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A model cylindrical magnetron Vlasov distribution function 
D. J. Kaup 
Department of Mathematics and Computer Science, Clarkson University, Potsdam, New York 13699-5815 

S. Roy Choudhury 
Department of Mathematics, Universiv of Central Florida, Orlando, Florida 32816 

(Received 28 February 1994; accepted 10 June 1994) 

The analysis of the planar magnetron Vlasov distribution function [Phys. Fluids 31, 2362 (1988)] is 
extended to the cylindrical case. In momentum space, the model distribution function is 
f(w,pd = Ne- P,w,-(np$4po)(pe-po)2 where w(ps) is the single particle energy (angular 
momentum), P,,,(Pe) is the inverse of the thermal energy associated with variations in w@@), p. is 
the angular momentum at the cathode, and R is the electron cyclotron frequency (= eBolmc). The 
problem is shown to be too “stiff” numerically to permit a pure numerical solution even using very 
high accuracy and state-of-the-art numerical schemes. It is shown that one may use a global singular 
perturbation expansion, similar to, but significantly more complex than the one used in the planar 
case, to solve the resulting nonlinear ordinary differential equation for the spatial dependence of the 
distribution function, density, electrostatic potential, and drift velocity. 

I. INTRODUCTION II. THE CYLINDRICAL MODEL 

Models of magnetrons and crossed-field amplifiers 
(CFA’s) in planar geometry have existed for some time.“’ 
This geometry is quite convenient mathematically for study- 
ing such devices.3*4 Planar models have also been used in 
numerical simulations.‘T6 Cylindrical devices have also been 
studied theoretically in the cold-fluid limit7 as well as nu- 
merically with particle simulations. However, there has ex- 
isted no adequate Vlasov model in cylindrical geometry up 
to the present time. The planar geometry is quite adequate 
for low aspect ratio devices such as most CFA’s. (The aspect 
ratio is the ratio of the anode radius to the cathode radius.) 
However, magnetrons typically have high aspect ratios 
wherein cylindrical deviations from planar geometry can be 
expected to be quite important. In this paper, a model Vlasov 
distribution function is provided for a cylindrical magnetron. 
In many ways, it is quite similar to the planar model, how- 
ever, there are important geometrical deviations. Still, the 
basic governing function is exactly the same function Jo(z) 
defined in the planar model? 

We shall use the geometry detailed in Fig. 1 where a(b) 
is the cathode (anode) radius, the B field (assumed uniform) 
is directed into the paper and the anode is at some positive 
potential, creating an electric field from the anode to the 
cathode. Here we are only interested in the stationary char- 
acteristics so we assume azimuthal symmetry, with all physi- 
cal quantities independent of the azimuthal angle, 6’. 

The form of the electrostatic field and potential will fol- 
low from Poisson’s equation, 

[$+(l/r)a,]$=47ren, (1) 

where n is the azimuthally symmetric electron density. The 
anode-cathode voltage will pull electrons out of the cathode, 
creating a sheath next to the cathode. This sheath is magneti- 
cally insulated from the anode by the magnetic field, B. , and 
will grow until we have a space-charge limited current at the 
cathode, with a vanishing E field at the cathode. Taking the 
potential to be zero at the cathode, then our boundary condi- 
tions on (1) at the cathode are 

In Sec. II, the model is described and is transformed to 
velocity space. In Sec. III, it is shown that one may use a 
singular perturbation expansion to solve the nonlinear Pois- 
son’s equation. In Sec. IV, the results for typical medium and 
high aspect ratio devices are presented. Here we discuss and 
demonstrate the high degree of stretching which occurs in 
this problem and describe how one may determine all the 
parameters required for the solution via the asymptotic ex- 
pansion. Then we present curves of the density profiles for 
the medium and high aspect ratio cases. In general, the 
curves are as one would expect, with high densities in the 
interiors and a rather sharp and well-defined edge. Last, we 
discuss the stability of the partical orbits, concluding that 
they are indeed stable. However, small perturbations can 
cause very large excursions. 

$(r=a)=O=d,+(r=a). (2) 

This will uniquely determine 4(r) from (1) once the electron 
density is determined. 

