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ABSTRACT 

The main goal of this dissertation research is to investigate catchment hydrological 

processes including infiltration and saturation excess runoff generation with consideration of 

groundwater table.  For the infiltration process, an infiltration Péclet number was proposed to 

quantify the relative effects of gravity and capillary force on the evolution of infiltration capacity 

in the special case of the presence of a shallow water table, and a power law functional form of 

Time Compression Approximation was developed whose exponent was found to vary with the 

Péclet number.  For the saturation excess runoff process, a new probability distribution model 

based on the SCS distribution function was developed.  This new daily hydrologic model provided 

a framework for unifying water balance models from daily to mean annual timescales, and was 

applied to quantify the relative effects of climate variabilities on streamflow across different 

timescales for the U.S.  Based on the new water balance model, a new analytical expression for 

mean annual baseflow was developed which was successfully used for disentangling the impacts 

of mean annual climate and landscape properties on baseflow generation in the U.S. and U.K.  

Inspired by the different statistical distributions of water storage at catchments, this dissertation 

further demonstrated that different functional forms of Budyko equation in the literature could be 

considered as emergent outcomes of the spatial variability of available water for evaporation.  

Considering the importance of water storage capacity and its spatial variability on hydrological 

processes, numerical simulations were conducted to explore the control of climate humidity on the 

spatial distribution of water storage at the catchment scale, and a new framework for unifying 

different saturation excess runoff models was obtained.  The studies in this dissertation advance 

our understanding of hydrological processes with the presence of a groundwater table. 
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CHAPTER ONE: INTRODUCTION 

Groundwater table is an important hydrologic interface controlling water exchange 

between surface and subsurface (Condon, et al., 2020; Ferguson & Maxwell, 2010; Hooshyar & 

Wang, 2016; Liang et al., 2003; Maxwell & Condon, 2016; Spence et al., 2009).  During the 

rainfall-runoff process, antecedent soil moisture in a catchment which is determined by the 

location of groundwater table affects both infiltration capacity and effective soil water storage 

capacity. Therefore, groundwater table is closely associated with both the infiltration excess and 

saturation excess runoff generation in a catchment.  The former occurs when water supply on the 

soil surface, e.g., rainfall intensity, is larger than the infiltration capacity, and the latter occurs 

when soil becomes fully saturated. 

Infiltration is the entry of water into the soil surface and its subsequent vertical motion 

through the soil profile), and infiltration capacity is the maximum rate that occurs under condition 

of a continuously ponded surface.  Infiltration capacity is large in the early time of an infiltration 

process and decreases gradually as soil moisture deficit decreases (Brutsaert, 2005).  Existing 

analytical and empirical equations, e.g., Green-Ampt equation (Green and Ampt, 1911), Horton 

equation (Horton, 1940), Philip equation (Philip, 1957), and SCS curve number method (SCS, 

1972) used for estimating infiltration rates and/or runoff generation are commonly based on two 

critical assumptions.  Firstly, these equations assumed instantaneous ponding under which 

condition the actual infiltration rate equals infiltration capacity.  Whereas, soil surface is typically 

not ponded at the onset of rainfall in natural infiltration conditions; therefore, the Time 

Compression Approximation (TCA) has been introduced to adjust the infiltration capacity for the 

discrepancy.  However, the TCA relationship is assumed to be invariant during the infiltration 
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process which can in fact change through time since the driving forces of infiltration, i.e., 

capillarity and gravity, is not static, and the dynamic TCA relationship is not largely unknown.  

The second assumption is the uniform initial soil moisture profile which is not reasonable under 

realistic field conditions with a finite depth of groundwater table.  Therefore, the first part of this 

dissertation research aims to investigate the dynamic TCA relationship with presence of a shallow 

water table.  

Groundwater table affects water balance behaviors by controlling the effective water 

storage capacity as well.  Effective soil water storage capacity is defined as the total pore space 

above groundwater table in this dissertation research.  Water balance can be conceptualized as a 

two-stage precipitation partitioning process (L’vovich, 1979).  In the first stage, precipitation is 

partitioned into fast flow and soil wetting (or infiltration); in the second stage, soil wetting is 

further divided into baseflow and evaporation.  Soil water storage capacity affects water balance 

in both stages.  In the first stage, the effective storage capacity determines the maximum volumetric 

infiltration volume before the occurrence of saturation excess runoff.  The spatial heterogeneity of 

soil water storage capacity facilitates runoff generations and determines the location of runoff 

generation (Beven & Kirkby, 1979; Liang et al., 1994; Moore, 1985).  The impact of soil water 

storage capacity on the volume of soil wetting could propagate to the second partitioning stage 

since soil wetting from the first stage is the water source for the second stage.  In addition, it has 

been found that the spatial variability of water storage capacity also influences the evaporation 

process since the actual evaporation is determined by both the water supply and atmospheric 

demand (Sivapalan et al., 1997).  As a result, baseflow perceives influence from the groundwater 

table or the storage capacity not only because of its water source, i.e., soil wetting, but also because 

of the evaporation component which competes water in the second partitioning step.  However, 
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compared to the total streamflow, the impact of storage capacity and its spatial variability on the 

baseflow is much less known (Gnann et al., 2019; Meira Neto et al., 2020). 

Hydrological models are powerful tools for evaluating and predicting the water balance 

under different climatic and catchment landscape conditions.  Hydrological models could be 

divided into empirical (SCS, 1972), conceptual (Thomas, 1981; Moore, 1985), and physically 

distributed models (Refsgaard et al., 1995; Arnold et al., 1998).  Empirical models lack 

representation of the physically based processes in hydrological systems.  While, distributed 

physical models represent different hydrologic processes well using physical laws by accounting 

for both the spatial and temporal variabilities of inputs, they usually require extensive 

parameterization, more computation time and power (Devia et al., 2015).  Therefore, conceptual 

water balance models are extensively used in the literature because they are simple to setup and 

use and yet incorporating important hydrological processes using semi-empirical equations with a 

physical basis (Devia et al., 2015).  There are various hydrological models used for simulating 

hydrological responses at different timescales, such as VIC model for daily scale (Liang et al., 

1994), “abcd” model for monthly scale (Thomas, 1981), and Budyko equation for annual scale 

(Budyko 1974).  These models usually have various structures and are based on different 

assumptions on water balance behaviors.  Though it is known that water balance behaviors should 

be consistent at different timescales, a more general understanding of hydrological behaviors is 

still lacking, and a unified framework for water balance models with connected theories across 

different timescales is needed (Berghuijs et al., 2020).  Among the various timescales of water 

balance model, mean annual water balance models have the simplest parameterization and capture 

the most basic controls on the water balance behavior.  Budyko equations may be the most popular 

mean annual water balance model in the field of hydrology because of its efficiency while 
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parsimonious function form.  Different forms of Budyko equations have been used in the literature 

(e.g., Budyko 1974; Yang et al., 2008; Turc, 1954; Zhang et al., 2004), whereas few studies have 

been conducted to explore the general hydrological basis of Budyko equations (Berghuijs et al., 

2020).   

Considering the configuration of groundwater table is directly related to the spatial 

distribution of water storage which is crucial for the catchment hydrological processes, it is 

necessary to understand the controls on the groundwater table and the corresponding spatial 

distribution of water storage within a catchment.  A lot of studies have simplified the groundwater 

table as the subdued replica of topography (Cardenas, 2007; Jiang et al., 2010; Micallef et al., 

2020; Toth, 1963; Zhang et al., 2020).  Though studies have confirmed the benefit from this simple 

conceptualization, it has been found that water table is not always highly correlated to the land 

surface topography (Condon & Maxwell, 2015; Desbarats et al., 2002; Grayson & Western, 2001; 

Shaman et al., 2002).  On the other hand, a number of studies focused on hillslope‐scale processes 

have identified that the topography of hydrological impeding layer is one of the most important 

physical characteristics affecting the response of groundwater to rainfall (Bachmair & Weiler, 

2012; Freer et al., 2002). The hydrological impeding layer could be a fresh bedrock or a soil layer 

with hydraulic conductivity several orders of magnitude lower than that of the surficial soil 

formation (Condon,  et al., 2020; Freeze & Cherry, 1979). For the sake of brevity, we will refer to 

the hydrological impeding layer that restricts percolation as bedrock in this dissertation study.  

Based on observations at the hillslope scale, van Meerveld et al. (2015) and Hutchinson & Moore 

(2000) reported that the shapes of water table change with groundwater levels, and water table 

configuration follows land surface topography when the water table is shallow in wet conditions, 

whereas water table configuration follows bedrock topography when the water table is close to the 
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bedrock in dry conditions.  However, much uncertain still exists about the relationship between 

the topography (surface and subsurface) and groundwater configuration or the corresponding water 

storage at the catchment scale due to the limitation of bedrock information as mentioned 

previously.  

 This dissertation research aims to advance our understanding of catchment hydrological 

processes which are closely related to the groundwater table from the perspective of both 

infiltration excess and saturation excess runoff generation regimes.  Specifically, there are five 

research objectives in this study.  Firstly, the time invariance of the TCA relationship normally 

assumed is evaluated in the presence of a water table depth at finite depth, and to shed light on the 

factors that govern the time evolution of the TCA relationship.  Secondly, a new conceptual water 

balance model at the daily time step is developed which unified water balance models with 

consistent water balance theories across timescales.  The mean annual water balance model from 

this unified framework is then used for accomplishing the third objective, i.e., differentiating the 

roles of storage capacity and climate on baseflow at the mean annual scale.  The fourth objective 

is to propose a general hydrological basis for unifying different Budyko equations from the view 

of the available water storage for evaporation, and the last objective is to investigate the variation 

of groundwater configuration and groundwater storage in different wetness conditions, and to 

examine the impacts of surface and subsurface topography on the spatial distribution of water 

storage.  
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CHAPTER TWO: TIME COMPRESSION APPROXIMATION WITH A SHALLOW 

WATER TABEL 

2.1 Introduction 

Infiltration is a critical component in the hydrological cycle associated with surface runoff, 

groundwater recharge, and evaporation.  Its practical importance in hydrological studies has 

prompted the advance of infiltration theory over the years (Smith et al., 2002; Brutsaert, 2005; 

Assouline et al., 2007).  Infiltration capacity is defined as the maximum infiltration rate that results 

when rainfall intensity is so large that the surface is saturated (i.e., ponded) instantaneously.  Actual 

infiltration rate is typically lower due to the limited water supply to the soil surface, especially 

during early times during typical rainfall events.  Indeed, infiltration capacity starts out large 

during early times and as more and more rainfall infiltrates, infiltration capacity decreases with 

time.  The decreasing infiltration capacity eventually becomes equal to the rainfall intensity, and 

surface runoff (and ponding) is initiated.  Ponding time is defined as the time after the beginning 

of rainfall at which ponding or surface runoff occurs (Diskin & Nazimov, 1996).  From that time 

onward, with continued rainfall, the surface remains ponded, and so actual infiltration rate remains 

equal to infiltration capacity, but continues to decrease with time until (in the long-term) it reaches 

a constant rate asymptotically, provided the soil is sufficiently deep.  Infiltration theory suggests 

the early time infiltration behavior is governed by absorption (due to capillary action of soil) while 

late time behavior is governed by gravitational action, and that the final constant infiltration rate 

after a long time is approximately equal to the saturated hydraulic conductivity of the soil 

(Brutsaert, 2005).  

A common way to describe infiltration in soils is via Richards' Equation (1931) and its one-

dimensional form can be expressed as: 
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𝜕𝜃

𝜕𝑡
=

𝜕

𝜕𝑧
[𝐷(𝜃)

𝜕𝜃

𝜕𝑧
] −

𝜕𝐾(𝜃)

𝜕𝜃

𝜕𝜃

𝜕𝑧
                                               (2.1) 

where 𝜃 is volumetric soil water content; 𝑡 is time; 𝑧 is the depth measured from soil surface 

(positive downward); 𝐾(𝜃) is hydraulic conductivity; and 𝐷(𝜃) is soil water diffusivity defined 

as: 

𝐷(𝜃) = 𝐾(𝜃)
𝜕𝜓

𝜕𝜃
                                                     (2.2) 

where 𝜓 is pressure head and negative in unsaturated soils.  

Although infiltration rates from the numerical solution of Richards' Equation are available 

for various initial and boundary conditions, it is not practical to apply the numerical approach for 

hydrologic problems especially at large spatial scales.  Instead, analytical and empirical Equations, 

e.g., Green-Ampt Equation (Green & Ampt, 1911), Horton Equation (Horton, 1940), Philip 

Equation (Philip, 1957), and SCS curve number method (SCS, 1972) are preferred for estimating 

infiltration rates and/or runoff generation.  Assuming instantaneous ponding at the soil surface and 

a uniform initial soil moisture profile, Philip (1957) employed Boltzmann transformation to derive 

an analytical solution for ponded infiltration, expressed as an infinite power series: 

𝑓𝑐 =
1

2
𝐴0𝑡

−1/2 + (𝐴1 +𝐾𝑠) +
3

2
𝐴2𝑡

1/2 + 2𝐴3𝑡 +
5

2
𝐴4𝑡

3/2 +⋯                (2.3) 

where 𝑓𝑐 is infiltration capacity; 𝐴𝑖 are functions of initial moisture content; 𝐴0 = 𝑆 which is 

defined as the soil’s sorptivity (a measure of its ability to absorb water in the absence of gravity); 

𝐾𝑠 is saturated hydraulic conductivity.  

Similar to the Philip Equation, Green-Ampt and Horton Equations are also based on the 

assumption of instantaneous ponding on the soil surface.  However, rainfall intensity is seldom 

larger than infiltration capacity at early times (Mein & Larson, 1973; Assouline et al., 2007), and 

therefore initially all rainfall infiltrates.  To account for this discrepancy, the time compression 
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approximation (TCA), also referred to as time condensation approximation, was introduced to 

estimate both ponding time and the post-ponding infiltration rate (Sherman, 1943; Holtan, 1945; 

Reeves & Miller., 1975; Milly, 1986; Sivapalan & Milly, 1989; Kim et al., 1996; Smith et al., 

2002; Assouline., 2007; Wang et al., 2018).  The essential concept behind TCA is the assumption 

of a unique, invariant relationship between infiltration capacity and the cumulative infiltration 

volume, regardless of the rainfall (or infiltration) history.  The infiltration rate and cumulative 

infiltration volume after ponding could be obtained by shifting the time of infiltration capacity and 

cumulative potential infiltration over a compression reference time, respectively (Brutsaert, 2005); 

this explains the name “time condensation approximation”.  

In past applications, the TCA relationship has been usually assumed to be invariant with 

time (i.e., unchanging) during the entire infiltration process (Milly, 1986; Kim et al., 1996; Smith 

et al., 2002; Wang et al., 2018).  However, from the Philip Equation (Equation 2.3), one can 

observe that as time increases, more terms on the right-hand side need to be included in order to 

minimize the error.  Consequently, the TCA relationship can in fact change through time, since 

the relative importance of the two driving forces on infiltration, i.e. capillarity and gravity, is 

dynamic.  Capillarity dominates at early times when the soil is relatively dry and decays as the 

volume of water infiltrated (or depth of the wetting front) increases.  Gravity dominates at longer 

times when the wetting front is very deep.  The relative importance of these two forces changes 

during the infiltration process, coinciding with the change of infiltration rate and volume of 

infiltrated water (and wetting front depth).  Therefore, it is reasonable to find recourse to the 

dynamic change of this relative effect to reveal how TCA relationship might evolve during 

infiltration.  Philip (1969) introduced a characteristic time at which the effect of gravity is 

equivalent to that of capillarity.  Philip (1986) also introduced a sorptive number, which is a 
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parameter in the quasi-linear hydraulic conductivity function, and considered as a measure of the 

relative importance of capillarity and gravity during ponded infiltration and a uniform initial soil 

moisture profile (Basha, 2011).  Considering the fact that ponding is delayed during actual rainfall 

events, and the possible presence of a water table at finite depth under realistic field conditions, a 

more general quantification and tracking of the relative effect of the two driving forces is needed. 

The objective of this chapter is to link the relative effects of gravity and capillarity forces 

to the evolution of the TCA relationship, in the special case of the presence of a shallow water 

table. 

2.2 Methodology 

2.2.1 TCA and Infiltration Slope Curve  

2.2.1.1 TCA 

When rainfall intensity is larger than the saturated hydraulic conductivity (𝐾𝑠) at the soil 

surface, infiltration rate decreases with time and approaches 𝐾𝑠 for soil of sufficient depth 

(Brutsaert, 2005).  Therefore, infiltration capacity can be decomposed into two components: 

𝑓𝑐 = 𝑓𝑡 + 𝐾𝑠                                                             (2.4) 

The reason for separating 𝑓𝑡 and 𝐾𝑠 is that 𝐾𝑠 is a constant but 𝑓𝑡 is a function of time.  𝑓𝑡 represents 

the infiltration capacity relative to the case of gravitational force only.  Consequently, the 

cumulative infiltration corresponding to 𝑓𝑡 and 𝐾𝑠 are: 

𝐹𝑡 = ∫ 𝑓𝑡𝑑𝑡
𝑡

0
                                                   (2.5) 

 𝐹0 = 𝐾𝑠𝑡                     (2.6) 

The total cumulative potential infiltration 𝐹𝑐 is: 
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𝐹𝑐 = 𝐹𝑡 + 𝐹0                                                     (2.7) 

Traditionally, TCA defines the relationship between 𝑓𝑐 (Equation 2.4) and 𝐹𝑐 (Equation 2.7).  In 

this paper, TCA was applied to the relationship between 𝑓𝑡 and 𝐹𝑡 since the relationship between 

𝐹0 and 𝐾𝑠 is known, and simple enough, as shown in Equation (2.6). 

2.2.1.2 Infiltration Slope Curve  

In TCA, the infiltration rate after ponding is normally expressed as a function of cumulative 

infiltration.  In this paper we propose a more general functional form of TCA between the 

infiltration capacity and its derivative with respect to time: 

−
𝑑𝑓𝑡

𝑑𝑡
= 𝛼𝑓𝑡

𝛽                                                               (2.8) 

where 𝛼 and 𝛽 are parameters depending on the infiltration conditions.  From Equation (2.8), by 

eliminating time, we can obtain the functional form for TCA between infiltration capacity and 

cumulative infiltration as: 

𝑓𝑡 = {(𝛼(𝛽 − 2))
1

2−𝛽(𝐹𝑡 +𝑚1)
1

2−𝛽 if  𝛽 ≠ 2

𝑚2𝑒
−𝛼𝐹𝑡 if  𝛽 = 2

                   (2.9) 

The values of 𝑚1 and 𝑚2 can be determined by considering 𝑓𝑡 and 𝐹𝑡 at the ponding time (𝑡𝑝), i.e., 

𝑓𝑡(𝑡𝑝) = 𝑖 − 𝐾𝑠 and 𝐹𝑡(𝑡𝑝) = (𝑖 − 𝐾𝑠)𝑡𝑝, where 𝑖 is rainfall intensity.  Substituting 𝑓𝑡(𝑡𝑝) and 

𝐹𝑡(𝑡𝑝) into Equation (2.9), the values of 𝑚1 and  𝑚2 are obtained: 

𝑚1 =
(𝑖−𝐾𝑠)

2−𝛽

𝛼(𝛽−2)
− (𝑖 − 𝐾𝑠)𝑡𝑝     (2.10-1) 

𝑚2 = (𝑖 − 𝐾𝑠)𝑒
𝛼(𝑖−𝐾𝑠)𝑡𝑝    (2.10-2) 

The exponent 𝛽 is an important parameter since it determines the shape of the TCA curve.  In order 

to test the generalized TCA relation (Equation 2.8) and evaluate the controls on 𝛽, in this paper 
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−
𝑑𝑓𝑡

𝑑𝑡
 and the corresponding 𝑓𝑡 are computed using a numerical model of infiltration for various 

rainfall/infiltration events for a range of soil types.  The plot of −
𝑑𝑓𝑡

𝑑𝑡
~𝑓𝑡 on log-log space is 

referred to here as the infiltration slope curve in analogy to the recession slope curve used in 

streamflow recession curve analysis (Brutsaert & Nieber, 1977). 

 2.2.2 Infiltration Péclet Number 

A dimensionless number equivalent to Péclet number in linear advection-diffusion systems 

was applied to quantify the relative effect of gravity and capillarity.  Péclet number generally 

quantifies the relative effect of mass transport by advective and dispersive (or diffusive) processes.  

It has been widely used to characterize the ratio of advective sediment transport due to water 

movement in channels and diffusive sediment transport driven by surface gradient of hillslopes in 

landscape evolution (Fernandes and Dietrich, 1997; Perron et al., 2009; Sweeney et al., 2015) and 

also the ratio of advection to diffusion in contaminant transport (Simmons et al., 1999; Detwiler 

et al., 2000; Huysmans and Dassargues, 2005; Pedretti et al., 2013).  The general form of Péclet 

number is the ratio of the coefficient between advective term and the coefficient of diffusion term 

multiplied by a characteristic length scale (Huysmans & Dassargues, 2005).  The one-dimensional 

Richards' Equation (Equation 2.1) is an advection-diffusion Equation and the first term on the 

right-hand side is a diffusion term, representing the component of infiltration caused by capillarity; 

and the second term represents the advective term driven by gravity.  Therefore, the infiltration 

Péclet number (𝑃𝑒) can be defined as: 

𝑃𝑒 =
𝜕𝐾(𝜃)

𝜕𝜃
𝐿

𝐷(𝜃)
                                                     (2.11) 
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In this paper, the length scale 𝐿 is defined as the depth of wetting front (below the soil surface), as 

shown in Figure 2.1a, since it is the traveled distance of infiltrated water.  The unsaturated 

hydraulic conductivity K(θ) is given by the Brooks-Corey relationships (Brooks & Corey, 1964): 

𝐾

𝐾𝑠
= (

𝜃−𝜃𝑟

𝜃𝑠−𝜃𝑟
)
3+

2

𝜆
                                                    (2.12-1) 

𝜃−𝜃𝑟

𝜃𝑠−𝜃𝑟
= (

𝜓𝑎

𝜓
)
𝜆

                                                       (2.12-2) 

where 𝜃𝑟 and 𝜃𝑠 denote the residual and saturated moisture contents, respectively; 𝜓𝑎 is called the 

bubbling pressure or air-entry value; and 𝜆 is the pore-size distribution index.  By substituting 

Equation (2.12) into Equation (2.11), one obtains: 

𝑃𝑒 =
(3𝜆+2)𝐿

|𝜓|
                                                      (2.13) 

When the initial vertical soil moisture profile is in hydraulic equilibrium with a water table, the 

absolute value of the pressure head at the wetting front is the difference between water table depth 

and wetting front depth: 

|𝜓| = 𝑊 − 𝐿                                                       (2.14) 

where 𝑊 is water table depth.  Substituting Equation (2.14) into Equation (2.13), one obtains: 

𝑃𝑒 =
(3𝜆+2)

1/𝛾−1
                                                            (2.15) 

where 𝛾 = 𝐿/𝑊 is the ratio of wetting front depth to water table depth.  When 𝑃𝑒 = 1, the effects 

of capillarity and gravity are in balance in controlling infiltration; when 𝑃𝑒 < 1, capillarity is 

dominant; whereas 𝑃𝑒 > 1 indicates the dominance of gravity. 

The Mualem-van Genuchten (MG) model (Mualem, 1976; van Genuchten, 1980) could 

also be used to represent the soil hydraulic properties in place of the Brooks-Corey model.  The 

MG model has the advantage that it can provide a continuous characterization of the water 
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retention curve from residual water content to saturated water content.  The derivation of Péclet 

number for the MG model is presented in the Appendix for completeness.  Equation (A8) in the 

appendix shows 𝑃𝑒 as a function of |𝜓|, and this Equation is more complex compared with 

Equation (2.13) for the Brooks-Corey model. 

 

Figure 2.1: (a): soil moisture profile for clay soil with a constant rain rate of 2.4 mm/h and water 

table depth of 500 cm.  The dashed and solid blue curves represent the water content profile at 

initial time and time 𝑡, respectively.  The dashed black line denotes the position of wetting front 

at time 𝑡, below which the soil moisture is at hydrostatic condition.  The distance between the 

soil surface and wetting front is the characteristic length 𝐿 for defining Péclet number.  (b): 

Péclet number increases as wetting front deepens.  𝛾 is the ratio between wetting front depth (𝐿) 

and water table depth (𝑊). 

2.2.3 Numerical Simulations 

In order to test the validity of the proposed power function relationship for TCA (Equation 

2.8), numerical simulations are conducted for a range of infiltration events with different soil types, 

rainfall intensities, and water table depths.   
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2.2.3.1 HYDRUS  

HYDRUS is a finite-element software package for simulating the movement of water, heat, 

and multiple solutes in variably saturated media (Šejna et al., 2018).  It has been widely used for 

evaluating various irrigation systems, water flow and contaminant transport in the subsurface, the 

effects of plants on water movement in the subsurface and for many other agricultural and 

environmental applications (Pang et al., 2000; Vrugt et al., 2001; Schijven & Šimůnek, 2002; Cote 

et al., 2003; Skaggs et al., 2004; Dabach et al., 2013; Blackmore et al., 2018).  The robust 

computational program and user-friendly interface make HYDRUS a powerful tool for simulating 

infiltration events in real world situations.  In this paper, an advanced version of HYDRUS (i.e., 

2D/3D) is used for simulating one-dimensional infiltration, since simulation time is not a concern 

for this study. 

2.2.3.2 Simulation Settings 

Five soil types (i.e., clay, silty clay loam, silty loam, sandy loam, and sand) with different 

capillary effects are considered in this paper, and their corresponding hydraulic properties are 

presented in Table 2.1.  For each soil type, 7 rainfall intensities and 10 water table depths were 

considered, leading to a total of 350 simulations.  Since TCA is only meaningful starting from 

ponding (Liu et al., 1998) and ponding only occurs with a rainfall intensity larger than saturated 

hydraulic conductivity of the soil, the rainfall intensities applied here are all larger than saturated 

hydraulic conductivity: 1.5𝐾𝑠, 2.0𝐾𝑠, 2.5𝐾𝑠, 3.0𝐾𝑠, 3.5𝐾𝑠, 4.0𝐾𝑠, and 10.0𝐾𝑠.  The water table 

depths used range from 50 cm to 500 cm with a 50 cm interval.  Different water table depths affect 

the initial soil moisture profile in soils and the total soil water storage capacity.  
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In all simulations, the model domain was a one-dimensional homogeneous soil column.  

