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ABSTRACT

Cognitive Radio (CR) is a promising solution that enhances spectrum utilization by allowing an unlicensed or Sec-

ondary User (SU) to access licensed bands in a such way that its imposed interference on a license holder Primary

User (PU) is limited, and hence fills the spectrum holes in time and/or frequency domains. Resource allocation, which

involves scheduling of available time and transmit power, represents a crucial problem for the performance evalua-

tion of CR systems. In this dissertation, we study the spectral efficiency maximization problem in an opportunistic

CR system. Specifically, in the first part of the dissertation, we consider an opportunistic CR system where the SU

transmitter (SUtx) is equipped to a Reconfigurable Antenna (RA). RA, with the capabilities of dynamically modifying

their characteristics can improve the spectral efficiency, via beam steering and utilizing the spectrum white spaces in

spatial (angular) domain. In our opportunistic CR system, SUtx relies on the beam steering capability of RA to detect

the direction of PU’s activity and also to select the strongest beam for data transmission to SU receiver (SUrx). We

study the combined effects of spectrum sensing error and channel training error as well as the beam detection error and

beam selection error on the achievable rates of an opportunistic CR system with a RA at SUtx. We also find the best

duration for spectrum sensing and channel training as well as the best transmit power at SUtx such that the throughput

of our CR system is maximized subject to the Average Transmit Power Constraint (ATPC) and Average Interference

Constraint (AIC).

In the second part of the dissertation, we consider an opportunistic Energy Harvesting (EH)-enabled CR network,

consisting of multiple SUs and an Access Point (AP), that can access a wideband spectrum licensed to a primary

network. Assuming that each SU is equipped with a finite size rechargeable battery, we study how the achievable sum-

rate of SUs is impacted by the combined effects of spectrum sensing error and imperfect Channel State Information

(CSI) of SUs–AP links. We also design an energy management strategy that maximizes the achievable sum-rate of

SUs, subject to a constraint on the average interference that SUs can impose on the PU.
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CHAPTER 1: INTRODUCTION AND LITERATURE REVIEW123456

1.1 Cognitive Radio Systems

With the increasing demands for ubiquitous high data rate wireless access and smart mobile devices with bandwidth

consuming wireless applications, Radio Frequency (RF) spectrum is becoming more and more crowded. Contrasting

the general belief which says “we are running out of bandwidth,” the results of empirical measurements on electro-

magnetic spectrum occupancy show that a large portion of the licensed spectrum is not utilized for significant periods

of time. These findings suggest that spectrum scarcity is largely due to the inefficient utilization of the spectrum, rather

than the shortage of the spectrum. CR is a promising solution which addresses this challenge by allowing an unli-

censed or SU to access licensed bands in a such way that its imposed interference on a license holder PU is limited,

and hence fills the spectrum holes in time and/or frequency domains [7–11].

CR systems are mainly classified as underlay CR, opportunistic (or interweave) CR, and overlay CR systems. The

underlay CR approach allows concurrent primary and secondary transmissions if the interference imposed on PUs

is below a given threshold. In opportunistic CR approach, the SUs periodically monitor the radio spectrum and

opportunistically exploit spectral holes (in time and/or frequency domains) to communicate with minimal interference

to PUs. The overlay CR approach allows concurrent primary and secondary transmissions. The SUs are allowed to

access the licensed bands in return for improving the quality-of-service of primary transmissions by acting as a relay to

convey the messages form Primary User Transmitter (PUtx) to Primary User Receiver (PUrx). Inspired by the inherent

benefits of the above approaches, hybrid CR approaches, e.g., overlay-underlay [12] and interweave-underlay [13] CR

approaches have been proposed to improve the performance of CR systems. While underlay CR systems do not require

spectrum sensing to detect PU’s activities, they demand coordination between PUs and SUs (to obtain channel gain of

PU links at SUs) that is not always feasible. The enabling premise for overlay CR systems is that the Secondary User

Transmitter (SUtx) has knowledge of the PUs’ codebooks, messages and channel gains which requires coordination

1 c© 2017 IEEE. Part of this chapter is reprinted, with permission, from [1].
2 c© 2018 IEEE. Part of this chapter is reprinted, with permission, from [2].
3 c© 2019 IEEE. Part of this chapter is reprinted, with permission, from [3].
4 c© 2020 IEEE. Part of this chapter is reprinted, with permission, from [4].
5 c© 2021 IEEE. Part of this chapter is reprinted, with permission, from [5].
6 c© 2021 IEEE. Part of this chapter is reprinted, with permission, from [6].
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between PUs and SUs. On the other hand, opportunistic CR systems utilize spectrum sensing to enable SUs to use a

licensed frequency band during a time interval, only if PUs are not using that frequency band within that time interval,

implying that coordination between PUs and SUs to acquire channel gain of PU links is not needed.

In this dissertation, we consider an opportunistic CR system where SUs are required to monitor the spectrum and to

identify transmission opportunities (spectrum holes) accurately. Our opportunistic CR system works in three main

phases, including “spatial spectrum sensing phase”, “channel training phase” and “data transmission phase”. SUs

Each SUtx employs a frame with a fixed duration of Tf seconds which is used for spectrum sensing, channel training

and data transmission (see Fig. 1.1). When a SUtx discovers a transmission opportunity, it can access the spectrum for

Spatial Spectrum
Sensing

Channel
Training

Data Transmission

-� Tf

-�
sensing duration

-�
channel

estimation
duration

-�
transmission duration

Figure 1.1: The structure of frame employed by SUtx.

channel training and data transmission, in such a way that their imposed interference on the PUs does not exceed the

maximum allowed interference level. While doing so, SUs also need to monitor the channels they occupy and vacate

them whenever PUs become active on these channels. Within this context, the available resources must be adaptively

allocated to the SUs to achieve a high system performance without interrupting the primary transmissions. In the

following we briefly review the three phases mentioned above and their corresponding challenges.

1.1.1 Transmit Power Control

To enhance the performance of CR systems while providing sufficient protection for PUs, the transmit power of SUs

must be adapted for different types of data traffic and channel statistics. Developing adaptive transmit power control

strategies has drawn a great interest in the literature of CR systems design. Researchers have developed different

transmit power control policies that are optimized considering various CR system performance metrics, transmit power

constraints and interference constraints [14–18]. For delay-insensitive data traffic such as email and file transfer, the

proper performance metric is the ergodic capacity7. The authors in [18] designed transmit power adaptation policies

7Ergodic capacity is the maximum achievable long-term data rate averaged over the channel fading states.
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that maximize the ergodic capacity of a CR system subject to both average and peak transmit power constraints. For

delay-sensitive data traffic such as video and VoIP, the proper system performance metric is the outage capacity8.

For instance, the authors in [16] developed optimal transmit power control schemes, considering both the ergodic

capacity and the outage capacity of an underlay CR system, subject to peak/average transmit power constrain and

peak/average interference constraint. In [19] the Energy-Efficiency (EE) is considered as the system performance

metric and the optimal transmit power control scheme is obtained subject to peak/average transmit power constraint

and peak/average interference constraint. A novel transmit power control policy is derived in [20] to minimize the

Symbol Error Probability (SEP) subject to an average interference constraint or an interference outage probability

constraint9 at PUrx.

1.1.2 Spectrum Sensing

In opportunistic CR systems, spectrum sensing is necessary for detecting PUs’ activities and protecting PUs against

harmful interference. The SUs need to regularly sense and monitor the spectrum and reliably detect the spectrum holes

and utilize them opportunistically. Upon the detection of a PU’s presence, SUs must vacate the occupied spectrum

immediately.

Spectrum sensing can be formulated as a binary hypothesis testing problem in statistics in which the binary hypotheses

H0 andH1 denote the PU is truly inactive and truly active in the monitored spectrum, respectively, i.e.,

H0 : PU is inactive

H1 : PU is active
(1.1)

When adopting the Neyman-Pearson optimality criterion for the detection performance, the Neyman-Pearson theorem

says that for a given probability of false alarm, the test statistic that maximizes the probability of detection is the

Likelihood Ratio Test (LRT) defined as [21]

TLRT =
f(y|H1)

f(y|H0)
(1.2)

8Outage capacity is maximum achievable rate at a certain outage probability.
9This constraint mandates that the probability that the instantaneous interference at PUrx exceeds a threshold is less than a target outage

probability Pout.
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where y is the received signal vector and f(·) is the Probability Density Function (PDF). The major difficulty in using

the LRT is that it requires the exact knowledge of the conditional distribution of y. Depending on the level of infor-

mation available at SUs about the PUs’ signal, different LRT-based spectrum sensing methods have been introduced

in the literature, including energy detection, matched filter detection, cyclostationary feature detection [8, 22–24].

Among these spectrum sensing methods, energy detection [25] is the most common method due to its low computa-

tional complexity and not requiring any knowledge on PUs’ signal and channel gains at SUs. Matched filter detection

is the optimum method when perfect information about the PUs’ signal (including bandwidth, operating frequency,

modulation type and order, pulse shaping, etc) is available at SUs. Obtaining such information requires advanced sig-

nal processing techniques, which makes the implementation cost and complexity of this detection method very high.

Cyclostationary feature detector exploits the cyclostationary feature of the received signals (which is caused by the

periodicity in the PUs’ signals) to differentiate modulated signal from additive noise. This detection method requires

SUs to know the frequencies in the PUs’ signals, which increases the implementation cost and complexity. When

no knowledge about the PUs’ signal and communication channel statistics is not available at SUs, the LRT-based

spectrum sensing methods cannot be applied. The main approach to tackle spectrum sensing problem in the presence

of the aforementioned uncertainty is the Generalized Likelihood Ratio Test (GLRT). In [26], a GLRT detector for

a multiple antenna CR system is derived assuming that the channel gain, the additive noise variance and the PU’s

signal power are unknown. Based on the GLRT detection, other variations, including maximum eigenvalue detection,

maximum-minimum eigenvalue detection, and energy with minimum eigenvalue detection approaches are investigated

in [27–29]. In general, any spectrum sensing technique is prone to error, that can be described as mis-detection and

false alarm probabilities. This error can affect the opportunistic CR system performance and should be considered in

the CR system design.

1.1.3 Channel Estimation

An important factor that impacts the performance of opportunistic CR systems is the level of assumption made regard-

ing the availability of CSI. In opportunistic CR systems, although CSI corresponding to SU–PU link is not required

(which is a major advantage), still CSI corresponding to SUtx–SUrx link is needed for properly adapting the data

transmission. The CR literature mainly assumes that each SUtx has access to full CSI of all communication links

for its operation. However, in practice, SUtx has access only to partial CSI, due to several factors including channel

estimation error, mobility of PU or SU, and limitation of feedback channel. Partial (imperfect) CSI has deteriorating
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effects on the fundamental performance limits of CRs and should not be overlooked. The authors in [30] considered

a pilot-based channel estimation in a CR system. During the training phase, SUtx sends training symbols to enable

channel estimation at Secondary User Receiver (SUrx). Different Minimum Mean Square Error (MMSE) estimation

methods are considered for channel estimation at SUrx. We note that the impact of partial CSI on the performance of

underlay and opportunistic CR systems are different, due to inherent distinctions between these two CR systems. In

underlay CR systems, the additive noise is the only randomness that affects the quality of channel estimation. Several

researchers have studied the impact of imperfect CSI on the ergodic capacity [31–37] and the SEP [20] corresponding

to different modulation schemes for underlay CR systems. The authors in [35] investigated the effect of five different

levels of CSI on the capacity of a CR system under a minimum Signal-to-Interference-plus-Noise Ratio (SINR) con-

straint for PUrx. However, in opportunistic CR (where spectrum sensing is necessary to detect the spectrum holes),

the quality of channel estimation is affected by the accuracy of spectrum sensing as well as the additive noise. Hence,

studying the problem of channel estimation is more challenging in opportunistic CR systems. We note that imperfect

CSI due to channel estimation error (even under perfect spectrum sensing) has negative influence on the link capacity.

Imperfect spectrum sensing exacerbates the negative effect of imperfect CSI on the link capacity.

1.1.4 Combined effects of Spectrum Sensing, Channel Estimation and Transmit Power Control in Opportunistic CR

Systems

Spectrum sensing is crucial in the detection of PUs’ signals and protecting them from harmful interference. However, it

has an incurred cost for high rate data transmission. As the time duration for spectrum sensing increases, the accuracy

of the employed spectrum sensing method increases, i.e., the false alarm probability decreases and the detection

probability increases. On the other hand, given the fixed length frame structure in Fig. 1.1, the available time for

data transmission decreases. Therefore, a trade-off exists between the spectrum sensing duration and the data rate

of opportunistic CR systems. [38–46]. Motivated by this fact, the authors in [41] formulated the sensing-throughput

tradeoff problem mathematically, and showed that their formulated problem indeed has an optimal spectrum sensing

time duration which yields the highest throughput. The authors in [38] obtained the jointly optimal transmit power

and spectrum sensing duration to maximize the energy efficiency of SUs, subject to peak interference constraint and

a minimum data rate constraint. The authors in [47] obtained the jointly optimal detection threshold (for spectrum

sensing) and transmit power of SUs, obtained to minimize the total energy consumption with the constraints on SUs’

quality-of-service and the detection probability of PU’ signals.
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Besides spectrum sensing, channel estimation also induces a cost for high data rate transmission. As the allocated

transmission resources for channel estimation (i.e., time and power for sending training symbols to SUrx) increases,

the channel estimation becomes more accurate and the channel estimation error decreases. On the other hand, the

average interference imposed on the PUs during transmission of training symbols increases, the available time for

data transmission and hence, the data rate decrease. Therefore, a trade-off exists between the time duration of channel

estimation and the data rate of CR systems. Hence, for opportunistic CR systems, we need to study the combined

effects of imperfect spectrum sensing and imperfect CSI as well as adaptive transmit power control policies on the CR

system performance. For example in [48], SUtx monitors the PU’s activity and estimates the PU’s signal power based

on its received signal during sensing-estimation time. If the spectrum is sensed idle, SUtx sends data to SUrx with

a fixed transmit power. The authors showed that the constrained capacity of SUtx–SUrx link can be significantly

enhanced (subject to a constraint on the detection probability corresponding to the spectrum sensing detector), via

optimizing the duration of sensing-estimation time. The work in [19] considered different levels of CSI corresponding

to SUtx–SUrx and SUtx–PU links, and studied the optimal transmit power levels at SUtx, such that the capacity of

SUtx–SUrx link is maximized.

1.2 Energy Harvesting in CR Systems

In addition to spectral efficiency, energy efficiency is another important metric to consider when designing commu-

nication systems [38, 49–53]. EH has been recognized as an effective approach for improving the energy efficiency.

EH-powered devices can operate without the need for external power cables or periodic battery replacements [54–56].

EH-enabled CR systems have received substantial attention as a promising solution for increasing both energy effi-

ciency and spectral efficiency [57–59]. EH-enabled communication systems can harvest energy from ambient energy

sources (e.g., solar, wind, thermal, vibration) or RF signals [60, 61]. In practice, the energy arrival of ambient energy

sources, including ambient RF signal sources, is intrinsically time-variant and often sporadic. This natural factor

degrades the performance of the battery-free EH-enabled communication systems in which a “harvest-then-transmit”

strategy is adopted, i.e., users can only transmit when the energy harvested in one time slot is sufficient for data trans-

mission [62]. To flatten the randomness of the energy arrival, the harvested energy is stored in a battery, to balance the

energy arrival and the energy consumption [54]. In practice, the capacity of the batteries is limited, and this can result

in an energy overflow.

Power/energy management in EH-enabled communication systems with finite size batteries is necessary, in order to
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adapt the rate of energy consumption with the rate of energy harvesting. If the energy management policy is overly

aggressive, such that the rate of energy consumption is greater than the rate of energy harvesting, the transmitter may

stop functioning, due to energy outage. On the other hand, if the energy management policy is overly conservative,

the transmitter may fail to utilize the excess energy, due to energy overflow, and the data transmission would become

limited in each energy allocation interval.

Focusing on opportunistic EH-enabled CR systems, we realize that power control strategies, aiming at optimizing the

performance of SUs, should be designed such that spectrum sensing (and its corresponding errors), as well as spectrum

sensing-data transmission trade-offs are incorporated in the design process [53, 63–66]. For instance, the authors

in [63] considered a system model, where SUtx can perform energy harvesting and spectrum sensing simultaneously.

Depending on the results of spectrum sensing, SUtx continues to harvest energy (when the spectrum is sensed busy) or

transmits data (when the spectrum is sensed idle), and studied maximizing SUtx–SUrx channel capacity, via optimizing

the threshold of the energy detector (employed for spectrum sensing).

In general, the power control strategies designed for opportunistic EH-enabled CR systems should depend on the

level of assumption made regarding the availability of CSI corresponding to SUtx–SUrx link, and whether the adapted

transmit power levels are continuous or discrete values. In practice, only partial CSI can be available at SUtx and

SUrx due to several factors (e.g., channel estimation error and limitation of feedback channel from SUrx to SUtx).

Partial CSI has deteriorating effects on the performance of communication systems (including EH-enabled CR sys-

tems), and should not be overlooked [67–70]. Assuming perfect CSI at the Receiver (RX) and partial CSI at the

Transmitter (TX) (due to channel estimation error), the authors in [68, 69] analyzed maximizing the TX’s average

throughput, in two asymptotic regimes (where the rate of energy harvesting is very small or very large), via optimizing

continuous-valued data transmit power.

1.3 Integration of Directional Antennas in Opportunistic CR Systems

All the cited works so far on developing spectrum sensing and data transmission approaches for CR systems are built

upon the main assumption that SUs are equipped with an onmi-directional antenna. Consequently, these approaches

can identify transmission and reception opportunities only across two dimensions of frequency and time. When a

SUtx with an onmi-directional antenna detects PU’s activity (in either of these domains) it cannot extract any infor-

mation about the directionality of the PU’s signal, i.e., SUtx fails to identify transmission and reception opportunities

7



across spatial domain. A steerable directional antenna enables SUtx to sense the spectrum in all directions (so-called

directional spectrum sensing) and to identify the angular directions that are vacant o the PUs’ activities in a certain

frequency band [1, 2, 71–73]. The spatial-spectral holes discovered by the steerable directional antenna present new

transmission and reception opportunities that would be missed if using an omni-directional antenna. One can signif-

icantly enhance the spectrum utilization via employing a steerable directional antenna and enabling transmission and

reception in the unoccupied angular directions and also providing spatial filtering for mitigating in-band interference

to and from PUs (by properly steering the antenna beam and creating nulls toward certain directions).

There is a rich literature provided by the researchers on optimizing transmission strategies for opportunistic spectrum

access of SUs, that are equipped with directional antennas, in the presence of PUs’ activities [74–81]. These works

have considered multi-antenna CR systems and focused on designing beamforming weights that optimize certain

system performance metrics. Multiple antennas, and in particular transmit beamforming techniques, have been utilized

to ameliorate the performance degradation due to the interference imposed on PUs in underlay CR systems [75,78,79]

and opportunistic CR systems [80] when perfect CSI of SUtx–SUrx link is available at SUtx. The authors in [81]

considered an opportunistic CR system, where SUtx has a single antenna and SUrx has multiple antennas and applies

Maximum Ratio Combining (MRC) technique to combine the received signals at multiple antennas, and studied the

combined effects of spectrum sensing error and imperfect CSI of SUtx–SUrx link at SUtx on the CR system Bit

Error Rate (BER) performance. The authors in [81] obtained the optimal spectrum sensing time, channel estimation

time, and SUtx transmit power, such that BER is minimized, subject to average transmit power and peak interference

constraints. These works assume that transmit antennas use multiple RF chains connected to the antenna elements, and

hence the weight of each antenna element can be digitally adjusted to generate the desired beam pattern. We note that

the benefits of multi-antenna techniques come at the cost of requiring an expensive and power-hungry RF chain per

antenna, which consists of digital-to-analog converters, filters, mixers, and amplifiers. While multi-antenna techniques

are affordable for base station and access points, where cost, size, power, and complexity are of less concern, they are

not directly applicable to portable lightweight devices.

1.3.1 Reconfigurable Antenna

RA [82,83], with the capabilities of dynamically modifying their characteristics (e.g., operating frequency, beamwidth,

radiation pattern, polarization) can improve the spectral efficiency (well beyond what is attainable with omni-directional

antennas), via beam steering and utilizing the spectrum white spaces in spatial (angular) domain. RA, which has only
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one RF chain, is a low-complexity and low-cost technology that addresses the aforementioned challenges in the

multi-antenna systems [84–86]. RAs have been used to design directional wireless and 5G millimeter-wave commu-

nication systems to combat the significant path-loss and reduce the number of RF chains in massive Multiple-Input

Multiple-Output (MIMO) systems [87, 88]. For both underlay and opportunistic CR systems, RAs are used to in-

crease Signal-to-Noise Ratio (SNR) for transmission and reception of directional signals [89], enhance the accuracy

of spectrum sensing [89–91], and limit interference to and from PUs [3–5].

An Electrically Steerable Parasitic Array Radiator (ESPAR) antenna is a special kind of RAs, that has been used for

identifying the spectral holes in spatial domain in CR systems. ESPAR divides the angular domain into several sectors

(beams) and switches between beampatterns of sectors in a time-division fashion (only one of M beams is active at

a time) [92]. The ESPAR antenna relies on a single RF front end (an active element) coupled to several passive or

parasitic elements (mutually coupled to the active one) to steer beams in prescribed directions [92, 93]. The active

element is connected to the transmitter/receiver circuit and the parasitic elements are reactively loaded. Since only

one RF chain is needed, the power consumption, cost, and hardware complexity are significantly reduced. The mutual

coupling between the ESPAR antenna elements is created by reducing the spacing between them, which makes this

antenna suitable for small mobile devices.

