogy

Analogy

0.69
0.61

0.61
0.64

0.49
0.64

0.60
0.63

0.33 baseline

Figure 2.3: Relational action prediction accuracy across each timestep case.

approximate comparison between the two models rather than a precise one.

For each agent, NUC first performs intent recognition and then uses the inferred intent to predict

its next moves. The agents’ movements are measured relative to the other two agents, the two

stags, and the two hares, with three possible states for the relative movements: toward, away, and

stationary. For example, an action prediction for Agent B’s next move might look like: Away from

Agent A, Toward Agent C, Stationary to Stag 1, Toward Stag 2, Away from Hare 1, Away from

Hare 2. Since there are three possible states to infer, we would expect a model guessing randomly

to be correct in its prediction roughly a third of the time. Thus, the baseline accuracy for this metric

is 33.33%.

From timestep 1, we make these six predictions for each agent into timestep 2 and timestep 3.

Additional predictions are made given the information from timestep 2 into timestep 3. Results

are summarized in Fig. 2.3. We find that, with the exception of the first timestep, NUC roughly

underpreforms in comparison to Analogical Reasoning by several percentage points, though this

margin might be in part due to the exclusion of stags in our prediction due to the limitations of

Bishop mentioned above.
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However, there is a notable case of underpreformance when predicting timestep 3 movements

having observed timestep 1 and timestep 2 (1 + 2 > 3). We hypothesize that NUC seems to

suffer from a “status quo” bias. NUC tends to fare especially poorly in cases where the first

two agent movements are the same, but the agent then turns into a separate direction, forming an

“L” movement pattern. We explore this quantitatively by considering raw accuracy of movement

prediction on a five-fold accuracy metric predicting whether an agent will remain stationary or

move up, left, down, or right. This metric, thus, has a baseline random accuracy of 20%. We

find that, in the prediction of the 1+2>3 case, NUC has a raw accuracy of just 22%, with an 8%

accuracy in the “L” cases and 33% accuracy in the non-“L” cases. This trend may be due to the

limited nature of this version of the stag-hunt game with its small board and very few number of

timesteps, but it may be a worthy line of inquiry to see if a similar pattern holds in other action-

understanding problems.

Discussion

In this case study, we adapted the recently formalized computational model of Naive Utility Cal-

culus (NUC) to the multi-agent stag-hunt game to test the model’s abilities to infer agents’ intent

to cooperate (or not cooperate) and predict their future actions. To this end, we found the NUC’s

ability is comparable to leading action-understanding models which have been tested in this same

version of the game. Moreover, we found that, when having only observed the first round of the

game, NUC is able to outperform human observers by a significant margin in inferring which pairs

of agents will cooperate.

However, the existing implementation of NUC seems to suffer from a “status-quo bias;” When

attempting to predict future agent actions, the NUC strongly favored continuing established move-

ment paths and poorly predicted sudden changes to such paths, even if such a change would bring
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an agent closer to its inferred goal. It is unclear whether this is an effect due to the current imple-

mentation of NUC, NUC itself, or the limited and simple nature of the stag-hunt experiment. We

advise that further research with NUC take note of this effect to see if it persists across different

action-understanding scenarios.

Nonetheless, our results indicate that the Naive Utility Calculus is worthy of continued study. Par-

ticularly in light of the (albeit limited) capacity to outperform humans in some cases, the principles

on which NUC is based may represent a potential avenue for advancing platforms for artificial in-

tent recognition.

We may further interpret these results through the lens of inverse generative social science (iGSS).

In the world of generative, agent-based models, it is increasingly apparent many problems are

solved with not one single model which fits the problem best, but rather a class of similar models

of comparable performance (Vu et al., 2019; Gunaratne et al., 2020; Gunaratne and Garibay, 2020).

What we see here—three different models, none of which are clearly the “best” in all cases—may

be an instance of this. Each of these models take an underlying hypothesis about how the human

mind performs intent recognition and encodes it into a specific generative model. The lack, thus

far, of any model’s superiority may indicate that that each model may only partially detail the

actual rules which the human mind is using.

In continuing the search for an intent recognition model that will match or exceed human ability,

one may certainly continue to manually encode generative models based on hypotheses inspired

by psychological research. These models would be both explainable and clearly motivated by real

processes in the human mind. We recognize, however, that this process is very slow and ultimately

bounded by the current state of psychological research. We propose, therefore, the inverse ap-

proach: computationally discovering possible models of human intent recognition, selecting the

best-performers, and comparing and contrasting them to actual processes of the human mind. A
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variety of emerging iGSS algorithms (e.g. Gunaratne and Garibay (2020) or Vu et al. (2019))

would be well-suited for this, though many efforts outside of the strict iGSS perspective are also

underway to apply the principles of causal model discovery to machine learning more generally

(Scholkopf et al., 2021).