At the soil surface, the Neumann boundary condition is applied before ponding, and the Dirichlet 

boundary condition is applied after ponding.  Ponding time is determined by HYDRUS 

numerically.  The bottom boundary is treated as a no-flow boundary.  The initial soil moisture 

profile is an equilibrium profile consistent with a water table at finite depth (Salvucci & Entekhabi, 

1995; Hooshyar & Wang, 2016).  Model soil columns are vertically discretized into uniform cells 

of 0.5 cm.  For time discretization, the initial time steps ranged from 3 × 10−6 s to 6 s depending 

on soil types and boundary conditions.  Smaller time steps were used for cases with more nonlinear 

soil hydraulic properties and larger rainfall intensities (Šejna et al., 2018).  Minimum time steps 

ranged from 10−9 s to 10−3 s; and maximum time steps ranged from 100 s to 86,400 s.  HYDRUS 

could automatically adjust its optimal time step during the simulations.  

Table 2.1: Hydraulic parameters of Brooks-Corey model for 5 soil classes (Maidment, 1993). 

Soil type 
𝑲𝒔 

(mm/hr) 

𝜽𝒓  

(-) 

𝜽𝒔  

(-) 

𝝍𝒂   

(mm-1) 

  𝝀  

 (-) 

Clay 0.6 0.09 0.475 0.0027 0.165 

Silty clay loam 2.0 0.04 0.471 0.0030 0.177 

Silty loam 6.8 0.015 0.501 0.0048 0.234 

Sandy loam 21.8 0.041 0.453 0.0067 0.378 

Sand 235.6 0.02 0.437 0.0143 0.694 

2.2.3.3 Calculation of Paired Values of −
𝑑𝑓𝑡

𝑑𝑡
~𝑓𝑡 

Here we focus on the infiltration rate starting from the time of ponding and before the wetting 

front reaches close to the saturated zone at the bottom.  The saturated hydraulic conductivity is 

subtracted from the original infiltration rate data since TCA is applied only to 𝑓𝑡 in this paper 

instead of 𝑓𝑐 (see Equation 2.4).  −
𝑑𝑓𝑡

𝑑𝑡
 and 𝑓𝑡 are approximated as: 
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−
𝑑𝑓𝑡

𝑑𝑡
=

𝑓𝑡
𝑖−𝑓𝑡

𝑖+1

∆𝑡
                                                    (2.16-1) 

𝑓𝑡 =
𝑓𝑡
𝑖+𝑓𝑡

𝑖+1

2
                                                      (2.16-2) 

where the superscript 𝑖 refers to infiltration at time 𝑡 and 𝑖 + 1 refers to the time 𝑡 + ∆𝑡.  ∆𝑡 is a 

suitable time increment for the calculation of time derivative of 𝑓𝑡, which increases as 𝑓𝑡 decreases 

in order to eliminate the effect of numerical error in the infiltration data.  

2.3 Results and Discussion  

 2.3.1 Effect of Rainfall Intensity and Water Table Depth on Exponent of TCA  

Figure 2.2 shows the paired values of −
𝑑𝑓𝑡

𝑑𝑡
 and 𝑓𝑡 during infiltration events after ponding.  

For all soil types, the data points with the same water table depth and same soil texture almost fall 

on a single curve regardless of rainfall intensity.  This indicates that for a given initial condition, 

−
𝑑𝑓𝑡

𝑑𝑡
 is almost independent of rainfall intensity after ponding.  This result proves the validity of 

the basic TCA assumption, which considers that infiltration capacity is independent of the rainfall 

intensity or infiltration history. 

Figure 2.3 shows the infiltration slope curve for various water table depths.  For a given 𝑓𝑡, 

−
𝑑𝑓𝑡

𝑑𝑡
 decreases as water table depth increases.  This is due to the larger relative capillary effect 

with deeper water table for a given value of 𝑓𝑡.  For example, for clay soil with a rainfall intensity 

of 4.0𝐾𝑠, when 𝑓𝑡 decreases to 1 mm/hr, 𝑃𝑒 is 3.2 when water table depth is 1 m, but 𝑃𝑒 is 0.5 

when water table depth is 3.5 m.  Larger relative capillary effect helps maintain a larger infiltration 

potential; therefore, −
𝑑𝑓𝑡

𝑑𝑡
 decreases with increasing water table depth.  This effect is more 

pronounced in clay soil compared to sand.  



17 
 

 
Figure 2.2: Infiltration slope curves for 5 soils with a water table depth of 500 cm: (a) clay, (b) 

silty clay loam, (c) silty loam, (d) sandy loam, and (e) sand.  The data points with the same water 

table depth and soil texture almost fall on a single curve regardless of rainfall intensity, and the 

slope of each curve decreases as infiltration proceeds.  The infiltration processes for (a), (b), (c), 

and (d) are divided into early and late stages. 

The approximately linear curves in Figures 2.2 and 2.3 suggest that −
𝑑𝑓𝑡

𝑑𝑡
 follows a power 

law relationship with respect to 𝑓𝑡, confirming the validity of the TCA function presented in 
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Equation (2.8).  However, the data points in each curve can only be considered as a straight line 

over a certain range of 𝑓𝑡  indicating the existence of different regimes during the infiltration 

process caused by the time evolution of the competition between capillarity and gravity.  This 

means that the exponent 𝛽 in Equation (2.8) is not a constant, which demonstrates that the TCA 

relationship is no longer invariant during the infiltration process, especially in the presence of a 

water table at finite depth.  
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Figure 2.3: Infiltration slope curves for 5 soils with various water table depths: (a) clay, (b) silty 

clay loam, (c) silty loam, (d) sandy loam, and (e) sand.  For a given 𝑓𝑡, −𝑑𝑓𝑡/𝑑𝑡 decreases as 

water table depth increases. 
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2.3.2. Control of Péclet Number on the Exponent of TCA 

As mentioned before, the Péclet number (𝑃𝑒) is a measure of the relative effect of gravity 

and capillarity.  Therefore, it changes as the wetting front moves down during infiltration.  Figure 

2.1b shows 𝑃𝑒 as a function of 𝛾, the ratio of wetting front depth (𝐿) to water table depth (𝑊), in 

clay soil with a water table depth of 500 cm.  𝑃𝑒 increases as infiltration proceeds since advection 

due to gravity becomes more dominant.  

The relationship between exponent 𝛽 and 𝑃𝑒 was analyzed for different stages of all of the 

infiltration events.  We grouped every 6 consecutive data points of −
𝑑𝑓𝑡

𝑑𝑡
 and 𝑓𝑡 into an interval in 

all infiltration events and fitted a least squares regression line to the 6 paired points for estimating 

𝛽 in Equation (2.8).  If the size of the last interval of an infiltration event was smaller than 6, these 

data were merged into the previous interval.  The average 𝑃𝑒 of the corresponding interval was 

computed according to the median time of each interval.  

We fitted a least squares regression line to all the paired values of  𝛽 ~ 𝑃𝑒 for all the 5 soil 

types (Figure 2.4a-e).  𝛽 decreases with increasing 𝑃𝑒.  When 𝑃𝑒 < 1, 𝛽 decreases roughly from 

3.5 to 2 for clay, silty clay loam, and silty loam, and decreases from 3 to 2 for sandy loam and 

sand.  The relationship between 𝑃𝑒 and 𝛽 is nonlinear when 𝑃𝑒 < 1, and the rapid decrease of 

infiltration rate during early times after ponding contributes to the scattering of the data points.  

When 𝑃𝑒 > 1, a linear relationship is formed between Pe and 𝛽 for all soil types.  During the 

transition from diffusion dominated to advection dominated infiltration, the exponent is about 2 

for all soil types.  
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Figure 2.4: Relationships between Péclet number (𝑃𝑒) and exponent ( 𝛽 )for 5 soils: (a) clay, (b) 

silty clay loam, (c) silty loam, (d) sandy loam, and (e) sand.  For all soils, 𝛽 decreases with 𝑃𝑒. 

When 𝑃𝑒 < 1, the relationship between 𝑃𝑒 and 𝛽 is nonlinear; when 𝑃𝑒 > 1, there is a linear 

relationship between P𝑒 and 𝛽. 

2.3.3 Implications for Infiltration Modeling 

The decreasing exponent during infiltration indicates that a single TCA relationship may 

not accurately capture the entire infiltration process.  For example, 𝛽 = 3 leads to the two-term 

Philip Equation; 𝛽 = 1.5 leads to the SCS curve number-type Equation (Mishra et al, 2003; 

Hooshyar & Wang, 2016); and 𝛽 = 1 leads to the Horton Equation.  As shown in Figure 2.4, 𝛽 is 

around 2 when 𝑃𝑒 = 1, i.e., 𝛽 > 2 when 𝑃𝑒 < 1, and 𝛽 < 2 when 𝑃𝑒 > 1.  Therefore, the two-

term Philip Equation is more applicable during early times when 𝑃𝑒 < 1; whereas the SCS curve 

number-type Equation and the Horton Equation are more applicable during the late times when 
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𝑃𝑒 > 1.  The relationship between 𝑃𝑒 and 𝛽 suggests that Péclet number can serve as an indicator 

for selecting the appropriate TCA function especially during the late times of infiltration.  Figure 

2.5 presents the frequency distribution of 𝛽 from all data intervals, showing that most exponents 

are approximately around the value of 2.  It should be noted that the SCS curve number method 

(i.e., 𝛽 = 1.5) is for estimating catchment scale surface runoff, even though the power relation of 

TCA in this paper is validated at the point scale.  This implies that the power law relationship for 

TCA may indeed be applicable, as a reasonable approximation, for infiltration and surface runoff 

estimation at the catchment scale. 



23 
 

 

Figure 2.5: Frequency distributions of exponents (𝛽) for 5 soils with various water table depths: 

(a) clay, (b) silty clay loam, (c) silty loam, (d) sandy loam, and (e) sand.  The mode of exponent 

is approximately 2 for all soils. 
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For the TCA application in hydrologic modeling, the infiltration process could be divided 

into a certain number of stages given soil type and water table depth.  For example, the individual 

infiltration event in Figures 2.2a-d could be divided into two stages for hydrologic modeling 

purposes, and the transition between early stage and late stage can be identified using statistical 

methods, such as cumulative regression method or maximum likelihood estimation approach; the 

latter has been used to test the validity of the power law distribution and to determine the starting 

point of the probability density function (PDF) of the power law distribution (Clauset et al., 2009; 

Pedretti & Bianchi, 2018).  Since the TCA relationship in Figure 2.2 is not a PDF, the cumulative 

regression method based on least squares regression (Ghosh et al., 2016) is applied to identify the 

transition point.  For each soil type, all pairs of −
𝑑𝑓𝑡

𝑑𝑡
 and 𝑓𝑡 are sorted in descending order 

according to the value of 𝑓𝑡.  Linear regressions are implemented from the 1st until the jth pair of 

data, where j = 1, 2, 3, 4…N, and N is the total number of data pairs.  The coefficient of regression 

(R2) is computed in each linear regression between −
𝑑𝑓𝑡

𝑑𝑡
 and 𝑓𝑡 on a log-log scale.  The 

relationships between R2 and 𝑓𝑡 for different soils are shown in Figure 2.6.  With the decrease of 

𝑙𝑜𝑔(𝑓𝑡), R
2 increases to the maximum value (highlighted black point) and then decreases.  As 

shown in Figure 2.6, the maximum R2 is identified for clay (Figure 2.6a), silty clay loam (Figure 

2.6b), silty loam (Figure 2.6c), and sandy loam (Figure 2.6d).  Correspondingly, the transition from 

early stage to late stage infiltration is identified as the point with the maximum R2, as shown in 

Figures 2.2a-d.  The estimated exponents for early and late stages are shown in Figures 2.2a-d.  It 

is not necessary to divide the infiltration process for sand into two stages (Figure 2.2e) since there 

is no obvious maximum for R2 (Figure 2.6e).  
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Figure 2.6: R2 for cumulative regression changes with 𝑙𝑜𝑔(𝑓𝑡) for 5 soils: (a) clay, (b) silty clay 

loam, (c) silty loam, (d) sandy loam, and (e) sand. 

2.4 Conclusion  

A power function relationship is proposed for TCA, linking infiltration rate and its time 

derivative.  Through numerical simulations with different soils, rainfall intensities and water table 

depths in one-dimensional soil columns, the approximately linear relation between infiltration rate 
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and its time derivative on log-log space were obtained.  The exponent in the power function of 

TCA is not dependent upon rainfall intensity or infiltration history, demonstrating the reasonable 

validity of the TCA.  The decrease of the exponent suggests that the TCA relationship is not 

invariant during the infiltration process but evolves during different infiltration stages.   

The relative effect of gravity and capillarity was quantified in terms of the Péclet number 

derived from Richards' Equation and the Brooks-Corey model for soil moisture retention, and the 

relationship between Péclet number (𝑃𝑒) and exponent (𝛽) was analyzed for different infiltration 

stages.  When 𝑃𝑒 < 1, 𝛽 decreases from 3.5 to 2 for clay, silty clay loam and silty loam, and from 

3 to 2 for sandy loam and sand with the increase of 𝑃𝑒; when 𝑃𝑒 > 1, 𝛽 has a linear relationship 

with 𝑃𝑒.  On the transition from diffusion dominated to advection dominated, the exponent is about 

2 for all soils.  For application of TCA in hydrologic modeling, infiltration process could be divided 

into two stages with two exponents.  For example, when water table depth is 500 cm, the average 

exponent for clay, silty clay loam, silty loam and sandy loam is 2.41 during the early stage and 

1.95 during the late stage; and infiltration in sand could be modeled as a single stage with an 

exponent of 2.15.  The relationship between 𝑃𝑒 and 𝛽 provides an objective approach to identify 

the suitable TCA function.   

In this paper, for completeness, the Péclet number was also derived using the Mualem-van 

Genuchten model, in place of the Brooks-Corey model.  The results from numerical simulations 

of soil types (clay and sandy loam) show that the power function relationship can be derived for 

TCA and that 𝛽 decreases with 𝑃𝑒 in way to similar to what was with the Brooks-Corey model.  

However, the critical value of 𝑃𝑒 for the transition from diffusion-dominated to advection-

dominated is now around 0.5 and the corresponding exponent is about 1.5 in clay and 1.0 in sandy 

loam.  Future research will test the applicability of the power function relationship of TCA at the 
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catchment scale, perhaps based on three-dimensional simulations, and to evaluate the effect of 

spatial soil heterogeneity on the power law exponent. 
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CHAPTER THREE: A NEW PROBABILITY DISTRIBUTION MODEL AND ITS 

APPLICATION 

3.1 Introduction 

Understanding how climate controls catchment streamflow at various timescales is of 

interest to hydrologists, earth system modelers, and water resources managers.  Climate, soil, 

vegetation, and topography all affect hydrological processes (Eagleson, 1978; Farmer et al., 2003; 

Troch et al., 2013).  The long-term average and shorter-term fluctuations of climate strongly affect 

the water balance directly and indirectly.  Climate variability can control the water balance 

differently at the daily, monthly, and annual timescales (Jothityangkoon et al., 2001; Atkinson et 

al., 2002, Zhang et al., 2008).  As the two main variables of climate: precipitation serves as the 

water supply to the catchments from the atmosphere, and potential evapotranspiration determines 

the water demand to the catchments.  The effect of individual variability and co-variability of 

precipitation and potential evapotranspiration on streamflow are dependent on the timescale at 

which the streamflow is quantified (Atkinson et al., 2002; Farmer et al., 2003; Zhang et al., 2008). 

Daily streamflow variation is closely associated with intra-monthly climate fluctuations which are 

observed in the hyetographs for rainfall events.  Intra-monthly variability of precipitation is much 

larger than that of potential evapotranspiration, and streamflow dynamics at the daily scale are 

strongly controlled by the daily precipitation interacting with catchment characteristics, such as 

antecedent soil moisture (Rodriguez-Iturbe et al., 1999; Aubert et al., 2003; Porporato et al., 2004; 

Botter et al., 2007).  Antecedent soil moisture affects both the soil water storage capacity and 

infiltration capacity in catchments.  Higher intensity of daily precipitation with higher frequency 

of occurrence would create favorable conditions for streamflow generation because of the limited 

soil retention and/or infiltration capacity (Brutsaert, 2005).  Intra-annual and inter-annual climate 
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fluctuations have impacts on daily streamflow through changing the antecedent soil moisture 

conditions and groundwater table depths (Sivapalan, et al., 2005; Berghuijs et al., 2014, 2016; 

Perdigão & Blöschl, 2014; Rossi et al., 2015).  For example, on the first day of each month (or 

year), the runoff generation can be different for a given daily precipitation due to the different 

legacy soil moisture from the previous month (or year).  Soil water storage capacity enables 

catchments to attenuate climate perturbations through hydrological processes of retaining and 

releasing water (McNamara et al., 2011).  The variation in groundwater storage regulates the storm 

water storage space and the antecedent soil wetness condition (Troch et al., 1993; Soylu et al., 

2011; Appels et al., 2017), and it can exhibit both significant seasonal and inter-annual variations 

because recharge from precipitation varies with time (Fan et al., 2007; Jasechko et al., 2014; 

McMillan & Srinivasan, 2015).  Therefore, in order to fully capture the variation of daily 

streamflow, it is required to identify the impacts of climate variabilities at different timescales.   

Intra-annual variations in precipitation and potential evapotranspiration are crucial 

characteristics of climate and are largely responsible for the streamflow variability at the monthly 

scale (Dettinger & Diaz, 2000; Yokoo et al., 2008; Yaeger et al., 2012; Berghuijs et al., 2014).  

Intra-annual variations in precipitation and potential evapotranspiration are usually described as 

sinusoidal functions (Milly, 1994; Woods, 2009; Gnann et al., 2019).  When precipitation and 

potential evapotranspiration have similar magnitudes and means, the correlation between 

precipitation and potential evapotranspiration has significant impacts on the monthly streamflow.  

Streamflow seasonality can be weak when precipitation and potential evapotranspiration are in 

phase because the peak of water supply and water demand occur in the same month(s) even though 

both of them have a strong seasonality.  On the other hand, if precipitation and potential 

evapotranspiration are out of phase, the peak of streamflow can be largely determined by the 

https://agupubs.onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Bl%C3%B6schl%2C+G%C3%BCnter
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seasonality of precipitation because the peak of water supply coincides with the lowest water 

demand (Petersen et al., 2012; Berghuijs et al., 2014).  Inter-annual climate variability also has an 

impact on the monthly water balance by controlling the antecedent soil moisture through storage 

carryover (Chen et al., 2013).  Additionally, the number of rainfall events and the time intervals 

between rainfall events at the daily scale influence the monthly streamflow as well (Appels et al., 

2017).   

Inter-annual variation in the water balance has been investigated in many studies (Koster 

& Suarez, 1999; Arora, 2002; Yang et al., 2007; Istanbulluoglu et al., 2012; Han et al., 2018).  It 

has been found that the inter-annual variability in streamflow is mainly controlled by the inter-

annual variability of climate, especially in humid regions (Milly and Dunne, 2002; Yang et al., 

2006; Xu et al., 2012).  Intra-annual climate variability is also an important determinant of the 

inter-annual variations in streamflow (Milly & Dunne, 2002; Potter & Zhang, 2009; 

Jothityangkoon et al., 2009).  For example, the same annual precipitation depth could produce 

different amounts of streamflow if precipitation is concentrated on just several months compared 

to if precipitation is evenly distributed across all the months.  The impacts of daily storminess 

could also propagate to the annual streamflow, especially in dry catchments (Zanardo et al., 2012). 

Mean annual water balances are mainly determined by the long-term average climate, or 

mean climate condition in terms of dryness index, defined as the ratio of mean annual potential 

evapotranspiration to mean annual precipitation.  The first-order control of the mean climate on 

the mean annual streamflow has been widely demonstrated using the Budyko framework (Budyko, 

1958, 1974; Milly, 1994; Zhang et al., 2001; Yang et al., 2008; Gentine et al., 2012).  The scatter 

of catchments around the original Budyko curve has been interpreted as the result of shorter-term 

climate variability and catchment characteristics such as vegetation, soil, and topography (Fu, 
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1981; Porporato et al., 2004; Donohue et al., 2007; Li et al., 2013).  Daily precipitation with a 

larger variance tends to increase mean annual streamflow (Shao et al., 2012), though it has been 

found the effects of daily storminess are almost negligible when the infiltration excess runoff is 

not prevalent (Reggiani et al., 2000).  Several studies have shown that streamflow tends to be 

smaller for a given mean annual precipitation when the precipitation and potential 

evapotranspiration are in phase, and larger when they are out of phase (Milly, 1994; Hickel & 

Zhang, 2006; Feng et al., 2012; Petersen et al., 2012).  However, the opposite could be observed 

because infiltration excess runoff can contribute significant volumes of streamflow in catchments 

when the precipitation and potential evapotranspiration are in phase (Potter et al., 2005).  The 

influence of inter-annual climate variability on mean annual streamflow is often disregarded even 

though it has been demonstrated that the inter-annual variability of precipitation and potential 

evapotranspiration reduces the mean annual evaporation and increases the mean annual streamflow 

(Li, 2014).   

Existing studies have recognized that streamflow, at each timescale, receives direct and 

indirect influences from climate variability at various timescales.  However, a fundamental 

research question still remains unresolved: What are the relative impacts of different climate 

variabilities on streamflow at different timescales under different climatic regimes?  For example, 

for the daily streamflow, which timescale climate variability plays the most important role on the 

streamflow variation?, and what are the relative magnitudes of the impacts exerted by intra-

monthly, intra-annual, and inter-annual climate variability on the daily streamflow?  

The main purpose of this paper is to systematically quantify the relative roles of intra-

monthly, intra-annual, and inter-annual variability in precipitation (P) and potential 

evapotranspiration (𝐸𝑝) on the streamflow at four timescales, i.e., daily, monthly, annual, and long-
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term.  Additionally, this paper shows how the mean annual water balance of each catchment is 

affected by mean climate, soil water storage capacity as well as different climate variabilities using 

the Budyko framework.  A new probability distributed model is developed in this paper for 

quantifying the contributions of different climate variabilities by comparing streamflow resulting 

from different timescale climate inputs.  This chapter is organized as follows:  In Section 3.2, the 

probability distributed model is presented, followed by how to apply different timescale climate 

inputs in the daily water balance model, and lastly, the methods for quantifying the roles of 

different climate variabilities on streamflow at the four timescales.  Results and discussion are 

presented in Section 3.3, followed by summary in Section 3.4. 

3.2 Methodology 

3.2.1 A Probability Distributed Water Balance Model 

Hydrological models are powerful tools for evaluating and predicting the water balance 

under different climate conditions by changing the climate inputs.  The probability distributed 

model (PDM) is a kind of conceptual hydrological model which is simple to setup while 

incorporating important hydrological processes; therefore, a PDM is adopted in this study.  PDMs 

consider catchments as a collection of storage elements with different storage capacities, and the 

spatial variability of storage capacity is represented by a probability distribution (Moore, 2007).  

Runoff in a PDM is generated from the saturated elements and by the discharge from soil storage, 

each is then routed through a storage tank.  The generalized Pareto distribution has been widely 

used in PDMs, such as the Xiananjiang model (Zhao, 1977; Zhao, 1992), VIC model (Wood et al., 

1992; Liang et al., 1994), and HyMOD (Moore, 1985; Chen et al., 2013; Razavi & Gupta, 2016).  

Recently, Wang (2018) proposed a new distribution function for describing the spatial variability 
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of soil water storage capacity and showed that the corresponding soil wetting Equation can lead to 

the SCS-CN method (SCS, 1972) when the initial soil water storage is set to zero.  In addition, this 

new distribution function can lead to a Budyko-type Equation for the mean annual water balance, 

further details will be shown in Section 3.4.  Consequently, the new distribution function unifies 

the two runoff calculation methods, i.e., SCS-CN method and PDM, and unifies the water balance 

at different timescales.   Considering the advantage of the new distribution function, it is used to 

develop a new PDM in this study.  The distribution function is shown as follows: 

 𝐹(𝐶) = 1 −
1

𝑎
+

𝐶+(1−𝑎)𝑆𝑏

𝑎√(𝐶+𝑆𝑏)
2−2𝑎𝑆𝑏𝐶

              (3.1) 

where C is soil water storage capacity at a point and C ≥ 0; 𝐹(𝐶) is the fraction of the catchment 

area for which the storage capacity is less than or equal to 𝐶; 𝑎 is the shape parameter with a range 

of 0 < 𝑎 < 2; and 𝑆𝑏 is the average soil water storage capacity over the catchment.  The new PDM 

has a similar model structure as HyMOD, except that is has a different method for determining the 

actual evaporation.  Figure 3.1 presents the schematic description of the daily water balance model.  

As shown in this figure, precipitation is partitioned into soil wetting (i.e., infiltration, W) and runoff 

(R).  Soil wetting, determined by both precipitation (𝑃) and the initial soil water storage (𝑆0), is 

computed by the following integration (Moore, 1985): 

𝑊 = ∫ [1 − 𝐹(𝐶)]𝑑𝐶
𝑃+𝐶0
𝐶0

                  (3.2) 

where 𝐶0 is the point storage capacity corresponding to  𝑆0 in Figure 3.1.  Substituting Equation 

(3.1) into Equation (3.2), soil wetting is obtained:  

𝑊 =
𝑃+𝑆𝑏√(𝑚+1)

2−2𝑎𝑚−√[𝑃+(𝑚+1)𝑆𝑏]
2−2𝑎𝑚𝑆𝑏

2−2𝑎𝑆𝑏𝑃

𝑎
   (3.3) 

where, 
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𝑚 =
𝑆0(2𝑆𝑏−𝑎𝑆0)

2𝑆𝑏(𝑆𝑏−𝑆0)
         (3.4) 

If the initial soil water storage is zero (𝑆0 = 0), Equation (3.3) becomes: 

𝑊 =
𝑃+𝑆𝑏−√(𝑃+𝑆𝑏)

2−2𝑎𝑆𝑏𝑃

𝑎
                                                 (3.5) 

The shape parameter can be expressed as (Wang, 2018): 

𝑎 = 2𝜀(2 − 𝜀)                                                           (3.6) 

where 𝜀 is the initial soil wetting ratio, therefore, Equation (3.5) can be written as: 

𝑊 =
𝑃+𝑆𝑏−√(𝑃+𝑆𝑏)

2−4𝜀(2−𝜀)𝑆𝑏𝑃

2𝜀(2−𝜀)
                                         (3.7) 

Equation (3.7) is the root of the following quadratic function: 

𝜀(2 − 𝜀)𝑊2 − (𝑃 + 𝑆𝑏)𝑊 + 𝑃𝑆𝑏 = 0                                (3.8) 

Equation (3.8) can also be expressed as a proportion: 

𝑃−𝑊

𝑃−𝜀𝑊
=

𝑊−𝜀𝑊

𝑆𝑏−𝜀𝑊
                                                       (3.9) 

Equation (3.9) is the proportionality relationship of the SCS‐CN method (SCS, 1972).  Therefore, 

the computation of soil wetting by Equations (3.3) is an extension of the SCS‐CN method by 

explicitly incorporating initial soil moisture.   
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Figure 3.1: The structure of the daily water balance model which unifies the probability 

distributed model (PDM) and SCS-CN method.  C is soil water storage capacity at a point; 𝐹(𝐶) 
is the fraction of the catchment area for which the storage capacity is less than or equal to 𝐶; 𝑆0 

is the initial soil water storage; P is the precipitation which is partitioned into is the soil wetting 

(W) and runoff (R); E is the actual evaporation; 𝛾 is the partitioning parameter of runoff between 

the direct runoff (𝑅𝑑) and groundwater recharge (𝑅𝑔); 𝑆𝑑 and 𝑆𝑔 are the storages in the quick 

storage tank and slow storage tank, respectively; 𝑘𝑑 and 𝑘𝑏 are the runoff coefficients of direct 

runoff and baseflow, respectively; 𝑄𝑑, 𝑄𝑏, and 𝑄 are the flow rates of direct streamflow, 

baseflow, and total streamflow at the catchment outlet, respectively. 