For CR systems, the ESPAR antennas provide an improved spectrum sensing, due to a SNR increase for transmis-

sion and reception of directional signals, and limit out-of-band interference to and from PUs [89]. Considering the

ESPAR antennas, the authors in [89–91, 94] designed spectrum sensing energy detectors, based on the received sig-

nal energy in different beams, and also eigenvalue-based detectors, based on the covariance matrix constructed from

the received signals in different beams. The advantages of spectrum sensing using ESPAR antennas are twofold.

First, the SNR gain from the directional beampatterns increases the probability of detecting PU’s activities within that

beam, and hence decreases the chance of causing interference on the PU. Second, the discovered unoccupied beams

in spatial (angular) domain during spectrum sensing represents directional transmission and reception opportunities

for SUs, which can be utilized to increase spectral efficiency (opportunities that would be missed when using an

omni-directional antenna at SUtx).

The ESPAR antennas have the capability of transmitting multiple data streams by signal projection on beamspace

basis [95]. Also, they can be used for blind interference alignment through beampattern switching [96]. ESPAR

antennas have been used in [97], to provide an end-to-end solution for practically implementable cloud radio access

networks. RAs can enhance performance of MIMO systems, via enabling beam and antenna selection optimiza-
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tion [98–102]. The work in [101] shows that comparing RA and traditional antenna selection, the former can offer

significant improvements in SNR.

A related research thrust in the context of ESPAR antennas for design of CR systems is developing adaptive beampat-

terns (also called beamforming) [89, 103–106]. Designing an adaptive beampattern algorithm for an ESPAR antenna

from a mathematical perspective is very challenging, due to the tunable reactive loads, which renders a non-convex

optimization problem with respect to the optimization parameters, without any closed form solution. Furthermore,

implementing such design incurs high computational complexity.

1.4 Motivation, Contributions and Dissertation Organization

Our literature survey indicates that the studies on optimizing spectrum sensing and optimizing data communication

have been pursued as two separate research thrusts: the works cited in [89–91, 94] focus on spectrum sensing in

opportunistic CR systems, whereas the works in [98–102] focus on data communication in underlay CR systems. The

developed beam selection and beamforming schemes in [98–102] are specifically tailored for underlay CR systems,

which do not require spectrum sensing to detect PU’s activities, and rely on the knowledge obtained from coordination

between PUs and SUs. Evidently, the literature lacks a holistic system design, that integrates spectrum sensing and

data communication in a cohesive manner for opportunistic CR systems. Such a holistic system design needs to take

into consideration the effect of imperfect spectrum sensing on data communication optimization, while taking full

advantage of beam steering capability of the ESPAR antennas. This is the motivation behind our work presented in

chapters 2 and 3.

In Chapter 2 we consider an opportunistic CR system consisting of a PU, a SUtx, and a SUrx, where SUtx is equipped

with an ESPAR antenna with the capability of choosing one sector amongM sectors for its data transmission to SUrx.

We leverage on the beam steering capability of the ESPAR antenna for both spectrum sensing and data communication

optimization and we propose an integrated design for opportunistic CR systems. Different from the state-of-the-art,

our proposed integrated design incorporates induced errors due to: (i) imperfect spectrum sensing and determining the

correct beam corresponding to the PU’s location, such errors affect the interference imposed on the PU; (ii) selecting

the best beam for data communication over SUtx–SUrx link.

During the initial spatial spectrum sensing phase SUtx senses the channel and monitors the PU’s activity. While being

in this phase, SUtx determines the beam corresponding to the location (orientation) of the PU based on the received
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signal energy from all directions. SUtx stays in this phase as long as the spectrum is sensed busy. It leaves this phase

and enters transmission phase when the spectrum is sensed idle. The transmission phase itself consists of two phases:

channel estimation phase followed by data transmission phase. During the former phase, SUtx sends training symbols

to enable channel estimation at SUrx as well as selection of the strongest channel among all beams between SUtx–

SUrx for data transmission. Also, SUrx employs an nb-bit quantizer to quantize the gain of the selected beam. Then,

SUrx feeds back the index of the selected beam as well as the nb-bit representation of the index of the quantization

interval over an error-free bandwidth limited feedback link to SUtx, so SUtx can optimally adapt its discrete power

level accordingly. To the best of our knowledge, this is the first work that adopts a holistic approach to design an

opportunistic CR system using ESPAR antennas and integrates sector-based spectrum sensing and sector-based data

communication. All previous works use RAs for enhanced communication in underlay CR systems. Utilizing ESPAR

antennas in opportunistic CR systems for spectrum sharing is a highly promising solution to enhance the data rate of

SUs’ links, while satisfying the AIC and ATPC [102].

The main contributions of Chapter 2 can be summarized as follows:

• Given our system model, we formulate a novel optimization problem, aiming at maximizing the constrained

ergodic capacity of SUtx–SUrx link, subject to AIC and ATPC.

• Our problem formulation takes into consideration the effect of imperfect spectrum sensing as well as the error

due to incorrect determination of the beam corresponding to PU’s location (and its corresponding effect on

imposed average interference) occurred during spatial spectrum sensing phase.

• Our problem formulation also takes into account the probability of correct determination of the strongest beam

for data transmission from SUtx to SUrx, occurred during channel estimation phase. It also incorporates the

impact of CSI quantization on the constrained optimization problem in hand.

• We solve the formulated problem and optimize the time duration of spectrum sensing, thresholds of CSI quan-

tizer, and discrete transmit power levels (to be employed at SUtx) corresponding to CSI quantization intervals.

We also provide closed form expressions for outage probability10 and SEP.

• Taking advantage of the additional degrees of freedom offered by ESPAR antennas with variable beam di-

rections, we improve the spectral efficiency and reduce implementation complexity of opportunistic spectrum

sharing systems. Our simulations demonstrate and quantify the capacity improvement provided by the ESPAR

10We define the outage probability as the probability of SUtx not transmitting data due to the weak SUtx–SUrx channel.
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antenna, in terms of average transmit power P av and average interference Iav constraints. For instance, at

P av =12 dB, Iav =−6 dB, the capacity of our CR system is 1.83 times larger than the capacity of a CR system

that its SUtx has an omni-directional antenna. Also, we show that with only a small number of feedback bits

the capacity of our opportunistic CR system approaches to its baseline, which assumes the full knowledge of

unquantized SUtx–SUrx channel gain at SUtx.

In Chapter 3, we consider the combined effects of spectrum sensing error and imperfect CSI of SUtx–SUrx link on

the achievable rates of an opportunistic CR system with a RA at SUtx. In our opportunistic CR system, SUtx relies

on the beam steering capability of RA to detect the direction of PU’s activity and also to select the strongest beam

for data transmission to SUrx. We assume SUtx sends training symbols to enable channel estimation at SUrx, and

employs Gaussian input signaling for transmitting its data symbols to SUrx. Also, SUrx shares its imperfect CSI of

SUtx–SUrx link with SUtx through an error-free low-rate feedback channel.

Assuming that there are ATPC and AIC, we provide answers to the following research questions: How does spectrum

sensing error affect accuracy of detecting the direction of PU’s activity, estimating SUtx–SUrx channel, and selecting

the strongest beam for data transmission? How do training symbol transmission and beam detection error (error

in obtaining the true direction of PU’s activity) affect interference imposed on PU? How do the combined effects

of spectrum sensing error and channel estimation error, as well as beam detection error and beam selection error

(error in finding the true strongest beam for data communication to SUrx) impact the achievable rates for reliable

communication over SUtx–SUrx link? How do the trade-offs between spatial spectrum sensing time, channel training

time, data transmission time, training and data symbol transmission powers affect the achievable rates? How can we

utilize these trade-offs to design transmit power control strategies, such that the achievable rates subject to ATPC and

AIC are maximized? Our main contributions follow:

• Given this system model, we establish a lower bound on the achievable rates of SUtx–SUrx link, in the presence

of both spectrum sensing error and channel estimation error. We formulate a novel constrained optimization

problem, aiming at maximizing the derived lower bound subject to AIC and ATPC.

• Our problem formulation takes into consideration the combined effects of imperfect spectrum sensing and chan-

nel estimation as well as the errors due to (i) incorrect detection of the beam corresponding to PU’s location (and

its corresponding effect on average interference imposed on the PU) occurred during spatial spectrum sensing

phase, (ii) incorrect selection of the strongest beam for data transmission from SUtx to SUrx, occurred during

12



channel estimation phase. These beam detection and beam selection errors are introduced by the RA at SUtx.

• Given a fixed-length frame, we optimize the durations of spatial spectrum sensing and channel training as well as

data symbol transmission power. Based on the structure of the optimized transmit power, we propose alternative

power adaptation schemes that are simpler to implement and yield lower bounds on the achievable rates that are

very close to the one produced by the optimized transmit power.

In Chapter 4 we consider an opportunistic EH-enabled CR network, consisting of Nu SUs and an AP, that can

access a wideband spectrum licensed to a primary network. Each SU is capable of harvesting energy from natural

ambient energy sources, and is equipped with a finite size rechargeable battery, to store the harvested energy. Our main

objectives are (i) to study how the achievable sum-rate of SUs is impacted by the combined effects of spectrum sensing

error and imperfect CSI of SUs–AP links (due to channel estimation error), and (ii) to design an energy management

strategy that maximizes the achievable sum-rate of SUs, subject to a constraint on the average interference that SUs

can impose on the PU. To the best of our knowledge, our work in Chapter 4 is the first to study the impact of these

combined effects on the performance of an opportunistic EH-enabled CR network.

The importance of our study in Chapter 4 is evident by the works in [107–112], which demonstrate the significance

of considering the effect of imperfect CSI at the RX, due to channel estimation, on the TX achievable rate. We

note that the TX in these works is a primary transmitter (not a secondary transmitter in a CR system) and has a

traditional stable power supply. One expects that spectrum sensing error, combined with random energy arrival at the

TX, exacerbates the effect of imperfect CSI on the TX achievable rate. The challenges of our study are twofold: first,

it requires integration of energy harvesting, spectrum sensing, and channel estimation. Successful achievement of this

integration entails stochastic modeling of energy arrival, energy storage, and PU’s activities. These stochastic models

are utilized to establish an achievable sum-rate of SUs that takes into account both spectrum sensing error and channel

estimation error. Second, one needs to properly design energy control strategies for SUs, that strike a balance between

the energy harvesting and the energy consumption, and adapt transmit power according to the available CSI and the

battery state.

We assume that SUs operate under a time-slotted scheme, and SUn is capable of harvesting energy during the entire

time slot. Each time slot consists of three sub-slots corresponding to spectrum sensing phase (during which SUn senses

the spectrum), channel estimation phase (during which SUn sends training symbols to the AP, when the spectrum is

sensed idle, for estimating the fading coefficient corresponding to SUn–AP link), and data transmission phase (during
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which SUn sends data symbols to the AP). Assuming that the AP feeds back its estimate of the fading coefficient to

SUn, SUn adapts its transmit power based on this information as well as the available energy in its battery.

Our main contributions can be summarized as follow:

• Our system model encompasses the stochastic energy arrival model for harvesting energy, the stochastic energy

storage model for the finite size battery, the stochastic model of PU’s activities, spectrum sensing error, and

channel estimation error (both at SUs and the AP). We model the randomly arriving energy packets during a

time slot as a Poisson process, and the dynamics of the battery as a finite state Markov chain.

• We propose a power adaptation strategy for SUn that mimics the behavior of the rate-optimal power adaptation

scheme with respect to the estimated channel power gain ĝn available at SUn and the AP, i.e., when ĝn is

below a cut-off threshold θn, the transmit energy is zero, and when ĝn exceeds θn, the transmit energy increases

monotonically in proportion to a parameter Ωn, as ĝn increases. The parameters Ωn and θn play key roles in

balancing the energy harvesting and the energy consumption.

• Given our system model, we establish a lower bound on the achievable sum-rate of SUs–AP links, in the

presence of both spectrum sensing error and channel estimation error (both at SUs and the AP). We formulate a

novel constrained optimization problem with the optimization variables {Ωn, θn}Nu
n=1, aiming at maximizing the

derived sum-rate lower bound, subject to the AIC imposed on the PU and the causality constraint of the battery.

We solve the formulated constrained optimization problem assuming that the battery reaches its steady-state.

• We derive closed form expressions for the battery outage probability and transmission outage probability and

demonstrate their behaviors, in terms of the average number of harvesting energy packets and the AIC. We also

study the existing trade-offs between spectrum sensing-channel estimation-data transmission and how these

trade-offs impact the sum-rate of our CR network.

Our work in Chapter 4 is different from [62, 67, 68, 70]. In particular, these works view the energy management

policy design as a sequential decision making problem, and hence, they adopt the Markov Decision Process (MDP)

framework to solve the problem. In this framework, the goal is typically optimizing a specific metric over a horizon

spanning several time slots. The solutions (obtained using dynamic programing) are dependent across time slots, and

also depend on the initial condition (i.e., the initial state of the battery). Here, we assume that the battery operates at its

steady-state, and hence, our proposed constrained optimization problem can be solved for each time slot. Furthermore,
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the problem can be solved offline and the optimized transmission parameters {Ωn, θn}Nu
n=1 (that do not depend on the

initial condition of the battery) can become available apriori at the AP and SUs. During the data transmission phase,

SUn chooses its symbol power, using its optimized transmission parameters Ωn, θn, and based on its partial CSI of

SUn–AP link (received via the feedback channel) as well as the available energy in its battery.

In Chapter 5, we explore a throughput-optimal design for a Device-to-Device (D2D) Millimeter Wave (MMWAVE)

network, where the nodes employ directional antennas for wireless communication. In particular, we consider a

MMWAVE network with a total available bandwidth of Bc Hz, that supports communication of N cooperative pairs

of transmitters and receivers over fading channels. We assume the available spectrum band is divided into Nc non-

overlapping sub-bands, where each sub-band has a bandwidth of W = Bc/Nc Hz. Also, we assume Nc � N . Each

node is capable of steering its beam within the range of its field of view (FOV) [1, 5]. Also, each transmitter node

can adjust its transmit power. The transmitter-receiver pairs can form up to Nc disjoint coalitions, such that the pairs

in a particular coalition share the same sub-band for communication. Therefore, the pairs within a coalition cause

co-channel interference, whereas the pairs in different coalitions do not interfere.

The questions we address are: What is the best coalition among the pairs? What are the optimal beam steering angles

of directional antennas of the pairs within each coalition, and what are the optimal transmit powers such that the

network throughput, defined as the sum-rate of all N transmitter-receiver pairs in Nc coalitions, is maximized?

We combine the concepts of coalition formation among cooperative transmitter-receiver pairs and directional MMWAVE

bands, and we take full advantage of adaptive beam steering and adaptive transmit power to improve the spectral effi-

ciency and maximize the network throughput.

Finally, Chapter 6 concludes the dissertation.
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CHAPTER 2: BEAM SELECTION AND DISCRETE POWER

ALLOCATION IN OPPORTUNISTIC COGNITIVE RADIO SYSTEMS

WITH LIMITED FEEDBACK USING ESPAR ANTENNAS1

In this chapter, we consider an opportunistic CR system consisting of a PU, SUtx, and SUrx, where SUtx is equipped

with an ESPAR antenna with the capability of choosing one sector among M sectors for its data transmission to

SUrx. During the initial spatial spectrum sensing phase SUtx senses the channel and monitors the activity of PU.

While being in this phase, SUtx determines the beam corresponding to the location (orientation) of PU based on the

received signal energy. SUtx stays in this phase as long as the channel is sensed busy. It leaves this phase and enters

transmission phase when the channel is sensed idle. The transmission phase itself consists of two phases: channel

training phase followed by data transmission phase. During the former phase, SUtx sends training symbols to enable

channel estimation at SUrx as well as selection of the strongest channel among all beams between SUtx–SUrx for data

transmission. Also, SUrx employs an nb-bit quantizer to quantize the gain of the selected beam. Then, SUrx feeds

back the index of the selected beam as well as the nb-bit representation of the index of the quantization interval over an

error-free bandwidth limited feedback link to SUtx, so SUtx can optimally adapt its discrete power level accordingly.

2.1 System Model and Problem Statement

2.1.1 Background on ESPAR Antennas

The ESPAR antenna is a circular array, comprised of one active element and M parasitic elements symmetrically

surrounding the active element, and the radius of the array is r < λc/2, where λc is the carrier wavelength [92].

Fig. 2.1a depicts an ESPAR structure. The active element is connected to the single RF chain, while M parasitic

elements (which are mutually coupled to the active element) are short-circuited and loaded by M variable reactive

loads. Let xm be the reactive load of m-th element and vector x = [x1, . . . , xM ] denote the reactive loads of all M

parasitic elements. By adjusting these reactive loads, the beampatterns of the ESPAR antenna are designed such that

the angular space is divided intoM spatial sectors or beams2. In particular, to design the beampattern corresponding to

1 c© 2020 IEEE. Part of this chapter is reprinted, with permission, from [4].
2Throughout this dissertation, “sector” and “beam” are used interchangeably.
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the first beam, entries of vector x1 are optimized such that the beam gain is maximized at an angle (for example angle

0◦) [92]. Since the ESPAR antenna structure is symmetric, the beampattern corresponding to the second beam can be

obtained by circularly shifting the entries of x1, such that the beam gain is maximized at angle κ2 = 2π
M . Repeating

this M times one can obtain M beampatterns corresponding to M beams such that the beampattern corresponding to

the m-th beam achieves its maximum at angle κm = 2π(m−1)
M for m = 1, . . . ,M . It is noteworthy that the ESPAR

antenna can provide an omni-directional beampattern if the reactive loads of all parasitic elements are chosen equal

(omni-directional mode).

Similar to [113], to mathematically model the radiation pattern (antenna pattern) of the ESPAR antenna, we adopt the

Gaussian pattern in x−y azimuth plane in terms of angle φ given by

p(φ) = A1 +A0 e
−B
(
M(φ)
φ3dB

)2

, (2.1)

M(φ) = mod2π(φ+ π)− π, (2.2)

mod2π(φ) denotes the remainder of φ
2π , constantB = ln(2), φ3dB is the 3-dB beamwidth, A1 andA0 are two constant

antenna parameters. The radiation pattern of m-th sector at angle φ is

pm(φ) = p(φ− κm) for m = 1, . . . ,M. (2.3)

In Fig. 2.1b, the beampatterns of an ESPAR antenna with 8 parasitic elements are shown. In this chapter, we discuss

the received or transmitted signal at m-th sector of SUtx. This means that, during the signal reception or transmission,

the reactive loads of all M parasitic elements (i.e., the entries of vector x) are set and tuned such that the beampattern

corresponding to the m-th beam is generated. Note that in our work we assume the reactive loads (i.e., the entries of

vector x and thus the shapes of beampatterns or equivalently the radiation patterns of M sectors) are determined by

the ESPAR antenna designer. Given the antenna design, we focus on how the sector-based structure of this ESPAR

antenna can be exploited to enhance the system performance of our opportunistic CR system, in which SUtx optimizes

its sector-based data communication to SUrx according to the results of its sector-based spectrum sensing.
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Figure 2.1: The ESPAR antenna structure and its beampatterns, (a) The ESPAR antenna structure, (b) Beampatterns of an ESPAR
with 8 parasitic elements, assuming the Gaussian radiation pattern in (2.1).

2.1.2 Geometry of Our Opportunistic CR System

Our CR system model is illustrated in Fig. 2.2, consisting of a PU and a pair of SUtx and SUrx. We note that PU in our

system model can be a primary transmitter or receiver. We assume when PU is active it is engaged in a bidirectional

communication with another PU, which is located far from SUtx and hence its activity does not impact our analysis.

We assume SUtx is equipped with an (M+1)-element ESPAR antenna (for spectrum sensing and communication)

with the capability of choosing one sector among M sectors for its data transmission to SUrx, while SUrx and PU

use omni-directional antennas. The reason for this assumption is to focus on quantifying the capacity improvement

provided by the ESPAR antenna at SUtx, in the presence of spectrum sensing error as well as ATPC and AIC. We also

assume there is an error-free bandwidth limited feedback channel from SUrx to SUtx (where the channel bandwidth is

measured in terms of the number of bits sent over the channel [15, 114], to help SUtx select the best sector for its data

transmission to SUrx and also to provide SUtx with the quantized channel gain of the selected beam, so SUtx can adapt

its discrete power level accordingly. The direction (orientation) of PU and SUrx with respect to SUtx are denoted by

angles φPU, and φSR, receptively. Clearly, in our problem SUtx does not know these directions or angles (otherwise,

the beam selection at SUtx for data transmission would become trivial).

Let h, hss, hsp denote the fading coefficients of channels between SUtx and PU, SUtx and SUrx, and SUrx and PU,

respectively, when the ESPAR antenna of SUtx is in omni-directional mode. We model these fading coefficients

as independent circularly symmetric complex Gaussian random variables. We assume g = |h|2, gss = |hss|2 and
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Figure 2.2: Our CR system with an (M+1)-element ESPAR antenna at SUtx and omni-directional antennas at SUrx and PU.

gsp = |hsp|2 are independent exponentially distributed random variables with mean γ, γss and γsp, respectively3.