It is our view that, with such methods, continued work may be more fruitful in discovering a

more general, fundamental, causal model for social intent recognition and reasoning. Indeed, we

hypothesize that the processes driving inference and decision-making in stag-hunt are not neces-

sarily different in a fundamental way to the processes used in scenarios as diverse as, for example,

reasoning in shared-resource dilemmas (Baggio and Janssen, 2013; Schlüter et al., 2017; Janssen

et al., 2020), deciding how much alcohol to drink and when (Vu et al., 2019), or, even, over long

time-scales across many individuals, ultimately dictating the cultural characteristics which develop

on the level of entire societies (Ortman, 2018; Miranda and Freeman, 2020).
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CHAPTER 3: CASE STUDY 2: COOPERATION IN IRRIGATION

SYSTEMS

Introduction

As the climate crisis continues to cause ecological upset across our Earth (Michelozzi and De’Donato,

2021), an increasing number of communities have grown ever more vulnerable to once-rare envi-

ronmental events such as droughts, changing temperatures, storms, and extreme weather (Miche-

lozzi and De’Donato, 2021). Political, technological, and social changes are required in order to

lessen the human cost of climate change and prevent collapse in the agricultural systems on which

we all rely on. The study of social-ecological commons dilemmas, therefore, has grown more im-

portant than ever as we work to study the mechanisms which will allow us to best understand–and

therefore intervene–in these systems. Increasing understanding on this front allows us to engineer

and govern sustainable, antifragile systems (Taleb, 2012): systems that not only can cope, but

thrive under changing conditions and increased disturbances.

These mechanisms driving human behavior in such commons dilemmas have been a focus of schol-

ars for decades (Dawes, 1980; Ostrom, 1990; Dietz et al., 2003; Ostrom et al., 1999; Cifdaloz et al.,

2010; Gutiérrez et al., 2011; Anderies et al., 2013, 2011; Janssen et al., 2012; Janssen and Bag-

gio, 2017; Baggio et al., 2015), yet the precise mechanisms governing peoples’ behavior in many

types of systems are still largely a mystery. Irrigation systems are one such commons dilemma;

In river and canal-based irrigation systems, upstream farmers have greater access and control of

the system’s resources than downstream farmers by the simple nature of their physical location.

Yet, contributions are required from all users of the system in order to maintain and repair the ir-

rigation infrastructure (e.g., Cifdaloz et al. (2010)). To date, many qualitative understandings have

20



been derived from the study of such systems, but no unified model exists describing the factors

contributing to human decision making which are more likely to increase the resilience of these

systems.

We contribute further to the study of irrigation systems by reanalyzing data collected from partic-

ipants engaging in a simulated irrigation system in an experimental laboratory setting (Anderies

et al., 2013). In this experiment, participants were given charge of virtual fields which required

regular watering via an irrigation canal shared by three other participants. The simulation was

formulated in a round-based game-like format. Participants were rewarded tokens for successfully

supplying their fields with water; however, the canal’s efficiency would also degrade each round,

requiring participants to invest their earnings into the canal’s upkeep in order to keep the system in

working order.

The original experimenters gathered time series through collecting information on the participants’

behavior each round such as investment amounts and water extraction levels. They deduced vari-

ous macro-scale metrics from the participants’ behavior such as Gini coefficients for participants’

earnings and average group level investments over the entire game. Traditional statistical analysis

was able to gather some mechanistic insights on the data (Anderies et al., 2013; Janssen et al., 2015;

Baggio et al., 2015), but it was unable to fully explain the dynamics of each time series. Pursuant

to this, scholars constructed agent-based models in attempt to better explain behavioral charac-

teristics of the individuals in these irrigation common pool resource games (Baggio and Janssen,

2013; Janssen and Baggio, 2017). In these models, agents are modelled as participants engag-

ing in the same round-based irrigation simulation. The studies formulated various rulesets that

(stochastically) govern agents’ interaction between themselves and with the resource (i.e. water

and canals in an irrigation system). Each hypothesized model of agent behavior was carefully for-

mulated based on existing theories on human decision making in relevant environments (Janssen

and Baggio, 2017; Baggio and Janssen, 2013), in line with the current best practice of drawing
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from cognitive science to inform agent architectures for generative social science (Orr et al., 2018;

Miranda and Ozmen Garibay, 2021). However, no single model offered an especially accurate or

robust explanation of the data. Each model was, at best, a partial fit.

