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ABSTRACT

Social media is a virtual community where users share news, ideas, interests, and information.

Learning the information diffusion dynamics and making decisions correspondingly, e.g., selecting

the seed nodes to maximize the influence, have been widely applied to the areas of viral marketing

and cyber security. In this dissertation, we study the problem of learning diffusion process, i.e.,

infection prediction, in social media networks utilizing both feature-based machine learning meth-

ods and mathematical model-based methods. For feature-based machine learning methods, the

neighborhood information is treated as an important feature together with user profile and content

similarity features. For model-based methods, two distinctive mathematical models, i.e., Linear

Threshold Learning Model and Random Walk Learning Model, are proposed to learn the infor-

mation diffusion dynamics. Neural networks are implemented to train the proposed models for all

aforementioned methods. In this dissertation, we also study the problem of choosing seed nodes to

maximize the influence in social media networks. In one project, the problem is addressed through

solving the tiered influence and activation thresholds target set selection problem, which is to find

the seed nodes that can influence the most users within a limited time frame. Both the minimum

influential seeds and maximum influence within budget problems are considered in this study. In

addition, we study the impacts arising from the uncertainties in network structures, user behavior

and activation prices via two-stage stochastic optimization as well.

Keywords: Mathematical Optimization, Influence Maximization, Stochastic Programming, Infec-

tion Prediction, Machine Learning, Social Media, Network Optimization
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CHAPTER 1: INTRODUCTION

1.1 Motivation

Social media has become an important platform for people to connect with each other, share their

opinions, news and spread the influence. Thus social media plays an important role in spreading the

information. Understanding how the information propagates is essential for successful applications

of viral marketing [1] and cyber security [2] in social media networks. To this end, researchers have

defined various diffusion tasks to tackle the real world problems. The tasks include:

• Buzz prediction [3]: It predicts whether a topic is going to be a trend before it is actually

declared to be a trend.

• Volume prediction [4]: It predicts the spread of an idea in a given time frame.

• Infection prediction [5]: It learns the diffusion parameters between two users under the prop-

agation models.

• Link detection [6]: It predicts the edges of the information propagation network and esti-

mates the transmission rates of each edge that best explain the observed data.

• Influence maximization [7, 8, 9, 10, 11]: It selects a limited number of nodes at the beginning

that spread the most influence at the end.

• Firefighter problem [12]: It stops the infection by selecting the targeted vaccination nodes at

the beginning when an infection is spreading through the network.

As we can see the diffusion tasks could be classified into either learning problems including

buzz prediction, volume prediction, infection prediction and link prediction or decision making

problems including influence maximization and firefighter problems in social media. In this thesis,

we study the problem of learning and decision making in social media. In particular we focus on
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infection prediction and influence maximization problems. To predict the information diffusion

between each pair of users is one of the most important tasks in prediction. On one hand, it applies

to analyze human activities and explore the factors influencing the information diffusion, which

helps business and organizations to make more attractive advertisements to boost the business. On

the other hand, learning diffusion probability is the first step to tackle the influence maximization

problem. Influence maximization problem involves finding a limited number of nodes that have the

largest influence for the spread of information. Influence maximization is widely used in the areas

of viral marketing and misinformation detection. In viral marketing, advertisers pay incentives to

the selected influencers so that they could help to promote their products. In cyber security, we put

the detectors on important users so that the misinformation could be detected in the early stage of

spread. Besides, some users could be identified to be exposed to the true information before they

hear the misinformation to limit the spread of misinformation in social media.

1.2 Methodologies

In the thesis, we investigate the infection prediction and influence maximization problems using

both machine learning and mathematical optimization methods. Machine learning is the science

of getting algorithms to find patterns or learn how to do tasks without telling computers the exact

mathematical models. It has good performance but suffers in interpretability. Machine learning

methods have been widely used in prediction tasks in social media. Mathematical optimization is

more explainable and flexible for different requirements. In the thesis, we focus more on investigat-

ing the infection prediction and influence maximization problems using mathematical optimization

methods.

2



1.2.1 Mathematical Optimization

Mathematical optimization selects the best solution from some set of available alternatives regard-

ing to the problems of maximizing or minimizing an objective function subject to some constraints.

The mathematical formula is shown below:

min f (x) (OBJ)

s.t. g(x)≤ 0

Where f (x) and g(x) correspond to objective function and constraints. x represents the decision

variables. Mathematical optimization has wide applications in all quantitative disciplines in com-

puter science and engineering, operations research and mathematics. Here we apply mathematical

optimization to tackle the learning and decision making problems in social media considering dif-

ferent diffusion models.

Our mathematical optimization models are built based on the diffusion models. There are

two widely used diffusion models in the literature, namely Independent Cascade Model (IC) [7]

and Linear Threshold Model (LT) [13]. Independent Cascade Model assumes every node has one

single chance to activate another node. Linear Threshold Model shown in Figure 1.1 assumes that

a node is activated when the total weights of its neighbors’ influence are at least θ j. All of our

proposed models are threshold based models.

1.2.1.1 Stochastic Programming

In the field of mathematical optimization, stochastic programming is a framework for modeling

optimization problems that consider uncertainty. The uncertainty could lie in some or all problem

parameters. The random parameters may appear in objective functions or constraints, but fol-

low known probability distributions. Considering many real-world decisions involve uncertainty,

3
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Figure 1.1: Linear Threshold Propagation Model

stochastic programming has wide applications in the areas of finance, energy and transportation.

The most widely used stochastic programming models are two-stage stochastic programs,

where the decision maker has to make decisions in two stages(two different times) considering

the uncertainty. At the first stage, the decision maker should make the decision based on the

available data and cannot depend on future observations. Based on the observed random event and

outcome of the first-stage decision, the recourse decision is made in the second stage. The general

formulation of a two-stage stochastic programming problem is given by:

min
x∈X

f (x)+E[Q(x,ξ )]

Where Q(x,ξ ) is the optimal value of the second-stage problem based on the solution of first stage

decision x̂.

Q(x,ξ ) = min{qT y|Wy = h−T x,y >= 0}

Where x represent the first stage decisions and y represent the second stage decisions.
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1.3 Outline

The dissertation studies the learning and decision making problems in social media. It mainly

focuses on solving the infection prediction and influence maximization problems. Different meth-

ods, e.g., mathematical optimization, machine learning, graph theory and stochastic programming

are proposed to study the problems from different angles. Besides, several novel mathematical

optimization models are presented and various advanced solution algorithms are developed to deal

with the computational difficulty of each problem.

As we discuss, the thesis includes two themes: infection prediction and influence maxi-

mization. The outline of the thesis is summarized below.

Chapter 2 and Chapter 3 are tackling the infection prediction problem using either feature-

based machine learning method or mathematical optimization method. In Chapter 2, we propose

a new framework combining user profile, content similarity and the neighborhood information

around each target link as input features to make the repost prediction. Here neighborhood infor-

mation can be interpreted as the combination of neighbors’ user profile. After collecting the input

features, we implement the state-of-the-art machine learning methods, e.g., Logistic Regression,

K-nearest Neighbors, Gaussian Naive Bayes, Deep Neural Network, Random Forest, XGBoosting

and Stacking Model to predict repost probability. In Chapter 3, two learning models are proposed

that are aimed at learning person-to-person influence in information diffusion from historical cas-

cades based on the threshold propagation model. The first model is based on the linear threshold

propagation model. In addition, by considering multi-step information propagation in one time

period, this paper proposes a learning model for multi-step diffusion influence between pairs of

users based on the idea of random walk. Mixed integer programs (MIP) have been used to learn

these models by minimizing the prediction errors, where decision variables are estimations of the

diffusion influence between pairs of users. For large-scale networks, this paper develops approx-

imate methods for those learning models by using artificial neural networks to learn the pairwise

5



influence.

Chapter 4 and Chapter 5 are solving the variants of the influence maximization problem. In

Chapter 4, we address the problem through solving the tiered influence and activation thresholds

target set selection problem, which is to find the seed nodes that can influence the most users within

a limited time frame. Both the minimum influential seeds and maximum influence within budget

problems are considered in this study. Besides, this study proposes several models exploiting dif-

ferent requirements on seed nodes selection, such as maximum activation, early activation and

dynamic threshold. These time-indexed integer program models suffer from the computational

difficulties due to the large number of binary variables to model influence actions at each time

epoch. To address this challenge, this paper designs and leverages several efficient algorithms,

i.e., Graph Partition, Nodes Selection, Greedy Algorithm, Recursive Threshold Back Algorithm

and Two-stage Approach in Time, especially for large-scale networks. In Chapter 5, we tackle the

influence maximization problem considering the uncertainties in network structures, user behavior

and activation prices. We formulate the problems as two-stage stochastic optimization problems,

and solve them via the Sample Average Approximation method. Chapter 6 concludes the disserta-

tion.
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CHAPTER 2: INCORPORATING NEIGHBORHOOD INFORMATION

INTO A REPOST PREDICTION MODEL IN SOCIAL MEDIA

NETWORKS

2.1 Introduction

Mass adoption of mobile devices forever changed the way people communicate and interact with

each other. The planet suddenly became unexpectedly smaller for its seven billion residents, es-

pecially in the sense of communication. One irreversible result is that people have adopted social

media platforms as the major venue for sharing their opinions and news, and for spreading their

influence. This poses a series of challenges and opportunities. Understanding how the informa-

tion propagates within social media platforms is essential for successful implementation of viral

marketing [1] and cyber security [2] in social media networks. One of the most essential and fun-

damental information propagation tasks is to predict the information diffusion between each pair

of users. On one hand, it has applications in the analysis of human activities and the exploration

of the factors that influence information diffusion, which helps business and organizations in craft-

ing more attractive advertisements to boost the business. On the other hand, learning diffusion

probability is the first step in tackling the influence maximization problem. Influence maximiza-

tion problem involves finding a limited number of nodes that have the largest influence for the

spread of information. Influence maximization is widely used in the areas of viral marketing and

misinformation detection.

Although social media platforms differ slightly from one another in information diffu-

sion and cascade, the predominant dynamic for information diffusion is through the reposting or

retweeting of messages. Unfortunately, the reposting probability for each user within a network is

not readily available from the massive historical dataset of social media networks. To fill this gap,

several research articles have studied the problem of learning repost probability in online social
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media networks.

Most of the machine learning models learned the repost probability through content and

user profile features [14, 15, 16, 17, 18, 19]. According to previous research, user profile is a

better indicator of information diffusion in social media [20, 21]. In addition, user preference for

reposting may differ from post to post. Studies have shown that message propagation occurs more

frequently when the posts are in line with user interests [22]. Zhu et al. [19] implemented logistic

regression to model a user’s repost decision. The article considered the content influence, including

topic similarity, URLs, hashtags, mentions, user profile, and time influence, as factors for making

a prediction. Lagnier et al. [17] proposed a logistic regression model that considers the similar-

ity between content and user, the willingness to diffuse, and the time-decaying social pressure as

important factors of repost prediction. Jiang et al. [16] studied the retweetability of users by incor-

porating interest similarity and social influence information into a one-class collaborative filtering

model. Retweetability prediction models can be treated as binary classification models, which re-

quire positive and negative observations for learning the parameters. Usually, positive observations

are easy to get; however, negative observations are not readily available. Therefore, researchers

have to treat the missing data (no repost) as negative observations. The innovation of this approach

lies in assigning the combined score of interest similarity and social influence information for each

missing observation to give them different weights. Recently, Varshney, Kumar, and Gupta [14]

proposed a Bayesian network based approach to predict the repost probability between each pair

of users for messages of different topics. The approach considered diffusion history, user profile,

topic information, network connection, activity and similarity as important features that influenced

repost prediction in social media network.

For large scale social media networks, the relationship between important factors in a user’s

repost decision and repost probability is complex and nonlinear. Therefore, we implement several

machine learning approaches to estimate the repost probability. We take all the essential factors

that might affect the diffusion process into consideration, including user profile, neighborhood
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information, and content similarity. The contributions of the project are summarized as follows:

• We take user neighborhood information into consideration. Each user’s friend circle is a

good indicator of that user’s repost decison. Users who have very active friends tend to be

more active in reposting messages. To collect neighborhood information, we introduce two

different combination models of neighbors’ user profile from a graph theoretic perspective.

We analyze both combination models and compare their performance in learning repost

probability.

• Different state-of-the-art machine learning models are implemented to estimate the repost

probability. In addition, we analyze the importance of different features based on tree-based

ensemble prediction models as well.

• We use Bert Sentence Embedding, instead of the more often used LDA in research studies

to extract the information embedding, which works better in generating dense vector repre-

sentations for short sentences.

2.2 Repost Prediction Model

In social media, information propagates primarily through the reposting or retweeting of messages.

Understanding repost probabilities contributes to better decision making in social media. We model

the social media network as a directed graph G = (V,E), where V = {v1, . . . ,vn} is the set of users

of the network and E ⊆ V ×V is the set of edges representing the friend relationships between

users. Each user has a list of attributes A = {a1, . . . ,am}, which is referred to as the user profile in

social media. And we define the content of each message or post using M.

Researchers have demonstrated that post content and user profile are major factors in de-

termining a users’ repost decisions [21]. Additionally, we think the neighborhood user profile also

contributes to the prediction of the repost decisions as well. Active neighbors are expected to have
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a positive influence in the users, making the users more active in reposting when they are exposed

to more posts from the neighbors. Thus we extract the features of user profile, neighborhood in-

formation and message embedding similarity from the original data user profile, graph topology

and messages. Therefore, we aim to model the reposting or retweeting probability p(i, j,m) be-

tween source user i and target user j, i, j ∈ V for the message m as a function of user profile(A),

neighborhood information(N) and content embedding similarity(S).

p(i, j,m) = f (A,N,S,θ) (2.1)

Considering the complexity of the function, we implement state-of-the-art machine learning meth-

ods to approximate the function and get the estimation of parameter θ . The repost prediction model

is shown in Figure 2.1.

2.2.1 Feature Extraction

The user profile(A), network topology(G) and messages(M) are original data we could obtain from

the dataset directly. Based on the original data, we extract three different kinds of features: user

profile, neighborhood information and content embedding similarity as input features to make the

prediction.

User Profile

User profile features are generally good predictors of the repost probability. We consider user

profile of both source user and target user. The widely used user profile include the total number

of followers, the total number of followees, the total number of posts or reposts, the total number

of reciprocal relationships, gender and the created time.
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Figure 2.1: Repost Prediction Model

Neighborhood Information

Information from a user’s circle of friends is a good indicator of repost decision. Commonly, a

user with active friends tend to be more active in reposting. It is natural to expect that friends

(reciprocal relationships) share similarity in behaviors with each other. Here the neighborhood

information (N ⊆ G×A) contains both the topology of neighborhood and the user profile of the

neighbors.
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Subgraph Extraction

To get the neighborhood for each pair of source user i and target user j, we extract an enclosing

subgraph around them as the circle of friends of the pair. The subgraph is extracted from the

network by the union of all user i and j’ s friends nodes within 1 hop. The set of nodes in the

1-hop subgraph is defined as:

V 1
i, j = {v|d(v, i)⩽ 1 or d(v, j)⩽ 1} (2.2)

We use the adjacency matrix Ã to represent the structure of the subgraph, where Ãi, j = 1 if (i, j)⊂

E and Ãi, j = 0 otherwise. Considering the memory limitation and computation speed, we only

consider the first two rows that contain the friendship relationship of source user i and target user

j as matrix Ã
′
. Suppose the 1-hop subgraph contains n users in total, then the extracted adjacency

matrix is Ã
′ ⊆ {1,0}2×n. The enclosing subgraph contains rich information about the pair’s circle

of friends. Figure 2.2 shows an illustration of subgraph extraction.

Figure 2.2: Illustration of Subgraph Extraction

Combination Models

After extracting the neighborhood of the pair, we combine user profile features of each user in the

neighborhood. The neighborhood information features can be incorporated as a combination of

circle of friends’ user profile features. Here we introduce different combination models to get the
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neighborhood information.

Combination Model 1

The first combination model combines user profile of neighbors using extracted adjacency matrix

with added self loop.Then the neighborhood information could be represented as:

N = (Ã
′
+ I

′
)XG (2.3)

where Ã
′

represents the extracted adjacency matrix of subgraph, I
′

represents the first two rows of

the identity matrix and XG⊆Rn×c is the selected user profile of neighbors of the pair. From another

prospective, the neighborhood information could also be interpreted as the sum of the users and

their neighbors’ user profile features.