The electron density will be determined by a model Vla- 
sov distribution function. The model that we will use will be 

f(w,pe)=Ne- Pww,-(n~$4Po)(P,-Po)z. (3) 

In the above, N is a normalization constant to be determined 
(it will be a function of the anode voltage). The next term is 
the standard Gibbs term for the distribution of single-particle 
energies, w, where & is the inverse of thermal energy. The 
last term arises because all electrons leave the cathode at 
near zero velocity. The coefficient & determines the spread 
in these velocities about zero velocity, pe is the single par- 
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FIG. 1. The geometry for a smooth bore magnetron. The inner radius is a 
and the outer radius is b. 

title angular momentum (a constant of the motion) and p. is 
its value at the cathode. The quantity Sz, which is the electron 
cyclotron frequency [ = eBo/(mc)]. is there simply to nor- 
malize & to an inverse energy, and the factor of 4 is simply 
a convenient scale factor. Since both w and pe are constants 
of the single particle motion, this f(w,p@) automatically sat- 
isfies the Vlasov equation 

~?f+vVf-; [E+(l/c)vxB,]~V,f=O, (4) 

where 

E= -V+. (5) 

In cylindrical coordinates, ignoring variations in the z 
direction, the single particle equations in the presence of an 
electric field and a magnetic field are 

P-rY*=(e/m)t?,qS+llrb, (64 

r-8-t 21iJ= -Ri (6b) 

when +#J=O. These equations have the two constants of the 
motion: 

w=(m/2)($+us)-egl, (7) 

pB=mrvo+ $mr2il, (8) 

where 

Up’i., v*=ri). (9) 

As stated above, we define p. to be that value of pe at the 
cathode for which v @= 0. Thus 

po= $ma*O. (10) 
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For a laminar Aow, we have r’= 0 and $= 0. Then by (6), 
there are two possible values for the drift velocity, ud= r6, 
both of which are negative: 

1 
J 

1 
ud= -z rClk 4 r2i12--k (i-d&). 

The upper sign corresponds to the drift velocity of the planar 
case. It also vanishes at the cathode, and therefore corre- 
sponds to the typical values present in our model distribution 
function. The lower sign has a nonvanishing value at the 
cathode ( ud= - a a) and for nominal values of &, can be 
ignored as being unphysical. 

To calculate the electron density and the average particle 
velocity, we have to convert f from a function of w and ps to 
a function of u, and u @. This is easily done with (7), (8), and 
(10). The result is 

f =NeXe-'m/*)Pw& -lm/2)[P,+(r2/a*lpB1~“~+~)z, 

where 

x=Pw4-h(r), 

~=~,r(r~-a~)iW2(a~~,+r~/3~), 

h(r)=mQ2&+,P,(r2-a2)2/8(a2&,,+r2PB). 

Taking the velocity averages of (12) now gives 

w 

(13) 

04) 

(15) 

f du, dve=2rr NeX/~,B,(Pw+r2P&la2~, 

061 

1 g*=- 
n fu8 dv, due= -u, (17) 

showing u to be the negative of the average azimuthal veIoc- 
ity. 

Near the cathode, we expect the electron plasma fre- 
quency to be just below the electron-cyclotron frequency by 
some temperature factor. With this in mind, we rescale N as 

Pw IF2 
2rr”=& f22P8 P,+& l i (l-e), 

where E is now the free parameter. With this, 

2 47re2 p&12( 1 - e)eX 
wp=-Fn= 

which at the cathode is 

&.=a)=p~2(1-e) 
P Bw+Pe * 

(181 

(16) gives 

(19) 

(20) 

Now the only remaining equation to solve is Poisson’s 
From (1) we then have 

Ca,2+(llr)d,l[(elm)~J=w~, (21) 
where 6~; is given by (19). This is a nonlinear ODE (ordinary 
differential equation), since x in (19) is proportional to 4 
[see (13)]. This is a particularly complex ODE because of the 
geometrical factors of r/a in (19) and (15). Attempts to solve 
this equation numerically have failed, even with 40 place 
accuracy. However, as we shall shortly see, these cybndrical 
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factors actually only introduce some minor variations from 
the planar case. The key point is that the factor of ex in w; in 
(21) and (19) dominates all geometrical effects. This was the 
key for the asymptotic expansion given in the next section. 

III. THE ASYMPTOTIC EXPANSION 

Due to secondary emission at the cathode, one expects 
values for p, and & to be in the order of inverse electron 
volts. Since ma*0* is typically keV’s, we have here a small 
parameter for expansion. And as we shall see later, E in (19) 
is typically lo-’ or even much smaller, giving us a second 
small parameter. 

But before we expand in these parameters, let us rescale 
(21) and (19). We start by resealing r as 

r=ae’ (22) 

so that 

1 e-2v 
a;+; d,=-g- a;. 