Inverse generative social science

Recently, problems such as this have become a ripe opportunity to employ a related family of

advancements in agent-based modelling known as inverse generative social science (iGSS). To

conceptualize iGSS, consider: On a fundamental level, an ABM is a tacit hypothesis that a given

set of micro-scale rules for agent interaction work together to produce an observed macro-scale

emergent phenomena. For example, the Schelling Segregation model (Schelling, 1969) encodes

the hypothesis that individuals’ small preferences in the racial composition of their neighbors on

the micro-scale ultimately interact to create the macro-scale emergent phenomenon of racially

segregated neighborhoods. When this stylized fact is applied to real-world situations, it is, of

course, just one possible hypothesis of the mechanism which may be contributing to segregated

neighborhoods. While the explanation is plausible, it may only be a single facet of the entire set

of dynamics driving segregation. In some cases, it may not even be at play at all (such as, in

an extreme example, an authoritarian state actively enforcing segregation upon citizens with an

adverse preference for it). That is, a single macro-phenomena can often be explained, or partially

explained, by entirely disparate micro-scale agent rule sets.

Thus, it becomes desirable to test multiple different rulesets. Traditionally, modellers’ intuitions

and qualitative domain literature have been the primary sources for determining these micro-scale

rules. Testing variations in the rule sets has primarily been limited to varying numeric parameters

or testing only a limited selection of rule sets, based on theoretical arguments. Researchers have

therefore been very limited in the number of alternative rule set hypotheses that they are able to
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test, and the space of plausible, alternative rule sets goes largely unexplored. Even in the presence

of simulated macro phenomena which match the observed real phenomena, there is little in the

way of guaranteeing that the hypothesis chosen by the modeller is the correct process by which the

phenomenon is actually generated.

Inverse generative social science (iGSS) serves to remedy this issue by leveraging machine learn-

ing to automate the exploration of the space of possible rule sets (Epstein, 1999; Vu et al., 2019).

Rather than building up entire models, the iGSS modeller begins by specifying possible subsets of

models. That is, the modeller defines a set of primitive agent constituents and operator functions

capable of combining them. They then define an appropriate fitness function or selection pressure

used to be able to evaluate how good a given model is, typically seeking the generation of a known

macro-scale phenomenon or a precise fit to real-world data. Then, a specialized iGSS machine

learning algorithm combines and recombines the model primitives into new models, evaluates

them, and converges towards optimal models in a typical optimization fashion. To do this, we uti-

lize evolutionary model discovery (EMD), a recent framework for iGSS (Gunaratne and Garibay,

2017; Gunaratne et al., 2021; Gunaratne, 2019). Our results take the form of a variety of different

agent token-investment strategies and an analysis of the possible causal factors which contribute

to this behavior.

In this study, we leverage advances in iGSS and evolutionary model discovery in order to devise

which sets of rules are more likely to give rise to the outcomes observed in the original irriga-

tion experiments. Our results indicate that a missing key to previously formulated models may

have been an additional element of stochasticity which was not accounted for. Our analysis also

indicates that other factors, such as utility maximization and perceived relative income, are also

important in increasing model fitness.

In light of this and the evidence presented from other works, we argue that iGSS has powerful
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potential for deriving more accurate and robust inferences on the relationship between micro-level

elements and observed macro-phenomena.

Background

The irrigation experiment

This study has its origins in the tradition of studying irrigation systems. In 2010-2012, a series

of experiments were run at Arizona State University with undergraduate student participants that

were presented either a digitally or paper-based simulated irrigation system (Anderies et al., 2013;

Janssen et al., 2015; Baggio et al., 2015). The irrigation system requires maintenance and provides

water. Participants then, at each round, needed to decide how much to invest in maintaining the

infrastructure and how much water they wanted to extract. Depending on the level of the group

investment, a specific amount of water was available for extraction. Simulating the irrigation

system implies that water extraction follows specific positions assigned to the participants, hence,

the participant in position A decided how much water to extract, and then B could only extract

what A left them. This procedure continued until participant E, who could only extract the water

left by participants A, B, C and D. Participant order was determined before the initial round of the

simulated irrigation system and remained constant over the course of the experiment. At the end

of the game, the five participants were rewarded with a direct conversion of tokens to US dollars.