Combination Model 2

The second combination model is inspired by graph Laplacian. The formula of graph Laplacian is

shown below:

L = D− Ã, (2.4)

where D is the degree matrix and Ã is the adjacency matrix of the subgraph. Then we normalize

the graph Laplacian. The random walk normalized Laplacian is:

L = D−1(D− Ã) = I−D−1Ã (2.5)

To reduce the computation complexity, we introduce the following renormalization trick: I −

D−1Ã→ D−1(Ã+ I) [23]. Then the neighborhood information can be represented as:

N = D
′−1(Ã

′
+ I

′
)XG (2.6)
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Algorithm 1 Neighborhood Information
1: procedure N(i, j)
2: V 1

i, j = {i, j}
3: friends= Γ(i)∪Γ( j)
4: V 1

i, j =V 1
i, j∪ friends

5: for x = 1,2 do ▷ x represents node i or j
6: for y = 1,2, . . . ,n do ▷ n is the total number of nodes in V 1

i, j
7: if node i and node j are friends then:
8: Ã

′
[x] [y] =1

9: if y=1 or y=2 then:
10: I

′
[x] [y] =1

11: D
′
[x] [y] = |Γ(i)|or |Γ( j)|

12: for y = 1,2, . . . ,n do
13: XG [y]=UserFeatures
14: return D

′−1(Ã
′
+ I

′
)XG

where D
′−1 represents the inverse of first two rows of degree matrix, I

′
represents the first two

rows of the identity matrix and XG ⊆ Rn×c is the selected user profile of users of the neighborhood.

From another angle, the neighborhood information could also be interpreted as the average of

users and their neighbors’ user profile features. Algorithm 1 shows the process of getting graph

neighborhood information from the second combination model.

Content Embedding Similarity

Fei et al. [22] demonstrated that repost probability increased with an increase in the similarity

between the post content and the user interests. User interests could be inferred from the user’s

historical posts. We define the post content user interest similarity as:

Sp,u =
CpIu

∥Cp ∥∥ Iu ∥
(2.7)

Here, Cp represents the content embedding of post and Iu represents the content embedding of user

interests, i.e., content embedding of user’s historical posts.
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Peng et al. [20] and Suh et al. [21] have shown that content propagation across links occurs

more frequently between the users sharing common interests. User interests could be inferred from

their posts. We define the user and user interest similarity as:

Su1,u2 =
Iu1Iu2

∥ Iu1 ∥∥ Iu2 ∥
(2.8)

Here, Iu1 represents the content embedding of source user interests, i.e., content embedding of his-

torical posts from source user u1 and Iu2 represents the content embedding of target user interests,

i.e., content embedding of historical posts from target user u2.

Content embedding is to map the social media posts of a user to dense vectors in a low

dimensional embedding space to extract the important content and linguistic style expressed in the

post. There are two widely used methods: Latent Dirichlet Allocation(LDA) topic model and the

more recent neural network based methods.

Latent Dirichlet Allocation (LDA)

LDA is a common method for topic modeling. It’s a generative model that represents document as

a distribution of topics, and represents topic as a distribution of words. In social media, LDA finds

topics posts belong to, based on the words in the posts. We could either train all the posts from

each user as a single document and get the topic vector for each user. Or we could train each post

separately and get all the topic vectors. Then all the per-post topic vectors are averaged to get the

final topic vector for each user. LDA has the advantage of generating interpretable embeddings.

Neural Network Based

Word2Vec is a popular neural network based method to learn the embedding of content. Word2Vec

uses two-layer neural network and contains two models: CBOW(Continuous bag of words) and

Skip-gram model. CBOW predicts the target word from the surrounding words. Skip-gram pre-
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dicts the surrounding words from the target word. After we get the embedding of the word from the

trained model, we could use the average of the word embedding to represent the user embedding

for each user.

Word2Vec embedding is context independent, which means each word has only one em-

bedding vector. In reverse, Bidirectional Encoder Representations from Transformers(BERT) em-

bedding is context dependent, which means for the same word, it could generate two different

embedding vectors when the two words have different semantic meanings. BERT contains a stack

of encoder transformers. Like Word2Vec, after we get the embedding of the word from the trained

model, we could use the average of the word embedding to represent the user embedding.

Here we implement a multi-lingual sentence embedding model [24] using knowledge dis-

tillation to extract the content embedding. In the multi-lingual sentence embedding model, the

sentences with similar meanings are close in vector space. The multi-lingual model uses an En-

glish Sentence Bert Embedding (SBERT) model [25] as a teacher model and uses XLM-RoBERTa

(XLM-R) [26] as a multilingual student model. BERT generates the word embedding, and the

multi-lingual sentence embedding model directly generates the sentence embedding. For experi-

ments, we extract sentence embedding of the latest 50 posts of each user and get the average of the

vector representations as the content embedding of user interests.

2.2.2 Prediction Models

To predict the repost probability, here we implement different machine learning methods, e.g.,

Logistic Regression, K-nearest Neighbors, Gaussian Naive Bayes, Deep Neural Network, Random

Forest, XGBoosting and Stacking to make the prediction.

Logistic Regression

Logistic regression is a statistical model that can be used for binary classification. The posterior

probability of class C can be represented by a sigmoid function acting on a linear function of the
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feature vector X . Here we denote the information diffusion probability given an observation Xi as:

p(yi|Xi) = σ(ωT Xi) =
1

1+ exp−ωT Xi
(2.9)

Cross entropy error is applied to determine the parameters ω of the model. For a data set {Xi,yi},

where yi ∈ {0,1} and i = 1, ...,N. The cross entropy error can be written as:

E(ω) =−
N

∑
i=1

{
yi lnσ(ωT Xi)+(1− yi) ln(1−σ(ωT Xi))

}
(2.10)

The gradient of the error function with respect to ω is obtained:

▽E(ω) =
N

∑
n=1

(σ(ωT Xi)− yi)Xn (2.11)

Then we apply the technique of stochastic gradient descent to update the parameter ω iteratively

until it converges. The stochastic gradient descent process is shown below:

ω
τ+1 = ω

τ −η▽E(ω) (2.12)

K-nearest Neighbors

K-nearest Neighbors Classification is a type of instance-based learning. It doesn’t generate a gen-

eralized learning model, but instead it stores instances of the training data. Then the classification

of each unlabeled data is computed by the votes from the nearest neighbors of each data. The data

is assigned the class which has the most representatives within the nearest neighbors. Here we set

k as 5, which means we select 5 nearest neighbors. Then we assign the most voted class of the

nearest neighbors to the data.
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Gaussian Naive Bayes

Naive Bayes is a classification algorithm for binary and multi-class classification. It’s called Naive

Bayes because it has a strong assumption that attributes don’t interact. Gaussian Naive Bayes

assumes the data follows Gaussian distribution (normal distribution). Then the likelihood of each

feature is assumed to be:

P(xi|y) =
1√

2πσ2
y

exp(−
(xi−uy)

2

2σ2
y

) (2.13)

The parameters σy and uy are standard deviation and the mean. Considering the naive conditional

independence assumption, then the information diffusion probability given an observation Xi (Xi =

(xi,1,xi,2, ...xi,n)) is:

P(y|x1,x2, ...,xn) =
P(y)∏

n
i=1 P(xi|y)

P(x1,x2, ...,xn)
(2.14)

Deep Neural Network

Deep neural network is an artificial neural network with multiple layers [27, 28]. It could approxi-

mate complex mathematical function of either linear or nonlinear relationship from input to output.

Specially, with the development of the optimization technology in recent years, the performance

of deep neural network largely improves. Here we build a deep neural network shown in Figure

2.3 consisting of one input layer, three hidden layers and one output layer to predict the repost

probability.

• Input Layer: The number of nodes in the input layer is determined by the number of features

we define in the last subsection.

• Hidden Layer: The dimensionality (the number of nodes) of the hidden layer determines the

complexity of the network. The more nodes we put the better we will be able to fit. However,

higher dimensionality comes with computation costs and overfitting risks as well. We put 64

nodes in the first hidden layer, 32 nodes in the second layer and 16 nodes in the third layer.
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The activation function of the hidden layer is ReLU function.

• Output Layer: The output layer contains one node giving the estimation of the repost proba-

bility. The activation function of the output layer is a sigmoid function making the output in

the range between 0 and 1.

Figure 2.3: Deep Neural Network

The neural network makes prediction using forward propagation, which is a bunch of matrix multi-

plications and the application of the activation functions we defined above. The repost probability

ŷ can be represented as below:

ŷ = Sigmoid(ReLU(ReLU(ReLU(XW 0)W 1)W 2)W 3)

where X represents the input features defined in the subsection of feature extraction, W 0,W 1,W 2

and W 3 are parameters of the neural network, which are learned from our training data. To estimate
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the repost probability, we implement the binary cross-entropy loss function to train the model:

L =−∑
i
(yilog(ŷi)+(1− yi)log(1− ŷi)) (2.15)

where yi is the labeled repost action of observation i which is a binary variable and ŷi is the pre-

dicted repost probability of observation i.

Random Forest

Random forest is an ensemble learning method based on decision trees for either classification or

regression tasks. Random forest builds a multitude of decision trees parallelly at training time and

outputs the class that is the mode for classification task or average prediction for regression task.

It uses bootstrap samples, random selection of split variables and random thresholds to build each

individual tree to reduce the variance.

XGBoosting

Gradient boosting decision tree is an ensemble learning method based on decision trees for either

classification or regression tasks. Gradient boosting decision tree builds a multitude of decision

trees sequentially by reducing the loss of last tree. XGBoosting is an implementation of gradient

boosting decision tree algorithm. XGBoosting is developed with both deep consideration in terms

of systems optimization and principles in machine learning. It has gained much attention and

popularity recently for its fast speed and good performance.

Stacking Model

Stacking is an ensemble learning method that learns how to best combine the prediction from mul-

tiple well-performing machine learning models. The architecture of a stacking model includes both

base models and meta model. We train base models using the training data and make predictions.
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The meta model is trained on the predictions made by base models combined with the inputs to the

base models. We adopt the k-fold cross-validation. Then the out-of-fold predictions are used as

the basis for the training dataset for the meta-model. Then we retrain the base model on the entire

training dataset.

2.3 Experimental Evaluation

We evaluate our proposed repost prediction model using the real world data set: Sina Weibo. Weibo

is a large scale publicly available dataset released by Zhang et al. [29].

2.3.1 Datasets

Sina Weibo (http://www.weibo.com) is a Chinese microblogging website allowing users to follow

other users and retweet the messages from the followed users similar to Twitter. Specifically, for

experimental purpose, we randomly sample 2000 messages. The total number of involved reposts

is 290250 by 228250 different users. The 290250 reposts are taken as positive observations for

model training and testing. We also randomly sample the same amount of negative observations

based on the absence of response from source user’s followers for each post to train the model.

The total negative observations we collect is 248770 because some of the posts don’t have enough

negative observations. In total, we collect 539020 observations for our experiment.

2.3.2 Experimental Set-up

User profile includes both poster and reposter features. Table 2.1 lists the selected user profile

features of sina weibo dataset.

Messages propagate from users to users on Sina Weibo Dataset. We believe the neigh-

borhood information of the pair is a significant indicator of the repost prediction. We obtain the
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Table 2.1: User Profile Features

User Profile Features

Post Features

Followers of poster
Followees of poster
Gender
Total messages of poster
Number of the reciprocal relationships
Created time

Repost Features

Followers of reposter
Followees of reposter
Gender
Total messages of reposter
Number of the reciprocal relationships
Created time

neighborhood information from the combination of neighbors’ user profile including number of

followers, number of followees, total number of messages and total number of the reciprocal rela-

tionships.

Regarding to the feature of similarity, we get the content embedding of both the post and

user interests through using the multi-lingual sentence embedding model. Then we calculate the

cosine similarity of content embedding as the similarity features.

For all kinds of features including user profile, neighborhood information and content sim-

ilarity, we standardize all the features before training to give them equal importance. The normal-

ization is shown below:

X̂ =
X− X̄
σ(X)

(2.16)

where X represents the feature of a sample, X̄ represents the average value of the feature, σ(X) is

the standard deviation of the feature.

For training the deep neural network, we split the dataset into training set, validation set

and testing set with 80% of training set and validation set, 20% of testing set. The validation set is
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50000 for both datasets. ADAM optimization algorithm is implemented to update the parameters

and get the function. We train the network in 250 epochs with the batch size of 50. In practice, we

make use of Keras for a CPU-based implementation of the neural network. We used 6 i7 cores for

training.

2.4 Results

In our experiments, we analyze the computational performance when we introduce the neighbor-

hood information features. Besides, we also compare the performance and computational time

of each prediction model as well. Lastly, we analyze the importance of each input feature by

implementing tree-based ensemble prediction methods.

2.4.1 Combination Models Comparison

As we assume the neighborhood information collecting from the combination of user profile of

neighbors is a good indicator of user’s repost decision, thus we integrate neighborhood informa-

tion into repost prediction. Then we come up with two different combination models to extract

the neighborhood information. Table 2.2 shows the performance of different prediction models

without neighborhood information and with neighborhood information using different combina-

tion models.

Table 2.2: Combination Models Comparison

Combination Model LR KNN GB NN RF XGB Stacking

NA 68.44% 74.30% 64.67% 76.51% 82.41% 83.88% 84.56%
(A
′
+ I

′
)X 68.62% 74.74% 61.04% 76.72% 83.79% 85.17% 86.06%

D
′−1(A

′
+ I

′
)X 68.65% 73.97% 65.21% 77.04% 83.98% 85.40% 86.33%

We could conclude that models including the neighborhood information have much better
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performance especially for random forest, XGBoosting and Stacking models. In addition, the

second combination model of D
′−1(A

′
+ I

′
)X has better performance for all the models except

K-nearest neighbor. Therefore, we take the neighborhood information getting from the second

combination model as an input feature for future experiments.

2.4.2 Prediction Models Comparison

In this subsection, we compare the prediction performance of different prediction models, e.g., Lo-

gistic Regression, K-nearest Neighbor, Gaussian Bayesian, Deep Neural Network, Random Forest,

XGBoosting and Stacking. The prediction results are shown in Table 2.3.

Table 2.3: Prediction Models Comparison

Model Accuracy Precision Recall F1 Time(s)

LR 68.65% 77.00% 68.60% 72.56% 1.08
KNN 73.97% 73.74% 76.95% 75.31% 925.51
GB 65.21% 71.19% 66.54% 68.78% 0.77
NN 77.04% 77.24% 79.58% 78.06% 672.66
RF 83.98% 84.98% 85.23% 85.10% 152.73

XGB 85.40% 86.08% 86.70% 86.39% 103.27
Stacking 86.33% 87.30% 87.30% 87.30% 1391.81

Overall, the results of different prediction models indicate that the tree-based ensemble

models provide better prediction performance than the other models in terms of Accuracy, Preci-

sion, Recall and F1-score. XGBoosting provides slightly better prediction performance than the

Random Forest Method with much less time. The Stacking method provides the best performance

among all the prediction modes. However, it’s more time consuming because it trains all the mod-

els as the base models.
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2.4.3 Performance of Models using Different Features

In Figure 2.4, we demonstrate the importance of each input feature by implementing tree-based

ensemble prediction methods, i.e., Random Forest and XGBoosting. Tree-based methods measure

the importance of each feature by collecting how on average each feature decreases the impurity.

The importance is calculated for each tree by the amount that each feature split point decreases the

impurity. The feature importance are the average of all of the decision trees within the model.
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Figure 2.4: Feature Importance

We could conclude that followees number, created time (how long the user has been in

social media) and post user similarity are the most important features in repost prediction for both

Random Forest and XGBoosting. However, source followers number seems to be an inconsistent

element for the tree-based learning models, i.e., XGBoosting learning method thinks it’s a more

important feature than Random Forest learning method. Regarding to the neighborhood informa-

tion, target user neighborhood information features (i.e., N5, N6,N7 and N8) are more important

than source user neighborhood information features (i.e., N1,N2,N3 and N4) for Random Forest

learning model. In contrast, source user neighborhood information features are more important
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than target user neighborhood information features for XGBoosting learning model.
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CHAPTER 3: MODEL-BASED LEARNING OF INFORMATION

DIFFUSION IN SOCIAL MEDIA NETWORKS1

3.1 Introduction

The rapid development of the Internet and its mobile computing technologies in the past several

decades contributes to form online virtual communities in social media networks. People share

news, their ideas, interests and information in social media networks. Understanding how the

information propagates is essential for successful applications of viral marketing [1] and cyber

security [2] in social media networks. To this end, researchers have defined different problems

such as the influence maximization problem [7] and contamination minimization problem [30].