Since in our problem SUs and PU cannot cooperate, SUs cannot estimate g and gsp. However, we assume that

SUtx knows the channel statistics, i.e., the mean values γ and γsp. Let ψm and χm denote the fading coefficients of

channel between m-th sector of SUtx and PU, and between m-th sector of SUtx and SUrx, respectively, when the

ESPAR antenna of SUtx is in directional mode, where ψm = h
√
pm(φPU), χm = hss

√
pm(φSR). We assume the

channel gain νm = |χm|2 is an exponential random variable with mean δm, and SUtx knows δm, for all m [102]. For

the readers’ convenience, we have collected the most commonly used symbols in Table 2.1.

2.1.3 Our Problem Statement

Suppose, SUs employ a frame with a fixed duration of Tf seconds, depicted in Fig. 2.3. We assume SUtx first senses

the channel and monitors the activity of PU. We refer to this period as spatial spectrum sensing phase (with a variable

duration of Tse seconds). Depending on the outcome of this phase, SUtx stays in this phase or enters the next phase,

which we refer to as transmission phase. The transmission phase itself consists of two phases: channel training phase

(with a fixed duration of Ttr seconds) followed by data transmission phase (with a variable duration of Tf−Tse−Ttr

seconds). During the former phase, SUtx sends training symbols to enable channel estimation at SUrx. During the

3 We note that the distances between users are included in the small scale fading model [115]. In particular, we assume that the mean values
are γ = (d0/d)ε, γss = (d0/dss)ε, γsp = (d0/dsp)ε, where d0 is the reference distance, ε is the path-loss exponent, and d, dss and dsp are the
distances between SUtx and PU, SUtx and SUrx, and SUrx and PU, respectively.
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Table 2.1: Most commonly used symbols.

Symbol Description
M Number of beams
Nse Number of samples used for spectrum sensing
nb Number of bits for quantization at SUrx

pm(φ) Radiation pattern of m-th beam at angle φ
ψm Fading coefficient of channel between m-th beam of SUtx and PU
χm Fading coefficient of channel between m-th beam of SUtx and SUrx

δm Mean of channel gain between m-th beam of SUtx and SUrx

ν∗ Channel gain of selected beam for data transmission from SUtx to SUrx

φPU, φSR Directions of PU and SUrx with respect to SUtx

m∗PU,m
∗
SR Indices of selected beam for PU and SUrx

π0, π1 Prior probabilities ofH0 andH1

π̂0, π̂1 Probabilities of channel being sensed idle or busy
Tf Duration of frame employed by SUtx

Tse Duration of spatial spectrum sensing phase

latter phase, SUtx sends data symbols to SUrx. Given Tf and Ttr we have 0 < Tse < (Tf − Ttr). In the following, we

describe how SUtx operates in directional mode during these three distinct phases. Based on these descriptions, we

provide our problem statement.

Spatial Spectrum
Sensing

Channel
Training

Data Transmission

-� Tf

-�
Tse

-�
Ttr

-�
Tf − Tse − Ttr

Figure 2.3: The structure of frame employed by SUtx.

• Spatial Spectrum Sensing Phase: During this phase SUtx senses the channel and monitors the activity of PU.

Suppose H1 and H0 represent the binary hypotheses of PU being active and inactive, respectively, with prior proba-

bilities Pr{H1} = π1 and Pr{H0} = π0. SUtx applies a binary detection rule, as will be described in Section 2.2.1,

to decide whether or not PU is active. Let Ĥ1 and Ĥ0 denote the detector outcome, i.e., the detector finds PU active

(channel is sensed busy and occupied) and inactive (channel is sensed idle and unoccupied and thus can be used by

SUtx for transmission), respectively. The accuracy of this binary detector is characterized by its false alarm probability

Pfa = Pr{Ĥ1|H0} and detection probability Pd = Pr{Ĥ1|H1}. Therefore, the probabilities of events Ĥ0 and Ĥ1

become π̂0 = Pr{Ĥ0}= π1(1−Pd) + π0(1−Pfa) and π̂1 = Pr{Ĥ1} = π1Pd + π0Pfa, respectively. Furthermore,
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the joint probabilities are β0 = Pr{H0, Ĥ0} = π0(1−Pfa) and β1 = Pr{H1, Ĥ0} = π1(1−Pd). The accuracy

of spectrum sensing impacts the maximum information rate that SUtx can transmit reliably to SUrx. Our problem

formulation incorporates the effect of imperfect spectrum sensing on the constrained ergodic capacity maximization.

As long as the channel is sensed busy, SUtx stays in spatial spectrum sensing phase. While being in this phase,

SUtx determines the beam corresponding to the location (orientation) of PU based on the received signal energy. We

denote the sector index corresponding to PU’s location by m∗PU. SUtx uses m∗PU for adapting its discrete power level

during data transmission phase. We note that, there is a non-zero error probability when SUtx determines the beam

index m∗PU, i.e., it is possible that m∗PU is not the true beam index corresponding to PU. Our problem formulation

takes into account the impact of this error probability on the constrained ergodic capacity maximization.

• Channel Training Phase: When the channel is sensed idle, SUtx leaves spatial spectrum sensing phase and enters

this new phase and sends training symbols over all beams. Based on the received training signal, SUrx estimates the

channel gain νm = |χm|2 for all beams and determines the strongest channel ν∗ = max{νm} among all beams, and

the corresponding beam index m∗SR = arg max{νm}. Also, SUrx employs an nb-bit quantizer to quantize ν∗. The

quantizer has Nb = 2nb thresholds, denoted by {µk}Nb

k=1, satisfying µ0 = 0 < µ1 < . . . < µNb+1 = ∞, and has

Nb + 1 quantization intervals Ik = [µk, µk+1) for k = 0, . . . , Nb. The quantization mapping rule follows: if the

quantizer input ν∗ lies in the interval Ik then the quantizer output is µk, for k = 0, . . . , Nb. The index of quantization

interval k can be represented by nb-bits. Then, SUrx feeds back m∗SR as well as the nb-bit representation of the

index of the quantization interval to which ν∗ belongs, over an error-free bandwidth limited feedback link to SUtx, so

SUtx can optimally adapt its discrete power level accordingly. We take into account the probability of determining the

true beam corresponding to SUrx as well as the probability of selecting the true strongest channel among all beams

between SUtx and SUrx, on the constrained capacity maximization.

• Data Transmission Phase: After channel training phase, SUtx enters data transmission phase and transmits data

to SUrx over the selected beam mSR∗. During this phase, SUtx adapts its discrete power level Pk, where Pk ∈

{P0, P1, P2, ..., PNb
}, using m∗PU and the information received from SUrx through the feedback channel, such that

the ergodic capacity of SUtx–SUrx link is maximized, subject to ATPC and AIC. We let P0 = 0 to indicate that when

ν∗ ∈ I0 = [0, µ1) then SUtx does not transmit data to SUrx, since the channel is too weak.

Table 2.2 enumerates the sequential steps we take within each of the three phases: spatial spectrum sensing phase,

channel training phase, and data transmission phase.
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Table 2.2: Sequential steps within each three phases.

Phase Sequential steps in each phase

1. Spatial Spectrum Sensing Phase

1.1. SUtx senses the channel and monitors the activity of PU.
1.2. As long as the channel is sensed busy, SUtx stays in this phase.
1.3. While being in this phase, SUtx determines the beam corresponding to the orientation of PU

denoted bym∗PU (based on the received signal energy).
1.4. When the channel is sensed idle, SUtx leaves this phase and enters the next phase.
2.1. SUtx sends training symbols over all beams.
2.2. SUrx estimates the channel gain νm for all beams and determines the strongest channel ν∗ among

all beams and the corresponding beam indexmSR∗.
2. Channel Training Phase 2.3. SUrx employs an nb-bit quantizer to quantize ν∗.

2.4. SUrx feeds backmSR∗ as well as the nb-bit representation of the index of the quantization interval
to which ν∗ belongs, over a feedback link to SUtx.

2.5 SUtx leaves this phase and enters the next phase.
3.1. SUtx adapts its discrete power level Pk , usingm∗PU and the information received from SUrx

3. Data Transmission Phase through the feedback channel, such that the constrained ergodic capacity is maximized.
3.2. SUtx transmits data to SUrx with power Pk over the selected beamm∗SR.

Remark: It is worth emphasizing that in our problem, SUtx does not know the angles φPU and φPU, defined in Sec-

tion 2.1.2 (otherwise, the beam selection at SUtx for data transmission would become trivial). We take full advantage

of beam steering capability of the ESPAR antenna that enables sector-based spectrum sensing and communication at

SUtx. In this work, SUtx does not estimate the angles φPU and φSR. Instead it determines the indices of the sectors

corresponding to PU and SUrx (i.e., SUtx findsm∗PU and learnsm∗SR during spatial spectrum sensing phase and chan-

nel training phase, respectively). For mathematical tractability, we assume that these sectors are unchanged during a

frame duration. Comparing with a CR system design that is based on angle (or directional of arrival) estimation at

SUtx, using the sector-based sensing and communication improves the system design resilience against the mobility

of users (as long as the determined sectors do not change due to mobility).

When spectrum sensing is imperfect, the capacity of SUtx–SUrx link can be written as [3]

C = Dd E
{
β0 C0,0 + β1 C1,0

}
, (2.4)

where Ci,0 is the instantaneous capacity of this link corresponding to the event Hi and Ĥ0, Dd = (Tf − Tse −

Ttr)/Tf and E{·} is the statistical expectation operator. Let Iav indicate the maximum allowed interference imposed

on PU and P av denote the maximum allowed average transmit power of SUtx. Given our aforementioned system

model description and to enable mathematically expressing the AIC and ATPC in our problem, we let P (ν∗) indicate

SUtx transmit power in terms of the channel gain of the selected beam ν∗ between SUtx and SUrx. To satisfy the AIC,

we have

Ddβ1 E
{
gsp p(κ

∗
SR − κ∗PU)P (ν∗)

}
≤ Iav, (2.5)
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and to satisfy the ATPC, we have

Ddπ̂0 E
{
P (ν∗)

}
≤ P av. (2.6)

Notice that, had spectrum sensing have been ideal, β1 = 0 and data communication between SUtx and SUrx would

cause no interference on PU. The more accurate spectrum sensing is, the smaller is the power of interference signal

imposed on PU. On the other hand, increasing the accuracy of spectrum sensing requires a longer Tse and a shorter

Dd, given the frame duration Tf . Reducing Dd decreases the capacity C in (2.4). Therefore, there is a tradeoff

between increasing C and decreasing the power of interference signal imposed on PU. Let Fν∗(·) be the Cumulative

Distribution Function (CDF) of ν∗ (will be derived in Section 2.2.3). Given the discrete power levels Pk’s and the

quantization thresholds µk’s, E {P (ν∗)} can be written as

E
{
P (ν∗)

}
=

Nb∑
k=1

Pk

[
Fν∗(µk+1)− Fν∗(µk)

]
. (2.7)

Therefore, the constraints in (2.5) and (2.6) can be rewritten as

Ddβ1γsp E
{
p(κ∗SR−κ∗PU)

} Nb∑
k=1

Pk

[
Fν∗(µk+1)−Fν∗(µk)

]
≤ Iav, (2.8)

Ddπ̂0

Nb∑
k=1

Pk

[
Fν∗(µk+1)− Fν∗(µk)

]
≤ P av. (2.9)

Our main objective is to find the optimal spectrum sensing phase duration Tse, the optimal quantization thresholds

µk’s for the channel gain quantizer employed at SUrx, and the optimal discrete power levels Pk’s corresponding to

each quantization interval Ik = [µk, µk+1), such that the ergodic capacity C in (2.4) is maximized, subject to AIC

and ATPC given in (2.8) and (2.9), respectively. In other words, we are interested in solving the following constrained

optimization problem

Maximize
Tse,{µk,Pk}

Nb
k=1

C = Dd E
{
β0C0,0 + β1C1,0

}
(2.P1)

s.t.: 0 < Tse < (Tf−Ttr),

0 < µ1 < . . . < µNb
<∞,

Pk > 0 ∀k,

(2.8) and (2.9) are satisfied.
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2.2 Characterizing Objective Function and Constraints in (2.P1)

Characterizing the objective function and the constraints in (2.P1) requires addressing the following three components.

First, the performance of the binary detector employed by SUtx to detect PU activity during spatial spectrum sensing

phase plays role in the objective function and the AIC in (2.8) via β1, and in the ATPC in (2.9) via π̂0. Obviously,

this performance depends on the choice of the detector. Section 2.2.1 describes our proposed binary detector, which is

based on the energy of the collected measurements from all sectors of the ESPAR antenna at SUtx during this phase,

and provides closed form expressions for Pd and Pfa of this detector. Second, the error probability of finding the sector

index m∗PU corresponding to PU at SUtx during spatial spectrum sensing phase affects the AIC in (2.8). This error

probability depends on the mechanism through which SUtx determines this sector index. Section 2.2.2 explains how

SUtx finds this beam index, using the received signal energy from all sectors of the ESPAR antenna during this phase,

and derives closed form expression of the corresponding error probability. Third, the probability of finding the sector

index m∗SR corresponding to SUrx during channel training phase impacts the AIC in (2.8). During data transmission

phase SUtx sends data to SUrx over the selected beam m∗SR. Section 2.2.3 discusses the method utilized by SUrx to

find this beam index, using the received training signal transmitted by all sectors of SUtx antenna, and derives a closed

form expression for the corresponding probability.

2.2.1 Energy-Based Binary Detector for Spectrum Sensing Using ESPAR Antenna

Spectrum sensing at SUtx (detecting the activity of PU) during spatial spectrum sensing phase can be formulated as

a binary hypothesis testing problem. Suppose when PU is active (present), it transmits signal s(t) with power Pp. Let

ym(n) denote the discrete-time representation of received signal at m-th sector of SUtx at time instant t = nTs where

Ts is the sampling period. Assuming SUtx collects Nse = bTse/(MTs)c samples corresponding to each sector we can

write

ym(n) = ψm(n)s(n) + wm(n), for n = 1+(m−1)Nse, . . . ,mNse, m = 1, . . . ,M

We model the transmitted signal s(n) by PU as a zero-mean complex Gaussian random variable with variance Pp and

we assume SUtx knows Pp. The term wm(n) is the additive noise at m-th sector of SUtx antenna and is modeled

as wm(n) ∼ CN (0, σ2
w). We assume that ψm(n), s(n) and wm(n) are mutually independent random variables.

Since SUtx takes samples of the received signal for different sectors sequentially (in different time instants), ψm(n)
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and noise samples wm(n) are independent and thus uncorrelated both in time and space (sector) domains. Under

hypothesis H1, given ψm, we have ym(n) ∼ CN (0, σ2
m+σ2

w) where σ2
m = |ψm|2Pp. Under hypothesis H0, we have

ym(n) ∼ CN (0, σ2
w). The hypothesis testing problem at discrete time instant n for m-th sector is then given by


H0 : ym(n) = wm(n),

H1 : ym(n) = ψm(n)s(n) + wm(n).

(2.10)

Our proposed energy-based binary detector uses all the collected samples from M sectors (total of Neq = MNse

collected samples). Let εm be the energy of received signal at sector m. We have

εm =
1

Nse

mNse∑
n=1+(m−1)Nse

∣∣∣∣ym(n)

∣∣∣∣2. (2.11)

Under hypothesisH0 and also underH1 (given ψm), the sector energy εm is distributed as a central chi-square random

variable with 2Nse degrees of freedom. We consider the summation of energies of received signals over all sectors as

the decision statistics T given below

T =
1

M

M∑
m=1

εm R
Ĥ1

Ĥ0

η. (2.12)

where η is the decision threshold. We can rewrite T as

T =
1

MNse

M∑
m=1

mNse∑
n=1+(m−1)Nse

∣∣∣∣ym(n)

∣∣∣∣2. (2.13)

Note that T is the summation of Neq random variables. When Neq is large enough T can be approximated as a

Gaussian random variable. Thus, Under hypothesis H0, for large Neq we invoke the Central Limit Theorem (CLT),

to approximate T as Gaussian with distribution T ∼ N (σ2
w, σ

2
T |H0

), where σ2
T |H0

= σ4
w/Neq. Similarly, under

hypothesis H1 for large Neq, T can be approximated with another Gaussian with distribution T ∼ N (ζ, σ2
T |H1

)

where ζ = PpγEA + σ2
w, and σ2

T |H1
is given below

σ2
T |H1

=
1

Neq

[
σ4

w + 2γPpEAσ
2
w + γ2P 2

p

(
3EB −MNE2

A

)]
+
γ2P 2

p

M2

M∑
m=1

M∑
m′=1

Emm′ , (2.14)
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where

Emm′ =
1

2π

∫ 2π

0

pm(θ)pm′(θ)dθ, (2.15a)

EA =
1

2π

∫ 2π

0

p(θ)dθ, (2.15b)

and EB = Emm. Then, the false alarm and detection probabilities of this detector are given as the following

Pfa = Q

(
η−σ2

w

σT |H0

)
, Pd = Q

(
η−ζ
σT |H1

)
, (2.16)

where Q(·) is the Q-function. For a given value of Pd = P d, the false alarm probability can be written as

Pfa = Q

(
σT |H1

Q−1(P d) + ζ − σ2
w

σT |H0

)
. (2.17)

2.2.2 Determining the Beam Corresponding to PU

During spatial spectrum sensing phase when the channel is sensed busy, SUtx determines the beam corresponding to

the orientation of PU based on the received signal energy εm,m = 1, . . . ,M . Ordering these calculated energies,

SUtx selects the beam index corresponding to the largest energy m∗PU = arg max{εm} among all sectors. For

example, in Fig. 2.4a, we have m∗PU = 3, that is, the third beam has received the largest amount of energy. As we

mentioned, under hypothesisH1, given ψm (or equivalently given g and φPU), the sector energy εm is distributed as a

central chi-square random variable with 2Nse degrees of freedom and its conditional PDF and CDF expressions are

fεm

(
x|g, φPU

)
=
xNse−1 e

−x
σ2em

σ2Nse
em Γ(Nse)

, (2.18a)

Fεm

(
x|g, φPU

)
=
γ(Nse,

x
σ2
em

)

Γ(Nse)
, (2.18b)

where σ2
em = (σ2

m+σ2
w)/Nse and γ(·, ·) is the lower incomplete gamma function

γ(s, x) = xse−xΓ(s)

∞∑
j=0

xj

Γ(j + s+ 1)
. (2.19)
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(a) (b)

Figure 2.4: A schematic to show how different beams can be selected to indicate the orientation of SUtx with respect to PU and
SUrx (a) m∗PU =3, (b) m∗SR =2.

Let ∆i,m represent the average error probability of finding the sector index corresponding to PU, i.e., the probabil-

ity that m∗PU = i while the true orientation of PU belongs to the angular domain of m-th sector, φPU ∈ Φm =[
2π(m−3/2)

M , 2π(m−1/2)
M

)
, for i 6= m, i,m = 1, . . . ,M . To find ∆i,m we start with finding Ωi = Pr{m∗PU =

i|g, φPU}, which is the probability that the index of selected sector, given g and φPU, is i. We have

Ωi = Pr

{
m∗PU = i

∣∣∣∣g, φPU

}
= Pr

{
ε1 < εi, . . . , εi−1 < εi, εi+1 < εi, . . . , εM < εi

}

=Eεi


M∏
m=1
m 6=i

Fεm

(
x|g, φPU

) =

∫ ∞
0

fεi

(
y|g, φPU

) M∏
m=1
m 6=i

Fεm

(
y|g, φPU

)
dy. (2.20)

in which fεm(x|g, φPU) and Fεm(x|g, φPU) are the conditional PDF and CDF of εm given in (2.18). Without loss of

generality, suppose i = 1. After some mathematical manipulations and taking expectation with respect to ε1, Ω1 in

(2.20) can be written as

Ω1 =
G−MNse

Γ(Nse)
∏M
m=1σ

2Nse
em

∑̃
k2:kM

Γ

(
MNse+

∑M
j=2 kj

)
Ek G

∑M
j=2 kj

, (2.21)

where ∑̃
k2:kM

=

∞∑
k2=0

∞∑
k3=0

...

∞∑
kM=0

,
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Ek =

M∏
j=2

σ2kj
ej Γ(kj +Nse + 1), G =

M∑
m=1

1

σ2
em

.

To illustrate the behavior of Ω1 (averaged over fading gain g) we define ∆1 = Eg{Ω1} = Pr{m∗PU = 1|φPU} and

plot ∆1 versus φPU for M = 8 and SNRPU = γPp/σ
2
w = 0 dB. Fig. 2.5a shows ∆1 versus φPU for Nse = 20 and

φ3dB =20◦, 30◦. We observe that when φ3dB decreases from 30◦ to 20◦, beam selection becomes more accurate, i.e.,

∆1 increases for φPU ∈Φ1 = [−22.5◦, 22.5◦), however, it decreases outside this angular interval. Fig. 2.5b plots ∆1

versus φPU for Nse = 10, 30, 200 and φ3dB = 20◦. We observe that as Nse increases beam selection becomes more

accurate. For large Nse, we can see that ∆1 approaches one for φPU ∈ Φ1 and it is approximately zero outside this

angular interval. Now, we are ready to find ∆i,m using ∆i = Pr{m∗PU = i|φPU}. We have
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Figure 2.5: ∆1 versus φPU for M=8 and SNRPU =0 dB (a) Nse =20, φ3dB =20◦, 30◦ (b) φ3dB =20◦, Nse = 10, 30, 200.