Thus u ranges from zero to ln(b/a). We introduce the ratio 
of the temperatures 

P=MPe (24) 

and define the large unitless parameter L by 

(25) 

Then (15) and (21) become 

h=(L2/8)[(1+p)l(e2v+p)](e2v-1)2, (26) 

to2 = [L*( 1 - c)la*P P w m]eXp, (27) 

where 

p=[( 1 +p)/(e2”+p)]1’2. (28) 

Define the scaled Laplacian of h to be 

(29) 

which is 

Phys. Plasmas, Vol. 1, No. IO, October 1994 

H= (“‘) 3 [e6v+3pe4v+e2v+p(l+2p) 
W+e*? 

X(2e*‘- l)] (29’) 

and is clearly positive definite. 
With the above and (13), (21) becomes 

(30) 

For large L and small E, the solution of this equation can be 
expanded in the following asymptotic series in u and z: 

x= -J(z) +Fo(u)+ Fn gt J,,tz)~,,tu) 

+c ~K&)G,,(V)[E sinh(l 
m.n 

(31) 

where the sum is from m and n = 0 to infinity and 

z= E cosh(L v) - E, (32) 

where v(u) is some function of u, still to be determined. 
Before we start the expansion, we should remark on cer- 

tain features of it, so that one can more clearly see how the 
various terms will balance in the various orders. First, we 
note that the ex term in (30) will simply generate another 
series like (31). However, what will happen to the cash in 
(32) and its derivatives when one does the differentiation in 
(30), requires a detailed discussion. Let us look at each type 
of term, one by one. First, for J(z), we have 

(l/L2)d$T(z)= v~(z*J”+ZJ’)+EV~(2ZJ”+J’) 

+ (l/L)v,,[ E sinh(L v)]J’, (334 

where J’ = dJ/dz and vu = d vldu. Note how this is a sum of 
products of functions of z and functions of v, with higher- 
order terms present [ E,L -‘E sinh(L v)]. It is the same form 
as (31). Similarly, 

(l/L2)&)(u) = ( 1/L2)FL Wb) 

has only the higher-order term [L ‘-*I. Continuing, 
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& d~(J,,F,,)= v~F,,(z~J~~+.zJ~~)+ ev~F,,(ZzJ:b,+J6,)+~ JL,( vvvF,,+2vvF~,)[ E sinh(L v)]+L; J,,Fk,, 

(33d 

$ di[K,,G,,e sinh(Lv)]= vt[(z*K~,)‘+(K,,z)‘]G,,[ E sinh(L v)]+ E~~[~(K~,z)‘+K~,]G,~,[E sinh(L v)] 

+A KmnGkne sinh(L v), (334 

each of which has the same structure as (31). Thus when (31) 
is inserted into (30), we will generate a general sum of the 
form of (31) consisting of the sum of products of functions 
of z times functions of u. The coefficients will be of various 
orders of l/L, E, and E sinh(L v), as in (31). Thus it will be 
possible to collect like terms. 

=ev (e*‘- l)(e2v+ 1+2p) e-‘vv 
4(e2v+p)2 -m (J’- ~I2 

It is now simply a matter of inserting these results into 
(30), collecting the various powers and solving for the vari- 

e -v 
X[E sinh(Lv)]+ 

L*U+d 
(44) 

ous functions of v and z. The leading order gives 

e -2vv~(z2J”+zJ’)+H-p.e-JeFO=0. 
2 H 

(34) 
@P - 
i=F -1+p - ewJ( 1 -E+ EJer). (45) 

Separating the functions of z and u gives 

Fo=In(Hlp), (35) 

v* = e*VH ” > (36) 

z*J”+zJ’- 1 +emJ=O 9 (37) 

where we have chosen the separation ratios to be unity. Since 
H and y are known and are positive definite, solutions exist 
for F. and v,. Equation (37) is exactly the same as in the 
planar case and is Eq. (31) in Ref. 2. It satisfies 

J(O)=O, J’(O)= 1. (38) 

Thus we have a solution in leading order. If we go one 
more order, we only need 

x= -J(z)+Fo(z)+ ~IO(ZV’IO(U) 
which inserted into (30) gives 

(39) 

F,o(u)= 1, (40) 

z2J” +zJ’ 10 lo-e-JJlo= -ewJ+2zJ”+J’. (41) 

The latter is a linear second-order nonhomogeneous ODE, 
whose solution is 

Jto=l-(l+z/3)J’ (42) 

for J,o(0)=O=Ji,(O). The higher-order terms (E*, 
E/L,L -*) will not be given here, since they will be at least 
two orders of magnitude smaller. 