Influence maximization problem involves finding a limited number of nodes which have the largest

influence. Similarly, contamination minimization problem involves blocking a limited number

of nodes which suppress the propagation of the rumors. However, all of the parameters in the

diffusion models are assumed to be known. In reality, these parameters are not readily available

from the massive historical datasets of social media networks. To fill this gap, this paper proposes

several models to learn these influence parameters from historical cascades.

In the literature, researchers have tried to learn the information diffusion processes through

different diffusion models. There are two most prevalent diffusion models - Independent Cascade

Model (IC) [7] and General Threshold Model (GT) [13]. In the Independent Cascade Model, each

active parent node i has a single chance to activate the child node j with a diffusion probability pi, j.

Saito, Nakano, and Kimura [31] studied the problem of learning influence probabilities based on

the IC propagation model. They estimated the diffusion probabilities by expectation-maximization

algorithm where the likelihood was maximized by iteratively updating the parameters. Besides,

1Qiang, Z., Pasiliao, E. L., & Zheng, Q. P. (2019). Model-based learning of information diffusion in social media
networks. Applied Network Science, 4(1), 1-16.
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there are some variants of Independent Cascade model based research, considering continuous time

delays of infection as well [32, 6]. In contrast to IC models, General Threshold Model assumes

that an inactive user j in social media networks is activated by all of its active neighbors when the

total influence is larger than the target user’s threshold. Linear Threshold Model is a special case

of General Threshold Model and the total influence is the sum of the influence weights of activated

neighbors. Goyal, Bonchi, and Lakshmanan [33] adopted the General Threshold diffusion Model

and proposed three probabilistic models, which were Bernoulli distribution, Jaccard Index and

Partical Credits to predict the diffusion influence weights.

In this project, we propose two different mixed-integer programming models to estimate

the diffusion influence weights between pairs of users underlying the threshold model. We learn the

diffusion influence weights through mining past diffusion cascades of posts. Given the historical

information cascading data containing the initial states x0
i and final states xT

i of all the nodes which

are users in social media networks, we are trying to learn the diffusion influence weights wi, j

between pairs of users in the Threshold Models. Two different learning models are built under

the assumption. The first model is based on the Linear Threshold Model, where a user will be

activated when the sum of its neighbors’ influence weight is larger than the threshold of the user.

The second model considers multi-step influence from the multi-hop neighborhood of the user.

In the real dataset, the status of nodes at each time step could be collected. However, the time

required for each propagation varies. When we know the status of users at two different time steps,

the propagation steps could be more than one. Therefore, it’s necessary to consider multi-step

influence to better fit the real data. We summarize the contributions of this project as follows,

• We propose two mixed-integer programming models to learn diffusion influence between

pairs of users. One is based on the popular propagation model, i.e., Linear Threshold Model,

and another one is based on the idea of random walk considering multi-step influence.

• For large-scale network, we come up with approximate methods for the two learning models
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using artificial neural networks with no hidden layer.

• Experiments for assessing the validity of these learning models and approximate neural net-

work methods are performed on both synthetic data and real data.

3.2 Learning Models of Information Diffusion Influence

We model a social media network as a directed network G = (V,E), where V = {v1, . . . ,vn} is the

set of users of the network and E ⊆V ×V is the set of edges representing the friend relationships

between users. We observe multiple cascades spreading over it. For any information cascade

propagating over the social media network, we observe the status xt
i of each user i (i ∈ V ) at

time t = 0 and t = T . The status of users is either active in reposting messages or inactive in

reposting. Through mining the historical cascades, we could learn the diffusion influence weights

wi, j representing the influence exerted by user i to user j in the social media network. Our model

aims at learning the diffusion influence weights wi, j from user i to user j (i, j ∈ V ) based on

transitions of activation status of all users, i.e., x0
i and xT

i for all i ∈ V . To learn the diffusion

influence weights, we can use a minimization model with the weights as decision variables and the

objective function as the mean squared error between the predicted final status and the actual final

status of users. Here we formulate two different mixed-integer programming learning models to

make the prediction where the activation status is modeled by a binary variable.

3.2.1 Linear Threshold Learning Model

The first formulation of Linear Threshold Learning Model (LT) we come up with is underlying the

Linear Threshold Propagation Model. In the propagation model of Linear Threshold Model [34,

7], initially, each node j ∈V independently selects a threshold θ j uniformly at random in the range

of [0,1]. If the total influence weights of the arcs from its active in-neighbors Nin
A ( j) is at least θ j,

i.e., ∑i∈Nin
A ( j)ωi, j ≥ θ j, then user j is activated. The diffusion influence weights are normalized in
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the Linear Threshold Model.

We formulate a mixed integer programming model shown below to learn the information

diffusion influence between each pair of user i and user j based on the Linear Threshold Model.

The objective is to minimize the mean squared error between actual final status of users and pre-

dicted final status of users. Here, the mean squared error is a quadratic function. It’s hard for solver

to handle quadratic function. We linearize the objective function by replacing mean squared error

with mean absolute value of the error. The mean absolute value of the error equals to the mean

squared error because the status of users is a binary variable. The constraints (3.1) and (3.2) rep-

resent the mean absolute error. The constraints (3.3) and (3.4) represent when the total influence

from its active neighbors is larger than the threshold of target user, the target user will be activated.

Otherwiese, the target user will remain inactive. The constraints (3.5) represent the sum of the

diffusion influence from neighbors to user j is at most 1. Constraints (3.6) show when two users

are connected, the value of diffusion influence is between 0 and 1. However, when they are not

connected, the diffusion influence weights wi, j will be 0, which is shown in the constraints (3.7).

min
ω,x,z

1
NK

K

∑
k=1

N

∑
j=1

zk
j (OBJ)

s.t. zk
j ≥ xk,T

j − x̂k,T
j ∀k ∈ K, j ∈ J (3.1)

zk
j ≥ x̂k,T

j − xk,T
j ∀k ∈ K, j ∈ J (3.2)

N

∑
i=1,i ̸= j

ωi, jx̂
k,0
i −θ j ≥ ε−θ j

(
1− xk,T

j

)
∀(k, j) ∈ Ξ (3.3)

N

∑
i=1,i ̸= j

ωi, jx̂
k,0
i −θ j ≤ (1−θ j)x

k,T
j ∀(k, j) ∈ Ξ (3.4)

N

∑
i=1

ωi, j ≤ 1 ∀ j ∈ J (3.5)

ε ≤ ωi, j ≤ 1 ∀(i, j) ∈ E, i ̸= j (3.6)
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ωi, j = 0 (i, j) ∈ Ē (3.7)

xk,T
i ,zk

j ∈ {0,1} ∀ i, j ∈ J,k ∈ K (3.8)

Where index k represents different observation, index i, j represent different users, ωi, j represents

the diffusion weight from user i to user j, θ j represents the threshold of user j, x̂k,0
i and x̂k,T

j are

the initial status of user i and final status of user j of observation k which are known already and

xk,T
j represents the predicted final status of user j of observation k. Ξ is the set of ( j,k), where the

initial status of user j of observation k denoted as x̂k,0
j should be 0. E represents the arcs of the

social network.

3.2.2 Random Walk Learning Model

The second formulation is based on the idea of random walk. In comparison with the first formula-

tion (LT) which considers the diffusion influence from one-step neighborhood only, Random Walk

Learning Model (RW) introduces the diffusion influence from multi-step neighborhood. In reality,

when we know the initial and final status of each user, we can’t tell how many steps of information

propagation occur. The target node j could be activated by either one step neighborhood or even

multiple step neighborhood. Therefore, we come up with a learning model considering multi-step

diffusion influence between pairs of users based on the idea of random walk. Here we consider

the diffusion influence from two-hop neighborhood. The total diffusion influence matrix Y k for

observation k could be represented as:

Y k =
(
A1 ◦W1 +A2 ◦W2

)
X̂k,0 (3.9)

Where ◦ represents the Hadamard product, A is the adjacency matrix of the social network, the

(i, j) entry of A, denotes ai, j,1, is the number of paths of length 1 starting at i and ending at j. The

(i, j) entry of A2, denotes ai, j,2, is the number of paths of length 2 starting at i and ending at j. W1
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is the average diffusion influence weight matrix for one step diffusion, the entry ωi, j,1 denotes the

diffusion influence weight from user i to user j for each one step path. W2 is the average diffusion

weight matrix for two step diffusion, the entry ωi, j,2 denotes the average diffusion influence weight

from user i to user j for each two step path. X̂k,0 is a vector containing all the users’ initial status

from observation k, the i entry of X̂k,0, denotes x̂k,0
i , is the initial status of user i from observation

k. The learning formulation based on Random Walk is shown below:

min
ω,x,z

1
NK

K

∑
k=1

N

∑
j=1

zk
j (OBJ)

s.t. zk
j ≥ xk,T

j − x̂k,T
j ∀k ∈ K, j ∈ J (3.10)

zk
j ≥ x̂k,T

j − xk,T
j ∀k ∈ K, j ∈ J (3.11)

N

∑
i=1

L

∑
ℓ=1

ai, j,ℓωi, j,ℓx̂
k,0
i −θ j ≥ ε−θ j

(
1− xk,T

j

)
∀(k, j) ∈ Ξ (3.12)

N

∑
i=1

L

∑
ℓ=1

ai, j,ℓωi, j,ℓx̂
k,0
i −θ j ≤ (

N

∑
i=1

L

∑
ℓ=1

ai, j,ℓ−θ j)x
k,T
j ∀(k, j) ∈ Ξ (3.13)

0≤ ωi, j,l ≤ 1 ∀ i ∈ I, j ∈ J, l ∈ L (3.14)

xk,T
i ,zk

j ∈ {0,1} ∀ i, j ∈ J,k ∈ K (3.15)

The constraints (3.12) represent when the total influence from two step neighborhood is larger than

the threshold of target user, the target user will be activated. Constraints (3.13) represent when the

total influence from two step neighborhood is smaller than the threshold of user, the user will not

be activated. Constraints (3.14) show that the average influence weights for different step of path

are in the range of 0 and 1.
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3.3 Approximate Approaches using Artificial Neural Networks

In the previous section, we formulate two different mixed integer programming learning models to

learn the information diffusion influence weights. We could use solver Gurobi to solve the models

and get a global optimal estimation of diffusion weights between pairs of users with the assump-

tion. However, sometimes it doesn’t seem to allow for an efficient solution for large network. Here

we come up with approximate approaches of Linear Threshold Learning Model and Random Walk

Learning Model using artificial neural networks.

We are using the simplest kind of neural network called a single-layer perceptron network

consisting of a single layer of output nodes [35]. Then the inputs are fed directly to the outputs via

a series of weights. To train the neural network and get the estimation of weights, the loss function

we use is the mean squared error for both of the models. The optimization algorithm we use for

training the neural network is gradient descent. Gradient descent starts with the initial values of

parameters and iteratively moves toward the set of values minimizing the loss function through

taking steps proportional to the negative of the gradient [36]. To compute the gradients, backprop-

agation algorithm is introduced [37]. However, the gradient descent with backpropagation is not

guaranteed to find the global optimal of the loss function.

3.3.1 Artificial Neural Network for Linear Threshold Learning Model

We build the Linear Threshold Neural Network (LTNN) shown in Figure 3.1 to approximate the

Linear Threshold Learning Model. The input x0
1,x

0
2, ...,x

0
n are the status of n users in social media

networks at time t = 0. The output layer outputs xT
1 ,x

T
2 , ...,x

T
n , which are the status of n users in

social media networks at time t = T .

There are several constraints to consider for the Linear Threshold Learning Model. Firstly,

if the user is active in the beginning (x̂0
j = 1), then they will stay active (x̂T

j = 1). To satisfy this

constraint, we set the (i, j) entry of the neural network weights matrix W ′, denoted as w
′
i, j, as

33



Figure 3.1: Neural Network for Linear Threshold Model

1 when i equals j. In this case, when user is active at the beginning, the total influence it gets

at time t = T will definitely be larger than its threshold and the user will stay active. Besides,

the influence weights should be suppressed to 0 when the pair of users has no connection. Here,

we use the Hadamard product of adjacency matrix A of the network and neural network weights

matrix W
′

to suppress the influence weights matrix W . Thirdly, in the Linear Threshold Model,

the diffusion influence weights should be normalized as well. All of the constraints above could

be satisfied by designing the structure of neural network. However, the Linear Threshold Model

has the activation function of step function. The gradients of step function are vanishing and the

weights will not update at all [38]. The neural network is using gradient to update the estimation.

Therefore, step function is not applicable to neural network. Instead, we approximate the step

function using sigmoid function. Then the output XT = {xT
1 ,x

T
2 , ...,x

T
n } of neural network could be

represented as:

XT = Sigmoid
(

X0
(
(A+ I)◦W

′
)
−θ

)
Where θ is the threshold vector of users and I is the identity matrix. As mentioned before, the in-

fluence weights are normalized as well, thus the diffusion influence weight ωi, j(ωi, j ∈W ) between
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user i and user j could be represented as:

ωi, j =
ai jω

′
i j

∑
n
i=1 ai jω

′
i j

Where ai j is the (i, j) entry of adjacency matrix A and ω
′
i j is the (i, j) entry of artificial neural

network weights matrix W
′
.

3.3.2 Artificial Neural Network for Random Walk Learning Model

The structure of neural network called Random Walk Neural Network (RWNN) built for Random

Walk Learning Model is shown in Figure 3.2. Here we consider the diffusion influence could be

from 2-step neighborhood. Therefore, the input is the two times combination of the initial status of

n nodes, denoted as x0
1, ...,x

0
n,x

0
1, ...,x

0
n. The output layer outputs xT

1 ,x
T
2 , ...,x

T
n , which are the status

of users in the social media at time t = T .

Figure 3.2: Neural Network for Random Walk Learning Model
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To satisfy the constraints in Random Walk Learning Model, we make the following modifications

to the artificial neural network. Considering the diffusion influence from two step neighborhood,

the total influence in the Random Walk Model could be transferred as:

(
A1 ◦W1 +A2 ◦W2

)
X0 =

[
X0 X0

]
A1

A2

◦
W1

W2




Besides, the user will remain active when they are active in the beginning. Thus we add the identity

matrix I to adjacency matrix A to satisfy the constraint. Then the output vector XT = xT
1 ,x

T
2 , ...,x

T
n

of neural network could be represented as:

XT = Sigmoid

[
X0 X0

]
A1 + I

A2

◦
W

′
1

W
′
2


−θ


Where θ is the threshold of users, A is the adjacency matrix, A2 is the square of adjacency matrix.

W
′
1 and W

′
2 are weights matrix of neural network. Thus the diffusion influence weights matrix W

could be represented as:

W =

W
′
1− I

W
′
2


3.4 Experimental Evaluation

In this section we conduct the experimental evaluation of our proposed models which are Linear

Threshold Model, Random Walk Model, Linear Threshold Neural Network Model and Random

Walk Neural Network Model to learn the information diffusion weights. We analyze the perfor-

mance of proposed models on both synthetic data and real data.
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3.4.1 Experiments on Synthetic Data

Firstly, we generate synthetic data to evaluate our models. The generation of synthetic data in-

cludes both network generation and cascade generation.

Network generation: In order to understand how the underlying network topology affects the

performance of our learning models, we generate different well-known generative networks.

• Erdos-Renyi Graph: In the graph theory, Erdos-Renyi model generates random graph.

Here we use the G(n, p) model in which a graph is constructed by connecting nodes ran-

domly by edges with probability p. For experimental purpose, we generate the network

shown in Figure 3.3a containing 50 nodes and generate edges between each pair of nodes in

the network with probability of 0.3.

• Barabasi-Albert Graph: Social media networks are thought to be scale-free. Barabasi-

Albert graph generates random scale-free networks using a preferential attachment mech-

anism. Here we generate a graph of 50 nodes shown in Figure 3.3b which is grown by

attaching new nodes each with 15 edges that are preferentially attached to existing nodes

with high degree.