∆i,m =

∫
φPU∈Φm

∆i Pr

{
φPU∈Φm

}
dφPU. (2.22)

Due to the symmetrical structure of the ESPAR antenna we have ∆i,m = ∆m,i. Note that ∆i,i is the probability

of selecting the correct beam and ∆i,m for i 6= m is the probability of selecting the incorrect beam, leading to error

probability in beam selection. The average error probability ∆1,m versus the index beam m is shown in Figs. 2.6a and

2.6b for SNRPU =0,−5 dB. As expected, ∆1,1 increases and ∆1,m,m 6= 1 decreases as Nse increases.
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Figure 2.6: ∆1,m versus the index beam m for φ3dB =20◦ (a) SNRPU =0 dB, (b) SNRPU =−5 dB.

2.2.3 Determining the Beam Corresponding to SUrx

When the channel is sensed idle, SUtx leaves spatial spectrum sensing phase and enters channel training phase.

During this phase, SUtx sends training symbols over all beams to enable channel estimation at SUrx. Using the

received training signal, SUrx estimates the channel gains νm = |χm|2 corresponding to all sectors and determines the

strongest channel ν∗ = max{νm} among all beams and the corresponding beam index m∗SR = arg max{νm}. For

example, in Fig. 2.4b, we have m∗SR = 2, i.e., the second beam has the largest channel gain. SUrx employs an nb-bit

quantizer, with quantization thresholds {µk}Nb

k=0 and quantization intervals {Ik}Nb

k=0, to quantize ν∗ and to find the

quantization interval to which ν∗ belongs to. Then, SUrx feeds back m∗SR as well as the nb-bit representation of the

index of the quantization interval to which ν∗ belongs, over the feedback link to SUtx. Let Ψi = Pr{m∗SR = i} denote

the probability that m∗SR = i. To characterize Ψi we need to find the CDF and PDF of ν∗, denoted as Fν∗(·) and

fν∗(·), respectively. Note that given our assumptions, νm’s are independent across sectors, however, not necessarily

identically distributed. Therefore, Fν∗(x) can be written as

Fν∗(x) =

M∏
m=1

Fνm(x), (2.23)
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where Fνm(x) = 1− e
−x
δm . After simplification, (2.23) can be written as

Fν∗(x) = 1 +

M∑
m=1

(−1)m
∑

m
exp (−xAj1:jm) , (2.24)

where

Aj1:jm =

m∑
i=1

1

δji
,

∑
m

=

M−m+1∑
j1=1

M−m+2∑
j2=j1+1

· · ·
M∑

jm=jm−1+1

.

From the CDF in (2.24), we can find the PDF

fν∗(x) =

M∑
m=1

(−1)m+1
∑

m
Aj1:jm exp (−xAj1:jm) . (2.25)

Similar to section 2.2.2, we can express Ψi as the following

Ψi = Pr

{
m∗SR = i

}
=

∫ ∞
0

fνi(y)

M∏
m=1
m6=i

Fνm(y) dy. (2.26)

Without loss of generality, suppose i = 1. After some mathematical simplification, Ψ1 can be expressed as

Ψ1 = Pr

{
m∗SR = 1

}
= 1 +

M−1∑
m=1

(−1)m
∑′

m

1

1 + δ1Bj1:jm

, (2.27)

where

Bj1:jm =

m∑
i=1

1

δ(1+ji)
,

∑′

m
=

M−m∑
j1=1

M−m+1∑
j2=j1+1

· · ·
M−1∑

jm=jm−1+1

.

2.3 Formalizing and Solving (2.P1)

After channel training phase, SUtx enters data transmission phase. Going through the previous two phases, at this

point SUtx knows the beam indices m∗PU, m∗SR as well as the index of quantization interval to which the largest

channel gain ν∗ belongs to. Knowing the quantization interval index, SUtx infers the quantized value of ν∗ and adopts

its discrete power level accordingly. For instance, if ν∗ ∈ Ik then the quantized ν∗ is µk and the associated discrete

power level is Pk. From a system-level design perspective, one can optimize the quantization thresholds µk’s and

the associated discrete power levels Pk’s, such that the constrained capacity is maximized. Furthermore, the capacity

expression itself and the power of interference signal imposed on PU during this phase depend on the accuracy of the
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energy-based binary detector in Section 2.2.1, in a way that increasing the detector accuracy has a positive effect on

lowering the interference and a negative impact on enhancing the capacity itself. This implies that an optimal Tse can

exist that maximizes the constrained capacity. In the following we express C0,0 and C1,0 in terms of the optimization

variables {µk, Pk}Nb

k=1 and we find the term E{p(κ∗SR−κ∗PU)} in (2.8) using the analysis we have conducted in sections

2.2.2 and 2.2.3. We modify the objective function and the constrains in terms of the optimization variables in Section

2.3.1. Then, we provide our solution to the problem in Section 2.3.2.

2.3.1 Formalizing (2.P1) with Modified Objective Function and Constraints

Starting with the continuous valued ν∗ and its corresponding continuous valued transmit power P (ν∗), we can write

the expressions for the instantaneous capacity C0,0 and C1,0 in (2.4) as [1]

C0,0 =log2

(
1+

ν∗P (ν∗)

σ2
w

)
, C1,0 =log2

(
1+

ν∗P (ν∗)

σ2
w+Ppgsp

)
. (2.28)

Since SUs and PU cannot cooperate, SUtx cannot estimate the channel gain gsp and thus C1,0 cannot be directly

maximized at SUtx. Instead, we consider a lower bound on its average over gsp, denoted as Egsp{C1,0}. Using the

Jensen’s inequality [116], the lower bound on Egsp{C1,0} becomes

Egsp {C1,0} ≥ log2

(
1 +

ν∗P (ν∗)

σ2
w + σ2

p

)
= CLB

1,0 (2.29)

where σ2
p = Pp E{gsp} = Ppγsp. Let CLB = Dd Eν∗

{
β0C0,0 + β1C

LB
1,0

}
where CLB is the lower bound on C in

(2.4). From now on, we focus on CLB. LetR(k)
0,0 andR(k)

1,0 denote the discrete transmission rates when the quantization

interval index of ν∗ is k, i.e., ν∗ ∈ Ik, quantized ν∗ is µk, and discrete power level is Pk. From (2.28) we have

R
(k)
0,0 = log2

(
1 +

µkPk
σ2

w

)
, R

(k)
1,0 = log2

(
1 +

µkPk
σ2

w+σ2
p

)
. (2.30)

Recall that the probability of quantized ν∗ being in the interval Ik is equal to Fν∗(µk+1)−Fν∗(µk). By averaging over

all possible quantization intervals, we can rewrite CLB in terms of the discrete transmission rates as the following:

CLB = Dd

Nb∑
k=1

(
β0R

(k)
0,0 +β1R

(k)
1,0

)[
Fν∗(µk+1)− Fν∗(µk)

]
. (2.31)
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Next, we focus on the constraint in (2.8) and find the term E{p(κ∗SR−κ∗PU)}. Using the average probabilities derived

in (2.22) and (2.26) we have

E
{
p(κ∗SR − κ∗PU)

}
=

M∑
j=1

M∑
i=1

Ψj ∆m∗PU,i
p(κj − κi). (2.32)

Then, the constraint in (2.8) can be written as

Ddb0

Nb∑
k=1

Pk

[
Fν∗(µk+1)−Fν∗(µk)

]
≤ Iav, (2.33)

where b0 is

b0 = β1γsp

M∑
j=1

M∑
i=1

Ψj ∆m∗PU,i
p(κj − κi). (2.34)

We end this section with the statement of the constrained optimization problem we solve. In Section 2.3.2 we solve

the following constrained optimization problem

Maximize
Tse,{µk,Pk}

Nb
k=1

CLB = Dd

Nb∑
k=1

(
β0R

(k)
0,0 + β1R

(k)
1,0

)[
Fν∗(µk+1)− Fν∗(µk)

]
(2.P2)

s.t.: 0 < Tse < (Tf−Ttr),

0 < µ1 < . . . < µNb
<∞,

Pk > 0 ∀k,

(2.33) and (2.9) are satisfied.

It is worth mentioning that (2.P2) includes the special case where the locations (orientations) of PU and SUrx are such

that they belong to the same beam, with respect to SUtx. First, suppose m∗PU =m∗SR. In this case, the interference

imposed on PU increases and SUtx uses a small transmit power level Pk, such that the AIC in (2.33) is satisfied.

Next, suppose m∗PU 6=m∗SR. In this case SUtx uses a larger Pk, compared with the case where m∗PU =m∗SR (because

SUtx wrongly assumes that PU and SUrx lie in two different beams/sectors). Although the instantaneous interference

in this case becomes larger (compared with the case where m∗PU =m∗SR), the AIC in (2.33) is still satisfied.

32



2.3.2 Solving (2.P2)

We note that (2.P2) is a non-convex problem and can be solved using exhaustive search, which can be computationally

expensive. Therefore we develop an iterative suboptimal algorithm with a much less computational complexity, to find

the local optimal solution using the Lagrangian method. The Lagrangian is

L =−Dd

Nb∑
k=1

(
β0R

(k)
0,0 + β1R

(k)
1,0

)[
Fν∗(µk+1)−Fν∗(µk)

]
(2.35)

+ λ

(
Ddπ̂0

Nb∑
k=1

Pk

[
Fν∗(µk+1)−Fν∗(µk)

]
−P av

)
+ϑ

(
Ddb0

Nb∑
k=1

Pk

[
Fν∗(µk+1)−Fν∗(µk)

]
−Iav

)

where λ and ϑ are the nonnegative Lagrange multipliers, associated with the ATPC and AIC, respectively. The

Lagrangian multipliers can be obtained using the subgradient method. Our iterative algorithm is based on the Block

Coordinate Descent (BCD) algorithm which relies on the following principle: all variables expect one are assumed

to be fixed and the optimal variable that minimizes (2.35) is found. This process is iterated for all the variables until

the final solution is reached. Convergence is achieved if there exists a single solution that minimizes (2.35) at each

iteration [15]. To apply the principle of BCD algorithm in our problem, we consider the following. Assuming fixed

µk’s and Tse, the problem (2.P2) becomes convex with respect to Pk. Therefore, the optimal Pk’s that minimize (2.35)

are the solutions to the Karush-Kuhn-Tucker (KKT) optimality necessary and sufficient conditions

Pk =

[
Fk +

√
Υk

2

]+

, for k = 1, 2, . . . , Nb (2.36)

Fk =
π̂0

ln(2) (λπ̂0+ϑb0)
−

2σ2
w+σ2

p

µk
, Υk = F 2

k−
4

µk

(
σ2

w(σ2
w+σ2

p)

µk
−

π̂0σ
2
w+β1σ

2
p

ln(2) (λπ̂0 + ϑb0)

)
,

where [x]+ = max(x, 0). On the other hand, assuming fixed Pk’s and Tse, the optimal µk’s that minimize (2.35)

are the solutions to ∂L/∂µk = 0 for k = 1, . . . , Nb, which is the first derivative of L with respect to µk. Setting

∂L/∂µk = 0 we reach to

Fν∗(µk+1) = Fν∗(µk) +

fν∗(µk)

[
β0

(
R

(k)
0,0 −R

(k−1)
0,0

)
+ β1

(
R

(k)
1,0 −R

(k−1)
1,0

)
− (λπ̂0 + ϑb0)(Pk − Pk−1)

]
Pk

ln(2)

(
β0

σ2
w+µkPk

+ β1
σ2
w+σ2

p+µkPk

) (2.37)

Note the values of λ and ϑ in (2.36) and (2.37) are obtained by applying the constraints given in (2.33) and (2.9).

Recall that µ0 = 0 and µNb+1 =∞ and hence Fν∗(µ0) = 0 and Fν∗(µNb+1) = 1.
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We are now ready to state our iterative algorithm to find the local optimal solution of (2.P2). In the first step, let Tse be a

value in the interval (0, Tf−Ttr). We initiate µ1 > 0 and find P1 using (2.36). Having P1, P0 = 0 and µ1 we obtain µ2

using (2.37). We repeat this and iterate between (2.36) and (2.37) until we find {Pk, µk}Nb

k=1. At this point, we check

whether or not Fν∗(µNb+1) = 1. If Fν∗(µNb+1) is less (greater) than one, we increase (decrease) the initial value of

µ1 and find a new set of values for {Pk, µk}Nb

k=1 and check for the condition Fν∗(µNb+1) = 1. We continue changing

the initial value of µ1 and finding new values for {Pk, µk}Nb

k=1 and checking for the condition Fν∗(µNb+1) = 1, until

we find the set of values such that this condition is satisfied. In the second step, given {Pk, µk}Nb

k=1 values reached

at the end of the first step, we find Tse that minimizes (2.35), using search methods such as bisection method4. A

summary of our proposed iterative algorithm for solving (2.P2) is given in Algorithm 1.

Algorithm 1: Our proposed iterative algorithm for solving (2.P2)
1: Initialize Tse ∈

(
0, Tf − Ttr

)
, µ1, λ, ϑ.

2: Set P0 = 0.
3: repeat
4: repeat
5: Find P1 using (2.36).
6: for k = 2 : Nb

7: Having P0, . . . , Pk−1, obtain µk using (2.37).
8: Having µk, obtain Pk using (2.36).
9: end

10: Update λ and ϑ using subgradient method.
11: until Constraints in (2.33) and (2.9) are satisfied.
12: Find Fν∗(µNb+1) using (2.37).
13: if Fν∗(µNb+1) < 1
14: increase µ1.
15: elseif Fν∗(µNb+1) > 1
16: decrease µ1.
17: end
18: until Fν∗(µNb+1) = 1
19: Find TOpt

se that maximizes CLB using bisection method.

2.4 Outage and Symbol Error Probabilities

Two other relevant metrics to evaluate the performance of our opportunistic CR system with the ESPAR antenna at

SUtx are outage probability and SEP, denoted as Pout and Pe, respectively. We define Pout as the probability of

4The problem in (2.P2) can be solved offline, based on the statistical information of the channels between SUtx–PU and SUtx–SUrx, the number
of sectorsM , and the number of feedback bits nb. In particular, given each pairm∗PU,m∗SR ∈ {1, ...,M} there is a set of optimal solution for Tse,
{µk, Pk}

Nb
k=1. These M2 sets of solutions are available a priori at SUtx. Also, the M2 sets of {µk}

Nb
k=1 are available a priori at SUrx. During

channel training phase, SUtx can also send its finding m∗PU to SUrx. With the knowledge of m∗PU and mSR∗, SUrx would know which set of
quantization thresholds to use for quantizing ν∗. The idea of offline power allocation optimization with a limited feedback channel has been used
before for distributed detection systems in wireless sensor networks [114].
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SUtx not transmitting data due to the weak SUtx–SUrx channel. In the following, we derive closed-form expressions

for Pout and Pe, based on the solutions provided in Section 2.3.2. The outage probability Pout can be directly obtained

using the CDF of ν∗ as

Pout = Pr

{
P (ν∗)=0

}
= Pr

{
ν∗<µ1

}
= Fν∗(µ1). (2.38)

For many digital modulation schemes SEP can be written as Pe = E
{
Q(
√
ρ SNR)

}
where ρ is a constant parameter

related to the type of modulation [100]. Considering the noise (plus interference) imposed on SUrx under hypotheses

Ĥ0 and Ĥ1, we can write Pe as

Pe = β0 E

{
Q

(√
ρν∗P (ν∗)

σ2
w

)}
+β1 E

{
Q

(√
ρν∗P (ν∗)

σ2
w+σ2

p

)}
. (2.39)

Let focus on the expectation in the first term of (2.39). Since P (ν∗) = Pk when ν∗ ∈ Ik = [µk, µk+1), we have

E

{
Q

(√
ρν∗P (ν∗)

σ2
w

)}
=

∫ ∞
0

Q

(√
ρxP (x)

σ2
w

)
fν∗(x)dx =

Nb∑
k=0

∫ µk+1

µk

Q

(√
ρxPk
σ2

w

)
fν∗(x)dx. (2.40)

Similarly, we can find the expectation in the second term of (2.39). Using the following equation

∫ ∞
µ

Q(
√
bx)e−Axdx=

1

A

e−AµQ(
√
bµ)−

Q

(√
µ(2A+b)

)
√

1+ 2A
b

 , (2.41)

and after some manipulation, the Pe in (2.39) can be written as

Pe =

M∑
m=1

(−1)m+1
∑

m

Nb∑
k=0

β0

(
V (µk+1,SNR(0)

k )− V (µk,SNR(0)
k )

)

+β1

(
V (µk+1,SNR(1)

k )− V (µk,SNR(1)
k )

) (2.42)

where

V (µ,SNR) =
Q
(√

µ(SNR + 2Aj1:jm)
)

√
1 +

2Aj1:jm

SNR

− e−µAj1:jmQ
(√

µSNR
)

(2.43)
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In (2.42), SNR(0)
k and SNR(1)

k are the received SNR at SUrx when ν∗ ∈ Ik and the channel is sensed idle and busy,

respectively, defined as

SNR(0)
k =

ρPk
σ2

w

, SNR(1)
k =

ρPk
σ2

w + σ2
p

. (2.44)

2.5 Simulation Results

We corroborate our analysis on constrained maximization of ergodic capacity as well as outage probability and SEP

derivations with Matlab simulations. To illustrate the advantage of ESPAR antennas on increasing constrained capac-

ity, we compare the performance of our CR system with another CR system in which SUtx has an omni-directional

antenna. Different from an ESPAR antenna that concentrates the electromagnetic power in specific directions (so-

called sector or beam), an omni-directional antenna spreads the power equally in all angles. To fairly compare the

performance of our CR system (in which SUtx has an ESPAR antenna) with the other CR system (in which SUtx has

an omni-directional antenna), we let pOm(φ) = EA for φ ∈ (−π, π), i.e., we set the gain of the omni-directional

antenna to be EA. Note that, with this setting, we have the following equality5

1

2π

∫ 2π

0

p(φ)dφ =
1

2π

∫ 2π

0

pOm(φ)dφ, (2.45)

Fig. 2.7a shows the beampatterns of omni-directional and ESPAR antennas in polar coordinate, where A0 = 0.97,

A1 = 0.03 (corresponding to EA = 0.145). Note that the radius of the red beampattern is 0.145 and the blue beam-

pattern has the maximum value of p(0) = A1 +A0 = 1 at angle φ = 0 radians. The area covered by the solid blue

beampattern is equal to the area covered by the dashed red beampattern, in the sense that the equality in (2.45) holds

true. Fig. 2.7b plots the same beampatterns in Cartesian coordinate. For the CR system with the omni-directional an-

tenna at SUtx, we consider a modified procedure for spatial spectrum sensing, channel training and data transmission

phases6 (with respect to the description in Section 2.1.3) and denote the constrained capacity in (2.P2) evaluated at

the optimized variables Tse, µk’s, Pk’s, by CLB,Om
Opt . For our CR system let CLB

Opt denote the constrained capacity in

(2.P2), that is evaluated at the optimized variables Tse, µk’s, Pk’s. Obviously, the optimized variables obtained from

5 We note that comparing an ESPAR antenna with the omni-directional antenna obtained from the same ESPAR antenna is not a fair comparison
for the following reason. The omni-directional beampattern obtained from the same ESPAR antenna (when reactive loads of all parasitic elements
are equal) becomes pOm(φ)=A1+A0 for φ ∈ (−π, π). Clearly, this beampattern does not satisfy the equality in (2.45) and hence the comparison
between the two CR systems is not fair.

6Since the omni-directional antenna has only one beampattern, there is no beam selection corresponding to the orientations of PU and SUrx.
Thus, step 1.3 of Table 2.2 will be removed. The following steps in Table 2.2 are modified: in step 2.2, SUrx estimates only one channel gain
ν, in step 2.4, SUrx feeds back only the nb-bit representation of the index of the quantization interval to which ν belongs to SUrx, in step 3.1,
SUtx adapts its discrete power level Pk , using the information received from SUrx.
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solving (2.P2) for omni-directional and ESPAR antennas can be different.
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Figure 2.7: Parameters A0 = 0.97, A1 = 0.03, which correspond to EA = 0.145. For a fair comparison, we set the gain of the
onmi-directional antenna pOm(φ) =EA for φ ∈ (−π, π), to ensure that the equality in (2.45) holds true. (a) polar coordinate, (b)
Cartesian coordinate.

Table 2.3: Simulation Parameters

Parameter Value Parameter Value Parameter Value
A0 1, 2 γss 3 σ2

w 1
A1 0.01 γ, γsp 1 Pp 1 watts
φ3dB 20◦ π1 0.3 Tf 20 ms
ρ 4 Pd 0.9 Iav −6 dB

Our simulation parameters are given in Table 2.3. First, we explore the effect of increasing the number of quantization

bits nb. Fig. 2.8a shows CLB
Opt and CLB,Om

Opt versus P av for different nb, when M=8, m∗PU =1 (φPU =12◦) , m∗SR =1

(φSR = 0◦) and A0 = 1, A1 = 0.01 (corresponding to EA = 0.127). As a baseline we also plot the capacity when

perfect CSI (for SUtx–SUrx link) is available for both CR systems (labeled as nb =∞ in the figures). Clearly, our

CR system with the ESPAR antenna at SUtx yields a higher capacity than the CR system with the omni-directional

antenna at SUtx. This figure also shows that as nb increases, CLB
Opt increases and for nb = 4 bits CLB

Opt is very close to

the baseline capacity. To observe the impact of increasing the number of beams (the number of parasitic elements of

the ESPAR antenna), Fig. 2.8b plots CLB
Opt and CLB,Om

Opt versus P av for different nb, when M = 12. Comparing Figs.
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2.8a and 2.8b we observe that as M increases a higher capacity can be achieved.
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Figure 2.8: CLB
Opt and CLB,Om

Opt versus P av for m∗SR =m∗PU =1 and (a) M=8, (b) M=12.