Multiple studies followed these experiments in order to shed light on specific individual and group

characteristics in relation to the group behavior over the course of the experiment. The experiments

were first statistically analyzed via regression models which discovered some correlations in the

data (Anderies et al., 2013; Janssen et al., 2015). Data from irrigation experiments were also

analyzed by constructing multiple, competing agent based models in which agents follow rules
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dictated by theoretical considerations (i.e. selfish, altruistic, utilitarian, random etc.) (Baggio and

Janssen, 2013). Further, this approach was refined on another set of irrigation experiments in

Janssen and Baggio (2017). The analysis via agent based models in Baggio and Janssen (2013)

and Janssen and Baggio (2017) shed some light on potential rules governing the overall irrigation

system, but no model was found to clearly outperform all others. Further, these works did not test

a comprehensive set of alternative rules, and nor did they test whether multiple rulesets acted at

any given time.

Evolutionary Model Discovery

Here, we therefore leverage evolutionary model discovery (EMD), which utilizes machine learn-

ing to automate the discovery of causal factors driving agent decisions in agent-based models (Gu-

naratne and Garibay, 2020) in order to assess multiple alternative rulesets. In contrast to traditional

agent-based modeling, EMD does not require that hypothesized models be manually formulated by

domain experts. Instead, modelers must simply specify a set of possible factors and operators that

may or may not contribute to the emergence of a phenomenon in question. They must additionally

specify a fitness function that evaluates the goodness of a given model.

The algorithm on which EMD is based on combines the provided factors and operators into syn-

tactic trees which encode new models of agent behavior. Using genetic programming, generations

of these trees are formulated, mutated, and evaluated according to the provided fitness function.

The best-performing rules are then allowed to cross-breed and generate successive generations. In

other words, EMD combines and recombine these factors and explores the entire space of possible

models before finally settling on optimal solutions (i.e. where fitness is maximized or minimized).

After obtaining the data encoding model performance from the genetic program, the modeler may

use it to analyze the importance and efficacy of individual factors and their interactions. Using this
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information, the modeller may analyze the automatically-generated models and use the insights

gained therein to manually create new models and test whether they improve the overall fitness.

These models can then be assessed in order to provide new scientific insights about the causal

relationships which lead to observed macro-scale phenomena.

EMD and related approaches in iGSS have been successfully used in automating the discovery of

sophisticated models in domains such as archaeology (Gunaratne and Garibay, 2020), social media

analysis (Gunaratne et al., 2020), and public health (Vu et al., 2019).

Methods

Here, we specifically examine the irrigation experiment performed and analyzed in Baggio et al.

(2015) and Baggio and Janssen (2013). We begin with the highest-performing model derived in

Baggio and Janssen (2013): The other-regarding preferences (utilitarian) model. This model is

based on findings from behavioral economics and is the most complex of the original models. In a

nutshell, each agent is imbued with either a competitive, egalitarian, or altruistic disposition. The

probability of an agent having any one of these decisions is determined by parameters. Each agent

then incorporates information on the environment and their neighbors’ behavior to make decisions

which maximize some notion of utility which is congruent with their disposition.

In order to place more precise bounds on our scope and search-space, we concentrate on agent

investment behavior and leave extraction behavior unchanged. Allowing the extraction behavior to

also vary is a potential direction for future work. In place of the investment behavior, we allow the

insertion of new models generated from a set of hypothesized alternate factors.
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Hypothesized alternate factors influencing investment decision

We utilize the paradigm introduced by Agent Zero (Epstein, 2014) of capturing a more realis-

tic space of human behavior by ensuring factors represent three dimensions of human decision-

making: rational, social, and emotional. We indicate the hypothesized factors in Table 3.1. Of

these, Fself, Fheur, Fpseu, Falt, and Futil represent factors originally hypothesized in Baggio and Janssen

(2013). We introduce the factors: Frand to serve both as a “null” model and allow additional stochas-

ticity; Fup and Fdown to allow for dynamics more directly related to neighbors’ investments; and

Finc to add an emotional dimension, as prior work has shown that perceived income relative to

others affects investment behavior (Anderies et al., 2013; Janssen et al., 2012; Baggio et al., 2015).

We formulate each factor as a function Fi(x) : [0..10] → [0, 1]. This represents the probability of

investing x tokens (an integer between 0 and 10) due to the given factor Fi. These factors can then

be combined using addition (+), subtraction (-), multiplication (*), and division (/) into a combined

rule R(x). For example, a given R(x) may be R(x) = 2 ∗ Fself + Fup − Fdown.