• Watts-Strogatz Graph: Watts-Strogatz model generates random graph with small-world

properties, which are short average path lengths and high clustering. Here we generate a

graph of 50 nodes shown in Figure 3.3c, and each of them connects to 15 nearest neighbors.

In addition, the probability of rewiring each edge is 0.5.

Cascade generation: We learn the diffusion influence weights from mining historical diffusion

cascades. Here, we generate the cascades for the synthetic data. We randomly select a set of seed

nodes accounting for 35 % of total nodes . Then the seed nodes could propagate the information

to other nodes. Here we assume the active nodes will remain active and the inactive nodes will

have the chances to be activated only when they have connections to active nodes within 2 step
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(a) Erdos-Renyi (b) Barabasi-Albert (c) Watts-Strogat

Figure 3.3: Generative Network Topology

neighborhood. The activation probability p for target node is defined as:

p = a+
b
N
∗AN (4)

Where N represents the total number of nodes and AN represents the active direct neighbors. We

set a as 0.5 and b as 0.5 for the following experiments. We experiment with 200 cascades to

compare the performance of different learning models.

Implementation Details and Evaluation: In order to learn the diffusion influence weights under

different proposed learning models, we set the threshold of 0.5 for each user in the social media

network. In order to provide an unbiased evaluation of a final model on the training dataset, we

split the dataset into training set and testing set with 80% of training set and 20% of testing set. To

validate the performance of the mixed integer programming learning models and the approximate

neural network learning models, we evaluate the performance of accuracy. Accuracy is the ratio of

correct predictions. Regarding to solve the problem using mixed-integer programming, we propose

the decomposition method which is tractable to compute and to optimize for the original learning

models. For each node, we apply the optimization model to get the diffusion weights separately

because the diffusion influence from neighbors to each node is independent from each other. For

the neural network learning models, we train in 10000 steps, with batch size of 10 and learning

38



rate of 0.001.

Experimental Results: For different network types, we generate the same number of cascades

using the same cascade generation strategy to compare the performance of different models. Table

3.1 shows the performance of synthetic data of 50 nodes.

Table 3.1: Performance of Synthetic Data

Network Type Model Nodes Edges Cascades Train Accuracy Test Accuracy

Erdos-Renyi LT 50 335 200 76.4% 65.6%
RW 50 335 200 98.9% 68.8%

LTNN 50 335 200 72.0% 69.6%
RWNN 50 335 200 76.6% 70.7%

Barabasi-Albert LT 50 525 200 77.6% 63.1%
RW 50 525 200 99.5% 68.3%

LTNN 50 525 200 75.8% 71.8%
RWNN 50 525 200 79.1% 73.1%

Watts-Strogatz LT 50 350 200 76.6% 62.9%
RW 50 350 200 98.6% 67.5%

LTNN 50 350 200 72.6% 70.8%
RWNN 50 350 200 76.6% 68.9%

The performance of different learning models are consistent in different network topologies. For

the same number of observations(cascades), approximate neural network learning methods even

outperform the mixed integer programming learning methods. The mixed integer programming

methods of Linear Threshold Model and Random Walk Model have severe overfitting problems.

In addition, the computational time for mixed integer programming models is much longer than

neural network based models.

Therefore, for larger scale networks we conduct the experimental evaluation just using

approximate neural network learning models. The performance of different sizes of networks

which are 100 nodes and 1000 nodes are shown in Table 3.2. The testing accuracy is consistent for

different network types.
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Table 3.2: Performance of Large-scale Synthetic Data

Network Type Model Nodes Edges Cascades Training Accuracy Testing Accuracy

Erdos-Renyi LTNN 100 270 200 70.5% 66.7%
RWNN 100 270 200 73.9% 67.5%
LTNN 1000 24980 200 74.6% 67.6%
RWNN 1000 24980 200 68.5% 68.0%

Barabasi-Albert LTNN 100 291 200 69.6% 67.7%
RWNN 100 291 200 75.1% 67.0%
LTNN 1000 29100 200 74.5% 68.2%
RWNN 1000 29100 200 68.7% 68.4%

Watts-Strogatz LTNN 100 300 200 69.9% 66.9%
RWNN 100 300 200 74.1% 67.0%
LTNN 1000 3000 200 69.8% 67.5%
RWNN 1000 3000 200 73.8% 67.9%

The performance of different models could be affected by the way of generating cascades. We test

the performance of different generation methods by changing a and b parameters in Equation 4

using the same network topology. The performance of different network topologies are shown in

Figure 3.4a, Figure 3.4b and Figure 3.4c. When a is larger which means getting more influence

from two step neighborhood, Random Walk Neural Network Model outperforms Linear Threshold

Neural Network Model.
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Figure 3.4: Performance of Different Network Topologies
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3.4.2 Experiments on Real Data

We collect the real data from Lerman Digg 2009 dataset [39]. The Digg 2009 dataset contains data

about stories promoted to Digg’s front page over a period of a month in 2009. The dataset contains

the time stamp of all of the users’ vote for the stories. Both of the network topology and cascade

information can be obtained from the dataset.

Dataset Preprocessing: Considering the computation limitation of mixed integer programming

models, we extract a small size subgraph containing 1203 nodes shown in Figure 3.5a to compare

the performance between mixed integer programming learning models and approximate neural

network learning models. Our extracted subgraph contains 1203 users shown in Figure 3.5a. In

Figure 3.5b, we could see the degree distribution of all the users follows power law distribution.

The extracted network keeps the social network property of scale-free. In addition, to prove the ef-

fectiveness of the proposed models in large scale social network, we extract a network with 42259

nodes and conduct the experiments using neural network based models. In order to get the cascade

information, we choose the most voted 600 stories. Then we collect all the users voting status at

time T0 and Tt for each story.

(a) Network Topology (b) Degree Distribution

Figure 3.5: Extracted Subgraph
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Implementation Details and Evaluation: To investigate the performance on real data, we set the

threshold of 0.5 for each user in each of the proposed learning models.

Experimental Results of Real Data: We proceed with experiments on preprocessed real data of

1203 nodes to see the performance of different learning models. We collect the historical cascades

of 650 stories and get 406 efficient cascades. We treat 300 observations as training samples and the

rest of observations as testing samples. For the neural network models, we train in 10000 steps with

batch size of 10 and learning rate of 0.001. The performance of the dataset is shown in Table 3.3.

First, we evaluate the performance of different learning models based on test accuracy. Random

walk learning model has the best performance in this preprocessed real dataset. It doesn’t have

any overfitting issue here which is likely due to the fact of sparseness of the network. In general,

the random walk based learning models outperform the linear threshold based learning models in

this preprocessed dataset. However, when it comes to the speed of computation, the approximate

methods using neural network, i.e., LTNN and RWNN are much faster.

Table 3.3: Performance of Real Data

Model Nodes Edges Cascades Training Accuracy Testing Accuracy Time(s)

LT 1203 29166 406 82.8% 86.3% 1773
RW 1203 29166 406 88.3% 92.3% 32406

LTNN 1203 29166 406 85.5% 84.1% 137
RWNN 1203 29166 406 86.4% 85.6% 330

Then, we examine the performance of LTNN model and RWNN model using cascade information

from different time intervals. We collect the data from different lengths of time intervals. One has

the time interval of 4T0 and another has the time interval of 9T0. Figure 3.6 shows the performance

comparison of two approximate models during different time intervals. For shorter time period,

the LTNN model has significant improvement over RWNN model. In converse, RWNN model

outperforms LTNN model in longer time period. This happens because in short time period, only
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one step propagation could happen. In longer time period, two-steps or multiple steps propagation

could occur where random walk based model would better describe the information diffusion pro-

cess.

Time Tt
0.83

0.84

0.85

0.86

0.87

0.88
Te

st
 A

cc
ur

ac
y

LTNN
RWNN

5T0 10T0

Figure 3.6: Performance of Different Time Intervals

For the large scale network containing 42259 users, we collect the historical cascades of 600 sto-

ries and get 566 efficient casacades for experimental purpose. We treat 440 cascades as training

samples and the rest as testing samples. We train in 500 steps with batch size of 10 and learn-

ing rate of 0.001. The cascade has the time interval of 9T0. The experimental result of the large

dataset is shown in Table 3.4. Random Walk Neural Network Model requires 380GB memory and

it takes about 10 minutes for each step. It’s time consuming and it gets stuck during the optimiza-

tion process because of too many nodes. In comparison, Linear Threshold Neural Network Model

converges in 500 steps and has very good performance.
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Table 3.4: Performance of Large-scale Real Data

Model Nodes Edges Cascades Training Accuracy Testing Accuracy Time(s)

LTNN 42259 1559768 566 91.2% 90.4% 22782
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CHAPTER 4: TARGET SET SELECTION IN SOCIAL NETWORKS

WITH TIERD INFLUENCE AND ACTIVATION THRESHOLDS1

4.1 Introduction

Nowadays, the use of social media networks has become a necessary daily activity for people to

interact with family and friends, access news, information and make decisions. Besides being a

handy means for keeping in touch with friends and family, social media is more of a platform

spreading the tremendous influence. Users of the social media tend to follow and adopt their

friends or followers’ thoughts and behaviors. Thus businesses pay incentives to social influencers

using the social media platforms such as Youtube and Instagram to introduce their products and

stimulate demands. Politicians begin to communicate their policy views and humanize themselves

through their social media accounts. Politician campaigns boost their investment in social media

ads to get votes as well. During the time of social isolation due to the COVID-19, people rely on

social media for health and safety updates, entertainment and virtually interaction with family and

friends. Social media has great impact on businesses, politics, disease control and others.

Here we focus on investigating the problem of target set selection. Formally, we define a

social media network as a directed graph G = (V,E), where users are defined as all nodes V and

their friendships are defined as all edges E. Users are active when they repost the messages.

Target set selection problem refers to find a subset S⊂V , |S|<= k, then the nodes activated

by S will be at least l. The target set selection problem has two optimization variants: minimum

target set and maximum target set. The minimum target set refers to find the smallest set S⊂V , so

that the nodes activated by S will be at least l. The maximum target set refers to find a set S ⊂ V

of size k, which has the largest activated nodes compared to any other subset S
′ ⊂V of size k. The

1Qiang, Z., Pasiliao, E. L., & Zheng, Q. P. (2021, November). Target Set Selection in Social Networks with
Influence and Activation Thresholds. In International Conference on Computational Data and Social Networks (pp.
371-380). Springer, Cham.
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maximum target set problem is also called social influence maximization problem in social media

[7]. The target set selection problem can be applied in the areas of viral marketing[1] and cyber

security [2].

In the target set selection model, the seed nodes spread the influence until the diffusion

process stops. The goal is to activate all the nodes or as many nodes as possible. In the target

set selection model in social media, activated users normally refer to the users who repost the

message. However, in reality, influenced users sometimes will repost the messages. But in most

cases, even they are convinced or influenced by the message, users will not repost the message for

certain reasons. In this case, influence not only refers to activation(repost) but also refers to the

belief or like in the messages. Thus we build the tiered influence and activation thresholds target

set selection models to describe the situation. Here we introduce two thresholds, one is activation

threshold (φ) and another one is influence threshold (θ). Users will be influenced first before be

activated, thus we define θ <= φ . The goal of the model is to influence all the nodes or as many

nodes as possible.

Our models are time-indexed integer program models, which can be divided into two parts,

the first part is the information propagation. There are two widely used propagation models,

namely Independent Cascade Model(IC) [7] and Linear Threshold Model(LT) [13]. Independent

Cascade Model assumes every node has a single chance to activate its neighbors. In Linear Thresh-

old Model, each node will be influenced by each neighbor according to a weight. When the total

weights from its neighbors is larger than a threshold φ , then the node will be activated. In this

paper, we propose all the mathematical models based on the Linear Threshold Propagation Model.

Here we set the weights as 1 for all the nodes. Thus an inactive node will become active if at least

φ of its neighbors are active in the previous step. The second part is the influence dominating part,

which means the users should be either active or influenced through having at least θ of activated

neighbors at time T .

Similar to the variants of target set selection problem, we define the Dual Threshold Mini-
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mum Influential Seeds problem and its variants, Dual Threshold Maximum Influence with Budget

and its variants. Minimum Influential Seeds problem refers to select the least nodes to influence

all the nodes at time T . Maximum Influence with Budget refers to select the seed nodes within the

budget to influence as many nodes as possible at time T .

To investigate the tiered influence and activation thresholds target set selection problem,

the research of target set selection problem offers us some good insights. Kempe, Kleinberg, and

Tardos [7] study the maximum active set (under the name target set selection) and show that it is

NP-hard. They also provide a greedy algorithm within provable approximation guarantees based

on the submodularity property of the objective function. Chen [8] study the minimum target set

selection problem and show the problem is hard to approximate within a polylogarithmic factor.

Besides, he comes up a polynomial-time algorithm to find an optimal solution when the underlying

graph is a tree. Ackerman, Ben-Zwi, and Wolfovitz [40] propose a combinatorial model for the

minimum target set selection and prove the combinatorial bounds for the perfect target set selection

problem. Shakarian, Eyre, and Paulo [41] present a time-indexed formulation to find the minimum

seeds for the target set selection and come up with a scalable heuristic based on the idea of shell

decomposition. Spencer and Howarth [42] consider the problem of how to target individuals with

subsidy in the network in order to promote pro-environmental behavior. It is also a target set selec-

tion problem and they use a time-indexed integer program formulation with as many time periods

as the number of nodes in the network to tackle the problem. Günneç, Raghavan, and Zhang [43]

study the variation of the target set selection problem called least cost target set selection on so-

cial networks, and they propose greedy algorithm and dynamic programming algorithm to solve

the problem for the tree structure network. Raghavan and Zhang [44] develop and implement a

branch-and-cut approach to solve the weighted target set selection problem on arbitrary graphs. To

our knowledge, the previous research involving target set selection focuses on the single threshold

(activation threshold) target set selection. In this project, we propose several practical tiered influ-

ence and activation thresholds target set selection mathematical models. The detailed contributions
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of the project is summarized below:

• We propose tiered influence and activation thresholds time-indexed integer program models

to select the seed nodes which can be easily applied in practice. Both minimum target set se-

lection and maximum target set selection are explored here. In addition, we propose models

exploiting different requirements of seed nodes selection including the maximum activation,

early activation and dynamic threshold.

• We conduct the sensitivity analysis to determine how the objective function will change if

specified parameters, i.e, influence and activation thresholds deviate from their anticipated

values.

• We compare between different mathematical models Minimum Influential Seeds model and

its variants, Maximum Influence with Budget Model and its variants to draw conclusions

regarding their differences and connections.

• We solve these novel models exactly by Gurobi for small datasets. Besides, we compare

between some efficient computational algorithms, i.e., Graph Partition, Nodes Selection,

Greedy Algorithm, Recursive Threshold Back Algorithm and Two-stage Approach in Time.

4.2 Tiered Influence and Activation Thresholds Target Set Selection Models

In this section, we propose eight time-indexed integer program models for identifying the seed

nodes for the influence and activation thresholds target set selection problem. Both minimum in-

fluence and activation thresholds target set selection and maximum influence and activation thresh-

olds target set selection with budget are considered here. In addition, the proposed models explore

different requirements of seed nodes selection, which are maximum activation, early activation and

dynamic threshold.
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4.2.1 Minimum Influential Seeds

Firstly, we introduce a time-indexed integer program to find the minimum influential seeds for the

influence and activation thresholds target set selection problem. An artificial time index t taking

values from 0 to T is introduced to model the order in which nodes become active. The messages

could propagate at varying distances through different forms of social media. Cha, Mislove, and

Gummadi [45] observe that even for popular photos, only 19 percent of fans are more than 2 hops

away from uploaders on Flickr.com. Ye and Wu [46] find that, on Twitter, 37.1 percent message

flows spread more than 3 hops away from the originators. Thus here we set T as 0,1,2,3, which

means we only consider the cascades less than or equal to three time steps. The formulation uses a

binary variable xi,t to represent the status of node i at time t, which is 1 if node i reposts the message

at time t and 0 otherwise. Here θ represents the influence threshold and φ represents the activation

threshold. Nodes should always be influenced(like the message) first before be activated(repost

the message), so we set θ <= φ . N(i) represents the neighborhood of node i. The Minimum

Influential Seeds Model is as follows:

min
x ∑

i∈V
xi,0 (4.1)

s.t. θxi,T +
1
|N(i)|

{
∑

j∈N(i)
x j,T

}
−θ ≥ 0 ∀ i ∈V (4.2)

1
|N(i)|

{
∑

j∈N(i)
x j,t

}
+φxi,t ≥ φxi,t+1 ∀ i ∈V, t < T (4.3)

1
|N(i)|

{
∑

j∈N(i)
x j,t

}
+φxi,t ≤ φ − ε +(1+ ε)xi,t+1 ∀ i ∈V, t < T (4.4)
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θ ∈ (0,1 ] ← influence threshold

φ ∈ (0,1 ] ← activation threshold

θ ≤ φ ← node is influenced before activated

N(i) = { j : (i, j) ∈ E } ← Neighborhood, adjacent nodes

The objective function (4.1) aims to minimize the seed nodes activated at time 0. Constraints (4.2)

are influential constraints, making sure that all the nodes should be either active or be influenced

by at least θ of active neighbors at time T . Constraints (4.3) refer that a node i will stay inactive

at time t +1 when it is not activated at time t. Constraints (4.4) restrict that a node will stay active

if it is originally active, which means when xi,t = 1, xi,t+1 should be 1 as well. In addition, the

constraints make sure that a node will become active at time t + 1 when it is activated at time

t, which means when xi,t = 0, the influence from its neighbors is larger or equal than φ , then

xi,t+1 = 1. Here we introduce two ε , the first ε restricts that node i should be active at time t + 1

even if the influence from its neighbors is φ . The second ε confirms that when xi,t = 1 and all the

neighbors of i are active, the node i being active at time t +1 still holds.