To explore the effect of changes in PU orientation, Figs. 2.9a and 2.9b illustrate CLB
Opt and CLB,Om

Opt versus P av for

M =8 when m∗PU =2 and m∗PU =3, respectively (with fixed m∗SR =1). Comparing Figs. 2.8a, 2.9a, 2.9b we observe

that as m∗PU becomes further away from m∗SR, the imposed interference on PU from SUtx decreases and SUtx can

transmit at a higher transmit power level, leading to an increase in CLB
Opt. Note that CLB,Om

Opt in Figs. 2.8a, 2.8b, 2.9a,

2.9b are the same. Let CLB
Opt denote CLB

Opt that is averaged over all possible φ∗SR and φ∗PU. Fig. 2.10a plots CLB
Opt and

CLB,Om
Opt versus P av for nb = 2, 3, 4,∞. Clearly, our CR system with the ESPAR antenna at SUtx yields a higher

capacity on average, compared to the CR system with the omni-directional antenna at SUtx.

To quantify the capacity improvement provided with the ESPAR antenna, we define the ratio Λ = CLB
Opt/C

LB,Om
Opt .

Fig. 2.10b shows Λ versus P av for Iav = −6,−2, 2 dB and nb = ∞. First, we consider how Λ behaves as P av

increases, for a given Iav value. Fig. 2.10b shows that, as P av increases from zero to a certain value, Λ decreases. As

P av increases beyond that certain value, Λ increases, however, it becomes constant after P av reaches a certain point.

For instance, given Iav =−6 dB, Λ decreases from 2.9 to 1.65, as P av increases from zero to 15 dB, it increases from

1.65 to 2.22, as P av increases from 15 dB to 27 dB, and it becomes constant afterward. The reason for this behavior

is that, when P av≤15 dB, the ATPC in (2.9) is dominant for both ESPAR and omni-directional antennas. For 15 dB

≤ P av ≤ 27 dB, the ATPC is dominant for the ESPAR antenna and the AIC in (2.33) is dominant for the omni-

directional antenna. For P av≥27 dB, the AIC is dominant for both ESPAR and omni-directional antennas. Next, we
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Figure 2.9: CLB
Opt and CLB,Om

Opt versus P av for M=8, m∗SR =1 and (a) mPU∗=2, (b) m∗PU =3.

examine how Λ behaves as Iav decreases, for a given P av value. Fig. 2.10b shows that, for P av≤ 15 dB Λ does not

vary much as Iav decreases, since the ATPC is dominant. However, this behavior changes as P av increases beyond

15 dB, where we note Λ increases as Iav decreases. Overall, we observe that the ESPAR antenna can provide a high

capacity improvement (Λ varies between 1.4 and 2.9 in Fig. 2.10b), compared with the omni-directional antenna, and

the capacity improvement changes as P av and Iav vary.
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Figure 2.10: (a) CLB
Opt and CLB,Om

Opt versus P av, (b) Λ versus P av.

39



Next, we explore the influence of parameter EA defined in (2.15b). Fig. 2.11 plots CLB
Opt and CLB,Om

Opt versus P av

for A1 = 0.01, nb =∞ and two choices of A0: A0 = 1 (corresponding to EA = 0.127) and A0 = 2 (corresponding to

EA= 0.245). We observe that, for a given P av value, when we increase A0 = 1 to A0 = 2, the capacity enhancement

for the ESPAR antenna is higher than that of the omni-directional antenna. To explain this observation, letL = A0/A1

denote the ESPAR beampattern attenuation in side-lobe with respect to its maximum value (main-lobe). Increasing

L positively affects CLB
Opt in two ways. First, the ESPAR antenna can reduce the imposed interference on PU more

effectively, and hence SUtx can transmit at higher power levels, without violating the AIC. Second, SUtx–SUrx link

becomes a stronger link for data communication. Increasing L, however, affects CLB,Om
Opt differently. We note that,

although increasing L renders SUtx–SUrx link a stronger link for data communication (positive impact), it increases

the imposed interference on PU (negative impact), and hence SUtx is enforced to transmit at lower power levels to

satisfy the AIC.
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Figure 2.11: CLB
Opt and CLB,Om

Opt versus P av.

Let P out and P e denote Pout and Pe that are the averaged over all possible φ∗SR and φ∗PU, respectively. For comparison,

we also include the outage and symbol error probabilities POm
Out and POm

e corresponding to the CR system that its

SUtx has an omni-directional antenna. Fig. 2.12a illustrates P out and POm
out versus P av. We observe that given an

nb value, both outage and symbol error probabilities decrease as P av increases. However, they remain constant as

P av increases beyond a certain point (they reach error floors). These behaviors can be explained as the following.

For low P av, the ATPC in (2.9) is dominant and P out and P e decrease as P av increases, since SUtx can transmit

at higher power levels. On the other hand, for high P av, the AIC in (2.33) is dominant and SUtx cannot increase its

transmit power level, regardless of how high P av becomes. As a result, P out and P e remain constant. Compared

40



with the ESPAR antenna, the omni-directional antenna imposes a larger interference on PU. Thus, the AIC for the

omin-directional antenna becomes active at a smaller P av value, compared with the ESPAR antenna. As a result both

outage and symbol error probabilities reach error floors at smaller P av values, compared with the ESPAR antenna.

Also, we note that as nb increases P out decreases. Fig. 2.12b plots P e and POm
e versus P av. Similar observations to

those of Fig. 2.12a can be made here. In a nutshell, Figs. 2.12a and 2.12b show that our proposed CR system yields

lower outage and symbol error probabilities, compared with the CR system that its SUtx has an omni-directional

antenna.
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Figure 2.12: (a) P out and POm
out versus P av, (b) P e and POm

e versus P av.

2.6 Conclusions

We proposed a holistic system design for integrated sector-based spectrum sensing and sector-based data communica-

tion for an opportunistic CR system consisting of a PU, SUtx, and SUrx, where SUtx is equipped with an ESPAR an-

tenna that hasM parasitic elements, and there is an error-free bandwidth limited feedback channel from SUrx to SUtx.

We formulated a constrained optimization problem, where the ergodic capacity for SUtx–SUrx link is maximized,

subject to ATPC and AIC, and the optimization variables are spectrum sensing duration, quantization thresholds at

SUrx, and discrete power levels at SUtx. Our problem formulation takes into consideration the effect of imperfect

spectrum sensing, the error in determining the true orientation of PU, the error in selecting the strongest channel for

data communication, and the impact of channel gain quantization. We developed an iterative suboptimal algorithm
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with a low computational complexity, based on the BCD algorithm, that finds a unique and locally optimal solution

for the constrained problem. In addition, we derived closed form expressions for outage and symbol error probabil-

ities of our opportunistic CR system. We corroborated our mathematical analyses with extensive simulations. Our

numerical results demonstrate that our proposed CR system with the ESPAR antenna at SUtx yields a significantly

higher capacity, a lower outage probability, and a lower symbol error probability, compared with a CR system that its

SUtx has an omni-directional antenna. The capacity improvement varies as the ATPC and AIC change. For instance,

at P av = 12 dB, Iav =−6 dB, the capacity of our CR system is 1.83 times larger than the capacity of the CR system

with omni-directional antenna. Furthermore, we showed that with only a small number of feedback bits the capacity

of our CR system approaches to its baseline, which assumes the full knowledge of unquantized channel gain.
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CHAPTER 3: ACHIEVABLE RATES OF OPPORTUNISTIC COGNITIVE

RADIO SYSTEMS USING RECONFIGURABLE ANTENNAS WITH

IMPERFECT SENSING AND CHANNEL ESTIMATION1

In this chapter, we consider the combined effects of spectrum sensing error and imperfect CSI of SUtx–SUrx link on

the achievable rates of an opportunistic CR system with a RA at SUtx. In our opportunistic CR system, SUtx relies

on the beam steering capability of RA to detect the direction of PU’s activity and also to select the strongest beam

for data transmission to SUrx. We assume SUtx sends training symbols to enable channel estimation at SUrx, and

employs Gaussian input signaling for transmitting its data symbols to SUrx. Also, SUrx shares its imperfect CSI of

SUtx–SUrx link with SUtx through an error-free low-rate feedback channel.

Assuming that there are ATPC and AIC, we provide answers to the following research questions: How does spectrum

sensing error affect accuracy of detecting the direction of PU’s activity, estimating SUtx–SUrx channel, and selecting

the strongest beam for data transmission? How do training symbol transmission and beam detection error (error

in obtaining the true direction of PU’s activity) affect interference imposed on PU? How do the combined effects

of spectrum sensing error and channel estimation error, as well as beam detection error and beam selection error

(error in finding the true strongest beam for data communication to SUrx) impact the achievable rates for reliable

communication over SUtx–SUrx link? How do the trade-offs between spatial spectrum sensing time, channel training

time, data transmission time, training and data symbol transmission powers affect the achievable rates? How can we

utilize these trade-offs to design transmit power control strategies, such that the achievable rates subject to ATPC and

AIC are maximized?

1 c© 2021 IEEE. Part of this chapter is reprinted, with permission, from [5].
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3.1 System Model

3.1.1 Structure of a RA

We consider a RA which can generate M beampatterns and these beampatterns cover the angular plane from φ1 to

φ2, i.e., the angular space from φ1 to φ2 is divided into M spatial sectors or beams2. One can extend this angular

space to cover the entire azimuth plane. The beampattern corresponding to m-th beam achieves its maximum at angle

κm = 2π(m−1)
M for m = 1, . . . ,M . Fig. 3.1 shows the beampatterns of a RA with M = 7 beams. It is noteworthy

that the RA can also reconfigure itself to generate an omni-directional pattern. To mathematically model the radiation

pattern of beams, we adopt the Gaussian pattern in x−y azimuth plane in terms of angle φ given by [4]

p(φ) = A1 +A0 e
−B
(
M(φ)
φ3dB

)2

, M(φ) = mod2π(φ+ π)− π, (3.1)

where mod2π(φ) denotes the remainder of φ
2π , B = ln(2), φ3dB is the 3-dB beamwidth, A1 and A0 are two constant

antenna parameters. The radiation pattern of m-th beam at angle φ is

pm(φ) = p(φ− κm), for m = 1, . . . ,M. (3.2)

In this chapter, we discuss the received or transmitted signal atm-th beam of SUtx. This implies that, during the signal

reception or transmission, the SUtx’s antenna parameters are set and tuned such that the beampattern corresponding

to m-th beam is generated. Given the antenna design, we focus on how the sector-based structure of this RA can be

exploited to enhance the system performance of our opportunistic CR system, in which SUtx optimizes its sector-based

data communication to SUrx according to the results of its sector-based spectrum sensing.

3.1.2 Description of Our Opportunistic CR System

Our opportunistic CR system model is illustrated in Fig. 3.1, consisting of a PU and a pair of SUtx and SUrx.

We note that PU in our system model can be a primary transmitter or receiver. We assume when PU is active it is

engaged in a bidirectional communication with another PU, which is located far from SUtx and hence its activity does

not impact our analysis. We assume SUtx is equipped with an M -beam RA (for spatial spectrum sensing, channel

2Throughout this chapter, ”sector” and ”beam” are used interchangeably.
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Figure 3.1: Our opportunistic CR system with an M -beam RA at SUtx and omni-directional antennas at SUrx and PU.

training and data transmission) with the capability of choosing one out of M sectors for its data transmission to SUrx,

while SUrx and PU use omni-directional antennas. We assume there is an error-free low-rate feedback channel3 from

SUrx to SUtx, to enable SUtx select the best sector for its data transmission to SUrx, and to adapt its transmit power

according to the SUtx–SUrx channel information. The direction (orientation) of PU and SUrx with respect to SUtx are

denoted by angles φPU, and φSR, receptively, where φSR, φPU ∈ (φ1, φ2). Clearly, in our problem SUtx does not

know these directions or angles (otherwise, the beam selection at SUtx for data transmission would become trivial).

Let h, hss, hsp denote the fading coefficients of channels between SUtx and PU, SUtx and SUrx, and SUrx and PU,

respectively, when the RA of SUtx is in omni-directional mode. We model these fading coefficients as indepen-

dent zero mean circularly symmetric complex Gaussian random variables. Equivalently, g = |h|2, gss = |hss|2 and

gsp = |hsp|2 are independent exponentially distributed random variables with mean γ, γss and γsp, respectively4. In

our problem we assume that SUs and PU cannot cooperate, and hence SUs cannot estimate g and gsp. However,

SUtx knows the channel statistics, i.e., the mean values γ and γsp. Let ψm′ and χm denote the fading coefficients of

channel between m′-th sector of SUtx and PU, and between m-th sector of SUtx and SUrx, respectively, when the

RA of SUtx is in directional mode. Using the radiation pattern expression in (3.2) we can relate ψm′ to h and χm

to hss as ψm′ = h
√
pm′(φPU), χm = hss

√
pm(φSR). We assume the channel gain νm = |χm|2 is an exponentially

3Given a low rate feedback, the error-free feedback channel is a reasonable assumption [78].
4We note that the distances between users are included in the small scale fading model [115], i.e., the mean values γ, γss, γsp encompass

distance-dependent path loss.
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distributed random variable with mean αm, and SUtx knows αm, for all m [4, 102]. For the readers’ convenience, we

have collected the most commonly used symbols in Table 3.1.

Table 3.1: Most commonly used symbols.

Symbol Description
M Number of beams
Nse Number of samples used for spatial spectrum sensing
Nt Number of samples used for channel training
Ptr Power of training symbols
ψm′ Fading coefficient of channel between m′-th beam of SUtx and PU
χm, χ̂m, χ̃m Fading coefficient of channel between m-th beam of SUtx and SUrx, LMMSE

channel estimate, and its corresponding estimation error
αm, α̂m, α̃m Variances of χm, χ̂m, χ̃m
m∗PU,m

∗
SR Indices of selected beam for PU and SUrx

ν̂∗ Channel gain of selected beam for data transmission from SUtx to SUrx

Suppose, SUs employ a frame with a fixed duration of Tf seconds, depicted in Fig. 3.2. We assume the SUtx–

SUrx channel remains constant over the frame duration. SUtx first senses the spectrum and monitors PU’s activity.

We refer to this period as spatial spectrum sensing phase with a variable duration of Tse = MNseTs seconds, where

Ts is the sampling period and Nse is the number of collected samples during this phase per beam. SupposeH1 andH0

represent the binary hypotheses of PU being active and inactive, respectively, with prior probabilities Pr{H1}= π1

and Pr{H0}=π0. SUtx applies a binary detection rule to decide whether or not PU is active. The details of the binary

detector are presented in Section 3.2.1. While being in this phase, SUtx determines the beam corresponding to the

orientation of PU based on the received signal energy as we describe in Section 3.2.2.

Spatial Spectrum
Sensing

Channel
Training

Data Transmission

-� Tf

-�
Tse

-�
Ttr

-�
Td = Tf − Tse − Ttr

Figure 3.2: The structure of frame employed by SUtx.

Depending on the outcome of spectrum sensing, SUtx stays in spatial spectrum sensing phase or enters the next

phase, which we refer to as channel training phase with a variable duration of Ttr = MNtTs seconds. In this phase,

SUtx sends Nt training symbols with fixed symbol power Ptr per beam to enable channel estimation at SUrx, as we
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explain in Section 3.3.1. Based on the results of channel estimation for all beams, SUrx selects the beam with the

largest SUtx–SUrx fading gain, as we describe in Section 3.3.2. This information as well as the corresponding beam

index are shared with SUtx via the feedback channel. Next, SUtx enters data transmission phase with a variable dura-

tion of Td = Tf−Tse−Ttr seconds. During this phase, SUtx sends Nd = Td/Ts Gaussian data symbols with adaptive

symbol power P to SUrx over the selected strongest beam. SUtx adapts P aiming at maximizing the achievable rates,

subject to ATPC and AIC as we describe in Section 3.4. In the following sections, we describe how SUtx operates

during spatial spectrum sensing phase, channel training phase, and data transmission phase.

3.2 Spatial Spectrum Sensing Phase

3.2.1 Eigenvalue-Based Detector for Spatial Spectrum Sensing

Let Ĥ1 and Ĥ0 denote the detector outcome, i.e., the detector finds PU active (spectrum is sensed busy and occupied)

and inactive (spectrum is sensed idle and unoccupied and thus can be used by SUtx for data transmission), respectively.

Suppose when PU is active, it transmits signal s(t) with power Pp. Let ym(n) denote the discrete-time representation

of received signal at m-th sector of SUtx at time instant t = nTs. We model PU’s transmitted signal s(n) as a zero-

mean complex Gaussian random variable with variance Pp and we assume SUtx knows Pp. Since SUtx collects Nse

samples per beam during spatial spectrum sensing phase, the hypothesis testing problem at discrete time instant n for

m-th sector is

H0 : ym(n) = wm(n),

H1 : ym(n) = ψm(n)s(n) + wm(n).

(3.3)

The term wm(n) is the additive noise at m-th sector of SUtx antenna and is modeled as wm(n) ∼ CN (0, σ2
w). We

assume that ψm(n), s(n) and wm(n) are mutually independent random variables. Since SUtx takes samples of the

received signal for different sectors sequentially (in different time instants), ψm(n) and wm(n) are independent and

thus uncorrelated both in time and space (sector) domains. Under hypothesis H1, given ψm, we have ym(n) ∼

CN (0, σ2
m+σ2

w) where σ2
m = |ψm|2Pp. Under hypothesisH0, we have ym(n) ∼ CN (0, σ2

w).

Our proposed binary detector uses all the collected samples from M sectors. To facilitate the signal processing needed

for the binary detection, we define an M ×Nse sample matrix Z = [z1, . . . ,zNse ], where the first row of Z is the Nse

samples collected from the first sector, the second row of Z is the Nse samples collected from the second sector, and
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so forth. Given our assumptions, the columns of Z are orthogonal under both hypotheses, that is

E
{
ziz

H
j |H0

}
= 0, E

{
ziz

H
j |H1

}
= 0, for i 6= j, i, j = 1, . . . , Nse (3.4)

where E{·} is the statistical expectation operator and have the below covariance matrices

Γ0 = E
{
zjz

H
j |H0

}
= σ2

wIM , Γ1 = E
{
zjz

H
j |H1,ψ

}
= Ppψψ

H + σ2
wIM , (3.5)

where vector ψ = [ψ1, ψ2, . . . , ψM ]T . Therefore the sample covariance matrix R̂ becomes R̂ = 1
Nse
ZZH . Let

f(Z|H0) and f(Z|H1,ψ) denote the PDF of Z under H0 and H1 (given ψ), respectively. These PDF expressions

are

f(Z|H0)=
1

(πσ2
w)Neq

exp

{
tr(ZZH)

−σ2
w

}
, f(Z|H1,ψ)=

1

πNeq det(Γ1)Nse
exp

{
tr(Γ−1

1 ZZH)

−σ2
w

}
, (3.6)

where Neq = MNse. The optimal detector would compare the Logarithm of Likelihood Ratio (LLR) against a

threshold η0 to detect the PU’s activity as below

LLR = ln
f(Z|H1,ψ)

f(Z|H0)
R
Ĥ1

Ĥ0

η0. (3.7)

In the absence of the knowledge of the fading coefficients vector ψ, SUtx obtains the GLRT [26–29, 41] which uses

the Maximum Likelihood (ML) estimate ofψ underH1. LetL1(Z) = ln f(Z|H1,ψ). To find the maximum ofL1(Z)

with respect to ψ, we take the derivative of L1(Z) with respect to ψ and solve ∂
∂ψL1(Z) = 0 for ψ. The obtained

solution is the ML estimate of ψ. Substituting this solution into (3.7) and after some mathematical manipulation,

we reach the following decision rule T = λmax
σ2
w

R
Ĥ1

Ĥ0

η [26], where T is the test statistics, λmax is the maximum

eigenvalue of R̂, and η is the threshold. For large Nse, T underH0 is distributed as Tracy-Widom distribution of order

2 [26, Lemma 1] and the probability of false alarm Pfa = Pr(Ĥ1|H0) = Pr(T > η|H0) is

Pfa = 1− FTW2

(
η−θsen

σsen

)
, (3.8)
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where FTW2(·) is the CDF of Tracy-Widom distribution of order 2 and θsen and σsen in (3.8) are given below

θsen =

(
1 +

√
M

Nse

)2

, σsen =
1√
Nse

(
1 +

√
M

Nse

)(
1√
Nse

+
1√
M

) 1
3

. (3.9)

For largeNse, T underH1 is Gaussian distributed [26, Lemma 2] and the probability of detection Pd = Pr(Ĥ1|H1) =

Pr(T > η|H1) is [26, 29]

Pd = Q

(
η
√
Nse

1+δsen
− M−1

δsen

√
Nse

−
√
Nse

)
, (3.10)

where δsen =
Pp‖ψ‖2
σ2
w

. The average detection probability P d can be computed by averaging (3.10) over vector ψ,

P d = Eψ{Pd}. For a given P d, we can numerically find η and obtain P fa using (3.8). We can also compute the

probabilities of events Ĥ0 and Ĥ1 as π̂0 =Pr{Ĥ0} = β0 + β1 and π̂1 =Pr{Ĥ1} = 1− π̂0, respectively, where

β0 = Pr{H0, Ĥ0} = π0(1− P fa), β1 = Pr{H1, Ĥ0} = π1(1− P d). (3.11)

3.2.2 Determining the Beam Corresponding to PU Direction

During spatial spectrum sensing phase when the spectrum is sensed busy, SUtx determines the beam corresponding to

the direction of PU based on the received signal energy. Let εm be the energy of received signal at m-th beam. We

have

εm =
1

Nse

mNse∑
n=1+(m−1)Nse

∣∣∣∣ym(n)

∣∣∣∣2. (3.12)

SUtx determines the beam with the largest amount of received energy m∗PU = arg max{εm} among all beams. For

large Nse, we invoke CLT to approximate εm’s as Gaussian random variables under both hypotheses. Thus, under

H0 we approximate εm as a Gaussian with distribution εm ∼ N (σ2
w, σ

4
w/Nse). Similarly, under H1, given φPU we

approximate εm as another Gaussian with distribution εm ∼ N (%m, σ
2
εm|H1

), where the mean %m = γPp pm(φPU) +

σ2
w, and the variance σ2

εm|H1
is given below

σ2
εm|H1

=
1

Nse

[
σ4

w + 3P 2
pγ

2 p2
m(φPU) + 2σ2

wPpγ pm(φPU)

]
. (3.13)

We note that, there is a non-zero error probability when SUtx determines the beam index m∗PU, i.e., it is possible that

m∗PU is not the true beam index corresponding to PU direction.
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Let ∆i,m represent the average error probability of finding the sector index corresponding to PU direction, i.e., the

probability that m∗PU = i while the true PU direction lies in the angular domain of m-th sector, φPU ∈ Φm =[
2π(m−3/2)

M , 2π(m−1/2)
M

)
, for i 6= m, i,m = 1, . . . ,M . To find ∆i,m we start with finding ∆i = Pr{m∗PU =

i|φPU, Ĥ1}, which is the probability that the index of selected sector is i, given φPU and Ĥ1 (the binary detector in

Section 3.2.1 finds PU active). Note that under both hypotheses, εm’s are independent. Also, under H0, εm’s are

identically distributed. Therefore, we have

∆i = Pr

{
εi > εm
∀m,m 6=i

∣∣∣∣φPU, Ĥ1

}

=ς1

∫ ∞
0

fεi|H1

(
y|φPU

) M∏
m=1
m6=i

Fεm|H1

(
y|φPU

)
dy + ς0

∫ ∞
0

fεm|H0

(
y

)
FM−1
εm|H0

(
y

)
dy (3.14)

where fεm|H`(x) and Fεm|H`(x) are the PDF and CDF expressions of εm underH`, ` = 0, 1 and

ς0 = Pr{H0|Ĥ1} =
π0P fa

π̂1
, ς1 = Pr{H1|Ĥ1} =

π1P d

π̂1
. (3.15)

Using ∆i, we find ∆i,m as the following

∆i,m =

∫
φPU∈Φm

∆i Pr

{
φPU∈Φm

}
dφPU. (3.16)

Note that ∆i,i is the probability of selecting the correct beam and ∆i,m for i 6= m is the probability of selecting

the incorrect beam, leading to error probability in beam selection. The average error probability ∆1,m versus the

index beam m is shown in Figs. 3.3a and 3.3b for SNRPU = γPp/σ
2
w = 0,−5 dB. As expected, ∆1,1 increases and

∆1,m,m 6= 1 decreases as Nse increases.