Once soil wetting (𝑊) is computed using Equation (3.3), the sum of soil wetting and initial 

soil water storage (𝑌 = 𝑊 + 𝑆0) is then partitioned into evaporation (𝐸) and ending soil water 

storage (𝑆1), i.e., 𝑌 = 𝐸 + 𝑆1.  In the HyMOD model, 𝐸 is assigned as the smaller value between 

𝑌 and potential evapotranspiration proportional to the catchment saturation degree.  Alternatively, 

in this model, the spatial heterogeneity of soil water storage is considered when determining 

evaporation.  As shown in Figure 3.1, the actual soil water storage varies spatially due to the spatial 

variability of storage capacity.  Therefore, the actual evaporation will also vary spatially even 

though the potential evapotranspiration is assumed to be spatially uniform.  When the soil water 

storage at every element in a catchment reaches their individual storage capacities (Figure 3.2a) 
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(i.e., the entire catchment is saturated), then the average evaporation over the entire catchment is 

computed as follows: 

𝐸𝑠 = ∫ [1 − 𝐹(𝐶)]𝑑𝐶
𝐸𝑝
0

                                              (3.10) 

As presented in Figure 3.2a, the spatially averaged evaporation under conditions when the entire 

catchment is saturated (𝐸𝑠) is smaller than 𝐸𝑝, even though the average storage (𝑆𝑏) is greater than 

𝐸𝑝.  The reason is that the soil water storage at some elements in the catchment are lower than 𝐸𝑝 

and the evaporation at those points is equal to the corresponding soil water storage.  For the 

condition when the catchment is not fully saturated (Figure 3.2b) with an average storage of  𝑊 +

𝑆0, evaporation is proportionally reduced from 𝐸𝑠 relative to the soil water storage using Equation 

(3.11):  

 𝐸 =
𝑊+𝑆0

𝑆𝑏
𝐸𝑠                    (3.11) 

Therefore, evaporation is computed by the following Equation after substituting Equation (3.1) 

into Equation (3.10): 

𝐸 =
𝑊+𝑆0

𝑆𝑏

𝐸𝑝+𝑆𝑏−√(𝐸𝑝+𝑆𝑏)
2
−2𝑎𝑆𝑏𝐸𝑝

𝑎
                                        (3.12) 

In the daily water balance model, runoff is decomposed into either direct runoff (𝑅𝑑) or 

groundwater recharge (𝑅𝑔) using a partitioning parameter (𝛾).  The direct runoff and groundwater 

recharge are then stored in a quick storage tank (𝑆𝑑) and a slow storage tank (𝑆𝑔), respectively.  

These tanks are conceptually lumped storages representing the surface water body (𝑆𝑑) and the 

unsaturated zone and shallow groundwater aquifer (𝑆𝑔).  Because water in the storage tanks cannot 

be totally released to the catchment outlet within one day after precipitation, therefore, linear 

relationships between tank outflows and tank storages are used for the routing processes.  
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Correspondingly, the total streamflow at the catchment outlet (𝑄) can be calculated using Equation 

(3.13-1) through Equation (3.13-8): 

   𝑅 = 𝑃 −𝑊      (3.13-1) 

     𝑅𝑑 = 𝛾𝑅                              (3.13-2) 

𝑅𝑔 = (1 − 𝛾)𝑅              (3.13-3) 

𝑄𝑑 = 𝑘𝑑(𝑆𝑑0 + 𝑅𝑑)     (3.13-4) 

𝑆𝑑1 = (1 − 𝑘𝑑)(𝑆𝑑0 + 𝑅𝑑)          (3.13-5) 

𝑄𝑏 = 𝑘𝑏(𝑆𝑔0 + 𝑅𝑔)                             (3.13-6) 

𝑆𝑔1 = (1 − 𝑘𝑏)(𝑆𝑔0 + 𝑅𝑔)         (3.13-7) 

𝑄 = 𝑄𝑑 + 𝑄𝑏                                      (3.13-8) 

where the reciprocals of parameters kd and kb are the average characteristic times of the quick 

storage tank and slow storage tank; 𝑄𝑑 and 𝑄𝑏 are the flow rates of direct streamflow and baseflow 

measured at the catchment outlet; 𝑆𝑑0 and 𝑆𝑔0 are the initial storages in the quick storage tank and 

slow storage tank; 𝑆𝑑1 and 𝑆𝑔1 are the final storages in the quick storage tank and slow storage 

tank. 

In total, there are five parameters for the daily model: 𝑎, Sb , 𝛾, kb, and kd.  The ranges and 

units of the parameters are shown in Table 3.1.  Monthly and annual streamflow are aggregated 

from the daily streamflow, and the mean annual streamflow is the average of annual streamflow.  

The role of the soil water storage capacity and its spatial variability have received considerable 

attention in the mean annual water balance because the spatially variable storage capacity promotes 

the mean annual streamflow generation (Milly, 1994).  In order to quantify the role of soil water 

storage capacity and its spatial variability, a base model scenario with a spatially uniform soil 
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water storage capacity is developed for mean annual water balance.  In this scenario, the uniform 

storage capacity is large enough so that no saturation excess runoff occurs, and the actual mean 

annual evaporation is calculated as the smaller value between the mean annual potential 

evapotranspiration and precipitation.    

 

Figure 3.2: Evaporation is calculated based on the cumulative distribution function of soil water 

capacity when (a) the entire catchment is saturated and (b) the catchment is partially saturated. 

 𝑆𝑏 is the average soil water storage capacity over the catchment; 𝐸𝑝 is the potential 

evapotranspiration; 𝐸𝑠 is the average evaporation over the catchment when the entire catchment 

is saturated.  

3.2.2 Climate Inputs to the Daily Water Balance Model 

This study uses four patterns of climate forcings.  Figure 3.3 shows an example using the 

climate data over a three-year period from Caney River, Kansas.  Figure 3.3a is the observed 

climate (OC), i.e., the daily time series of precipitation (mm/day) and potential evapotranspiration 

(mm/day), which encompass climate variability at all timescales.  Figure 3.3b is the daily time 

series of monthly climate, with intra-monthly (IM) variability removed (i.e., daily values within a 

given month are replaced by their respective monthly mean) while preserving intra-annual (IA) 

and inter-annual (ITA) variability in forcings, and we denote this type of climate forcings as OC-
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IM.  Figure 3c is the daily time series of annual climate, with IM and IA variability removed (i.e., 

daily values are replaced with annual means) but with ITA variability preserved, and we denote 

this type of climate forcings as OC-IM-IA.  Figure 3.3d is the daily time series of mean climate, 

specified by the long-term average values, without IM, IA and ITA variability in forcings (i.e., no 

variability in daily forcings), and we denote this type of climate forcings as OC-IM-IA-ITA.  

Model calibration is conducted using the observed daily precipitation and daily potential 

evapotranspiration (Figure 3.3a).   

Each of the climate forcings is used to drive the daily water balance model to estimate daily 

streamflow.  Comparing the results from OC and OC-IM can show the role of IM on streamflow.  

Likewise, comparing the results from OC-IM and OC-IM-IA can show the role of IA on 

streamflow, and comparing the results from OC-IM-IA and OC-IM-IA-ITA can show the role of 

ITA on streamflow. 
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Figure 3.3: Examples of different temporal patterns of climate inputs for Caney River in Kansas 

(USGS gage number: 07172000) during the period of 2000-2002: (a) observed climate (OC), (b) 

climate without intra-monthly variability (OC-IM), (c) climate without intra-monthly and intra-

annual variability (OC-IM-IA), and (d) mean climate, i.e., climate without intra-monthly, intra-

annual, and inter-annual variability (OC-IM-IA-ITA).  The blue solid line represents 

precipitation (P) and the red dashed line represents potential evapotranspiration (Ep). 

3.2.3 Study Catchments and Data 

Seventy-eight catchments from Model Parameter Estimation Experiment (MOPEX) (Duan 

et al., 2006) were used for this study.  These catchments were selected due to their minimum 

human interferences (Wang and Hejazi, 2011) and snow effects to streamflow.  The fraction of 

precipitation falling as snow (SF) was estimated from the empirical precipitation phase probability 

function proposed by Dai (2008) using daily average temperature and daily precipitation (Lute & 

Abatzoglou, 2014).  The catchments with mean annual SF smaller than 15% (Berghuijs et al., 

2014; Gao et al., 2014) were selected in this study.  The area of study catchment ranges from 134 
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to 9886 km2 and the dryness index ranges from 0.27 to 1.33.  The hydrologic model used in this 

study is most useful for catchments where the saturation excess runoff regime is dominant.  

Therefore, catchments with a dryness index larger than 1.5 were not considered in this study 

because infiltration excess runoff generation would be significant in these catchments (Pilgrim et 

al., 1988).  Observed daily streamflow for the years 1979-2003 is obtained through the MOPEX 

website (https://www.nws.noaa.gov/ohd/mopex/mo_datasets.htm), and extended through 2015 

using the U.S. Geological Survey’s (USGS) National Water Information System 

(https://waterdata.usgs.gov/nwis/sw).  Daily precipitation and daily reference potential 

evapotranspiration are extracted from a gridded surface meteorological data set (gridMET) for the 

years 1979-2015 with a spatial resolution of ~4 km (http://www.climatologylab.org/gridmet.html) 

(Abatzoglou, 2013).  Daily reference potential evapotranspiration in gridMET is calculated using 

the Penman-Monteith Equation (Monteith, 1964; Allen et al, 1998; Abatzoglou & Ficklin, 2017).  

Mean annual potential evapotranspiration values from MOPEX website are used for scaling the 

reference potential evapotranspiration in each study catchment. 

3.2.4 Parameter Estimation and Model Performance 

There are five parameters (i.e., a, Sb , γ, kb, and kd) in the daily water balance model.  The 

parameters are conceptual representations of catchment characteristics.  Thus, it is difficult to 

assign values using direct observations, instead, they can be determined through calibration.   

Available data are divided into three periods: 1) the warm-up period (1979-1980), 2) the calibration 

period (1981-1998), and 3) the validation period (1999-2015).  Model parameters are calibrated 

using a Shuffled Complex Evolution Method (SCE-UA) (Duan et al., 1992) and an open source 

python package SPOTPY (Houska et al., 2015).  The objective function (OBJ) consists of 6 

https://waterdata.usgs.gov/nwis/sw
http://www.climatologylab.org/gridmet.html
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components, including 3 Nash-Sutcliffe Efficiencies (NSE) (Nash and Sutcliffe, 1970; Moriasi et 

al., 2007) and 3 Volumetric Fit Efficiencies (VFE) (Wang et al., 2009) corresponding to daily, 

monthly, and annual streamflows, as shown: 

𝑂𝐵𝐽 =  |1.0 − 𝑁𝑆𝐸𝑑𝑎𝑖𝑙𝑦| + |1.0 − 𝑁𝑆𝐸𝑚𝑜𝑛𝑡ℎ𝑙𝑦| + |1.0 − 𝑁𝑆𝐸𝑎𝑛𝑛𝑢𝑎𝑙| + |1.0 − 𝑉𝐹𝐸𝑑𝑎𝑖𝑙𝑦| +

|1.0 − 𝑉𝐹𝐸𝑚𝑜𝑛𝑡ℎ𝑙𝑦| + |1.0 − 𝑉𝐹𝐸𝑎𝑛𝑛𝑢𝑎𝑙|               (3.14) 

𝑁𝑆𝐸𝑑𝑎𝑖𝑙𝑦 = 1 −
∑ (Qs

d- Qo
d)

2
D
d=1

∑ (Qo
d - Qo,daily
̅̅ ̅̅ ̅̅ ̅̅ ̅ )

2
D
d=1

                                           (3.15-1) 

𝑁𝑆𝐸𝑚𝑜𝑛𝑡ℎ𝑙𝑦 = 1 −
∑ (Qs

m- Qo
m)

2M
m=1

∑ (Qo
m - Qo,monthly

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  )
2

M
m=1

                                       (3.15-2) 

𝑁𝑆𝐸𝑎𝑛𝑛𝑢𝑎𝑙 = 1 −
∑ (Qs

y- Qo
y)

2Y
y=1

∑ (Qo
y  - Qo,annual̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ )

2Y
y=1

                                         (3.15-3) 

𝑉𝐹𝐸𝑑𝑎𝑖𝑙𝑦 =
∑ Qs

dD
d=1

∑ Qo
d D

d=1

                                                       (3.15-4) 

𝑉𝐹𝐸𝑚𝑜𝑛𝑡ℎ𝑙𝑦 =
∑ Qs

mM
m=1

∑ Qo
mM

m=1

                                                  (3.15-5) 

𝑉𝐹𝐸𝑎𝑛𝑛𝑢𝑎𝑙 =
∑ Qs

yY
y=1

∑ Qo
y  Y

y=1

                                                     (3.15-6) 

where Q
o

d
 (Q

o

m
, Q

o

y
) is the observed daily (monthly, annual) streamflow on the 𝑑𝑡ℎ day (𝑚𝑡ℎ month, 

𝑦𝑡ℎ year); Q
s

m
 (Qs

m
, Qs

y
) is the simulated daily (monthly, annual) streamflow; Q

o,daily
̅̅ ̅̅ ̅̅ ̅̅  (Q

o,monthly
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, 

Qo,annual̅̅ ̅̅ ̅̅ ̅̅ ̅̅  ) is the observed mean daily (monthly, annual) streamflow during the calibration period; 

and 𝐷 (𝑀, 𝑌) is the total number of days (months, years) for calibration.   

Including daily, monthly, and annual streamflow in the objective function for calibration 

ensures that the model performance is satisfactory at multiple timescales (Schaake et al., 1996; 

Hay et al., 2006; Sudheer et al., 2007).  In addition, using two performance metrics in calibration, 
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NSE and VFE, will simultaneously improve estimation of the hydrograph and of volumetric fitting.  

The value of NSE ranges from −∞ to 1, with a value of 1 representing a perfect estimation of 

observed variability.  VFE, ranging from −∞ to ∞, reflects model bias with a value of 1 

corresponding to no model bias.  The same objective function weights for NSE and VFE are used 

for 3 timescales modeled in this study.  Parameter values are chosen for each catchment by 

minimizing the objective function and fixing them for each model run.  

3.2.5 Roles of Climate Variability on Streamflow at Different Timescales 

3.2.4.1 Daily, Monthly, and Annual Streamflow 

The role of each climate variability in daily, monthly, or annual streamflow is defined as 

its ability to explain streamflow variability at each timescale.  This ability is quantified by the 

difference in NSE values from the simulated streamflow using the climate inputs at two 

consecutive timescales.  Quantifying the role of climate variability in this study uses NSE because 

it is an indicator for evaluating the overall model behavior with an emphasis on the timing and 

shape of the hydrograph which reflects the sensitivity of streamflow to climate fluctuations.  

Additionally, NSE can be applied to streamflow at different timescales.  A consistent index across 

timescales helps systematically compare the roles of each climate variability on streamflow at 

multiple timescales.  The role of each climate variability in terms of ∆NSE is normalized by the 

NSE value resulting from the observed climate, shown in the following Equation:   

𝜌k,j = 
NSEi,j - NSEi+1, j

NSE1,j
                                                              (3.16) 

where 𝜌k,j represents the relative role of different climate variabilities (𝑘 = 𝐼𝑀, 𝐼𝐴, 𝐼𝑇𝐴) on the jth 

(j = 1, 2, 3) timescale streamflow.  For example, Figure 3.4a shows the flow chart for quantifying 
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the roles of different climate variabilities on the daily streamflow (j = 1).  The role of IM climate 

variability on the daily streamflow is quantified as the difference in NSE from the model driven by 

OC forcings (Figure 3.3a) and by OC-IM forcings (Figure 3.3b), i.e., NSE1,1 − NSE2,1.  The role 

of IA climate variability on daily streamflow is quantified as the difference in NSE from the model 

driven by OC-IM (Figure 3.3b) and by OC-IM-IA (Figure 3.3c), i.e., NSE2,1 − NSE3,1.  Likewise, 

the role of  IA climate variability on the daily streamflow variability is quantified as the difference 

in NSE driven by OC-IM-IA (Figure 3.3c) and by OC-IM-IA-ITA (Figure 3.3d), i.e., NSE3,1 −

NSE4,1.  Note that, since NSE4,j represents the performance of the model forced with the mean 

climate, the modeled streamflow will approach the observed long-term average causing the NSE 

to be very close to zero.  Recall, a value of “0” for NSE means that a model can only simulate the 

mean of the observed data.  Similarly, the roles of the climate variabilities at the three timescales 

on monthly streamflow (j = 2), and annual streamflow (j = 3) are quantified based on Equation 

(3.16).  For daily, monthly, and annual streamflow, the streamflow variability is decomposed into 

the fractional contributions from IM, IA, and ITA climate variability, therefore, the sum of the 

relative roles of the three climate variabilities equals 1 for each timescale streamflow, i.e., ∑𝜌k,j =

1, 𝑘 = 𝐼𝑀, 𝐼𝐴, 𝐼𝑇𝐴, for each j. 
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Figure 3.4: (a) The flow chart for quantifying the relative effects of climate variability on daily 

streamflow.  NSEi,j represents the NSE value for the jth timescale streamflow (j = 1, 2, 3 

represents the daily, monthly, and annual streamflow, respectively, and j = 1 is shown in the 

figure for an example) forced by the ith timescale climate forcing; 𝜌𝑘,𝑗 denotes the role of climate 

variability (k= IM, IA, ITA) on streamflow, (b) The flow chart for quantifying the relative effects 

of different components on mean annual streamflow. The subscript “4” in Q
𝑖,4

 represents the 

streamflow at the mean annual scale, and the subscript i represents the five input scenarios.  

 Q
IM

,  Q
IA

,  Q
ITA

,  Q
S
,  Q

L
 are the 5 components of the total mean annual streamflow caused by 

the IM climate variability, IA climate variability, ITA climate variability, storage capacity with 

its spatial variability, and mean climate, respectively; and  𝜌IM ,  𝜌IA,  𝜌ITA, 𝜌S,  𝜌L are the 

corresponding relative roles. 

3.2.5.2 Mean Annual Water Balance 

Following Milly (1994), the roles of climate variabilities on the mean annual water balance 

are defined as their contributions to the total streamflow generation and are quantified through the 

streamflow differences with different forcing inputs.  In addition to the climate variability, the 

roles of the long-term average climate and soil water storage capacity with its spatial variability 

are evaluated for the mean annual water balance in order to compare to the results of other studies.  

The total mean annual streamflow in each catchment is decomposed into 5 components, as follows:  
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Q
total
 = QIM + QIA

 + QITA+ Q
S
 + Q

L
                                             (3.17) 

 QIM = Q
1,4
− Q

2,4
                                                          (3.18-1) 

 QIA = Q
2,4
−Q

3,4
                                                          (3.18-2) 

 QITA = Q
3,4
− Q

4,4
                                                          (3.18-3) 

 QS = Q
4,4
− Q

5,4
                                                          (3.18-4) 

 QL = Q
5,4

                                                                (3.18-5) 

where the subscript “4” in Q
𝑖,4

 represents the streamflow at the mean annual scale, and the 

subscript i represents different forcings with a full range from 1 to 5; Q
1,4

,  Q
2,4

, Q
3,4

, and Q
4,4

 are 

the simulated mean annual streamflow forced by OC, OC-IM, OC-IM-IA, and OC-IM-IA-ITA, as 

shown in Figure 3a, 3b, 3c, 3d, respectively.  Climate variabilities at finer timescales promotes 

more streamflow generation, i.e., Q
1,4

> Q
2,4

> Q
3,4

> Q
4,4

.  Q
1,4

~ Q
4,4

 are simulated from the water 

balance model with spatially variable storage capacity.  Q
5,4

 (or Q
L
) is the simulated streamflow 

forced by mean climate without considering the storage capacity, and we denote this model 

scenario as OC-IM-IA-ITA-S.  Therefore,  QIM ,  QIA,  QITA,  Q
S
,  QL are the 5 components of the 

total mean annual streamflow caused by IM climate variability, IA climate variability, ITA climate 

variability, storage capacity with its spatial variability, and long-term average climate, 

respectively.  By summing Equations (3.18-1) ~ (3.18-5) on both hand sides, it can be obtained 

that  QIM + QIA + QITA+ Q
S
 + Q

L
=  Q

1,4
.  Comparing it with Equation (3.17), one can obtain 

Q
1,4
=  Qtotal, i.e., Q

1,4
 can be considered as the sum of different streamflow components.  The 

contribution of each component is normalized by the total mean annual streamflow: 

𝜌𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡  =  
𝑄𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡

𝑄𝑡𝑜𝑡𝑎𝑙
                                                    (3.19) 
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where Q
component

 represents the components of total streamflow as mentioned in Equation (3.17); 

𝜌component  denotes the relative effects of climate variability or soil water storage capacity on the 

mean annual streamflow.  The decomposition process and the role quantification process for the 

mean annual streamflow are shown in Figure 4b.  Since the total volume of mean annual 

streamflow is decomposed into the fractional contributions from IM, IA, ITA climate variability, 

mean climate, and storage capacity with its spatial variability, the sum of the relative roles of these 

five components equals 1, i.e., ∑𝜌𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 = 1. 

3.3 Results and Discussion  

3.3.1 Model Performance  

The calibrated parameters for 12 catchments (locations shown in Figure 3.10) are listed in 

Table 3.1.  Values of the shape parameter (a) for these catchments are close to the upper limit (i.e., 

2).  Considering all catchments used in the study, the shape parameter values ranges from 1.85 to 

1.90 for 4 catchments, with the remaining catchments having a value greater than 1.90, indicating 

an “S” shape of the cumulative distribution function (CDF) for soil water storage capacity (Wang, 

2018).  The “S” shape of a CDF curve consists of both a convex and a concave segment, which 

introduces more flexibility for simulating runoff generation under different wetness conditions 

(Jayawardena & Zhou, 2000). 

The NSE values for the daily, monthly, and annual streamflow during calibration and 

validation periods are shown in Figure 3.5a and Figure 3.5b.  Generally, NSE is greater at coarser 

timescales.  The average NSE during the calibration (validation) period is 0.61 (0.61), 0.86 (0.84), 

0.90 (0.85) for the daily, monthly, and annual streamflow, respectively.  During validation, 53% 
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of catchments have an NSE value greater than 0.6 for daily streamflow, 79% of catchments have 

an NSE value greater than 0.8 for monthly streamflow, and 59% of catchments have an NSE value 

greater than 0.85 for annual streamflow.  A comparison between the observed mean annual 

streamflow and simulation is presented in Figure 3.5c for all study catchments.  The relative error 

for the validation period is 5.9% on average, and the root mean square error is 32.8 mm/year. 

The percent bias (PBIAS) is calculated as well for evaluating the model performance.  It is 

expected that the PBIAS will be small in all catchments during calibration period because the 

volumetric fit efficiency (VFE) effectively controls the model bias and it accounts for 50% of the 

weight in the objective function for calibration.  Results show that the average PBIAS during the 

calibration period is -0.14%.  Only 5 catchments have an absolute value of PBIAS between 0.5% 

and 6%, with all other catchments having an absolute value of PBIAS smaller than 0.5%.  The 

cumulative probability of the PBIAS during validation is shown in Figure 3.5d.  The average PBIAS 

during validation is -0.09% for all the catchments, and 87% of the catchments have a PBIAS within 

±10%, indicating that no significant bias exists in the model (Moriasi et al., 2007; Gupta et al., 

2009).  Since the streamflow at a coarser timescale is aggregated from the daily streamflow, the 

percentage bias is same across different timescales.  Note that the model performance is not 

dependent on the catchment drainage area (see Figure S3.1 in the Supporting Information). 
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Figure S3.1: The relationship between drainage area and Nash-Sutcliffe Efficiency (NSE) values 

for (a) daily, (b) monthly, (c) annual streamflow, and (d) the relationship between drainage area 

and percent bias. 

The model performance is satisfactory for the daily, monthly, annual, and mean annual 

water balance considering its parsimonious model structure (Perrin et al., 2001; McIntyre et al., 

2005; Moriasi et al., 2007; Wang et al., 2009).  To compare the model performance with other 

models, HyMOD (Moore, 1985) was used for all study catchments.  The performance of the two 

models are shown in Figure S3.2 of the Supporting Information.  The comparison shows that our 

model is superior to HyMOD in simulating the daily and monthly streamflow, and has a similar 

efficiency in simulating the annual streamflow.  The average bias in simulating streamflow using 

the new PDM is smaller than the bias from HyMOD.  Note that in the Supporting Information, the 
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model used in this study is referred to as PDM-CN model for simplification since the distribution 

function for soil water storage capacity used in our PDM leads to the SCS-CN method.   

 

Figure 3.5: The performance of the water balance at different timescales: (a) NSE of the 

streamflows during the calibration period, (b) NSE of the streamflows during the validation 

period, (c) a comparison of the observed and calculated mean annual streamflow during the 

validation period, and (d) the cumulative distribution of model bias during the validation period. 
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Figure S3.2:  Comparisons between the model used in this study (PDM-CN) and the HyMOD in 

terms of the NSE during the validation and calibration periods for (a) daily streamflow, (b) 

monthly streamflow, (c) annual streamflow, and (d) the percent bias of streamflow during the 

validation period. 
 

3.3.2 The Roles of Climate Variabilities on Streamflow 

The relative roles of different climate variabilities on the streamflow at different timescales 

for the 78 study catchments are presented in Figure 3.6.  In the daily streamflow, the average 

relative role of intra-monthly climate variability is the largest, accounting for 51.2% of the daily 
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streamflow variability (Figure 3.6a).  Intra-annual climate variability has the second most 

contribution, explaining 40.1% of the daily streamflow variability (Figure 3.6a).  The relative role 

of inter-annual variability is much smaller, only explaining 8.7% of the daily streamflow variation.  