When we set different values for different parameters θ and φ , the influential constraints

(4.2) have different insights. When θ <= 1
|N(i)| , influential constraints (4.2) are identical to find

the dominating set at time T , which means each node is either active or has at least one active

neighbor. When θ = 1, influential constraints (4.2) are identical to find the vertex cover set at time

T , which means each edge has at least one active node.

4.2.2 Minimum Influential Seeds with Maximum Activation

Sometimes we not only want everyone to be convinced by the message but also want the message

to be reposted by as many users. Then we propose a time-indexed integer program to find the min-
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imum influential seeds that simultaneously maximize activation at time T . The objective function

is different from 4.2.1, instead of only minimizing the number of seed nodes, we try to maximize

the nodes reposting the message at time T as well. In objective function (4.5), we put more weights

on minimum influential seeds and less weights on maximum activation at time T . Weight of 1
|V | is

assigned to maximum activation, where |V | represents the total number of nodes. The Minimum

Influential Seeds with Maximum Activation model is as follows:

min
x ∑

i∈V
xi,0−

1
|V | ∑i∈V

xi,T (4.5)

s.t. (2),(3),(4) (4.6)

4.2.3 Minimum Influential Seeds with Early Activation

Instead of activating maximum nodes at time T , activating nodes as early as possible is necessary as

well for some cases. Specifically for the health and disaster applications, users should be informed

about the information and repost the message as early as possible to avoid the risks. Thus we come

up with an integer program here to find the minimum influential seeds with early activation. The

objective function (4.7) aims to minimize the seed nodes activated at time 0 and simultaneously

maximize the number of activated nodes at each time step t. Here we could get rid of the constraints

(4.4), because our objective function confirms that the node will prefer to stay or become active at

each time step. Constraints (4.3) restrict that a node i will stay inactive at time t +1 when it is not

activated at time t. The Minimum Influential Seeds with Early Activation model is as follows:

min
x ∑

i∈V
xi,0−

1
T · |V |

T

∑
t=1

∑
i∈V

xi,t (4.7)

s.t. (2),(3) (4.8)
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4.2.4 Minimum Influential Seeds with Dynamic Activation Threshold

In the above models, we assume the activation threshold stays constant over the time. However,

as time passes by, it will become more difficult to convince someone of another belief, i.e., the

longer someone has a negative opinion, the more difficult it is to change it to positive. Thus we

come up with the model of Minimum Influential Seeds with Dynamic Activation Threshold, where

the activation threshold increases linearly over time. In the model, the activation threshold is 1
T φ

at time 0 and the activation threshold is φ at time T − 1. The Minimum Influential Seeds with

Dynamic Activation Threshold Model is as follows:

min
x ∑

i∈V
xi,0 (4.9)

s.t. θxi,T +
1
|N(i)|

{
∑

j∈N(i)
x j,T

}
−θ ≥ 0 ∀ i ∈V (4.10)

1
|N(i)|

{
∑

j∈N(i)
x j,t

}
+

t +1
T

φxi,t ≥
t +1

T
φxi,t+1 ∀ i ∈V, t < T (4.11)

1
|N(i)|

{
∑

j∈N(i)
x j,t

}
+

t +1
T

φxi,t ≤
t +1

T
φ − ε +(1+ ε)xi,t+1 ∀ i ∈V, t < T (4.12)

4.2.5 Maximum Influence with Budget

The problems discussed above are finding the minimum influential seeds under different circum-

stances, making sure all the nodes are influenced at the end. However, in real cases, when the

social network is large scale, it is not practical to select the seed nodes to influence all the nodes. It

is common that you have a budget for selecting the seed nodes. Here we come up with a model of

Maximum Influence with Budget, which aims to find the seed nodes under budget σ that maximize

the influenced nodes at the end. The formulation uses a binary variable xi,t to represent the status

of node i at time t, which is 1 if node i is active at time t and 0 otherwise as well. In addition, it

uses a binary variable yi to represent whether the node i is influenced at time T . The Maximum
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Influence with Budget model is as follows:

max
x

n

∑
i=1

yi (4.13)

s.t.
n

∑
i=1

xi,0−σ ≤ 0 ∀ i ∈V (4.14)

θxi,T +
1
|N(i)|

{
∑

j∈N(i)
x j,T

}
−θ ≥ yi−1 ∀ i ∈V (4.15)

1
|N(i)|

{
∑

j∈N(i)
x j,t

}
+φxi,t ≥ φxi,t+1 ∀ i ∈V, t < T (4.16)

1
|N(i)|

{
∑

j∈N(i)
x j,t

}
+φxi,t ≤ φ − ε +(1+ ε)xi,t+1 ∀ i ∈V, t < T (4.17)

The objective function (4.13) aims to maximize the nodes influenced at time T . Constraints (4.14)

set the budget of the nodes activated initially. Constraints (4.15) make sure that the node will

be influenced when it is active already or have at least θ of active neighbors at time period T .

Constraints (4.16) and Constraints (4.17) are cascade constraints. Constraints (4.16) refer that a

node i will stay inactive at time t +1 when it is not activated at time t. Constraints (4.17) restrict

that a node will stay active if it is originally active and a node will become active at time t+1 when

it is activated at time t.

4.2.6 Maximum Influence and Activation with Budget

Then we propose a time-indexed integer program to find the limited influential seeds with max-

imum influence and activation at time T . The model differs from the Maximum Influence with

Budget Model in the objective function, which not only maximizes the influenced nodes but also

maximizes the nodes activated at time T . Here we put more weights on influenced nodes with the

weight of 1 than activated nodes with the weight of 1
|V | . The Maximum Influence and Activation
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with Budget model is as follows:

max
x ∑

i∈V
yi +

1
|V | ∑i∈V

xi,T (4.18)

s.t. (14),(15),(16),(17) (4.19)

4.2.7 Maximum Influence and Early Activation with Budget

Here we propose a time-indexed integer program to find the seed nodes with budget to have maxi-

mum influence and early activation as well. The objective function aims to choose the seed nodes

with budget to maximize the nodes influenced at time T and maximize the activated nodes at each

time step t which will force the nodes to be activated as early as possible. The Maximum Influence

and Early Activation with Budget model is as follows:

max
x ∑

i∈V
yi +

1
T · |V |

T

∑
t=1

∑
i∈V

xi,t (4.20)

s.t. (14),(15),(16) (4.21)

4.2.8 Maximum Influence with Dynamic Activation Threshold

Same as in the Subsection 4.2.4, we also propose a maximum influence model with dynamic

activation threshold. The dynamic activation threshold increases linearly over time. In the model,

the activation threshold is 1
T φ at time 0 and φ at time T−1. The Maximum Influence with Dynamic

Activation Threshold model is as follows:

max
x ∑

i∈V
yi (4.22)

s.t.
n

∑
i=1

xi,0−σ ≤ 0 ∀ i ∈V (4.23)

54



θxi,T +
1
|N(i)|

{
∑

j∈N(i)
x j,T

}
−θ ≥ yi−1 ∀ i ∈V (4.24)

1
|N(i)|

{
∑

j∈N(i)
x j,t

}
+

t +1
T

φxi,t ≥
t +1

T
φxi,t+1 ∀ i ∈V, t < T (4.25)

1
|N(i)|

{
∑

j∈N(i)
x j,t

}
+

t +1
T

φxi,t ≤
t +1

T
φ − ε +(1+ ε)xi,t+1 ∀ i ∈V, t < T (4.26)

4.3 Computational Algorithms

The time-indexed integer program models proposed in Section 4.2 are computationally intractable

unless in very small instances because of the large number of binary variables. However, social

media networks are usually in an extremely large scale. Thus we apply multiple computational

algorithms to tackle the influence and activation thresholds target set selection models for larger

scale networks in this manuscript. More details will be discussed in the rest of this section.

4.3.1 Graph Partition

When the social media network is large-scale, solving the models exactly through Gurobi is very

difficult. The most intuitive way is to solve multiple smaller subgraphs instead of one large graph.

Here we use techniques from Modularity and Community Structure [47] in networks to divide the

large graph into several smaller subgraphs. Then we solve the models exactly separately for each

subgraph.

4.3.2 Nodes Selection

When we’re dealing with influence and activation thresholds target set selection problem for large-

scale network, the large number of binary decision variables, which are |V ||T | in total, makes

the problem difficult to solve. In order to accelerate the computational speed, we could reduce

the decision variables through adding some constraints to restrict that some of the nodes are not
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selected or some of the nodes should be selected. Here we come up with two methods, one is to

delete the leaf nodes, and another is to choose the nodes with high degree.

Leaf Nodes Deletion

Leaf nodes in a connected graph may not be seeded because they’ll influence or activate at most

one neighbor directly. Thus we add the constraints (4.27) to remove the option of activating leaf

nodes. In other words, all the leaf nodes will not be seeded using the method.

xi,0 +1≤ |N(i)| (4.27)

Degree Centrality Selection

Nodes with high degree have more potential to influence and activate other nodes. Therefore, we

assume the high degree nodes must be seeded. Here 1
|V | ≪ ρ < 1 is defined as the criteria for

choosing the seed nodes. When the total neighbors |N(i)| of node i is larger than ρ|V |, the node

i will be seeded. Thus we add the constraints (4.28) to the original models in order to choose the

nodes with more than ρ|V | neighbors as seed nodes.

xi,0 +ρ ≥ |N(i)|
|V |

(4.28)

ρ = ε implies that N(i) = 1 for a connected graph

ρ = 1− ε implies that N(i) = |V |−1
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The larger the ρ , the nodes with higher degree will be selected as seed nodes. When ρ is ε , the

nodes having neighbors will all be selected. When ρ is 1− ε , only the node connecting to all the

other nodes will be selected.

4.3.3 Greedy Algorithm

We propose the greedy algorithm for the Minimum Influential Seeds problem and Maximum In-

fluence with Budget problem. The greedy algorithm selects the seed node with the largest number

of inactive neighbors in each iteration and adds it to the seed node set S until the stop conditions

have been met. Then we update the nodes threshold and active set in each iteration considering

the propagation process. Here we come up with two different ways to update the threshold and

active set, one is based on the depth-first search(DFS) and another is based on the breadth-first

search(BFS).

For the DFS Greedy algorithm, the algorithm starts with empty seed set (S). Then at each

iteration we select the seed node with the largest number of inactive neighbors and add it to the

seed node set S. Next, we carry out the propagation process from this newly activated seed node

and update the threshold and activated time step (T) of an inactive neighbor node by adding the

influence from the activated seed node. When the threshold of the node is larger or equal than φ ,

the node is activated. Then we add this node to the active set A. We continue to carry out the same

propagation process when the node is activated until certain time steps. DFS starts at the root node

and explores as far as possible along each branch before backtracking. The iteration terminates

when all the inactive nodes have at least θ of active neighbors for the Minimum Influential Seeds

problem and when the budget is used up or all the inactive nodes have at least θ of active neighbors

for the Maximum Influence with Budget problem. Algorithm 2, 3 show the DFS Greedy Algorithm

for the Minimum Influential Seeds Problem.
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Algorithm 2 DFS Greedy Algorithm
Input: Graph G = (V,E), Propagation step P

Output: Seed node set S

1: A← /0, S← /0

2: threshold(i) = 0, T ( j) = 0

3: while ∃ v ∈V \A, nA(v)< θdeg(v) do

4: Pick u ∈V \A with the most inactive neighbors

5: S = S∪u

6: A = A∪u

7: iteration = 0

8: Threshold-Update(u,P, iteration,A)

9: Return (S)
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Algorithm 3 Threshold-Update(u,P, iteration,A)
Input: Graph G = (V,E), Node u,Propagation step P

Output: Active set A

1: iteration = iteration+1

2: for j in N(u) do

3: if j not in A then

4: threshold( j) = threshold( j)+ 1
deg( j)

5: T ( j) = max(T ( j), iteration)

6: if threshold( j)>= φ then

7: A = A∪ j

8: if T(j)>=P then

9: Continue

10: else

11: Threshold-Update( j,P, iteration,A)

For the BFS Greedy Algorithm for the Minimum Influential Seeds Problem shown in Al-

gorithm 4, firstly we choose the seed node with the largest number of inactive neighbors and add it

to the seed set S. Then we update the threshold and activation time step (T) of an inactive neighbor

node by adding the influence sent from the activated seed node. Different from DFS, BFS starts at

the tree root and explores all of the neighbor nodes at the present depth prior to moving on to the

nodes at the next depth level. Here we use a queue Q to store the parent nodes which will spread

the influence within propagation step P.

4.3.4 Recursive Threshold Back Algorithm

We also come up with the Recursive Threshold Back Algorithm especially for the Minimum In-

fluential Seeds Problem. We decompose the Minimum Influential Seeds problem and tackle the
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Algorithm 4 BFS Greedy Algorithm
Input: Graph G = (V,E), Propagation step P
Output: Seed node set S

1: A← /0, S← /0, Q be queue
2: threshold(i) = 0, T (i) = 0, ite(i) = 0
3: while ∃ v ∈V \A, nA(v)< θdeg(v) do
4: Pick u ∈V \A with the most inactive neighbors
5: Q.enqueue(u)
6: S = S∪u
7: A = A∪u
8: iteration = 0
9: while Q is not empty do

10: v = Q.dequeue()
11: iteration = ite(v)+1
12: for all ω in N(v) do
13: if ω not in A then
14: threshold(ω) = threshold(ω)+ 1

deg(ω)

15: T (ω) = max(T (ω), iteration)
16: if threshold(ω)>= φ then
17: A = A∪ω

18: if T (ω)< P then
19: Q.enqueue(ω)
20: ite(ω) = iteration
21: Return (S)

problem backwards with the tool of integer program. It is required that at time T , all the nodes

would be either active or have θ of active neighbors. In other words, at time T the active nodes

should dominate all the nodes. Here we assume the active nodes at time T as Minimum Positive

Dominating Set. The Minimum Positive Dominating Set is the minimum set of nodes S ⊂ V that

all the nodes are either in the active set or have θ of neighbors in the active set. Then in order

to minimize the seed nodes selected to activate at the beginning, we assume the number of nodes

activated should be minimized at each time step. Thus we get the nodes activated at each time step

backwards recursively. The pseudo code of the Recursive Threshold Back Algorithm is shown in

Algorithm 5.

We use integer program model to solve both the Minimum Positive Dominating Set (MPDS) prob-
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Algorithm 5 Recursive Threshold Back Algorithm
1: Find the Minimum Positive Dominating Set MPDS for all the nodes at time T
2: time← T −1
3: for t← time to 0 do
4: Find the status of nodes at time t: xi,t = TB(xi,t+1)

5: return xi,0

lem and Threshold Back (TB) problem. The mathematical programming model for finding Mini-

mum Positive Dominating Set (MPDS) is shown below:

MPDS:min
x

n

∑
i=1

xi,T (4.29)

s.t. θxi,T +
1
|N(i)|

{
∑

j∈N(i)
x j,T

}
−θ ≥ 0 ∀ i ∈V (4.30)

Objective function (4.29) is to minimize the nodes activated at time T . Constraints (4.30) make

sure that all nodes should be either active or have at least θ of active neighbors at time T . Then we

get the status of users at different time t recursively by solving the following subproblem Threshold

Back (TB).