3.3 Channel Training Phase

3.3.1 Channel Estimation at SUrx

During this phase, SUtx sends the training vector xt over all beams to enable channel estimation at SUrx. Without

loss of generality, we assume xt =
√
Ptr 1, where 1 is an Nt × 1 all-ones vector and Ptr is given. Let rm =

[rm(1), . . . , rm(Nt)]
T denote the discrete-time representation of received training symbols at SUrx from m-th sector
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Figure 3.3: ∆1,m versus the index beam m for φ3dB =20◦ (a) SNRPU =0 dB, (b) SNRPU =−5 dB.

of SUtx. We note that SUtx enters this phase when the outcome of the binary detector in Section 3.2.1 is Ĥ0. Due to

error in spatial spectrum sensing, we need to differentiate the signal model for rm under H0 and H1. Assuming the

fading coefficient χm is unchanged during the frame, we have

H0, Ĥ0 : rm(n) = χm
√
Ptr + qm(n),

H1, Ĥ0 : rm(n) = χm
√
Ptr + hsp(n) s(n) + qm(n),

(3.17)

where qm(n) is the additive noise at SUrx antenna and is modeled as qm(n) ∼ CN (0, σ2
q). The Linear Minimum

Mean Square Error (LMMSE) estimation of fading coefficient χm when the spectrum sensing result is Ĥ0 can be

obtained as [117]

χ̂m =CχmrmC
−1
rm rm, (3.18a)

Cχmrm =E{χmrHm|Ĥ0} =
√
Ptr αm 1, (3.18b)

Crm =E
{
rmr

H
m|Ĥ0

}
= ω0 E

{
rmr

H
m|H0, Ĥ0

}
+ ω1 E

{
rmr

H
m|H1, Ĥ0

}
, (3.18c)

where

ω0 = Pr{H0|Ĥ0} =
π0(1− P fa)

π̂0
=
β0

π̂0
, ω1 = Pr{H1|Ĥ0} =

π1(1− P d)

π̂0
=
β1

π̂0
. (3.19)
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Finally, the LMMSE estimation of χm when the spectrum sensing result is Ĥ0, given in (3.18a), reduces to

χ̂m =
αm
√
Ptr

αmPtrNt + σ2
q + ω1σ2

p

Nt∑
n=1

rm(n), (3.20)

where σ2
p = Ppγsp. The estimation error is χ̃m = χm− χ̂m where χ̂m and χ̃m are orthogonal random variables [117],

and χ̂m and χ̃m are zero mean. Approximating hsp(n)s(n) as a zero-mean Gaussian random variable with variance

σ2
p, we find that the estimate χ̂m is distributed as a Gaussian mixture random variable [19, 46]. Let α̂m and α̃m,

represent the variances of χ̂m and χ̃m, respectively. Also, Let α̂0
m and α̂1

m represent the variances of χ̂m under H0

andH1, respectively. We have

α̂0
m=VAR{χ̂m|H0, Ĥ0}=

α2
mPtrNt

(
αmPtrNt+σ2

q

)
(
αmPtrNt+σ2

q+ω1σ2
p

)2 , (3.21a)

α̂1
m=VAR{χ̂m|H1, Ĥ0}=

α2
mPtrNt

(
αmPtrNt+σ2

q+σ2
p

)
(
αmPtrNt + σ2

q+ω1σ2
p

)2 . (3.21b)

Therefore, α̂m = ω0 α̂
0
m + ω1 α̂

1
m. Also, let α̃0

m and α̃1
m indicate the variances of χ̃m underH0 andH1, respectively.

We have

α̃0
m = VAR{χ̃m|H0, Ĥ0} = αm − α̂0

m, α̃1
m = VAR{χ̃m|H1, Ĥ0} = αm − α̂1

m. (3.22)

Hence, α̃m = ω0 α̃
0
m + ω1 α̃

1
m. For perfect spectrum sensing, we get ω0 = 1 and ω1 = 0 and χ̂m becomes Gaussian.

3.3.2 Determining the Beam Corresponding to SUrx Direction

SUrx finds χ̂m for all beams Consider the random variable ν̂m = |χ̂m|2. Under hypothesis H`, ` = 0, 1, given Ĥ0,

ν̂m is an exponential random variable with mean α̂`m and PDF

f `ν̂m(y) =
1

α̂`m
e
−y
α̂`m . (3.23)

Hence, the PDF of ν̂m can be written as

fν̂m(y) = ω0 f
0
ν̂m

(y) + ω1 f
1
ν̂m

(y). (3.24)
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SUrx obtains ν̂∗ = max{ν̂m} among all beams and the corresponding beam index m∗SR = arg max{ν̂m} and feeds

back this information to SUtx. Let Ψ`
i = Pr{m∗SR = i|H`, Ĥ0} denote the probability that m∗SR = i under hypothesis

H` and the binary detector outcome is Ĥ0. To characterize Ψ`
i we need to find the CDF and PDF of ν̂∗ given H`,

denoted as F `ν̂∗(·) and f `ν̂∗(·), respectively. Note that given our assumptions, ν̂m’s are independent across sectors,

however, not necessarily identically distributed. Therefore, the CDF F `ν̂∗(x) can be written as

F `ν̂∗(y)=

M∏
m=1

F `ν̂m(y)=1+

M∑
m=1

(−1)m
∑

m
e−yA

`
j1:jm (3.25)

A`j1:jm =

m∑
i=1

1

α̂`ji
,

∑
m

=

M−m+1∑
j1=1

M−m+2∑
j2=j1+1

· · ·
M∑

jm=jm−1+1

.

From the CDF in (3.25), we can find the PDF f `ν̂∗(y)

f `ν̂∗(y) =

M∑
i=1

f `ν̂i(y)

M∏
m=1
m6=i

F `ν̂m(y) =

M∑
m=1

(−1)m+1
∑

m
A`j1:jme

−yA`j1:jm . (3.26)

Similar to section 3.2.2, we obtain Ψ`
i as

Ψ`
i =

∫ ∞
0

f `ν̂i(y)

M∏
m=1
m 6=i

F `ν̂m(y) dy. (3.27)

Without loss of generality, suppose i = 1. After some mathematical simplification, Ψ`
1 can be expressed as

Ψ`
1 = 1 +

M−1∑
m=1

(−1)m
∑′

m

1

1 + α̂`1B
`
j1:jm

, (3.28)

where

B`j1:jm=

m∑
i=1

1

α̂`1+ji

,
∑′

m
=

M−m∑
j1=1

M−m+1∑
j2=j1+1

· · ·
M−1∑

jm=jm−1+1

.

Then, we have Ψi = Pr{m∗SR = i|Ĥ0} = ω0 Ψ0
i + ω1 Ψ1

i .
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3.4 Data Transmission Phase

During this phase, SUtx sends Gaussian data symbols to SUrx, while data symbol transmission power is adapted based

on the information provided by SUrx through the feedback channel. In particular, SUtx transmits x(n) ∼ CN (0, P )

over the selected beam i = m∗SR, where P depends on ν̂i, and symbols are independent and identically distributed

(i.i.d). Let u(n) denote the discrete-time representation of received signal at SUrx from i-th beam of SUtx. We note

that SUtx enters this phase when the outcome of the binary detector in Section 3.2.1 is Ĥ0. Due to error in spatial

spectrum sensing, we need to distinguish the signal model for u(n) underH0 andH1. We have

H0, Ĥ0 : u(n) = χi x(n) + q(n),

H1, Ĥ0 : u(n) = χi x(n) + hsp(n) s(n) + q(n),

(3.29)

where q(n) ∼ CN (0, σ2
q) and are i.i.d. Substituting χi = χ̂i + χ̃i in (3.29), we reach at

H0, Ĥ0 : u(n) = χ̂i x(n) +

new noise ηi,0(n)

χ̃i x(n) + q(n),

H1, Ĥ0 : u(n) = χ̂i x(n) + χ̃i x(n) + hsp(n)s(n) + q(n)

new noise ηi,1(n)

.
(3.30)

We obtain an achievable rate expression for a frame by considering symbol-wise mutual information between channel

input and output over the duration of Nd data symbols as follows

R =
Dd

Nd

Nd∑
n=1

E
{
I
(
x(n);u(n) | ν̂, Ĥ0

)}

=
Dd

Nd

Nd∑
n=1

[
β0 E

{
I
(
x(n);u(n) | ν̂,H0, Ĥ0

)}
+ β1 E

{
I
(
x(n);u(n) | ν̂,H1, Ĥ0

)}]
, (3.31)

where Dd = Td/Tf is the fraction of the frame used for data transmission and the expectations are taken over ν̂ =

[ν̂1, . . . , ν̂M ] given Ĥ0 andH`, ` = 0, 1. To characterize R in (3.31) we need to find E
{
I

(
x(n);u(n) | ν̂,H`, Ĥ0

)}
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given as the following

E
{
I

(
x(n);u(n) | ν̂,H`, Ĥ0

)}
=

∫ ∞
ν̂1=0

I
(
x(n);u(n) | ν̂1, Ĥ0,H`

)
f `ν̂1(ν̂1) Pr

(
v1 > vm for m = 2, ...,M |H`, Ĥ0

)
dν̂1

+ . . .

+

∫ ∞
ν̂M=0

I
(
x(n);u(n) | ν̂M , Ĥ0,H`

)
f `ν̂M (ν̂M ) Pr

(
vM > vm for m = 1, ...,M−1 |H`, Ĥ0

)
dν̂M

=

M∑
j=1

∫ ∞
ν̂j=0

I
(
x(n);u(n) | ν̂j , Ĥ0,H`

)
Term 1

f `ν̂j (ν̂j)

M∏
m=1
m6=j

F `ν̂m(ν̂j)

Term 2

dν̂j . (3.32)

Term 1 in (3.32) is the mutual information between x(n) and u(n) when SUtx transmits over j-th beam, given the

estimated channel gain ν̂j = |χ̂j |2, and given H` and Ĥ0. Term 2 in (3.32) is the PDF of estimated channel gain

ν̂j = |χ̂j |2 when j-th beam is the selected strongest beam, and is characterized by statistics of channel estimation

error and beam selection error, occurred during channel training phase. Focusing on Term 1 in (3.32) we have

I
(
x(n);u(n) | ν̂i, Ĥ0,H`

)
= h

(
x(n) | ν̂i, Ĥ0,H`

)
− h

(
x(n) |u(n), ν̂i, Ĥ0,H`

)
, (3.33)

where h(·) is the differential entropy. From now on, we drop the variable n in x(n) and u(n) for brevity. Consider

the first term in (3.33). Since x ∼ CN (0, P ) we have h(x|ν̂i, Ĥ0,H`) = log2(πeP ). Consider the second term in

(3.33). Due to channel estimation error, the new noises ηi,` in (3.30) are non-Gaussian and this term does not have a

closed form expression. Hence, similar to [107, 111, 118] we employ bounding techniques to find an upper bound on

this term. This term is upper bounded by the entropy of a Gaussian random variable with the variance Θi,`
M

Θi,`
M = E

{∣∣∣∣x− E
{
x | ν̂i, Ĥ0,H`

}∣∣∣∣2
}
, (3.34)

where the expectations are taken over the conditional PDF of x given u, ν̂i, Ĥ0,H`. In fact, Θi,`
M is the Mean Square

Error (MSE) of the MMSE estimate of x given u, ν̂i, Ĥ0,H`. Using minimum variance property of MMSE estimator,

we have Θi,`
M ≤ Θi,`

L , where Θi,`
L is the MSE of the LMMSE estimate of x given u, ν̂i, Ĥ0,H`. Combining all, we

find h(x|u, ν̂i, Ĥ0,H`) ≤ log2(πeΘi,`
L ) and I(x, u|ν̂i, Ĥ0,H`) ≥ log2(P/Θi,`

L ) where

Θi,`
L =

Pσ2
ηi,`

σ2
ηi,`

+ ν̂iP
, σ2

ηi,`
= α̃`iP + σ2

q + `σ2
p. (3.35)
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At the end, we obtain the lower bounds as follow

I
(
x;u | ν̂i, Ĥ0,H0

)
≥ log2

(
1 +

ν̂iP

α̃0
iP+σ2

q

)
, (3.36a)

I
(
x;u | ν̂i, Ĥ0,H1

)
≥ log2

(
1 +

ν̂iP

α̃1
iP+σ2

q+σ2
p

)
. (3.36b)

Substituting equations (3.32) and (3.36) in (3.31) and changing the integration variable (replacing ν̂j with y), we reach

at

R ≥ RLB = Ddβ0R0 +Ddβ1R1, (3.37)

where

R0 =

M∑
j=1

∫ ∞
0

log2

(
1 +

yP

α̃0
jP+σ2

q

)
f0
ν̂j

(y)

M∏
m=1
m6=j

F 0
ν̂m

(y)dy,

R1 =

M∑
j=1

∫ ∞
0

log2

(
1 +

yP

α̃1
jP+σ2

q+σ2
p

)
f1
ν̂j

(y)

M∏
m=1
m 6=j

F 1
ν̂m

(y)dy.

We note that the lower bounds in (3.36) are achieved when the new noises ηm,0, ηm,1 in (3.30) are regarded as worst-

case Gaussian noise and hence the MMSE and LMMSE of x given u, ν̂m, Ĥ0,H` coincide.

So far, we have established a lower bound on the achievable rates. Next, we characterize AIC and ATPC. Let Iav

indicate the maximum allowed interference imposed on PU. To satisfy the AIC, we need to have

β1 E{g}

DdE
{
p(κ∗SR−κ∗PU)P |H1, Ĥ0

}
+DtrPtr

M∑
j=1

E
{
p(κj−κ∗PU) |H1, Ĥ0

} ≤ Iav, (3.38)

where Dtr = Ttr/Tf . The first term in (3.38) is the average interference imposed on PU when SUtx transmits data

symbols, and the second term is the average interference imposed on PU when SUtx sends training symbols for

channel estimation at SUrx. Consider the two conditional expectation terms inside the bracket in (3.38). Using the

fact that, givenH1, Ĥ0, p(·) and P (which depends on ν̂∗) are independent, and also the average probabilities derived

in (3.16) and (3.27) we have

E
{
p(κ∗SR − κ∗PU)|H1, Ĥ0

}
=

M∑
j=1

M∑
i=1

Ψ1
j ∆m∗PU,i

p(κj − κi), (3.39)
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E
{
p(κj − κ∗PU) |H1, Ĥ0

}
=

M∑
i=1

∆m∗PU,i
p(κj − κi). (3.40)

Then, the constraint in (3.38) can be written as

Dd b0 E
{
P |H1, Ĥ0

}
+Dtru0Ptr ≤ Iav, (3.41)

where

b0 =β1γ

M∑
j=1

M∑
i=1

Ψ1
j ∆m∗PU,i

p(κj − κi), (3.42a)

u0 =β1γ

M∑
j=1

M∑
i=1

∆m∗PU,i
p(κj − κi), (3.42b)

E
{
P |H1, Ĥ0

}
=

∫ ∞
0

P (y)f1
ν̂∗(y)dy. (3.42c)

We note that spectrum sensing error, PU beam selection error, and SUrx beam selection error are reflected in AIC

through variables β1, ∆m∗PU,i
and Ψ1

j , respectively. Also, channel estimation error influences AIC through variable

P . Let P av denote the maximum allowed average transmit power of SUtx. To satisfy the ATPC, we need to have

β0DdE
{
P |H0, Ĥ0

}
+ β1DdE

{
P |H1, Ĥ0

}
+ π̂0DtrPtr ≤ P av, (3.43)

where E{P |H0, Ĥ0} =
∫∞

0
P (y)f0

ν̂∗(y)dy, and the third term in (3.43) accounts for transmit power used for training

symbols. We note that spectrum sensing error affects ATPC through variables β0, β1 and π̂0. Also, channel estimation

error affects ATPC through variable P .

Now that we have characterized a lower bound on the achievable rates RLB in (3.37), AIC in (3.41), and ATPC

in (3.43), we summarize how the four error types, namely, spectrum sensing error, beam detection error, channel

estimation error, and beam selection error, affect these expressions. First, spectrum sensing error affects AIC via β1,

both ATPC and RLB via β0 and β1. Recall β0, β1 depend on π0, P fa, P d (see (3.11)). Second, beam detection error

affects AIC via ∆m∗PU,i
and does not have a direct impact on ATPC and RLB. Third, channel estimation error affects

both AIC and ATPC via Ttr, and RLB via α̃`m. Fourth, beam selection error impacts AIC, ATPC and RLB via P

(which depends on the estimation channel gain of the selected beam).

Having the mathematical expressions for RLB, AIC, ATPC, our goal is to allocate transmission resources such that
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RLB is maximized, subject to the aforementioned constraints. To determine our optimization variables, we need

to examine closely the underlying trade-offs between decreasing average interference and average transmit powers,

decreasing four types of errors (i.e., spectrum sensing error, beam detection error, channel estimation error, and beam

selection error), and increasing RLB. Within a frame with fixed duration of Tf seconds, time is divided between three

phases with variable durations: spatial spectrum sensing with duration Tse, channel training with duration Ttr, and

data transmission with duration of Td. Suppose Tse increases. On the positive side, spectrum sensing error, beam

detection error, and average interference imposed on PU decrease (i.e., for ideal spectrum sensing β1 = 0 in (3.11)

and data transmission from SUtx to SUrx does not cause interference on PU). On the negative side, Ttr +Td decreases,

that can lead to increasing channel estimation error (due to decrease in Ttr) and/or decreasing RLB (due to decrease

in Td). Given Tse, as Ttr increases, channel estimation error in (3.22) decreases. However, average interference

imposed on PU during transmission of training symbols increases and RLB decreases 5. Finally, increasing data

symbol transmission power P increases RLB, however, it increases average interference and average transmit power.

Based on all these existing trade-offs, we seek the optimal Tse, Ttr, P such that RLB in (3.37) is maximized, subject

to AIC and ATPC given in (3.41) and (3.43), respectively. In other words, we are interested in solving the following

constrained optimization problem

Maximize
Tse,Ttr,P

RLB (3.P1)

s.t.: 0 < Tse < Tf − Ttr

Ttr > 0, P ≥ 0

(3.41) and (3.43) are satisfied.

Before delving into the solution of (3.P1), we have a remark on how our adopted fading model in Section 3.1.2 affects

our derivations in this section.