However, daily data are not fully accessible in many catchments, therefore, making it difficult to 

accurately simulate the daily streamflow.  Additionally, the high contribution of the intra-annual 

variability indicates significant storage variation at the daily scale resulting from the intra-annual 

climatic fluctuations.  Flashiness is one of the most significant characteristics of daily streamflow, 

thus the Richards-Baker flashiness index (R-B Index) (Baker et al., 2004) is calculated for daily 

streamflow during the validation period (1999-2015) to further present the sensitivity of daily 

streamflow to different climate variabilities.  Streamflow with a larger R-B Index experiences a 

larger day-to-day variation.  The results show that the R-B Index for the simulated streamflow with 

OC input is 0.26 on average among the study catchments, and is reduced to 0.02 when using OC-

IM climate input.  There is almost no flashiness in the simulated streamflow when OC-IM-IA 

climate is used, and there is no flashiness in streamflow using mean climate, i.e., OC-IM-IA-ITA.  

Figure 3.7a shows a three-year daily streamflow hydrograph with different climate inputs for 

Smith River in California (USGS gage number: 11532500).  The difference in flashiness of the 

simulated streamflow modeled with different climate inputs further manifests the essential role 

played by intra-monthly climate variability on daily streamflow.  Additionally, intra-annual 

climate variability generally determines the shape of daily streamflow at the monthly scale, and it 

is also a key component for daily streamflow variation.  

In the monthly water balance, the role of intra-annual climate variability is the largest, on 

average explaining 75.4% of the variation in monthly streamflow (Figure 3.6b).  The role of inter-

annual climate variability is notable, contributing 17.6% of the monthly streamflow variation, 
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while the role of intra-monthly climate variability is much smaller (7.0%).  The central role of 

intra-annual climate variability on the monthly water balance is also supported by the Pardé 

coefficient, which is an indicator for identifying the mean seasonal flow regime (Pardé, 1933).  

Figure 3.7b shows the distribution of the Pardé coefficient for Smith River.  The streamflow 

seasonality is almost fully determined by the intra-annual climate variability since other climate 

variabilities explain less variation in monthly streamflow.  The overwhelming control of the intra-

annual climate variability on the monthly streamflow variability reduces the difficulty in model 

prediction compared to the daily timescale because monthly climatic data are more accessible.  

The much smaller role of the intra-monthly variability indicates that the irregular effects of daily 

storminess are smoothed out at the monthly scale by the soil water storage capacity.  This is 

supported by Wang et al. (2011) which found that the daily inputs did not improve the performance 

of the monthly water balance much, through comparing a monthly water balance model with two 

daily water balance models in simulating the monthly streamflow.  Figure 3.8a shows the relative 

role of intra-annual climate variability on monthly streamflow variation as a function of dryness 

index.  In wetter areas, more variance in monthly streamflow could be explained by the intra-

annual climate variability than in drier areas.  However, the intra-annual climate variability still 

explains more than half of the variation in monthly streamflow for drier catchments. 

In the annual water balance, the inter-annual climate variability explains the most variation 

(81.4% on average) in the annual streamflow (Figure 3.6c).  The intra-annual climate variability 

also has a considerably contribution (17.5%).  However, the impacts of intra-monthly variability 

are further diluted in the annual streamflow compared to that in the monthly streamflow.  Figure 

3.7c shows the simulated annual streamflow in Smith River with different climate inputs.  The 

power of inter-annual climate variability over annual streamflow can also be reflected by the 
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coefficient of variation (CV) of simulated annual streamflow.  The CV value increases from 0, 

when using mean climate, to 0.0155 using annually variable climate and does not change much 

with smaller timescale climate variability indicated by Figure 3.7c.  Figure 3.8b shows that the 

relative contribution of inter-annual climate variability on the annual streamflow variation is larger 

in wetter catchments than in drier catchments.  In some humid catchments, the contribution of the 

inter-annual variability is up to 100%.  Figure 3.8c shows a positive relationship between the 

relative role of intra-annual climate variability on the annual streamflow and the dryness index.  

Therefore, the impact of intra-annual variability is larger in drier regions.  This result generally 

agrees with the result from Milly and Dune (2002), which found that the inter-annual variance in 

streamflow was explained more by annual climate anomalies than by seasonality, especially in 

humid catchments.  Figure 3.8b and 3.8c show the significant controls of the mean climate (in 

terms of dryness index) on the relative sensitivity of annual streamflow to different climate 

variabilities.  The large scatter in Figure 3.8b-c indicates that other catchment characteristics also 

have contribution in determining the relative role of climate variability.   

Figure 3.6d shows the relative roles of each climate variability on the mean annual 

streamflow.  Note that the values in Figure 3.6d are not supposed to be compared with values of 

relative roles from the water balance at smaller timescales (Figure 3.6a-c), because the method to 

calculate the relative roles of climate variability on the mean annual streamflow is different.  

Among different climate variabilities, intra-annual climate variability is the most important, 

contributing 64.2%, on average, to the part of mean annual streamflow that generated by climate 

variabilities.  It should be pointed out that the inter-annual climate variability also plays a 

substantial role in the mean annual streamflow, contributing 22.4%, on average, to the climate 

variability-generated mean annual streamflow.  This result supports a previous research in Li 
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(2014), which showed that the inter-annual variability of precipitation and potential 

evapotranspiration reduces the mean annual evapotranspiration based on a stochastic soil moisture 

model.  The reduction in evaporation ratio can reach 8-10% for the range of precipitation and 

potential evapotranspiration variability used in the study, which means that the inter-annual 

climate variability promotes the streamflow generation.   

Figure 3.6 shows that at the daily, monthly, and annual timescales, the variation in 

streamflow is largely determined by the climate variability at the same temporal scale.  

Specifically, for the annual streamflow, the inter-annual variability plays the most important role, 

and so on.  Following this pattern, the long-term climate condition (in terms of dryness index) 

should be most important for the mean annual water balance; this claim has been widely confirmed 

in other studies (Budyko, 1958, 1974; Milly, 1994; Zhang et al., 2001; Yang et al., 2008; Gentine 

et al., 2012).   

The relative roles of climate variability have also been evaluated based on simulation 

results from HyMOD.  The results from the model developed in this paper and that based on 

HyMOD are summarized in Table S3.1 and S3.2, respectively.  It shows that the results from these 

two models are consistent.  It is possible that a different combination of weights in the objective 

function could lead to different model efficiency.  However, the relative contribution of each 

climate variability is normalized by the model behavior from the observed daily climate as shown 

in Equations (3.16) and (3.19), which suggests an insensitivity of the relative effects of climate 

variability to the weights used in calibration.  Moreover, Table S3.3 in the Supporting Information 

shows the results of the relative roles of climate variability based on the simulation results with 

the parameters calibrated by NSE only (not using VFE).  As shown in Table S3.1 and Table S3.3, 
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no noticeable difference is observed between the results from the two calibration objective 

functions (i.e., NSE and VFE versus NSE only).   

 

Figure 3.6: The relative roles of climate variability on streamflow at the (a) daily, (b) monthly, 

(c) annual, and (d) mean annual scales. 
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Figure 3.7: Controls of climate forcings and its variability on (a) daily streamflow during 2010-

2012, (b) mean Pardé coefficient for each month during the 2000-2015, and (c) annual 

streamflow during 2000-2015 in Smith River, California (USGS gage number: 11532500). 
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Figure 3.8: (a) The relationship between the relative role of intra-annual climate variability on 

monthly streamflow and dryness index (Ep/P), (b) the relationship between the relative role of 

inter-annual climate variability on annual streamflow and Ep/P, (c) the relationship between the 

relative role of intra-annual climate variability on annual streamflow and Ep/P. 

Table S1: The relative roles (%) of climate variability on streamflow based on simulation results 

from PDM-CN with model parameters calibrated by both NSE and Volumetric Fit Efficiency 

(VFE).  

Timescale of streamflow 
Timescale of climate variability 

Intra-monthly Intra-annual Inter-annual 

Daily+ 51.2 40.1 8.7 

Monthly+ 7.0 75.4 17.6 

Annual+ 1.2 17.5 81.4 

Mean annual* 1.4 7.8 2.9 
+ The relative roles for daily, monthly, and annual streamflow are quantified by Equation 3.16 

   * The relative roles for mean annual streamflow are quantified by Equation 3.19 
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Table S2: The relative roles (%) of climate variability on streamflow based on simulation results 

from HyMOD with model parameters calibrated by both NSE and VFE. 

Timescale of streamflow 
Timescale of climate variability 

Intra-monthly Intra-annual Inter-annual 

Daily 51.9 38.9 9.2 

Monthly 7.7 73.8 18.5 

Annual 1.6 17.6 80.8 

Mean annual 2.2 8.7 3.4 

Table S3: The relative roles (%) of climate variability on streamflow based on simulation results 

from PDM-CN with the model parameters calibrated by only NSE. 

Timescale of streamflow 
Timescale of climate variability 

Intra-monthly Intra-annual Inter-annual 

Daily 51.0 40.3 8.7 

Monthly 7.0 75.6 17.4 

Annual 1.1 16.9 82.1 

Mean annual 1.3 7.7 2.9 

3.3.3 Budyko Framework 

In addition to the climate variability, the direct contributions of the mean climate and soil 

water storage capacity are also evaluated in the mean annual water balance (Figure 3.9).  Among 

all the factors, the mean climate is the dominant factor controlling the precipitation partitioning, 

contributing 58.6 %, on average, to the mean annual streamflow.  The soil water storage capacity 

with its spatial variability is the second contributing factor and contributes on average 29.3% of 

the mean annual streamflow.  The spatial heterogeneity of soil water storage not only promotes 

the streamflow generation directly but also suppresses the evaporation over the catchment as 

shown in Figure 2.  The impact of daily storminess on the mean annual water balance is small for 

the study catchments.  This result is similar to Reggiani (2000) who found that the storminess has 
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an almost negligible effect on the mean annual water balance when infiltration excess runoff is 

negligible.    

 

Figure 3.9: The relative roles of intra-monthly, intra-annual, inter-annual climate variability, 

mean climate, soil water storage capacity and its spatial variability on the mean annual 

streamflow across the catchments. 

Figure 3.10 shows how the mean annual evaporation ratio (i.e., 
E

P
) for the 12 catchments in 

Table 3.1 deviates from the asymptotes (black dashed lines) in the Budyko framework.  Each data 

point in Figure 3.10 (except for the observation) is a simulated evaporation ratio using the indicated 

forcing for each catchment.  When neglecting climate variability and soil water storage capacity 

as well as its spatial heterogeneity, the mean annual evaporation of a catchment is the highest (red 

circles), falling on the asymptotes (dashed black lines).  In a catchment with a dryness index 

smaller than 1, the evaporation is equal to the potential evapotranspiration.  Conversely, a 

catchment with a dryness index larger than 1, the evaporation is equal to precipitation.  A 

horizontal line with 
E

P
 = 1, is referred to as the upper bound in this paper (dashed dotted red line) 

which is not possible exceeded at the mean annual scale because of mass balance principle.  The 
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deviation from the upper bound (dashed dotted red line) to the asymptotes (dashed black lines) 

could be interpreted as the direct contribution of mean climate to mean annual streamflow.  This 

deviation decreases to 0 when the dryness index is greater than 1.  It suggests that the mean climate 

has direct contribution to mean annual streamflow only in catchments with a dryness index less 

than 1.  The direct contribution from mean climate to the mean annual streamflow is the remaining 

amount of precipitation after the possible maximum evaporation; under this condition climate 

variability and soil water storage capacity are not considered.  The catchments with dryness index 

less than 1 have the possible maximum evaporation less than precipitation.  However, the mean 

climate can play roles in streamflow generation in drier areas through the coevolution with other 

catchment properties such as the soil water storage capacity and vegetation.  Soil water storage 

capacity and climate variability promote streamflow generation, therefore, the evaporation ratio 

further deviates from the asymptotes when more factors are considered and eventually approaches 

the observed value when all factors are considered (Milly, 1994; Westhoff et al., 2016).   

The contribution of each catchment characteristic to the mean annual streamflow versus 

dryness index (
Ep

P
) is shown in Figure 3.11.  It is apparent that the direct contribution of mean 

climate decreases with dryness index and is 0 for catchments when the dryness index is equal to 

or larger than 1 (Figure 3.11a).  Other catchment characteristics including the storage capacity 

interact with the local climate, therefore, a clear pattern would also be found between the relative 

role of the spatially variable storage capacity with the dryness index (Figure 3.11b).  The 

contributions of storage capacity and climate variabilities increase as climate becomes drier 

(Figure 3.11b, c, d).  The scatter in Figure 3.11 suggests that the contribution of each component 

is not only dependent on the mean climate but also other unconsidered factors (e.g., sub-daily 

rainfall variability and topography). 
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Figure 3.10: The effects of soil water storage capacity and its spatial variability, mean climate, 

inter-annual climate variability, intra-annual climate variability, and intra-monthly climate 

variability on the mean annual evaporation ratio (E/P) in the Budyko framework. 
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Figure 3.11:  The relationships between the climate dryness index (Ep/P) and the relative effects 

of (a) mean climate, (b) soil water storage capacity and its spatial variability, (c) inter-annual 

climate variability, (d) intra-annual climate variability, and (e) intra-monthly climate variability 

on the mean annual streamflow. 
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3.3.4 A Unified Framework for Water Balance Models 

The developed daily water balance model provides a unified framework for modeling 

streamflow at different timescales.  For the traditional daily, monthly, annual, and long-term water 

balance models, the timescale and time step of climate inputs are same as those of streamflow to 

be modelled (Figure 3.12).  For example, monthly water balance models (Thomas, 1981; Makhlouf 

& Michel, 1994) take monthly precipitation and potential evapotranspiration as the inputs as 

shown in Figure 3.12-b1.  Model complexity and parameter uncertainty is a trade-off during model 

development (Perrin et al., 2001; Zhang et al., 2008).  Generally, as the model timescale becomes 

coarser, the model performance is not sacrificed in return for simpler model complexity 

(Jothityangkoon et al., 2001).  But the model complexity as well as the number of parameters 

should be flexible in different catchments and based on different research purposes.  Assuming the 

time lag for the quick storage tank is much less than one month, the monthly water balance model 

is obtained by removing the routing of quick storage as shown in Figure 3.12-b2 (i.e., kd=1 in 

Equations 3.13-4 and 3.13-5) and the Equations for the remaining components are same as those 

of daily water balance model.  The monthly water balance model shown in Figure 3.12-b2 has a 

similar performance as the ‘abcd’ model (see Figure S3.3 in Supporting Information), which is a 

state-of-the-art monthly water balance model with 4 parameters (Thomas, 1981).  In Equation 

(3.3), precipitation is partitioned into soil wetting and runoff; whereas, in the ‘abcd’ model, the 

sum of precipitation and initial storage is partitioned into runoff and the sum of ending storage and 

evaporation.  However, Equation (3.3) with 𝑆0 = 0 leads to the same functional form as the ‘abcd’ 

model for calculating runoff.  Assuming that the time lag for the slow storage tank is less than one 

year, the routing of slow storage could be removed, resulting in the two-parameter (a, Sb) annual 

model as shown in Figure 3.12-c2 (i.e., kd =1 in Equations 3.13-4 and 3.13-5, and kb=1 in 
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Equations 3.13-6 and 3.13-7).  Driven by annual precipitation and potential evapotranspiration 

(Figure 3.12-c1), the annual water balance model calculates annual soil wetting (and streamflow 

as 𝑃 −𝑊) by Equation (3.3) and annual evaporation by Equation (3.12).  The soil water storage 

carryover in the annual water balance model is considered through the initial storage in Equation 

(3.3).   

 
 . 

Figure S3.3:  Comparisons between the monthly PDM-CN model in the unified model 

framework and the ‘abcd’ model in terms of (a) the NSE for streamflow during the calibration 

and validation periods, and (d) the percent bias of streamflow during the validation period. 

Since soil water storage carry-over is not necessary for mean annual water balance, the 

mean annual water balance model is obtained by removing the initial soil water storage (i.e., 𝑆0 =

0) from the annual water balance as shown in Figure 3.12-d2.  Equation (3.3) becomes: 

𝑊 =
𝑃+𝑆𝑏−√(𝑃+𝑆𝑏)

2−2𝑎𝑆𝑏𝑃

𝑎
                                                  (3.20) 

Substituting Equation (3.20) into Equation (3.12) and dividing 𝑃 on both hand sides, one obtains: 

𝐸

𝑃
=

𝛷−1+1−√(𝛷−1+1)2−2𝑎𝛷−1

𝑎
∙

𝐸𝑝

𝑃
+𝛷−√(

𝐸𝑝

𝑃
+𝛷)

2

−2𝑎𝛷
𝐸𝑝

𝑃

𝑎
     (3.21) 
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where 𝛷 =
𝑆𝑏

𝑃
 is soil storage index.  Equation (3.21) shows that 

𝐸

𝑃
 is a function of 

𝐸𝑝

𝑃
, 𝛷, and 𝑎.  

This mean annual water balance model can be interpreted as the two-stage precipitation 

partitioning (L’vovich, 1979).  At the first stage, a portion of precipitation is partitioned to soil 

wetting; at the second stage, a portion of soil wetting is partitioned into evaporation.  If all the 

precipitation becomes soil wetting at the first stage (i.e., 𝑃 = 𝑊), the two-stage partitioning is 

simplified as a one-stage partitioning (i.e., precipitation is partitioned into evaporation and 

streamflow directly).  For the one-stage partitioning, the available water for evaporation is 

precipitation, and the average soil water storage capacity (i.e., 𝑆𝑏) in Figure 3.12-d2 is set as 𝑃.  

Correspondingly, Equation (3.21) becomes the one-parameter Budyko Equation (Wang and Tang, 

2014): 

𝐸

𝑃
=

𝐸𝑝

𝑃
+1−√(

𝐸𝑝

𝑃
+1)

2

−2𝑎
𝐸𝑝

𝑃

𝑎
      (3.22) 

The five-parameter daily water balance model (Figure 3.12a), which unifies the probability 

distributed model and the SCS-CN method (Wang, 2018), can be easily modified to a coarser 

modeling timescale by removing unnecessary components (Figures 3.12b, c, d).  The Equations 

for the common components among different timescale models remain the same.  The four-

parameter monthly model (Figure 3.12b) is obtained by removing the routing of quick flow; and 

the two-parameter annual model (Figure 3.12c) is obtained by further removing the routing of slow 

flow; the two-parameter mean annual model (Figure 3.12d) is obtained by neglecting initial storage 

in the annual model.  The two-parameter mean annual model (Equation 3.21) can be further 

simplified as a one-parameter Budyko model (Equation 3.22).  However, the HyMOD cannot lead 

to the Budyko model by the same simplification.  It should be noted that the common parameters 

(e.g., 𝑎) among the different timescale models (Figure 3.12) have different values due to the 
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timescale effect (Deng et al., 2018).  To avoid the effect of climate timescale on model parameters, 

precipitation and potential evapotranspiration at the daily time step (Figure 3.3) can be used for 

modelling streamflow at different timescales.  In this case, the common parameters for modeling 

streamflow at different timescales have the identical values. 

 

Figure 3.12: Climate inputs at different timescales (left column) and their corresponding water 

balance model structures (right column): (a) daily model, (b) monthly model, (c) annual model, 

(d) mean annual model. 
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3.4 Conclusion  

A probability distributed model was developed based on a new distribution function for 

describing the spatial variability of soil water storage capacity which leads to the SCS-CN method.  

In this study, the spatial variability of the soil water storage was assumed to have impacts on both 

runoff generation and evaporation.  The daily water balance model built in this study provides a 

framework for unifying water balance from daily to mean annual scale.  Parameters (5 in total) 

were calibrated using the SCE-UA algorithm with the objective function being the weighted 

combination of Nash-Sutcliffe efficiencies and volumetric fit efficiencies from daily, monthly, and 

annual streamflow.  The relative effects of climate variabilities, i.e., intra-monthly, intra-annual, 

and inter-annual variability of precipitation and potential evapotranspiration, on the streamflow at 

different timescales were evaluated by comparing the simulated streamflow from different 

timescale climate scenarios.   The results show that at the daily, monthly, and annual scales, 

streamflow variation is mostly influenced by the climate variability at the same timescale.  Daily 

streamflow receives significant contribution from intra-annual climate variability but much 

smaller contribution from inter-annual climate variability.  Monthly streamflow is notably affected 

by inter-annual climate variability, and annual streamflow is considerably affected by intra-annual 

climate variability.  As for the mean annual streamflow, intra-annual climate variability is the 

predominant contributor among all the climate variabilities, and our study shows that inter-annual 

climate variability affects the mean annual streamflow considerably.   

It should be noted that this study only tried to investigate the relative roles of different 

climate variabilities in a broader sense, while other catchment characteristics are not explored 

thoroughly but are also important to the water balance.  This study helps gain insight into the 

general control of the climatic fluctuations on the water balance.  While, the results from this paper 
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are more applicable to humid catchments since the model developed is a saturation excess model.  

Infiltration excess regime will be incorporated in future research.   
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CHAPTER FOUR: COMBINED EFFECTS OF WATER STORAGE CAPACITY AND 

CLIMATE ON LONG-TERM BASEFLOW 

4.1 Introduction 

Baseflow originates from groundwater and subsurface storage (Payn et al., 2012; 

Richardson et al., 2020; Segura et al., 2019), therefore it is a relatively stable component of the 

total streamflow (Brutsaert & Nieber, 1977; Shaw et al., 2013; Wang & Cai, 2009).  With 

continued population growth and changing climate, changes in baseflow is of interest in impacting 

water availability (Ficklin et al., 2016; Miller et al., 2016; Tan et al., 2020).  Baseflow discharge 

affects the transport and concentration of contaminants in rivers, and thus is closely related to 

water quality (Gomez-Velez et al., 2015; Jordan et al., 1997).  As an integral part of natural flow 

regime, baseflow is also crucial for maintaining aquatic ecosystems since it is associated with 

various physicochemical aspects of streams such as water temperature and channel 

geomorphology besides water quantity and quality (Hare et al., 2021; Poff et al., 1997; Price, 

2011).  Hence, understanding the controls of baseflow generation is of great importance to advance 

hydrologic sciences.   

Since baseflow is one of the reflections of the catchment’s hydrological functioning, it is 

expected that both climate forcings and physical catchment properties control mean annual 

baseflow (Price, 2011).  Baseflow is commonly quantified using two metrics:  baseflow index – 

defined as the ratio of mean annual baseflow to mean annual streamflow, and baseflow coefficient 

– defined as the ratio of mean annual baseflow to mean annual precipitation.  These normalized 

characteristics of baseflow facilitate revealing general relationship between baseflow and climate 

forcings and physical catchment properties across various water resources regions, and lead to 

fundamental understanding of spatial variability of long-term water balance.  Sivapalan et al. 
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(2011) and Wang & Wu (2013) identified the relative availability of mean annual water 

(precipitation) and energy (potential evapotranspiration) as the primary determinant controlling 

the baseflow coefficient in the contiguous U.S.  Meira Neto et al. (2020) developed analytical 

solutions with similar assumptions as Budyko Equation and further demonstrated the role of mean 

annual climate on baseflow in the U.S.  Besides mean annual climate, seasonality of precipitation 

and potential evapotranspiration was shown to affect baseflow as well (Beck et al., 2013).  Further, 

landscape characteristics, including geology, topography, and soil type, have also been found to 

exert significant control on baseflow (Haberlandt et al., 2001; Mwakalila et al., 2002).  For 

example, Longobardi & Villani (2008) found that catchment permeability is a major factor 

affecting baseflow index in a Mediterranean region.  In addition to permeability, Santhi et al. 

(2008) found that relief and gradient are highly correlated to baseflow volume and baseflow index 

in the U.S.  Bloomfield et al. (2009) argued that catchment lithology has the first-order control on 

the baseflow index in a basin located in the U.K.   

However, there was no general consensus on which index is most useful in capturing the 

impacts of catchment landscape, and how climate and landscape play relative roles on mean annual 

baseflow across different geographical regions and climatic settings.  Recently, Gnann et al. (2019) 

disentangled the impacts of mean annual climate and landscape based on the generalized 

proportionality relationship (Ponce & Shetty, 1995).  By applying their method to catchments 

from both the continental U.S. and U.K., they found that catchment wetting potential, a parameter 

which indicates the catchment soil water storage capacity, is essential to explain the different 

responses of long-term baseflow in different regions.  Soil water storage capacity could be 

considered as a comprehensive index characterizing catchment landscape since it is related to 

various landscape properties such as topography and the hydraulic property of soil (Gao et al., 
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2019; Huang et al., 2003; McGuire et al., 2005).  A direct dependence between soil water storage 

capacity and baseflow generation is intuitive as a larger storage capacity could retain more 

precipitation given a precipitation depth and antecedent soil moisture condition.  Moreover, the 

spatial variability of storage capacity within a catchment influences runoff generation directly as 

well (Jothityangkoon et al., 2001; Liang et al., 1994; Milly, 1994; Moore, 1985).  Lacey & Grayson 

(1998) found that the accurate description of spatial variability of geology could reduce the 

prediction error of baseflow index significantly, supporting the importance of the spatial variability 

of landscape in affecting baseflow index.   

However, the role of soil water storage capacity on mean annual baseflow is not yet fully 

quantitatively expressed.  The wetting potential parameter in the generalized proportionality 

relationship is helpful in explaining the baseflow variability between catchments concluded by 

Gnann et al. (2019).  However, the quantitative relationship between wetting potential and 

catchment soil water storage capacity is not clear.  Therefore, the purpose of this study is to 

encompass catchment soil water storage capacity in a probability distribution model directly by 

incorporating a cumulative distribution function of soil water storage capacity, and to investigate 

the roles of climate and soil water storage capacity on mean annual baseflow quantitatively.  

Analysis of this study will advance the understanding of spatial variability in precipitation 

partitioning across catchments.  

The remaining part of the paper proceeds as follows.  Section 4.2 describes the analytical 

expressions for mean annual water balance and also provides a method for analyzing the role of 

climate variability on baseflow, the study catchments and data along with the parameter estimation 

technique.  Section 4.3 discusses the controls of mean annual climate, soil water storage capacity, 
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and climate variability on baseflow index and baseflow coefficient in the study catchments.  

Section 4.4 provides the emerging conclusions from the study. 

4.2 Methodology 

4.2.1 Two-stage Partitioning of Mean Annual Precipitation  

Long-term water balance is usually formulated as a one-stage precipitation partitioning 

process, in which, mean annual precipitation (𝑃) is partitioned into mean annual streamflow (𝑄) 

and evaporation (𝐸), with an assumption of steady-state storage condition (Budyko, 1974; Zhang 

et al., 2001):   

𝑃 = 𝑄 + 𝐸                                                            (4.1) 

where 𝑄 could be further partitioned into fast flow (𝑄𝑓) and slow flow also called baseflow (𝑄𝑏): 

𝑄 = 𝑄𝑓 + 𝑄𝑏                                                          (4.2) 

𝑄𝑓 includes infiltration excess and/or saturation excess runoff and subsurface flow; and 𝑄𝑏 is from 

groundwater discharge.  To study the long-term baseflow explicitly, 𝑄𝑏 and 𝑄𝑓 need be 

differentiated; therefore, the two-stage precipitation partitioning framework is adopted in this 

paper.  The two-stage partitioning framework is an empirical analysis proposed by L’vovich 

(1979) on the basis of data from a large number of catchments around the world, and this 

framework describes the fundamental catchment functions explicitly at the annual scale (Troch et 

al., 2009).  At the first stage, 𝑃 is partitioned into 𝑄𝑓 and catchment wetting or infiltration (𝑊):  

𝑃 = 𝑄𝑓 +𝑊                                                          (4.3) 

At the second stage,  𝑊 is further partitioned into 𝑄𝑏 and 𝐸: 

𝑊 = 𝑄𝑏 + 𝐸                                                          (4.4) 
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The units for 𝑃, 𝑄, 𝐸, 𝑄𝑓, 𝑄𝑏, and 𝑊 are mm.   