Agents then decide the number of tokens to invest, x′, using argmax over the possible investment

amounts:

x′ = argmax
x∈[1..10]

R(x) (3.1)

Or, alternatively, to allow for the probabilistic complement of R(x), argmin may also be used:

x′ = argmin
x∈[1..10]

R(x) (3.2)

Note also that, with the inclusion of the subtraction operator, the probabilistic complement of each

individual factor is also encoded. For example, while Fup produces a more positive value for x
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more similar to the upstream neighbor’s last investment, −Fup produces a more negative value.

We model factors concerned with higher probability centered on a particular value v with the linear

probability density

P (v, x) = −
∣∣∣∣v − x

ω

∣∣∣∣+ 1 (3.3)

Where ω is a parameter controlling the “width” of the probabilization.

Evolutionary model discovery

Our function fit for evaluating model fitness is identical to that used in Baggio and Janssen (2013).

It is defined as:

fit = fit1 · fit2 · fit3 · fit4 · fit5 (3.4)

Where each fiti is defined as the normalized squared difference between simulated data, ds, and

experimentally observed data, de, for a particular metric:

fiti = 1− (de − de)
2 (3.5)

With the following five metrics, representing five of the most charactaristic time series of the data

collected:

• Average group level investments in the public infrastructure level over the 10 rounds (fit1)

• The average contribution per position (fit2)
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• The average collection per position (fit3)

• The average Gini coefficient of contributions (fit4)

• The average Gini coefficient of collected tokens (fit5)

Hence, higher fit represents a better fit to the experimental data with a maximum fitness of

fit = 1. This fitness function is useful, in that it effectively achieves a single aggregated function

encompassing multiple optimization objectives. Through multiplying each metric, low fitness in

one metric is more heavily penalized than if the metrics were simply summed.

Janssen et al. (2012) compared different configurations of fitness measures (including the fit de-

fined here), but ultimately did not find a qualitative difference in them. Hence, we choose this fit

for its quantitative advantages described above.

Although we only allow the investment behavior of agents to vary in our evolutionary model dis-

covery, we justify keeping extraction fitness as part of fit by the fact that the amount of water

available for extraction is still affected by the infrastructure efficiency (which is affected by invest-

ment behavior). Thus, the extraction time series is still affected by investment behavior, and we

desire a close fit to it. Moreover, as all agents use the same extraction strategy, the baseline fitness

granted by this behavior is the same for all models and does not affect the comparison in overall

fitness determined by variations in investment behavior.

We initialize all model parameters to a random value uniformly distributed between plus-or-minus

0.05 the optimal values reported in Table 3 of Baggio and Janssen (2013). This initialization

allows us to alleviate over-fitting to arbitrarily precise parameters which allows the discovery of

more robust models Gunaratne and Garibay (2020).

We chose the hyperparameters for evolutionary model discovery based on Gunaratne and Garibay
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(2020): We set the mutation rate to 0.2, and we allowed the crossover rate to vary between 0.6

and 0.8. We set the minimum tree depth to 2, as this is the minimum depth for a valid rule in the

formulation of the problem (allowing for the first layer to be the argmax/argmin function and the

second layer to be a single factor). To encourage the exploration of the possibility of more complex

rules, we set the maximum tree depth to 64.

In total, we ran the algorithm until it had evolved approximately 10,000 models. Of these, based

on fitness, we selected the top 100 models and sampled each of them 100 times to obtain a fitness

distribution under the randomly initialized parameters. For all of this, we used the NetLogo/Python

implementation of EMD provided by Gunaratne and Garibay (2020).

Results

We begin showcasing the results by assessing all 10,000 evolved models/rulesets. Our analysis

follows the methodological footsteps put forth by prior EMD analyses such as Gunaratne et al.

(2020) and Gunaratne et al. (2021). That is, we begin by analyzing the importance of individual

and joint factors in terms of their impact on the fitness of each model. We then analyze the best-

fitness models themselves. This allows us to paint a larger picture of not only the best models,

but the general significance and robustness of including factors in any given model. This allows

us to more precisely see what contributes to a given models success, and in theory also allows the

manual construction of new models based on insights garnered from the algorithmic construction.

The factor analysis is important for more precisely deducing the dynamics of each factor, as evolu-

tionary model discovery was successful in evolving a great variety of rules with varying complexity

in factor interaction. The set of evolved rulesets range from from rules with just one or two factors

to the most complex model evolved, argmin((Frand + Falt − Frand − Fup) ∗ Fdown) ∗ (((Fheur +
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Fself ) ∗ (Fself + Fheur)) + (Fheur ∗ Fheur)), incorporating eleven factor presences (although its

fitness is only 0.218).

In order to determine the importance of individual factors, we report the results of a random forest

regression with 394 trees (Figure 3.1). Both statistical dispersion (Gini) and permutation accuracy

importance metrics indicate that Frand is the most important factor in predicting fitness, followed

by Futil.