Finally, we will give expressions for 4, I?,$, and 6~; 
based on (39). From (13), (22), (25), and (27) 

e+ (e2v- 1)2 1 
ma2a2 =8(e2V+p) +(l+p)Li [-J+ln(H/P.L)+&Joll, 

(43) 

Now, in (43) and (44), although the terms involving J and J’ 
are of lower order, once t becomes large (outside the sheath), 
J does become of order L2 and J’ becomes of order L. So 
these terms do have to be retained, in general. 

IV. RESULTS 

For parameters, we use those for the Varian VMS-I873 
magnetron,* where a=1.65 cm, b=2.61 cm, and 
f2=5.88X109 Hz, corresponding to B,= 2.1 kG. We call 
this parameter set a medium aspect ratio case. For the ther- 
mal parameters, we can only guess as to their values. Al- 
though the values of &= l/(10 eV) and p,= p$S might be 
on the small side, they are not unreasonable, based on other 
considerations.’ As a second case, we also look at a large 
aspect ratio device where we keep CI and the p’s the same, 
but use a = 0.125” and b = 2” instead. Equilibrium distribu- 
tions are found to exist in both cases with stable (albeit large) 
particIe orbits. 

TABLE I. The e values required for various anode voltages in the medium 
and large aspect ratio cases. 

Medium aspect ratio High aspect ratio 

Anode voltage (kV) 6 Anode voltage (kV) E 

25 7.9672X 1O-4 100 3.2613XW21 
50 8.3&77X10-” 250 1.1013x10-32 
75 6.3074X 10-s 350 3.3379x 10-Q 

100 3.1028XiO-‘” 
150 1.1215x10-‘” 
200 1.5812x10-23 
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FIG. 2. Stretched (z) versus physical (u) variables for the medium aspect 
ratio case, as determined from Eqs. (32) and (36) for an anode voltage of 25 
kV. 

A. Pure numerical solution 

Poisson’s equation (21) [with (13) and (19)] can have 
solutions for the potential cj blowing up exponentially (due 
to the driving term on the right of the form ex = efiwe@). 
Clearly, to prevent such a blowup, x must remain close to 
zero, or go negative for r E [a $1. It was, therefore, deemed 
to be more advantageous to consider the equivalent equation 
for the quantity x, since this is the quantity critically affect- 
ing the nature of the solutions. Taking the second derivative 
of (13) and using (19) and (21) yields 

d2x 
p =A* 

L 

mPeCi2( 1- e)eX 1 d+ 
p,+ p&3,+ p&l~-f e dr i 

-h”(r). 

(46) 

At the cathode, r=a, using (2), (13), and (15), the initial 
conditions on x are 

x(r=a)=O=d,x(r=a). (47) 

To ensure that x stays close to zero or assumes negative 
values for r E [a$], the best one may do is look for regimes 
where x (which starts at zero with a zero slope at r=u) is 
concave down in the vicinity of the cathode, i.e., choose 

FIG. 3. The density profile in the anode-cathode gap for &anode)=50 kV FIG. 5. The same as Fig. 3 for &anode)=200 kV. The Hull cutoff voltage 
in the medium aspect ratio case, where p=O.lZ. is 226 kV. 

FIG. 4. The same as Fig. 3, but for &anode) = 100 kV which is in the lower 
operating range. 

values of E such that d2x/dr2(r= u)<O. Using (46) and 
(47), d2xldr2(r=u)=m&&,,~2(1 -E)I(&,,+/~J-h”(u) 
<O yields simply 

E>O. (48) 
Numerical solutions of (46) and (47) were then performed 
for various positive values of E. 

However, it was found that in order to obtain anode volt- 
ages, 4(b), of the order of hundreds of kilovolts typical of 
such devices, E would have to assume very small values 
indeed. For instance, 4(b)> 100 kV required E<O( lo-“), 
and reliable numerical solutions were found to be virtually 
impossible to obtain, even employing quadprecision and ex- 
tremely stable composite backward difference schemes. 
However, the global asymptotic solution of Sec. III had no 
such limitation, and we turn next to results obtained from 
this solution. 

