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ABSTRACT

The Program Dependence Graph (PDG) has achieved widespread acceptance

as a useful tool for software engineering, program analysis, and automated com-

piler optimizations. This thesis presents the Sparse Object Oriented Program

Dependence Graph (SOOPDG), a formalism that contains elements of traditional

PDGs adapted to compactly represent programs written in object-oriented lan-

guages such as Java. This formalism is called sparse because, in contrast to

other OO and Java-specific adaptations of PDGs, it introduces few node types

and no new edge types beyond those used in traditional dependence-based rep-

resentations. This results in correct program representations using smaller graph

structures and simpler semantics when compared to other OO formalisms.

We introduce the Single Flow to Use (SFU) property which requires that ex-

actly one definition of each variable be available for each use. We demonstrate

that the SOOPDG, with its support for the SFU property coupled with a higher

order rewriting semantics, is sufficient to represent static Java-like programs and

dynamic program behavior. We present algorithms for creating SOOPDG repre-

sentations from program text, and describe graph rewriting semantics. We also

present algorithms for common static analysis techniques such as program slicing,

inheritance analysis, and call chain analysis.

We contrast the SOOPDG with two previously published OO graph struc-

tures, the Java System Dependence Graph and the Java Software Dependence

Graph. The SOOPDG results in comparatively smaller static representations
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of programs, cleaner graph semantics, and potentially more accurate program

analysis.

Finally, we introduce the Simulation Dependence Graph (SDG). The SDG

is a related representation that is developed specifically to represent simulation

systems, but is extensible to more general component-based software design par-

adigms. The SDG allows formal reasoning about issues such as component com-

position, a property critical to the creation and analysis of complex simulation

systems and component-based design systems.
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1

INTRODUCTION

This thesis presents the Sparse Object Oriented Program Dependence Graph

(SOOPDG), a new program representation capable of supporting a Java-like

language. In this chapter we outline the motivation for development of this

representation by presenting a summary sketch of the limitations of existing rep-

resentations and the advantages of the SOOPDG. We also present an overview

of the target language used for discussing and developing the SOOPDG. These

topics are fully developed in later chapters.

The Program Dependence Graph (PDG) is a dependence-based intermedi-

ate program representation used widely in software engineering and analysis

applications [FOW87, LMP99, RWF03]. Software engineering activities sup-

ported by the PDG have grown since its first recognition as a software devel-

opment tool in 1984 [OO84] to include program slicing, differencing, integra-

tion, debugging, testing, maintenance, complexity analysis, and semantic eval-

uation [HR92, Hor90, Par92, Zha98]. The PDG was originally introduced for

single-threaded imperative programs, although the original forms inherently sup-

ported parallel computation [CF89, Par92]. Horwitz et al [HRB90] extended the

PDG to represent multi-procedural programs, and thus explicitly multi-threaded

programs, with the System Dependence Graph (SDG). The introduction of the

PDG predates widespread acceptance of Object Oriented (OO) programming

languages. With the growth of popularity of Object Oriented (OO) languages,

variations of the PDG and SDG for OO programs have been presented in the lit-
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erature [MMK94, CY96, LH98, CX01]. Zhao [Zha98] presented and Walkinshaw

et al [WRW03] extended representations specifically supporting Java. These rep-

resentations allow for static program representation only and have inefficiencies

described more fully in Chapter 6. There is a need for a representation modeling

static programs more efficiently, and capable of representing dynamic program

behavior.

1.1 Need for the Work

Dependence based program representations supporting Java exist in the form of

the Java System Dependence Graph [Zha98] and the Java Software Dependence

Graph [WRW03]. These representations extend the basic PDG structure through

the introduction of multiple special purpose node and edge types to support OO

features. These special purpose graph elements complicate graph structure and

increase the graph size. The bloat in the program representation can result in

inefficiencies in program analysis and in development of executable code (or byte-

code). Dynamic binding of polymorphic methods is supported in an inefficient

manner through duplication of portions of the graph for each possible binding

that may occur.

In addition, the authors do not present an underlying rewriting semantics

for their representations, which limits program analysis to static cases. Analy-

sis has been performed for non-OO languages and representations proving that

translations from textual to graphical representations, and potential transfor-

mations performed on the graphical representation, preserve program semantics

[CF89, Sel90b]. The limitation to static analysis prevents a similar formal analy-

sis to be performed for Java programs.
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1.2 The Sparse Object Oriented Program Dependence Graph

The representation presented within this thesis has been named the Sparse Ob-

ject Oriented Program Dependence Graph because it introduces a small number

of new node and requires no new edge types beyond those used in traditional

PDGs, and results in smaller static program representations than achieved in

compatible models. The reliance on traditional PDG elements maintains the at-

tractive qualities of the original PDG forms. Primarily, the introduction of no

new dependence edges beyond those used in traditional PDGs maintains the core

of program semantics intended by traditional PDGs [KKP81, FOW87, Hor90],

while allowing OO features to be represented. Additional qualities include the

notion of a local store, compositional semantics, and inherent support for parallel

computation. The SOOPDG utilizes higher order rewriting semantics. This will

be shown to result in improved support for dynamic binding through straightfor-

ward resolution of method execution at specific calling sites, and smaller graphs

than existing forms. These improvements in the representation result in improve-

ments in the efficiency and accuracy of program analysis.

1.3 Limitations Imposed in the Language

The target language, J, does not have all features of Java. Specifically, we consider

only thread safe applications, and do not allow unstructured control flow. We do

not allow shadowing. We do not provide specific support for arrays or pointers,

though future research may accomplish this by leveraging previous work [Par92]

performed on traditional PDGs. We do not explicitly represent input-output

forms, but make provisions for data values to be established at run time, and

3



program results to be returned to an external operating environment upon ter-

mination of the computation. These restrictions are typical of other formalisms

presented in the literature [KKP81, TGH92, Zha99, WRW03, AH03]. The lan-

guage J is more fully defined in Chapter 2.

1.4 Contributions of this Thesis

This thesis contributes to the fields of Computer Science, and Modeling and

Simulation in the following ways.

1. Definition of the SOOPDG, a dependence based program representation

targeting a Java-like language (and more generally, OO constructs).

2. Presentation of the first program representation supporting Java-like lan-

guages (the SOOPDG) that employs only the dependences required to

maintain program correctness (flow, control, and def-order, defined in Chap-

ter 2).

3. Definition of a rewriting semantics that allows the SOOPDG to represent

computations in Java-like languages, and also permits analysis of dynamic

program events as opposed to static analysis on the program structure. We

could find no other rewriting semantics for dependence graphs representing

as full a range of OO features as the SOOPDG supports.

4. Definition of the Single Flow to Use (SFU) property of programs, which is

a new property used to disambiguate among multiple sources of values for

variables during program execution and which makes analyses more precise.

4



5. Initial development and presentation of a related representation supporting

analysis of modeling and simulation systems, the Simulation Dependence

Graph.

1.5 Organization of this Thesis

The remainder of this document is structured as follows. Chapter 2 presents perti-

nent background information and definitions regarding the language J, program

properties, and dependence based program representations. Chapter 3 intro-

duces the formal definition of the Sparse OO PDG. Algorithms for constructing

SOOPDG graphs from program text and an associated graph rewriting scheme

are presented in Chapter 4. Program analysis algorithms are presented in Chap-

ter 5, while comparisons with selected dependence based graph representations

that support Java are given in Chapter 6. Chapter 7 presents the Simulation

Dependence Graph, a related representation applicable to simulation systems.

Future research opportunities and applications of the SOOPDG extending be-

yond the present discussion are given in Chapter 8. Conclusions are given in

Chapter 9.
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2

BACKGROUND

This section presents background information related to the topic of this the-

sis. We discuss an underlying semantics for computation, the target Java-like

language being supported, program dependences and pertinent program proper-

ties. We present the program dependence graph (PDG), which forms the basis

of the SOOPDG. Finally, we define specific structures found in the program de-

pendence graph that will be used in future chapters when proving properties of

the SOOPDG.

2.1 Informal Semantics of Computation

We consider program behavior through observable input-output behavior. A

program performs transformations from an input to an output memory state,

called a program store (We extend this notion slightly in the context of the target

language, J, in Section 2.2). The program store is the mathematical model of

physical memory, and consists of a mapping from program variables to values

[CF89, Par92]. Programs perform computations by receiving input data from

an input store, operating on the data, and producing an output store. In this

sense programs define a mapping from input to output stores. This mapping

is well defined for programs that terminate normally; the symbol of “bottom”,

⊥, is reserved to represent the output of programs that do not terminate, or
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do not terminate normally [CF89, Par92]. Bottom is formally defined below

in Definition 1. A program’s mapping from input to output store provides an

objective and non-ambiguous specification of program meaning [Mog91], allowing

comparisons of program behaviors. Specifically, two programs are said to have

the same meaning if they have the same input-output mapping for all input stores

leading to normal termination for both programs. No correlation is made if either

program terminates abnormally or if either program does not terminate.

Definition 1 (Bottom) Bottom is a special value included in the range of val-

ues allowed in a computation that represents an undefined value. The result of

any undefined or non-terminating computation is bottom. The result of any com-

putation containing bottom is bottom. In this sense, bottom is a “sticky” value.

Just as programs may be represented in various ways, various methods may

be used to evaluate them. Evaluation methods differ in whether execution se-

quences emphasize program structure or results, whether a first order or higher

order semantics is in effect, and how program termination is defined. Sequen-

tial (also called imperative) execution follows program structure as written by

a programmer in a top down fashion. Lazy evaluation executes only program

statements contributing to program results. These concepts are formally defined

in Definitions 2 and 3, respectively. Lazy evaluation is also known as call by need

or demand evaluation, as the evaluation begins at the statement defining pro-

gram output and a need, or demand, for values is propagated backwards through

the program representation. The execution of statements required to satisfy

the demand then propagates forward through the program representation. The

backward propagation of demand and forward execution of statements are not

necessarily separated into distinct phases. The demand may designate multi-

ple statements that potentially contribute to a computation at a given program
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point; none of these statements execute until it is determined which ones will

actually contribute.

Definition 2 (Sequential Evaluation) Evaluation that begins at a uniquely

designated start point and executes program statements in the order they appear

in the program format, executing all statements on the evaluation path regardless

of the relevance to the end result. Evaluation of a statement cannot begin until

the previous statement has successfully terminated [Sel89, Rey98].

Definition 3 (Lazy Evaluation) Evaluation that executes only those program

statements known to contribute to the program result. Execution sequence is not

determined by the order in which statements appear in the program format, other

than that required for semantic correctness. [Kri89, Sel89].

Program execution semantics may be segregated into first order or higher

order semantics. First order semantics allow only primitive values to be assigned

to variables or flow between program statements, while higher order semantics

allow functions to be assigned to variables and flow as values between program

statements.

Program evaluation may also be classified according to the effect of undefined

program elements on termination. Strict evaluation requires that elements of the

program be well defined for successful termination of the computation. Strictness

criteria, defined in Definition 4, typically is applied only to those statements that

execute (consider the branches of an if-then-else construct for which only one

branch will execute) [CF89, Par92]. This makes the strictness criteria synony-

mous with sequential evaluation, because in both models every statement along

the control path from the start to finish must be well defined regardless of their

contribution to the result. A statement, or its computational result, that is not
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well defined is given the value of ⊥, and the program result is ⊥. A strict memory

model requires that all program variables be represented and mapped to a valid

value, regardless of which variables are accessed, for the store to be valid.

Definition 4 (Strictness Property) The strictness property requires that all

elements of a program be well defined for the result to be valid. Strictness may be

applied to program evaluation, to the memory model, or both.

One model of program evaluation transforms the program in a piecewise fash-

ion as intermediate results are achieved. This process is known as rewriting, and

is defined in Definition 5. As specified below, rewriting is independent of repre-

sentation, although the term is typically used in the literature in association with

graph representations. The notion is that the program is evaluated via successive

step-wise rewritings until either an undefined state is reached (⊥), or the com-

putation terminates normally. Each rewriting is the result of the application of a

single rule. If the language adheres to a deterministic semantics, then the result

of any single-step rewriting will be deterministic. Likewise, the overall result of

rewriting performed on the program from initial to final states will be determin-

istic. If sequential evaluation rules are in effect then the choice of which rewriting

rule will be applied next can be determined at any point in the program evalua-

tion. For non-sequential evaluations such as lazy evaluation, the actual rewriting

step performed at any given program point may be non-deterministically chosen

from a set of options allowed by the semantics, though the overall program result

remains deterministic. Non-sequential evaluation allows for multiple correct exe-

cution sequences of a single program, which in turn implies that one sequence, or

a parallel sequence, may be chosen over another to enhance program performance

without affecting program results.
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Definition 5 (Rewriting) Rewriting is the process of performing program eval-

uation via step-wise rules that systematically modify the program representation.

2.2 Representative OO Language, J

To provide clarity of discussion and analysis, we restrict ourselves to a subset of

the full Java language that incorporates the primary OO features of class defini-

tions, interface definitions, inheritance, and packages. We refer to this language

as J, to distinguish it from a complete implementation of the Java language. We

restrict J to single-threaded applications having structured control flow, and hav-

ing no mechanism to handle exceptions such as try-catch-throw. J is comprised

of a set of primitive variable types (e.g. int, double, etc.), operations on these

primitives (e.g. +, -, *, etc.), and a set of base classes approximating the Java lan-

guage specification. Program authors define additional classes that extend these

base classes. A program in J is composed of a set of class definitions containing

class variables, instance variables, and both class and instance methods defining

functions or operations on the variables. Programs may contain interfaces, or

abstract classes, that must be implemented prior to instantiation into a program

as an object. Each program must contain at least one class having a single class

method called main so that initiation of program execution may be specified.

Statements may initiate execution of methods through method calls. The term

call site refers to the specific point in a statement calling a method. Variables

and methods may be public (accessible by elements outside the class), private

(accessible only by other elements of the same class), or protected (accessible by

subclasses and members of the same package).
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Classes are comprised of a collection of variables and methods (both class

and instance). To maintain structured control flow, methods may have at most

one return statement. Methods may contain any number of side-effects. Classes

are instantiated to create objects in a program using a constructor method. The

language specification provides each class with a default no-argument constructor,

though program authors may define additional constructors. Classes enter into

a superclass/subclass relationship when one class (the subclass) declares itself as

extending another (the superclass). Instance variables and methods not defined in

the subclass are inherited from the superclass. Shadowing is not allowed in J, so

variables are declared exactly once in any superclass/subclass hierarchy of classes.

A method call to a constructor instantiating a subclass results in a method call to

the constructor of the superclass as well. The call to the superclass constructor

is an implicit call to the default class constructor unless an explicit call is made.

An interface is a collection of abstract methods, each having method type and

input parameters defined. A class implementing the interface must define every

method in the interface using the same number and type of input and output

parameters as in the abstract definition.

Statements in J allow output, return, declaration, assignment, input, if-then-

else constructs, and while loops. We do not consider switch statements, as they

may be reproduced through multiple if-then-else structures. Similarly, we don’t

allow for statements as they can be affected through while loops. We do not allow

continue or break statements, as they introduce unstructured control flow. We

further simplify J by abstracting the details of input and output operations away,

allowing programs in J to accept input at run time and produce output without

specifying detailed syntax. Specifically, we will use “x = <input>;” to represent

receipt of a value for variable “x” at run time, “<output> = x;” to represent

program output. The introduction of the <input> and <output> terminology
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slightly modifies the observable program behavior as discussed in Section 2.1; we

now consider program meaning as a transformation from an input stream to an

output stream. An example of a program written in J is provided in Figure 2.1.

Assignment statements and typed methods explicitly list the program store

mapping affected by their execution. The target of the update for an assignment

statement is obvious from the form of the statement. The target of a store update

accomplished within a method is discerned from the method’s type and return

statement. The affected store is local to the method, and the store value passed

via the return statement to the calling context.

A side effect is an update to the program store not explicitly represented in

the assignment statement or method type. Within J, a side effect is an assign-

ment within a method to a variable not specified as a formal output parameter

of the method. For example, the program statement “y = x * i++;” contains

both an explicit update to variable “y” and an implicit update to variable “i”.

Increment and decrement operators within a statement act as a side effect per-

forming an update to the store in addition to the targeted action of the statement.

Other examples include constructor methods, which have no formal output use-

ful in a computational model, yet are used to provide initial values for instance

variables. Similarly, the ability for a class’s variable values to be modified by

external entities is commonly provided through definition of a mutator method.

A typical mutator method is of type void, and assigns values to one or more vari-

ables, technically through a side-effect. These examples are generally considered

acceptable in typical programming practices. A more pernicious example, the

sideEffectExample method, is given below in which an instance variable, o.x is

modified through a side effect. It is difficult to analyze the effect of a call to this
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method, particularly as the actual object being affected may not be known prior

to run-time.

public int sideEffectExample(Object o) {

int result = o.x + o.y;

o.x = F();

return result;

}

Figure 2.1: Language J Example: Program 1

Evaluation of programs in J follow a sequential programming semantics oper-

ating on a central program store. This implies that program variables (memory

locations) may have different values assigned to them during a single program

execution. We define DEF and USE statements within programs written in J

as the program points where variable values are defined and used, respectively.

Determination of which value is in effect at any given time is done through vari-

able liveness analysis that tracks which value assignments have the potential

to reach specific program points [ALS07]. This liveness analysis establishes a

series of DEF-USE relationships between program statements that give rise to
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dependences between them based on data flow. Similarly, the results of predi-

cate evaluations in a program specify which other program statements may or

may not execute. This gives rise to dependence relations established between the

predicate and affected statements. These dependences are defined more fully in

the following section.

Throughout this thesis the following notation is used when referring to ele-

ments of J programs.

• Π represents an entire J program.

• π represents a segment of a J program. Typically, πc represents class bodies,

πm represents method bodies, πl represents loop bodies, and πT and πF

represent the True and False branches of an if-then-else structure.

• c represents class names, while o represents instantiated classes (objects).

• s represents a single statement in a J program.

• x represents a single class or instance variable.

• t represents variable types, while val represents a generic value.

• “dec-list” represents a list of parameters found in a declaration statement.

For example “dec-list x;” is the general form for declaration of variable x.

• c.x and o.x represent class and object variable designations, respectively.

For convenience we allow c to contain the full class definition necessary to

fully define the scope of variable x. For example, given variable x in class

“Class.subclass1.subclass2”, the complete notation of “Class.subclass1.subclass2.x”

is represented as c.x, with c = “Class.subclass1.subclass2”, and x = x. Sim-

ilarly, “o.x” may actually represent “Object1.Object2.Object3.x.”
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• Xf and Xa represent tuples of formal and actual parameters, respectively.

Xf is of the form “t1 x1, t2 x2, . . ., tk xk”, and Xa is of the form “x1, x2, . . . , xk.”

• m represents method names. Method definitions are presented as “dec-list

m(Xf ) { πm }” and method calls presented as “o.m(Xa)”.

• F (Xa) represents an expression (function) within a program statement.

Xa = (x1, x2, . . . , xk) is the k-tuple of variables occurring in F . We reserve

P (Xa) for expressions found in predicate statements.

• C and C ′ represent program control points of the form (pid, b). The pid is

a predicate node identifier, and b represents a Boolean value.

Using this notation, we represent a typical program as a collection of classes,

Π = dec-list c1 { π1 } dec-list c2 { π2 } dec-list c3 { π3 } . . . dec-list ck { πk }.

Class bodies contain variable declarations, “dec-list x;”, and method definitions,

“dec-list m(Xf ) { πm }.” Predicate structures take the form “if P (Xa) { πT }

else { πF }” and while loops take the form “while P (Xa) { πl }.”

2.3 Object Aliasing

Object aliasing occurs when a variable of type “object” is assigned a value. After

the assignment, a reference to either object’s variable refers to the same memory

space. Effectively, a reference to one object is indistinguishable from a reference

to the other. The alias may occur in an assignment statement, “o1 = o2.” Aliasing

may also occur as a result of an object’s handle being passed into a method as

a parameter. For example, if method m is defined as follows: “dec-list m(c oa)

{ πm }”, and a call to m is made as follows: “o1.y = o1.m(o2);”, then oa and o2
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are aliased within the context of the method. Class variables present a special

case in that the single store location may be referenced via the class (“c.x”) or

instantiated object name (“o.x”). In this case, we add the class variable to the

alias list using the class name, and add each object name version upon processing

an object instantiation assignment statement (“o = new c();”).

Alias relationships at any point in a program’s execution are typically clas-

sified as cannot alias, must alias, and may alias [FYD06]. The cannot alias

relationship occurs when object handles o1 and o2 cannot refer to the same ob-

ject. The must alias relationship occurs when handles o1 and o2 definitely refer

to the same object. The more problematical may alias relationship occurs when

the aliasing occurs on one branch of a predicate. In this case, the actual alias

relationship cannot be determined until execution.

We present an example using Program 1 from Figure 2.1. During execution

of Program 1 objects a and b are aliased as of line 9. The method call b.getp()

in line 13 returns the value 20, as that was the value set by the method call

a.setp(20) in line 12. Since a and b refer to the same object at this point, DEF

statements using either object names affect all future USEs of the object.

2.4 Program Dependences

Program dependences describe formal relationships between program statements,

specifying which other statements influence a given statement’s execution [KKP81,

BM92]. Some dependences, such as output (Definition 6) and anti- (Definition

7) dependences, are relics of the details of a specific programming language or

coding style [KKP81]. These may be resolved through techniques such as variable

renaming in the absence of arrays and pointers [KKP81, TGH92]. The remaining
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dependences, called true dependences, are inherent to the computation regardless

of program and memory models used. The true dependences, are control, flow,

and def-order dependences. We use the terminology provided in [CF89, Par92]

to formally define these in Definitions 8, 9, 10, respectively. Control dependences

identify which statements are executed based on a specific predicate statement

result. When a lazy execution semantics is in effect, satisfaction of control de-

pendence alone is a necessary but not sufficient condition for ensuring statement

execution. Flow dependence specifies which DEF-USE statement pairs are in-

volved in a WRITE-READ relationship for a given variable. Def-order depen-

dences exist when multiple DEF statements each may supply a value to the same

USE statement. This occurs when at least one of the DEF statements is executed

conditionally.

Definition 6 (Output Dependence) B is output dependent on A iff the ex-

ecution of A occurs before B in a strict execution semantics program sequence,

and both A and B assign to the same variable.

Definition 7 (Anti-Dependence) Statement B is anti-dependent on statement

A iff A precedes B in a sequential execution, and B assigns a value to a variable

used as input in A.

Definition 8 (Control Dependence) B is control dependent on A iff

1) A is a program control flow statement containing a predicate expression

that will evaluate to Boolean True or False.

2) B executes upon either A’s evaluation to True or False, but not both.

3) There are no intervening statements for which (1) and (2) apply to B.
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Definition 9 (Flow Dependence) Statement B is flow dependent on A iff A

is a DEF and B a USE statement for the same program variable, and there are no

intervening DEF statements for that variable between A and B on some control

flow path from A to B.

Definition 10 (Def-Order Dependence) B is Def-Order dependent on A iff

1) Both A and B are DEF statements for the same program variable.

2) A precedes B in a strict execution sequence.

3) There is some statement C that is flow dependent upon both A and B.

It is widely accepted that compilers and interpreters transform programs to

achieve some performance improvement. There are some program transforma-

tions that are known to revise dependence relations without affecting program

meaning. Examples are constant propagation and variable renaming. Other

transformations affect the execution sequence of the computation. The compu-

tation (input-output mapping) performed by the new execution sequence must

provide the same result as the original sequence. Dependences provide a yard-

stick by which program meaning can be measured. Any execution sequence that

respects the dependences defined by the original sequence of statements will yield

the same result as the original [KKP81, Par92]. In effect, the dependences impose

a partial ordering that must be respected by any correct execution sequence.

2.5 Single Assignment

Data dependence analysis is intrinsic to program analysis, optimization, and par-

allelization algorithms [HU75, KKP81, PP96]. The ability to determine, for a
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given USE, what DEF supplied a value for a specific variable is critical to these

analyzes in terms of discussing variable liveness and reaching definitions. Single

Assignment (SA) has been used as a basis by several authors in attempts to spec-

ify unambiguous sources of values for program variables during program execution

[AWZ88, CFR89, SHW93]. The precise definition for SA (Definition 11) allows

at most one value assignment to each user defined variable during the course of

a program’s execution. While the property occurs naturally in pure functional

programming languages [Hug89], renaming of program variables is required to ob-

tain SA in imperative languages [CFR89]. In addition, some mechanism must be

introduced to allow only one value to flow beyond program points where distinct

control paths converge. The traditional method to enforce the SA property is

done in two phases. The first phase requires that user defined program variables

receive unique names at each program point where they receive an assignment.