Remark: Our theoretical framework can be extended to the more general Nakagami fading model, however, certain

expressions need to be re-derived. In particular, P d = Eψ{Pd} in (3.10) changes, since the pdf of ψ changes. Also,

the conditional pdf of ν̂m given {Ĥ0,H`} in (3.23), and the CDF and pdf of ν̂∗ in (3.25), (3.26) change. Consequently,

the expressions for Ψ`
i in (3.27), E{P |H1, Ĥ0} in (3.42c), and RLB in (3.37) must be re-calculated.

5Note that as channel estimation error in (3.22) decreases, the lower bounds in (3.36) increase. However, this logarithmic increase is dominated
by the linear decrease of Dd in (3.37), which leads into a decrease in RLB.
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3.5 Constrained Maximization of Rate Lower Bound

In this section, we address the optimization problem (3.P1). Taking the second derivative of RLB with respect to

(w.r.t.) the optimization variables, we note that (3.P1) is not jointly concave over Tse, Ttr, P . However, given Tse and

Ttr, (3.P1) is concave6 w.r.t. P . We propose an iterative method based on the BCD algorithm to solve (3.P1). The

underlying principle of the BCD algorithm is that, at each iteration one variable is optimized, while the remaining

variables are fixed. The iteration continues until it converges to a stationary point of (3.P1) [109]. To apply the

principle of the BCD algorithm to (3.P1), we consider the following three steps.

Step (i): given Tse, Ttr, we optimize P using the Lagrangian method. The Lagrangian is

L = −RLB + µ

[
LHS of (3.41)− Iav

]
+ λ

[
LHS of (3.43)− P av

]
, (3.44)

in which LHS stands for left-hand side, λ and µ are the nonnegative Lagrange multipliers, associated with the ATPC

and AIC, respectively. Therefore, the optimal P that minimize (3.44) is the solution to the KKT optimality necessary

and sufficient conditions. The KKT conditions are the first derivatives of L w.r.t. P, µ, λ being equal to zero, i.e.,

∂L/∂P = 0, ∂L/∂µ = 0, ∂L/∂λ = 0. We have

− 1

ln(2)

1∑
`=0

β`

M∑
i=1

y (σ2
q + `σ2

p) f `ν̂i(y)

σ2
ηi,`

(
yP + σ2

ηi,`

) M∏
m=1
m6=i

F `ν̂m(y) + λ

[
β0f

0
ν̂∗(y) + β1f

1
ν̂∗(y)

]
+ µb0f

1
ν̂∗(y) = 0, (3.45a)

µ

(
LHS of (3.41)− Iav

)
= 0, (3.45b)

λ

(
LHS of (3.43)− P av

)
= 0. (3.45c)

The closed-form analytical solution for (3.45) cannot be found. Hence, we solve these equations numerically for every

realization of ν̂∗, via the following iterative method. We first initialize the Lagrangian multipliers µ and λ and then find

P using (3.45a), and verify that it satisfies (3.45b), (3.45c). Next, we update µ and λ using the subgradient method.

Using the updated µ and λ, we find P again using (3.45a). We repeat this procedure until µ and λ converge (i.e., a

pre-determined stopping criterion is met).

Step (ii): given P and Ttr, we optimize Tse. The optimal Tse is the solution of the equation ∂RLB/∂Tse = 0. In

6The cost function of (3.P1) given in (3.37) depends on P through the two logarithms, that can be viewed, in terms of P , as (1+ aP
bP+c

), where
a, b, c are positive. Since the arguments of these logarithms are concave, RLB is also concave w.r.t. P .
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Appendix A.1, we show that this equation has one solution in the interval (0, Tf − Ttr). This solution can be found

using numerical search methods (e.g., bisection method).

Step (iii): given P and Tse, we optimize Ttr, via solving ∂RLB/∂Ttr = 0. In Appendix A.2, we show that this

equation has one solution in the interval (0, Tf − Tse), which can be found numerically using search methods (e.g.,

bisection method).
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Figure 3.4: The optimized P obtained from (3.45a) versus ν̂∗ (and c) for P av = 2 dB.

To gain an insight on the solution of (3.P1), we look into the behavior of the optimized P versus the realizations of

the estimated channel gain ν̂∗. Fig. 3.4 illustrates the optimized P versus ν̂∗ (and c, where ν̂∗ = cmν̂∗ and mν̂∗ is

the mean of ν̂∗) for Iav = −15.5,−14 dB and other simulation parameters given in Table 3.3. For these parameters

mν̂∗ = 0.1484. We observe that the optimized P for very small ν̂∗ (when ν̂∗ is smaller than a cut-off threshold

ζ = 3.5mν̂∗ ) is zero. As ν̂∗ increases the optimized P increases gradually until it reaches a maximum value. As ν̂∗

increases further, the optimized P decreases, until it reaches a minimum value for very large ν̂∗ (when ν̂∗ > 85mν̂∗ ),

not shown in the figure. Comparing the curves for Iav = −15.5 dB and Iav = −14 dB, we note that the optimized P

decays faster (after it reaches its maximum value) for lower Iav. Moreover, the cut-off threshold ζ is lower for higher

Iav. The behavior of the optimized P versus ν̂∗ is different from our intuitive expectation that expects to see the

optimized P increases monotonically as ν̂∗ increases. We explore this by examining the optimized P , which satisfies

(3.45a).

Although for general M the optimized P does not have a closed form expression, for M = 1 and under a simplifying
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assumption7 it can approximated as follows:

P ≈

[
F +

√
Υ

2

]
+, F =

β0W (ν̂∗) + β1

ln(2)

[
λ

(
β0W (ν̂∗)+β1

)
+ µb0

] − 2σ2
q+σ2

p

ν̂∗
, (3.46)

Υ=F 2 − 4

ν̂∗

σ2
q(σ2

q+σ2
p)

ν̂∗
−

(
β0W (ν̂∗)+β1

)
σ2

q + β0W (ν̂∗)σ2
p

ln(2)

[
λ(β0W (ν̂∗)+β1)+µb0

]
.

where W (ν̂∗) = f0
ν̂∗(ν̂

∗)/f1
ν̂∗(ν̂

∗) = α̂1/α̂0 e−ν̂
∗( 1
α̂0− 1

α̂1 ). Considering (3.21) we realize that α̂0 < α̂1. This implies

as ν̂∗ increases, W (ν̂∗) and Υ decrease. However, the behavior of F changes, i.e., F increases until it reaches a

maximum value. As ν̂∗ increases further, F decreases. Considering (3.46) we note that the behavior of P (in terms

of ν̂∗) is dominated by the behavior of F . In the ideal scenario when there is no channel estimation error, we have

α̂0 = α̂1 = α and W (ν̂∗) = 1, F monotonically increases and Υ deceases, i.e., P in (3.46) monotonically increases

as ν̂∗ increases, which is what we intuitively expect.

The optimized P we discussed so far requires solving (3.45) several times for each realization of ν̂∗. Integrating the

insights we have gained into how this optimized P varies in terms of ν̂∗, we propose two transmit power control

schemes that are simpler to implement and yield achievable rate lower bounds that are very close to the maximized

RLB values in (3.P1). Since Pr(ν̂∗ ≥ cmν̂∗) is very small for c ≥ 8 (see Table 3.2), we focus on the regime when

ν̂∗ < 8mν̂∗ and develop two schemes, dubbed here scheme 1 and scheme 2, that mimic the behavior of the optimized

P in this regime.

Table 3.2: Pr(ν̂∗ ≥ cmν̂∗) in terms of c, given mν̂∗ = 0.1484.

c Pr(ν̂∗ ≥ cmν̂∗ )
4 3.01× 10−3

8 7.04× 10−6

12 1.54× 10−8

16 4.87× 10−11

7We assume that the optimized Ttr is large enough such that α̃P + σ2
q ≈ σ2

q. This assumption allows us to approximate (3.45a) for M = 1 as
a quadratic polynomial in P (originally a polynomial of degree 4 in P ) and find a closed-form expression for P .
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3.5.1 Scheme 1

For scheme 1, when the spectrum is sensed idle, SUtx sends data to SUrx over the selected sector i = m∗SR according

to the following rule:

PS1
=


Π1, if ν̂∗ ≥ ζ1

0, if ν̂∗ < ζ1

(3.47)

i.e., when ν̂∗ is less than a cut-off threshold ζ1, SUtx remains silent, when ν̂∗ is larger than ζ1, SUtx lets its transmit

power be equal to constant Π1. The parameter Π1 can be found in terms of Tse, Ttr, ζ1, via enforcing AIC in (3.41)

and ATPC in (3.43) as the following:

Π1 =
1

Dd
min


P av − π̂0DtrPtr∑1
`=0 β`

(
1−F `ν̂∗(ζ1)

) ,
Iav − u0DtrPtr

b0

(
1−F 1

ν̂∗(ζ1)

)
. (3.48)

Let RS1
denote the lower bound on the achievable rates when SUtx adopts the power control scheme in (3.47). We

find RS1
expression by substituting PS1

in (3.37) and taking expectation w.r.t. ν̂∗ given as the following

RS1
=
Dd

ln(2)

1∑
`=0

β`

M∑
j=1

[
Y

(
α̂`j ,SNR`j

)
+

M∑
m=1
m6=j

(−1)m
∑

m
Y

(
d`j,m,SNR`j

)]
, (3.49)

Y (a, b) =

∫ ∞
ζ1

ln(1 + bx)
1

a
e
−x
a dx = e−ζ1/a ln(1 + bζ1)− e1/ab Ei (−ζ1/a− 1/ab) ,

where d`j,m=(A`k1:km
+ 1

α̃`j
)−1, SNR0

i = Π1

α̂0
i+σ

2
q

, SNR1
i = Π1

α̂1
i+σ

2
q+σ2

p
and Ei(·) is the exponential integral. With this

transmit power scheme, we consider a modified problem to (3.P1), where the lower bound RS1
in (3.49) is maximized

(subject to the same constraints) and the optimization variables are Tse, Ttr, ζ1. To solve this modified problem, we

use an iterative method based on the BCD algorithm and implement the following three steps: Step (i), given Tse, Ttr,

we optimize ζ1, via maximizing RS1
, using bisection search method. Step (ii), given ζ1, Ttr, we optimize Tse, using

bisection search method. Step (iii), given ζ1, Tse, we optimize Ttr, using bisection search method. In Section 3.6 we

numerically compare the maximized RLB in (3.P1) and the maximized RS1
.
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3.5.2 Scheme 2

For scheme 2, when the spectrum is sensed idle, SUtx sends data symbols to SUrx over the selected sector i = m∗SR

according to the following rule:

PS2
=


Π2

(
1− ζ2

ν̂∗

)
, if ν̂∗ ≥ ζ2

0, if ν̂∗ < ζ2

(3.50)

Different from scheme 1, in the scheme 2 when ν̂∗ exceeds the cut-off threshold ζ2, SUtx transmits at a variable power.

The power level increases as ν̂∗ increases, until it reaches its maximum value of Π2, i.e., limν̂∗→∞ PS2 = Π2. The

parameter Π2 can be found in terms of Tse, Ttr, ζ2, via enforcing AIC in (3.41) and ATPC in (3.43) as the following:

Π2 =
1

Dd
min


P av − π̂0DtrPtr∑1
`=0 β`

[
1−G`(ζ2)

] , Iav−u0DtrPtr

b0

[
1−G1(ζ2)

]
 , (3.51)

where G`(ζ2) = F `ν̂∗(ζ2) + ζ2T
`(ζ2) and

T `(ζ2) = E
{

1

ν̂∗

∣∣∣∣ ν̂∗ ≥ ζ2, H`} =

∫ ∞
ζ2

f `ν̂∗(y)

y
dy =

M∑
m=1

(−1)m
∑

m
A`j1:jmEi

(
−ζ2A`j1:jm

)
. (3.52)

Let RS2
represent the lower bound on the achievable rates when SUtx adopts the power control scheme in (3.50). We

find RS2
by substituting PS2

in (3.37) and taking expectation w.r.t. ν̂∗. With this transmit power scheme, we consider

a modified problem to (3.P1), where the lower bound RS2 is maximized (subject to the same constraints) and the

optimization variables are Tse, Ttr, ζ2. To solve this modified problem, we use an iterative method based on the BCD

algorithm and implement the following three steps: Step (i), given Ttr, Tse, we optimize ζ2, via maximizing RS2
,

using bisection search method. Step (ii), given ζ2, Ttr, we optimize Tse, using bisection search method. Step (iii),

given ζ2, Tse, we optimize Ttr, using bisection search method. In Section 3.6 we numerically compare the maximized

RLB in (3.P1) and the maximized RS2
. Note that the closed-form expression for RS2

cannot be obtained.

3.5.3 Discussion on Computational Complexity of Proposed Algorithms

In the following, we discuss the computational complexity of the three proposed algorithms, namely, the first algorithm

in Section 3.5, Scheme 1 in Section 3.5.1, and Scheme 2 in Section 3.5.2.
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The first algorithm consists of three steps. We discuss the computational complexity of each step. Step (i): given

Tse, Ttr, we find P via solving (3.45a), (3.45b), (3.45c) numerically. In particular, noting that y in (3.45a) is positive,

we partition the real positive line into Ny intervals. Given y is in one of these Ny intervals, we initialize the La-

grangian multipliers µ and λ and then solve (3.45a) for P using bisection method. The computational complexity of

bisection method to provide an εp-accurate solution for each of these Ny intervals is O(log(1/εp)) [119,120]. Hence,

the computational complexity for solving (3.45a) Ny times is O(Ny log(1/εp)). Moving on to (3.45b) and (3.45c),

we need to compute LHS of (3.41) and (3.43), respectively, which requires calculating the conditional expectations

E{P |H1, Ĥ0} and E{P |H0, Ĥ0} and integrating over y. Hence, the computational complexity for computing (3.45b)

and (3.45c) is O(Ny). Since Ny � Ny log(1/εp), we can neglect the computational complexity of solving (3.45b),

(3.45c), with respect to that of solving (3.45a). Hence, the computational complexity of solving (3.45), given µ and

λ, is O(Ny log(1/εp)). Next, we update µ and λ using the subgradient method. Using the updated µ and λ, we solve

(3.45a) for P again. We repeat this procedure until both µ and λ converge. The computational complexity to get

εL-convergence for µ and λ is O(S1), where S1 = (Ny log(1/εp))/εL. Step (ii): given P and Ttr, we find Tse using

bisection search method. The computational complexity of bisection search method to provide an εse-accurate solution

isO(S2), where S2 = log(1/εse). Step (iii): given P and Tse, we find Ttr using bisection search method. The compu-

tational complexity of bisection search method to provide an εtr-accurate solution is O(S3), where S3 = log(1/εtr).

At each iteration of Step (iii), we execute Step (ii) and at each iteration of Step (ii), we execute Step (i). Hence, the

overall computational complexity of the first algorithm is O(S1S2S3).

Scheme 1: Similar to the first algorithm, Scheme 1 consists of three steps. At the first step, given Tse, Ttr, we

optimize ζ1 using bisection search method. The computational complexity of bisection search method to provide an

εζ-accurate solution is O(log(1/εζ)). The second and third steps are exactly the same as Step (ii) and Step (iii) in the

first algorithm. Hence, the overall computational complexity of Scheme 1 is O(S2S3 log(1/εζ)).

Scheme 2: Similar to the first algorithm, Scheme 2 consists of three steps. At the first step, given Tse, Ttr, we

optimize ζ2 using bisection search method. The computational complexity of bisection search method to provide

an εζ-accurate solution is O(log(1/εζ)). The computational complexity of integrating over y in (3.37) within each

iteration of bisection search method is O(Ny). Hence, the computational complexity for the first step of Scheme 2

is O(Ny log(1/εζ)). The second and third steps are exactly the same as Step (ii) and Step (iii) in the first algorithm.

Hence, the overall computational complexity of Scheme 2 is O(NyS2S3 log(1/εζ)).

Comparing the computational complexity of these three schemes, it is clear that Scheme 2 has a higher computational
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complexity than that of Scheme 1. Under the assumption εζ = εL = εp, we find that the first scheme has the highest

and Scheme 1 has the lowest computational complexity.

3.6 Simulation Results

Table 3.3: Simulation Parameters

Parameter Value Parameter Value Parameter Value
A0 0.98 γss 0.1 σ2

w, σ
2
q 0.5

A1 0.02 γ, γsp 0.5 Pp 0.5 watts
φ3dB 20◦ π0 0.7 Tf 30 ms
φ1 −55◦ Pd 0.85 Ptr 2 watts
φ2 +55◦ M 7

We corroborate our analysis on constrained maximization of achievable rate lower bounds with Matlab simulations.

Our simulation parameters are given in Table 3.3. We start by illustrating the the behavior of our proposed power

allocation schemes versus ν̂∗. Fig. 3.5 shows the optimized P obtained by solving (3.45a) and the two proposed

suboptimal schemes PS2
and PS1

versus ν̂∗. We observe that PS2
and PS1

mimic the behavior of the optimized P .

Furthermore, for the cut-off thresholds we have ζ < ζ1 < ζ2.

Next, we explore the effect of spatial spectrum sensing duration Tse on the achievable rate lower bounds of our system.

Fig. 3.6a shows the maximized RLB, RS2
and RS1

(which we refer in the figures to as “Rate”) versus Tse. To plot

this figure, we maximize the bounds w.r.t. only Ttr and P , subject to ATPC and AIC. We note that for all Tse

values we have RLB > RS2
> RS1

. We observe that the achievable rates always have a maximum in the interval

(0, Tf − Ttr). For the simulation parameters in Table 3.3 the optimized Tse = 0.75 ms = 2.5%Tf . Also, scheme 2

yields a higher achievable rate than that of scheme 1, because its corresponding power PS2 fits better to the optimized

power P obtained from solving (3.45a). The achievable rate RS2
is very close to RLB and we do not have a significant

performance loss if we choose the simple transmit power control scheme in (3.50).

To investigate the effect of channel training duration Ttr on the achievable rate lower bounds, we plot Fig. 3.6b

which illustrates the maximized RLB, RS2
and RS1

versus Ttr. To plot this figure, we maximize the bounds w.r.t.

only Tse and P , subject to ATPC and AIC. For all Ttr values we have RLB > RS2 > RS1 . We observe that the

achievable rates always have a maximum in the interval (0, Tf − Tse). For the simulation parameters in Table 3.3 the

optimized Ttr = 0.67 ms = 2.23%Tf . Comparing Fig. 3.6b and Fig. 3.6a, we notice that the achievable rates are
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Figure 3.5: P versus ν̂∗ for P av = 2 dB, Iav = −12 dB.
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Figure 3.6: For P av = 2 dB, Iav = −15 dB, (a) Rate versus Tse, (b) Rate versus Ttr.

more sensitive to the variations of Ttr compared to that of Tse. To be more specific, considering Fig. 3.6a and Fig.

3.6b, suppose we choose Tse and Ttr values that are different from their corresponding maximum values by 20%, i.e.,

∆Tse = 20%,∆Ttr = 20%. Then

∆RLB/∆Ttr > ∆RLB/∆Tse, ∆RS2/∆Ttr > ∆RS2/∆Tse, ∆RS1/∆Ttr > ∆RS1/∆Tse.

These indicate that proper allocation of Ttr is more important than that of Tse, for providing higher achievable rates in
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our system.

To explore the effects of the number of beams M and Iav on the achievable rate lower bounds, Fig. 3.7a illustrates

the maximized RLB, RS2
, RS1

versus Iav for M = 7, 11 and P av = 2 dB. We observe that as M increases a higher

rate can be achieved. For all M and Iav values we have RLB > RS2 > RS1 . We realize that as Iav increases from

−18 dB to −14 dB, the achievable rates are monotonically increasing and the AIC is dominant. However, as Iav

increases beyond −14 dB, the achievable rates remain unchanged and the ATPC is dominant. Fig. 3.7b illustrates the
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Figure 3.7: (a) Rate versus Iav for M = 7, 11 and P av = 2 dB, (b) Rate versus P av for M = 7, 11 and Iav = −14 dB.

maximized RLB, RS2
, RS1

versus P av for M = 7, 11 and Iav = −14 dB. The behaviors of the achievable rates in

terms of M are the same as Fig. 3.7a. We note that as P av increases from −4 dB to 2 dB, the achievable rates are

monotonically increasing and the ATPC is dominant. However, as P av increases beyond 2 dB, the achievable rates

remain unchanged and the AIC is dominant.

We also consider outage probability as another performance metric to evaluate our system. We define the outage

probability as the probability of SUtx not transmitting data symbols due to the weak SUtx-SUrx channel when the

spectrum is sensed idle, i.e., Pout = Pr{P = 0 | Ĥ0}. This probability can be directly obtained using the CDF of ν̂∗
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evaluated at the cut-off threshold as the following

Pout = Pr(ν̂∗ ≤ ζ|Ĥ0) = ω0F
0
ν̂∗(ζ) + ω1F

1
ν̂∗(ζ),

Pout,S1 = Pr(ν̂∗ ≤ ζ1|Ĥ0) = ω0F
0
ν̂∗(ζ1) + ω1F

1
ν̂∗(ζ1),

Pout,S2
= Pr(ν̂∗ ≤ ζ2|Ĥ0) = ω0F

0
ν̂∗(ζ2) + ω1F

1
ν̂∗(ζ2).

Fig. 3.8 illustrates Pout, Pout,S2
, Pout,S1

versus P av for Iav = −8 dB. We observe that as P av increases the outage

probabilities decrease. Moreover, for a given P av we have Pout < Pout,S2
< Pout,S1

. This is consistent with Fig. 3.5

which shows for a given P av, we have ζ < ζ1 < ζ2. Combined this with the fact that the CDF Fν̂∗(·) is an increasing

function of its argument, we reach the conclusion that Pout < Pout,S2
< Pout,S1

.
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Figure 3.8: Pout versus P av for Iav = −8 dB.