Figure 3.1: Gini importance and permutation accuracy importance of the hypothesized factors
towards a random forest’s ability to predict the models’ fitness. Frand and Futil display the highest
Gini and permutation accuracy importance.

To further assess the factors using this importance information, we conduct a pairwise analysis

comparing the importance of each factor with every other factor. Figure 3.2 shows the p-values of

one-tailed Mann-Whitney U tests (α = 0.05) comparing the permutation importance of each factor
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A against every other factor B with H0 : importance of A = importance of B and H1 : importance

of A ¿ importance of B. At least 7 of the 9 factors show significant difference and can be ordered

from highest to lowest permutation accuracy importance as: Frand, Futil, Falt, Finc, Fheur, Fpseu, Fself.

Figure 3.2: Statistical confirmation of the existence of order by importance among factors. Results
from systematic Mann-Whitney U tests (α = 0.05) comparing the permutation importance of
each factor A with every other factor B with H0 : importance of A = importance of B and H1 :
importance of A > importance of B. Colored cells indicate acceptance of H1. The results show a
clear ordering of factors by importance.

We also desire to assess factor importance in terms of multiple interacting factors, as opposed to an-

alyzing the importance of only singular factors. Figure 3.3 compares the top ten joint contributions

to fitness prediction of the random forest by individual factors and joint contributions of factors

considered in pairs and triples. Frand far exceeds and other factor or factor interaction in terms

of importance. The runners up are (Frand, Futil), (Fheur, Frand, Futil), (Falt, Frand), (Falt, Frand, Finc),
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(Frand, Finc, Futil), and (Falt, Fpseu, Frand). Note that Frand appears in all of these.

Figure 3.3: Ordered bar chart of the highest normalized joint contribution scores of factors and
interactions of three or fewer factors. Above all other factors, pairs, and triplets, Frand alone shows
an immensely superior contribution to the random forest’s ability to predict model fitness.

Finally, the 14 best-fit candidate models evolved by the genetic program are reported in Table 3.2

along with their mean fitness score. As expected from the factor analysis, Frand is the most fre-

quently appearing factor. Figure 3.4 displays a selection of these top models (rules 1, 3, and 4)

compared against a model consisting of just Frand (as a kind of null model) and the original utilitar-

ian model. The EMD-derived models score considerably higher in fitness. We show visualizations

of the evolved syntax trees of these models in Figure 3.5.
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EMD-derived rules

EMD-enabled null rule

Original rule

Figure 3.4: Comparisons of 100 samples of three of the top-performing models evolved through
EMD compared against a purely random model and the original utilitarian model. Parameters are
randomly initialized ±0.05 about their original optimal values. Models designed through EMD
insights are significantly more accurate and robust compared to the original model.

Discussion

In this study, we built upon previous work in the study of irrigation systems social dilemmas. We

reanalyzed and augmented a set of agent-based models designed to model behavior in a stylized

irrigation dilemma as simulated via a behavioral laboratory experiment. We focused on an indi-

vidual facet of the model: agents’ behavior in contributing to the collective upkeep of irrigation

infrastructure. Utilizing evolutionary model discovery, we algorithmically explored a much larger

space of possible rule sets for this behavior than was previously possible. We find that, in con-

trast to the original models, our best-performing rule sets typically have an additional element of

stochasticity and favor factors such as other-regarding preferences and perceived relative income.

This idea of baseline behavior augmented with a small amount of additional stochasticity was,

in fact, expressed and hypothesized in the models’ original introduction (Baggio and Janssen,

2013). For example, rule 1 in Table 3.2 is a simple addition of the baseline utilitarian model with
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Figure 3.5: Visualizations of the evolved syntax trees for rules 1, 3, and 4.

a random term. Baggio and Jannsen conceptualized this idea as the “wavering hand:” Agents have

some idea of how to reason about the system and make decisions, but incomplete understandings

and/or uncertainty can cause an amount of stochasticity about a more clearly explained behavior.

However, we suspect that the discovery of the robustness of this fact may not have originally

occurred as exploring additional rule configuration possibilities was simply too labor-intensive a

process prior to modern iGSS methods.
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There are additional insights to be had from the models generated and subsequent factor analysis.

We note that rule 3 in Table 3.2 represents an interesting outlier in the top performers, as it defies

the factor composition which would be expected from the importance analysis. This interaction

between the heuristic and both up- and down-stream homophily may belie a particular strategy

where upstream farmers are especially motivated to match the investments of downstream farmers.