The second phase resolves data flow at converging control dependence paths. We

will follow the technique introduced by Cytron et al [CFR89] in the discussion

of incorporating the SA property into program dependence graphs (see Section

2.7). This method introduces a pseudo-function at the merge points of control

paths, referred to as the φ-function. A statement containing a φ-function takes

the form X = φ(x1, x2, . . . , xk) , where the inputs to the function are the renamed

forms of a single original program variable, and the output is one of the values.

Thus, the statement assigns to variable X only one of the k values flowing into

the function. This ensures that only one DEF statement will supply a reaching

definition to any USE statements beyond the φ-function in the static program

representation. Figure 2.2 presents an example of a (partial) program written in

J and its SA form.

19



Definition 11 (Single Assignment Property) A program exhibits the SA prop-

erty if, for each variable defined in the program, at most one assignment is made

to the variable.

1. y =< input >; 1. y =< input >; 1. y =< input >;

2. x =< input >; 2. x1 =< input >; 2. x =< input >;

3. if (P (y)) { 3. if (P (y)) { 3. if (P (y)) {

4. x = 42; 4. x2 = 42; 4. x = 42;

5. } else { 5. } else { 5. } else {

6. 6. 6. x = x;

7. } 7. } 7. }

8. 8. x3 = φ(x1, x2); 8.

9. z = F (x); 9. z = F (x3); 9. z = F (x);

10. < output > = z; 10. < output > = z; 10. < output > = z;

Program 2 Program 2 Program 2

Language J SA Form SFU Form

Figure 2.2: Program 2 (partial): Original Form, SA Form, and SFU Form

2.6 Single Flow to Use

As stated previously, data flow analysis requires that DEF-USE relationships be

readily determined between program statements. We introduce the Single Flow

to Use (SFU) property as a useful characteristic to determine which DEF state-

ment actually supplies a value to a USE statement. The SFU property, defined
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in Definition 12, requires that during program execution exactly one value flow

to each USE statement for each variable in the USE statement. This dynamic

requirement holds regardless of the number of DEF statements potentially able

to provide a value based upon static program representation. The SFU prop-

erty is achieved through the use of strategically placed identity assignments (see

statement 6 in the SFU form of Program 2 in Figure 2.2) that ensure that all

DEF statements potentially supplying a value to a USE statement for a given

variable are control-wise mutually exclusive. Thus, regardless of what control

path is taken to reach the USE statement, only one DEF statement may execute

for each variable and supply a value to the USE statement. Programs satisfying

the SA property do not necessarily obtain the SFU property. Figure 2.2 provides

an example of a partial program written in J in its original, SA , and SFU forms.

Definition 12 (Single Flow to Use Property) A program exhibits the SFU

property if, for each USE statement execution, exactly one DEF statement pro-

vides a value for each variable required for the USE statement to execute.

2.7 Program Dependence Graph

The PDG is an acyclic, directed graph, composed of a node set and two edge

sets, that explicitly represents the control and data flow dependences within a

program [FOW87, Par92]. PDG nodes roughly correspond to program statements

while edges represent control and flow dependences. In addition to allowing static

program analysis, PDGs provide an adequate representation to perform program

execution through graph re-writing [FOW87, Par92].
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The PDG node set is composed of a unique Start node that indicates where

control flow initiates, a unique end node that specifies the program result (out-

put), idef nodes that allow initial value definitions for program variables at run

time, set nodes that correspond to the binding of values to variables, predicate

nodes that correspond to the predicate portion of program control statements,

and while nodes allowing loop behavior. The PDG edges explicitly represent

control and flow dependences. Control dependence edges signify which nodes

may execute based on the outcome of a specific predicate, and can be determined

from a Control Flow Graph [Rei78, FOW87]. Flow edges represent the potential

for a value to flow from a DEF node to a USE node. The PDG structure re-

leases the computation from the requirement for a central store. Each node has

access, via incoming flow edges, to the variable-value mapping appropriate for

the node’s computation. Thus each node effectively contains a local store main-

taining incoming values for use in the computation, and retaining any resulting

variable-value mapping update (DEF) for use by nodes that are the target of

outgoing flow edges.

Output and anti-dependences existing in a program’s textual representa-

tion are not explicitly represented but are respected by the PDG creation al-

gorithm. The necessary sequencing constraints are embedded using the flow

dependence edges as the PDG is built through use of variable liveness analy-

sis [BMO90, Par92]. Def-order dependences may be explicitly resolved in a PDG

using def-order edges that restrict execution sequences [HR92]. Alternatively, def-

order relationships may be resolved implicitly within the PDG through special

constructs such as φ-nodes corresponding to φ-functions placed in text programs

[CFR91]. Cartwright et al [CF89] introduced the use of strategically placed iden-

tity assignment nodes in the PDG to resolve Def-Order dependence. As these

nodes restrict the flow of values they were named valve nodes [CF89, Sel90a]. We
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explore φ-nodes and valve nodes more fully in the following sections discussing

forms of the PDG specifically supporting the SA or SFU properties.

Graph rewriting (Definition 5) rules are associated with the PDG, and provide

a mechanism allowing computations to be modeled through modifications to the

PDG representation [CFR89, CF89, Sel90a]. This allows analysis of the dynamic

program behavior in addition to analysis of the static program representation.

Rewriting rules vary to allow sequential or lazy evaluation semantics, or to ac-

commodate modifications to the basic PDG structures defined in this section.

Rewriting is typically a node-by-node process, with the act of rewriting a node

corresponding to the execution of the program statement the node represents. In

this thesis we use the terms rewriting and execution of a node (Definition 13)

interchangeably unless the context of the discussion requires one or the other for

clarity. Rewriting rules specify control and flow criteria that must be satisfied

before an individual node is permitted to execute (i.e. be rewritten). Typically,

satisfaction of a node’s control dependence criteria requires that the node’s in-

coming control dependence edge is identified as being on the program execution

path (Definition 14) . Since this determination is dependent on the resolution

of the predicate node at the head of the edge, there is a sequencing constraint

embedded in the graph. In a sense, satisfaction of a node’s control dependence

supplies “permission” for the node to execute. Within a given program execution,

a bypassed node is one for which control dependence can never be satisfied due

to resolution of a predicate at some control ancestor. Similarly, satisfaction of

a node’s flow dependence criteria requires that the node receive correct variable

values along its incoming flow edges sufficient to perform the rewriting operation.

We present an informal definition of this notion in Definition 15. Whereas control

dependence corresponds to “permission” to execute, satisfying flow dependence

criteria corresponds to “capability” to execute. We describe a rewriting seman-
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tics for the SOOPDG in Chapter 4 that utilizes the control and flow criteria of

the SFU form of the PDG presented in Section 2.9.

Definition 13 (Node Execution) Given a node, n, in a PDG, node execution

corresponds to the act of rewriting the node and allowing the result to be available

to all outgoing edges. We refer to the point in rewriting where this occurs as the

instant of the execution of the node.

Definition 14 (Control Dependence Criteria) Given a node, n, with an in-

coming control dependence edge associated with a branch, b, of a predicate node,

p, the control dependence criteria for n is satisfied when the rewriting of predicate

p results in value b.

Definition 15 (Flow Dependence Criteria) Given a node, n, that is a USE

node for variables x1, x2, . . . , xk, then flow dependence is satisfied when a correct

value is received for each variable, xi, 1 ≤ i ≤ k.

Although not central to the theme of this thesis, the topic of parallel com-

putation deserves a brief mention. The basic PDG inherently supports parallel

computation. This is due to the fact that there is no restriction on rewriting

sequencing beyond those explicitly represented through dependence edges. The

program result is the same regardless of the specific sequence of node execution,

as long as the dependences are respected [Sel89]. This allows the PDG to directly

support parallel rewriting of nodes or subgraphs. The growth of explicitly parallel

languages, and the availability of parallel execution environments gave rise to ex-

plicitly parallel variations on the basic PDG. Horwitz et. al. [HRB90] introduced

the System Dependence Graph, extending the PDG to represent collections of

procedures as opposed to monolithic programs. This was the first PDG variation

providing explicit depictions of parallel or multi-threaded programs.
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Figure 2.3: Key to Elements Used in Example Graphs

Throughout this paper we will use the formats shown in Figure 2.3 to de-

pict program graphs. Predicate nodes are shown as triangular shaped nodes,

with control dependence edges associated with a True predicate result emanat-

ing from the left-hand corner, and control dependence edges associated with a

False predicate result emanating from the right-hand corner. All other node

types are represented as ovals or elongated rectangles. Control dependence edges

are shown in solid arrows, while flow dependence edges are shown as dashed.
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2.8 SSA Form

The Static Single Assignment (SSA) form of the PDG imposes the Single As-

signment (SA) property on the static program representation [CFR89, LCH04].

The SSA form requires that each variable in the graph have exactly one DEF

node, and thus each variable in each USE node depends on exactly one definition

(assignment) [BCH98]. To achieve this, variable renaming is performed such that

each renamed variable receives exactly one assignment, and the PDG format and

semantics are extended to include the φ-node [CFR89, RWF03]. Renaming is a

straightforward exercise in the absence of array variables and pointers [KKP81].

The φ-node resolves multiple assignments to the same (pre-renaming) variable

occurring along separate control flow paths using a pseudo-function having the

form X = φ(x1, x2, x3, . . . , xk). A φ-node has k incoming flow edges, one for vari-

able x1 through xk, and one outgoing flow edge for variable X connected to each

USE of X. The φ-function assigns a value from at most one of the k incoming

edges to flow beyond the φ-node to uses of X. In summary, the SSA form has

the two properties that each programmer specified use of a variable is reached by

exactly one assignment to that variable, and the program contains φ-functions to

distinguish the correct value to flow beyond the merge point of distinct control

flow paths [CFR89]. An example of an SSA form PDG is presented in Figure 2.4.

The advantages of φ-nodes for PDGs are that they provide a clear framework

to perform data flow analysis involving DEF-USE chains [CFR89, BCH98], and

O(n) algorithms (in terms of time and number of nodes required) for placing φ-

nodes have been developed [CFR89, SG95, BCH98]. The disadvantages are that

the φ-node introduces additional complexity to PDG semantics [RWF03], does

not have composable semantics [Par92], is not referentially transparent [Hav93],

does not provide a mechanism to discriminate among the various definitions
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reaching them [BMO90], does not support certain forms of copy propagation

[BCH98] and eventually requires replacement with assignment nodes when tran-

sitioning to machine code since real world systems do not support φ-node seman-

tics [BCH98]. In addition, the SSA form supports the SA property only on the

static program graph, but does not support the SA property during rewriting, as

the same variable may receive repeated assignments during repetitive executions

of loop structures [BCH98].

There are several variants of the SSA form that attempt to incorporate explicit

control flow information in the φ-function. The Gated Single Assignment (GSA)

form incorporates control flow by flowing predicate results directly into the φ-node

[BMO90]. This variant places γ-nodes of the form X = γ(P, x1, x2, x3, . . . , xk)

at merge points, replacing the φ-node form of X = φ(x1, x2, x3, . . . , xk). The

P term contains the predicate information, and effectively turns a control flow

issue into a data flow issue by explicitly representing control flow information as

input values to the γ function. A variation on this concept that extends the GSA

form to unstructured control flow is the Thinned Gated Single Assignment form

[Hav93]. The γ-nodes of the GSA are extended to directed acyclic graphs of γ-

nodes when unstructured control flow is involved. The Static Single Information

(SSI) form is an extension to the SSA form that performs variable renaming

at both merging and diverging control flow points [Ana99]. The renaming is

performed at divergent points using σ-nodes of the form σ(x1, x2, x3, . . . , xk) = X

if at least one of the divergent paths uses the variable [Ana99]. The effect of this

node is to distribute the single incoming value for X to the k renamed variables,

x1 through xk, in use along the k distinct control paths. Since variable renaming

is performed at both diverging and converging control flow points, some degree of

control flow information is retained. The Interpretable SSA [RWF03] incorporates
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operational semantics for φ-nodes facilitating efficient interpretation by a stack-

oriented virtual machine.

As with the original PDG, explicitly parallel versions of the SSA have been

published. The concurrent SSA form was introduced by Lee et. al. [LMP99] to

represent parallel programs with structured control flow and using cobegin/coend

nodes to explicitly express parallelism. The Concurrent SSA form extends φ-

nodes to apply to control flow merges at coend program points, and introduces π-

nodes having the same form but containing conflict edges arising from statement

interleaving. Resolution of a π-node is non-deterministic due to the concurrency

of the incoming edges.

2.9 SFU Form

In this section we describe a new form of the PDG that respects the SFU prop-

erty. The SFU property for programs requires that, for each variable in a USE

statement, exactly one DEF statement will supply a value to the USE statement

during program execution. The SFU form of the PDG requires that, for each

variable in a USE node, exactly one DEF node may flow a value to the USE

node during graph rewriting. The SFU property is not enforced on the program

representation, but is upheld during program execution (graph rewriting). The

SFU property is achieved by arranging DEF and valve nodes in such a way that

all definitions potentially flowing to the same USE are control-wise mutually ex-

clusive. Thus, the control dependence criteria is met for exactly one of the DEF

nodes during a single graph rewriting.

The use of valve nodes to resolve Def-Order dependence was introduced by

Cartwright et. al. [CF89], and expanded upon by Parsons [Par92] to produce the
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Semantic PDG. Valve nodes resolve Def-Order dependence without the semantic

issues of the φ-nodes. Because valve nodes are simply assignment nodes, the basic

PDG semantics is preserved. In addition, valve nodes are referentially transpar-

ent, support more instances of copy propagation than SSA nodes [BCH98], and

allow for discrimination of reaching USE nodes along various control flow paths.

Parsons [Par92] presents an algorithm creating PDGs from program text that in-

serts valve nodes in such a way as to enforce the SFU property during rewriting.

In later sections we characterize valve node placement locations to support the

SFU property, and then use the graph creation algorithm provided by Parsons as

a basis for determining the number of valve nodes generated for typical programs.

We use the Semantic PDG as a basis to discuss the SFU property and demon-

strate that the Semantic PDG enforces the SFU property during rewriting. We

will therefore refer to it in this thesis as the SFU form.

The SSA form does not satisfy the SFU property because the SA property

is not upheld during program execution, allowing multiple values to potentially

flow to a single USE node for a given variable during execution. An example of

an SFU form PDG for Program 2 is presented in Figure 2.4 with a comparable

SSA form PDG.

2.10 Control Dependence Structures Within the PDG

This section develops terminology for structures within PDGs that are useful to

the discussion of the SFU property. The definitions and theorems of this section

formalize intuitive notions that have been presented in previous discussions of

dependence graphs. We assume structured control flow throughout. Theorem 5,

29



Figure 2.4: PDG forms: SSA and SFU

developed through application of Theorems 1 through 4, is used in Chapter 4 to

prove expected and upper bounds on the size of the SOOPDG.

This discussion focuses on predicate nodes and the control dependence edges

associated with them. In particular, it is useful to identify the control points,

defined in Definition 16, that specify the True and False branches of predicate

nodes in a PDG. For example, in the PDG program control flow initiates at

the Start node. We represent this node as a predicate node labeled S, with

outgoing control flow edges emanating only from the True branch. We will refer

to this control point as ST . Control points represent decision points in a program.

Similarly, chains of these control points connected by control dependence edges

specify control dependence paths within a PDG. These control dependence paths

will be critical in addressing criteria for valve node placement. Figure 2.5 provides

examples of the control dependence structures discussed in this section.
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Def 16 Control Point: ST , 3T , and 3F are examples of Control Points.

Def 17 Control Parent: CP (7) = 4 and CP (4) = 3

Def 18 Control Parent Point: CPP (7) = 4F and CPP (4) = 3T

Def 20 Control Dependence S and 3 are ancestors of 10 and 4

Ancestor:

Def 21 Control Dependence For node 7, CDP, P = ST , 3T , 4F

Path:

Def 22 CDP Prefix: P ′ = ST and P ′′ = ST , 3T are prefixes of CDP P.

Def 23 Common CDP: Given CDP for nodes 5 and 7, P5 = ST , 3T , 4T

and P7 = ST , 3T , 4F , then the Common CDP is

PC = ST , 3T

Def 24 Control Dependence For nodes 5 and 7, CDS,

Subgraph: D = {{S, 3, 4}, {(S, 3, T ), (3, 4, T ), (4, 5, T ), (4, 7, F )}}

Def 26 CDS Exit Points: For CDS D above, the exit points are SF and 3F .

SF is trivial, as it is not reachable from ST .

Figure 2.5: Example Control Structures for SFU Form
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Definition 16 (Control Point) Given a PDG, G = { N, Ef , Ec } , and a

predicate node, p ∈ N , a control point is a pairing of the predicate node id and a

Boolean value, b. We will denote this pairing as pb.

The most primitive control dependence structure present within a PDG is that

created by the two nodes involved in the control dependence relationship. These

nodes are involved in a parent-child relationship where the control dependence

flows from the parent (predicate) node to the child node. For structured control

flow, this is a one-to-many relationship as a single predicate node may have

many control dependence children, but a node may have only one control parent

(excepting the Start node which has no control parent). This basic parent-child

relationship, defined in Definition 17, will be extended to form control dependence

paths composed of control ancestors from the Start node to a specific node.

Definition 17 (Control Parent) Given a PDG, G = { N, Ef , Ec }, nodes

n, p ∈ N , and control dependence edge (p, n, b) ∈ Ec, we define p to be the

Control Parent of n, and denote the relationship as CP (n) = p.

We combine the notions of control parent and control point to define the

Control Parent Point (Definition 18) in a natural fashion to include the Boolean

value of the Control Parent satisfying Control Dependence Criteria for a node.

This is useful to specify both the predicate node and branch involved as the

parent in the control dependence relationship.

Definition 18 (Control Parent Point) Given a PDG, G = {N, Ef , Ec },

and control dependence edge, (p, n, b) ∈ Ec, we define point pb to be the Control

Parent Point of n, designated CPP(n) = pb.
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We extend the notion of a control parent to a control ancestor in a natural

manner by considering nested determinations of control parents and developing

a shorthand notation as follows:

1. CP 1(d) = CP (d)

2. CP i(d) = CP (CP i−1(d)), i > 1

The notion of a control dependence ancestor, formally given in Definition 20,

is actually a return to the idea of control dominance (Definition 19) in control

flow graphs appearing in the traditional PDG literature [CFR89], and which in

turn gave rise to the immediate control dependence relations represented in the

PDG.

Definition 19 (Control Dominance) Statement A dominates statement B if

A lies on all control paths from start of program execution to B.

Definition 20 (Control Dependence Ancestor) Given a PDG, G = {N, Ef ,

Ec }, and nodes p, d ∈ N , we define p to be a control dependence ancestor of d,

if there is some value of i > 0 such that CP i(d) = p.

Chains of control dependence points connected by control dependence edges

lead to the concept of the Control Dependence Path, presented in Definition 21.

Informally, this path specifies the series of predicate evaluations that must occur

from the initiation of program execution to satisfy the control dependence criteria

for that node’s execution.

Definition 21 (Control Dependence Path) Given a PDG, G = {N, Ef , Ec},

having Start node S ∈ N , and a node, n ∈ N − {S}, we define the Control De-

pendence Path (CDP) for n to be the tuple of control points, P = pb0
0 , pb1

1 , ..., pbr
r ,

such that:
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1. pb0
0 = ST .

2. (pr, n, br) ∈ Ec (i.e. CPP(n) = pbr
r )

3. for all i, 0 < i < r, pi = CP( pi+1 )

We designate the CDP for node n as CDP (n) = P .

Referring only to complete CDPS as if they were monolithic entities will not

meet the needs of this discussion. We borrow standard notation from formal

languages, and use u, v, w, . . . etc as designations of sub-paths within CDPs. Of

particular interest to us will be prefixes of control dependence paths, defined

in Definition 22. For example, CDP P = uP ′ where u ∈ PREFIX(P ). The

recognition of control dependence prefixes is important as the knowledge that

control dependence criteria (Definition 14) has been satisfied for some node, n,

implies that control dependence criteria has been satisfied along the entire CDP

and every prefix of the CDP(n) (Theorem 1).

Definition 22 (CDP Prefix) Given the CDP, P = pb0
0 , pb1

1 , ..., pbr
r , then any

CDP, u = pb0
0 , pb1

1 , ..., pbs
s , 0 ≤ s < r is a prefix of P, designated u ∈ PREFIX(P ).

Theorem 1 (Control Dependence Criteria Met for CDP Prefixes) Given

a PDG, G = { N, Ef , Ec }, for which control dependence criteria have been met

for node d1 ∈ N , and ∃ node d2 ∈ N such that CDP(d2) ∈ PREFIX( CDP(d1)),

then control dependence criteria have been met for d2.

Proof Theorem 1 can be proved directly. Given that Control Dependence Cri-

teria have been met for node d1, there exists a tuple of control points, CDP(d1)

= P = (ST , pb1
1 , pb2

2 , . . . , pbr
r ) that are tagged as traversed by the control flow. By

definition of PREFIX, CPP(d2) ∈ P. Thus, CPP(d2) has executed, satisfying

control dependence criteria for d2.
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We now begin to explore slightly more complex control dependence struc-

tures that allow discussions of control dependence relationships arising among

arbitrary numbers of nodes. We will be interested, ultimately, in establishing

control dependence criteria for multiple DEF nodes capable of supplying a value

to a single USE node for the same variable. As a first step, we recognize that all

nodes in a PDG (excepting the Start node) share the control point ST as the first

point in their CDP. This is true by definition of the CDP. The more interesting

question, and one pertinent to the SFU discussion, is to determine for a given

subset of the nodes within a PDG, N ′ ⊂ N − {S}, the longest CDP common

to the set, all of the control points, and control dependence edges. We formally

define the Common Control Dependence Path (CCDP) and Control Dependence

Subgraph (CDS) below in Definitions 23 and 24, respectively.

Definition 23 (Common Control Dependence Path) Given a PDG, G =

{ N, Ef , Ec } having Start node S, and a set of two or more nodes, N ′ ⊂

N − {S}, and the set of CDPs arising from the nodes in N, P-SET = {Pi|Pi =

CDP (ni)∀ni ∈ N ′}, we define the Common Control Dependence Path (CCDP),

PC, to be the longest CDP such that control point pbi
i ∈ PC iff pbi

i ∈ Pj ∀Pj ∈

P-SET.

Theorem 2 (Uniqueness of CCDPs) Given a PDG, G = {N, Ef , Ec} having

Start node S, and a set of two or more nodes N ′ ⊂ N−{S}, then there is exactly

one CCDP defined by the CDPs of node set N ′.

Proof We prove Theorem 2 in two parts. In Part 1 we show that there must be

at least one CCDP defined by any two or more CDPs and in Part 2 we show that

there cannot be more than one CCDP defined by two or more CDPs.
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Part 1: There must be at least one CCDP defined by two or more CDPs. This

is proved directly by the definition of the CDP (Definition 21), which requires

that the first control point comprising a CDP is ST . Since every CDP starts

with control point, ST , then all CDPs have this point in common and will have

a CCDP containing at least ST . Therefore, there must be at least one CCDP

defined by the CDPs of node set N ′.

Case 2: There can be no more than one CCDP for the CDPs defined by node

set N ′. Assume the negation of the previous statement, T. That is “There exist

two or more CCDPs for the CDPs defined by node set N ′.” We consider a set

of unique CCDPs, π1 through πk. If T is true, then π1 through πk are of equal

length, and each differs from the others at one or more positions. The length of

π1 through πk are both greater than zero by definition of the CDP (Definition

21) requiring all CDPs to contain at least ST . Each pair of CDDPs πi and πj,

1 ≤ i, j ≤ k, differ at some position, and thus by definition of the CCDP neither

πi nor πj are CCDPs. Since no two CCDPs in the set can be unique and meet

the definition of a CCDP, T cannot be true, and there can be no more than one

CCDP for the CDPs defined by node set N ′.

Since there must be at least one CCDP (Part 1) and can be no more than

one CCDP (Part 2), then there must be exactly one CCDP defined by the CDPs

of node set N ′.

Because we may be interested in multiple DEF nodes potentially supplying

values for the same variable to a single USE node, we will be required to discuss

a more complex structure defined by the composition of individual CDPs. Infor-

mally we define the Control Dependence Subgraph (CDS) to be the aggregation

of the individual CDPs for some set of nodes, N’, in the graph. The node set N’

defines the CDS, but is not contained within the CDS. While we do not restrict
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the node types contained within N’ in the definition of the CDS, we are most

interested in exploring sets that contain only DEF nodes in this discussion.