4.2.2 Mean Annual Baseflow 

As mentioned in the Introduction, soil water storage capacity and its spatial variability are 

essential landscape properties affecting the water balance at long-term scale.  In order to explicitly 

take the spatially variable soil water storage capacity into account, the functional forms for 

Equation (4.3) and Equation (4.4) are derived based on the following cumulative distribution 

function for soil water storage capacity (Wang, 2018): 

𝐹(𝐶) = 1 −
1

𝑎
+

𝐶+(1−𝑎)𝑆𝑏

𝑎√(𝐶+𝑆𝑏)
2−2𝑎𝑆𝑏𝐶

              (4.5) 

where C (mm) is soil water storage capacity at a point and C ≥ 0.  Soil water storage capacity in 

this paper is defined as the maximum pore space in unsaturated zone and shallow aquifer across 

the catchment, and the value of storage capacity is determined by soil porosity and thickness (Gao 

et al., 2021).  𝐹(𝐶) is the fraction of the catchment area for which the storage capacity is less than 

or equal to 𝐶; 𝑆𝑏 (mm) is the average soil water storage capacity over the catchment; 𝑎 (-) is the 

shape parameter and has a relation with the initial soil wetting ratio (the relation will be presented 

in Section 4.2.3.2) in the SCS curve number method (SCS, 1972; Wang 2018) which determines 

the value of 𝑎 ranges between 0 and 2, and a smaller value of  𝑎 means more catchment area with 

low storage capacity.  The conceptual water balance model used here is fundamentally a 

probability distribution model (PDM) at the mean annual scale, which is referred to as PDM-MA 

hereinafter.  Following the principle of probability distribution model (Liang et al., 1994; Moore, 

1985), catchment wetting (mm) can be computed for a given amount of precipitation combined 
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with the spatial distribution of soil water storage capacity; but here the precipitation is the mean 

annual value:   

𝑊 = ∫ [1 − 𝐹(𝐶)]𝑑𝐶
𝑃

0
                                             (4.6) 

Substituting Equation (4.5) into Equation (4.6), the mean annual catchment wetting at the first 

stage is computed by the following Equation: 

𝑊 =
𝑃+𝑆𝑏−√(𝑃+𝑆𝑏)

2−2𝑎𝑆𝑏𝑃

𝑎
                           (4.7) 

The spatial variability of actual soil water storage affects evaporation, since the actual 

evaporation at point scale is the minimum value between the actual storage and potential 

evapotranspiration.  If the catchment is fully saturated, the actual evaporation reaches to its 

maximum value 𝐸𝑠 (mm) which is assumed to be determined by the distribution of storage and 

mean annual potential evapotranspiration (𝐸𝑃 (mm)) in the catchment (Yao et al., 2020):  

𝐸𝑠 = ∫ [1 − 𝐹(𝐶)]𝑑𝐶
𝐸𝑃
0

                                               (4.8) 

Replacing 𝐹(𝐶) in Equation (4.8) with Equation (4.5), we obtain: 

𝐸𝑠 =
𝐸𝑃+𝑆𝑏−√(𝐸𝑃+𝑆𝑏)

2−2𝑎𝑆𝑏𝐸𝑃

𝑎
                                          (4.9) 

While the catchment is generally not fully saturated, and the corresponding actual evaporation is 

assumed to be decreased proportionally from 𝐸𝑠 relative to the degree of saturation in the 

catchment: 

𝐸 =
𝑊

𝑆𝑏
𝐸𝑠                     (4.10) 

Combining Equation (4.9) and Equation (4.10), the mean annual evaporation at the second stage 

is calculated by:   

𝐸 =
𝑊

𝑆𝑏

𝐸𝑃+𝑆𝑏−√(𝐸𝑃+𝑆𝑏)
2−2𝑎𝑆𝑏𝐸𝑃

𝑎
                                        (4.11) 
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Though the method for estimating evaporation (i.e., Equations 4.8-11) was originally proposed for 

daily water balance model, it has been demonstrated that this method has a good performance in 

estimating evaporation at longer timescales (Yao et al., 2020).  

Substituting Equations (4.7) and (4.11) into Equation (4.4), the Equation for mean annual baseflow 

is obtained: 

𝑄𝑏 =
𝑃+𝑆𝑏−√(𝑃+𝑆𝑏)

2−2𝑎𝑆𝑏𝑃

𝑎
 

[
 
 
 
 

1 −

1+
𝐸𝑝

𝑃

𝑃

𝑆𝑏
−√(1+

𝐸𝑝

𝑃

𝑃

𝑆𝑏
)
2

−2𝑎
𝐸𝑝

𝑃

𝑃

𝑆𝑏

𝑎

]
 
 
 
 

                 (4.12) 

Likewise, the mean annual streamflow is obtained by substituting Equation (4.11) into Equation 

(4.1): 

𝑄 = 𝑃 −

𝑃

𝑆𝑏
+1−√(

𝑃

𝑆𝑏
+1)2−2𝑎

𝑃

𝑆𝑏

𝑎

𝐸𝑝+𝑆𝑏−√(𝐸𝑝+𝑆𝑏)
2
−2𝑎𝑆𝑏𝐸𝑝

𝑎
                         (4.13) 

The analytical formulations of 𝑄𝑏 and 𝑄 (i.e., Equation (4.12) and Equation (4.13)) based 

on the spatial distribution of storage capacity combined with the two-stage precipitation 

partitioning framework can further lead to the formulations of BFI and BFC.  While the two-stage 

precipitation partitioning framework is previously known to be theorized by Ponce & Shetty 

(1995) using the generalized proportionality relationship originated from the SCS curve number 

method (SCS, 1972).  For the sake of comparison, we also derived Equations for BFI and BFC 

based on the generalized proportionality relationship.  
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4.2.3 Baseflow Index 

4.2.3.1 Formulation Based on Distribution Function 

The expression for BFI based on the spatial distribution function of water storage capacity 

is obtained after dividing Equation (4.12) by Equation (4.13): 

𝐵𝐹𝐼 =
𝑎−1−𝜑𝜓−1+√(1+𝜑𝜓−1)2−2𝑎𝜑𝜓−1

𝐴−1−𝜑𝜓−1+√(1+𝜑𝜓−1)2−2𝑎𝜑𝜓−1
                                         (4.14) 

where 𝐴 =
𝑎2

1+𝜓−√(1+𝜓)2−2𝑎𝜓
 (-) is used for simplifying the Equation; 𝜑 =

𝐸𝑃

𝑃
 (-) is the climate 

aridity index; and 𝜓 =
𝑆𝑏

𝑃
 (-) is defined as storage capacity index in this paper, which reveals the 

capability of catchment to hold water supply from precipitation.  For example, 
𝑆𝑏

𝑃
= 2 indicates 

that the average storage capability is twice the precipitation at the mean annual scale.  Therefore, 

BFI is controlled by climate aridity index and soil water storage capacity in terms of 
𝑆𝑏

𝑃
 and the 

shape parameter (i.e., 𝑎).  Soil water storage capacity with its spatial variability plays an important 

role in baseflow through two aspects.  First, it affects catchment wetting at the first stage which is 

the source of water for the second-stage partitioning; subsequently, it influences evaporation at the 

second stage which competes water with baseflow.  Equation (4.14) is plotted in Figures 1a and 

1b to show the controls of 
𝐸𝑃

𝑃
, 
𝑆𝑏

𝑃
, and 𝑎 on BFI.  Given 

𝑆𝑏

𝑃
 and 𝑎, BFI decreases with 

𝐸𝑃

𝑃
, since 

evaporation demand is stronger in drier climate leading to a smaller contribution of baseflow to 

total streamflow.  Given 
𝐸𝑃

𝑃
 and 𝑎, BFI increases with 

𝑆𝑏

𝑃
 (Figure 4.1a).  A larger storage capacity 

facilitates catchment wetting (i.e., less 𝑄𝑓) at the first-stage partitioning as suggested by Equation 

(4.7); as a result, baseflow contributes more to total streamflow (i.e., larger BFI).   
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As shown in Figure 4.1a, when 
𝑆𝑏

𝑃
 is small (i.e., 

𝑆𝑏

𝑃
< 1), BFI is less sensitive to 

𝑆𝑏

𝑃
 in arid 

region compared to that in humid region; whereas, when 
𝑆𝑏

𝑃
 is large (i.e., 

𝑆𝑏

𝑃
> 1), BFI is less 

sensitive to 
𝑆𝑏

𝑃
 in humid region.  Taking the curves with 

𝑆𝑏

𝑃
= 0.1 and  

𝑆𝑏

𝑃
= 0.5 for examples, the 

catchment with a relatively larger storage capacity could store more precipitation.  When the 

climate is humid, the evaporation in both catchments is small due to the limited energy, therefore, 

the significant difference in catchment wetting from the first-stage partitioning makes BFI much 

different between catchments.  While under arid climate condition, the impact of the large 

evaporation at the second stage in both catchments overshadows the impact of storage capacity 

leading to the small difference in BFI between catchments.  However, the impact of climate on 

BFI inverses when 
𝑆𝑏

𝑃
 is large.  Taking the curves with 

𝑆𝑏

𝑃
= 2.0 and 

𝑆𝑏

𝑃
= 3.0 for illustration, both 

catchments have enough capacity to storage precipitation, therefore produce similar amount of fast 

flow and wetting at the first stage.  In a humid climate, the limited energy supply results in small 

evaporation in both catchments leading to similar baseflow at the second stage.  Thus, even a larger 

storage capacity has a small impact on BFI in a humid climate.  While in an arid climate, more 

catchment wetting could be lost through evaporation in the catchment with a smaller storage 

capacity.  That is because given a soil porosity, the groundwater table is shallower in the catchment 

with a smaller storage capacity, leading to a larger evaporation from storage.  Correspondingly, 

BFI is much smaller in the catchment with a smaller storage capacity index.  

The shape parameter affects BFI in a more complex way as shown in Figure 4.1b.  A large 

value of 𝑎 promotes catchment wetting (i.e., less 𝑄𝑓) at the first-stage partitioning indicated by 

Equation (4.7) since a larger shape parameter means that the distribution of storage capacity is less 

left skewed (Wang, 2018).  Similarly, a larger value of 𝑎 causes a larger 𝐸𝑠 for a given 𝐸𝑃 at the 
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second-stage partitioning based on Equation (4.9).  Given a value of 
𝐸𝑃

𝑃
, the catchment with a larger 

𝑎  produces more catchment wetting at the first stage.  When the climate is more humid, more 

wetting is partitioned into baseflow because of the limited energy supply for evaporation, resulting 

in a larger contribution of baseflow to the total streamflow (i.e., larger BFI).  However, when the 

climate is arid, even though the catchment with a larger shape parameter has more wetting from 

the first stage, the larger shape parameter causes larger evaporation at the second-stage partitioning 

since soil water is limited compared with evaporation demand, leading to a smaller contribution 

of baseflow to the total streamflow (i.e., smaller BFI).  As shown in Figure 4.1b, the 
𝐸𝑃

𝑃
 at the 

transition point of the effects of shape parameter increases with 
𝑆𝑏

𝑃
, due to the reason that a larger 

storage capacity could attenuate the impact of evaporation on the partitioning of wetting at the 

second stage.  
𝑆𝑏

𝑃
 and 𝑎 affect the values of BFI when 

𝐸𝑃

𝑃
 approaches 0 as shown in Figure 4.1a and 

Figure 4.1b.  For a given 𝑎, the maximum value of BFI increases with 
𝑆𝑏

𝑃
 since a larger storage 

capacity facilitates baseflow generation.  The maximum value of BFI is smaller than 1, and it 

approaches 1 when 
𝑆𝑏

𝑃
≥ 1 and 𝑎 → 2. 
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Figure 4.1: The controls of climate aridity index (
𝐸𝑃

𝑃
) and storage capacity index (

𝑆𝑏

𝑃
) on (a) 

baseflow index (BFI) based on Equation (4.14) and (c) baseflow coefficient (BFC) based on 

Equation (4.18) for a given shape parameter, (i.e., 𝑎 = 1.95); the controls of shape parameter 

(i.e., 𝑎) on (b) BFI and (d) BFC for given 
𝑆𝑏

𝑃
 (i.e., 

𝑆𝑏

𝑃
= 1.5 and 0.5). 

4.2.3.2 Formulation Based on Generalized Proportionality 

In the Ponce & Shetty formulations, 𝑊 reaches an upper limit, i.e., catchment wetting 

potential (𝑊𝑃 (mm)), when 𝑃 and 𝑄𝑓 grow unlimited (Ponce & Shetty, 1995; Sivapalan et al., 

2011).  The catchment wetting potential can be considered analogous to soil water storage capacity 

(Gnann et al., 2019).  Here, we define a dimensionless number, 𝜁 =
𝑊𝑃

𝑃
 (-), for the generalized 

proportionality relationship, and 𝜁 is analogous to 
𝑆𝑏

𝑃
.  Correspondingly, the equation of BFI based 

on the generalized proportionality relationship is obtained as follows: 
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𝐵𝐹𝐼 =

{
 
 

 
 

𝐵

(1−𝜁𝜆𝑝)
2
{[1−𝜂(2𝜆𝑊−1)][1−𝜁(2𝜆𝑝−1)]−(1−𝜁𝜆𝑝)

2
}+𝐵

, 𝑃 > 𝜆𝑃𝑊𝑃 and 𝑊 > 𝜆𝑊𝑉𝑃

0,                                                                                    𝑃 > 𝜆𝑃𝑊𝑃 and 𝑊 ≤ 𝜆𝑊𝑉𝑃
1,                                                                                    𝑃 ≤ 𝜆𝑃𝑊𝑃 and 𝑊 > 𝜆𝑊𝑉𝑃
does not exist,                                                            𝑃 ≤ 𝜆𝑃𝑊𝑃 and 𝑊 ≤ 𝜆𝑊𝑉𝑃

     (4.15)             

where 𝐵 = {(1 − 𝜂𝜆𝑤)[1 − 𝜁(2𝜆𝑝 − 1)] − (1 − 𝜁𝜆𝑝)
2
}
2

; 𝜂 =
𝑉𝑃

𝑃
 (-) quantifies the climate 

dryness condition and is analogous to 
𝐸𝑃

𝑃
; 𝑉𝑃 (mm) is the vaporization potential, indicting the limit 

of energy (Gnann et al., 2019); 𝜆𝑃 (-) and 𝜆𝑤 (-) are the initial abstraction coefficients for fast flow 

and baseflow generations, respectively.  In the case of 𝑃 > 𝜆𝑃𝑊𝑃 and 𝑊 > 𝜆𝑊𝑉𝑃, given certain 

values of 𝜆𝑃 and 𝜆𝑤 (e.g., 𝜆𝑃 =0.05, 𝜆𝑊 =0.02, the median values in Gnann et al. (2019)), the 

controls of 
𝑉𝑃

𝑃
 and 

𝑊𝑃

𝑃
 on BFI, shown in Figure 4.2a, are generally consistent with the findings 

based on Equation (4.14) shown in Figure 4.1a.  That is, BFI increases with 
𝑊𝑃

𝑃
 for a given 

𝑉𝑃

𝑃
, and 

BFI decreases with 
𝑉𝑃

𝑃
 for a given 

𝑊𝑃

𝑃
.  The agreement between Equation (4.14) and Equation (4.15) 

is expected since the cumulative distribution function in Equation (4.5) also leads to a 

proportionality relationship (Wang, 2018). 

 

Figure 4.2: The controls of 
𝑉𝑃

𝑃
 and 

𝑊𝑃

𝑃
 on (a) baseflow index (BFI) based on Equation (4.15) and 

(b) baseflow coefficient (BFC) based on Equation (4.19), with fixed values of 𝜆𝑃 (=0.05) and 𝜆𝑊 

(=0.02) which are the median values in Gnann et al. (2019). 
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However, the parameterizations for the initial abstraction terms between these two 

proportionality relationships are different.  Equation (4.15) was developed based on the 

generalized proportionality relationship of the SCS curve number method (SCS, 1972), in which 

the partitioning of 𝑃 into 𝑊 and 𝑄𝑓 is quantified by:  

𝑊−𝜆𝑃𝑊𝑃

𝑊𝑃−𝜆𝑃𝑊𝑃
=

𝑄𝑓

𝑃−𝜆𝑃𝑊𝑃
                                                  (4.16) 

where 𝑃 ≥ 𝜆𝑃𝑊𝑃.  If 𝑃 < 𝜆𝑃𝑊𝑃, 𝑄𝑓 = 0 and 𝑊 = 𝑃.  Catchment wetting in Equation (4.7) can 

be obtained from the following proportionality relationship: 

𝑊−𝜀𝑊

𝑆𝑏−𝜀𝑊
=

𝑄𝑓

𝑃−𝜀𝑊
                                                         (4.17) 

where 𝜀𝑊 can be interpreted as “initial abstraction”; and 𝜀 is the initial catchment wetting ratio, 

which has a relationship with the shape parameter, i.e., 𝑎 = 2𝜀(2 − 𝜀).  Readers are referred to 

(Wang, 2018) for the detailed derivation of Equation (4.17).  The initial abstraction for fast flow 

in Equation (4.16) is proportional to catchment wetting potential.  However, the initial abstraction 

term in Equation (4.17) is proportional to actual wetting instead of wetting potential.  Equation 

(4.17) is more reasonable than Equation (4.16) considering the boundary condition of Budyko-

type equation (Wang, 2018), and the parameterization for initial abstraction in Equation (4.17) 

allows a single formula (Equation (4.14)) instead of a piecewise function of BFI in Equation (4.15).  

Moreover, the basis for the generalized proportionality relationship (Equation (4.16)), i.e., the SCS 

curve number method, is empirical (Ponce & Shetty, 1995), and studies found it is difficult to 

quantitatively link the parameters in the generalized proportionality relationship to the catchment 

and climatic properties (Gnann et al., 2019; Sivapalan et al., 2011; Tang & Wang, 2017); whereas, 

the basis for the proportionality relationship in Equation (4.17) is the cumulative distribution 
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function (Equation (4.5)) which quantifies the spatial variability of soil water storage capacity and 

can be linked to the landscape characteristics in a straightforward way.                               

4.2.4 Baseflow Coefficient 

4.2.4.1 Formulation Based on Distribution Function 

We can have the formulation for BFC, which is based on the distribution function of water 

storage capacity, through dividing Equation (4.12) by 𝑃 on both hand sides:   

𝐵𝐹𝐶 =
1+𝜓−√(1+𝜓)2−2𝑎𝜓

𝑎
 [1 −

1+𝜑𝜓−1−√(1+𝜑𝜓−1)2−2𝑎𝜑𝜓−1

𝑎
]                         (4.18) 

Figures 4.1c and 4.1d show the control of 
𝐸𝑃

𝑃
, 
𝑆𝑏

𝑃
, and 𝑎 on BFC.  Similar to BFI, for given 

𝑆𝑏

𝑃
 and 

𝑎, BFC decreases with 
𝐸𝑃

𝑃
 as shown in Figure 4.1c because more precipitation leaves catchments 

through evaporation rather than baseflow.  Given 
𝐸𝑃

𝑃
 and 𝑎, BFC increases as 

𝑆𝑏

𝑃
 since a larger 

storage capacity could store more precipitation, i.e., a larger 𝑊, which promotes the generation of 

baseflow at the second stage.  However, BFC is not sensitive to 
𝑆𝑏

𝑃
 in arid climate no matter the 

magnitude of 
𝑆𝑏

𝑃
, and this is different from the impact of 

𝑆𝑏

𝑃
 on BFI.  Precipitation is mainly 

partitioned into evaporation in arid climate, and the difference in baseflow caused by different 

storage capacities is diluted since baseflow is relatively small compared with precipitation.   

The impact of 𝑎 on BFC is dependent on 
𝐸𝑃

𝑃
 as shown in Figure 4.1d.  BFC is positively 

related to 𝑎 in a relatively humid condition; whereas it is negatively related to 𝑎 in an arid 

condition.  In humid region, 𝑎 mainly plays a role at the first-stage partitioning, and catchment 

wetting increases with 𝑎; whereas, in arid region, 𝑎 mainly plays a role at the second-stage 

partitioning, and evaporation increases with 𝑎.  
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The maximum value of BFC when 
𝐸𝑃

𝑃
 approaches 0 is affected by 

𝑆𝑏

𝑃
 and 𝑎 similar to BFI.  

That is, the maximum value of BFC is positively related to 
𝑆𝑏

𝑃
 and 𝑎, since both catchment wetting 

and baseflow increases with 
𝑆𝑏

𝑃
 and 𝑎 in a very humid condition. 

4.2.4.2 Formulation Based on Generalized Proportionality 

By replacing Equation (4.12) with the baseflow equation in the Ponce & Shetty 

formulations (Ponce & Shetty, 1995), and normalizing it by precipitation, the formula of BFC 

based on the generalized proportionality relationship can be obtained:  

𝐵𝐹𝐶 =

{
 
 

 
 

𝐵

[1−𝜁(2𝜆𝑝−1)]{[1−𝜂(2𝜆𝑊−1)][1−𝜁(2𝜆𝑝−1)]−(1−𝜁𝜆𝑝)
2
}
, 𝑃 > 𝜆𝑃𝑊𝑃 and 𝑊 > 𝜆𝑊𝑉𝑃

0,                                                                                      𝑃 > 𝜆𝑃𝑊𝑃 and 𝑊 ≤ 𝜆𝑊𝑉𝑃
(1−𝜂𝜆𝑤)

2

1+𝜂(1−2𝜆𝑊)
,                                                                   𝑃 ≤ 𝜆𝑃𝑊𝑃 and 𝑊 > 𝜆𝑊𝑉𝑃

0,                                                                                      𝑃 ≤ 𝜆𝑃𝑊𝑃 and 𝑊 ≤ 𝜆𝑊𝑉𝑃

       (4.19)        

Figure 4.2b shows the controls of 
𝑉𝑃

𝑃
 and 

𝑊𝑃

𝑃
 on BFC in the case of 𝑃 > 𝜆𝑃𝑊𝑃 and 𝑊 > 𝜆𝑊𝑉𝑃 

given the same values of  𝜆𝑃 (=0.05) and 𝜆𝑊 (=0.02) as those in Figure 4.2a, and it displays a 

highly similar pattern of BFC as a function of 
𝐸𝑃

𝑃
 and 

𝑆𝑏

𝑃
 (Figure 4.1c).  The similarity between 

Figure 4.2b and Figure 4.1c further demonstrates the capability of the proposed mathematical 

analysis for the two-stage partitioning of precipitation.  

Considering the solid mathematical and physical basis and the concise functional forms, 

Equation (4.14) and Equation (4.18), which are on the basis of spatial distribution of soil water 

storage capacity, are used for analyzing the control of mean annual climate and landscape on mean 

annual baseflow in this paper. 
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4.2.5 Impacts of Climate Variability on Mean Annual Baseflow 

Existing studies have revealed that variability in climate forcings, including the intra-

monthly, intra-annual, and inter-annual variability, has large impacts on mean annual streamflow 

(Berghuijs et al., 2014; Li, 2014; Potter et al., 2005; Reggiani et al., 2000; Shao et al., 2012).  

However, few studies have quantified the impacts of climate variability on mean annual baseflow 

using probability distribution model.  The roles of finer time scale climate forcings on BFI and 

BFC were analyzed in this paper to further quantify the added error on BFI and BFC estimates due 

to aggregation of forcings.   

Following Yao et al. (2020), the quantification was conducted based on numerical 

simulations driven by climate inputs at the daily time step.  Due to the timescale effect of 

parameters (Deng et al., 2018), the values of  𝑆𝑏 and 𝑎 at the mean annual scale cannot be applied 

to the model with daily time step.  Therefore, the two-stage precipitation partitioning model at the 

mean annual scale was modified to the daily scale which is referred to as PDM-D since it is a 

probability distribution model at the daily scale.  At the daily time step, antecedent soil water 

storage (𝑆0 (mm)) should be taken into account since water balance is unsteady.  The total storage 

after daily precipitation (𝑊 + 𝑆0) is partitioned into evaporation (𝐸), baseflow (𝑄𝑏), and ending 

storage (𝑆1 (mm)) at the second partitioning stage: 

𝑊 + 𝑆0 = 𝐸 + 𝑄𝑏 + 𝑆1                                                   (4.20) 

Based on the principle of the PDM, daily catchment wetting could be obtained by the following 

integration (Liang et al., 1994; Moore, 1985): 

𝑊 = ∫ [1 − 𝐹(𝐶)]𝑑𝐶
𝑃+𝐶0
𝐶0

                                                  (4.21) 
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where 𝐶0 (mm) is the point-scale initial storage in the unsaturated area within the catchment.  

Substituting Equation (4.5) into Equation (4.21), catchment wetting at the daily scale can be 

expressed as: 

𝑊 =
𝑃+𝑆𝑏√(𝑚+1)

2−2𝑎𝑚−√[𝑃+(𝑚+1)𝑆𝑏]
2−2𝑎𝑚𝑆𝑏

2−2𝑎𝑆𝑏𝑃

𝑎
                          (4.22) 

where 𝑚 =
𝑆0(2𝑆𝑏−𝑎𝑆0)

2𝑆𝑏(𝑆𝑏−𝑆0)
.  Daily fast flow is the remaining part of precipitation after soil wetting: 

𝑄𝑓 = 𝑃 −𝑊                                                              (4.23) 

The value of daily catchment 𝐸 is determined by the equation similar to Equation (4.11) but with 

𝑆0:  

𝐸 =
𝑊+𝑆0

𝑆𝑏

𝐸𝑃+𝑆𝑏−√(𝐸𝑃+𝑆𝑏)
2−2𝑎𝑆𝑏𝐸𝑃

𝑎
                                        (4.24) 

Daily baseflow is assumed to have a linear relationship with the net storage (Fenicia et al., 2006): 

𝑄𝑏 = 𝑘(𝑊 + 𝑆0 − 𝐸)                                                (4.25) 

where 𝑘 (-) is the baseflow discharge coefficient between 0 and 1.  Substituting Equation (4.21) 

into Equation (4.22), 𝑄𝑏 is modeled as follows: 

𝑄𝑏 = 𝑘(𝑊 + 𝑆0) [1 −
𝐸𝑃+𝑆𝑏−√(𝐸𝑃+𝑆𝑏)

2−2𝑎𝑆𝑏𝐸𝑃

𝑎𝑆𝑏
]                            (4.26) 

Correspondingly, the storage at the end of each day is obtained by: 

𝑆1 = (1 − 𝑘)(𝑊 + 𝑆0) [1 −
𝐸𝑃+𝑆𝑏−√(𝐸𝑃+𝑆𝑏)

2−2𝑎𝑆𝑏𝐸𝑃

𝑎𝑆𝑏
]                          (4.27) 

Mean annual streamflow, including fast flow and baseflow, is aggregated from the daily values.  