TB:min
x

n

∑
i=1

xi,t (4.31)

s.t.
1
|N(i)|

{
∑

j∈N(i)
x j,t

}
+φxi,t ≥ φxi,t+1 ∀ i ∈V, t < T (4.32)

1
|N(i)|

{
∑

j∈N(i)
x j,t

}
+φxi,t ≤ φ − ε +(1+ ε)xi,t+1 ∀ i ∈V, t < T (4.33)

x j,t+1 ≥ x̂ j,t+1 (4.34)

Here t = T − 1,T − 2, ....,0. x̂ j,t+1 are solutions getting from the last ThresholdBack iteration.

The objective function (4.31) is to minimize the nodes activated at each time period, so that the

initial seed set will be minimized as well. Constraints (4.32), (4.33) refer that a node j will be
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activated in time period t + 1 only if it is active in time period t, or if it has at least φ of active

neighbors. Otherwise, the node j will remain inactive. Constraints (4.34) show that there could be

more nodes active than the solutions getting from the last ThresholdBack iteration, which confirms

the feasibility of the problem.

4.3.5 Two-stage Approach in Time

A Two-stage Approach in Time algorithm is proposed for the Minimum Influential Seeds problem.

For the algorithm, we decompose the original Minimum Influential Seeds model into two stages.

The first stage is to find the minimum positive dominating set by solving the Minimum Positive

Dominating Set (MPDS) problem. The mathematical programming model for finding Minimum

Positive Dominating Set is the same as the MPDS model presented in Subsection 4.3.4. The second

stage is to obtain the minimum influential seeds through solving the following minimum target set

selection problem (TS).

TS:min
x

n

∑
i=1

xi,0 (4.35)

s.t.
1
|N(i)|

{
∑

j∈N(i)
x j,t

}
+φxi,t ≥ φxi,t+1 ∀ i ∈V, t < T (4.36)

1
|N(i)|

{
∑

j∈N(i)
x j,t

}
+φxi,t ≤ φ − ε +(1+ ε)xi,t+1 ∀ i ∈V, t < T (4.37)

x j,T ≥ x̂ j,T (4.38)

The objective function (4.35) is to minimize the selected seed set. Constraints (4.36), (4.37) refer

that a node j will be activated in time period t + 1 only if it is active in time period t, or if it has

at least φ of active neighbors. Otherwise, the node j will remain inactive. Constraints (4.38) show

that the node will be active if the node is a dominant node in the first stage.
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4.4 Experimental Evaluation

We present computational results of the proposed influence and activation thresholds target set

selection models and compare the performance of different computational algorithms in various

sizes of datasets. The goals of the experiments are listed below:

• Conduct the sensitive analysis of different threshold parameters, i.e., influence threshold (θ)

and activation threshold (φ) on synthetic datasets.

• Compare between different models to see their differences and connections.

• Test the performance and computational time of exact method and various computational

algorithms.

4.4.1 Experimental Setting and Dataset

Our experiments are conducted on a Mac OS Catalina machine equipped with an Intel Core i7

2.6GHz processor, 16GB of RAM and 9.0.0 Gurobi Optimizer.

We consider two classes of datasets in our experiments. (1) Synthetic network of 50 nodes

and 80 nodes using the Barabasi-Albert(BA) model [48], which is an algorithm for generating

scale-free network with heavy-tailed degree distribution. (2) A subset of real-life social networks:

Karate Club [49], Hamster Friendships Network [50], Facebook Network Dataset [51] and LastFM

Social Network Dataset [52]. The detailed information of the networks is shown in Table 4.1.

4.4.2 Sensitivity Analysis

The modification of influence and activation thresholds will change the seeds required for mini-

mum dual threshold target selection models and the nodes influenced for maximum dual threshold

target selection models. Here we conduct numerous experiments using BA-50 and BA-80 net-

works to do the sensitive analysis to determine how the objective function will change if specified

63



Table 4.1: Real Datasets

Network Nodes Edges Description

Karate 34 78 Contain social ties among members of a university karate club
Hamster 1858 12534 Contain friendships between users of hamsterster.com
Facebook1 2888 2981 Contain Facebook user-user friendships
LastFM 7624 27806 Contain mutual follower relationships of LastFM asian users

parameters, i.e, influence and activation thresholds, are permutated.

Sensitivity Analysis of Minimum Influential Seeds Model

Firstly, we conduct the sensitivity analysis of different parameters θ and φ for both BA-50 and

BA-80 datasets for the Minimum Influential Seeds Model.

Changes of Activation Threshold(φ):

Figure 4.1 shows the solutions of different activation thresholds with the same influence threshold

θ of 0.2 for Minimum Influential Seeds Model. We could see that the seed nodes selected would

be fewer over time as the activation threshold φ decreases. In other words, time contributes more

in influence propagation when φ is small. It can be explained by that when the activation becomes

easier, fewer seed nodes will be required to influence all the nodes over time. Another interesting

finding is that when the activation threshold φ is large enough, i.e., φ >= 0.7 for BA-50 network,

the number of seed nodes selected will be constant over time, which can be explained by the fact

that when the activation is quite hard, the seed nodes required will remain constant over time.
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Figure 4.1: Influence Threshold θ=0.2

Changes of Influence Threshold(θ):

Figure 4.2 shows the solutions of different influence thresholds with the same activation threshold

φ of 0.6 for Minimum Influential Seeds model. We could conclude that when the influence thresh-

old θ increases, the more seed nodes will be selected, which can be explained by that when nodes

are more difficult to be influenced, then more seed nodes will be selected at the beginning.
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Figure 4.2: Activation Threshold φ=0.6
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Sensitivity Analysis of Maximum Influence with Budget Model

Then we conduct the sensitivity analysis of different threshold parameters θ and φ for both BA-50

and BA-80 datasets for the Maximum Influence with Budget Model.

Changes of Activation Threshold(φ ):

Figure 4.3 shows the maximum influenced nodes with different activation thresholds φ and the

same influence threshold θ of 0.2 for Maximum Influence with Budget Model. When φ is smaller,

more nodes will be influenced over time. It can be explained by that when the activation is easy,

more nodes will be activated and influenced. In addition, when φ is too large which means that the

activation is too hard, then the influenced nodes will stay constant.
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Figure 4.3: Influence Threshold θ=0.2

Changes of Influence Threshold(θ):

Figure 4.4 shows the maximum influenced nodes with different influence thresholds and the same

activation threshold φ of 0.6. We could see that when θ is larger which means that it is more

difficult to be influenced, then the fewer nodes will be influenced.
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Figure 4.4: Activation Threshold φ=0.6

4.4.3 Model Comparison

We propose Minimum Influential Seeds Model and its variants, i.e., Minimum Influential Seeds

with Maximum Activation, Minimum Influential Seeds with Early Activation and Minimum In-

fluential Seeds with Dynamic Activation Threshold models for the minimum dual threshold target

selection problem. For the maximum dual threshold target selection problem, Maximum Influ-

ence with Budget model and its variants, i.e., Maximum Influence and Activation with Budget,

Maximum Influence and Early Activation with Budget and Maximum Influence with Dynamic

Threshold models are proposed. The original model and its variants of maximum activation, early

activation and dynamic activation threshold models are different but there also exist some connec-

tions between the models. In this section, we test our proposed models and explore the connections

through conducting experiments in BA-50 dataset.

Minimum Target Set Selection Models Comparison

Here we compare the seed nodes required and activated nodes for different variations of dual

threshold minimum target set selection models. Figure 4.5 shows the performance of models using

67



different influence and activation thresholds in BA-50 dataset. Here model 1 refers to Minimum

Influential Seeds model, model 2 refers to Minimum Influential Seeds with Maximum Activation

model, model 3 refers to Minimum Influential Seeds with Early Activation model and model 4

refers to Minimum Influential Seeds with Dynamic Threshold model. We could verify that when

the number of seed nodes is the same, Minimum Influential Seeds with Maximum Activation

model will have more or at least the same number of activated nodes than Minimum Influential

Seeds model and Minimum Influential Seeds with Early Activation model. Besides, Minimum

Influential Seeds with Dynamic Threshold Model will require fewer or at least the equal number

of seed nodes to influence all the nodes and normally it will activate more nodes compared with

the other models.
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Figure 4.5: Minimum Target Selection Models Comparison of BA-50

Maximum Target Set Selection Models Comparison

We also compare the activated nodes and influenced nodes for different variations of maximum tar-

get set selection models with budget. Figure 4.6 shows the performance of models using different

influence and activation thresholds in BA-50 dataset with the budget of 5 seed nodes. Here model

1 represents Maximum Influence with Budget model, model 2 represents Maximum Influence and

Activation with Budget model, model 3 represents Maximum Influence and Early Activation with

Budget model and model 4 represents Maximum Influence with Dynamic Activation Threshold

model. From the figure, we could conclude that Maximum Influence and Activation with Bud-
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get model will activate more or at least the same number of nodes in comparison with Maximum

Influence with Budget model, Maximum Influence and Early Activation with Budget model. Fur-

thermore, Maximum Influence with Dynamic Threshold model will influence more or at least the

same number of nodes as other maximum target selection models. However, it may not always

activate more nodes than the other models in all cases, such as the cases shown in Figure 4.6a and

Figure 4.6b.
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Figure 4.6: Maximum Target Selection Models Comparison of BA-50

70



4.4.4 Computational Algorithms Comparison

In this subsection, we assess and draw comparisons between different computational algorithms

introduced in the Section 3. We implement these computational algorithms for both Minimum

Influential Seeds Model and Maximum Influence with Budget Model.

Computational Algorithms Results Comparison For Minimum Influential Seeds Model

Firstly, we conduct numerous experiments in different datasets to investigate the performance of

different computational algorithms. For Minimum Influential Seeds Model, we implement the

original mathematical model using solver Gurobi and various computational algorithms, i.e., Graph

Partition, Leafnode, Degree Centrality, DFSGreedy, BFSGreedy, Recursive Threshold and Two

Stage in Time. We set the time limit of 3600 s for bold methods in the following experiments. For

the method of degree centrality, we set the ρ as 0.2.

For the BA-50 network shown in Table 4.2, we could solve the model directly using Gurobi.

But the degree centrality method is better which speeds up the computation without sacrificing the

performance. For the BA-80 network shown in Table 4.3, we could see it is hard for Gurobi to

solve the model directly for the network of 80 nodes. However, the Degree Centrality method

could provide a good solution within much shorter time. The Karate network is a network of very

small size and the result is shown in Table 4.4. For the Karate Club network, we could solve the

model directly. However, the Leaf Node method could accelerate the computation slightly without

sacrificing the performance. For larger size network of Hamster Dataset, the Graph Partition,

Recursive Threshold, Two Stage in Time methods couldn’t generate a solution in one hour, so we

don’t include here in Table 4.5. For Leaf Node method, the model is not feasible which means we

couldn’t exclude all the leaf nodes as seed nodes for Minimum Influential Seeds model. We could

see from the table the Original Model even performs better than the Degree Centrality method

within the time limit of 3600s. In addition, both the DFS Greedy method and BFS Greedy method
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offer good solutions within much less time compared to the Original Model. Facebook 1 is a

dataset of low density. The Facebook 1 network has a large number of nodes with few friends.

Thus it is easy for Gurobi to solve it directly. However, the Leaf node method has the shortest

computation time for this dataset. The results of LastFM Asia Dataset are shown in Table 4.7, here

Leaf Node performs the best compared with Original Model and Degree Centrality methods. For

this dataset, BFS Greedy method has better performance than DFS Greedy method.

Table 4.2: BA-50 Network(Minimum Influential Seeds Model)

Method θ φ T Seeded Activated Influenced Obj Time

Original Model 0.4 0.6 3 8 37 50 8 2.63
Graph Partition 0.4 0.6 3 16 37 50 16 0.12
Leaf Node 0.4 0.6 3 8 37 50 8 1.62
Degree Centrality 0.4 0.6 3 8 37 50 8 0.22
DFS Greedy 0.4 0.6 3 10 43 50 10 0.001
BFS Greedy 0.4 0.6 3 10 43 50 10 0.002
Recursive Threshold 0.4 0.6 3 13 NA 50 13 0.05
Two Stage in Time 0.4 0.6 3 12 50 50 12 0.59

Table 4.3: BA-80 Network(Minimum Influential Seeds Model)

Method θ φ T Seeded Activated Influenced Obj Time

Original Model 0.4 0.6 3 12 63 80 12 3600.07
Graph Partition 0.4 0.6 3 19 63 80 19 0.37
Leaf Node 0.4 0.6 3 12 63 80 12 3600.11
Degree Centrality 0.4 0.6 3 12 54 80 12 39.13
DFS Greedy 0.4 0.6 3 14 71 80 14 0.004
BFS Greedy 0.4 0.6 3 14 71 80 14 0.004
Recursive Threshold 0.4 0.6 3 20 NA 80 20 0.15
Two Stage in Time 0.4 0.6 3 16 80 80 16 1585.26

In summary, for the small size datasets, we could solve the problem directly using Gurobi.

For the network of low density, especially when large portion of the nodes have few neighbors(long-
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Table 4.4: Karate Network(Minimum Influential Seeds Model)

Method θ φ T Seeded Activated Influenced Obj Time

Original Model 0.4 0.6 3 6 18 34 6 0.34
Graph Partition 0.4 0.6 3 7 32 34 7 0.09
Leaf Node 0.4 0.6 3 6 18 34 6 0.32
Degree Centrality 0.4 0.6 3 7 32 34 7 0.02
DFS Greedy 0.4 0.6 3 7 33 34 7 0.001
BFS Greedy 0.4 0.6 3 7 33 34 7 0.001
Recursive Threshold 0.4 0.6 3 9 NA 34 9 0.05
Two Stage in Time 0.4 0.6 3 8 34 34 8 0.12

Table 4.5: Hamster Dataset(Minimum Influential Seeds Model)

Method θ φ T Seeded Activated Influenced Obj Time

Original Model 0.4 0.6 3 282 1543 1858 282 3600.47
Degree Centrality 0.4 0.6 3 291 1529 1858 291 3600.56
DFS Greedy 0.4 0.6 3 330 1753 1858 330 16.22
BFS Greedy 0.4 0.6 3 327 1766 1858 327 15.05

tailed network), we could consider the Leaf Node method and Degree Centrality method. For the

larger size datasets, normally the DFS Greedy and BFS Greedy will have better performance.

The Graph Partition, Recursive Threshold and Two Stage in Time algorithms have poor perfor-

mance and long computational time for the selected social media networks. For the Graph Parti-

tion method, it could result from the structure of network which is hard to divide into subgraphs.

Furthermore, even it is divided properly, sometimes the size of the subgraph is still hard to solve

directly. For the Recursive Threshold and Two Stage in Time methods, the problem lies in the first

step of solving the Minimum Positive Dominating Set problem, which is also a complicated NP

complete problem and very difficult to be solved by Gurobi directly for large size data sets.
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Table 4.6: Facebook 1 Dataset(Minimum Influential Seeds Model)

Method θ φ T Seeded Activated Influenced Obj Time

Original Model 0.4 0.6 3 10 2888 2888 10 16.66
Graph Partition 0.4 0.6 3 10 2888 2888 10 20.17
Leaf Node 0.4 0.6 3 10 2888 2888 10 0.55
Degree Centrality 0.4 0.6 3 10 2888 2888 10 4.40
DFS Greedy 0.4 0.6 3 10 2888 2888 10 0.75
BFS Greedy 0.4 0.6 3 10 2888 2888 10 1.11
Recursive Threshold 0.4 0.6 3 10 NA 2888 10 0.76
Two Stage in Time 0.4 0.6 3 10 2888 2888 10 7.25

Table 4.7: LastFM Asia Dataset(Minimum Influential Seeds Model)

Method θ φ T Seeded Activated Influenced Obj Time

Original Model 0.4 0.6 3 2850 6682 7624 2850 3601.25
Leaf Node 0.4 0.6 3 1498 6453 7624 1498 3601.52
Degree Centrality 0.4 0.6 3 3427 7624 7624 3427 3601.42
DFS Greedy 0.4 0.6 3 1697 7276 7624 1697 879.06
BFS Greedy 0.4 0.6 3 1675 7255 7624 1675 868.62

Computational Algorithms Results Comparison For Maximum Influence with Budget Model

We conduct numerous experiments in different datasets to investigate the performance of differ-

ent computational methods for Maximum Influence with Budget Model as well. For Maximum

Influence with Budget Model, we implement the Original Model using solver Gurobi, Leaf Node,

Degree Centrality, DFS Greedy and BFS Greedy computational methods correspondingly. We set

the time limit of 3600s for bold methods in the following experiments. The budget of seed nodes is

10% of the total nodes. For the method of degree centrality, we set the ρ as 0.2 for BA-50, BA-80

and Facebook1 datasets. For Karate, Hamster and LastFM Asia datasets, ρ is set as 0.3.