Definition 24 (Control Dependence Subgraph) Given a PDG, G = { N,

Ef , Ec } having Start node S, and a subset of N, N ′ ⊂ N − {S}, we define the

Control Dependence Subgraph, D = { Nd, Ed }, such that:

1. Nd = { p | ∃i, n where i ≥ 0, n ∈ N ′ such that CP i(n) = p }

2. Ed = { (pi, pj, b) | (pi, pj, b) ∈ Ec, ∧ pi, pj ∈ Nd ∪N ′ }

Later discussion will require the definition of the difference between two sub-

graphs (Definition 25). Since graphs and subgraphs are sets, it is natural to use

standard set difference as a basis. Informally, given subgraphs D1, D2 ⊂ G, the

differencing operation will perform standard set difference for nodes and common

edges. The remaining edges must be removed if they are “dangling” due to only

one of the involved nodes having been removed.

Definition 25 (Differencing of Control Dependence Subgraph) Given two

Control Dependence Subgraphs, D1, D2 ⊂ G, where G = {N, Ef , Ec}, D1 =

{ND1 , ED1} and D2 = {ND2 , ED2}, we define the difference operator, D1 −D2 =

{ND1 −ND2 , ED1 − {ED2 ∪ {(pi, pj, b)|pi ∈ ND2 ∧ pj ∈ ND1 ∧ (pi, pj, b) ∈ Ec}}}.

Theorem 3 (CDS Closed under Differencing) Given G = {N, Ef , Ec} and

two CDS of G, D1 = {N1, E1} arising from N ′
1, and D2 = {N2, E2} arising from

N ′
2, then D3 = {N3, E3} = D1 −D2 is also a CDS.

Proof Theorem 3 is proved directly. We require D3 = {N3, E3} to have the

properties that
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1. ∀p ∈ N3,∃i, n where i ≥ 0, n ∈ N ′
1 −N ′

2 such that CP i(n) = p }

2. ∀(pi, pj, b) ∈ E3, (pi, pj, b) ∈ E ∧ pi, pj ∈ N3 }

This follows directly from the definitions of D1, D2, and the differencing

operations of Definition 25.

Of particular interest to the placement of valve nodes will be the boundaries

of a given CDS. We refer to the boundary points as exit points, and define them

formally in Definition 26. Exit points are based on the notion that traversing

a control dependence edge extending from these control points causes one to

exit the CDS. We will require that for each exit point, pb, there is exactly one

DEF node, d, such that CPP (d) = pb, and then show that this criterion exactly

satisfies the SFU property.

Definition 26 (Control Dependence Subgraph Exit Points) Given a Con-

trol Dependence Subgraph D = { ND, ED }, we refer to point pb as an exit point

if p ∈ ND and ∃ no p′ such that (p, p′, b) ∈ ED.

Theorem 4 (Criteria for CDS Exit Points) Given a PDG, G = {N, Ef , Ec},

a set of DEF nodes, N ′ ⊂ N resulting in Control Dependence Subgraph, D ⊂ G,

where D = {ND, ED}, and node p ∈ ND, then point pb is an exit point iff there

does not exist a node d ∈ ND having CDP(d) = uCPP(d), where u is a prefix of

CDP(d), such that pb ∈ u.

Proof Theorem 4 is proved below.

Part 1: If pb is an exit point, then there does not exist a node d ∈ ND, having

CDP(d) = uCPP(d), where u is a prefix of CDP(d), such that pb ∈ u.
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Proof by contradiction. Assume the negation of Part 1, proposition T. That

is, assume pb is an exit point and there exists a node d ∈ ND, having CDP(d)

= uCPP(d), where u is a prefix of CDP(d), such that pb ∈ u. By Definition 26,

there can be no edge (p, p′, b) ∈ ED for exit point pb. CDP(d) = uCPP(d) =

(pb
1, p

b
2, . . . , p

b
k, CPP (d)) by definition of CDP and CDP prefixes. Since pb ∈ u,

pb must reside at some position i, 1 ≤ i ≤ k. By definition of the CDP, for each

position i, 1 ≤ i < k, edge (p, pi+1, b) ∈ ED exists. Similarly, for position k,

edge (p, CPP (d), b) ∈ ED exists. Thus, pb cannot be in u. Since T leads to a

contradiction, the original statement of Part 1 is true.

Part 2: If there does not exist a node d ∈ ND, having CDP(d) = uCPP(d),

where u is a prefix of CDP(d), such that pb ∈ u, then pb is an exit point.

Proof by contradiction. Assume the negation of Part 2, proposition T. That

is, assume if there does not exist a node d ∈ ND, having CDP(d) = uCPP(d),

where u is a prefix of CDP(d), such that pb ∈ u, then pb is not an exit point. Since

p ∈ ND and p is not an exit point, then edge (p, p′, b) ∈ ED exits. By definition of

CDS, there is some node d ∈ N ′ such that pb ∈ CDP (d). By definition of CDP

and CDP prefixes, CDP(d) = uCPP(d) = (pb
1, p

b
2, . . . , p

b
k, CPP (d)). Since there

does not exist a node d ∈ ND, such that pb ∈ u, then p cannot be in position

i, 1 ≤ i ≤ k. Therefore, pb = CPP (d) and there is no point p′ ∈ CDP (d)

such that edge (p, p′, b) ∈ ED exists. As T leads to a contradiction, the original

statement of Part 2 is true.

2.11 Satisfying the SFU Property

The proof of the following theorem uses the PDG structures defined previously

to demonstrate that the SFU form of the PDG satisfies the SFU property.
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Theorem 5 (SFU Criteria) Given a PDG, G = {N, Ef , Ec}, USE node u ∈

N , a set of DEF nodes Nd = {d|(d, u) ∈ Ef )} providing assignment to the same

variable, and the Control Dependence Subgraph C = CDS(Nd) − CDS(u), then

the following rules must be satisfied at the instant of the execution of node u to

maintain the SFU property:

1. |Nd| > 0.

2. If |Nd| = 1, then Nd = {d}, and CDP (d) = PREFIX(CDP (u)).

3. If |Nd| > 1, then for all nodes d ∈ Nd, CPP (d) must be an exit point of C.

4. If |Nd| > 1, then for all exit points, pb of C, there is exactly one node d ∈ Nd

such that CPP (d) = pb.

Proof Theorem 5 is proved below:

Item 1: Proof by contradiction: Assume the negation of Item 1, proposition

T. That is, assume The SFU property can be satisfied with zero DEF nodes in

a PDG is true. Proposition T allows for zero DEF nodes, which allows for zero

values to be supplied to the USE node, which contradicts the SFU requirement

of exactly one value being supplied to a USE node for each variable in the node.

Since T leads to a contradiction, then the original statement in Item 1 is proven.

Item 2: Item 2 follows directly from Theorem 1.

Item 3: Proof by Contradiction: Assume the negation of Item 3, proposition

V. That is, assume the SFU property may be maintained with DEF nodes not at

exit points in the CDS, supplying values to a single USE node. Proposition V

leads to a contradiction as follows. By definition, SFU requires that exactly one

value flow to the USE node. By definition of CDS, all DEF nodes reside along

points on the CDS. Presuming V to be correct, we then construct a PDG such
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that a given CDS has DEF nodes not at exit points. We then construct a control

flow path from the Start node to the USE node that does not encounter a single

DEF node, and no value flows to the USE node for the variable in question. This

violates the SFU property, implying V cannot be true, and Item 3 is true.

Item 4: Proof by contradiction: Assume the negation of Item 4, proposition

W. That is, assume there is an exit point pb of C such that the number of nodes

d ∈ Nd satisfying CPP (d) = pb is not one. The exit point may act as a CPP for

either zero nodes or more than one node in Nd. Case 1: There is an exit point

pb on C such that there is no d ∈ Nd satisfying CPP (d) = pb. Then a control

flow path may be formed for USE node u containing pb such that no value flows

to u for the variable in question. This contradicts the SFU property. Case 2:

There is an exit point pb on C such that there is more than one node d ∈ Nd

satisfying CPP (d) = pb. Then a control flow path may be formed for USE node

u containing pb such that more than one DEF node flows values to u for the

variable in question. This contradicts the SFU property. Since both cases of W

violate the SFU property, W must be false, and Item 4 is true.

The definitions and results of this section will be used in later chapters to

discuss and prove properties of the SOOPDG.
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3

THE SPARSE OBJECT ORIENTED DEPENDENCE

GRAPH

The literature provides examples of extensions to the traditional PDG forms in-

troduced in Chapter 2 that incorporate Object Oriented programming constructs

[MMK94, CY96, LH98, CX01]. Zhao [Zha98] and Walkinshaw et al [WRW03]

present PDG adaptations capable of static representation of Java programs, in-

cluding a variation for multi-threaded programs [Zha99]. These representations

incorporate OO features through additional node, edge, and subgraph types. The

presence of these specialized members introduces syntactic and semantic compli-

cations and results in overly large static program representations. The details of

the representations given by Zhao and Walkinshaw et al are presented in Chapter

6 and compared to the SOOPDG.

There is a need for a cleaner representation that is amenable to employment

of a rewriting semantics capable of modeling program execution. The Sparse Ob-

ject Oriented PDG (SOOPDG) defined in this chapter is capable of representing

single-threaded Java-like programs (J programs). The SOOPDG employs node

types similar to the SFU PDG, the same edge types as the SFU PDG, and en-

forces the SFU property. Slight modifications to the PDG static representation

are introduced to incorporate class, interface, and method definitions, and to fa-

cilitate parameter passing between call sites and called methods. An associated

graph rewriting semantics permits the SOOPDG to model program execution and

allows reasoning about dynamic program properties. The rewriting semantics is
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higher order to accommodate inheritance, method calls, and dynamic binding.

Section 3.1 of this chapter provides an informal discussion of the components

of the SOOPDG. Section 3.2 provides a formal definition and examples. The

SOOPDG rewriting semantics is presented in Section 4.2.

3.1 SOOPDG Elements

The SOOPDG is an acyclic, directed graph capable of representing J programs

using only flow dependence edges, control dependence edges, and a node set

similar to the SFU PDG form presented in Chapter 2. An associated rewriting

semantics models program execution and allows analysis of dynamic program

behavior. The node set represents program output, return, declaration, assign-

ment, input, if-then-else structures, and while loops. Nodes may be primitive,

meaning they do not contain other nodes or subgraphs. Non-primitive nodes may

contain nodes representing variable declarations or providing a path for passing

parameters to and from methods at calling sites. Non-primitive nodes may also

contain subgraphs representing compound statements such as loop bodies and

method definitions. Nodes are decorated to designate variable types and access

restrictions, to note static or final keywords, and to track package membership as

appropriate. The edge set consists of control and flow dependence edges. Control

dependence edges represent program control flow in the traditional way. Flow

dependence edges represent traditional data flow, method calls, inheritance, and

interface implementation.

Nodes have the general form of nid:ntype:nexp:nstore:nstatus:ndecor, where:

1. nid uniquely identifies the node,
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2. ntype designates the node as one of output, idef, assignment, etc.,

3. nexp is the node expression containing the actual contents of the node.

Node expressions generally correspond to program statements, but may

contain additional nodes and subgraphs.

4. nstore contains the local store providing a landing pad for values flowing

to the node for use in reduction of the node expression.

5. nstatus tracks the node’s status to designate whether the node has flow

dependence criteria satisfied, control dependence criteria satisfied, has been

visited, executed, or bypassed.

6. decor contains keywords found in the declaration list such as variable type,

static, final, abstract, etc.

The nstore and nstatus fields track node properties that could be inferred

through other means. An alternate (and potentially more efficient) implementa-

tion of the SOOPDG would not require them. An alternative to depicting a local

store explicitly would flow data values directly to the node expression, replacing

terms with values. Similarly, an alternative to explicitly depicting node status

is to infer the status through the status of incoming and outgoing edges. We

retain explicit use of the nstore and nstatus fields in this thesis for convenience

in discussion of graph creation and execution.

The SOOPDG node set is composed of output, idef, xfer, def, assignment,

predicate, and while nodes as defined in the following subsections. The output

and xfer nodes approximate the function of the end node in the traditional PDG

forms. Traditional PDGs contain a single end node to indicate transfer of some

portion of the store to some external environment and termination of compu-

tation. This model of program execution doesn’t map to OO programs, where
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methods encapsulated inside objects routinely transfer portions of local stores to

non-local environments with no consideration of overall program termination. We

resolve this by replacing the end node type with xfer and output nodes. These

new node types facilitate transfer of values to non-local environments and have

no bearing on computation termination. Xfer nodes transfer values from a local

store to a non-local environment that resides within the overall program environ-

ment, while output nodes represent transfer of store elements to some external

environment.

Traditional PDGs utilize the idef node as a placeholder for values for program

variables not defined in the static program. This notion of a placeholder allowed

for an abstract representation of program input supplying values during program

execution. The SOOPDG requires a mechanism accepting values not defined in

the static program representation from any non-local environment. This non-

local environment may be external to the program, such as program input, or

may be returned values from called methods. Program input from the external

environment is represented in the SOOPDG through assignment nodes having

the form “y = <input>;” We introduce the def node to receive values from a non-

local environment. The xfer and def nodes act in tandem to pass parameters

to and from methods and calling sites. Parameter values flow to a non-local

environment through xfer nodes and are received from non-local environments

through def nodes. Thus, every method definition will contain a collection of

def nodes receiving values for formal and informal input parameters as well as

a collection of xfer nodes transferring returned values (including side effects) to

call sites. Similarly, every call site for a given method will contain a matching

collection of xfer nodes to transfer values to the method def nodes, and def nodes

receiving returned values from the method xfer nodes.
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SOOPDG idef nodes specify initial declaration of variables, and also specify

definition of classes and methods. Idef nodes representing variable declarations

contain type and access information. Idef nodes that define classes contain addi-

tional idef nodes specifying variable and method definitions. Idef nodes defining

methods contain a subgraph representing the method’s computation.

3.1.1 Output Nodes

Output nodes in the SOOPDG correspond to output statements in a J program.

Output statements in J take the form “<output> = x;”, and designate output of

the value of variable “x” to some environment (device) external to the program

and program store. The node expression in the corresponding output node is of

the form “output x”. Execution of an SOOPDG output node does not result in

assignments to program variables, and output nodes have no outgoing control

or flow edges. In this sense, the execution of an SOOPDG output node has no

effect on the course of the current computation. Output edges do play a role in

determining program meaning, which is generally presented in terms of observable

input/output behavior as discussed in Section 2.1.

The use of output nodes within the SOOPDG performs part of the role played

by end nodes in traditional PDGs. Traditional PDG end nodes specify both

termination of program computation and a return of the program result to some

environment. Within the SOOPDG, output nodes no longer result in termination

of computation, just as program output statements do not signify the end of

program execution. Termination criteria is discussed in the context of graph

rewriting in Sections 4.2.
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3.1.2 Idef Nodes

Idef nodes in the SOOPDG correspond to initial definitions of variables, meth-

ods, classes, and interfaces within a program. When representing initial variable

definitions they perform a similar function as in traditional PDGs, each serving

as a record of the variable type and properties, and allowing initial values (po-

tentially ⊥) to be assigned to the variable. Variable declarations in J appear in

the form “dec-list x;” where the “dec-list” provides variable type, access restric-

tions, and may contain final and static keywords. The idef node expression has

the form “idef x” and the node’s ndecor field contains the elements found in the

“dec-list”.

Idef nodes representing method definitions provide a container for the SOOPDG

subgraph representing the method. Method definition occurs in J in the form

“dec-list m(args-list) { πm }” where “dec-list” contains access restrictions, and

may contain abstract and final keywords, “m” is the name of the method, “args-

list” is the list of input arguments for the method, and the statement block “πm”

contains the statements in the method. The node expression resulting from this

definition takes the form “idef m, Sm, i1, i2, . . . , ik, s1, s2, . . . , sl, xm” where “m”

is the method identifier, “Sm” is the local Start node, “i1, i2, . . . , ik” are idef

nodes representing the input arguments in “args-list”, “s1, s2, . . . , sl” represent

the method statements, and “xm” is the method’s xfer statement returning a

result to the calling context. Additional xfer nodes may be required to return

side-effected values to a calling context. The node’s ndecor field contains the ele-

ments found in “dec-list”. Figure 3.1 supplies an example of a method definition

in the SOOPDG from program text. Additional discussion on method definition

is given in Subsection 3.1.9.
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Idef nodes representing classes and interfaces provide a container node for

the representation of variables and methods defined within the class. Class and

interface definition occurs in J in the form “dec-list c { πc }”, where “dec-

list” contains access restrictions, and may contain static and final keywords.

The variables and methods defined within the class or interface are contained

in πc. The node expression resulting from this definition takes the form “idef

c, i1, i2, . . . , ik, m1, m2, . . . ,mj”. In this expression “c” is the class identifier, i1

through ik represent idef nodes for variables contained within πc, and m1 through

mj represent idef nodes containing the subgraphs representing the methods de-

fined within πc. The decor field contains the elements found in “dec-list”. If the

class being defined extends another, a flow edge is constructed from the super-

class to this class to allow inheritance of features not specifically defined within

πc. Figure 3.2 supplies an example of class definition in the SOOPDG from a

snippet of program text.

3.1.3 Xfer Nodes

SOOPDG xfer nodes are used to transfer values from a local context to some other

context. This occurs when input values are passed from a call site to a method,

and when resultant values are transferred back to a call site. The number of

xfer nodes required at a call site is determined by the number of formal and

informal parameters passed to the method. This number can be determined

through inspection of the subgraph representing the method being called, as

the subgraph will contain a single def node for each incoming parameter. During

graph rewriting, the xfer nodes at the call site and the def nodes contained within

the method subgraph are connected via flow edges at the time the call is made.
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A parameterized renaming of the formal parameter variable names is performed

during graph construction to facilitate correct edge construction during rewriting.

Methods contain xfer nodes to transfer returned and side-effected values to

calling sites. Return statements are of the form “return F (Xa);” and the re-

sulting xfer node expression has the form “F (Xa)”. The J language allows each

method to contain at most one “return” statement so that structured control

flow is maintained. This makes the correspondence between xfer nodes and re-

turn statements in typed methods straightforward. Side effects within methods

are treated as a special case. A side effect is essentially the return of a value, not

to the calling site, but to the program store. The use of a xfer node in this case

makes the side-effect assignment visible to contexts outside of the method, and

allows for the SFU property to be maintained in the case of multiple potential

side-effect assignments within a single method. Thus, methods of type void will

only contain xfer nodes corresponding to side-effects within the method. The use

of xfer nodes is discussed more fully when discussing construction of methods in

the SOOPDG in Section 4.1.

3.1.4 Def Nodes

SOOPDG def nodes act as placeholders for values to flow into (that is, be defined

within) a given context from a non-local context. Methods receive formal and

informal input parameter values via def nodes. Similarly, def nodes are used at

call sites to receive returned values from called methods. Formal input parameters

for a method are clearly identified in the method’s signature, and a single def node

is required within the method subgraph for each one. For example, method call

“o.foo(x, y);” results in a def node for “x” and a def node for “y” (with matching
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xfer nodes at each call site). Additional def nodes are required when a method

references visible class and instance variables. The presence of the def nodes

creates a need for a matching xfer node at the call site that acts as a conduit

for live DEFs to pass to the method. Enforcement of the SFU property ensures

exactly one value will pass to the method during program execution.

The SOOPDG also utilizes a def node within while nodes. An empty def

node serves as a placeholder for the while node contents to be copied into during

node expansion (See Subsection 3.1.7 and Section 4.2).

3.1.5 Assignment Nodes

Assignment nodes correspond to assignment of values to variables, instantiation

of classes, and side effects due to method calls of type void. We also use identity

assignments as valve nodes to enforce the SFU property within the SOOPDG.

Assignment of values to variables occurs in J in the form “y = F (x1, x2, x3, . . . , xk)”,

where function F may be (or contain) a method call. The expression contained

in the assignment node corresponding to this program statement will have the

form “y = F (x1, x2, x3, . . . , xk), d1, d2, . . . , dj”, where d1 through dj are def nodes

associated with method calls. Each method def node contains a set of xfer and

def nodes acting as a template of method input output parameters. The assign-

ment node is a DEF node for variable y. The J statement “y = <input>;” is a

form of this statement that represents an abstract form of program input. This

form corresponds to traditional PDG idef nodes and provides a placeholder for

variable values assigned at run time as input. Since this form has no method

calls, there are no internal def nodes required.
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Instantiation of classes in J take the form “o = new C(x1, x2, x3, . . . , xk)”.

The act of class instantiation invokes a constructor method associating a han-

dle (memory location) with the object name, setting initial values for instance

variables, and potentially updating class variable values. The corresponding as-

signment node contains a def node representing the call site for the constructor

method. The constructor method def node in turn contains appropriate xfer and

def nodes to supply input parameters to the constructor function and receive val-

ues for class and instance variables. This format provides a unique DEF node for

instance variables belonging to this specific copy of the class. The node expression

corresponding to class instantiation has the form “o = new C(x1, x2, x3, . . . , xk),

d”. Term d is the def node associated with the constructor method.

As discussed in Section 2.2, method calls of type void having side effects are

permitted in J. These method calls take the form “o.F (x1, x2, x3, . . . , xk)”. The

node expression contains only the def node associated with the called method,

plus additional def nodes for side effect as required.

3.1.6 Predicate Nodes

Predicate nodes represent control decision points in the program in the standard

way presented in Section 2.6. Predicate statements in J appear in the form “if

P (x1, x2, . . . , xk)”. Function P (x1, x2, . . . , xk) returns a Boolean value and may

be (or contain) a method call. This results in a predicate node expression of

the form “P (x1, x2, . . . , xk), d1, d2, . . . , dj”, where d1 through dj are def nodes

corresponding to method calls. The statements contained in the True and False

branches of the if-then-else structure in J are represented in the SOOPDG as
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nodes control dependent on the True and False control points of the predicate

node.

A unique predicate node called the Start node designates the initiation of

program control, and is associated with the main method. Each method sub-

graph also contains a local Start predicate node to initiate control flow for that

method’s execution. These Start nodes have no incoming control flow edges, and

have outgoing edges only on their True control point. The node expression for

Start nodes consists only of the Boolean value “True”. The implication is that

control criteria is satisfied for nodes directly control dependent upon the program

Start node upon initiation of program execution, and for nodes directly control

dependent upon a method Start node upon execution of a call site of the method.

3.1.7 While Nodes

While nodes represent while loop structures in the SOOPDG. The while node

must contain the loop predicate, a subgraph representing the loop body, accom-

modations for loop carried dependences, and the ability to iterate the loop during

program execution. J while statements occur in the form “ while P (x1, x2, . . . , xk)

{ πl}”. The function P (x1, x2, . . . , xk) returns a Boolean value and may be (or

contain) a method call. The loop body is represented by πl and may contain loop

carried dependences. Expressions for while nodes in the SOOPDG take the form

“Pl, dl, s1, s2, . . . , sj”, where Pl is the loop predicate, dl is an empty def node

serving as a placeholder for the “i + 1” loop iteration, and s1, s2, . . . , sj are the

nodes representing the program statements in πl. The rewriting rules for while

nodes, discussed further in Section 4.2, execute loop iterations by unrolling the

loop once for each iteration executed. The unrolling technique was selected for
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SOOPDG rewriting rules to maintain the acyclic nature of the graph and to allow

for each node in the loop body to execute at most one time. The def node, dl,

is added to the subgraph to provide a placeholder for the “i+1” loop iteration.

This node has two uses. The first is to provide a target for forward loop carried

flow dependences. The second is to provide a container for the while subgraph

during unrolling of the while node during rewriting.

3.1.8 Control and Flow Edges

The SOOPDG edge set is composed of flow dependence and control dependence

edges. Control dependence edges perform the same role as in traditional PDGs

and specify which nodes are eligible to execute. Control dependence is determined

directly from statements in J using Definition 8, and control dependence edges

are placed in the SOOPDG directly from this relationship. Consider a J program

having some statement sd that is control dependent on a predicate statement, sp.

Statement sd resides in a control block of sp corresponding to Boolean value b.

If SOOPDG node d corresponds to statement sd, and node p corresponds to sp,

then the control dependence edge in the SOOPDG representing this dependence

relationship takes the form “(p, d, b)”. Control dependence edges always emanate

from predicate nodes, and are associated with a specific control point. The targets

of control dependence edges may be any node type.