This insight may be used to inform further research on related irrigation dilemma strategies.

Further, we would like to note that, in this current formulation, all agents homogeneously follow

the same strategy. This may be a contributing factor to the appearance of disparate rule sets with

similar fitness in Table 3.2. Further research may find additional fitness gains through exploring in-

creasingly heterogeneous agents. Additionally, a clear direction forward may also involve allowing

the extraction behavior to vary as well as the investment behavior.

In terms of the methodology itself, we would like to note that there is an emerging spectrum

which must be balanced in the creation of factors and operators. On one end of the spectrum,

primitives take the form of the most basic mathematical and logical building blocks. In theory, any

model in existence which is expressible as an equation or computer program could be built using

these primitives, and, indeed, Greig and Arranz (2021) succeeded in creating impressively accurate

ABMs of physical phenomena through doing so. However; Using primitives like these create what

is perhaps the largest possible search space for iGSS algorithms. Immense computational power is

required to search it to derive anything but the simplest of models, and different search algorithms

will of course produce varying results. On the other end of the spectrum lies constructing primitives

and operators which rely heavily upon domain knowledge of the given problem. For example, in

our own study, we have ”likelihood of a given investment due to other-regarding-preference-based

approximate utility maximization” as a single primitive. Using such primitives can significantly

narrow the model search space to only include aspects which the modeller suspects have a high

chance of being in the final model. This, of course, has the drawback of the modeller perhaps
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narrowing the search space too much and potentially excluding classes of desirable models which

would have otherwise been discovered using more basic primitives. Striking the balance between

these two extremes seems to be a difficult, albeit promising modelling strategy.

Ultimately, given our results and those of other works (Gunaratne, 2019; Gunaratne et al., 2020;

Garibay et al., 2021), we argue that iGSS methods pave a clear path forward for agent-based

modelling and represent a natural evolution of the practice. We anticipate that further developments

of iGSS will serve to bring about a new era of generative social science models which are not only

more accurate and robust, but may aid in uncovering causal mechanisms that otherwise would have

remained un-discovered.
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Table 3.1: Hypothesized factors contributing to investment behavior

Factor Name Description

Rational factors

Fself Selfishness Higher probability for investments closer to
0 tokens

Frand Random Uniform random probability
Fpseu Pseudorandom Pseudorandom “trembling hand” model

from Baggio and Janssen (2013); The first
investment is randomly chosen, and subse-
quent investments are the same as the first
investment plus or minus a noise term

Social factors

Falt Altruism Higher probability for investments closer to
the maximum token investment

Futil Other-regarding preferences (utilitarian) Investment behavior of the original base
model, introduced in Baggio and Janssen
(2013) based on findings from behavioral
economics

Fup Upstream homophily Higher probability for investments more
similar to upstream neighbor’s last invest-
ment

Fdown Downstream homophily Higher probability for investments more
simliar to downstream neighbor’s last in-
vestment

Emotional factors

Finc Relative income Greater weight for below-average-income
agents to invest less and above-average-
income agents to invest more.
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Table 3.2: The 14 top-scoring rules. Rules are algebraically simplified where applicable. Note that
repeat occurences of Frand and Fpseu are marked with additional numbered subcripts to highlight
the fact that these are non-deterministic functions with values that change each time they are called.
Thus, they cannot be algebraically cancelled. For example, Frand −Frand may resolve to 0.5 if the
first Frand rolls 0.75 and the second rolls 0.25, so we express this as Frand1 − Frand2.

# Rule Mean fitness

0 argmin
x

Fpseu1 − Frand + Futil − Fpseu2 0.5534

1 argmax
x

Frand + Futil 0.5533

2 argmin
x

Frand − Futil 0.5531

3 argmax
x

Fdown − Fup − Fheur 0.5497

4 argmin
x

((Fup − Futil)− ((2 ∗ Fpseu ∗ Futil) + Fup))− Frand 0.5471

5 argmax
x

Frand1 + (Futil ∗ Frand2) 0.5459

6 argmin
x

Fpseu + Fdown − Frand1 − Frand2 0.5442

7 argmin
x

(Fup ∗ Finc) + Frand 0.5368

8 argmin
x

− Frand1 − Frand2 − Fpseu + 2 ∗ Finc 0.5342

9 argmin
x

Frand1 − Frand2 + Fpseu 0.5341

10 argmin
x

Fpseu + Frand 0.5312

11 argmax
x

Frand − Fpseu 0.5312

12 argmin
x

Frand + Fpseu 0.5311

13 argmin
x

Fpseu − Frand 0.5311
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CHAPTER 4: CONCLUSION