For the BA-50 network, the results are shown in Table 4.8. The model could be solved

by Gurobi directly. However, Degree Centrality method works faster with the same performance.
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From the results of BA-80 network shown in Table 4.9, we could see it is already very hard for

the original model to solve the network of 80 nodes. Here Degree Centrality Method could have

the same performance with much less time. The result of Karate Network is shown in Table 4.10,

solving the original model directly works well for Karate Network dataset. From the results of

Hamster Dataset shown in Table 4.11, we could see DFS Greedy and BFS Greedy work much

better than the other methods. Facebook 1 is a dataset with several users of high degree. In this

case, when these leader users are activated, then all the users will be activated and influenced.

From the result shown in Table 4.12, DFS Greedy and BFS Greedy methods are much better

because they will select as few nodes as possible to activate and influence all the nodes without

using all the budget. From the results of LastFM Asia Dataset shown in Table 4.13, BFS Greedy

and DFS Greedy outperform the other methods in both computational time and performance.

Table 4.8: BA-50 Network(Maximum Influence with Budget Model)

Method θ φ T Seeded Activated Influenced Obj Time

Original Model 0.4 0.6 3 5 18 38 38 9.27
Leaf Node 0.4 0.6 3 5 18 38 38 9.70
Degree Centrality 0.4 0.6 3 5 18 38 38 0.18
DFS Greedy 0.4 0.6 3 5 21 36 36 0.001
BFS Greedy 0.4 0.6 3 5 21 36 36 0.001

Table 4.9: BA-80 Network(Maximum Influence with Budget Model)

Method θ φ T Seeded Activated Influenced Obj Time

Original Model 0.4 0.6 3 8 21 56 56 3600.01
Leaf Node 0.4 0.6 3 8 21 56 56 3600.02
Degree Centrality 0.4 0.6 3 8 27 56 56 4.05
DFS Greedy 0.4 0.6 3 8 24 53 53 0.002
BFS Greedy 0.4 0.6 3 8 24 53 53 0.002
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Table 4.10: Karate Network(Maximum Influence with Budget Model)

Method θ φ T Seeded Activated Influenced Obj Time

Original Model 0.4 0.6 3 3 9 24 24 1.15
Leaf Node 0.4 0.6 3 3 9 24 24 2.04
Degree Centrality 0.4 0.6 3 3 12 21 21 0.01
DFS Greedy 0.4 0.6 3 3 12 21 21 0.001
BFS Greedy 0.4 0.6 3 3 12 21 21 0.001

Table 4.11: Hamster Dataset(Maximum Influence with Budget Model)

Method θ φ T Seeded Activated Influenced Obj Time

Original Model 0.4 0.6 3 185 999 1509 1509 3600.11
Leaf Node 0.4 0.6 3 185 959 1476 1476 3600.08
Degree Centrality 0.4 0.6 3 185 893 1419 1419 3600.08
DFS Greedy 0.4 0.6 3 185 1147 1552 1552 11.72
BFS Greedy 0.4 0.6 3 185 1178 1546 1546 10.20

In summary, the advantages of DFS Greedy and BFS Greedy are more obvious compared

to other computational algorithms for the Maximum Influence with Budget problem. On one hand,

DFS Greedy and BFS Greedy could save the budget when the budget can not be fully used. On the

other hand, when the budget could be completely used, the DFS Greedy and BFS Greedy will work

much better in both efficiency and computing time in comparison with the other methods for larger

size networks. For small size networks, we could solve it directly. Or we could also consider the

Leaf Node method and Degree Centrality method to speed up the computation. In this subsection,

we assess and draw comparisons between different computational algorithms introduced in the

Section 3. We implement these computational algorithms for both Minimum Influential Seeds

Model and Maximum Influence with Budget Model.
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Table 4.12: Facebook1 Dataset(Maximum Influence with Budget Model)

Method θ φ T Seeded Activated Influenced Obj Time

Original Model 0.4 0.6 3 288 2888 2888 2888 2.84
Leaf Node 0.4 0.6 3 12 2888 2888 2888 0.12
Degree Centrality 0.4 0.6 3 60 2888 2888 2888 0.92
DFS Greedy 0.4 0.6 3 10 2888 2888 2888 0.78
BFS Greedy 0.4 0.6 3 10 2888 2888 2888 1.13

Table 4.13: LastFM Asia Dataset(Maximum Influence with Budget Model)

Method θ φ T Seeded Activated Influenced Obj Time

Original Model 0.4 0.6 3 762 1907 3220 3220 3600.21
Leaf Node 0.4 0.6 3 762 2023 3542 3542 3600.16
Degree Centrality 0.4 0.6 3 762 1907 3220 3220 3600.15
DFS Greedy 0.4 0.6 3 762 3923 5673 5673 382.64
BFS Greedy 0.4 0.6 3 762 3951 5697 5697 383.08
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CHAPTER 5: INCORPORATING UNCERTAINTY INTO INFLUENCE

MAXIMIZATION PROBLEM IN SOCIAL MEDIA NETWORKS

5.1 Introduction

Social media has become an important platform for people to spread the influence and get influ-

enced. In marketing, business use social media as a marketing platform by paying incentives to

influencers to advertise or selling products directly through social media. In politics, politicians

use social media to influence, attract, and convince people with their ideas and policies. In disaster

management, social media helps to provide the up-to-the-minute news information — road closure

updates, evacuation routes, designated help areas, shelter locations, and more. Recognizing the

influential users is essential for all the applications of social media. The problem of recognizing

the influential users in the social media is called influence maximization problem (IM) [1]. IM

problem refers to selecting the seed nodes(users) at the beginning that spread the most influence at

the end.

Most of the research focusing on solving the influence maximization problem in a deter-

ministic way. In reality, there exist various uncertainties due to the evolutionary dynamics of social

networks, changing user behavior and ads price over time. Therefore, we build two-stage stochas-

tic programming models considering the uncertainties in network topology, activation thresholds

and activation prices. As far as we know, this is the first attempt to use two-stage stochastic op-

timization to solve the influence maximization problem considering the uncertainties of network

topology and ad price. Although Tanınmış, Aras, and Altınel [53] consider the uncertainty of

threshold as well, but they mainly focus on solving the competitive influence maximization where

two decision makers are involved.

To investigate the influence maximization problem considering the uncertainty, the research

of influence maximization problem offers us some good insights. The influence maximization
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problem has been solved using discrete optimization approach and has been classified as NP-hard

[7]. They also provide a greedy algorithm achieving (1−1/e) approximation guarantee based on

the submodularity property of the influence function focusing on both Linear Threshold Model

and Independent Cascade Model. Cost Effective Lazy Forwarding(CELF) [51] addresses the run

time of greedy algorithm, achieved by exploiting submodular features. CELF++ [54] improves

the CELF algorithm achieved by avoiding recomputing of the marginal gain with respect to al-

ready selected node. Although greedy algorithms provide approximation guarantees for Influence

maximization problem, they still suffer from the runtime issue. Therefore, heuristics based on the

network structural features are proposed. Heuristics based on centrality ratings like degree, be-

tweenness, closeness, and eigenvector are mostly used to identify influential users based on their

location.

In contrast to deterministic influence maximization models, there are also some researches

focusing on stochastic influence maximization problem. Song and Dinh [55] focus on the problem

of identifying the ideal subset of links whose removal reduces the propagation of disinformation

and rumors by relying solely on actual stochastic cascades that occurred in the network. Wu and

Kucukyavuz [56] solve the influence maximization problem in a stochastic way which they refer

to as two-stage stochastic submodular optimization model. They also propose a delayed constraint

generation algorithm to find the optimal solution. Güney [57] develops a binary integer program

that approximates the influence maximization problem by monte carlo sampling the cascade pro-

cess, then they propose SAA and a linear programming relaxation based method with a provable

worst case bound to solve it. Tanınmış, Aras, and Altınel [53] consider a variation of the well-

known Influence Maximization Problem including two decision makers. The leader strives to

increase total influence spread by picking the most influential nodes, while the follower tries to re-

duce it by deactivating some of these nodes. The lower level problem is a stochastic programming

problem considering the uncertainty of threshold in Linear Threshold Propagation Problem.
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5.2 Models

Influence Maximization Problem refers to find a set of k seed nodes to start a cascade process so

that the nodes activated at the end is maximized. Here we’re solving the Influence Maximization

Problem considering various uncertainties. The uncertainties include dynamic network, changing

user behavior and activation price.

Two-stage stochastic program is introduced to model the problem considering uncertain-

ties. The main idea behind two-stage stochastic programming is that optimal decisions should be

made using data accessible at the moment they are made, rather than relying on future observa-

tions. In the Influence Maximization Problem considering uncertainties, instead of just selecting

the seed nodes to activate at the beginning, here we select nodes to activate in two stages(two dif-

ferent times) considering the uncertainty. A general two-stage stochastic binary program could be

represented as:

max cT x+ ∑
ω∈Λ

ρωσω(x) (OBJ)

s.t. x ∈ χ

x ∈ {0,1}n

where c ∈ Rn is a given objective vector, the set χ represents the constraints on the first-stage vari-

ables x and σω(x) is the objective function of the second-stage problem for scenario ω ∈ Λ solved

as a function of first-stage decisions.

For our problem, at the first stage, we should make decisions which users to choose as seed nodes

here and now. At the second stage, after knowing the uncertainty, we optimize our behavior by

solving an appropriate optimization problem.
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Sets and Parameters:

ci : cost of selecting seed node i

di : cost of activating node i

s : total budget

Decision Variables:

xi : 1 if node i is selected as seed node; 0 otherwise

yi : 1 if node i is activated; 0 otherwise

Based on the notations, the stochastic binary program is shown below:

max Eω [g(x,y,ω)] (OBJ)

s.t. cT x+dT y≤ s

x,y ∈ {0,1}n

Where g(x,y,ω) represents the number of influenced nodes for a scenario ω corresponding

to a given seed selection strategy x at the beginning and node activation strategy y at the sec-

ond stage. Then Eω [g(x,y,ω)] denotes the total expected number of influenced nodes, where the

expectation is taken with respect to the probabilistic scenario which could be network topology,

threshold or activation price.

5.2.1 Influence Maximization Model Considering Stochastic Network Topology

The existing literature has almost always focused on solving the influence maximization problem

for a deterministic network where all connections between users are known ahead of time. How-

ever, in reality, the network topology of social media is dynamic. Users add new friends or break

the friendship everyday. To better fit the reality, we assume the topology of the network is uncer-

tain: some connections may or may not exist. This makes it a better representation of, for instance,

emerging social networks where the connections between users are not yet well-defined. Thus, we
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propose the influence maximization model considering dynamic network topology shown below

to select the seed nodes at the beginning that spread the most influence at the end.

max
n

∑
i=1

ρω(zω
i + yω

i ) (OBJ)

s.t.
n

∑
i=1

(cixi +dω
i yω

i )≤ s ∀ω ∈ S (5.1)

1
|N(i)ω | ∑

j∈N(i)ω

x j +θxi ≥ θzω
i ∀ i ∈V,ω ∈ S (5.2)

zω
i + yω

i ≤ 1 ∀ i ∈V,ω ∈ S (5.3)

ci = c|N(i)| ∀ i ∈V (5.4)

di = d|N(i)ω | ∀ i ∈V,ω ∈ S (5.5)

x,y,z ∈ {0,1}n (5.6)

Here xi refers to the initial status of node i. yω
i refers to whether to activate the node i under

scenario ω . zω
i refers to the final status of node i under scenario ω . ρω represents the probabil-

ity of different network topology. θ represents threshold in our experiment. N(i) represents the

neighbors of user i. N(i)ω represents the neighbors of user i under scenario ω . s represents the

total budget. ci represents the cost of selecting seed node i at the beginning, where c represents the

unit cost per neighbor of selecting seed node i. di represents the cost of activating node i, where d

represents the unit cost per neighbor of activating node i.

The objective function aims to maximize the nodes influenced at the end. Constraints (5.1)

set the budget of total activated nodes. Constraints (5.2) make sure that the node will be influenced

when it is active already or have at least θ of active neighbors. Constraints (5.3) confirm that the

nodes will not be activated again at the second stage when the nodes are already activated.
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5.2.2 Influence Maximization Model Considering Stochastic Thresholds

When we promote messages in social media, users may have different reactions to the messages

depending on the time they see the messages and their mood. For example, when it’s holiday sea-

son or weekends, users may be more active in re-posting the message because they have more time

and they are more relaxed. Here we consider the Linear Threshold Propagation Model, therefore

we could introduce stochastic thresholds to describe the changing user behavior. The following

model is the influence maximization model considering stochastic thresholds.

max
n

∑
i=1

ρω(zω
i + yω

i ) (OBJ)

s.t.
n

∑
i=1

(cixi +diyω
i )≤ s ∀ω ∈ S (5.7)

1
|N(i)| ∑

j∈N(i)
x j +θ

ω
i xi ≥ θ

ω
i zω

i ∀ i ∈V,ω ∈ S (5.8)

zω
i + yω

i ≤ 1 ∀ i ∈V,ω ∈ S (5.9)

x,y,z ∈ {0,1}n (5.10)

Here xi refers to the initial status of node i. yω
i refers to whether to activate the node i under

scenario ω . zω
i refers to the final status of node i under scenario ω . ρω represents the probability

of different propagation thresholds combination. θ ω
i represents the threshold under scenario ω for

user i. N(i) represents the neighbors of user i.

5.2.3 Influence Maximization Model Considering Stochastic Price

When advertisers launch an advertising campaign in social media, the ad price may change over

time. We need to adjust the money in a reasonable way so that we could maximize the influence

under the budget. Therefore, we build the influence maximization model considering stochastic
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price in the future as follows.

max
n

∑
i=1

ρω(zi + yω
i ) (OBJ)

s.t.
n

∑
i=1

(cixi +dω
i yω

i )≤ s ∀ω ∈ S (5.11)

1
|N(i)| ∑

j∈N(i)
x j +θxi ≥ θzi ∀ i ∈V (5.12)

zi + yω
i ≤ 1 ∀ i ∈V,ω ∈ S (5.13)

x,y,z ∈ {0,1}n (5.14)

Here xi refers to the initial status of node i. yω
i refers to whether to activate the node i under scenario

ω . zi refers to the final status of node i. ρω represents the probability of different activation price

combination. θ represents the threshold. N(i) represents the neighbors of user i.

5.3 Sample Average Approximation Method

For the influence maximization model considering stochastic network topology, the scenarios of

network topology could be very large, which is 2
|V |(|V |−1)

2 . Besides, for the influence maximization

model considering stochastic thresholds, the threshold θi follows a continuous uniform distribution

under the Linear Threshold Propagation Model. Even if θi follows a discrete distribution, the sce-

nario is still large which is m|V |, where m refers to the discrete values of threshold. In both cases,

the scenario is too large that provides a poor solution for a large-sized integer program. Therefore,

we utilize the sample average approximation(SAA) to reformulate the model. The process of SAA

is summarized below:

Step 1. Generate M independent samples each of size N, i.e., ω1
j ,ω

2
j , ...,ω

N
j for j = 1, ...,M. Solve

the SAA problem that corresponds to each sample.
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max
1
N

N

∑
n=1

[
g
(
x,y,ωn

j
)]

Let f j
N and x̂ j

N , j = 1, ...,M., be the corresponding optimal objective value and an optimal solution,

respectively.

Step 2. Compute

f̄N,M =
1
M

M

∑
j=1

f j
N

σ
2
f̄N,M

=
1

(M−1)M

M

∑
j=1

( f j
N− f̄N,M)2

It’s proved that the expected value of fN is greater than or equal to the optimal value f ∗ of the

problem [58]. f̄N,M is an unbiased estimator of E[ fN ], we could conclude that E
[

f̄N,M
]
≥ f ∗. Thus

f̄N,M provides a higher statistical bound for the optimal value f ∗ of the true problem, and σ2
f̄N,M

is

an estimate of the estimator’s variance.