Flow edges correspond to data flow between DEF and USE statements in a J

program, flow of a method between its definition in a class and its use at a call

site, and flow of inherited features from a superclass to a subclass. For example,

if a flow dependence relationship exists between DEF statement, sd, and USE

statement, su in a J program, then edge “(sd, su)” will exist in the SOOPDG.
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Flow edge usage is extended beyond traditional data flow to also represent

inheritance and the flow of methods from definition to calling sites. In addition

to connecting DEF and USE nodes of program variables, flow edges may con-

nect superclasses to subclasses, interface definitions to implementing classes, class

definitions to instantiation, and instantiations to USE of variables or methods de-

fined in the class. These each represent a form of DEF-USE relationship directly

determinable from J program statements. A single flow edge is placed in the

SOOPDG in each case, and is allowed to flow any class member to a USE of the

member. Due to this use of flow edges, a single class definition in the static graph

is sufficient for any number of instantiations of the class in the graph and any

number of calls to a method. Class methods called during graph rewriting (pro-

gram execution) flow from the class definition to the instantiating node, and then

to the call site. Similarly, inherited methods may flow from a superclass to the

subclass, then to the node instantiating the class, and finally to the calling site.

Flow edges connecting interface definitions to classes implementing them have

no use during graph rewriting, but are useful to verify the implementing class

has correctly implemented every member of the interface during static program

analysis.

3.1.9 Method Subgraphs

Methods in J are represented in the SOOPDG as idef nodes containing an

SOOPDG subgraph representing the method arguments and statements. An ex-

ample method subgraph is given in Figure 3.1. Each method subgraph has a local

Start node designating initiation of control dependence within the method. Local

idef nodes provide correct data flow of formal input arguments into the method
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subgraph. With the exception of the main method which has no end node, each

method contains a local end node to represent the effect of the method on the

program store. Recall that the original definition of the SFU PDG end node

is to return the value(s) in the output variable list to the environment. In the

case of method subgraphs, the environment is defined as the calling site requiring

execution of the method.

There is no incoming control dependence edge to the method’s Start node.

When a method is called during graph rewriting, a copy of the method subgraph

flows to the calling site and is incorporated within the SOOPDG at that site.

The Start node is assigned a control dependence edge such that the control point

associated with the calling node becomes the control point associated with the

method’s local Start node. Since the calling node is executing, it clearly has

control dependence criteria satisfied. Thus the method’s local Start node will

also have control dependence criteria satisfied upon instantiation. Similarly, flow

edges connect the method’s idef nodes to incoming flow parameters, and the

method’s end node allows results to flow back to the calling site.

Figure 3.1: Example: Method Definition Using an SOOPDG Subgraph
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Figure 3.2: Example: Class Definition

3.1.10 Object Representation in the SOOPDG

Objects in J are represented in the same manner as objects in Java. In terms

of an execution environment, objects are represented as a store containing the

values of all instance variables and information sufficient to retain access to class

variables and methods. The state of an object at any point in program execution

is simply the value of all variables associated with the object. We refer to a value

pointing to a unique object or class as a “handle”, which acts as a pointer to the

actual object in the execution environment. Language J allows variables to have

an object type in exactly the same manner as Java, and assignments to these

object variables represents the assignment of an object handle. We designate the

release of an object handle as assignment to ⊥. The ability to assign handles

to variables representing objects has two major effects in the context of this

thesis. The first is that determination of DEF and USE cannot be determined
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Figure 3.3: Example: While Node

solely by variable name. For example, assuming normal liveness criteria has

been met, DEF statement “o.x = 5;” supplies a value to USE statement “y =

o.x;” only if the handle (value) of “o” is the same during the execution of both

statements. The second major effect is the presence object aliasing as described

in Section 2.3. Aliasing may result in multiple object variables referring to the

same actual object (memory space), which may result in changes to object state

that are not determinable purely through syntactic program analysis. Aliasing

that occurs in a predicate is referred to as the may alias condition [FYD06] and

acts as a mechanism to introduce Def-Order dependences on class andinstance

variables. The may alias condition also complicates dynamic program behaviors

such as garbage collection. For example, it may be unclear from a static program
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Table 3.1: SOOPDG Node and Edge Set Summary

representation when an object involved in a may alias condition has had all

pointers to it removed and is thus eligible for garbage collection.

Objects in the SOOPDG are represented by the variables associated with the

object and a handle designating what variables belong to the object. The value

of the handle is not important in the SOOPDG representation, but the ability

to disambiguate object references is. The SOOPDG uses integer value handles

assigned to the object name as a proxy for actual handle values used in a real world

execution environment. Thus, object names (e.g. o1, o2, . . .) become variables

taking on integer values. These values flow through flow dependence edges and

the SFU property ensures that a single handle value will flow to each object

reference during program execution. Aliasing is supported through assignment

(o2 = o1), with assignments residing in predicates requiring placement of valve
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nodes to enforce the SFU property. During program execution (graph rewriting),

DEF nodes assigning to variable “oi.y” may flow values to USE nodes of “oj.y”

(where i may equal j) only if oi = oj at the time of execution.

The SOOPDG does not rely on a central store, as each node contains a local

store sufficient to allow the node to execute. Variables of instantiated objects

are distributed in keeping with this usage of local stores, and are bound to the

object through the value of the object name (variable handle). Object state

at any point during computation is defined by the values provided by the dis-

tributed DEF nodes of the variables comprising the object. In typical Java-like

programs, objects are passed to methods as input. In actuality, the object handle

is passed as input and the object’s instance variables are colocated and accessed

through the use of the handle value. In the SOOPDG the passing of an object

to a method potentially requires incoming flow edges from multiple DEF nodes

providing values for the object variables for use in the method.

3.2 Formal Definition of the SOOPDG

The SOOPDG is formally presented in Definition 27. We use nid for node iden-

tifications, pid for predicate node identifications, nexp for node expressions, x,

y, and var for variables, o for variables representing instantiated classes and in-

terfaces, C for class names, and m for methods. A summary of the SOOPDG

node and edge sets and their functions is presented in Table 3.1. The complete

SOOPDG for Program 1, first presented in Figure 2.1, is presented in Figure 3.4.

Definition 27 (SOOPDG) The SOOPDG is an acyclic, directed graph, G =

{N, Ef , Ec}, where N is a set of nodes corresponding to program statements in
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Figure 3.4: SOOPDG for Sample Program 1
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J, Ef is a set of flow dependence edges, and Ec is a set of control dependence

edges. A node, n ∈ N , has the form nid:ntype:nexp:nstore:nstatus:ndecor where

nid is a unique node identifier, ntype and nexpr are discussed below, nstore is

the local store, nstatus specifies the node status as being one of “unvisited”, “flow

dependence met”, “ control dependence met”, “ready”, “executed”, or “bypassed”,

and ndecor contains modifiers found in declaration statements. Flow edges have

the form (nd, nu), where nd is a DEF node and nu is a USE node. Control

dependence edges have the form (p, n, b), where n is the nid of a node control

dependent on control point pb.

1. Given a flow dependence between a DEF statement i and USE statement

j in a J program, and corresponding nodes nidi and nidj in G, then EF

contains edge (nidi, nidj).

2. Given statement i control dependent on control point pb in a J program, and

corresponding nodes nidi and nidp in G, the EC contains edge (nidp, nidi, b).

3. Given J statement “<output> = x;”, then the corresponding node will have

ntype = output, and nexpr = “x′′.

4. Given variable declaration “dec-list x = F (Xa);” or “dec-list x;” in a J

program, then the corresponding node will have ntype = idef, and nexpr =

“x = F (Xa), d1, d2, . . . d
′′
k (for “dec-list x = F (Xa);”) or “x = ⊥′′ (for “dec-

list x;;”). Terms d1, d2, . . . dk represent def nodes associated with methods

called in F (Xa).

5. Given class definition “dec-list C { πc }” in a J program, then ntype =

idef, and nexpr = “i1, i2, . . . , ij, m1, m2, . . . ,m
′′
k, where i1, i2, . . . , ij are def

nodes for the j variables defined in the class, and m1, m2, . . . ,mk, are def

nodes for the k methods defined in the class.

61



6. Given method definition “dec− listm(x1, x2, . . . , xk){pm}′′ in a J program,

then ntype = def, and nexpr = “Sm, i1, i2, . . . , ik, pm, x1, x2, . . . , x
′′
l , where

Sm is the method Start node, i1, i2, . . . , ik are the def nodes for the k method

arguments, and pm is the method subgraph defined in program statements

{pm}, and x1, x2, . . . , xl represent xfer nodes returning the method result

and any side effects to a calling site.

7. Given assignment statement “y = F (x1, x2, . . . , xk);” in a J program, then

ntype = assignment, and nexp = “y = F (x1, x2, . . . , xk), d1, d2, . . . , dj)
′′,

where d1, d2, . . . , dj are the def nodes required for any methods called in the

statement.

8. Given assignment statement, “o = newC(x1, x2, . . . , xk);” in a J program,

then ntype = assignment, and nexp = “o = C(x1, x2, . . . , xk), d1, d2, . . . , d
′′
j ,

where d1, d2, . . . , dj are the def nodes required for any methods called in the

statement.

9. Given a statement calling a method of type void, “o.F (x1, x2, . . . , xk);” in a

J program, then ntype = assignment, and nexp = “o.F (x1, x2, . . . , xk), do, d1, d2, . . . , d
′′
j ,

where d0 is the def node for the called method, and d1, d2, . . . , dj are the def

nodes required for other methods called within the statement.

10. Given J predicate statement “if P (x1, x2, . . . , xk)”, then ntype = predicate

and nexpr = “P (x1, x2, . . . , xk), d1, d2, . . . d
′′
j , where d1, d2, . . . , dj are the def

nodes required for any methods called within the statement.

11. Given J while statement “while P (x1, x2, . . . , xk){pl}”, then ntype = while,

and nexpr = “Sl, pl, dloop, d1, d2, . . . , d
′′
j , where Sl is the loop Start node

representing the loop predicate, πl is the subgraph representing the loop body,

dloop is the empty def node used to replicate the loop in the “i+1” iteration.

62



3.3 SOOPDG Examples

Figure 3.5: Example: Depiction of Call Sites
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Figure 3.6: Example: Depiction of Multiple Call Sites Respecting Call Sequence
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4

SOOPDG CREATION AND REWRITING SEMANTICS

This chapter presents the MakeG algorithm, which creates an SOOPDG from an

arbitrary program written in the J language, and the ExecuteG algorithm, which

performs program rewriting on the SOOPDG. During the discussion of MakeG

we presume the program being operated on is syntactically correct. This is not

a restriction as the program may be passed through a syntax-checker prior to

development of the SOOPDG form. We do not define the syntax-checker as this

is not the focus of the thesis and the process has been well understood for some

time. A discussion on the topic is presented in Aho et al [ALS07]. This chapter

does not address program analysis algorithms on the static graph structure as

these are presented in Chapter 5.

The ExecuteG algorithm provides a semantics describing execution of a pro-

gram through graph rewriting operations. The purpose of developing rewriting

semantics is to allow program analysis on program behavior and components in

a dynamic environment. We do not propose to use the SOOPDG as the basis for

a Java Virtual Machine or runtime environment, though techniques have been

proposed to utilize traditional PDGs to facilitate runtime optimizations within

Java-like programs [GCH00, RSE04, VE01]. Identifying similar opportunities for

dynamic program analysis using the SOOPDG is a goal for future research as

discussed in Chapter 8.
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4.1 Graph Creation Algorithm, MakeG

The graph creation algorithm, MakeG, translates code written in text format in

the J language into the SOOPDG format. While Java programs (and therefore

J programs) typically consist of multiple files containing source code, for conve-

nience we assume all classes are contained in a single file or list. This is acceptable

as the individual components of programs consisting of multiple files must all be

visible to the compiler during the compilation process. For example, in Java,

all participating classes must be made visible to the Java bytecode compiler by

one of three methods. They are either defined within standard Java base classes

available to the compiler (e.g. Math or System classes), made available through

the “import” keyword, or provided in the source files through the “-classpath”

compiler parameter. In any case, the bytecode compiler does not distinguish

the source of the class definition and acts as though a single source file is being

processed. Thus, the original program is composed as a collection of classes rep-

resented as a single list of program statements, Π = “dec-list c1 {π1}” “dec-list

c2 {π2}” . . . “dec-list ck {πk}”.

The MakeG algorithm processes individual program statements to incremen-

tally build the SOOPDG. A single program statement is generally represented

by a single graph node, though compound program statements result in multi-

ple nodes or nodes containing subgraphs. A single program statement may also

require representation by multiple nodes when accommodating parameter pass-

ing and side effects resulting from method calls. Flow and control dependence

edges are created in conjunction with new nodes to connect these to the existing

graph. The entire graph is created in one pass through the text program. It

is feasible to employ post processing techniques such as dead code elimination

on the completed graph to make the graph representation more efficient. We do
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not present detailed algorithms for these techniques as they are not central to

the thesis. Development of such routines is reserved for future work. Selected

algorithms that discover program features (e.g. program slicing and call chain

discovery) or support compiler optimizations are presented in Chapter 5.

Some SOOPDG elements have no direct correspondence to program state-

ments. As discussed in Chapter 2, valve nodes have no direct correlation with

program statements but are added to the graph to resolve def-order dependences.

Similarly, xfer and def nodes resulting from method calls do not directly repre-

sent program statements, but provide a pathway between contexts. The addition

of these nodes results in a worse case complexity is O(n2) for size and construction

cost (See Sections 4.1.4, 4.1.5, and 4.1.6).

MakeG is a recursive algorithm. Statements that are control dependent on the

same control parent point are processed iteratively. When compound statements

are encountered, the MakeG algorithm recursively calls itself on the compound

statement. For example, when a predicate statement is encountered, each control

branch is explored recursively in turn (parallel processing is possible, but not

considered in this thesis). This results in a depth-first creation of the SOOPDG

with respect to Ec. This is not to say that the deepest control dependence

paths are created first; only that the paths are built depth-first as they are

encountered. Compound statements requiring recursive MakeG calls are class

bodies (πc), method definitions (πm), predicate control branches (πT and πF ),

and loop bodies (πl).

MakeG requires several supporting data structures and helper functions. A

worklist, W , contains the statements from program Π that require processing.

The MakeG algorithm processes the statements in W , and terminates when W is

empty, returning the graph G. The worklist is populated by the getClass( c, Π)
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and getMethod(c, m, Π) functions. We do not provide complete algorithms for

these functions. Notionally, they operate completely at the syntactical level such

that getClass(c, Π) returns “dec-list c { πc }”, and getMethod(c, m, Π) returns

“dec-list m(Xf ) { πm }”. The MakeG algorithm also makes use of templates when

a specific subgraph pattern is repeatedly added to the graph being constructed.

For example, methods require a set of nodes providing pathways for parameter

passing and another for side effects. The collection of nodes and edges added to

the graph may be constructed for the first call site encountered, and retained as

a template to allow future call sites to be processed more efficiently.

Initially, W contains the main method designated as the point of entry for

program execution by the caller of the MakeG algorithm. A reference to a new

class results in the class being added to G through a recursive call to MakeG. The

new class may be encountered during object instantiation or through reference

to a static member of the class. The worklist of statements used during the

recursive call is populated by a getClass(c, Π) call. The statements in c are

processed within the recursive call before processing the statement containing the

instantiation. The worklist used in recursive MakeG calls that process method,

predicate, and loop bodies is populated in a similar manner.

The MakeG algorithm tracks the active control point, C = (pid, b), to cor-

rectly create control dependence edges. A liveness set, L, identifies DEF nodes

that potentially supply values to USE nodes, and an alias set, A, tracks object

aliasing. The L and A sets are required to create flow edges appropriately. Their

uses are discussed more fully below.
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4.1.1 Variable Liveness Analysis

Throughout the creation of the SOOPDG, variable liveness is updated as each

program statement is processed or as statements dependent on specific control

points are processed. This liveness information ties to control dependence to

account for dominance frontiers changing as control structures are entered and

exited. We designate the data structure tracking variable liveness as L. L pro-

vides the active DEF nodes for each variable and associated program control

points as they are processed by the MakeG algorithm. L is a set of liveness lists

tracking DEF nodes for each variable and program control point as defined in

Definition 28. Final variables are noted in the liveness set with the keyword “fi-

nal” appended to the identifier for the single DEF node providing a value for the

variable. The entire set, L, is defined in Definition 29. Updates to L, described in

detail below, are performed using standard set difference, union, and intersection

operations.

Definition 28 (Liveness List) A liveness list, lxi
C = {d1, d2, . . . , dk} is a set of

nodes, di, 1 ≤ i ≤ k, where di is a DEF node capable of supplying a value for

variable xi for the control point C. The notation { d:final } represents a definition

that may not be superceded.

Definition 29 (Liveness Set) The liveness set for program P, L, is a set of all

active liveness lists at any point in construction of the SOOPDG.

The MakeG algorithm requires a liveness list, L, as input. When initiating the

processing of a main method, L is initialized to the empty set. When initiating

the processing of the compound statements associated with a specific control

point, C ′
b, LCb

is initialized to the current L. Similarly, when processing the
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compound statement representing a loop body, Lloop is initialized to the current

L.

Rules for updating L are straightforward. While processing statements that

are control dependent upon control point, C, the processing of any DEF node for

a program variable kills all preceding definitions for that variable for the remain-

ing statements dependent on that control point. Therefore, when encountering

DEF node d for program variable v along control point C, the liveness set is

updated such that lxC = {d}. Definitions occurring along the true or false branch

of a predicate statement may reach beyond the compound statements compris-

ing the predicate. This is reflected in L by defining the liveness set continuing

forward from a predicate to be the union of the liveness lists for each branch.

The MakeG algorithm as presented contains no parallel operations. This implies

that the algorithm is exploring program statements that are control dependent

on one control point at any given time. This implies that, in the worse case, L

is comprised of at most O(n) lists (with n being the texts ize of the program)

at any given time during the MakeG algorithm. Searching and maintaining L

can be acheived in O(logn) time for each entry processed, and thus the searching

and maintaining of L does not dominate the O(n2) worse case cost of the MakeG

algorithm shown in Section 4.1.6.

Object aliasing is not explicitly represented in L, though aliasing effects are

taken into account. For example, if objects o1 and o2 are aliased and a node is

being constructed that is a USE of an instance variable in either object, then

incoming flow edges must connect all live DEF nodes for both objects to this

USE node. Object aliasing is maintained in a separate alias set described below.

Figure 4.1 provides an example demonstrating how the update rules affect

the liveness set while entering and exiting a control structure. This example
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demonstrates, for a single variable x, how control dependence is incorporated in

L, and how control points become associated with specific DEF statements in L.

The control point in effect at the beginning of the snippet is the Start node’s True

branch, ST . When a predicate statement is found (3), the True control branch

is explored first, followed by the False branch. Upon entering the True branch,

the active control point is 3T . Any DEF statement encountered along the branch

(4) supplies the reaching definition (i.e. is “live”) for following USE statements

along the same control point (5). The liveness set is updated to reflect this. Upon

entering the False branch, the active control point is 3F , and DEF statements on

this path are also recorded in the liveness set. Upon leaving the False branch,

control reverts to ST , but the DEF nodes discovered along each predicate branch

are still live. Since DEF nodes occurred along both branches, the previous DEF

statements associated with ST can no longer supply reaching definitions. This

is reflected in L by removing existing DEF statements associated with ST and

adding in the union of those associated with 3T and 3F . The liveness set for

variable y beyond statement 2 is the same for control points ST , 3T , and 3F

throughout.

4.1.2 Object Alias Analysis

The MakeG algorithm tracks alias relationships using the alias set, A. The alias

set lists all handles referring to each object instantiated in the program. The

alias set is a tree of depth one, containing an abstract reference to the actual

object (memory space) at the root, and all program references that may point

to the actual object as leaves. The reference to the single, actual object at the

root of the tree provides a simple mechanism to carry data flow through the
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LINE STATEMENT CP L (for x only)

0 Start ST L = φ

1 x = <input>; ST L = {lxST
: { 1 }}

2 y = <input>; ST L = {lxST
: { 1 }}

3 if ( P() ) { ST L = {lxST
: { 1 }}

4 x = 42; 3T L = {lxST
: { 1 }, lx3T

: { 4 }}

5 z = x / 2; 3T L = {lxST
: { 1 }, lx3T

: { 4 }}

6 } else { 3F L = {lxST
: { 1 }, lx3T

: { 4 }, lx3F
: { 1 }}

7 x = 17*y; 3F L = {lxST
: { 1 }, lx3T

: { 4 }, lx3F
: { 7 }}

8 } ST L = {lxST
: { lx3T

∪ lx3F
} = { 4, 7 }}

9 return x; ST L = {lxST
: { 4, 7 } }

Figure 4.1: Liveness Example: Effect of Predicate Nodes

object itself, rather than through potentially numerous handles. When an object

is instantiated in the program, a tree is created, “Oi: o”, where “Oi” represents

the actual object, while “o” represents the handle referring to the object. When

aliasing occurs, the additional object handles are added as additional leaves.

When the aliasing is no longer valid, the handle is removed. Thus, the alias set

presents, for each object instantiated in the program, all possible ways to refer

to that object.

Aliases have two main effects on the building of the graph. First, they com-

plicate the construction of flow edges by increasing the number of potential DEF

nodes supplying a value to a given USE. Secondly, Def-order relationships may

arise from a may-alias condition. Def-order relationships that arise in this way

require that valve nodes be instantiated within the predicate acting as a control

parent to the program statement causing the may-alias condition.
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Definition 30 (Alias Set) The alias set for program Π, A, is a set of trees,

each of depth 1. Each tree contains the reference object at the root acting as a

parent to each alias. We denote this structure as (OR : o1, o2, . . . , ok) and require

that any reference to oi, 1 ≤ i ≤ k, is equivalent to any other reference oj,

1 ≤ j ≤ k.

4.1.3 Description of the MakeG Algorithm

This section provides an informal description of the MakeG algorithm, followed by

a formal definition. The MakeG algorithm requires as input a program, Π = “dec-

list c1 {π1}” “dec-list c2 {π2}” . . . “dec-list ck {πk}”, a sequence of statements

from Π comprising the worklist, W , an existing (potentially empty) SOOPDG,

G; an initial control point, C = (pid, b); and initial alias and liveness sets, A and

L. We assume the existence of utility functions getClass(c, Π) and getMethod(c,

m, Π) to populate the worklist from the list of program statements. Initially, W

contains only the program main method. Other program classes are extracted

from Π and processed as they are referenced by statements already residing in

W . The liveness lists provide a mechanism to track which classes have been

instantiated in G to prevent duplications.

The SOOPDG requires a distinct Start node specifying the entry point for

initiation of program execution. J programs are collections of classes, and it is

possible for such a collection to contain more than one main method. As an

SOOPDG contains one Start node for each method defined within the program,

the MakeG algorithm must generate a distinct Start node representing the start

of program execution. This is accomplished by initializing W with a main method

specified by the user, “W = getMethod(c, main, Π);”. Graph creation continues
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until all statements within this main method, plus all statements within classes

potentially executed or referenced as a result of the method, have been processed.

References to object instantiation or static elements of classes not previously

encountered results in a recursive call to MakeG with W seeded with the new

class. In the resulting graph, G, all method Start nodes are encapsulated within

idef nodes with the exception of the single Start node corresponding to the

originally specified main method. The location of this Start node external to an

idef node designates it as the initiation of program execution.

Statements containing expressions with method calls result in multiple nodes

being added to G. These additional nodes provide a mechanism for orderly trans-

fer of parameters in and out of the called method. Recall that xfer nodes supply

values to another context, and def nodes receive values from another context.

Thus, a statement containing a method call results in a node representing the

statement plus the xfer nodes required to provide input parameters to the called

methods and def nodes required to receive results (including side effects). We

eliminate ambiguity as to which nodes are associated with specific calling sites

through a simple renaming scheme. Each call site receives a specific variable

name ($1, $2, $3, ...) and the method def node representing the returned value

is associated with a specific site through an assignment to the renamed variable

(e.g. “$1 = xret”). A similar renaming scheme (#1, #2, #3, ...) ensures that

parameters are passed to the method in an orderly and unambiguous fashion.

The use of this parameterized naming scheme results in a set of xfer and def

nodes that serve as an interface between the calling site and method that can be

connected to a method subgraph at runtime. The scheme also respects expres-

sion precedence semantics in that methods affected by methods executing prior

to them in the expression will have appropriate values flowed to them from the
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def nodes associated with the previous method’s call site. A simple example is

given in Figure 4.2.