B. Asymptotic solutions 

Notice that as the anode voltage increases, the electron 
plasma sheath extends further from the cathode, until it even- 
tually fills the entire cathode-anode gap. This last configu- 
ration where the sheath hits the anode corresponds to a volt- 
age “limit,” or the highest operating voltage attainable for 
the device corresponding to a particular set of parameters. 
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FIG. 6. The density profile for #anode)=100 kV in the high aspect ratio 
case. 

This is also known as the “Hull cutoff voltage,” above 
which the device loses magnetic insulation and goes con- 
ducting. A good estimate of the Hull cutoff voltage may be 
obtained from the asymptotic solution. From Fig. 3 of Ref. 2, 
the function J of (37) and (38) is positive for all z. Enforcing 
this in (43), yields to O(1): 

ma2R2 
#-+Hull=~ (e 

! 

2v- 1)2 MHlpCL) 

8(e2”+p) +L’(p+l) ’ 1 
(49) 

even worse. Figures 3-5 show that density profiles in the 
anode-cathode gap for the medium aspect ratio case with 
+(anode)=50, 100, and 200 kV, respectively (the Hull cutoff 
voltage limit is about 226 kV). Note the widening of the 
plasma sheath as the voltage increases. Figures 6-8 show the 
density profile in the gap for the high aspect ratio case with 
&anode)= 100, 250, and 350 kV, respectively (the Hull cut- 
off voltage is about 383 kV). 

C. Particle orbits 

For our parameters corresponding to the typical medium and To analyze the stability of the particle orbits, we perturb 
large aspect ratio cases, the Hull cutoff voltage is 226.1 and Eqs. (6). One finds that variations in the radial coordinate 
383.7 kV, respectively. will evolve as 

In order to obtain the full numerical solution, (36) [with 
(30)] was first solved for u(u) for each parameter set. From 
this, one has .(u,)= v~, where IJ~= v,,d,=ln(bla). Next, 
for the given anode voltage, one may use (43) to obtain the 
required value of J(zf) (actually J-elite; but usually the 
last term is an insignificant correction), where zf is the value 
of z at the anode. Now, from the solution of (37) and (38) (or 
Fig. 3 of Ref. 2), using the required value of J, one obtains 
the required value of zf. But zf and uf are related by (32), 
allowing one to solve for E. Table I shows the required E 
values for various anode voltages. At this stage, the reason 
for the problem being “stiff” or intractable using a pure 
numerical solution becomes apparent. For instance, for 
&anode) = 100 kV, the required value of E is 0( 10 - lo) and 
O(10m21) for the medium and high aspect ratio cases. For 
the high aspect ratio case, ~=0(10-~‘) and 0(10-45) for 
#anode)=250 and 350 kV, respectively. Thus there is no 
way that one could numerically calculate the required terms 
in (30) to a sufficient accuracy. Other methods have to be 
used. 

SF-t A26r=(21r3)p,$po, (50) 
where Spe is the perturbed angular momentum and 

A2=0*--$--(2/r)(e/m)d,q3. (51) 

The key feature here is that inside the sheath, A2 becomes 
very small (but still positive), allowing large variations in the 
particle’s orbit due to small perturbations.” 

From (44) and (45), (51) becomes 

A2 
p=l- 

e-“(e 2v-l)(e2”+1+2p) HeeJ 
2(e2’-- 1)2 

-- 
l+P 

2 lJ”e-=v 
+w+P) 

----J’E sinh(L.v)+0(e,1/L2) cm 

P I 

Once the required value of E is known, one may use 
(451, (30), and the numerical solution of (37) for J to obtain 
the profile for the density (or the electron plasma frequency, 
w;>. 

The results are shown in Figs. 2-8. Figure 2 shows the 
stretched variable z versus the physical variable v, as ob- 
tained from (32) and (36) for the medium aspect ratio case at 
25 kV, The very high degree of stretching indicates the dif- 
ficulty of the problem, as was seen in attempting the pure 
numerical solution. For higher voltages, the stretching is FIG. 8. The same as Fig. 6 for &anode)=350 kV. 

FIG. 7. The same as Fig. 6 for &anode)=250 kV, 
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which always remains positive definite in lowest order. The 
second term on the left-hand side is bounded by l/2, as is 
also the third term, while the fourth term is obviously posi- 
tive. Thus depending on the values of p and u, one could 
have extremely small values of A2/f12, but never zero or 
negative. In terms of particle orbits, this means that wherever 
A2/Ck241, the orbits are on the verge of an instability,” and 
that small perturbations to either the angular momentum or 
the radial position can give large excursions. 
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