Since mean annual streamflow is of interest here, streamflow routing is not necessary in this model.   

To analyze the impacts of climate variability, four sets of BFI and BFC were obtained and 

compared for each catchment driven by four climate inputs, i.e., observed climate (i.e., daily 
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climate), climate forcings without intra-monthly variability (i.e., monthly climate), climate 

forcings without intra-annual variability (i.e., annual climate), and climate forcings without inter-

annual variability (i.e., mean annual climate), respectively.  Readers are referred to Yao et al., 

(2020) for the detailed descriptions of climate inputs incorporating variability at different time 

scales. 

4.2.6 Study Catchments and Data 

The controls of climate and soil water storage capacity on baseflow index and baseflow 

coefficient are evaluated for 311 catchments from U.S. Model Parameter Estimation Experiment 

(MOPEX) (Duan et al., 2006), and 131 catchments from U.K. Benchmark Network (UKBN2; 

Harrigan et al., 2018) covering a wide range of prevailing climate.  These catchments are well 

suited for quantifying the climate and landscape controls on long-term baseflow since the human 

interferences in these catchments are relatively small.   

The selected catchments have drainage areas larger than 10 km2, and have data records of 

daily precipitation, potential evapotranspiration, and streamflow for at least 10 water years (from 

1 October through 30 September), and the percentage of missing streamflow data within each 

water year is less than 5%.  For the U.S. catchments, the precipitation and streamflow data were 

obtained from the MOPEX dataset, and the daily reference evapotranspiration data, which were 

estimated by the Penman-Monteith equation, were extracted from a gridded surface meteorological 

dataset (gridMET) with a spatial resolution of ~4 km (Abatzoglou, 2013).  The monthly potential 

evapotranspiration provided by the University of Montana (Zhang et al., 2010) was used to scale 

the reference evapotranspiration.  For the UKBN2 catchments, the daily precipitation and 

streamflow data were obtained from the National River Flow Archive (NRFA), and the daily 
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potential evapotranspiration data based on the Penman-Monteith method were extracted from 

CHESS-PE (Robinson et al., 2020).  The snow fall fraction of precipitation of MOPEX catchments 

was estimated from the empirical precipitation phase probability function proposed by Dai (2008), 

and the snow fall fraction of precipitation of UKBN2 catchments was available in the UKBN2 

dataset.  To minimize the effect of snow on the long-term water balance partitioning, we 

considered the fraction of precipitation falling as snow in the selected catchments is less than 20% 

(Gnann et al., 2019).  The baseflow for the study catchments was estimated through baseflow 

separation using the recursive digital filter method with forward, backward, and forward steps with 

a filter parameter of 0.925 (Lyne & Hollick, 1979).  It has been demonstrated that the baseflow 

estimation through different methods agree well for catchments in the study area (Gnann et al., 

2019).   

All the hydroclimatic data were aggregated to their mean annual values for further analysis 

in the PDM-MA model, and the spatial distribution of mean annual precipitation, potential 

evapotranspiration, total streamflow, and baseflow for the two regions are displayed in Figure S4.1 

in the Supporting Information (SI).  The median values of mean annual precipitation, potential 

evapotranspiration, total streamflow, and baseflow for the MOPEX (UKBN2) catchments are 1010 

(1104) mm, 1104 (496) mm, 359 (732) mm, and 149 (292) mm, respectively.  Precipitation in 

these two regions is similar, but the potential evapotranspiration in the MOPEX catchments is 

relatively larger, indicating that the average climate in U.S. catchments is more arid than that in 

U.K. catchments, which is demonstrated by the spatial distribution of climate aridity index as 

shown in Figure S4.2.  As a result, the median values of mean annual streamflow and baseflow in 

the U.S. catchments are much less than those in the U.K. catchments. 
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Figure S4.1: The spatial distribution of mean annual precipitation (𝑃), potential 

evapotranspiration (𝐸𝑃), streamflow (𝑄), baseflow (𝑄𝑏), and soil water storage capacity (𝑆𝑏) in 

(a1-a5) the MOPEX catchments and (b1-b5) the UKBN2 catchments. 
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Figure S4.2: The climate aridity index (
𝐸𝑃

𝑃
) in (a) the MOPEX catchments and (b) the UKBN2 

catchments. 

4.2.7 Parameter Estimation  

4.2.7.1 PDM-MA Model  

It is a challenge to directly measure the soil water storage capacity and its spatial variability 

in catchments or analytically solve 𝑆𝑏 and 𝑎 from Equation (4.12) and Equation (4.13).  In this 

study, the values of 𝑆𝑏 and 𝑎 for each catchment were solved numerically based on Equation (4.12) 

and Equation (4.13) using the nonlinear least-squares method.  𝑄 and 𝑄𝑏 in these two equations 

are the mean annual streamflow and the mean annual baseflow, respectively, and the latter was 

obtained through the recursive digital filter method as described in Section 4.2.6.  The range of 𝑎 

is from 0 to 2 (Wang, 2018), and the range of 𝑆𝑏 is from 0 to 50000 mm (Gnann et al., 2019).  The 

large upper limit used for 𝑆𝑏 guarantees that the solution is not subject to the range of the 

parameter.  The objective function is to minimize the relative error between the observed 𝑄𝑏 and 

the modeled one from Equation (4.12), and the relative error between the observed 𝑄 and its 
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modeled counterpart from Equation (4.13).  𝑆𝑏 and 𝑎 are determined at the mean annual scale in 

this study instead of inter-annual scale in order to eliminate the potential influence of carryover 

storage between years.   

4.2.7.2 PDM-D Model  

There are 3 parameters (i.e., 𝑆𝑏, 𝑎, and 𝑘) in the daily water balance model.  The range of 

𝑆𝑏 is between 50 mm and 1500 mm (Kollat et al., 2012); 𝑎 is between 0 and 2 (Wang, 2018); and 

𝑘 ranges from 0 to 1.  The parameters were estimated through calibration using the Shuffled 

Complex Evolution Method (SCE-UA) in the SPOTPY python package (Duan et al., 1992; Houska 

et al., 2015).  The objective function is to minimize the sum of two relative errors: the relative 

error between the simulated mean annual streamflow (𝑄𝑠𝑖𝑚) and its observed value (𝑄𝑜𝑏𝑠), and the 

relative error between the simulated mean annual baseflow (𝑄𝑏,𝑠𝑖𝑚) and its observed value 

(𝑄𝑏,𝑜𝑏𝑠), and these mean annual values were aggregated from the daily values: 

𝑂𝐵𝐽 =  
|𝑄𝑠𝑖𝑚−𝑄𝑜𝑏𝑠|

𝑄𝑜𝑏𝑠
+
|𝑄𝑏,𝑠𝑖𝑚−𝑄𝑏,𝑜𝑏𝑠|

𝑄𝑏,𝑜𝑏𝑠
                                               (4.28) 

The data used for daily model are required to be continuous; therefore, the length of the data used 

for the daily model for parameter estimation is shorter than that for the mean annual water balance 

in some study catchments, but the minimum length of data records is 10 years.  The available data 

was divided into three periods: warm-up, calibration, and validation.  The first two years were used 

for model warm-up to eliminate the impact of uncertain initial condition (Kim et al., 2018).  If the 

number of remaining years of data (N) is an even number, one half of the remaining data were 

used for calibration and the other half was used for model validation.  While if N is an odd number, 

data of (N+1)/2 years were used for calibration and the remaining data were used for validation.   
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4.3 Results and Discussion 

4.3.1 Estimated Parameters 

4.3.1.1 PDM-MA Model  

The estimated parameters (i.e., 𝑆𝑏 and 𝑎) for the PDM-MA model have a good performance 

in modelling the mean annual 𝑄 and 𝑄𝑏 (Figure 4.3).  Almost all the pairs of data fall on the 1:1 

line, while there are 7 catchments with the relative error between the modeled value and the 

observation of 𝑄 higher than 10% due to the uncertainty of the data or the limitation of the 

parsimonious mean annual baseflow model.  These 7 catchments were removed from further 

analysis.  Both the 𝑄 and 𝑄𝑏 of the remaining catchments have the relative error smaller than 0.2% 

on average. 

 

 

Figure 4.3: The performance of the estimated average soil water storage capacity (𝑆𝑏) and the 

shape parameter (𝑎) in modeling (a) the mean annual total streamflow (𝑄), and (b) the mean 

annual baseflow (𝑄𝑏) in the PDM-MA model.  Cross denotes catchments with the relative error 

between the modeled 𝑄 and the observed 𝑄 higher than 10%. 
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The estimated 𝑆𝑏 displays a significant spatial variability among the study catchments.  It 

ranges from 478 (502) mm to 2829 (1436) mm with median value of 1037 (769) mm in the U.S. 

(U.K.) catchments (Figure S4.1-a5 and S4.1-b5).  Considering that both BFI and BFC are directly 

related to the ratio of 𝑆𝑏 and 𝑃, storage capacity, i.e., 
𝑆𝑏

𝑃
, is shown in Figure 4.4 and discussed in 

detail.  Comparing the spatial distribution of 
𝑆𝑏

𝑃
 with that of 

𝐸𝑃

𝑃
 in Figures S4.2 in SI, one can find 

that the catchment with a larger 
𝐸𝑃

𝑃
 generally has a larger 

𝑆𝑏

𝑃
 among the selected catchments in both 

study regions, such as those in the southwestern U.S. and the southeastern U.K.  The 
𝑆𝑏

𝑃
 in the 

UKBN2 catchments are generally smaller than those in the MOPEX catchments, similarly for 
𝐸𝑃

𝑃
.  

Moreover, the relationship between 
𝑆𝑏

𝑃
 and 

𝐸𝑃

𝑃
 follows a logarithmic function as shown in Figure 

4.4c.  Storage capacity is one of the emergent properties of a catchment and serves as a buffer for 

vegetation to cope with water stress.  Therefore, vegetation in catchments with drier climate is 

more likely to develop a stronger root system to store more water during wet seasons and access 

to the deeper groundwater for compensating the water shortage during dry seasons leading to a 

larger storage capacity (de Boer-Euser et al., 2016; Gao et al., 2014; Troch et al., 2009).  Whereas, 

when the climate becomes even drier, the optimal strategy of vegetation for dealing with water 

stress turns to rapid growth instead of extending their root zone system (Gentine et al., 2012).  As 

a result, 
𝑆𝑏

𝑃
 increases rapidly with 

𝐸𝑃

𝑃
 but potentially levels off when 

𝐸𝑃

𝑃
 is large as presented in 

Figure 4.4c.   

The spatial distributions of the estimated shape parameter (𝑎) across the continental U.S. 

and U.K. can be seen in Figures 4.5a and 4.5b, respectively.  All the smaller values of 𝑎 are in 

catchments with humid climate such as those in the northwestern U.S., the northeastern U.S., and 
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the middle of U.K.  This phenomenon could be explained as a result of catchment coevolution that 

the functional features of catchment adapt over time to the nature of climate forcing through 

ecological, pedological, and geomorphological processes (Blöschl et al., 2013; Troch et al., 2015).  

Specifically, the ample precipitation in humid climate forces the catchment to behave in a way that 

can quickly discharge the incoming water by allowing more water to be partitioned into fast flow, 

and thus lead to a smaller value of 𝑎.  Figure 4.5c shows the frequency distribution of the estimated 

shape parameter in the study catchments.  Most of the estimated 𝑎 are close to its upper bound 

(i.e., 2), suggesting that the spatial variability of soil water storage capacity within catchment is 

not much different in most of the study catchments.  The median value of the estimated 𝑎 is 1.90, 

indicating an “S” shape for the cumulative distribution function of soil water storage capacity 

(Wang, 2018).  This result is in agreement with Sivapalan et al. (1997) which also showed “S” 

shapes for the soil water storage capacity based on topographic wetness index in catchments from 

different regions around the world.   

 

Figure 4.4: The spatial distribution of storage capacity index (
𝑆𝑏

𝑃
) in (a) the MOPEX catchments 

and (b) the UKBN2 catchments; (c) the relationship between 
𝑆𝑏

𝑃
 and climate aridity index (

𝐸𝑃

𝑃
).  

Cross denotes catchments with the relative error between the modeled 𝑄 and the observed 𝑄 

higher than 10%. 
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Figure 4.5: The spatial distribution of the shape parameter (i.e., 𝑎) in (a) the MOPEX catchments 

and (b) the UKBN2 catchments; (c) the frequency distribution of 𝑎.  Cross denotes catchments 

with the relative error between the modeled 𝑄 and the observed 𝑄 higher than 10%. 

4.3.1.2 PDM-D Model  

The median values of the estimated 𝑆𝑏, 𝑎, and 𝑘 are 239.5 mm, 1.989, and 0.0026, 

respectively, for all the study catchments in the daily water balance model.  The modelled mean 

annual 𝑄 and 𝑄𝑏 in both calibration and validation periods were compared with their observed 

counterparts (Figure S4.3 in SI).  A simple linear regression model was fitted between the modelled 

and observed values.  During the calibration (validation) period, the slope of the linear regression 

and the coefficient of determination (𝑅2) were 1.01 (1.02) and 0.98 (0.96) for mean annual 𝑄, and  

0.99 (0.89) and 0.99 (0.91) for mean annual 𝑄𝑏.  In the daily model, small biases for mean annual 

baseflow and total streamflow (or fast flow) are not achieved simultaneously for some catchments, 

due to the uncertainty of the daily baseflow estimated from the separation method.  However, the 

model performance is satisfactory for serving the purpose of investigating the role of climate 

variability on baseflow. 
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Figure S4.3: The performance of the daily water balance model in modeling the mean annual 

total streamflow (𝑄) during (a) the calibration and (b) the validation periods; the performance of 

the daily water balance model in modeling the mean annual baseflow (𝑄𝑏) during (c) the 

calibration and (d) the validation periods. 

4.3.2 Baseflow Index  

The observed BFI for all the study catchments is shown in Figure 4.6a as a function of 
𝐸𝑃

𝑃
 

and 
𝑆𝑏

𝑃
 (represented by colors).  The strong mediating effect of soil storage capacity causes the 

scattering of observations in the figure.  However, since most of the study catchments have a 

similar shape parameter close to the upper bound, the observed baseflow indexes still present a 

systematic pattern when the storage capacity is considered.  The dashed curves are plotted based 

on the theoretical values calculated by Equation (4.14) for 
𝑆𝑏

𝑃
 =1.5, 1.1, 0.9, 0.6 and 0.4, and 𝑎=1.90 
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which is the median of the estimated values from all the study catchments.  Note that these dashed 

curves serve as a reference for explaining the distribution of the observed points instead of trying 

to fit against the observations since different points in this figure have different values of 𝑎 and 
𝑆𝑏

𝑃
.  

Obviously, the group of catchments with similar values of 𝑎 and 
𝑆𝑏

𝑃
 is around the same theoretical 

curve of Equation (4.14).  Generally, drier climate is associated with smaller BFI while the impact 

of climate is mediated by soil water storage capacity.  Consistent with the theoretical curves, larger 

𝑆𝑏

𝑃
 is associated with higher BFI when the catchments have a similar climate aridity index.  Figures 

4.6b and 4.6c present the BFI for the MOPEX and UKBN2 catchments, respectively.  Surprisingly, 

the controls of 
𝐸𝑃

𝑃
 and 

𝑆𝑏

𝑃
 on BFI are consistent in the contiguous U.S. and U.K. catchments which 

have remarkably different mean annual climates.  

 

Figure 4.6: The controls of climate aridity index (
𝐸𝑃

𝑃
) and storage capacity index (

𝑆𝑏

𝑃
) on 

baseflow index (BFI) in the MOPEX and the UKBN2 catchments.  The curves are obtained 

based on Equation (4.14) with 
𝑆𝑏

𝑃
 =1.5, 1.1, 0.9, 0.6 and 0.4, and 𝑎=1.90 which is the median of 

the estimated values from all the study catchments. 
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4.3.3 Baseflow Coefficient 

The observed BFC versus 
𝐸𝑃

𝑃
 colored according to their 

𝑆𝑏

𝑃
 values for all the study 

catchments is presented in Figure 4.7a.  The reference curves are plotted based on the theoretical 

values calculated by Equation (4.18) with the same parameters used for those in Figure 4.6a.  

Similar to BFI, the observed BFC generally decreases with 
𝐸𝑃

𝑃
 but mediated by 

𝑆𝑏

𝑃
.  BFC increases 

significantly with 
𝑆𝑏

𝑃
 in humid climate, while it converges to a narrow domain when the climate is 

dry due to the prevalence of evaporation at the second-stage partitioning.  Figures 4.7b and 4.7c 

display the observed BFC for the MOPEX and UKBN2 catchments, respectively.  The climate 

aridity index in the MOPEX catchments spreads in a wide range from around 0.5 to larger than 

3.0, and the BFC approximately presents a monotonical decreasing trend with 
𝐸𝑃

𝑃
.  While in the 

UKBN2 catchments if 
𝑆𝑏

𝑃
 is not considered, BFC seems to increase with 

𝐸𝑃

𝑃
 when the climate is 

very humid (
𝐸𝑃

𝑃
< 0.5)  but decrease with 

𝐸𝑃

𝑃
 when 

𝐸𝑃

𝑃
 is larger (Figure 4.7c).  However, if we group 

the UKBN2 catchments into different clusters based on the value of 
𝑆𝑏

𝑃
, BFC in each cluster 

presents a decreasing trend with 
𝐸𝑃

𝑃
 as well.  This result underlines the importance of considering 

𝑆𝑏

𝑃
 when analyzing the relationship between BFC and 

𝐸𝑃

𝑃
. 

The comparison between Figure 4.6a and Figure 4.7a suggests that storage capacity index 

has less impact on BFC than on BFI, and the observed BFC is more clustered in a smaller domain 

in the plot especially for the MOPEX catchments.  This prompts researchers to ask the question 

whether there is a baseflow Budyko curve which captures the observations of BFI as a function of 

𝐸𝑃

𝑃
 similar as the relationship between mean annual evaporation ratio (

𝐸

𝑃
) and 

𝐸𝑃

𝑃
 in the Budyko 
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framework (Budyko, 1974).  Meira Neto et al. (2020) have successfully developed a deterministic 

curve for capturing the BFC of 378 catchments in the contiguous U.S.  Figure 4.8 shows that their 

equation is in good agreement with the observations from the MOPEX catchments as well, 

confirming the predominant control of mean annual climate on BFC in the U.S.  The relationship 

between BFC and 
𝐸𝑃

𝑃
 in the MOPEX catchments can also be well approximated by a single curve 

from Equation (4.18) with the median values of 
𝑆𝑏

𝑃
 and a for the MOPEX catchments (i.e., 

𝑆𝑏

𝑃
 = 

1.03 and a = 1.88) as shown in Figure 4.8.  For this curve, when 
𝐸𝑃

𝑃
= 0, BFC = 0.8 instead of 1 

(Wang & Wu, 2013), meaning that there is always some precipitation partitioned into fast flow 

even in very humid catchments, and this is in line with Meira Neto et al. (2020).  However, the 

deterministic formulation obtained from the catchments in the contiguous U.S. is no longer 

applicable to the catchments in the U.K. where 
𝐸𝑃

𝑃
 is much smaller as pointed by Gnann et al. 

(2019).  It can be inferred that BFC decreases with increasing 
𝐸𝑃

𝑃
, but the role of storage capacity 

on mean annual baseflow is significant in very humid catchments, leading to the high variability 

of observed BFC among the catchments in the U.K.  
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Figure 4.7: The controls of climate aridity index (
𝐸𝑃

𝑃
) and storage capacity index (

𝑆𝑏

𝑃
) on 

baseflow coefficient (BFC) in the MOPEX and the UKBN2 catchments.  The curves are 

obtained based on Equation (4.18) with 
𝑆𝑏

𝑃
 =1.5, 1.1, 0.9, 0.6 and 0.4, and 𝑎=1.90 which is the 

median of the estimated values from all the study catchments. 

 

Figure 4.8: Comparison of observed relation and Equation (4.18) with 
𝑆𝑏

𝑃
 =1.03 and 𝑎 =1.88, and 

comparison of observed relation and Equation (4.28) from Meira Neto et al. (2020) between 

baseflow coefficient (BFC) and climate aridity index (
𝐸𝑃

𝑃
). 
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4.3.4 Impacts of Climate Variability on Mean Annual Baseflow 

As introduced in Section 4.2.5, four sets of BFI and BFC were obtained for each catchment 

from the PDM-D model driven by four climate inputs, i.e., daily climate, monthly climate, annual 

climate, and mean annual climate, respectively.  Figures 4.9a, 4.9b, and 4.9c present the 

comparisons of the simulated BFI forced by different climate inputs, and Figures 4.9d, 4.9e, 4.9f 

for BFC.  The deviations of the points from the 1:1 line in Figure 4.9a (4.9d) reflect the role of 

intra-monthly variability in climate inputs on BFI (BFC) since monthly time series of climate does 

not encompass intra-monthly variability in climate inputs, which is included in the climate 

forcings/inputs at daily time scale.  Likewise, the deviations in Figure 4.9b (4.9e) represent the 

role of intra-annual variability in climate inputs (i.e., seasonality) on BFI (BFC), and the deviations 

in Figure 4.9c (4.9f) indicate the importance of inter-annual variability in climate forcings on BFI 

(BFC).  It can be found that BFI is significantly affected by climate forcings prescribed at different 

time scales, and BFC is much less affected.  That is because the fast flow, which is a component 

of total streamflow, is sensitive to finer time scale climate inputs, while the storage capacity 

attenuates the effects of variability in climate forcings on baseflow.  Almost all points in Figures 

4.9a-4.9c are above the 1:1 line, indicating that BFI decreases as more temporal variabilities in 

climate forcings are considered, because the estimated fast flow increases significantly, and this 

change in fast flow is much larger compared to that in baseflow.  In quantifying the role of climate 

forcings at different time scales, representing the intra-annual variability has the largest impacts 

on BFI and BFC.  This result is in line with (Beck et al., 2013) which found that the seasonality of 

precipitation and potential evapotranspiration are important for estimating BFI using regression 

analysis.   
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Figure 4.9: Comparisons between the simulated baseflow indexes (BFI) forced by different 

climate inputs (a, b, c); and comparisons between the simulated baseflow coefficients (BFC) 

forced by different climate inputs (d, e, f). 

4.4 Conclusion 

This study has examined the roles of climate and storage capacity on the long-term 

baseflow by developing new equations for characterizing water competitions in the two-stage 

precipitation partitioning framework.  Particularly, baseflow index and baseflow coefficient are 

presented as functions of climate aridity index, soil water storage capacity index, and a shape 

parameter quantifying the spatial heterogeneity of soil water storage capacity.  The new method 

was applied to 435 catchments from both the contiguous U.S. and U.K. to explain different 

baseflow responses quantitatively.  Findings from the study revealed the critical role of soil water 

storage capacity on baseflow.  Most study catchments showed a similar shape parameter; therefore, 

impact of landscape characteristics on baseflow was mainly attributed to storage capacity index.  
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In general, baseflow index or baseflow coefficient increases with storage capacity index given a 

climate condition, and it decreases with climate aridity index given a storage capacity index.   

This study explicitly disentangled the roles of climate and landscape properties on baseflow 

based on a probability distribution model.  One key advantage of the new method is that its 

parameters clearly describe the climate and landscape characteristics, which are much 

straightforward compared the abstract parameters used in the generalized proportionality 

relationship since the generalized proportionality is based on empirical formulations of the SCS 

curve number method.  The parameterization for the initial abstraction term in the new method 

offers another advantage that the functional forms for baseflow index and baseflow coefficient are 

smooth and differentiable instead of piecewise functions.  This study advances our understanding 

of the role of landscape through storage capacity and its spatial variability in controlling baseflow.  

Moreover, it was found that storage capacity index in the study catchments can be approximated 

as a function of climate aridity index, reflecting the dependence of landscape on climate and 

indicating further evidence of possible coevolution of climate and catchment landscape.  This 

study also demonstrated that temporal variability in climate forcings impacts baseflow index and 

baseflow coefficient, especially the intra-annual variability (i.e., seasonality).   

The findings of this study extend our knowledge of the controlling factors on baseflow 

which is essential for hydrologists, ecologists, and water resources managers to evaluate the 

availability and vulnerability of baseflow in the changing environment.  However, the soil water 

storage capacity parameters in this study were estimated numerically based on the streamflow and 

baseflow observations.  This method may not be applicable to ungagged catchments; therefore, 

quantification of soil water storage capacity and its spatial variability (e.g., Gao et al., 2014) could 

be useful for estimating baseflow.  Furthermore, this study mainly focused on index-based 
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relationships between mean annual baseflow and climatic and catchment landscape properties, 

whilst process-based methods interpreting hydrological processes in greater detail are needed in 

the future to understand baseflow at smaller timescales.   
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CHAPTER FIVE: HYDROLOGICAL BASIS OF DIFFERENT BUDYKO EQUATIONS 

5.1 Introduction 

Water balance at various temporal and spatial scales has been an enduring research 

question in hydrology.  Empirical equations have been developed for modeling mean annual 

evaporation as a function of mean annual precipitation and potential evaporation (Choudhury, 

1999; Mezentsev, 1955; Ol’dekop, 1911; Pike, 1964; Schreiber, 1904; Turc, 1954).  Based on 

observations from a large number of catchments, Budyko (1974) hypothesized that climate aridity 

index (i.e., the ratio between mean annual potential evaporation and precipitation, 
𝐸𝑃
𝑃

) is the 

dominant controlling factor on evaporation ratio (i.e., the ratio between mean annual evaporation 

and precipitation, 
𝐸

𝑃
).  Thereafter, the function for the relationship between evaporation ratio and 

climate aridity index is named as Budyko curve or equation (Milly, 1994; Sivapalan et al., 2011; 

Ye et al., 2015).  The impacts of other factors on evaporation ratio have been studied based on this 

framework, such as vegetation (Donohue et al., 2007; Yang et al., 2007; Zhang et al., 2001; Zhang 

et al., 2016), storage capacity (Porporato et al., 2004; Sankarasubramanian & Vogel, 2002), rainfall 

characteristics (Gerrits et al., 2009; Padrón et al., 2017), and snow(Berghuijs et al., 2014). 