Figure 4.2: Example of Assignment with Multiple Method Call Sites

To relieve clutter from the MakeG algorithm, we employ a utility function

performing the actions discussed above. The processExpression(Xa, nid, L, G)

receives the expression Xa, identification of the current node being created, nid,

liveness lists, L, and existing SOOPDG G and produces two results. The first,

g.N is the set of xfer and def nodes required by the method calls in the expression

Xa. These are easily obtained as follows: for each call site a single def node is

created. This def node contains a single xfer node for each def node residing

within the method called, and a single def node for each xfer node residing in the

method called. The xfer nodes in the method include the returned parameter as

well as side effects. The existence of the nodes is found by scanning the idef node
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in G defining the method. The second result, g.Ef , is a set of flow edges required

to provide input to variables within Xa, as well as any flow edges that may arise

between def nodes created due to method calls. These edges are created using

the nid and L provided. The previous steps need only be performed the first time

a method is encountered, as the set of nodes and edges created are maintained

in a template and re-used.

Finally, MakeG updates L so that def nodes representing side effects are

recognized as the current live DEF for the side affected variable. We will call

this utility function using the form “g = processExpression(Xa, nid, L, G)”, and

refer to the set of returned nodes as g.N , and the set of returned flow edges as

g.Ef .

MakeG adds nodes and edges to G through iterative processing of the state-

ments in W , resulting in a complete representation of the program. The process-

ing of class definitions, method statements, true and false predicate branches, and

while loops require that MakeG be called recursively. In these cases the program

statements input to the MakeG algorithm are the compound statements compos-

ing the class, method, branch, or loop bodies. The control point, alias set, and

liveness set are initialized appropriately before the recursive call is made. When

the MakeG algorithm is initiated at the program level the following initializations

take place: G = {N, Ec, Ef} = {{Start}, φ, φ}, C = (Start, T rue), and L = φ.

We present a discussion of steps taken to process statement types, followed by

the MakeG algorithm in Tables 4.3 - 4.16 at the end of this section.

Output statements result in an output node being formed as follows. Output

statements are of the form “<output> = x;”, and result in an output node of

the form “output x”. An incoming control edge connects the new node to the
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current control point, and incoming flow edges are created from each live DEF

node for x. This process is presented in Table 4.3.

Return statements result in a xfer node being formed. Return program state-

ments are of the form “return F(Xa)”, and the resulting xfer node expression is

of the form “xret = F(Xa);”. The pseudo-variable, xret, has the same type as

the method and allows the ordered return of values from a method to a specific

calling site within an expression. The algorithm for creating the xfer node from

a return statement is presented in Table 4.4.

Variable declaration statements result in idef nodes. Declaration statements

are of the form “<dec-list> var;” and are processed as follows. The MakeG algo-

rithm creates a new idef node, and constructs an incoming control dependence

edge from the current control point to the new node. The node is decorated as

public, private, final, static, etc per the <dec-list> list. If the declared variable

is of an object type an entry is made in the alias set, A. L is updated to reflect

the new node as the live DEF node for the current control point. If the variable

is declared as final, L is annotated to show no further updates are allowed. If the

variable is declared as static, then the alias list is updated to show this variable

name is aliased for all instantiated objects of the same class. If the statement

is of the form “<dec-list> var = value;”, the assignment is contained within the

idef node, otherwise an assignment to ⊥ is placed in the idef node. These steps

are detailed in Table 4.5.

Class and interface definitions result in idef nodes containing the definition.

Class and interface definitions are of the form “dec-list c { πc }” and the resulting

idef nodes contain subgraphs representing the features being defined. The idef

node is decorated to establish its accessibility and associate it with a package if

applicable. A control edge is added to Ec in G from the current control point to
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the new node. If the class extends another, a flow edge is added to Ef connecting

the superclass to the new node. Similarly, if this class implements an interface,

a flow edge connects the interface definition to the class. The contents of the

node are created through a recursive MakeG call on πc. Details of this process

are provided in Table 4.6.

Method definitions also result in idef nodes containing the definition. Method

definitions are of the form “dec-list m(Xf ) { πm }” and the resulting idef node

contains a subgraph representing the method. The node is decorated per the

“dec-list”. To process a method, the MakeG algorithm makes a recursive call

on πm. Additional def and xfer nodes are created to accommodate parameter

passing in and out of the method (including potential side effects). These steps

are detailed in Table 4.7.

Assignment statements result in assignment nodes and are processed as fol-

lows. If the statement expression is of the form “o.x = <input>”, the resulting

node expression is also of that form. If the statement is of the form “o.x =

F(Xa)”, with input variable list Xa = (x1, x2, x3, . . . , xk), then the statement is

a USE node for each xi ∈ Xa. An assignment node having the node expression

“o.x = F(Xa);” is created. Incoming flow edges are created for the object handle

“o” and for each xi ∈ Xa, with the number of flow edges and associated DEF

nodes as determined by the liveness structure L. If the target of the assignment

is an object, the alias set, A, is updated. L is then updated to associate this node

as the only live DEF node for variable o.x for the current control point. F (Xa)

may be, or contain, a method call. In this case, additional xfer and def nodes

are created within the assignment node to allow parameter passing to and from

the method. These steps are detailed in Tables 4.8 and 4.9.
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If the assignment statement is of the form “o = new c()”, a single flow edge is

created to connect this node to the class definition node. If there is no live DEF

node for the class definition, the idef node representing the class must be created

via the getClass(c, Π) function and a recursive call to the MakeG algorithm.

Additional xfer and def nodes are added to the assignment node as needed to

support the constructor method. L is updated to reflect this node as the live

DEF node for o plus each class and instance variable, o.var, assigned to in the

constructor method. These steps are detailed in Table 4.10.

Finally, if the statement expression is of the form o.m(), then incoming flow

edges connects the statement to the instantiation of each potential object o, and

xfer and def nodes are added for parameter passing. L is updated to reflect side

effects so that the appropriate def node remains the single live DEF node for the

side effected variable in this control point. This case is detailed in Table 4.11.

Predicate statements result in predicate nodes plus additional graph compo-

nents representing the True and False branches. Predicate statements take the

form “if (P(Xa) { πT } else { πF }”, where P(Xa) is a Boolean expression. To

process a predicate statement, MakeG creates a new predicate node, a new control

dependence edge from the current control point to the new node, and an incoming

flow edge from each live DEF node for each xi ∈ Xa. As always, new nodes may

be instantiated within the predicate node to accommodate method calls within

Xa. The True and False branches of the predicate node are incorporated into

the graph through recursive calls to MakeG. These details are presented in Table

4.12 and 4.13.

Loop structures appear in J in the form “while ( P(Xa ) { πl }” and result in

multiple graph components representing the loop predicate and body. To support

loops in the general case, the SOOPDG must define a predicate node controlling
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loop iteration or exit, provide for the initialization of all values entering the loop,

and create the loop body. The resulting graph must have an ability to iterate the

loop zero or more times, and the ability to extract results upon loop exit. The

process of incorporating a loop in the SOOPDG begins by creating a predicate

node and associated incoming control and flow edges. A recursive call to MakeG

on πl creates the loop body, including appropriate control and flow edges to

connect the loop body with the existing nodes in G. A new while node is created

containing a copy of the loop body and predicate. During graph rewriting, the

while node is expanded for execution, effectively unrolling the loop one time

for each iteration. The while node contains an empty def node that acts as a

placeholder for a copy of the loop body for the “i+1” iteration loop definition

during graph rewriting. The algorithm creating the loop graph features from a

“while” statement is presented in Table 4.14, 4.15, and 4.16.

4.1.4 Size of the SOOPDG Created by MakeG

The following proof demonstrates that the worse case size of the SOOPDG cre-

ated by the MakeG algorithm is O(n2), where n represents the text size of the

program after valve nodes have been accounted for. The literature for traditional

PDGs typically presents graph size in terms of the number of statements in text

programs [CFR91, Par92]. We use program text size as a basis to more easily

discuss the impact of introducing def and xfer nodes associated with method

calls. Each def and xfer node at a call site is a result of an additional term in the

method call, and thus correlates more readily to program text size rather than

number of statements. The addition of the valve nodes to the program text is
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expected to increase the size of the program representation in a linear fashion,

which we address in section 4.1.5.

The worse case SOOPDG size of O(n2) is not a surprising result, and is

compatible with the O(n2) (in terms of program statement) worse case sizes of

the SSA and SFU forms of PDGs. An expected size of O(n) is presented for

SSA [CFR91] and SFU (See Section 4.1.5) forms based on empirical evidence of

normal programming practices. The following discussion shows that the source

of the O(n2) size is due to def nodes at call sites that are introduced due to side

effects within the called method. A program having O(n) side effects at O(n) call

sites requires O(n2) def nodes. While good programming practices discourage

the widespread use of side effects, we do not have the empirical evidence at this

time to claim an expected SOOPDG size of O(n).

Theorem 6 (Size of the SOOPDG) The SOOPDG, G = MakeG(), has a

worse case size of O(n2) nodes, where n represents the text size of a J program.

Proof Theorem 6 is proved directly. Let n be the text size (number of characters)

of a J program. We prove by cases:

1. Case 1: Statements are of type <output>. As each of these in the MakeG

algorithm explicitly require the addition of one output node per statement

processed, there is a linear correspondence of program length to nodes for

these statement types.

2. Case 2: Statements are of type “return”. As each of these in the MakeG

algorithm explicitly require the addition of one assignment node per state-

ment processed, there is a linear correspondence between program length

and nodes for these statement types.
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3. Case 3: Statements are of type variable declaration. As each of these in the

MakeG algorithm explicitly require the addition of one idef node per state-

ment processed, there is a linear correspondence between program length

and nodes for these statement types.

4. Case 4: Statements of the type Class and Interface definition. As these

statements result in a single idef node populated with subgraphs created

from processing the program statements contained within the class, πc, and

these program statements can only contain statement types from the other

cases, it follows that these statements also contribute nodes to G in a linear

fashion with respect to their text size.

5. Case 5: Statements declaring methods. As method dependence graphs cor-

respond directly to traditional PDGs, the graph created by each method

is expected to be linear with respect to the size of the method [Par92].

Since a method cannot be longer than the program containing it, methods

contribute nodes in a linear fashion to G.

6. Case 6: Statements are of type assignment through input. In the case of

assignment via input exactly one node is added to G, and there is a lin-

ear correspondence between program length and nodes for these statement

types.

7. Case 7 : This case represent assignment to a variable, with a potentialcall

to a method resulting in side effects. In the case of assignment to a variable,

exactly one assignment node is added to G, with the possible addition of

def and xfer nodes due to method calls. The addition of the xfer nodes

represents parameter passing to the called method, and are in a 1-to-1

relationship with parameters required by the method. In that respect they
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are linear with respect to program text size at the calling site. The def

nodes represent values returned from the method and are linear with respect

to the number of DEF statements residing within the method whose effects

are to visible variables that are external to the method. In the worse case,

a single call may result in O(n) def nodes, and O(n) call sites would result

in O(n2) nodes.

8. Case 8: In the case of instantiation of a new object, an assignment node,

plus one node for each class variable initialized within the class constructor

is added to G. The number of additional def nodes is linear with respect

to the number of assignment nodes in the class constructor, and therefore

linear with respect to text size of the class representation. In the worse case

a program may contain O(n) instantiations, resulting in o(n2) SOOPDG

nodes.

9. Case 9: This case represents assignment via a call to a mutator method

having tpye void. This case is a duplicate of Case 7, with the exception

that no node is required to record the explicit variable assignment.

10. Case 10: Statements are of type predicate. The number of nodes contributed

by predicate statements is clearly 1 + nT + nF , where the first node is the

predicate itself, and nT and nF are contributions by the True and False

branches, respectively. We must consider nested structures and will do so

by considering the number of nodes in nT . Each non-predicate statement

in nT must belong to the remaining cases and thus contribute nodes either

in a 1-to-1 fashion, or linearly with respect to the statements within the

structure (See Cases 5, 6, and 7). Each predicate node in nT contributes

exactly one node, so nT as a whole contributes nodes in a linear fashion

with respect to the size of the True branch. The same reasoning applies
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to nF , and so the entire predicate structure is linear with respect to the

number of program statements within it. Predicate statements are the

only structure that may require valve nodes to be added to G. We will

show in Section 4.1.5 that the number of valve nodes added to a graph G

representing program P is expected to be linear with respect to the size of

the original program P .

11. Case 11: Statement is of the type while. We consider the case of nested

loops, and recognize that all program statements may be classified by the

depth of the loop that most closely contains them. We further argue that,

based on structured control dependence, each statement may reside at ex-

actly one depth. Let k be the maximum depth in a nested loop structure.

Consider the nk statements at the kth level. They have the property that

none are while statements, or a contradiction would occur where a k + 1

level would exist and the kth level is not the deepest. The logic of MakeG for

the loop case demonstrates that loop carried dependences require at most

three representations within SOOPDG: one for the initial pass through the

loop, one for the ith iteration, and potentially a valve node retaining the

SFU property at the ith iteration. Since each statement in nested loops

resides at exactly one nesting depth, each statement may be represented at

most three times in G. Loop bodies are comprised of the statement types

perviously discussed, thus the size of loop representation is of the same

order as shown for previous statement types.

As all cases contribute nodes to G in either a linear or O(n2) fashion, with

respect to the original program size augmented by statements corresponding to

valve nodes, the sum of the contributions from all program statements is O(n2)

in the worse case.
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The number of flow dependence edges contained within the SOOPDG is O(n2)

in the worse case, while the number of control depedence edges is O(n) in both

the worse and expected cases. Nodes may have multiple incoming and outgoing

data flow dependence edges. Each DEF node may be associated with outgoing

flow edges for exactly one program variable, which results in the worse case of

O(n) DEF nodes each flowing values to O(n) USE nodes, resulting in O(n2)

flow edges in the SOOPDG. Empirical evidence of program metrics is required

demonstrating the number of live definitions for any program variable at any

program point is not a function of program size. This evidence would allow a

claim of O(n) for the expected number of flow edges. We have not found such

evidence to date. In the absence of unstructured control flow, each node has

at most one incoming control dependence edge, and thus the number of control

dependence edges is O(n) in the expected and worse cases.

4.1.5 Upper and Lower Bounds of Valve Node Placement

This section presents a bound on the expected number of valve nodes required

to attain SFU in typical programs. The definitions of graph structural forms are

found in Chapter 2. Earlier literature introducing the valve node and developing

Semantic PDGs establish the upper and lower bounds of valve nodes as O(n2)

and zero, respectively [Par92]. The upper bound is determined by reasoning that

for each DEF node, there is potentially one valve node required at each predicate

node along the CDP for the DEF node. Since a given CDP may be of O(n)

length, each DEF node may generate O(n) valve nodes. As there may be O(n)

DEF nodes, the number of valve nodes may be O(n2). The lower bound of zero
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is determined by recognizing that programs may contain DEF nodes at all exit

points of the CDP Subgraphs, thus requiring no insertion of valve nodes.

These bounds provide unrealistic extremes for the number of valve nodes re-

quired for a typical program. The lower bound is unreasonable as it requires that

programmers create DEF nodes that are control-wise mutually exclusive. The

upper bound of O(n2) requires that both the number of program variables and

the depth of the deepest nested predicate structure grow linearly with program

size. Empirical evidence [JPP94] indicates that increased program length does

not tend to increase predicate nesting depths.

The following discussion provides a more realistic expectation for the number

of required valve nodes. There is one sense in which we cannot make a determi-

nation regarding the necessity of inserting a valve node in a PDG. Valve nodes

are generated as a result of existing DEF nodes within the PDG; however, if the

DEF node itself always results in an identity assignment, then a valve node is

not required. In general it is undecidable to determine whether a computation

specified within a DEF node results in an identity assignment [AWZ88]. Thus

these results hold within the limits of Turing computability.

Within this discussion we use V to represent the number of valve nodes re-

quired to achieve the SFU property within a PDG. Other nomenclature defini-

tions useful to the discussion are grouped for convenience in Definition 31. We

show that, though the number of Def-Order relations may be O(n2) with respect

to the number of nodes within a program, V is O(n). This is a result of the

application of Theorem 5 to the Control Dependence Subgraphs arising from the

set of assignment nodes.

We conservatively assume that all statements (nodes) assigning to the same

program variable are involved in at least one Def-Order dependence relationship,
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thus requiring valve node insertion to obtain the SFU property. We do not explic-

itly discuss the existence or location of the USE node required for the Def-Order

Dependence. The existence is presumed by the assumption that all assignment

nodes are involved in a Def-Order relationship. Its location is presumed to allow

the maximum number of valve nodes. More specifically, we presume that, given a

set of DEF nodes, D, and single USE node u, CDP (D)− CDP (u) = CDP (D).

Definition 31 (Program Parameters) Let Π be a program written in lan-

guage J , with variables renamed to eliminate output dependences. Let G be an

SFU form SOOPDG representing program Π.

n = the number of nodes in G.

k = number of variables in G.

α = the number of assignment statements (nodes) in P (G).

αi = the number of assignment statements (nodes) in P (G) assigning to the ith

variable, 1 < i ≤ k.

V = number of valve nodes to be added to G to achieve the SFU form.

V i = the number of valve nodes to be added to G due to assignments to the ith

program variable, 1 < i ≤ k.

In addition, let V i
mn represent the number of valve nodes contributed by assign-

ment nodes (statements) ai
m and ai

n.

The total number of assignment statements, α, can be written as the sum of

statements assigning to each specific program variable.

α = α1 + α2 + . . . + αk =
∑k

i=1 αi

Also α < n due to the presence of at least one Start node in G. Similarly, since

assignment statements must assign to the same program variable in order to be

involved in a Def-Order dependence,

V = V 1 + V 2 + V 3 + . . . + V k =
∑k

i=1 V i .

87



We now consider the set of assignment statements (nodes) in program P . It

is convenient to consider the set of assignment nodes and partition them based

on the variable being assigned to. This will allow us to consider the number of

valve nodes contributed to the overall program on a per variable basis.

Definition 32 (Program Variable Set, A) Let G be a PDG in the SFU form

representing program P written in language J . We define A to be the set of all

assignment nodes in G.

A = {aj | aj is an assignment statement in P}.

We can partition A according to the variable assigned to, such that

Ai = {ai
j | ai

j is an assignment statement to the ith variable in P}

Definition 33 (Def-Order Structural Forms) Given a PDG, G, and assign-

ment nodes for variable i involved in Def-Order relationships, we classify the

structural form giving rise to the dependence as follows:

1. Figure 4.3 Case 1: Single Breadth Def-Order

(Shown as part of Multi Breadth Def-Order) This form involves two assign-

ment nodes such that ai
n is Def-Order dependent on ai

m but CP (ai
m) is not

a control ancestor of ai
n.

2. Figure 4.3 Case 1: Multi Breadth Def-Order

This form involves multiple assignment nodes, each having a pairwise Single

Breadth Def-Order relation with at least one other node. Note that the

number of Def-Order dependences arising from this structure is O(n2) for

n assignment nodes.

3. Figure 4.3 Case 2: Single Depth Def-Order

This form involves two assignment nodes such that ai
n is Def-Order depen-

dent on ai
m and CP (ai

m) is a control ancestor of ai
n.
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4. Figure 4.3 Case 3: Multi Depth Def-Order

This form involves multiple assignment nodes, each having a pairwise Sin-

gle Depth Def-Order relation with at least one other node. Note that the

number of Def-Order dependences arising from this structure is O(n2) for

n assignment nodes.

Figure 4.3: Graph Structure Resulting in Def-Order Dependences

We can determine the number of valve nodes required to resolve Def-Order

dependences in each of the structural forms. For the ith program variable, appli-

cation of Theorem 5 requires that one valve node be placed at the exit point of

the CDS defined by assignment node set Ai. The number of valve nodes placed

is a function of the depth of the nested predicate structures creating the CDP for

each of the assignment nodes in Ai.

89



Definition 34 (Def-Order Node Depth) Given a PDG, G, and assignment

nodes for variable i involved in Def-Order relationships, we define depth di
mn to

be the nested predicate depth of node ai
m with respect to ai

n as follows:

1. Figure 4.3 Case 1: Single Breadth Def-Order

We define di
mn to be the length of CDP (ai

n) - CCDP (ai
m, ai

n).

2. Figure 4.3 Case 1: Multi Breadth Def-Order

For a set of assignment nodes, P-SET, assigning to variable i and involved

in at least one Def-Order dependence relationship, we define di
mn for each

ai
n ∈ P − SET to be the length of CDP (ai

n) - CCDP (ai
m, ai

n), where ai
m ∈

P − SET is selected to minimize CCDP (ai
m, ai

n).

3. Figure 4.3 Case 2: Single Depth Def-Order

We define di
mn to be the length of CDP (ai

n) - CDP (ai
m).

4. Figure 4.3 Case 3: Multi Depth Def-Order

For a set of assignment nodes, P-SET, assigning to variable i and involved

in Multi Depth Def-Order dependence relationships, we define di
mn for each

ai
n ∈ P − SET to be the length of CDP (ai

n) - CDP (ai
m), where ai

m ∈

P − SET is selected to maximize CDP (ai
m).

Application of Theorem 5 requires that a single valve node resides at each

exit point of a CDS. The number of valve nodes contributed to the PDG by each

assignment node is equal to some depth, di
mn. Since PDGs are finite, there is

some finite upper bound on the value of all depths encountered in a program,

which we shall call dmax. Similarly, we can define the average depth for a program

to be dave. Thus a reasonable upper bound for number of valve nodes required

in a typical program is:
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V = V 1 + V 2 + V 3 + . . . + V k = dmax ∗ α1 + dmax ∗ α2 + . . . + dmax ∗ αk =

dmax ∗
∑k

i=1 αi < dmax ∗ n

The number of valve nodes is clearly O(n). Johnson, et. al [JPP94] estimate

dmax = 13 and dave = 2.68, so these provide good upper and expected estimates

for the number of valve nodes required in a SFU form PDG.

4.1.6 Cost of the MakeG Algorithm

The cost of the MakeG algorithm is based on the size of the resulting SOOPDG

and is O(n2) in the worse case. The addition of each primitive node to an

SOOPDG requires constant cost, and Theorem 6 proves a worse case graph size

of O(n2). As discussed in Section 4.1.4, analysis of program metrics may provide

an expected SOOPDG size of O(n), which would provide a basis to claim an

expected cost of the MakeG algorithm of O(n).

Theorem 7 (Cost of MakeG) MakeG is worse case O(n2), where n represents

the text size of the program acting as input to MakeG.

Proof Theorem 7 is proved directly. Let G = {N, Ef , Ec} be the graph created

from program P by MakeG. The worse case size of the node set, N, is O(n2), per

Theorem 6. The addition of each node to N is of constant cost for each node

type in MakeG, and so the cost of the addition of all nodes is O(n2). The worse

case size of Ef is O(n2), per Section 4.1.4. The addition of each flow edge is of

constant cost, so the worse case cost of creating Ef is O(n2). The size of the

control dependence edge set, Ec, is O(n), per Section 4.1.4. Each edge is added

at constant cost, and the cost of creating Ec is O(n). Since the cost of creating
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each component of G is at most O(n2), the cost of creating G using MakeG is

O(n2).

4.2 Program Evaluation

We present an informal rewriting semantics in this section, followed by a descrip-

tion of the ExecuteG algorithm that performs rewriting on an SOOPDG.

4.2.1 Graph Rewriting - Informal Semantics

Program execution may be enacted on the SOOPDG through graph rewriting

rules. The SOOPDG rewriting semantics is a modified form of the semantics

presented for the Semantic PDG [Par92]. In general, rewriting is a straightfor-

ward node-by-node process involving reduction of expressions within the indi-

vidual nodes, and flowing the results along the directed edges. In the case of

flow edges, values flow from DEF nodes to USE nodes to be stored in the USE

node’s local store. Note that, due to the SFU property, exactly one value will

flow to a USE node for each variable regardless of the number of incoming flow

edges. This allows nodes to mark incoming flow edges as bypassed or other-

wise unnecessary based solely on local information. Control dependence edges

notify dependent nodes either that control dependence criteria have been met

for them, or that they have been bypassed. Rewriting potentially increases the

size of the graph, as in the cases of loop iteration and instantiating methods at

call sites prior to execution. In these cases, the rewriting semantics must specify

how nodes containing the loop and method bodies are expanded to incorporate
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the new nodes into the existing graph. A rewriting semantics must also specify

initiation and termination criteria, and present a description of the effect on the

graph of processing each node type.

Traditional PDGs contain a single end node signifying both program output

and termination of the computation. Computation halts when the end node

is executed. Output implies supplying some portion of the program store to

an external entity. The presence of such a distinguished node allowed a lazy

rewriting semantics to be developed [CF89, Par92], as demand initiates at a

single, distinguished point in the graph and flows backwards. Computation and

results flow forward to satisfy the demand. The SOOPDG replaces the end node

with the xfer node supplying values from a local store from one context to another,

and the output node supplying values of the program store to an external entity.