Step 3: Choose x̂ ∈ X as one of the calculated x̂ j
N which has the largest true objective function. The

true objective function value f̃ (x̄) as follows:

f̃N′ (x̄) =
1
N ′

N
′

∑
n=1

[g(x,y,ωn)]

Here ωn, ...,ωN′ is a sample of size N
′
, where N

′
> N, generated independently. Here f̃N′(x̄) is an

unbiased estimator of f (x̄). Since x̄ is a feasible solution to the true problem, we have f (x̄)≤ f ∗.

Thus f̃N′(x̄) is an estimate of a lower bound on f ∗. When the sample ω1, ...,ωN′ is independent

identically distributed, then the variance of the estimate can be estimated as
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σ
2
N′(x̄) =

1
(N ′−1)N ′

N
′

∑
n=1

(
g(x̄,y,ωn)− f̃N′ (x̄)

)2

Step 4: Using the upper bound estimate and the objective function value estimate from Steps 2 and

3, compute an estimate of the optimality gap of the solution x̂ as follows:

gapN,M,N′ (ȳ) = f̄N,M− f̃N′ (ȳ)

The estimated variance of the above gap estimator is then calculated as follows:

σ
2
gap = σ

2
N′
(x̄)+σ

2
f̄N,M

5.4 Experimental Evaluation

We conduct several numerical experiments using the SAA method for solving the proposed stochas-

tic influence maximization models. We first conduct the computational experiments for different

network topology including Barabasi-Albert, Watts-Strogatz and Erdos-Renyi networks. Then we

evaluate the quality of the stochastic programming solution.

5.4.1 Network Topology Comparison

Here we use three different network models to test our stochastic influence maximization models:

Barabasi-Albert, Watts-Strogatz, and Erdos-Renyi models. The Barabasi-Albert model generates

networks with the scale-free property using a preferential attachment mechanism. Here we gen-

erate a graph of 20 nodes grown by attaching new nodes each with 2 edges that are preferentially

attached to existing nodes with high degree. The Watts-Strogatz model generates a random graph

with small-world properties, including short average path lengths and high clustering. We generate

86



a Watts-Strogatz graph with 20 nodes and each node is connected to 6 nearest neighbors in ring

topology with 0.1 probability of rewiring. The Erdos-Renyi model also has the property of having

short average path lengths but with low clustering. We generate a Erdos-Renyi graph with 20 nodes

where we choose each of the possible edges with probability p = 0.1.

As mentioned in Section 4.1, for the SAA method, we generate M independent samples

involving each of size N sampled scenarios. Then we evaluate the candidate solution by evaluating

the object function using N
′

sampled scenarios. In our implementation, we use M = 20,N =

50,N
′
= 2000.

For the influence maximization model considering stochastic network topology, we set the

budget as 30% of total edges, the activation threshold as 0.3. The cost of seeding node i at time 0 is

directly proportional to the total number of neighbors of node i and the cost of activating node i at

time 1 is proportional to 80% of the total number of neighbors of node i. To generate the stochastic

network topology, we assume there’s 10% probability to create an edge and 1% probability to

delete an edge. The computational results of different network topology are shown in Table 5.1.

Table 5.1: Computational Results for Stochastic Network Topology Model

Network f̄N,M f̃N′ (x̄) gapN,M,N′ σ2
f̄N,M

σ2
N′
(x̄) σ2

gap

BA-20 5.9970 5.6250 0.3720 0.0003 0.0004 0.0007
ER-20 9.6370 9.2775 0.3595 0.0007 0.0007 0.0014

Watts-20 6.6610 6.2415 0.4195 0.0008 0.0006 0.0014

For the influence maximization model considering stochastic thresholds, we set the budget

as 30% of total edges. The cost of seeding node i at time 0 is proportional to the total number of

neighbors of node i and the cost of activating node i at time 1 is proportional to 80% of the total

number of neighbors of node i. To generate the stochastic thresholds, we assume the threshold

of each user follows a uniform distribution between 0.001 and 1. The computational results of

stochastic network thresholds are shown in Table 5.2.
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Table 5.2: Computational Results for Stochastic Thresholds Model

Network f̄N,M f̃N′ (x̄) gapN,M,N′ σ2
f̄N,M

σ2
N′
(x̄) σ2

gap

BA-20 7.6830 7.3650 0.3180 0.0009 0.0005 0.0014
ER-20 8.3280 8.0050 0.3230 0.0015 0.0007 0.0022

Watts-20 6.3900 5.9390 0.4510 0.0009 0.0011 0.0020

For the influence maximization model considering stochastic price, we set the budget as

30% of total edges, the activation threshold as 0.3. The cost of seeding node i at time 0 is propor-

tional to the total number of neighbors of node i. To generate the stochastic price at the second

stage, we assume the price could have three different scenarios: 0.5∗total number of neighbors,

1.0∗total number of neighbors and 1.5∗total number of neighbors. For the Influence Maximiza-

tion Model Considering Stochastic Price, the scenarios are not large, thus we could easily get the

global optimal. The computational results of stochastic price are shown in Table 5.3 and the seed

selection strategy is shown in Figure 5.1.

Table 5.3: Computational Results for Stochastic Price Model

Network f ∗1 f ∗2 f ∗3 f ∗

BA-20 11 10 10 10.33
ER-20 10 10 10 10

Watts-20 8 8 8 8

For all the results, we find that only BA-20 network could generate second stage seed

selection, which can be explained by that BA-20 network has a long-tailed distribution. There’s

a small number of celebrities(large influencers) but a large number of micro influencers. Then in

this case there will be more needs to activate nodes at the second stage.
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Scenario 1

Scenario 3

Scenario 2

Figure 5.1: Stochastic Price Model Seed Selection for BA-20 Network

5.4.2 Quality of Stochastic Programming Solution

Firstly we evaluate the value of the stochastic solution(VSS). The VSS is defined as the differ-

ence between the stochastic programming model(SP) and the expected result of using the mean

values of the uncertain problem parameters(EEV). Figure 5.2 shows the SP and EEV For differ-

ent stochastic models. Here we get the results of SP and EEV using 3000 scenarios based on the

stochastic programming solution getting from SAA and the deterministic solution getting from the

expected value problem. In the stochastic threshold model, there’s a differnce between EEV and

SP, therefore, we could conclude there’s a value of stochastic solutions. In the stochastic price

model, the value of the stochastic solution is larger than the expected value of the mean solution
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as well. Therefore, we could conclude there’s a value of stochastic solutions for stochastic price

model.
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(a) Stochastic Threshold Model
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(b) Stochastic Price Model

Figure 5.2: The Value of Stochastic Solutions

Table 5.4, 5.5 present the optimality gap estimates identified by the SAA method for dif-

ferent sample size N. We could conclude that SAA model with a modest number of sampled

scenarios could provide very high quality solutions to the stochastic models involving potentially

infinite number of scenarios. The more scenarios included in the SAA problem, the smaller the

gap.
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Table 5.4: Optimality Gap Estimates for the Stochastic Network Model

N gapN,M,N′ σ2
gap

5 1.884 0.0170
10 1.5240 0.0053
20 1.0475 0.0046
50 0.3720 0.0007

Table 5.5: Optimality Gap Estimates for the Stochastic Threshold Model

N gapN,M,N′ σ2
gap

5 1.3635 0.0165
10 0.6940 0.0043
20 0.6930 0.0028
50 0.3180 0.0014
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CHAPTER 6: CONCLUSIONS

The dissertation studies both the learning and decision-making problems in social media, which

mainly focuses on the information diffusion learning and influence maximization problems.

In Chapter 2, we integrate neighborhood information and embedding similarity into repost

prediction in social media. We come up with different machine learning prediction models, and

among them stacking model outperforms the other models in Sina Weibo dataset. In addition,

XGBoosting model is also a good choice with comparable performance but much less computa-

tional time. When extracting the features, we take neighborhood information into consideration

as well. Friend circle is a good indicator of user’s repost decison. Users who have very active

friends tend to be more active in reposting messages. To collect neighborhood information, we

come up with two different combination models of neighbors’ user profile inspired by the graph

theory. We analyze two combination models and compare their performance in learning repost

probability. Here we use an efficient way to extract the neighborhood information by aggregating

the neighbors’ user profile. It would be interesting to explore whether using the graph embedding

or graph convolutional neural network will help to improve the repost prediction.

In Chapter 3, we investigate the problem of learning diffusion influence weights between

pairs of users in social media networks from mining historical cascades. We formulate two dif-

ferent mixed-integer programming models to learn the diffusion influence weights which could be

used to predict the status of users in the future. The first mixed integer programming model is

based on the popular propagation model, i.e., Linear Threshold Model. The second mixed integer

programming model is based on the idea of random walk considering the influence from multi-step

neighborhood. For larger network, we introduce approximate approaches for both models using

neural network. We bring marriage between optimization-based diffusion models and neural net-

work through approximating optimization models using a single layer neural network. Therefore,

the parameters in the neural network are explainable, which are diffusion weights related param-
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eters in our models. The approximate approaches using artificial neural networks have relatively

good performance and fast computational speed. There are several interesting directions for future

works. Here we just learn the information diffusion influence through the historical cascades. It

would be more interesting to consider other features such as the similarity between posters and

reposters, the user profiles or even the topology information of the social media networks to make

predictions with higher accuracy. Besides, here we have the predefined thresholds, we could try to

learn the influence weights and thresholds together in the future study.

In Chapter 4, we develop the influence and activation thresholds target set selection models

including both the minimum influence and activation thresholds target set selection models and

maximum influence and activation thresholds target set selection models. Our models allow us

to find the minimum seed nodes that influence all the nodes at time T , and determine the seed

nodes under budget that maximize the influence. In addition, to appeal to various applications,

different forms of seed nodes selection models are proposed, which are maximum activation, early

activation and dynamic activation threshold. We provide different computational algorithms to

tackle the various datasets as well. They are Graph Partition, Leaf Node, Degree Centrality, DFS

Greedy, BFS Greedy, Recursive Threshold and Two Stage in Time computational algorithms. Ex-

periements in various datasets show that DFS Greedy and BFS Greedy are much more efficient

than the other methods for large size datasets. Besides, leaf node deletion and degree centrality

selection perform better in terms of long-tailed network. While we already consider the maxi-

mum activation, early activation and dynamic threshold models in the manuscript, we could still

customize the dual threshold target set selection models for different applications for future study.

Furthermore, we could investigate comprehensively various computational algorithms with regard

to different network topologies.

In Chapter 5, our research focuses on tackling the influence maximization problem con-

sidering uncertainties of network topology, user behavior and activation price. We formulate a

two-stage stochastic optimization model to solve the problem. Considering the large scenarios of
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network topology and activation thresholds, Sample Average Approximation method is used to

approximate the objective value. Experiments show that Sample Average Approximation method

with a modest number of sampled scenarios could provide very high quality solutions. Considering

the propagation process could last a long time horizon, we think the multi-stage stochastic opti-

mization would help to improve the performance of tackling the influence maximization problem

considering uncertainties. In the future research, we could formulate the problem using multi-stage

stochastic optimization model.

In summary, the dissertation applies different novel methodologies, i.e., mathematical pro-

gramming, stochastic programming, machine learning, graph theory, or even their combination to

better address the learning and decision making problems in social media. It will definitely in-

spire other researchers to approach the problems in social media from different angles and to solve

the problems utilizing different tools. We would like to see that these novel models and efficient

methodologies could be further applied and developed in industry applications in the future.
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[53] Kübra Tanınmış, Necati Aras, and IK Altınel. “Influence maximization with deactivation in

social networks”. In: European Journal of Operational Research 278.1 (2019), pp. 105–119.

[54] Amit Goyal, Wei Lu, and Laks VS Lakshmanan. “Celf++ optimizing the greedy algorithm

for influence maximization in social networks”. In: Proceedings of the 20th international

conference companion on World wide web. 2011, pp. 47–48.

[55] Yongjia Song and Thang N Dinh. “Optimal containment of misinformation in social media:

A scenario-based approach”. In: International Conference on Combinatorial Optimization

and Applications. Springer. 2014, pp. 547–556.

[56] Hao-Hsiang Wu and Simge Kucukyavuz. “Maximizing Influence in Social Networks: A

Two-Stage Stochastic Programming Approach That Exploits Submodularity”. In: arXiv

preprint arXiv:1512.04180 (2015).

[57] Evren Güney. “An efficient linear programming based method for the influence maximiza-

tion problem in social networks”. In: Information Sciences 503 (2019), pp. 589–605.

[58] Wai-Kei Mak, David P Morton, and R Kevin Wood. “Monte Carlo bounding techniques for

determining solution quality in stochastic programs”. In: Operations research letters 24.1-2

(1999), pp. 47–56.

101

https://arxiv.org/abs/2005.07959
https://arxiv.org/abs/2005.07959

	Learning and Decision Making in Social Media Networks
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1: INTRODUCTION
	1.1 Motivation
	1.2 Methodologies
	1.2.1 Mathematical Optimization
	1.2.1.1 Stochastic Programming


	1.3 Outline

	CHAPTER 2: INCORPORATING NEIGHBORHOOD INFORMATION INTO A REPOST PREDICTION MODEL IN SOCIAL MEDIA NETWORKS
	2.1 Introduction
	2.2 Repost Prediction Model
	2.2.1 Feature Extraction
	2.2.2 Prediction Models

	2.3 Experimental Evaluation
	2.3.1 Datasets
	2.3.2 Experimental Set-up

	2.4 Results
	2.4.1 Combination Models Comparison
	2.4.2 Prediction Models Comparison
	2.4.3 Performance of Models using Different Features


	CHAPTER 3: MODEL-BASED LEARNING OF INFORMATION DIFFUSION IN SOCIAL MEDIA NETWORKS
	3.1 Introduction
	3.2 Learning Models of Information Diffusion Influence
	3.2.1 Linear Threshold Learning Model
	3.2.2 Random Walk Learning Model

	3.3 Approximate Approaches using Artificial Neural Networks
	3.3.1 Artificial Neural Network for Linear Threshold Learning Model
	3.3.2 Artificial Neural Network for Random Walk Learning Model

	3.4 Experimental Evaluation
	3.4.1 Experiments on Synthetic Data
	3.4.2 Experiments on Real Data


	CHAPTER 4: TARGET SET SELECTION IN SOCIAL NETWORKS WITH TIERD INFLUENCE AND ACTIVATION THRESHOLDS
	4.1 Introduction
	4.2 Tiered Influence and Activation Thresholds Target Set Selection Models
	4.2.1 Minimum Influential Seeds
	4.2.2 Minimum Influential Seeds with Maximum Activation
	4.2.3 Minimum Influential Seeds with Early Activation
	4.2.4 Minimum Influential Seeds with Dynamic Activation Threshold
	4.2.5 Maximum Influence with Budget
	4.2.6 Maximum Influence and Activation with Budget
	4.2.7 Maximum Influence and Early Activation with Budget
	4.2.8 Maximum Influence with Dynamic Activation Threshold

	4.3 Computational Algorithms
	4.3.1 Graph Partition
	4.3.2 Nodes Selection
	4.3.3 Greedy Algorithm
	4.3.4 Recursive Threshold Back Algorithm
	4.3.5 Two-stage Approach in Time

	4.4 Experimental Evaluation
	4.4.1 Experimental Setting and Dataset
	4.4.2 Sensitivity Analysis
	4.4.3 Model Comparison
	4.4.4 Computational Algorithms Comparison


	CHAPTER 5: INCORPORATING UNCERTAINTY INTO INFLUENCE MAXIMIZATION PROBLEM IN SOCIAL MEDIA NETWORKS
	5.1 Introduction
	5.2 Models
	5.2.1 Influence Maximization Model Considering Stochastic Network Topology
	5.2.2 Influence Maximization Model Considering Stochastic Thresholds
	5.2.3 Influence Maximization Model Considering Stochastic Price

	5.3 Sample Average Approximation Method
	5.4 Experimental Evaluation
	5.4.1 Network Topology Comparison
	5.4.2 Quality of Stochastic Programming Solution


	CHAPTER 6: CONCLUSIONS
	LIST OF REFERENCES