In this thesis, we advanced two case studies of artificial social cognition using causal generative

models. In the first case study, we generalized a new framework for artificial intent recognition,

the Naı̈ve Utility Calculus (NUC), to outperform existing models in observing stag-hunt, a simple

multi-agent game where agents must infer each others’ intent to cooperate to maximize their re-

wards. In the second case study, we utilized a new paradigm for causal generative modelling known

as inverse generative social science (iGSS) to advance models of decision-making in a stylized ir-

rigation system commons dilemma. Using evolutionary model discovery (EMD), an algorithm for

iGSS, we found a host of new, algorithmically-deduced models which likewise outperformed the

former state-of-the-art models for the problem.

In the stag-hunt case study, NUC displayed a major strength in being the first modelling strategy

to outperform the ability of human observers in determining which pairs of agents would decide

to cooperate after the first round of observation. While it also displayed some weaknesses, such

as a bias in being overconfident of an agent moving in an established direction, the fundamental

underpinnings of the model show much potential for continued use in advancing artificial intent

recognition.

In the irrigation systems study, we used iGSS methods to study the behavior of farmers in con-

tributing to upkeep of a simulated irrigation canal. This utilized data collected from a series of

real-world laboratory experiments wherein participants took on the role of farmers in a stylized

irrigation system. Using this data, iGSS-generated models were validated against actual time se-

ries describing this behavior, and a host of new models were discovered which fit this data more

accurately and robustly than the originally formulated models. The newer models typically incor-

porated an additional element of stochasticity that was not originally accounted for to the extent
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required to achieve such an accurate fit.

These results have clear implications for the advancement of artificial intent recognition and the

study of irrigation systems. But, moreover, the work showcases how flexible the methodology of

causal generative models and iGSS can be. By virtue of the computational nature of the method-

ology, each model it puts forth simultaneously advances the scientific domain it is applied to and

allows such models to be encoded directly into the cognitive architecture of social AI. Our results

show the strength of this multi-front approach to the problem of cooperating to solve our world’s

largest problems.

We posit that this variety of modeling should continue to be developed as a powerful tool in our

collective toolbox to build out more sustainable, equitable, and compassionate societies.

41



APPENDIX: UCF IRB DETERMINATION

42



 

Institutional Review Board 
FWA00000351 

IRB00001138, IRB00012110  

Office of Research 

12201 Research Parkway 

Orlando, FL  32826-3246 

 

 Page 1 of 1  

NOT HUMAN RESEARCH DETERMINATION 

April 12, 2022 
 
Dear Lux Miranda: 

On 4/12/2022, the IRB reviewed the following protocol: 

Type of Review: Initial Study 

Title of Study: Understanding Cooperation and Creating Social AI with 
Causal Generative Models 

Investigator: Lux Miranda 

IRB ID: STUDY00004198 

Funding: None 

Grant ID: None 

Documents 
Reviewed: 

• Miranda_HRP-251.pdf, Category: Faculty Research 
Approval; 
• Explanation of analyzed data variables, Category: Other; 
• MIRANDA_HRP-250.docx, Category: IRB Protocol 

The IRB determined that the proposed activity is not research involving human 
subjects as defined by DHHS and FDA regulations. 

IRB review and approval by this organization is not required. This determination 
applies only to the activities described in the IRB submission and does not apply 
should any changes be made. If changes are made and there are questions 
about whether these activities are research involving human in which the 
organization is engaged, please submit a new request to the IRB for a 
determination. You can create a modification by clicking Create Modification / 
CR within the study. 

If you have any questions, please contact the UCF IRB at 407-823-2901 or 
irb@ucf.edu. Please include your project title and IRB number in all 
correspondence with this office. 
 

Sincerely, 

 

Katie Kilgore 
Designated Reviewer 

43



REFERENCES

Anderies, J. M., Janssen, M. A., Bousquet, F., Cardenas, J. C., Castillo, D., Lopez, M. C., Tobias,

R., Vollan, B., and Wutich, A. (2011). The challenge of understanding decisions in experimental

studies of common pool resource governance. Ecological Economics, 70(9):1571–1579.

Anderies, J. M., Janssen, M. A., Lee, A., and Wasserman, H. (2013). Environmental variability

and collective action: Experimental insights from an irrigation game. Ecological Economics,

93:166–176.

Baggio, J. A. and Janssen, M. A. (2013). Comparing agent-based models on experimental data of

irrigation games. In 2013 Winter Simulations Conference (WSC), pages 1742–1753, Washing-

ton, DC, USA. IEEE.
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