Neither of these node types are associated with termination criteria within the

SOOPDG. Since we allow an arbitrary number of these nodes, they do not form

a natural feature to initiate execution via a lazy semantics (though this is a topic

reserved for future work, see Chapter 8). Thus, initiation and termination criteria

for the SOOPDG differ from the traditional PDG.

SOOPDG rewriting initiates at the unique program Start node, and termi-

nates when all nodes for which this node is a control ancestor are marked as

executed or bypassed. The rewriting semantics maintains a worklist, W , of nodes

ready for execution, and randomly selects from among them for execution. The

worklist is initiated with the Start node, which has no incoming control or flow

edges (the predicate expression is a constant, “True”) and is thus ready for ex-

ecution. Other nodes are added to W as they have satisfied control dependence

criteria and received values for all variables in their expressions.
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At the node level, rewriting consists of one of two actions. Primitive nodes are

rewritten by resolving the arithmetic/logical (A/L) expression they contain and

having the results flow to dependent nodes in a manner similar to the rewriting

semantics of Parsons [Par92]. Rather than remove executed and bypassed nodes

and edges from the graph, we retain and tag them as the computation progresses,

leaving the tagged graph as an intact record of the process. This proves valuable

when discussing how the SFU property is maintained during program execution.

The only modification from traditional rewriting semantics for graph edges is

that we allow flow edges to be used multiple times in the case of flowing method

subgraphs to call sites. If the node is not primitive, it is expanded and the internal

nodes are incorporated into G. This occurs when a method is incorporated at a

call site during graph rewriting. The node containing the call site is expanded so

that the xfer and def nodes acting as the interface between the call site and the

method can be connected to the method body and the entire set connected to

the existing graph. A node containing multiple method calls may be expanded

multiple times as individual methods are instantiated at the call sites. Examples

of instantiating a method body at a call site are given in Figure 4.4. Expansion

also occurs during loop unrolling. An example of this is given in Figure 4.5.

The concept of object aliasing requires a slight modification in the mechanics

of flowing values in the SOOPDG compared to traditional PDGs. A reference

to an instance variable “o.x” actually requires two values to flow to it to fully

identify the variable in question. The first value is the object handle (value of

“o”), and this handle dictates which incoming flow edges are eligible to flow a

value for the specific instance variable “x.” During rewriting, each object name,

“o”, is assigned a value at the time of object instantiation, but the object name

may receive a new value via object aliasing “o = o1”. The value for the object

name is passed via flow edges to future uses of the object name. The result of

94



this is that a DEF node assigning a value to “o.x” will not flow its value to a

USE of “o.x” unless the values for “o” match in both nodes at the time of the

attempted data flow.

Figure 4.4: Example of Instantiation of Method at Call Sites

Output nodes are considered executed once control dependence criteria has

been satisfied and a value for the output variable, “x”, has been received. Output

nodes have no outgoing edges and so do not further affect the execution of the

program. These are the only nodes with no outgoing edges that execute.

Primitive xfer and def nodes are similar to output nodes in that they are

considered executed as soon as their internal A/L expressions are resolved. These

nodes then flow results along outgoing flow edges. If the nodes have no outgoing
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edges, or all outgoing edges are marked as bypassed, the node will not contribute

to the program and thus will not execute.

Primitive idef nodes specifying class and method definition are not executed

per se, but are used to supply methods to calling sites. These idef nodes may

repeatedly supply the same method to multiple calling sites within the program.

Idef nodes declaring variables may require reduction of some expression as an

initial value is assigned to the variable. In this case, the reduction occurs only

upon satisfaction of node flow and control dependence criteria. Upon execution,

the idef node flows the result along outgoing flow edges.

Primitive assignment nodes are rewritten in a manner similar to idef nodes

in that the node expression is reduced upon satisfaction of control dependence

criteria and receipt of variable values. The resulting value flows along outgoing

flow edges to target nodes. If a target node has already received a value for this

variable, the outgoing edge should be marked as such prior to the execution of

the assignment node. In this case, no value is transferred along the edge. An

example of assignment node rewriting and data flow is given in Figure 4.5.

Primitive Predicate nodes are resolved in a manner similar to assignment

nodes in that the A/L expression is reduced upon satisfaction of control and flow

dependence criteria. Upon reduction to True or False, the results flow along the

outgoing control dependence edges, notifying target nodes as to whether they are

bypassed or eligible for execution. This process is recursive in that, if a bypassed

target is also a predicate, it will propagate the bypassed result to nodes control

dependent on it along both the True and False branches. An example of predicate

node rewriting is given in Figure 4.6.

While nodes are never primitive by definition, and the subgraph representing

the loop body must be expanded and incorporated in G before rewriting of the

96



Figure 4.5: Assignment and Data Flow Example

primitive nodes within loop body can be executed. The expansion corresponds

to the unrolling of a single iteration of the loop body and it occurs prior to

rewriting of any nodes within the loop body. A copy of the loop body is placed

in the placeholder def node, including a copy of this placeholder node. The while

node is then expanded to allow the loop body to become incorporated in G.

A new control edge is added from the while node’s control parent to the loop

predicate. An example of a while node loop expansion is provided in Figure 4.7.
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Figure 4.6: SOOPDG Predicate Node Rewriting Example
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4.2.2 Graph Rewriting - The ExecuteG Algorithm

The ExecuteG algorithm maintains three sets of nodes. The first is the executable

set, NE, consisting of nodes that have met control and data dependence criteria

and are therefore available for execution. The remaining sets identify nodes that

have met control dependence criteria only, NC , and those that have met data

dependence only, ND. The rewriting rules presented in this section are top down,

but not sequential. The ExecuteG algorithm arbitrarily selects a node from

NE for execution. Results are propagated along dependence edges, and affected

nodes are potentially promoted into NE, NC , or ND. Executed nodes are removed

from NE, and nodes promoted into NE are removed from NC and ND. Program

execution is terminated when no more nodes are available in the executable set,

or can be added to the executable set through the propagation of results from

executed nodes.

The ExecuteG algorithm relies upon a number of utility functions to manipu-

late the node sets. The functions are defined below, but details are not presented.

These utility functions are as follows:

1. isPrimitive(nid) – The isPrimitive function returns True if node nid is prim-

itive and False otherwise.

2. dataQuery(nid) – The dataQuery function requires a node id as input and

returns True if data dependence criteria has been met for node n, and False

otherwise.

3. controlQuery(nid) – The controlQuery function requires a node id as input

and returns True if control dependence criteria has been met for a node and

False otherwise.
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Figure 4.7: Example of While Loop Node Expansion
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4. updateD(ND, nid) – The updateD function adds node nid to ND if data-

Query(n) returns True.

5. updateC(NC, n) – The updateC function adds node nid to NC if control-

Query(n) returns True.

6. updateE(NE, n) – The updateE function add executable nodes to NE, while

removing them from NC and ND. This is performed in four steps:

(a) N ′ = ND ∩NC

(b) NE = NE ∪N ′

(c) ND = ND −N ′

(d) NC = NC −N ′.

7. select(N) – The select function arbitrarily selects a node, n ∈ N, where N

is any node set.

8. removeNode(n, N) – The remove function removes node n from any set N,

N = N - n.

9. resolveExpression(nexpr, nstore) – The resolveExpression function receives

a primitive node’s A/L expression and local store as input and resolves the

expression to a single value.

10. flowData(nid) – The flowData function transmits variable values along out-

going flow edges from node nid to all target nodes. Object handle values

always flow, while instance variable values only flow if object handles match

in nid and the target node.

11. flowControl(nid) – The flowControl function flows control information from

predicate node nid to the targets of all outgoing control dependence edges.
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12. getValue(nid, o.x) – The getValue function requests values for variable “o.x”

backwards through incoming flow edges.

13. getMethod(nid, o.m) – The getMethod function initiates a request back-

wards through incoming flow edges for method “o.m” to flow to node nid

for instantiation as part of nid’s expansion.

The ExecuteG algorithm is given in Table 4.1.
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Table 4.1: ExecuteG Algorithm

Let worklist NE = { (Start) };

While ( W not empty ) {

n = select(NE);

if (isPrimitive(n)) {

if (ntype is Output) {

resolveExpression(nexpr, nstore); }

if (ntype is xfer, idef, def or assignment) {

resolveExpression(nexpr, nstore);

flowData(nid);

for (each target node, n) {

updateD(ND, n); }

if (ntype is predicate) {

resolveExpression(nexpr, nstore);

flowControl(nid);

for (each target node, n) {

updateC(NC , n); }

updateE(NE, NC , ND);

removeNode(nid, NE);

} else {

expandNode(nid);

}

}
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Table 4.2: MakeG Algorithm

Let Π = πmainc1c2c3 . . . ck,

Let W = getMethod(c.main, Π),

Let G = {N, Ec, Ef} = {{Start}, φ, φ},

Let Control point, C = (Start, T rue),

Let Alias set, A = φ; Let Liveness set, L = φ;

Let Definitions list, ∆ = φ; Let packid = “*”;

G = MakeG(Π, W, G, C, A, L, ∆, packid);

MakeG( Program Π, Worklist W, SOOPDG G, Control Point C, Liveness Set L,

Definitions list ∆, package packid)

while (W !empty) {

s = getNextStatement(W );

Switch Typeof(s)

Case 1. <output> = x; – See Table 4.3

Case 2. Return F(Xa); – See Table 4.4

Case 3. Dec-list x = val; – See Table 4.5

Case 4. Dec-list class c { πc }; – See Table 4.6

Case 5. Dec-list m(Xf ) { πm } – See Table 4.7

Case 6. x = <input>; – See Table 4.8

Case 7. x = F(Xa): – See Table 4.9

Case 8. o = new C(Xa); – See Table 4.10

Case 9. o.m(Xa); – See Table 4.11

Case 10. if P(Xa) { πT } else { πF } – See Table 4.12 and 4.13

Case 11. while P(Xa) { πl} – See Table 4.14, 4.15, and 4.16

W = W - s; }

Return G; }
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Table 4.3: Case 1: Output Statements

s is of the form “<output> = x;”

nid = makeNewNodeID();

ntype = “out”;

nexp = “out x”;

nstore = φ;

nstatus = “NULL”;

ndecor = φ;

n = {nid:ntype:nexp:nstore:nstatus:ndecor};

N = N ∪ { n };

Ec = Ec ∪ {(C.pid, nid, C.b)};

for (each DEF node, d ∈ lxC ) {

Ef = Ef ∪ {(d, nid)};

}
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Table 4.4: Case 2: Return Statements

s is of the form “Return F(Xa);”

nid = makeNewNodeID();

ntype = “assignment”;

nstore = φ;

nstatus = “NULL”;

ndecor = φ;

nexp = “xret = F(Xa)”;

g = processExpression(Xa, nid, L, G);

nexpr = nexpr:g.N;

n = {nid:ntype:nexp:nstore:nstatus:ndecor};

N = N ∪ { n };

Ec = Ec ∪ {(C.pid, nid, C.b)};

Ef = Ef ∪ g.Ef ;

update L such that lxret
C = { nid };
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Table 4.5: Case 3: Declaration Statements - Variable

s is of the form “<dec-list> x = val;”

nid = makeNewNodeID();

ntype = “idef”;

nexp = “x = val;”;

nstore = φ;

nstatus = “NULL”;

ndecor = {packid:dec-list};

n = {nid:ntype:nexp:nstore:nstatus:ndecor};

N = N∪ { n };

Ec = Ec ∪ {(C.pid, nid, C.b)};

if (dec-list contains the keyword “final”) {

lxC = {nid : final};

} else {

lxC = {nid} in L

}

if (dec-list contains the keyword “static”) {

A = A∪ { c.x: *.x }

}
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Table 4.6: Case 4: Class Definition

s is of the form “<dec-list> class c { πc }”,

nid = makeNewNodeID()

ntype = “idef”;

nstore = φ;

nstatus = “NULL”;

ndecor = {packid:dec-list};

W ′ = πc;

G′ = N = Ec = Ef =L′ = φ;

C ′ = (NULL, NULL);

L′ = φ;

nexp = MakeG( Π, W’, G’, C’, L’, ∆, packid);

n = {nid:ntype:nexp:nstore:nstatus:ndecor};

N = N ∪ {n};

Ec = Ec ∪ {(C.pid, nid, C.b)};

if (c extends class c’) {

For each d ∈ lc
′

C {

Ef = Ef ∪ {(d, nid)};

}

}

L = L ∪ lcC :{nid};
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Table 4.7: Case 5: Method Definition

s is of the form “<dec-list> m(Xf ){πm} ”

nid = makeNewNodeID()

ntype = “idef”;

nstore = φ;

nstatus = “NULL”;

ndecor = {packid:dec-list};

W ′ = πm;

C ′ = (NULL, NULL);

L′ = φ;

N ′ = {(Startm, T rue)};

E ′
f = E ′

c = φ;

for (each x ∈ Xa AND each var, x in πm, having a USE with no DEF ) {

defNode = makeNewNodeID();

N ′ = N ′ ∪ {(defNode, “def ′′, “x“, φ, NULL, packid)};

Ec = Ec ∪ {(Start, defNode, True)};

AddlxC = {(idefNode)}toL′;

}

G’ = { N’, E ′
f , E ′

c }

G’ = MakeG( Π, W’, G’, C’, A, L’, ∆, packid);

xferNode = makeNewNodeID():

N ′ = N ′ ∪ {(xferNode, “xfer′′, “x′′
ret, φ, NULL, packid)};

for each d ∈ lxret
C {

Ef = Ef ∪ {(d, xferNode)}; }

nexp = G’;

n = {nid:ntype:nexp:nstore:nstatus:ndecor};

N = N ∪ {n};

Add lmC = { (nid) } to L;
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Table 4.8: Case 6: Assignment - Program Input

s is of the form “x = <input>;”

nid = makeNewNodeID()

ntype = “assignment”;

nstore = φ;

nstatus = “NULL”;

ndecor = {packid:dec-list};

nexp = “x = <input>;”;

n = {nid:ntype:nexp:nstore:nstatus:ndecor};

Update L such that lxC = {nid}.

Ec = Ec ∪ {(C.pid, nid, C.b)}
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Table 4.9: Case 7: Assignment

s is of the form “y = F(Xa);”

nid = makeNewNodeID()

ntype = “assignment”;

nstore = φ;

nstatus = “NULL”;

ndecor = φ;

nexp = “y = F(Xa)”;

g = processExpression(Xa, nid, L, G);

nexpr = nexpr:g.N;

n = {nid:ntype:nexp:nstore:nstatus:ndecor};

Ec = Ec ∪ {(C.pid, nid, C.b)}

Ef = Ef ∪ g.Ef ;

Update A.

Update L such that lyC = {nid}.

111



Table 4.10: Case 8: Assignment Through Object Instantiation

s is of the form “o = new c(Xa);”

nid = makeNewNodeID()

ntype = “assignment”;

nstore = φ;

nstatus = “NULL”;

ndecor = φ;

nexp = “o = new C(Xa);”;

for each var o.x assigned to in constructor {

defNode = makeNewNodeID();

nexp = nexp:“(idefNode, “def”, “x“, φ, NULL, packid)”;

Add lxC = { (idefNode) } to L′;

}

g = processExpression(Xa, nid, L, G);

nexpr = nexpr:g.N;

n = {nid:ntype:nexp:nstore:nstatus:ndecor};

Ec = Ec ∪ {(C.pid, nid, C.b)}

Ef = Ef ∪ g.Ef ;

Update A = A ∪ Or : o;

Update L such that lyC = {nid}.
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Table 4.11: Case 9: Assignment Through Side Effect

s is of the form o.m(Xa);

nid = makeNewNodeID();

nstore = φ;

nstatus = “NULL”;

ndecor = {packid};

nexpr = “c.setV ar(Xa);”

for each “ end x” node in m {

g = processExpression(Xa, nid, L, G);

nexpr = nexpr:g.N;

n = {nid:ntype:nexp:nstore:nstatus:ndecor};

N = N ∪ {n};

Ef = Ef ∪ g.Ef ;

Ec = Ec ∪ {(C.pid, nid, C.b)}
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Table 4.12: Case 10: Predicate (1 of 2)

s is of the form ”if P(Xa) { πT } else { πF }”

nid = makeNewNodeID();

ntype = “predicate”;

nstore = φ;

nstatus = “NULL”;

ndecor = φ;

nexp = “P(Xa”;

g = processExpression(Xa, nid, L, G);

nexpr = nexpr:g.N;

n = {nid:ntype:nexp:nstore:nstatus:ndecor};

N = N ∪ {n}; // Add predicate node to N.

Ef = Ef ∪ g.Ef ;

Ec = Ec ∪ {(C.pid, nid, C.b)};

GT = {NT , EfT , EcT } = {φ, φ, φ};

CT = (nid, True);

AT = A;

LT = L;

GT = MakeG(Π, πT , GT , CT , AT , LT ,∆, packid);

GF = {NF , EfF , EcF } = {φ, φ, φ};

CF = (nid, True);

AF = A;

LF = L

GF = MakeG(Π, πF , GF , CF , AF , LF ,∆, packid);

G = G ∪ { GT ∪ GF };

(Continued in following figure)
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Table 4.13: Case 10: Predicate (2 of 2)

Let VT be the set of variables receiving an assignment within control point CT and all child

control points.

Let VF be the set of variables receiving an assignment within control point CF and all child

control points.

for (each variable, x ∈ {VT − VF } {

nid = makeNewNodeID();

ntype = “assignment”;

nexp = “x = x;”

nstore = φ;

nstatus = “NULL”;

ndecor = {};

n = {nid:ntype:nexp:nstore:nstatus:ndecor};

N = N ∪ {n};

Ec = Ec ∪ (C.pid, nid, C.True);

for (each DEF node d ∈ lvT

C ) {

Ef = Ef ∪ {d, nid)}; }

}

for (each variable, vF ∈ {VF − VT } {

ntype = “assignment”;

nexp = “x = x;”

nstore = φ;

nstatus = “NULL”;

ndecor = {};

n = {nid:ntype:nexp:nstore:nstatus:ndecor};

N = N ∪ {n};

Ec = Ec ∪ (C.id, nid, C.False);

for each DEF node d ∈ lvF

C {

Ef = Ef ∪ {d, nid)}; }

}

L = LT ∪ LF

115



Table 4.14: Case 11: While Loop (1 of 3)

s is of the form “while P (Xa) { πl }”

// Make predicate node...

nid = makeNewNodeID();

ntype = “predicate”;

nstore = φ;

nstatus = “NULL”;

nexpr = “P (Xa)”;

g = processExpression(Xa, nid, L, G);

nexpr = nexpr:g.N;

n = {nid:ntype:nexp:nstore:nstatus:ndecor};

Ef = Ef ∪ g.Ef ;

Ec = Ec ∪ { (C.pid, nid, C.b) };

// Create subgraph representing loop body...

W’ = πl;

N’ = { nid };

G’ = Ec = Ef = φ;

C’ = ( nid, True ); A′ = A; L’ = L;

G’ = MakeG(Π, W’, G’, C’, A’, L’, ∆, packid);

// Add valve nodes to G’ for the (pid, False) control point (see Predicate, Table

4.12).

// Incorporate G’ into graph G...

N = N ∪ N’;

Ef = Ef ∪ E ′
f ;

Ec = Ec ∪ E ′
c;
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Table 4.15: Case 11: While Loop (2 of 3)

// Build while node with copy of loop body... forall (nodes n ∈ N ′) {

newnid = makeNewNodeID(); }

replaceAllOccurrences(n, newnid, G’);

}

for (all variables, x, assigned to in G’) {

newxfer = makeNewNodeID();

N’ = N’ ∪ {(newxfer, “xfer”, “xfer x”, φ, NULL, φ)};

for (all DEF nodes d ∈ lxC) {

E ′
f = E ′

f ∪ { (d, newxfer) };

}

}
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Table 4.16: Case 11: While Loop (3 of 3)

// Add empty def node for i+1 iteration...

defid = makeNewNodeID();

ntype = “def”;

nstore = φ;

nstatus = “NULL”;

nexpr = “NULL”;

ndecor = φ

N’ = N’ ∪ { (defid:ntype:nexpr:nstore:status:ndecor) };

}

whileid = makeNewNodeID();

ntype = “while”;

nexpr = G’;

nstore = φ;

nstatus = “NULL”;

ndecor = φ

N = N ∪ { (whileid:ntype:nexpr:nstore:nstatus:ndecor) };

118



5

PROGRAM ANALYSIS

In this chapter we discuss several common program analysis techniques carried

out using dependence graphs. The specific analyses we discuss are program slic-

ing, constant propagation, call chain construction, class inheritance, and archive

optimization. We first discuss program slicing, which is defined with respect to

a specific program point, n0. A backwards program slice identifies what previ-

ous program statements may affect the computation at n0, while a forward slice

identifies those statements that may be affected by the result at n0. Constant

propagation is a processing technique allowing the effects of constants (or the

values of variables that are determinate prior to program execution) to be incor-

porated into a program prior to program execution. Call chain analysis attempts

to identify sequences of method calls such that a site in method m1 calls m2,

and a site in m2 calls m3, etc. Results tend to be conservatively correct and may

contain chains that are infeasible at run time. Inheritance analysis defines inher-

itance in the classic sense whereby a class, c2 that extends c1 implicitly contains

the class attributes and methods of c1 unless explicitly stated otherwise. Since

we are focusing on a Java-like language, we consider inheritance from a single

parent only. Archive optimization attempts to identify, through static analysis,

which specific attributes and methods in a given class are required for program

execution. The goal is to reduce the size of archives or production bytecode by

including only those features potentially contributing to the program result.
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5.1 Program Slicing

A program slice on a dependence graph consists of the nodes that potentially

affect the computation at a program point of interest [Tip95, Zha99]. A slicing

procedure operating on a graph extracts the nodes related, directly or indirectly,

to a specific computation in the original program. Slices may be backward, con-

taining program statements affecting the program point of interest, or forward,

containing program points affected by the point of interest. The problem of

creating a program slice is essentially a graph reachability problem [Tip95]. The

backwards slice is created by traversing dependence edges backwards through the

dependence graph. The forward slice is created by traversing dependence edges

forward from the point of interest. Slices were originally introduced for debug-

ging purposes, but have since been utilized in a wide range of applications such as

parallelization, program differencing, program testing, complexity measurement,

and reverse engineering [Tip95, Zha99].

Horwitz et al. [HRB90] presents an interprocedural slicing algorithm that

serves as the basis for many OO slicing algorithms [Zha99, WRW03, LH98, CX01,

AH03]. The technique resolves the context calling problem through the use of

summary edges. Roughly stated, the context calling problem states that a naive

backwards traversal of graph edges encountering a single method call would incor-

rectly visit all call sites (contexts) for that method, and include them in the slice.

The technique resolves this problem through the presence of summary edges at

method call sites that connect parameter input/output nodes. Assuming a back-

wards slice, the summary edges specify which input nodes are to be included in

the slice for each specific output node. Depending on the specific representation

and algorithm being discussed, these summary edges are either created during

creation of the graph, or during a pre-processing analysis performed prior to ob-
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taining the slice. With the summary edges in place, the general technique is to

perform the slice in two phases. The first phase traces edges backwards from

the point of interest, marking all ancestors of the node in question. During this

phase, methods are not entered, but are bypassed using summary edges. During

the second phase of the algorithm, no new methods are visited, but those pre-

viously tagged and bypassed are entered and explored, so that nodes internal to

the methods may be included in the slice.

The structure of the SOOPDG captures sufficient information to perform

slicing in a single pass with no preprocessing of the graph. At each call site, all

xfer and def nodes associated with parameter input/output are contained within

a single def node identifying the method. In addition, the subgraph representing

the method has no incoming/outgoing edges in the static graph, as these are

constructed during rewriting. The absence of these edges removes the danger of

confounding the source of incoming edges to the method subgraph from multiple

call sites. Assuming a backwards slice, if a def node representing output from

a method is encountered, the method subgraph may be entered immediately

through its corresponding xfer output node. The method subgraph is traversed,

appropriate nodes added to the slice, and the affected input parameter def nodes

are identified. The slice continues at the call site with the local xfer nodes

corresponding to the def nodes identified in the method.

To eliminate duplication of effort, the slicing algorithm maintains a record of

the results of entering each method by an individual xfer node. We refer to this

record as a template as it is intended to provide a pattern to be used repeatedly

to quickly identify affected nodes at a call site. A template is identified by a

method and entry node, and identifies two sets of nodes: the exit nodes included

in the slice due to inclusion of the entry node, and all other nodes in the method
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subgraph included in the slice due to inclusion of the entry node. We refer to

the template for method m and entry node n as T n
m, as shown in Definition 35.