Research progress has also been made on the derivation of Budyko equation.  Fu (1981) 

derived a one-parameter Budyko equation by combining dimensional analysis with mathematical 

reasoning (see Zhang et al., 2004 for details).  Greve et al. (2015) introduced a probabilistic 

framework to the Budyko equation.   Yang et al. (2008) derived a Budyko equation as a solution 

of a set of partial differential equations, and the Budyko equation has the same functional form as 

the empirical equation by Mezentsev (1955) and Choudhury (1999), therefore called MCY 

equation hereinafter.  Zhou et al. (2015) proposed a concept of generating function to derive 
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Budyko equation.  Sposito (2017) argued that the assumption, that evaporation is a homogenous 

function of precipitation and potential evaporation, is both necessary and sufficient to derive the 

Budyko equation.  These equations are derived for satisfying the constraint of upper bound which 

is determined by water demand (i.e., 
𝐸

𝑃
=

𝐸𝑃
𝑃

 when 
𝐸𝑃
𝑃
≤ 1) and water supply (i.e., 

𝐸

𝑃
= 1 when 

𝐸𝑃
𝑃
>

1), as well as the boundary conditions, i.e., 
𝐸

𝑃
→ 0 as 

𝐸𝑃
𝑃
→ 0, and 

𝐸

𝑃
→ 1 as 

𝐸𝑃
𝑃
→∞.  However, the 

physical meaning of the parameters in these derived Budyko equations are not explicitly linked to 

hydrologic variables since the derivations are through mathematical reasoning  

Another important component of Budyko curve is the lower bound.  Mathematically, the 

lower bound of Budyko curve is the x-axis (i.e., 
𝐸

𝑃
= 0).  However, the observed data points are 

shown to cluster in a small region of the 
𝐸

𝑃
~
𝐸𝑃
𝑃

 plot instead of scattering in the entire domain 

between the upper bound (water and energy limits) and the x-axis, because of which the earlier 

hydrologists fitted deterministic curves to the observations of 
𝐸

𝑃
 versus 

𝐸𝑃
𝑃

 (Budyko, 1974; 

Mezentsev, 1955; Ol’dekop, 1911; Pike, 1964; Schreiber, 1904; Turc, 1954).  Therefore, the lower 

bound of Budyko curve is above the x-axis and not far from the upper bound.  In another word, 

the observed data are located in a small region below the upper bound.  This component of Budyko 

curve has been used as an example to explain the co-evolution of catchments (Ehret et al., 2014; 

Harman & Troch, 2014; Li et al., 2014; Sivapalan, 2018; Zhao et al., 2016).  It is not 

straightforward, if not impossible, to use the derived Budyko equations from mathematical 

reasoning (e.g., Fu equation and MCY equation) to explain such lower bound.  Wang & Tang 

(2014) derived a Budyko equation by applying the proportionality hypothesis of SCS curve 

number method, which is a popular model for estimating direct runoff for rainfall events, to long-



107 
 

term water balance.  The derived Budyko equation provides a lower bound which matches the 

reported data for catchments around the world by L. Zhang et al. (2004).  

Though Budyko equations have been increasingly used in interpreting long-term water 

balance, few studies have been conducted to explore the hydrological basis of Budyko equations 

(Berghuijs et al., 2020).  Recently, Chen & Sivapalan (2020) has demonstrated the role of storage 

water in explaining the functional form of Budyko equation.  The main objective of this paper is 

to further explore the effects of available water in determining the emergence of the long-term 

water balance behavior in the Budyko framework, and demonstrate that different forms of Budyko 

equations are the emergent outcomes of the spatial distribution of available water for evaporation.  

Moreover, we will show that the lower bound of Budyko equations emerges as a result of spatial 

distribution of available water for evaporation.  Section 5.2 introduces the spatial distribution 

functions of available water for evaporation.  Section 5.3 shows the outcomes of different 

distribution functions in determining Budyko equations based on the one-stage partitioning of 

precipitation.  Section 5.4 discusses the symmetry and the lower bound of Budyko curve, and 

Section 5.5 summarizes the findings.   

5.2 Spatial Distribution of Available Water for Evaporation 

The long-term available water for evaporation at a point in a catchment is denoted as Θ.  

The available water for evaporation includes vegetation interception, surface water storage, and 

soil water storage and groundwater storage depending on the root system of vegetation.  The value 

of Θ varies within a catchment due to the spatial heterogeneity of precipitation, soil properties, 

topography, and vegetation (Fan et al., 2017; Gao et al., 2019; Jothityangkoon et al., 2001; Milly, 

1994; Troch et al., 2002; Western et al., 1999).  The spatial variation of point-scale available water 
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for evaporation is represented by a distribution function, and its cumulative probability is denoted 

by 𝐹(Θ), i.e., the fraction of catchment area for which the available water for evaporation is less 

than or equal to Θ.  The spatial distribution of available water for evaporation, has been modeled 

by gamma distribution (Entekhabi & Eagleson, 1989; Famiglietti & Wood, 1994), lognormal 

distribution (Sivapalan & Wood, 1986), beta distribution (Famiglietti et al., 1999), and Gaussian 

mixture model (Ryu & Famiglietti, 2005).  The distribution function proposed by Wang (2018) for 

the soil water storage capacity is used for describing mean annual available water for evaporation 

as an example for demonstrating its controlling effect in determining the long-term water balance: 

𝐹(Θ) = 1 −
1

𝜙
+

Θ+(1−𝜙)𝜇

𝜙√(Θ+𝜇)2−2𝜙𝜇Θ
    (5.1) 

where 𝜙 is the shape parameter and 0 < 𝜙 < 2; and 𝜇 is the mean of the distribution, i.e., the 

average available water for evaporation at the catchment scale.  This distribution function has been 

used for describing the spatial distribution of water storage capacity for modeling saturation excess 

runoff generation (Wang, 2018).  Figure 5.1a plots the cumulative distribution function (CDF) for 

𝜇=1000 mm and 𝜙=0.0001, 1.50 and 1.99.  Parameter 𝜙 controls the shape of the curves.  In the 

following section, Equation (5.1) and some other distribution functions (e.g., exponential, gamma, 

and lognormal distributions) will be used as examples to show that different functional forms of 

Budyko equation are results from different distribution functions of available soil water.  
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Figure 5.1: Two cumulative distribution functions for describing the spatial variability of 

available water for evapotranspiration in a catchment: (a) the cumulative distribution function 

represented by equation (1) where 𝜙 is shape parameter (0<𝜙<2); and (b) the cumulative 

distribution function corresponding to Fu’s equation where 𝜛 is shape parameter (𝜛 >1).  The 

mean (𝜇) is set to 1000 mm. 

5.3 Emergence of Budyko Curve Based on One-stage Precipitation Partitioning Concept 

For one-stage partitioning of precipitation, mean annual precipitation (𝑃) is partitioned into 

runoff (𝑄) and evaporation (𝐸): 

𝑃 = 𝑄 + 𝐸     (5.2) 

Mean annual evaporation is computed based on the distribution function of available water for 

evaporation as shown in Figure 5.2.  The shaded area in Figure 5.2a represents the catchment 

average of available water for evaporation, i.e., 𝜇 in Equation (5.1).  The average available water 

for evaporation is precipitation; therefore, the shaded area in Figure 6.2a equals mean annual 

precipitation: 

𝜇 = 𝑃      (5.3) 

Actual evaporation at a point j in the catchment is denoted as 𝐸𝑗.  The value of 𝐸𝑗 is dependent on 

the available water (Θ𝑗) at the point and potential evaporation (𝐸𝑝).  It is reasonable to assume that 
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potential evaporation is uniform over the catchment when the catchment area is small (e.g., a 

magnitude of 100~1000 km2).  At a point, when available water Θ𝑗 is greater than potential 

evaporation, actual evaporation 𝐸𝑗 equals potential evaporation; otherwise, 𝐸𝑗 equals available 

water Θ𝑗: 

𝐸𝑗 = 𝑚𝑖𝑛(Θ𝑗, 𝐸𝑝)     (5.4) 

Therefore, the average actual evaporation (𝐸) at the catchment scale is represented by the shaded 

area in Figure 5.2b:  

𝐸 = ∫ (1 − 𝐹(Θ))𝑑Θ
𝐸𝑝
0

    (5.5) 

 

Figure 5.2: Mean annual evaporation based on one-stage precipitation partitioning: a) mean 

annual precipitation is the catchment-scale average of available water for evaporation; and b) 

catchment-scale average of mean annual evaporation. 

5.3.1 Deterministic Budyko Equation  

Equation (5.5) provides a framework for deriving Budyko equations from any distribution 

functions that describe the spatial variability of available water with Θ ≥ 0.  If the distribution has 

one parameter, the derived Budyko equation is deterministic.  For example, if exponential 

distribution is used for describing the spatial distribution of Θ, i.e., the CDF of Θ is 𝐹(Θ) = 1 −
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𝑒−𝜆Θ.  The mean of the exponential distribution is 
1

𝜆
= 𝑃.  Evaporation ratio is computed as 

𝐸

𝑃
=

1

𝑃
∫ 𝑒−

Θ

𝑃𝑑Θ
𝐸𝑝
0

= 1− 𝑒−
𝐸𝑝
𝑃  which is the Schreiber equation (Schreiber, 1904).   

5.3.2 One-parameter Budyko Equation  

5.3.2.1 SCS Distribution 

If 𝐹(Θ) has two parameters, the corresponding Budyko equation has one parameter.  For 

example, substituting Equation (5.1) into Equation (5.5) and replacing 𝜇 by 𝑃, 𝐸 is obtained by 

integration of the shaded area in Figure 5.2b, and the following equation for computing 

evaporation ratio is easily obtained: 

𝐸

𝑃
=

1+
𝐸𝑝
𝑃
−√(1+

𝐸𝑝
𝑃
)
2
−2𝜙

𝐸𝑝
𝑃

𝜙
    (5.6) 

Equation (5.6) is same as the derived one-parameter Budyko equation by applying proportionality 

hypothesis to mean annual water balance (Wang & Tang, 2014), which implicates that the 

proportionality relationship can be derived from the distribution shown in Equation (5.1).  

Comparing Equation (5.6) with the derived Budyko equation in (Wang & Tang, 2014), the 

parameters have the following relation: 

 𝜙 = 2𝜀(2 − 𝜀)     (5.7) 

where 𝜀 is defined as the ratio between initial evaporation and total evaporation and the range of 

𝜀 is between 0 and 1 (i.e., 𝜙 is between 0 and 2).  
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5.3.2.2 Gamma Distribution 

Different spatial distribution of available for evaporation results in different one-parameter 

Budyko equations.  For example, if the spatial variability of available water for evaporation is in 

a form of gamma distribution, and the CDF is: 

 𝐹(Θ) =
γ(𝑘,

𝑘Θ

𝜇
)

Γ(𝑘)
       (5.8) 

where 𝜇 is the mean value; 𝑘 is the shape parameter (𝑘 > 0); Γ(𝑘) is the gamma function and 

Γ(𝑘) = ∫ 𝑥𝑘−1𝑒−𝑥𝑑𝑥
∞

0
; γ (𝑘,

𝑘Θ

𝜇
) is the lower incomplete function and γ (𝑘,

𝑘Θ

𝜇
) =

∫ 𝑥𝑘−1𝑒−𝑥𝑑𝑥

𝑘Θ

𝜇

0
.  Substituting Equation (5.8) into Equation (5.5), we obtain: 

𝐸 = ∫ [1 −
γ(𝑘,

𝑘Θ

𝜇
)

Γ(𝑘)
] 𝑑Θ

𝐸𝑝
0

     (5.9) 

Equation (5.9) is re-written as: 

𝐸 =
1

Γ(𝑘)
∫ [∫ 𝑡𝑘−1

∞
𝑘Θ

𝜇

𝑒−𝑡𝑑𝑡] 𝑑Θ
𝐸𝑝
0

    (5.10) 

By changing order of double integration, Equation (5.10) becomes: 

𝐸 =
1

Γ(𝑘)
∫ 𝑡𝑘−1𝑒−𝑡𝑑𝑡 [∫ 𝑑Θ

𝜇

𝑘
𝑡

0
]

𝑘

𝜇
𝐸𝑝

0
+

1

Γ(𝑘)
∫ 𝑡𝑘−1𝑒−𝑡𝑑𝑡 [∫ 𝑑Θ

𝐸𝑝
0

]
∞
𝑘

𝜇
𝐸𝑝

  (5.11) 

After integrating 𝑑Θ, Equation (5.11) becomes: 

𝐸 =
𝜇

𝑘Γ(𝑘)
∫ 𝑡𝑘𝑒−𝑡𝑑𝑡

𝑘

𝜇
𝐸𝑝

0
+

𝐸𝑝

Γ(𝑘)
∫ 𝑡𝑘−1𝑒−𝑡𝑑𝑡
∞
𝑘

𝜇
𝐸𝑝

  (5.12) 

which leads to: 

𝐸 =
1

Γ(𝑘)
[
𝜇

𝑘
𝛾 (𝑘 + 1,

𝑘

𝜇
𝐸𝑝) + 𝐸𝑝Γ (𝑘,

𝑘

𝜇
𝐸𝑝)]   (5.13) 
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where 𝛾 (𝑘 + 1,
𝑘

𝜇
𝐸𝑝) is the lower incomplete gamma function, and Γ (𝑘,

𝑘

𝜇
𝐸𝑝) is the upper 

incomplete gamma function.  For one-stage partitioning of precipitation, the mean of available 

water for evaporation equals mean annual precipitation, 𝜇 = 𝑃.  Therefore, Equation (5.13) 

becomes: 

𝐸 =
1

Γ(𝑘)
[
𝑃

𝑘
𝛾 (𝑘 + 1, 𝑘

𝐸𝑝

𝑃
) + 𝐸𝑝Γ (𝑘, 𝑘

𝐸𝑝

𝑃
)]   (5.14) 

Dividing 𝑃 on both hand sides of Equation (5.14), we obtain: 

𝐸

𝑃
=

1

Γ(𝑘)
[𝑘−1𝛾 (𝑘 + 1, 𝑘

𝐸𝑝

𝑃
)+

𝐸𝑝

𝑃
Γ (𝑘, 𝑘

𝐸𝑝

𝑃
)]                (5.15) 

Equation (5.15) is the Budyko equation corresponding to gamma distribution. 

5.3.2.3 Lognormal Distribution 

Lognormal distribution is also shown to be a good conceptualization of the spatial 

heterogeneity of available water for evaporation (Sivapalan & Wood, 1986): 

𝐹(Θ) =
1

2
+
1

2
𝑒𝑟𝑓 (

ln
Θ

𝜇
+
𝜎2

2

√2𝜎
)     (5.16) 

where 𝜇 is the mean of the random variable Θ; 𝜎 is the standard deviation of the variable’s natural 

logarithm (i.e., ln Θ); and 𝑒𝑟𝑓(. . ) is the error function.  As was mentioned, 𝜇 = 𝑃 in one-stage 

precipitation partitioning.  Substituting Equation (5.16) into Equation (5.5) we obtain: 

𝐸 = ∫ [
1

2
−
1

2
𝑒𝑟𝑓 (

ln
Θ

𝑃
+
𝜎2

2

√2𝜎
)] 𝑑Θ

𝐸𝑝
0

     (5.17) 

After integration of the right hand side of Equation (5.17), the following equation can be obtained: 

𝐸 =
1

2
𝐸𝑝 −

1

2
𝐸𝑝𝑒𝑟𝑓 [

𝜎2

2
+ln(

𝐸𝑝

𝑃
)

√2𝜎
] + 𝑃Φ [−

𝜎2

2
−ln(

𝐸𝑝

𝑃
)

𝜎
]                (5.18) 

https://en.wikipedia.org/wiki/Standard_deviation
https://en.wikipedia.org/wiki/Logarithm
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where Φ(𝑥) = ∫
1

√2𝜋
𝑒−𝑧

2 2⁄ 𝑑𝑧
𝑥

−∞
 is the standard normal cumulative distribution function.  

Therefore, we obtain the following Budyko equation corresponding to lognormal distribution: 

𝐸

𝑃
=

1

2

𝐸𝑝

𝑃
−
1

2

𝐸𝑝

𝑃
𝑒𝑟𝑓 [

𝜎2

2
+ln(

𝐸𝑝
𝑃
)

√2𝜎
]+Φ [−

𝜎2

2
−ln(

𝐸𝑝
𝑃
)

𝜎
]   (5.19) 

Since this equation satisfies the condition of 𝑔(𝑥) = 𝑥𝑔 (
1

𝑥
), this Budyko equation is symmetric 

for 𝐸𝑝 and 𝑃.  Therefore, Equation (5.19) can be written as: 

𝐸

𝑃
=

1

2
−
1

2
𝑒𝑟𝑓 [

𝜎2

2
−ln(

𝐸𝑝
𝑃
)

√2𝜎
]+

𝐸𝑝

𝑃
Φ [−

𝜎2

2
+ln(

𝐸𝑝
𝑃
)

𝜎
]   (5.20) 

Similar derivation can be accomplished with any distribution functions for non-negative random 

variables.  Table 5.1 shows 1 single-parameter distribution function and 5 two-parameter 

distribution functions and their corresponding Budyko equations.  The fifth distribution function 

with parameters 𝜛 and 𝜇 (mean) leads to Fu’s equation, and the sixth one with parameters 𝑛 and 

𝜇 (mean) leads to the MCY equation.  All the Budyko equations in Table 5.1 satisfy the boundary 

conditions: 
𝐸

𝑃
→ 0 as 

𝐸𝑝

𝑃
→ 0; and 

𝐸

𝑃
→ 1 as 

𝐸𝑝

𝑃
→ ∞.  For demonstration, the one-parameter Budyko 

equation derived from Equation (5.1) and that from gamma distribution (i.e., Equation (5.8)) are 

plotted in Figure 5.3a and Figure 5.3b, respectively.   

For a specific catchment, different distribution functions would not bring much difference 

in modeling the spatial distribution of available water for evaporation.  Figure 5.4 shows the 

modeling results for the Licking River in Kentucky (USGS gage number 03253500).  Mean annual 

precipitation, potential evaporation and runoff in this catchment is 1128 mm, 821 mm, and 429 

mm, respectively.  Mean annual evaporation is approximated as the difference between 

precipitation and runoff, i.e., 699 mm.  Therefore, 
𝐸𝑃
𝑃

 is 0.728, and 
𝐸

𝑃
 is 0.620.  The parameters of 
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the distributions in Table 5.1 are computed based on the observed values of 
𝐸𝑃
𝑃

 and 
𝐸

𝑃
: 𝜙 =1.785, 

𝑘 =2.536, 𝜎 =0.649, 𝜛 =3.092, and 𝑛 =2.386.  As can been seen from Figure 5.4, the differences 

among the five CDF curves are not significant. 

Table 5.1: The cumulative distribution functions (CDF) are used for describing the spatial 

variability of available water for evaporation, and Budyko-type equations are derived for one-stage 

partitioning of precipitation based on the corresponding CDFs.  

Index CDF, 𝑭(Θ) Budyko equation 

1 1 − 𝑒
−
Θ

𝜇    1 − 𝑒−
𝐸𝑝
𝑃  
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1

𝜙
+
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Figure 5.3: The derived Budyko-type equations from (a) the distribution function represented by 

equation (1); and (b) gamma distribution. 
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Figure 5.4: The cumulative distribution functions of available water for evaporation for Licking 

River in Kentucky (USGS gage number 03253500).  The parameters of the distribution functions 

are estimated based on mean annual values of precipitation (𝑃), potential evaporation (𝐸𝑃), and 

runoff (𝑄).  Mean annual evaporation is computed as the difference between 𝑃 and 𝑄. 

5.4 Discussions  

5.4.1 Symmetry Between Precipitation and Potential Evaporation 

Precipitation and potential evaporation are symmetric if the Budyko equation does not 

change by switching 𝑃 and 𝐸𝑃.  For example, if a Budyko equation is written as 
𝐸

𝑃
= 𝑔 (

𝐸𝑝

𝑃
), for the 

symmetric case the relationship between 
𝐸

𝐸𝑝
 and 

𝑃

𝐸𝑝
 has the same functional form, i.e., 

𝐸

𝐸𝑝
= 𝑔 (

𝑃

𝐸𝑝
).  

In another word, a symmetric Budyko equation satisfies the following condition: 𝑔(𝑥) = 𝑥𝑔 (
1

𝑥
).  

The normalized random variable by its mean is denoted as: 

𝑧 =
Θ

𝜇
       (5.21) 

If the probability density function (PDF), 𝑓(𝑧), satisfies the following condition: 

𝑓(𝑧) =
1

𝑧3
𝑓 (

1

𝑧
)    (5.22) 
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the derived Budyko equation from the CDF corresponding to PDF of 𝑓(𝑧) satisfies the condition 

of symmetry.  𝑃 and 𝐸𝑃 are symmetric in the Budyko equations derived from the SCS, lognormal, 

Fu and MCY distributions.  However, the Budyko equation from the gamma distribution does not 

satisfy this symmetric condition.    

5.4.2 Lower Bound of Budyko Curve  

The Budyko equation based on the distribution function represented by Equation (1) has a 

different lower bound compared with other four Budyko equations in Table 5.1.  The ranges of the 

shape parameters for the five distribution functions are: 0 < 𝜙 < 2, 𝑘 > 0, 𝜎 > 0, 𝜛 > 1, and 

𝑛 > 0 .  The upper bounds of the curves are same for all the Budyko equations, i.e., the energy 

limit and water limit (black solid lines in Figure 5.3); and the parameter values corresponding to 

the upper bound are 𝜙 → 2, 𝑘 → ∞,𝜎 → 0, 𝜛 → ∞, and 𝑛 → ∞,  The parameter values 

corresponding to the lower bound are 𝜙 → 0, 𝜛 → 1, 𝑛 → 0, 𝑘 → 0, and 𝜎 → ∞.  The lower bound 

for the distribution represented by Equation (5.1) is the dashed red curve (𝜙 → 0) in Figure 5.3a.  

However, the lower bounds for the other four Budyko equations are located on the x-axis, i.e., 
𝐸

𝑃
=

0.  Therefore, the feasible space for the first Budyko equation derived from Equation (1) is much 

smaller than the other ones.  This feasible space explains the reason that hydrologists fitted their 

observations with deterministic curve (Budyko, 1974; Ol’dekop, 1911; Pike, 1964; Schreiber, 

1904; Turc, 1954).  (Wang & Tang, 2014)showed that the lower bound with 𝜙 → 0 matches the 

observations from global catchments reported by (Zhang et al., 2004).  

The lower bound is an emergent behavior of catchments due to the spatial organization of 

available water for evaporation.  Figure 5.1a plots the CDF for Budyko equation represented in 

Equation (5.6), and Figure 5.1b plots the CDF corresponding to Fu equation.  The CDFs for the 
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upper bound (black solid lines in Figure 5.3) are approximately represented by the CDF with 

𝜙=1.99 (Figure 1a) and 𝜛=20 (Figure 5.1b), and they are close.  The CDFs for 𝜙 → 2 and 𝜛 → ∞ 

are almost uniform distributions, and the catchment scale evaporation is determined by Equation 

(5.4), i.e., the upper bound.  However, the distribution with 𝜙 → 0 (see dashed red curve in Figure 

5.1a) and the distribution with 𝜛 → 1 (see dashed red curve in Figure 5.1b) are quite different.  

The CDF with 𝜙 → 0 is above the CDF with 𝜛 → 1.  Therefore, the CDF curves represented by 

Equation (5.1) cannot be squeezed to the right as much as the CDF curves represented by the 

distribution function leading to Fu equation.  The CDFs with 𝜙 → 0 and 𝜛 → 1 are corresponding 

to their lower bounds, respectively.  Therefore, the lower bound of Budyko curve represented by 

Equation (5.1) could be explained as an extreme case of the possible spatial distribution of 

available water for evaporation.  In real world, the distribution of available water for evaporation 

potentially varies from dashed red curve to solid black curve shown in Figure 5.1a.  This spatial 

organization can be explained as a result of catchment co-evolution (Sivapalan, 2018). 

5.5 Conclusion 

In this paper, the spatial distribution of available water for evaporation in a catchment is quantified 

by a distribution function.  Evaporation at the point scale is modeled as the smaller one between 

potential evaporation and available water.  Average evaporation at the catchment scale is computed 

from the distribution function based on the one-stage precipitation partitioning concept.  We 

demonstrate that the spatial distribution of available water for evaporation determines the 

emergence of different functional form of Budyko curves.  If the available water follows a 

distribution function with has one parameter, the Budyko equation is deterministic; and if the 

distribution function has two parameters, the Budyko equation has a single parameter.  Moreover, 
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the lower bound of Budyko curve, which determines the feasible space of Budyko curve since the 

upper bound is determined by the limits of water demand and water supply, is explained by the 

possible spatial distribution of available water for evaporation.  Therefore, the lower bound of 

Budyko curve is a result of spatial organization of available water for evaporation due to catchment 

co-evolution.  Future research could evaluate the possible distributions based on observed data of 

spatial heterogeneity of available water storage for evaporation.   
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CHAPTER SIX: CLIMATIC CONTROL ON THE SPATIAL DISTRIBUTION OF 

WATER STORAGE  

6.1 Introduction 

Spatially variable antecedent wetness condition in catchments is a critical factor affecting 

hydrological processes.  It determines the locations of source area for runoff generation and the 

amount of saturation excess runoff (Clark & Gedney, 2008; Jayawardena & Zhou, 2000; 

Jothityangkoon et al., 2001), and affects the evaporation process (Gao et al., 2021; Ronda, 2002; 

Sivapalan & Woods, 1995).  Therefore, accounting for the spatial variation of catchment water 

storage in hydrological models results in more realistic runoff generation and evaporation 

simulations compared to those models treating catchment as a single bucket.  Fully distributed 

hydrological models, such as MIKE-SHE (Abbott et al., 1986; DHI, 2017), GEOtop (Rigon et al., 

2006), and WetSpa (Liu & Smedt, 2004), explicitly account for the spatial variability of physical 

properties and hydrological processes across catchments.  However, the utility of the fully 

distributed models is typically hampered by its heavy data requirements or computational burden 

(Fatichi et al., 2016; Semenova & Beven, 2015).   

Alternatively, semi-distributed models, such as TOPography-based hydrologic model 

(TOPMODEL) and Variable Infiltration Capacity model (VIC) which provide implicit description 

of spatial variability of storage, are extensively used in practice because they are parametrically 

simple and yet physically realistic (Bartlett et al., 2016).  TOPMODEL uses the concept of 

hydrological similarity to represent catchment heterogeneity, whereby the points with the same 

topographic wetness index will have the same predicted hydrological response (Beven & Kirkby, 

1979; Sivapalan et al., 1987).  Therefore, the spatial heterogeneity within a catchment is 

determined by the spatial distribution of topographic wetness index in TOPMODEL.  Moreover, 
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TOPMODEL assumes quasi-steady state dynamics and the hydraulic gradient of groundwater is 

same as the gradient of land surface topography (Beven & Kirkby, 1979; Sivapalan et al., 1987).  