Reference to T with no subscripts represents the set of all templates. Templates

serve a portion of the purpose of the summary edges of Horwitz et al. in that

they rapidly identify parameter input nodes at a call site once a parameter output

node is identified. Construction of the templates is more efficient than summary

edge construction as summary edges are produced for all methods and all method

parameters a priori, while templates are produced only for method parameters

encountered during a specific slice.

Definition 35 (Template) For entry node n at method m, template T n
m =

{d1, d2, . . . , dj}{n1, n2, . . . , nk}, identifies the nodes in the method subgraph to be

added to a slice due to inclusion of node n; {d1, d2, . . . , dj} represents the set of

def nodes associated with input parameters for the method, and {n1, n2, . . . , nk}

represents any other nodes within the method subgraph.

We present a backward slicing algorithm, BackwardSlice, in Table 5.1. For

a backward slice, given a graph, G = (N, Ec, Ef ) and point of interest n0, we

trace dependence edges backwards from n0 and mark visited nodes. If a visited

node is not a def node, it cannot be an entry node to a method, and is treated

normally. If a visited node is a def node with an empty nexpr, then the node is

a placeholder for a while subgraph, and is treated normally. If the visited node

is a def node associated with a value returned from a method, the algorithm

explores the method and uses templates as discussed above. We do not present

an algorithm for a forward slice, as it is almost identical to the BackwardSlice

algorithm, with edges traversed in a forward direction.

The BackwardSlice algorithm visits each edge at most one time. As discussed

in Section 4.1.4, the expected number of edges is of the same order of magnitude
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as the number of nodes in the graph, thus the slicing algorithm is O(n) in the

expected case, and O(n2) in the worse case.

5.2 Constant Folding and Constant Propagation

Constant Folding and Constant Propagation are compiler optimization tech-

niques. Constant Folding refers to the reduction of subexpressions containing

only constant values [ALS07]. Constant Propagation refers to the replacement

of variables having determinate constant values with the value [ALS07]. Clearly,

these processes may be iterated at one point during compilation or repeated at

several points in a single compilation in order to take full advantage of determi-

nate values prior to program execution. In terms of the SOOPDG, this process

occurs through an application of the rewriting semantics.

As discussed in Chapter 2, the SOOPDG incorporates the SFU form of the

PDG at its core, while other dependence based forms incorporate the SSA form.

When performing Constant Folding and Constant Propagation, the SFU form

exhibits an advantage in analytical capability over the SSA form, as shown in

Figures 5.1 and 5.2 using the code fragment listed. The sample program is com-

posed only of constant assignments, and thus may be fully resolved a priori.

Constant propagation for the SSA form is dependent upon the outcome of the

predicate, while propagation for the SFU form may continue to completion inde-

pendently of the outcome of the predicate node.
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Table 5.1: Backwards Slicing Algorithm

BackwardSlice( graph G, node n);

Given SOOPDG G = {N, Ec, Ef} and node n

S = program slice for n0 ={n0}

W = worklist = {n0 }

while (W is not empty) {

W ′ = temporary worklist = φ;

for (each node ni ∈ W ) {

if ( ntype is not def ∨ nexpr is empty ) {

Wi = { nj | ((nj, ni) ∈ Ef ∨ (nj, ni, b) ∈ Ec) ∧ nj /∈ S; }

} else ( ni is a def node for method m at a call site) {

nx = the xfer node in method m associated with nm;

if (T nx
m /∈ T ) {

Gm = subgraph for method m;

T nx
m = BackwardsSlice( Gm, nx );

T = T ∪ T nx
m ;

}

T ni
m = {d1, d2, . . . , dj}, {n1, n2, . . . , nk};

Wi = Wi ∪ {d1, d2, . . . , dj};

S = S ∪ {n1, n2, . . . , nk};

}

W ′ = W ′ ∪ Wi;

}

S = S ∪ W ;

W = W ′;

}
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Figure 5.1: SSA Form and Constant Propagation

Figure 5.2: SFU Form and Constant Propagation
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5.3 Call Chain Analysis

Call chains are sequences of method calls within a program. A call chain tree is

typically used to represent calling relationships, where nodes represent methods

(or call sites within methods) and the directed edges represent method calls.

For example, (m1, m2) indicates that method m1 calls method m2. Call chains

are feasible if they can be traversed by an instance of program execution, and

infeasible if there is no possible data set that will allow a program to traverse

the chain. Call chains are used for software understanding by allowing graphical

representation of calling relationships among methods [RKG04]. Call chains are

also used in software testing by requiring that data sets be developed exercising

all feasible call chains [RKG04].

The context problem arises again in that call chains may not show how the

called method relates to the calling method(s). Call chains may be context sen-

sitive or context insensitive [GDD97]. Context insensitive call chains contain a

single node for each method, regardless of the number of actual calls or calling

locations. Context sensitive call chains provide more information by representing

individual methods with multiple nodes, with each node providing more specific

information regarding the calling context.

We define call trees with respect to specific methods such that the method

resides at the root of the call tree, denoted as CT(m). This allows us to describe

call trees emanating from any method within a program, and denote the call tree

for an entire program as the call tree emanating from the program’s main method,

denoted CT(main). A call tree contains two components: the root method id,

and nested call trees emanating from the methods called by the root method.
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Call trees are formally defined in Definition 36. A call chain is a single path

within a Call Tree, and a call forest is a set of call trees.

Definition 36 (Call Tree, CT(m)) A Call Tree for method m, denoted CT(m),

is the call tree formed with method m as its root, having the following form:

CT(m) = ( m, NULL ) if method m calls no other methods, and

CT(m) = ( m, (CT(m1), CT(m2), . . ., CT(mk))) if m calls k > 0 methods.

As an example, assume method m1 calls m2, which in turn calls m3. The call

trees developed by this call chain are given as follows:

CT(m3) = ( m3, NULL) ,

CT(m2) = ( m2, CT(m3) ) = ( m2, ( ( m3, NULL) )), and

CT(m1) = ( m1, CT(m2) ) = ( m1, ( m2, ( ( m3, NULL) ))).

The nested format of the call trees allows for extraction of any specific call chain,

and provides the context of any specific call in a manner similar to variable scoping

rules. We distinguish between the actual call tree, CT(m), and a reference to the

call tree, CTm, and use this distinction to allow termination of the MakeCT

algorithm in the event of cycles in call chains.

We present a recursive algorithm, MakeCT, in Table 5.2, that creates a con-

text sensitive Call Chain Tree from static analysis of an SOOPDG. We presume

type analysis has resolved variable names to classes prior to the initiation of the

algorithm; in cases involving polymorphic methods the algorithm creates the set

of all possible call chains. The MakeCT algorithm makes use of a call tree forest,

F , to identify call trees that have already been calculated. The first encounter

with a specific method results in a recursive call to MakeCT on the method.

The resulting call tree is maintained in F so that subsequent visits to the same

method along another path in the tree does not require duplicate calculation.

MakeCT also makes use of a call chain, CTC, to identify cycles in the specific
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calling sequence being explored. If a cycle is detected in the chain by reference to

a method mc, the path is “capped” with a reference to the call tree rooted at mc,

CTmc . This ensures termination of all paths in the tree, either by encountering

a method calling no others, or by encountering a method calling an ancestor in

its call chain.

The MakeCT algorithm requires an SOOPDG, a method, a call chain, and

a call forest as input. Each node in the method is examined iteratively for call

sites, and the methods referenced at each call site explored through recursive

calls to MakeCT. The recursive call utilizes the same SOOPDG; to allow method

extraction and examination, the call chain is appended for each recursive call to

allow detection of cycles, and the completed call tree is added to the forest for

use in subsequent calls. The algorithm is presented in Table 5.2.

The MakeCT algorithm results in a context-sensitive call chain tree. The re-

sulting tree coupled with rewriting semantics may be used to verify feasible call

chains identified in the tree. If a mapping of program statement to SOOPDG

node is maintained during SOOPDG creation, specific nodes in the tree may be

identified with specific call sites within the original program. The worse case cost

of the MakeCT algorithm is O(m!), with m representing the number of methods

in a program. This case requires that each method references every other method

in the program, which results in n! possible unique paths from the root to a leaf

in the tree. In the expected case, we recognize that OO programmers attempt to

reduce unnecessary coupling between methods, and each method directly inter-

acts with a relatively small number of other methods. The MakeCT algorithm

becomes dominated by the number of nodes that must be visited to identify call

sites. Since G contains n nodes, and the MakeCT algorithm utilizes the Call Tree
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Forest, F , to reduce duplication of effort, MakeCT is expected O(n), where n is

the number of nodes in the SOOPDG.

5.4 Inheritance Analysis

Inheritance is tracked in a straightforward fashion through following the flow de-

pendence edges leading from idef nodes that define classes. If an idef node is

the target of a flow dependence edge, then the target is a class definition that is

a subclass of the parent node by definition of the SOOPDG, and methods and

attributes not explicitly defined in the child node are inherited. This reduces in-

heritance analysis to simple reachability analysis along flow edges between the idef

nodes defining classes. The approach is similar to others presented in the litera-

ture that use edges to denote superclass-subclass relationships [Zha99, WRW03].

The cost is linear with respect to the number of flow edges connecting superclasses

to subclasses.

5.5 Archive and Bytecode Size Reduction

The size of bytecode can vary greatly due to the aggressiveness of the bytecode

compiler. The SOOPDG can be used to reduce the size of bytecode through stan-

dard dead code analysis. Dead code appears in two forms in the SOOPDG. The

first represents unused code and is recognized by the lack of outgoing dependence

edges. Clearly, nodes having no outgoing flow edges do not contribute to program

computations, and nodes having no outgoing control dependence edges cannot

provide satisfaction of control dependence criteria to any nodes. The second form
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of dead code is recognized as being unreachable along a control dependence path

from the SOOPDG Start node. SOOPDG nodes not reached through forward

control dependence paths may be safely removed from the program, and bytecode

is not included for them.

Inclusion or exclusion of methods into an archive does not depend solely on

control dependence. Classes are represented by idef nodes containing all of the

class methods. Control dependence may reach the idef node and thus every

method in the class. However, this does not mean every method is required in

the bytecode. The only methods that require inclusion into the bytecode are

candidates to flow along flow edges to a USE node. This is an advantage of the

higher-order semantics of the SOOPDG; it reduces the problem to the equivalent

problem of variable use in first-order representations.

We do not present a formal algorithm for archive reduction, but present a

discussion of the process. Nodes are retained if they have both incoming control

dependence and outgoing flow edges. Identification of unnecessary program ele-

ments can be done through a depth-first traversal of control dependence edges.

For each non-output node visited that has no outgoing edges, remove the node

and associated incoming edges. For each incoming edge deleted, verify that the

head node has other remaining outgoing edges. If it does not, remove the head

node and repeat the process. Mark each surviving node as visited. Visited nodes

need no further inspection. The process terminates when all control dependence

edges have been traversed. The process removes unused code based on the lack

of outgoing edges. Unmarked nodes are unreachable through any control depen-

dence path, and may be removed from the graph. The resulting graph contains

no dead code and represents the reduced code to be contained in an archive or

bytecode representation.
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The complexity of this process is based on the number of edges in the graph.

Each control dependence edge is visited at most twice, once for the depth-first

traversal and potentially once if a target node is removed. Each flow dependence

edge is visited only if it is removed from the graph, implying each flow dependence

edge is visited at most once. As discussed in Chapter 4, the worse case number

of edges is O(n2), though the expected number is O(n), where n is the number of

nodes in the SOOPDG. Thus, the worse case and expected complexity of archive

reduction is O(n2) and O(n), respectively.
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Table 5.2: Call Tree Creation Algorithm, MakeCT

G = {N, Ec, Ef}

m = myclass.main;

CTC = “empty“;

CTF = φ;

Algorithm MakeCT( SOOPDG G, method m, CTChain CTC) {

Global CallTreeForest, F ;

CallList = φ;

for (each node, n in m)

for (each method, m′, referenced in n) {

if ( m′ /∈ CTC ) {

if ( CT(m’) /∈ F ) {

F = F ∪ MakeCT( G, m′, CTC:m, F );

}

CallList = CallList ∪ getCT( m′, F );

} else {

CallList = CallList ∪ CTm′ ;

}

}

CT (m) = ( m; CallList );

return CT(m);

}
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6

COMPARISON WITH OTHER REPRESENTATIONS

Dependence based representations providing varying degrees of support for OO

features have been presented in the literature. A number of authors discuss de-

pendence based OO representations only in the context of program slicing, and

thus focus primarily on method interactions. These authors discuss method in-

teractions by extending the traditional notion of procedures within the SDG,

and do not discuss other OO features in depth [?, LH98, CX01, HS04, AH03].

Others support a wider range of OO features in static representation through

introduction of numerous node and edge types [MMK94, Zha99, WRW03]. We

are interested in representations specifically targeting Java, and supporting a

wide range of OO features. We have selected two dependence based representa-

tions based on their prominence and support for a wide range of OO features,

and compare these representations with the SOOPDG. These representations,

the Java Software Dependence Graph and the related Java System Dependence

Graph, share characteristics typical of Program Dependence Graphs supporting

OO languages. Specifically, these forms extend the PDG and the related System

Dependence Graph by adding new node and edge types to capture OO proper-

ties. These edge types fill special purpose roles such as package definition, class

definition, inheritance, and definition and use of methods. Zhao and Walkinshaw

et al use “vertex” and “arc” as opposed to “node” and “edge”. For consistency

within this thesis, we will use “node” and “edge” to discuss their representations.
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6.1 The Java Software Dependence Graph

Zhao [Zha99] appears to be the first to publish a PDG-like representation of a

full range of Java features containing class definitions, inheritance, and abstract

classes within a single representation. The Java Software Dependence Graph (we

denote it JSDG-Z to distinguish from the Walkinshaw representation below) is

composed of a collection of interlaced graph structures capable of representing

Java programs in a static form. No rewriting semantics are associated with the

JSDG-Z. The JSDG-Z incorporates while loops through cycles in the control

dependence edges of the MDG. The JSDG-Z supports polymorphism through

introduction of a polymorphic choice node type.

The basic structure is the Method Dependence Graph (MDG) that is essen-

tially an SSA form PDG representing an individual method. The MDG contains

assignment nodes, and predicate nodes, and a unique Start node filling the same

function as in traditional PDG forms. Formal in and formal out nodes correspond

to SOOPDG def and xfer nodes, respectively. Control and flow dependences are

represented within the MDG through dependence edges in the traditional fashion.

Nodes corresponding to program statements calling a method are connected

to a method call node, which in turn is connected to actual in and actual out

nodes. These nodes approximately correspond to SOOPDG def and xfer nodes

identifying call sites and supporting method input and output. The actual in and

actual out nodes at a single call site are connected by summary dependence edges

to facilitate static program analysis requiring backwards traversal of the graph.

The summary edge is required to allow a backwards traversal to continue across

the calling site without entering the method and losing the context of the specific

call. The method call site is connected to the method start node through a call
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dependence edge, which serves the same purpose as a control dependence edge in

traditional PDGs.

Classes are represented within a class dependence graph (CDP) as a collec-

tion of nodes depicting the class variables, instance variables, and methods. The

CDP contains a unique class start node connected to the component variables and

methods through class-membership dependence edges. Inheritance is represented

through duplication of the inherited class and instance methods and variables

within the dependence graph for the subclass. Interfaces are represented in a

similar manner to class representation. An interface dependence graph (IDG)

consists of an interface start node connected to the member method declarations

through interface-membership dependence edges. The method declarations are in

turn connected to each implementation of the method. Polymorphism is repre-

sented through a polymorphic choice node, providing possible destinations of a

method call.

Figures 5.1 and 5.2 summarize the JSDG-Z node and edge sets. The structure

of the JSDG-Z graph is more complex than the SOOPDG due to the introduction

of these specialized nodes and edges. The JDSG-Z also departs from traditional

dependence graph concepts in several ways. Cycles and loops are permitted in

the graph, which deviates from the acyclic structure of the traditional depen-

dence graph. This complicates control flow analyses by allowing a node to have

multiple control parents, and complicates data flow analyses by violating the SA

property. Control dependence edges are permitted to initiate at non-predicate

nodes, which confounds the notion of control dependence and program decision

points. Specifically, call sites act as control parents to method Start nodes, which

implies that analysis requiring identification of control dependence paths or spe-

cific program control points is complicated by the potential to inspect all node
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types. Edges representing membership in classes or packages do not correlate to

any of the true dependences identified by Kuck et al [KKP81] that motivated

definition of the PDG. These edges, while useful for investigation into program

structure, do not provide information as to program meaning.

6.2 The Java System Dependence Graph

Walkinshaw et el [WRW03] proposed modifications to the JSDG-Z representa-

tion. They present the Java System Dependence Graph (JSDG), which we denote

as JSDG-W to differentiate from Zhao’s Java Software Dependence Graph. The

JSDG-W provides a different mechanism for representing polymorphism and also

represents abstract classes in addition to the interfaces defined by Zhao [Zha99].

Like Zhao, Walkinshaw et al [WRW03] provide for Java’s OO language charac-

teristics employing special purpose nodes and edges to the basic PDG definition.

The JSDSG-W utilizes most of the features of the JSDG-Z. We discuss differences

below.

The JSDG-W handles method calls slightly differently than the JSDG-Z to

support polymorphism without the use of the polymorphic choice node [WRW03].

Method call sites are expanded into calling nodes and actual-in, actual-out nodes,

but the JSDG-W provides a structure for each potential polymorphic method

that may reach the call site. The JSDG-W requires that a copy of a class graph

structure be incorporated in the overall graph for each instantiation of the object

in the program. The techniques introduced by Zhao [Zha99] to support interfaces

are used by Walkinshaw et al [WRW03] to support abstract classes.

As with the JSDG-Z, there is no discussion presented regarding rewriting

nor aliasing for the JSDG-W. The usage of the method dependence edge permits
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control dependence to initiate from non-predicate nodes in the case of method

calls; this confounds the notion of control dependence. Loops are represented

using cycles in the graph.

Figure 6.1: Node Set in JSDG-Z and JSDG-W

6.3 Improvements Provided by the SOOPDG

The SOOPDG has several advantages over the JSDG-Z and JSDG-W includ-

ing fewer element types, cleaner semantics, improved clarity, and smaller graph

size. Primarily, the SOOPDG is able to represent OO features such as inheri-

tance and object aliasing through traditional PDG edge types. This results in

far fewer edge types than the JSDG-Z and JSDG-W forms, which in turn results

in cleaner analysis techniques, and allows for direct leveraging of traditional pro-

gram analysis techniques. The SOOPDG has an associated rewriting semantics,

which results in a more compact static program representation, and more effi-
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Figure 6.2: Edge Set for JSDG-Z and JSDG-W

cient analysis techniques, as discussed below. The ability to define a rewriting

semantics ultimately allows formal reasoning regarding program transformations

and the maintenance of program semantics that is not possible with the existing

static representations (see Section 8.2).

The SOOPDG exhibits an advantage in terms of clarity of control dependence.

The SOOPDG requires that control dependence edges emanate only from predi-

cate nodes, as opposed to the JSDG-Z and JSDG-W which allow call sites to be

the source for control dependence. Example 1, in Figure 5.3, illustrates the am-

biguity arising in the JSDG-W representation. This figure represents a method
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call in the SOOPDG and JSDG-W systems. For clarity, only flow and control

dependence edges are shown. The calling sites are shown in grey boxes. Because

the JSDG-W uses control dependence edges to associate actual out and actual in

parameters, Node 5 in the JSDG-W is control dependent on nodes 1, 3, and 4.

No determination can be made simply by considering control dependence edges

as to what control dependence criteria will permit node 5 to execute. A similar

confusion arises with the method’s predicate node, which is control dependent on

node 2 when the actual issue at stake is a requirement that a value flow out of

the method. The use of control dependence in this sense convolutes control and

flow dependences, and could require traversal of flow edges to analyze properties

of control flow in the program. In contrast, the SOOPDG only allows predicate

nodes to initiate control dependence. This property of the SOOPDG maintains

clarity and continuity in control dependence paths and allows a separation of

flow and control dependence issues while reasoning about program properties.

For example, the development of the Semantic PDGs [Sel90a], and the SSA and

SFU PDGs [CFR89] all depended on well behaved control flow (no breaks or

goto’s) represented by control dependence edges connecting predicate nodes in a

continuous path.

The number of nodes required for the SOOPDG to represent a given program

is smaller than the JSDG-Z and JSDG-W forms. The primary reason for this

is that the JSDG-W duplicates the entire class dependence graph for each ob-

ject instantiated of the class, while the SOOPDG adds nodes only for instance

variables and modified class variables at the point of object construction. A sec-

ondary reason is the inefficient representation of polymorphic methods at call

sites within the JSDG-W. The JSDG-W requires duplicate nodes transporting

method input/output parameters for each polymorphic form, while the SOOPDG

utilizes one node set regardless of which form of the method is invoked at run
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time. This node penalty is not significant for a single call site, but could con-

tribute to an O(n) growth for programs containing polymorphic utility methods

used widely throughout the program. Still another inefficiency is in the represen-

tation of extended methods in that the entire superclass is duplicated within the

subclass of the JSDG-Z and JSDG-W representations. The SOOPDG requires

only the additional or modified class features to be explicitly represented within

the subclass. Each of these inefficiencies is summarized in Figure 5.4.

The examples provide illustration of the JSDG-W inefficiencies addressed by

the SOOPDG. Example 3, in Figures 5.5 through 5.8, provides another repre-

sentative situation. We present a program shown by Walkinshaw et al [WRW03]

encompassing a wide range of Java features. The program is reproduced in Figure

5.5, and the resulting SOOPDG is given in Figures 5.6, 5.7, 5.8. The JSDG-W

given by Walkinshaw et al [WRW03] is larger than the equivalent SOOPDG (160

nodes compared to 108), and would be more so with repeated instantiations of

a single class. The smaller program representations improves the efficiency of

analysis on the static program representation (see Chapter 5).

The smaller graph sizes and reliance on a rewriting semantics results in more

efficient program analysis. As an example we compare program slicing, which

forms the basis of many program analyses as noted in Chapter 5. The program

slicing algorithms provided for the JSDG-Z and JSDG-W follow the two-phase

procedure of Hortwitz et al. [Zha99, WRW03], as described in Section 5.1. Sum-

mary edges are created at all program call sites prior to creating the slice, through

exploration of the called methods. The slicing algorithm visits all nodes without

entering called methods by traversing the summary edges during the first phase of

the algorithm, and the called methods are then entered during the second phase.

The slicing algorithm presented for the SOOPDG is more efficient in that it does
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not require summary edges, and therefore explores only the methods encountered

during an individual slicing operation. The resulting slice is also smaller due to

the more efficient SOOPDG representation of objects and polymorphic calling

sites, which is a direct result of the existence of the rewriting semantics.

The SOOPDG also has an advantage in that its dependence on traditional

PDG forms allows it to support parallel execution of a single threaded program.

The inherent ability of the PDG rewriting semantics to support parallel oper-

ations was discussed in Chapter 2. Rewriting semantics for the JSDG-Z and

JSDG-W have not been presented, but there are features of these graphs that

appear to be barriers to parallel operations. The JSDG-Z contains loops in the

control flow edges. This violates the Single Assignment property and allows

confusion over the value of variables available to differing loop iterations, which

contradicts the author’s intention to base the method dependence graph on the

SSA form of the PDG. The authors do not provide a rewriting semantics to re-

solve how loops may be expanded and loop dependent values maintained. Since

loop structures are often targets of parallelization techniques, this appears to be

a challenge to parallel rewriting of the graph. The JSDG-W allows multiple call

sites for methods to flow data in and out of the method. The choice of outgo-

ing edge used for a returned value from the method appears to be related to

the control edges connecting the actual in and actual out parameters at the call

site. That is, the value is returned to the actual out node having its control

dependence criteria satisfied. Without a rewriting semantics published for this

representation, it is difficult to see how two or more call sites acting in parallel

would disambiguate the location of the returned value from the method.
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Figure 6.3: Example 1: Method Call in SOOPDG and JSDG-W

142



Let:

|Ci| = Number of nodes in Class i.

|Vi| = Number of class and instance variables in Class i.

NOBJECTSi = Number of instantiated objects of Class i.

NPARAMSm = Number of input/output parameters for method m.

NPOlYm = Number of polymorphic forms for method m.

Nodes Required to Represent k Classes:

JSDG-W:
∑k

i=1 NOBJECTSi * |Ci|

SOOPDG:
∑k

i=1 |Ci| + NOBJECTSi * |Vi|

Nodes Required to represent a method call site:

JSDG-W: ( 1 + NPARAMSm ) * NPOLYm

SOOPDG: 1 + NPARAMSm

Nodes Required to Represent Inheritance of Depth d:

Let |C0| represent the size of the original class to be extended.

Let |δCi| represent the size of features unique to the ith class compared to the

Ci−1 class being extended.

JSDG-W: (d + 1) ∗ |C0| + d ∗ |δC1| + . . . + |δCd|

SOOPDG: |C0| + |δC1| + . . . + |δCd|

Figure 6.4: SOOPDG and JSDG-W Size Comparisons
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Figure 6.5: Example 3: Program Presented by Walkinshaw et al [WRW03]

144



Figure 6.6: Example 3: SOOPDG for Figure 5.5, main method and Execute class

(1 of 3)

Figure 6.7: Example 3: SOOPDG for Figure 5.5, SimpleCalc class (2 of 3)
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Figure 6.8: Example 3: SOOPDG for Figure 5.5, Calculator Interface and Ad-

vancedCalc Class (3 of 3)
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7

THE SIMULATION DEPENDENCE GRAPH

This chapter presents the Simulation Dependence Graph (SDG), a natural ex-

tension to the SOOPDG with applications in the modeling and simulation field.

Specifically, we define the SDG and establish the foundation for a line of re-

search investigating the use of the formalism in the representation and analysis

of simulation systems. While this discussion is specific to simulation systems, the

concepts have application in the fields of component based software.

Component based software development is an emerging topic in the software

engineering discipline [Par03, Lau06]. The success of JavaBeans is a prominent

example [Mic05] of its benefits. The concept of component re-use and issues

associated with creating new applications through the composition of existing

components is common to both fields of study. Specifically, notions discussed

here such as syntactic and semantic interoperability transfer directly between the

problem domains. Simulation composability and software component based de-

velopment both require that appropriate components be identified for use, their

functionality be measured against requirements, and the resulting system be sta-

ble [WGH03, Par03].

The SDG views computation at a coarser granularity than the SOOPDG. The

elements of traditional PDGs and the SOOPDG roughly correspond to program

statements and relationships between these statements and allow for analysis at

the program level. In contrast, the elements of the SDG correspond roughly to
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model features, model components, and the relationships between them. The

SDG allows for analysis at the system level. Program analysis techniques devel-

oped using the PDG may be leveraged to allow static and dynamic analyses of

simulation systems. Here we present basic definitions used in the development

of the SDG, provide an example simulation, and discuss potential uses for this

representation.

7.1 Background Definitions

Informally, a model is a mathematical approximation of a real world system rep-

resenting a finite number of measurable attributes, or features of interest, of the

real world system [WGH03]. The model specifies a set of attributes, coupled

with mathematical functions that update the values of these attributes to repre-

sent sufficiently the state and behavior (state changes) of the real world system

being investigated. A simulation is a process that investigates the behavior of

the model [WGH03] through a series of updates to the attribute values. For

our purposes, the model is implemented through software, and the simulation

is the act of executing the software program(s). We represent the model imple-

mentation using the SDG in the same way that the PDG represents programs

implementing computational algorithms. To represent a simulation, there should

be a correspondence between the mathematical model specification in the model-

ing space and the implementation of the model in the simulation space [WGH03].

A graph representation meets this requirement, in that a rewriting semantics may

be defined that corresponds to the original program semantics [Sel90a].

In this section we develop a set notation that acts as an intermediate repre-

sentation in the transition from a model specification to an SDG representation
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of the model. This set notation is based largely on that developed by Petty et

al [PW03b] in their discussions about semantic composability of models. We be-

gin by defining individual attributes and their update functions, and continue to

define models and simulations.

We define a feature of a model, denoted as f , as a measurable aspect of a real

world system represented in the model (Definition 37). We define an attribute,

denoted as a, as a range of values (Definition 38) that may be assigned to a

feature. This definition is similar to Petty’s definition [PW03b], except that we

do not restrict attribute values to integers. This definition is also in accordance

with the requirement that simulations contain explicitly defined boundaries and

constraints [WGH03]. We refer to an individual value residing in an attribute

as an attribute value, and denote it as α. We further denote that an attribute

vector, A, is a tuple of attributes (Definition 39), and an attribute value vector,

AV , is a tuple of specific values from each attribute contributing to the vector

(Definition 41). An attribute update function, F(AV ), is a process that receives

a (potentially empty) vector of attribute values as input, and selects a value from

the attribute it is associated with as output (Definition 42). Attribute update

functions provide a mapping from a vector of attribute values to attribute values,

a ⇐ F (AV ).

Definition 37 (Feature) A feature, f , is a representation in a model of a mea-

surable aspect of the real world system being studied.

Definition 38 (Attribute) An attribute, a, is a range of values, that is not

necessarily continuous. We define attributes through the following recursive rules.

1. i is a single value in Z ∪ ⊥.

2. r is a single value in R ∪ ⊥.
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3. io − if designates a range of values in Z from io to if , inclusive.

4. ro − rf designates a range of values in R from ro to rf , inclusive.

5. a = φ designates an attribute containing no members.

6. a = {α|io ≥ α ≥ if , α, io, if ∈ Z} designates an attribute.

7. a = {α|ro ≥ α ≥ rf , α, ro, rf ∈ R} designates an attribute.

8. if a1 and a2 are attributes, then a = a1 ∪ a2 is an attribute.

Definition 39 (Attribute Vector) An attribute vector, A, is an ordered tuple

of attributes, A = (a1, a2, a3, . . . , ak)

Definition 40 (Attribute Value) An attribute value, α, is an individual mem-

ber of an attribute.

Definition 41 (Attribute Value Vector) An attribute value vector, Av, is an

ordered tuple of attribute values, Av = (α1, α2, α3, . . . , αk), such that αi ∈ ai, for

1 ≤ i ≤ k.

Definition 42 (Attribute Update Functions) An attribute function, Fi(AV ),

takes an attribute value vector and produces an attribute value, α ∈ ai.

We define a model, M , as a set of features with associated attributes and

update functions (Definition 43). The values selected for all model attributes at

any point in the course of a simulation represent the state of the simulation. The

update functions serve to modify the current values selected from each attribute in

the model as it transitions from state to state. Since models are represented in set

format, model composition may be defined in terms of set union (M3 = M1∪M2),

and decomposition can be defined as set subtraction (M1 = M3 −M2).
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Definition 43 (Model) A model, M, is a set of tuples of features, attributes

and attribute update functions.

M = {(f1, a1, F1), (f2, a2, F2), . . . , (fn, an, Fn)}.

This set notation form of model representation can be used to discuss model

properties in a static format. We define two such model properties, completeness

and ambiguity, useful in defining the notion of a simulation. Completeness refers

to the capability of a model to supply input values for its update functions. A

complete model contains all attributes required as input for all update functions

in the model (Definition 44). Simulation systems are often constructed by com-

posing models as simulation components. For example, an aircraft model may

be composed from a geometric model defining airframe shape, an engine model

defining engine performance across various flight regimes, and an environmental

model describing the atmospheric effects on the aircraft. No single component

may be complete, though the aircraft model may be complete once composed.

The second property of interest to us is the notion of ambiguity. A model is am-

biguous if there is more than one attribute and update function pair providing

values for the same model feature of interest (Definition 45).

Definition 44 (Completeness) A model, M , is complete if all attributes re-

quired to supply values to all update functions reside within the model. That is

∀F (AV ) ∈ M, ∀αi ∈ AV ,∃(fi, ai, F (AV i)) ∈ M

Definition 45 (Ambiguity) A model, M , is ambiguous if it contains more than

one attribute and update function providing values for the same model feature. M

is ambiguous if ∃i, j, such that (fx, ai, Fi(AV )), (fx, aj, Fj(A
′
V )) ∈ M , and i 6= j.

A simulation is a process acting on a model that updates one or more at-

tributes one or more times (Definition 46). We will require that the model be

151



complete, so that all inputs to all update functions reside within the model, and

non-ambiguous, so that deterministic sources exist for inputs to update functions.

In order to perform the simulation process we require some form of sequencing

designating the order in which attributes are updated. Let As denote a special

attribute vector that designates this sequence of attribute updates, then a simu-

lation can be thought of as a function of the model and the sequencing attribute

vector, S = F (M, As).

Definition 46 (Simulation) Given a complete, non-ambiguous model, M , and

a sequencing attribute vector, As, we define a simulation, S = F (M, As) to be a

function operating on M by updating its attributes in accordance with the attribute

update functions and the sequences designated by As. This process may be iterative

and does not require termination criteria.

This set notation form of a model and the simulation process is used to specify

a model in a suitable format to transition to the SDG form.

7.2 Definition of the SDG

The Simulation Dependence Graph (SDG) is composed of a node set and three

edge sets (Definition 47). The node set represents attributes of the real world

entities being simulated, their allowable value ranges, and the functions that up-

date the attribute values during the course of a simulation. Nodes are annotated

as PUSH or PULL nodes, meaning that attribute updates are supplied to other

nodes upon calculation or upon request, respectively. This allows for imperative

and lazy model semantics to be represented. The three edge sets represent data

dependences, entity memberships, and sequencing constraints. The data depen-
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dence edges explicitly model input-output interactions between attributes; this

information can be used to analyze and optimize system behavior in the same

manner that modern optimizing compilers perform program data-flow analysis.

The entity membership edges explicitly associate attributes belonging to the same

physical entity; this information can be used to distribute entity-dependent be-

haviors and constraint across a set of nodes representing a single simulated object.

The sequencing constraint edges explicitly represent the order in which attribute

values are updated; these edges may be used to demonstrate the efficiency of

one manner of scheduling tasks over another. The sequencing edges may model

uni-processor or parallel processor environments.

Definition 47 (Simulation Dependence Graph) The Simulation Dependence

Graph, G = {N, Ef , Ec, Ee}, where:

1. N is the node set. Each node, n ∈ N , contains an attribute, its update

function, and a tag designating the node as a PUSH or PULL node.

2. Ef is the set of flow dependence edges. Each edge, ef ∈ Ef , identifies an

ordered pair of nodes, (ni, nj), such that nj is flow dependent on ni.

3. Ec is the set of sequencing edges where each edge, (ni, nj), describes the

order in which attribute updates are performed in a pairwise fashion.

4. Ee is the set of undirected entity edges containing edges of the form (ni, nj),

indicating that nodes ni and nj belong to the same entity.

The node set, N , and flow edge set, Ef , are derived directly from the set

notation form of the model. The sequencing edges, Ec, and entity edge set, Ee,

are typically specified by the model designer.
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7.3 Ants on a Log: A Simulation Example

We will use a simple model of ants walking back and forth along a log as an

example of a simulation and corresponding SDG. The model is discussed below

and defined in Figure 7.1, while the corresponding SDG is shown in Figure 7.2.

The Ants on a Log (AL) simulation has the following components:

1. Entities representing ants are walking back and forth on a level log.

2. Ants cannot pass each other; the log is effectively 1-D.

3. Ants turn to avoid falling off the log or colliding with other ants.

This simple model contains the key elements of all simulations: an environ-

ment (the log), agents (the ants), agents acting with the environment (ants - log

interactions), and agents affected by other agents (ant-ant interactions).

This simple model can easily be made remarkably complex. For example, the

model may include expanding or shrinking logs, passing zones, variable speed

ants, territorial ants, and teams of ants acting in concert.

7.4 The SDG and Model Analysis

Model composability is important because low-level models are integrated to com-

pose higher system-level simulations, and composition must be stable when parts

are replaced [WGH03]. While composition in the computational sense implies

the combination of simple functions to create complex behaviors, the Modeling

and Simulation community uses the term to imply the ability to combine existing

models into new application domains [KN00]. The term interoperability is also
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Figure 7.1: Definition of the Ants on a Log Simulation

used to describe this concept of composability. The notion that overall system

behavior can be described or maintained purely through examination of model

components is not valid, as models may produce surprising system level behaviors

through emergent interactions of the component models [Par03]. It is also not

possible, in the general case, to predict what effects replacement of model com-

ponents will have on the overall model. Textual (syntactic) differences between

models can be identified, but it is in general undecidable to determine semantic

differences [Hor90].

The composability problem of replacing one model with an equivalent al-

ternative has been addressed in various ways. The problem is typically broken

into two components: syntactic and semantic composability [PW03a]. Syntactic

composability can be approximated through examination of model structure, and

function inputs and outputs. While this addresses the syntactic composability
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Figure 7.2: SDG for the Ants on a Log Simulation

of models, it does not assure that software representations of the models are

composable.

Determination of semantic composability is not Turing computable in the

general sense. Semantic composability may be difficult because different users

may have different contexts [WGH03]. One proposed method attempts to de-

termine if two model components are semantically equivalent through the use of

meta-data added to the model. For example, editor tags are one way to sup-

ply meta-data information for an underlying model [Hor90]. This assumes the

new model was created by editing an old one, and does not generalize to two

models created in completely different processes. Another technique proposed

for semantic composability is to provide an internally consistent library of poten-

tial component models that may be combined in various ways to meet specific
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needs [KN00]. A third method is to estimate model behaviors through a form of

profiling by examining actual run time behaviors or behavior predictions of two

models [PW03a].

The SDG supports syntactic composability of models directly, and provides

a new mechanism to address semantic composability. Both of these techniques

require further development through future research efforts. Syntactic compos-

ability is addressed through duplication of graph structures across some interface.

For example, a subcomponent may be removed from the overall model, leaving

a “hole” in the graph, with dangling edges. Any replacing subcomponent must

fill the “hole” such that the resulting model has no dangling edges. Semantic

composability may be investigated using traditional PDG analysis techniques.

We propose using the notion of a program slice as a measure of semantic com-

posability.

A program slice identifies, for a given program point, all nodes in a graph

affecting the computation at that point, or affected by the computation at that

point [HRB90]. The notion of using program slices as a measure of semantic

difference for traditional PDGs is discussed by Horwitz [Hor90]. For an SDG,

we may build a slice for each node in the model to identify all nodes affecting,

and affected by, a given node. Thus, two models (components) may be compared

by comparing the slices generated for each node in each model (component).

This provides a measurable comparison of the computations each model relies

on, and the computations affected by each model. Ranges of values for each

attribute may also be compared to allow comparison of the domain and ranges

for alternate update functions, thus providing an indirect estimate of the range

of model behaviors. A sample program slice is provided for the Ants on a Log

Model in Figure 7.3.
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Figure 7.3: SDG Slice for the l1 Node in the Ants on a Log PDG

While the SDG is still in its developmental stages, it leverages established

PDG techniques to represent simulation systems in a manner allowing static and

dynamic analysis of the systems. The analogy to program slicing is just one such

instance of how techniques and insights developed for the PDG hold promise for

formal reasoning about complex simulation systems.
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8

SOOPDG EXTENSIONS AND FUTURE WORK

This thesis has presented a definition of the SOOPDG and described program

analysis techniques that may be performed using this representation. Advantages

over other Java and OO dependence based representations have also been pre-

sented. We plan to continue this research to more fully develop the SOOPDG

as a formal model of computation in an OO environment and also as a tool to

enhance program performance. The specific areas of interest for future work

include inclusion of multi-threaded applications, development of a formal deno-

tational semantics, and adaptation of the SOOPDG to run time optimization

schemes.

8.1 Multi-threading and Unstructured Control

In this thesis, we limit the Java-like language J to a single thread. Actual Java

applications are typically multi-threaded, which implies that incorporating multi-

threaded behavior into the definition of J and the SOOPDG is a useful extension.

The literature contains examples of static dependence-based analytical techniques

developed for multi-threaded Java programs. These techniques typically gener-

ate program slices involving elements from multiple execution threads. Nanda,

Krinke, and Hammer and Snelting [Nan01, Kri03, HS04] present slicing tech-

niques for multi-threaded Java programs through direct extensions of System
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Dependence Graphs and interprocedural slicing methods presented by Horwitz

et al. [HRB90]. Zhao [Zha98] presents a slicing method capable of slicing multi-

threaded Java programs by adapting Horwitz et al [HRB90] methods to the

JSDG-Z representation. The current literature supports static representations

of multi-threaded Java programs, with no presentations of rewriting semantics.

Extending the SOOPDG representation and rewriting semantics to support

multi-threaded executions will allow the advantages demonstrated for the SOOPDG

to be applied to a fuller range of applications. The SOOPDG intrinsically sup-

ports parallel operations of a single execution thread, as discussed in Chapter

5. The operations are deterministic as the sequences specified by dependence

edges are respected [Sel89]. Though deterministic forms of multi-threaded pro-

grams can be created through explicit synchronization features such as notify

and wait [Zha98], multi-threaded programs are not guaranteed to be determin-

istic. This presents a difficulty in establishing a rewriting semantics that cor-

rectly represents program execution and potential input-output behavior in a

non-deterministic environment. This challenge may potentially be overcome by

adapting techniques to represent explicitly parallel programs using existing PDG

forms [SHW93, LMP99]. If a mechanism is not developed to represent the non-

deterministic aspects of parallel processing, there is still utility in adapting the

SOOPDG to deterministic, thread safe applications.

There is also value in extending the model to allow forms typically used in real

world programs that introduce unstructured control flow. The widespread use

of the “try-catch-throw” mechanism of exception handling is suficient motivation

for the extension. Neither the J language nor the SOOPDG presented in this the-

sis currently supports “try-catch-throw.” The J language is currently restricted

to allowing at most one “return” statement in a method, and does not support
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“break” statements. Real world Java methods often contain multiple “return”

statements accommodating different control flow paths within the method. Simi-

larly, programmers often use “break” statements to provide convenient exits from

compound statements. These are commonly used elements and their inclusion in

the model would increase the robustness and utility of the SOOPDG.

8.2 Formal SOOPDG Semantics

Parsons [Par92] developed a complete denotational semantics for the PDG to

allow formal reasoning of program properties. The PDG form developed by

Cartwright, Felleison and Parsons upheld the SFU property through use of the

valve node [CF89, Par92]. The compositional nature of the valve node, as opposed

to the φ-node used in the SSA PDG form, was instrumental in developing the

semantics presented by Parsons. Since the SOOPDG has its basis in the SFU

form it is amenable to an extension of the semantics to include the OO features.

Extending Parsons’ semantics to the SOOPDG allows formal reasoning regarding

program transformations and maintenance of program meaning.

8.3 Dynamic Performance Improvement

We propose investigating the use of the SOOPDG to enhance performance dy-

namically. Current literature provides examples of research efforts focused on

improving the performance of Java (and OO languages) by identifying paral-

lelization and compilation opportunities in the run time environment. In this

discussion we will differentiate between compilation to byte-code occurring prior
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to program execution and so-called Just In Time (JIT) compilation occurring

during execution by using the term “compilation” for the former and “JIT” for

the latter. Successful application of automated parallelization and JIT techniques

require that the same fundamental question be answered: “Does the performance

benefit obtained outweigh the overhead cost of performing the technique?” The

need to address this issue for automatic and dynamic parallelization techniques

has been discussed for some time [Tre79, Den94, LH96, ZC91] and continues to

be investigated [OH02]. The need to address this issue for JIT techniques is

displayed in current literature as well [VE00, Wha01, SYN03, BV05]. Arnold et

al [AFG05] provide an taxonomy of numerous techniques proposed to perform

run-time optimizations.

Current techniques impose a division between compile-time and run-time en-

vironments [FO98, AFG05]. This makes both compilation and execution less

efficient, as information currently accessible in only one environment is often re-

quired in the other for optimal decision making [FO98]. Decisions made during

compilation must make conservative assumptions to compensate for the lack of

information regarding the run time environment. Decisions made during pro-

gram execution suffer from a lack of information regarding program structure

and dependences normally uncovered during compilation. Existing dynamic op-

timization techniques rely on profiling of past execution history to estimate fu-

ture optimization decisions, or instrumentation of the program to assess current

optimization opportunities [AFG05, Wha01, SYN03, BV05]. A well known ex-

ample of this is the Java HotSpot technology, which tracks program execution

and performs JIT compilation of program sections when the executing program

repeatedly executes that section above some threshold [PVC01]. Future research

will adapt these techniques to the SOOPDG representation, and the efficacy of

this will be verified empirically.

162



We also propose to investigate the utility of incorporating information re-

garding program structure and dependences into an intermediate form using the

SOOPDG as a basis. The basic notion is to delay parallelization and JIT deci-

sions to run time while carrying forward information pertinent to the optimization

using a PDG-like representation. This will reduce the barrier between the compi-

lation and run time environments. Deferred compilation and JIT schemes exist,

but they are not predictive in nature and depend instead on run-time profiling

[AFG05, VE00]. Similarly, dynamic parallelization schemes defer decisions to the

run-time environment and then operate on profiling [VE99]. The representation

is decorated with program dependence information and execution cost estima-

tions to allow optimization decisions to be made in a predictive fashion prior

to execution of the program segments in question, rather than operating ineffi-

ciently during a profiling phase. While this has been suggested in the past [FO98],

there do not appear to be implemented examples. This scheme requires that an

Information Preserving (IP) intermediate representation be developed to carry

information discovered during compilation forward to the run time environment.

We anticipate utilizing the SOOPDG as a basis and will refer to the information

preserving form as the IPPDG. The IPPDG must be developed in conjunction

with a run time compiler/interpreter that dynamically performs parallelization

and/or JIT operations based on information embedded in the IPPDG, current

data values, and characteristics of the current run time environment.

8.4 Extending the Simulation Dependence Graph

The SDG presented in this thesis requires further development and verification.

Future work will include development of a more precise definition of rewriting
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semantics and precise definition of system properties such as composability. The

utility of the model will be verified through application to test simulation systems,

both as a predictor of system performance and as a profiling tool intrinsic to the

system run-time infrastructure. In addition, adapting the SDG concepts to more

general software composability issues appears to be a fruitful line of research.
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9

CONCLUSIONS

This thesis has developed and presented a new program dependence graph that

represents OO languages, specifically a subset of the Java language. This repre-

sentation, the SOOPDG, and its associated rewriting operations are capable of

representing static program configurations, as well as computations performed by

the program. An algorithm was presented to create an SOOPDG directly from

program statements. This algorithm was shown to be of comparable complexity

to algorithms developed for similar representations. We have also discussed the

ability of the SOOPDG to represent computation through its rewriting semantics.

The SOOPDG was shown to be amenable to standard analyses such as constant

propagation, program slicing, and determination of class inheritance.

We have demonstrated that the SOOPDG has several advantages over existing

representations. Specifically,

1. The SOOPDG represents OO constructs while introducing a relatively few

number of new node types and no new edge types from those used in tra-

ditional PDGs. This results in cleaner semantics than other OO represen-

tation systems.

2. The size of the SOOPDG compares favorably with other representations,

primarily due to the representation of method input/output, and also due

to the use of higher order semantics.
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3. The cost of building the SOOPDG is comparable to the cost of other rep-

resentations, and has advantages when compared to those representations

having larger sizes.

4. The SOOPDG supports dynamic binding directly through the SFU prop-

erty and the use of higher order semantics. Called methods flow to the call

site as “values.” This simplifies reasoning regarding calling contexts and

reduces graph size over that presented by Walkinshaw et al [WRW03].

5. The SOOPDG inherently supports parallel operations. This is in contrast

to alternate models such as JSDG-Z and JSDG-W.

6. The SOOPDG supports the SFU property, which has advantages in seman-

tic clarity and compiler operations over the SSA property used by other

representations.

We have presented the Single Flow to Use (SFU) property that requires that,

for each variable used in a program statement, exactly one value for the variable is

made available to the statement at its execution. This is a new program property

that is enforced during program execution, as opposed to the static representa-

tion. We have demonstrated how the SFU property is enforced through the use

of strategically placed valve nodes, specified criteria for valve node placement,

and demonstrated that the techniques presented by Parsons [Par92] meet those

criteria.

We have also presented the SDG, a promising extension of the SOOPDG into

the realm of modeling and simulation. We have discussed the ability of the SDG

to represent simulation systems statically and proposed using a form of graph

slicing to investigate model composability issues. We have also demonstrated the

SDGs ability to represent simulation processes through graph semantics. The
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SDG requires further development but appears to be a promising representation

form for simulation systems.

In addition to forming the basis for the development of the SDG, the SOOPDG

provides opportunities for future fruitful research in several areas. The SOOPDG

may be used as a basis for run-time optimization schemes that take advantage

of the information uncovered during the compilation phase. This information

may be used to detect parallelization opportunities without relying on existing

methods that require profiling obtained from previous program runs. The same

techniques may be used to support dynamic compilation decisions, such as that

used in the Java HotSpot technology.
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