Though it is known that water table does not always mirror land surface, it is still a reasonable 

simplification in regions with topography-controlled water table (Rinderer et al., 2014; Troch et 

al., 1993).  On the other hand, VIC model (Liang et al., 1994; Wood et al., 1992) is one of the 

Probability Distributed Model (PDM) family which also includes Xinanjiang model (Zhao, 1992) 

and HyMOD (Moore, 1985), and we will use the VIC-type model to refer to the PDM hereinafter.  

VIC-type model assumes a statistical distribution, such as the generalized Pareto distribution 

function (Liang et al., 1994; Zhao, 1992) and the SCS distribution function (Yao et al., 2020), for 

capturing the spatial variability of maximum water storage capacity (i.e., volumetric capacity from 

land surface to bedrock).  Given a spatially uniform rainfall, VIC-type model assumes a spatially 

uniform water storage rise across the catchment except in those points where the storage capacity 

is smaller than the rainfall depth.  

Though TOPMODEL and the VIC-type model have been widely used and numerous 

studies have compared the structure and performance of these two models ( Devia et al., 2015; 

Konapala et al., 2020; Lane et al., 2019; Staudinger et al., 2011; Warrach et al., 2002), only a few 

studies have explored the relation between them.  Sivapalan et al. (1997) and Noto (2014) used the 

spatial distribution of topographical index as a surrogate of the spatial distribution of maximum 

soil water storage capacity by assuming a negative linear relationship between the topographical 

index and soil storage capacity, since topography is closely related to other landscape properties 

that determine soil water storage capacity and its spatial variation, and topography data is much 

easier to obtain than soil properties (Gao et al., 2019).  Kavetski et al. (2003) considered 
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TOPMODEL and VIC model as special cases of saturation path modeling since each of them 

assumes an event-invariant relationship between the saturated area and the catchment storage.   

However, the relation between TOPMODEL and VIC-type model has not been discussed 

from the perspective of the spatial distribution of water storage which varies with climate.  The 

objective of this paper is to gain a better understanding of the spatial variability of water storage 

(capacity) at the catchment scale under different dryness conditions.  It will shed light on the 

commonality of saturation excess runoff models in terms of their underlying assumptions of the 

heterogeneously distributed water storage.  To achieve this objective, we build a hypothetical 

model and conduct numerical simulations to model groundwater flow at steady states.  The second 

section introduces the main settings of the numerical model.  Section 6.3 presents the spatial 

distributions of water table and storage in different climates.  Section 6.4 discusses the impacts of 

bedrock topography on the simulations, and the implication of the findings to the unification of 

saturation excess runoff models.  The final section summaries the main findings of this paper.   

6.2 Methodology 

6.2.1 Land Surface and Bedrock Topography of the Model Domain 

The purpose of this paper is not to develop a numerical model mimicking the groundwater 

system for a specific catchment, but to gain general understanding on the spatial heterogeneity of 

water storage under different climate humidity conditions using a hypothetical model, and the 

climate humidity is represented by the net recharge which is uniformly distributed on the land 

surface.  While, the model domain is still delineated by the boundary of a real catchment, i.e., the 

Crab Orchard Creek catchment located in Illinois (USGS gauge ID: 05597500), which is selected 

simply because of the availability of both land surface and bedrock elevation data.  The drainage 
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area of the model domain is 80 km2, and the land surface elevation ranges from 129 to 185 m 

above mean sea level with an average land surface slope of 0.017 as presented in Figure 6.1a.   

The lower boundary of the catchment is the observed impeding bedrock as shown in Figure 

6.1b, and the average soil thickness, i.e., the vertical distance between land surface and bedrock 

surface, is 10 m.  Bedrock topography in this catchment generally follows the topography of land 

surface, and the total soil thickness from land surface to bedrock decreases from stream channel 

to upland.   

 

Figure 6.1: (a) The land surface and (b) bedrock topography of the Crab Orchard Creek 

catchment in Illinois (USGS gauge ID: 05597500) with 100 m resolution. 

6.2.2 Model Implementation 

The groundwater flow system is developed via numerical simulation using MODFLOW 

(Panday et al., 2013), and the unstructured grid (USG) version is adopted because of the bedrock 

outcrops in a few locations.  The modeled domain is horizontally discretized into finite difference 

square cells with a resolution of 100 m × 100 m, leading to a total number of 8019 cells.  The 
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model is not discretized vertically considering that the soil thickness is much smaller than the 

horizontal dimensions by two to five orders of magnitude.  A “drain” boundary condition is 

assigned to the top face of each grid (Goderniaux et al., 2013).  Drain boundary is a head-dependent 

flux boundary, through which water leaves groundwater system when the head is higher than the 

land surface elevation, and it turns inactive when the head of the model cell drops below the land 

surface.  Discharge of groundwater from an active drain surface is proportional to the drain 

conductance, which is assumed to be 106 m2/year in this paper and is subject to change as needed.  

A spatially uniform recharge is applied to the model domain, and different steady-state 

groundwater levels are obtained by adjusting the value of recharge.  The recharge considered here 

is the net recharge since evaporation is not considered directly in this paper.  All other lateral and 

vertical edges of the model are set as no-flow boundaries.  The saturated hydraulic conductivity is 

assumed to be homogeneous and isotropic.  Given land surface and bedrock topography, the ratio 

of recharge and saturated hydraulic conductivity determines water table configuration, therefore, 

the absolute value of the saturated hydraulic conductivity (i.e., 315 m/year in this paper) is less 

important here (Gleeson & Manning, 2008; Haitjema & Mitchell-Bruker, 2005).  Water storage at 

the cell-scale could be determined after each steady-state groundwater table is obtained, and is 

calculated as the groundwater thickness multiplied by soil porosity.  Since the geology is assumed 

to be homogeneous and isotropic, the value of soil porosity (i.e., 0.417 in this paper) is less 

important for determining the spatial heterogeneity of water storage given a water table.  
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6.3 Results  

6.3.1 Water Table Configuration in Different Climates 

As mentioned in Section 6.2, different values of net recharge were applied on the land 

surface to model water storage in different climates; therefore, a series of steady state water tables 

with various values of R/K ranging from 0.003 to 1.8E-07 were obtained.  Figure 2a-c displays 

three groundwater table distributions with the values of R/K as 0.003, 1.6E-05, and 1.8E-07, 

respectively.  Comparing these water table configurations with land surface, it can be found that 

the similarity between water table and land surface topography decreases as the water table depth 

decreases in more arid climates.  In very humid condition, e.g., R/K=0.003, the spatial variability 

of water table (Figure 6.2a) is almost identical to the land surface topography (Figure 6.1a), 

whereas the water table (Figure 6.2b) is much smoother when R/K decreases to 1.6E-05, and the 

water table (Figure 6.2c) is much different from the land surface when R/K = 1.8E-07.  The 

decreasing similarity between water table and land surface confirms the less control of land surface 

topography on the shape of water table as the mean water table depth increases (Cuthbert et al., 

2019; Gleeson & Manning, 2008).  Conversely, the role of bedrock topography is more and more 

significant in determining water table configuration as climate becomes drier.  It can be seen that 

the similarity between water table configuration and bedrock topography increases as R/K 

decreases.  When climate is very arid, e.g., R/K = 1.8E-07, the distribution of water table elevation 

is highly similar as that of the bedrock.  These results are in agreement with the field observations 

at the hillslope scale (van Meerveld et al., 2015; Hutchinson & Moore, 2000; Freer et al., 2002) 

Compatible with groundwater table configuration, groundwater flow pathways change 

with climate as well (Detty & McGuire, 2010; Toth, 1963).  Figure 6.2d-f show the contours of 

the corresponding water table in Figure 6.2a-c.  Groundwater flow direction is perpendicular to 
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the contours; therefore, it can be observed that in very humid condition (Figure 6.2d) groundwater 

from hillslopes flows towards immediately adjacent channels, suggesting that local flow systems 

dominant groundwater circulation.  While as R/K decreases (Figure 6.2e-f), groundwater flows 

across the boundaries of individual hillslopes and merge at higher orders of channels.  Note that 

the channel initiation threshold, i.e., 0.08 km2, was determined by the 1 % of the maximum flow 

accumulation in this paper (Maidment, 2002).    

 

Figure 6.2: The simulated water table elevations when the recharge/hydraulic conductivity equals 

(a) 0.003, (b)1.6e-5, and (c) 1.8e-7; the contours of water table elevation when the 

recharge/hydraulic conductivity equals (d) 0.003, (e) 1.6e-5, and (f)1.8e-7.  Note that the channel 

initiation threshold was determined as the 1 % of the maximum flow accumulation (Maidment, 

2002) 

6.3.2 Percentage of Saturated Land Surface 

The percentage of saturated area on land surface is an important factor for determining 

runoff generation since precipitation falls on the saturated area transfers to surface runoff directly.  
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Saturated area occurs where the groundwater table intercepts with land surface; therefore, the 

percentage of saturated area changes with climate.  Figure 6.3a presents the percentage of saturated 

area (defined as the ratio between the flooded area and the total area in the model) as a function of 

R/K.  The linear curve on the log-log plot suggests that the saturated area follows a power function 

relationship with respect to the dimensionless value, i.e., R/K.  Moreover, Figure 6.3b presents the 

percentage of saturated area as a function of mean water table depth for simulations on the semi-

log plot.  The roughly linear curve indicates that the saturated area follows an exponential function 

relationship with respect to mean water table depth, which is in agreement with Niu et al. (2005) 

who obtained an exponential function relationship between the fraction of saturated area and water 

table depth by representing the CDF of topographic wetness index using an exponential function.    

 

Figure 6.3: (a) The relationship between saturated area percentage and the ratio between recharge 

and saturated hydraulic conductivity (R/K); (b) the relationship between saturated area 

percentage and mean water table depth (m). 

6.3.3 Statistical Distribution of Water Storage in Different Climates 

In this section, we present the spatial distribution of water storage from the statistics 

perspective.  Figure 6.4 presents the empirical CDFs of the groundwater storage under different 
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climates.  The black curve is the empirical CDF of the maximum storage capacity which is defined 

as the total water storage space from land surface to the impeding bedrock surface, and is 

determined by the soil thickness and soil porosity.  It can be found that the empirical CDF of the 

maximum storage capacity present an “S” shape, which is accordance with previous studies (Gao 

et al., 2021; Sivapalan et al., 1997).  Figure 6.4 shows that the statistical distribution of water 

storage evolves systematically with climate.  The empirical CDF is similar as that of the maximum 

storage capacity under humid condition with a shallow water table as shown by the purple curves 

because the shallow water table configuration roughly follows the land surface topography.  Whilst 

the statistical distribution of groundwater storage gradually deviates from the “S” shape as climate 

becomes more arid and the groundwater storage is more skewered to relatively smaller values.  

Soil thickness within the modeled area decreases from channel network to uplands; therefore, 

groundwater storage is limited in uplands and mainly accumulated in downstream when the 

climate is highly arid (e.g., R/K=1.8e-7), leading to the large percentage of small values and an 

abrupt change of the slope in the CDF curve (red curve in Figure 6.4).   
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Figure 6.4: The empirical cumulative distribution functions (CDF) of the groundwater storage 

under different climates represented by the ratio between recharge and saturated hydraulic 

conductivity (R/K). 

6.4 Discussions 

6.4.1 Impact of Bedrock Topography  

Catchment adapts to the nature of climate forcing, as a result, soil thickness or the 

topography of impeding bedrock would change with long-term climate (Blöschl et al., 2013; Troch 

et al., 2015).  While the above results and analysis were based on the simulations with a fixed 

bedrock.  To demonstrate that the evolution pattern of the spatially distributed water storage with 

climate remains valid with various soil thickness or bedrock topographic, a synthetic bedrock was 

designed, and a new model was built by replacing the observed bedrock with the synthetic bedrock.  

The synthetic bedrock was generated through utilizing the observed bedrock data combined with 
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channel network on the land surface, and the elevation (E [m]) of the synthetic bedrock at the point 

scale is determined by the following equation: 

𝐸 = 𝐸0 + 𝑠 × 𝑑                                                          (6.1) 

where 𝐸0 (m) is the observed bedrock elevation of the closest cell in the highest order (i.e., the 5th-

order) channel network; 𝑠 (-) is the slope of the bedrock between the cell and its closest cell, and 

is set to 0.002 in this study; 𝑑 (m) is the horizontal component of the minimum downslope distance 

to a cell on the channel network, following the flow path.  The synthetic bedrock has the same 

average soil thickness as the observation (10 m) by moving the bedrock surface with a spatially 

uniform amount in the vertical direction.  As shown in Figure 6.5a, the elevation of the synthetic 

bedrock is higher in the northeast, and lower in the southwest which is similar as its observed 

counterpart.  However, the topography of the synthetic bedrock surface inherits less land surface 

topographic information compared to the observed one.  Moreover, since the slope of land surface 

is higher than the synthetic bedrock (i.e., 0.002), the soil thickness for the generated bedrock 

increases from channel to upland, which is opposite of the observed one in this catchment but has 

been widely observed in other catchments and used in conceptual models (Rempe & Dietrich, 

2014; St. Clair et al., 2015; Troch et al., 2002; Zimmer & McGlynn, 2017).    

 Figure 6.5b presents the statistical distributions of water storage from simulations with the 

synthetical bedrock.  The empirical CDF of the maximum storage capacity (black curve in Figure 

6b) also present an “S” shape, and the distribution of water storage shows a similar pattern of 

evolution with climate as that in the model with the observed bedrock, i.e., deviating from the 

empirical CDF of the maximum storage capacity as climate becomes more arid.  Whereas 

compared to Figure 6.4, the CDF curve with arid climate is much flatter in Figure 6.5b.  It is 

because the soil thickness increases from channel network to uplands in the model with the 
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synthetical bedrock which is opposite to the observed topography; therefore, the groundwater 

thickness is more uniformly distributed across the catchment.        

 

Figure 6.5: (a) The topography of the synthetical bedrock with 100 m resolution, and (b) the 

empirical cumulative distribution functions (CDF) of groundwater storage under different 

climates represented by the ratio between recharge and saturated hydraulic conductivity (R/K). 

6.4.2 Unifying Saturation Excess Runoff Models 

The TOPMODEL and VIC-type model have distinct conceptualizations on rainfall-runoff 

process.  As mentioned in the Introduction section, one of the basic assumptions of TOPMODEL 

is that water table is parallel to land surface (Beven & Kirkby, 1979; Sivapalan et al., 1987).  While 

the VIC-type model assumes a spatially uniform water storage rise across the catchment as shown 

in Figure 6a (Liang et al., 1994; Moore, 2007). Figure 6.2 has confirmed that water table in humid 

climate approximately follows land surface as assumed in the TOPMODEL.  The similarity 

between land surface and water table configuration is also suggested by the similarity between the 

empirical CDF of the maximum storage capacity (e.g., the black curve in Figure 6.4 or Figure 

6.5b) and that of groundwater storage with a shallow water table (e.g., the purple curve in Figure 
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6.4 or Figure 6.5b).  The parallelism between land surface and shallow water table means that the 

available space for water storage, i.e., spare storage capacity, is spatially uniform across the 

unsaturated area.  Therefore, TOPMODEL implicitly assumes that water storage capacity is 

approximately spatially uniform across the unsaturated area.  As climate becomes arid, larger 

catchment area holds a similarly small value of water storage indicated by the flatter part of the 

CDF curve with red color in Figure 6.4 or Figure 6.5b.  It is reasonable to speculate that when the 

climate becomes extremely arid, water storage will become spatially uniform, which is consistent 

with the water storage assumed in VIC model as shown in Figure 6a.  Therefore, the assumption 

of the spatially uniform water storage rise in the VIC-type model is more reasonable in arid 

climate.   

Inspired by the variation of the probability distribution of water storage (capacity) under 

different climate conditions, we propose a framework for unifying saturation excess runoff models.  

In the future investigation, it is possible to have a same functional form to present the spatial 

distribution of water storage (or water storage capacity) in different climates (or dry and wet 

seasons in a catchment), and TOPMODEL and the VIC-type model can be viewed as special cases 

of a more general conceptualization as shown in Figure 6.6b.  The colors in the double-headed 

arrow indicate the transition of the optimal model considering the reasonability degree of their 

assumptions of the distributed water storage.  In this framework, the spatial distribution of water 

storage could be formulated by a mixed probability distribution function consisting of two parts, 

one for saturated area and another one for unsaturated area.  The spatial distribution of water 

storage in the saturated area is equal to that of the corresponding maximum storage capacity.  The 

spatial distribution of water storage across the unsaturated area has the same general expression 

under different climate conditions, but the distribution changes with saturated area ratio (or other 
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variables reflecting the antecedent storage condition).  When saturated area ratio approaches 0, the 

mixed probability distribution function of storage approaches to that used by the VIC-type model; 

whereas, when saturated area ratio approaches 1, the mixed distribution function becomes the 

distribution function of the maximum storage capacity as adopted by TOPMODEL.  

 

Figure 6.6: (a) The conceptualization of water storage in the VIC-type model: 𝑆0 is the initial soil 

water storage; P is the precipitation which is partitioned into the soil wetting (W) and runoff (R).  

(b) Schematic illustrating that the TOPMODEL and VIC-type morels are special cases of a 

unified framework which conceptualizes distributed water storage through a general functional 

form.  The colors in the double-headed arrow indicate the transition of the optimal model 

considering the reasonability degree of their assumptions of the distributed water storage. 

6.5 Conclusion  

The spatial pattern of groundwater table and the corresponding distribution of water storage 

are recognized as crucial determinants of saturation excess runoff generation at the catchment 

scale.  To investigate the variation of the spatial distribution of water storage in different climates, 

steady-state water table was obtained from numerical simulations using MODFLOW (USG) for 

hypothetical models. When water table is close to the land surface in humid climate, land surface 

is a good proxy of water table; and when the water table is close to the bedrock in arid climate, 

bedrock is a good proxy of water table.  Results showed that the spatial distribution of water 
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storage, quantified through the empirical cumulative distribution function, changes with water 

table depth systematically, approximately from the state of a spatially uniform storage capacity 

under wet conditions to the state of a spatially uniform storage in unsaturated area under dry 

conditions.  Moreover, it was found that the percentage of saturated area on the land surface 

follows an exponential function relationship with mean water table depth or follows a power 

function relationship with R/K.   

This paper provided a framework to unify the TOPMODEL and VIC-type model from the 

perspective of their underlying assumptions on the probability distribution of water storage.  The 

assumed water table in TOPMODEL suggests an approximately spatially uniform water storage 

capacity in the unsaturated area; whilst the VIC-type model indicates a spatially uniform water 

storage in the unsaturated area.  Different saturation excess runoff models are possible to be unified 

by a same general expression for water storage (capacity) distribution which could characterize 

the full spectrum of the spatial distribution of water storage: spatially uniform storage capacity 

type, spatially uniform storage type, and the transition between them. 

The findings of this study contribute to a better understanding of the spatial distribution of 

water storage at the catchment scale, representing a further step towards developing process-based 

hydrological models for modeling the saturation excess runoff generation.  However, these 

findings may be somewhat limited by the modeling sets applied in this study.  It assumes 

homogenous geological properties and recharge in the model area.  Further studies, which consider 

more comprehensive catchment properties, could be undertaken. 
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CHAPTER SEVEN: CONCLUSION  

Hydrological processes including the infiltration, total streamflow generation, baseflow 

generation, evaporation, were investigated considering the role of groundwater table.  For the 

infiltration process, the assumptions of TCA, i.e., time invariant and uniform initial soil moisture 

in the vertical directions, were evaluated in the presence of a shallow water table, and were relaxed 

by introducing a powerful function relationship between the infiltration rate and its time derivate.  

Numerical simulations in HYDRUS showed that the exponent of the power function of TCA 

gradually evolves during the infiltration process because of the dynamics of the two driving forces 

of infiltration, i.e., capillary and gravity.  A dimensionless matric named infiltration Péclet number 

(Pe) was proposed to evaluate the relative effect of gravity and capillarity.  When the gravity is 

dominant, i.e., Pe>1, the exponent of the power function of TCA follows a linear relationship with 

Pe.  The relationship between Pe and β provides an objective approach to identify the suitable 

infiltration function. 

A new daily water balance model incorporating the SCS distribution function for 

describing the spatial variability of soil water storage capacity was developed.  In this model, the 

spatial variability of the soil water storage was assumed to have impacts on both runoff generation 

and evaporation.  This new model unifies water balance models from daily to mean annual 

timescales.  The relative effects of climate variabilities, i.e., intra-monthly, intra-annual, and inter-

annual variability of precipitation and potential evapotranspiration, on the streamflow at different 

timescales were evaluated by comparing the simulated streamflow from different timescale climate 

scenarios for MOPEX catchments in the U.S.  The results show that at the daily, monthly, and 
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annual scales, streamflow variation is mostly influenced by the climate variability at the same 

timescale.   

The mean annual water balance model from the unified framework was used to disentangle 

the roles of climate and soil water storage capacity on baseflow generation at the mean annual 

scale for catchments from both the U.S. and U.K.  A dimensionless parameter named storage 

capacity index defined as the ratio between the average storage capacity of a catchment and the 

mean annual precipitation was found to directly related to the baseflow index and baseflow fraction 

to the study area.  In general, baseflow index or baseflow coefficient increases with storage 

capacity index given a climate condition, and it decreases with climate aridity index given a storage 

capacity index.  The storage capacity index was found to follow an exponential function with the 

climate aridity index which indicates further evidence of the coevolution of climate and catchment 

landscape. 

 The spatial distribution of available water for evaporation which is determined by the 

location of groundwater table given a catchment was found to determines the different functional 

form of Budyko equations based on the on-stage precipitation partitioning concept.  The lower 

bound the Budyko curve was explained by the possible spatial distribution of the available for 

evaporation as a result of catchment coevolution.   

 Lastly, the variation of the spatial distribution of groundwater table and the corresponding 

storage distribution were explored under different climate conditions for a given catchment 

through numerical simulations.  The land surface and bedrock topography were found to serve as 

the two endmembers of water table configuration at the catchment scale, and the empirical 

cumulative distribution function of water storage within the catchment evolves systematically as 

climate becomes more arid from a spatially-uniform-storage-capacity form to the spatially-
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uniform-storage case form.  Storage capacity in humid condition with a shallow water table could 

be approximated as spatially uniform as assumed in the TOPMODEL, while in arid condition 

when the groundwater table is close to the bedrock the available storage is spatially uniform as 

assumed in the VIC-type model.  Therefore, the systematic evolution of the statistical distribution 

of water storage provides a framework for unifying the two popular hydrological models, i.e., the 

TOPMPODEL and VIC-type model.   

 Studies in this dissertation contributed to deeper understandings of water balance behaviors 

considering the presence of groundwater table and its spatial heterogeneity for both the infiltration 

excess and saturation excess runoff generation regimes.  Whereas there is abundant room for 

further progress.  Future work is needed to test the applicability of the power function relationship 

of TCA at the catchment scale with multiple soil layers and considering the impacts of air phase 

during infiltration.  Process-based methods interpreting hydrological processes in greater detail are 

also needed in the future to understand baseflow at smaller timescales.  The impact of the 

catchment topography on the spatial distribution of the maximum storage capacity is required to 

explored.  In addition, the general functional form of the spatial distribution of water storage is 

required to be proposed, and the unified framework in which the TOPMODEL and VIC-type 

model are the two endmembers is suggested to be evaluated in terms of its performance in 

modeling hydrological processes.  

  



138 
 

APPENDIX: PÉCLET NUMBER FOR MUALEM-VAN GENUCHTEN MODEL 
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The Péclet number is derived here for the case when the Mualem-van Genuchten (MG) 

model is used for describing soil hydraulic properties (Mualem, 1976; van Genuchten, 1980): 

𝜃(𝜓) = 𝜃𝑟 +
𝜃𝑠−𝜃𝑟

(1+(𝑐|𝜑|)𝑛)𝑚
                                                   (A1) 

𝐾(𝜓) = 𝐾𝑆
{1−(𝑐|𝜑|)𝑛−1[1+(𝑐|𝜑|)𝑛]−𝑚}

2

(1+(𝑐|𝜑|)𝑛)𝑚/2
                                         (A2) 

𝑚 = 1 −
1

𝑛
                                                               (A3) 

where 𝑐, 𝑛, and 𝑚 are parameters, and 𝑛 > 1.  From Equations (A1) and (A2), one can obtain 𝜓 

and 𝐾 as functions of 𝜃 and the following derivatives: 

𝜕𝐾

𝜕𝜃
=

𝐾𝑆[(1−𝑆𝑒
1
𝑚⁄ )

𝑚
(5𝑆𝑒

1
𝑚⁄ −1)−𝑆𝑒

1
𝑚⁄ +1]∙[(1−𝑆𝑒

1
𝑚⁄ )

𝑚
−1]

2(𝜃𝑠−𝜃𝑟)𝑆𝑒
1
2⁄ (𝑆𝑒

1
𝑚⁄ −1)

                           (A4) 

𝜕𝜓

𝜕𝜃
=

(𝑆𝑒
−1

𝑚⁄ −1)
−𝑚

𝑐𝑚𝑛(𝜃−𝜃𝑟)𝑆𝑒
1
𝑚⁄
                                             (A5) 

where 𝑆𝑒 is effective saturation and defined as: 

𝑆𝑒 =
𝜃−𝜃𝑟

𝜃𝑠−𝜃𝑟
                                                          (A6) 

From Equation (A1) and (A6), one obtains: 

𝑆𝑒
1
𝑚⁄ = [1 + (𝑐|𝜑|)𝑛]−1                                                 (A7) 

Substituting Equations (A4), (A5) and (A7) into Equation (11), the infiltration Péclet number as a 

function of |𝜑| is obtained: 

𝑃𝑒 =
{𝑐𝑚𝑛𝐿[1+(𝑐|𝜑|)𝑛]−1}∙{[5[1+(𝑐|𝜑|)𝑛]−1−1]∙[1−[1+(𝑐|𝜑|)𝑛]−1]

𝑚
−[1+(𝑐|𝜑|)𝑛]−1+1}∙{[1+(𝑐|𝜑|)𝑛]−1}𝑚

2{[1+(𝑐|𝜑|)𝑛]−1−1}∙{{1−[1+(𝑐|𝜑|)𝑛]−1}𝑚−1}
     (A8) 

Besides the Brooks-Corey model, numerical simulations were conducted for two soils (clay 

and sandy loam) based on the Mualem-van Genuchten (MG) model.  In general, the findings are 

consistent with the Brooks-Corey model, e.g., 𝛽 decreases with 𝑃𝑒.  The detailed information is 
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documented in the Supporting Information (SI).  The main differences are summarized here.  For 

both clay and sandy loam, 𝛽 decreases rapidly with 𝑃𝑒 when 𝑃𝑒 < 0.5.  When 𝑃𝑒 > 0.5, 𝛽 is stable, 

and 𝛽 is around 1.5 for clay but 1.0 for sandy loam.  The mode of the exponents is 1.5 for clay but 

1.0 for sandy loam; whereas, the mode for the Brooks-Corey model is around 2 for all soils.   
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