3.7 Conclusions

We considered an opportunistic CR system consisting of a PU, SUtx, and SUrx, where SUtx is equipped with a

RA that has M beams, and there is an error-free low-rate feedback channel from SUrx to SUtx. We proposed a

system design for integrated sector-based spatial spectrum sensing and sector-based data symbol communication.

We studied the entangled effects of spectrum sensing error, channel estimation error, and beam detection and beam

selection errors (introduced by the RA), on the system achievable rates. We formulated a constrained optimization

problem, where a lower bound on the achievable rate of SUtx–SUrx link is maximized, subject to ATPC and AIC,
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with the optimization variables being the durations of spatial spectrum sensing Tse and channel training Ttr as well as

data symbol transmission power at SUtx. Moreover, we proposed two alternative power adaptation schemes that are

simpler to implement. We solved the proposed constrained optimization problems using iterative methods based on

the BCD algorithm. Our simulation results demonstrate that one can increase the achievable rates of SUtx–SUrx link

significantly, via implementing these optimizations, while maintaining the ATPC and AIC. They also showed that the

achievable rates obtained from employing simple schemes 1 and 2 are very close to the one produced by the optimized

transmit power. Our numerical results also showed that between optimizing Tse and Ttr, optimizing the latter has a

larger effect on increasing the achievable rates in our system.
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CHAPTER 4: STEADY-STATE RATE-OPTIMAL POWER ADAPTATION

IN ENERGY HARVESTING OPPORTUNISTIC COGNITIVE RADIOS

WITH SPECTRUM SENSING AND CHANNEL ESTIMATION ERRORS

In this chapter, we consider an uplink opportunistic EH-enabled CR network, consisting of Nu SUs and an AP, that

can access a wideband spectrum licensed to a primary network. Each SU is capable of harvesting energy from natural

ambient energy sources, and is equipped with a finite size rechargeable battery, to store the harvested energy. Our main

objectives are (i) to study how the achievable sum-rate of SUs is impacted by the combined effects of spectrum sensing

error and imperfect CSI of SUs–AP links (due to channel estimation error), and (ii) to design an energy management

strategy that maximizes the achievable sum-rate of SUs, subject to a constraint on the average interference that SUs

can impose on the PU. To the best of our knowledge, our work is the first to study the impact of these combined effects

on the performance of an opportunistic EH-enabled CR network.

One expects that spectrum sensing error, combined with random energy arrival at the TX, exacerbates the effect

of imperfect CSI on the TX achievable rate. The challenges of our study are twofold: first, it requires integration

of energy harvesting, spectrum sensing, and channel estimation. Successful achievement of this integration entails

stochastic modeling of energy arrival, energy storage, and PU’s activities. These stochastic models are utilized to

establish an achievable sum-rate of SUs that takes into account both spectrum sensing error and channel estimation

error. Second, one needs to properly design energy control strategies for SUs, that strike a balance between the energy

harvesting and the energy consumption, and adapt transmit power according to the available CSI and the battery state.

We assume that SUs operate under a time-slotted scheme, and SUn is capable of harvesting energy during the entire

time slot. Each time slot consists of three sub-slots corresponding to spectrum sensing phase (during which SUn senses

the spectrum), channel estimation phase (during which SUn sends training symbols to the AP, when the spectrum is

sensed idle, for estimating the fading coefficient corresponding to SUn–AP link), and data transmission phase (during

which SUn sends data symbols to the AP). Assuming that the AP feeds back its estimate of the fading coefficient to

SUn, SUn adapts its transmit power based on this information as well as the available energy in its battery.
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4.1 System Model

We consider an uplink opportunistic EH-enabled CR network, operating in FDD mode, that can access a wideband

spectrum band licensed to a primary network, consisting of M non-overlapping narrowband spectrum bands, each

with a bandwidth of W Hz [121]. The primary network consists of a PUtx and a PUrx. The secondary network

consists of an AP and Nu SUs (see Fig. 4.1).

…

z

u

h

q

PUrx

PUtx

AP

SU1
SU2

SUNu

Figure 4.1: Schematics of the uplink CR network.

The AP can serve up to M SUs simultaneously and we assume that Nu ≤ M . We also assume that narrowband

spectrum bands are pre-assigned to SUs and thus each SU knows which band to sense and transmit data over. The SUs

are equipped with identical energy harvesting circuits to harvest energy from the ambient environment and identical

finite size batteries for energy storage (see Fig. 4.2). We consider block fading channel model and suppose flat fading

coefficients from PUtx to SUn, PUtx to AP, SUn to PUrx, and, SUn to AP are four independent zero-mean complex

Gaussian random variables, which we denote by un, q, zn and hn with variances δun , δq , δzn and γn, respectively.

4.1.1 Battery and Energy Harvesting Models

We assume that SUs operate under a time-slotted scheme, with slot duration of Tf seconds, and they always have data

to transmit. Each time slot is indexed by an integer t for t = 1, 2, . . .. The energy harvester at each SU stores randomly
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Figure 4.2: Our CR system model corresponding to SUn for n = 1, . . . , Nu.

arrived energy packets in a finite size battery and consumes the stored (harvested) energy for spectrum sensing, channel

estimation, and data transmission. Each battery consists of K cells (units) and the amount of energy stored in each

unit is equal to eu Joules. Thus, the battery can store up to Keu Joules of energy.

When k cells of the battery is charged (the amount of stored energy in the battery is keu Joules) we say that the battery

is at state k. Let B(t)
n ∈ {0, 1, . . . ,K} denote the discrete random process indicating the battery state of SUn at the

beginning of time slot t. We define the Probability Mass Function (PMF) of the discrete random variable B(t)
n as

ζ
(t)
k,n = Pr(B(t)

n = k), where
∑K
k=0 ζ

(t)
k,n = 1. Note that B(t)

n = 0 and B(t)
n = K represent the empty battery and full

battery levels, respectively.

Let E(t)
n denote the randomly arriving energy packets during time slot t of SUn, where the energy packet measured in

Jules is eu Joules. The discrete random process E(t)
n is typically modeled as a sequence of independent and identically

distributed (i.i.d) random variables [53], regardless of the spectrum occupancy state of PUtx. We assume that the

discrete random variables E(t)
n ’s are i.i.d. over time and independent across sensors. We model E(t)

n as a Poisson

random variable with the PMF fEn(r) = Pr(E = r) = e−ρnρrn/r! for r = 0, 1, . . . ,∞, where ρn denotes the average

number of arriving energy packets during one time slot of SUn.1 Let α(t)
hn

be the number of stored (harvested) energy

units in the battery at SUn during time slot t. This harvested energy α(t)
hn

cannot be used during time slot t. Since the

battery has a finite capacity of K cells, we find that α(t)
hn

is an element of the finite set {0, 1, . . . ,K}. Also, α(t)
hn

are

i.i.d. over time slots and independent across sensors. Let fαhn(r) = Pr(αhn = r) denote the PMF of α(t)
hn

. We can

1We note that ρn does not depend on the duration of spectrum sensing phase, since we assume each node is capable of harvesting energy during
the entire slot. If we limit harvesting energy to spectrum sensing phase, then ρn would change to ρnTse/Tf . Poisson distribution for statistical
modeling of ambient energy and solar energy has been applied before in [122]. We note, however, that our analysis is not tied to this specific
distribution and can be applied for any discrete non-Poisson distribution.

72



find the PMF of α(t)
hn

in terms of the PMF of E(t)
n as the following2

fαhn(r) =


fEn(r), if 0 ≤ r ≤ K − 1∑∞
m=K fEn(m), if r = K.

(4.1)

4.1.2 Slot Structure of SUs

Each time slot consists of three sub-slots (see Fig. 4.3), corresponding to spectrum sensing phase, channel estimation

phase, and data transmission phase, with fixed durations of Tse = Nse/fs, Ttr = Nt/fs, Td = Nd/fs, respectively.

Note that fs is the sampling frequency, Nse is the number of collected samples during spectrum sensing phase, Nt

is the number of training symbols sent during channel estimation phase, and Nd is the number of data symbols sent

during data transmission phase. Also, we have Tf = Tse + Ttr + Td.

Sensing Probing Data Transmission Sensing Probing Data Transmission

Tse Ttr Td Tse Ttr Td

Tf Tf

E(t−1)
n E(t)n E(t+1)

n

t t+ 1

Figure 4.3: Slot structure of SUs.

During spectrum sensing phase, SUn senses its pre-assigned single spectrum band to detect PUtx’s activity. We model

the PUtx’s activity in each spectrum band as a Bernoulli random variable and we assume the statistics of PUtx are

i.i.d. across M spectrum bands and over time slots. Therefore, we can frame the spectrum sensing problem at SUn

as a binary hypothesis testing problem. Suppose H(t)
1 and H(t)

0 represent the binary hypotheses of PUtx being active

and inactive in time slot t, respectively, with prior probabilities Pr{H(t)
1 } = π1 and Pr{H(t)

0 } = π0. SUn applies

a binary detection rule to decide whether or not PUtx is active in its pre-assigned band. Let Ĥ0,n and Ĥ1,n, with

probabilities π̂0,n = Pr{Ĥ0,n} and π̂1,n = Pr{Ĥ1,n} denote the SUn detector outcome, i.e., the detector finds

PUtx active and inactive (the result of spectrum sensing is busy or idle), respectively. The accuracy of this binary

detector is characterized by its false alarm and detection probabilities. The details of the binary detector are presented

2Equation (4.1) assumes that the energy storage process is lossless. For a lossy storage process, one needs to model such loss via establishing
a functional relationship between αhn and En, i.e., αhn = Jn(En), where the function Jn(·) can be approximated using the battery type and
specifications. Knowing Jn(·) and the pmf fEn(r), one can find the pmf fαhn(r) using transformation method.
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in Section 4.2.

Depending on the outcome its of spectrum sensing, SUn stays in spectrum sensing phase or enters channel estimation

phase. In this phase, SUn sends Nt training symbols with fixed symbol power Ptr = αteu/Ttr, to enable channel

estimation at the AP, where αt is the number of consumed cells of energy for channel estimation3. We assume that the

battery always has αt units of stored energy for channel estimation. Let h(t)
n denote the SUn–AP fading coefficient in

time slot t and g(t)
n = |h(t)

n |2 be the corresponding channel power gain. Using the received signals corresponding to the

training symbols, the AP estimates ĥ(t)
n and lets ĝ(t)

n = |ĥ(t)
n |2 and shares this value with SUn via a feedback channel.

Next, SUn enters data transmission phase. During this phase, SUn sends Nd Gaussian data symbols with adaptive

symbol power according to its battery state and the received information via the feedback channel about SUn–AP

link. If the battery is at state k, then SUn allocates αk,n cells of stored energy for each data symbol transmission,

implying that the adaptive symbol power is P (t)
k,n = α

(t)
k,npu, where pu = eu/Td. Note that since α(t)

k,n is discrete, P (t)
k,n

is discrete. The details of the choice of α(t)
k,n according to the battery state k and the feedback information ĝn are given

in Section 4.1.3 and the details of channel estimation are explained in Section 4.3.

4.1.3 Transmission Model and Battery Dynamics

As we stated, we assume that during time slot t, SUn adapts its transmit energy per data symbol (power) according to

its battery state k and the received information via the feedback channel about its channel power gain ĝn. In particular,

we choose a power adaptation strategy that mimics the behavior of the rate-optimal power adaptation scheme with

respect to the channel power gain [5], i.e., when ĝn is smaller than a cut-off threshold θn (to be optimized), the

transmit energy is zero, and when ĝn exceeds θn, the transmit energy increases monotonically as ĝn increases until it

reaches its maximum value of bkΩnc − αt, where Ωn ∈ [0, 1] (to be optimized), and b·c denotes the floor function.

Mathematically, we express α(t)
k,n for SUn as the following

α
(t)
k,n = max

{
α

(t)
k,n , 0

}
, for k = 0, 1, . . . ,K, (4.2a)

α
(t)
k,n =

⌊
Ωn k

(
1− θn

ĝ
(t)
n

)+⌋
− αt, (4.2b)

3For ease of presentation, we assume that circuit power (energy) consumption is negligible in comparison to the consumed energy for channel
estimation and data transmission. Otherwise, it can easily be incorporated into the system model.

74



where (x)+ = max{x, 0}. The parameters Ωn and θn in (4.2) play key roles in balancing the energy harvesting and

the energy consumption. Given θn, when Ωn is large (or given Ωn, when θn is small), such that the rate of energy

consumption is greater than the rate of energy harvesting, SUn may stop functioning, due to energy outage. On the

other hand, given θn, when Ωn is small (or given Ωn, when θn is large), SUn may fail to utilize the excess energy, due

to energy overflow, and the data transmission would become limited in each slot. Note that α(t)
k,n in (4.2) ensures that

the battery always has αt units of stored energy for channel estimation. Furthermore, the transmission policy in (4.2)

satisfies the causality constraint of the battery. The causality constraint restrains the energy corresponding to symbol

transmit power to be less than the available stored energy in the battery, i.e., αk,n ≤ k− αt. Note that αk,n is discrete

random variable and αk,n ∈ {0, 1, . . . ,K}4. Let ψεi,k,n = Pr(αk,n = i|Hε) denote the conditional PMF of αk,n

givenHε, ε = 0, 1. We have

ψεi,k,n =



1, if 0 ≤ k ≤ αt, i = 0

0, if 0 ≤ k ≤ αt, i 6= 0

Yk,n, if k ≥ αt+1, i = 0

Qi,k,n, if k ≥ αt+1, 1 ≤ i ≤ bkΩnc−αt

0, if k ≥ αt+1, i ≥ bkΩnc−αt + 1

(4.3)

in which

Qi,k,n = F εĝn(ci,k,n)− F εĝn(ai,k,n) (4.4a)

Yk,n = F εĝn(θn) +

min(bkΩnc,αt)∑
m=1

Qm−αt,k,n (4.4b)

ai,k,n =
θnkΩn

kΩn−αt−i
, ci,k,n =

θnkΩn
kΩn−αt−i−1

, (4.4c)

where F εĝn(x) = Fĝn(x|Hε) is the CDF of ĝn givenHε. Note that if ci,k,n < 0, we set ci,k,n = +∞.

The battery state at the beginning of time slot t + 1 depends on the battery state at the beginning of time slot t, the

harvested energy during time slot t, the transmission symbol, as well as αt. In particular, if at time slot t, SUn senses

4Examining (4.2) we realize that the largest value that α(t)
k,n can take is K − αt. Hence, the maximum transmit energy of SUn is bounded by

K − αt. The system designer can choose K such that signal distortion, due to the nonlinear behavior of power amplifiers, is prevented and the
operation of power amplifiers in their linear regions is guaranteed.
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its spectrum band to be idle, the state of its battery at the beginning of slot t+ 1 is

B(t+1)
n = min

{(
B(t)
n − αt − α(t)

k,n + α
(t)
hn

)+

, K

}
. (4.5)

On the other hand if at time slot t, SUn senses its spectrum band to be busy, the state of its battery at the beginning of

slot t+ 1 is

B(t+1)
n = min

{(
B(t)
n + α

(t)
hn

)+

, K

}
, (4.6)

since α(t)
k,n = 0. Considering the dynamic battery state model in (4.5) and (4.6) we note that, conditioned on α(t)

hn
and

α
(t)
k,n the value of B(t+1)

n only depends on the value of B(t)
n (and not the battery states of time slots before t). Hence,

the battery state random process B(t)
n can be modeled as a Markov chain (see Fig. 4.4). Let the probability vector of

battery state in time slot t be ζ(t)
n = [ζ

(t)
1,n, . . . , ζ

(t)
K,n]T . Note that the probability ζ(t)

k,n depends on the battery state at

slot t − 1, the number of battery units filled by the harvested energy during slot t − 1, the probability of spectrum

band sensed idle, and, the number of energy units allocated for data transmission at slot t − 1 when the spectrum

band is sensed idle, i.e., ζ(t)
k,n depends on B(t−1)

n , α
(t−1)
hn

, π̂0,n, α
(t−1)
k,n , respectively. Assuming the Markov chain is

time-homogeneous5, we let Φn denote the (K + 1) × (K + 1) transition probability matrix of this chain with its

(i, j)-th entry φni,j = Pr(B(t)
n = i|B(t−1)

n = j) given as

φn0,j =

K∑
l=0

[
ψ0
l,j,nπ̂0,nFαhn(αt+l−j)

]
+ π̂1,nFαhn(−j) (4.7a)

φnK,j =

K∑
l=0

[
ψ0
l,j,nπ̂0,n

(
1−Fαhn(αt+l+K−j)

)]
+ π̂1,n

(
1−Fαhn(K−j)

)
(4.7b)

φni,j =

K∑
l=0

[
ψ0
l,j,nπ̂0,nfαhn(αt+l+i−j)

]
+ π̂1,nfαhn(i−j), for i = 1, . . . ,K − 1 (4.7c)

where Fαhn(·) is the CDF of αhn . We have

ζ(t+1)
n = Φn ζ

(t)
n . (4.8)

Since the Markov chain characterized by the transition probability matrix Φn is irreducible and aperiodic, there exists

a unique steady-state distribution, regardless of the initial state [123]. Let ζn = limt→∞ ζ
(t)
n be the unique steady-state

5A Markov chain is time-homogeneous (stationary) if and only if its transition probability matrix is time-invariant. Adopting homogeneous
Markov chain model for studying EH-enabled communication systems is widely common [123].
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Figure 4.4: Schematics of Markov chain corresponding to the battery state random process B(t)
n .

probability vector. This vector satisfies the following equations

ζn = Φn ζn, (4.9a)

ζTn1 =

K∑
k=1

ζk,n = 1, (4.9b)

where 1 is an all-ones vector, i.e., ζn is the normalized eigenvector corresponding to the unit eigenvalue of Φn, such

that the entries of ζn sums up to one. The closed-form expression for ζn is [124]

ζn = (Φn − I +B)
−1

1, (4.10)

where B is an all-ones matrix and I is the identity matrix. From this point forward, we assume that the battery is at

its steady-state and we drop the superscript t.

To illustrate our transmission model in (4.2) we consider the following simple numerical example. Assuming that the
battery has K = 7 cells, Fig. 4.5 shows an example of αk,n for our CR system for two sets of {Ωn, θn} given as
Ω

(a)
n = 0.75, θ

(a)
n = 0.02 and Ω

(b)
n = 0.95, θ

(b)
n = 0.02. The corresponding transition probability matrices are given

in the following

Φ
(a)
n =



0.42 0.29 0.17 0.08 0.02 0 0 0

0.12 0.13 0.12 0.09 0.05 0.02 0 0

0.19 0.12 0.13 0.12 0.09 0.05 0.02 0

0.07 0.19 0.12 0.13 0.12 0.09 0.05 0.02

0.05 0.07 0.19 0.12 0.13 0.12 0.09 0.05

0.05 0.05 0.07 0.19 0.12 0.13 0.12 0.09

0.04 0.05 0.05 0.07 0.19 0.12 0.13 0.12

0.06 0.1 0.15 0.2 0.27 0.46 0.58 0.71



, Φ
(b)
n =



0.54 0.43 0.31 0.18 0.08 0.03 0 0

0.18 0.11 0.13 0.12 0.1 0.06 0.02 0

0.04 0.18 0.11 0.13 0.12 0.1 0.06 0.02

0.04 0.04 0.18 0.11 0.13 0.12 0.1 0.06

0.05 0.04 0.04 0.18 0.11 0.13 0.12 0.1

0.05 0.05 0.04 0.04 0.18 0.11 0.13 0.12

0.04 0.05 0.05 0.04 0.04 0.18 0.11 0.13

0.06 0.1 0.15 0.2 0.24 0.28 0.46 0.57



.
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Figure 4.5: This example shows how many energy units (αk,n) SUn spends for data transmission, given its battery state and the
received information about its channel gain via feedback link. (a) Ω

(a)
n = 0.75, θ

(a)
n = 0.02, (b) Ω

(b)
n = 0.95, θ

(b)
n = 0.02.

Our goal is to find the transmission parameters {Ωn, θn} in (4.2b) for all SUs such that the uplink sum-rate of our CR

network is maximized, subject to a constraint on the average interference that collective SUs can impose on PUrx. We

assume that this optimization problem is solved offline at AP, given the statistical information of (i) fading channels

and noises, (ii) randomly arriving energy packets, and (iii) PU’s activities, the number of samples collected during

spectrum sensing phase Nse, the number of training symbols sent during channel probing phase Nt and power of

training symbols Ptr. The solutions to this optimization problem, i.e., the optimal set {Ωn, θn}Nu
n=1 is available a

priori at the AP and SUs, to be utilized for adapting symbol power during data transmission phase. The idea of offline

power allocation optimization with a limited feedback channel has been used before for distributed detection systems

in wireless sensor networks [125]. In the following sections, we describe how SUs operate during spectrum sensing

phase, channel estimation phase, and data transmission phase. For the readers’ convenience, we have collected the

most commonly used symbols in Table 4.1.

4.2 Spectrum Sensing Phase

In order to access its spectrum band, SUn first needs to sense its band during spectrum sensing phase, to determine

whether it is busy or idle (see Fig. 4.3). We formulate the spectrum sensing at SUn as a binary hypothesis testing
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Table 4.1: Most commonly used symbols.

Symbol Description
Nse Number of collected samples during spectrum sensing phase
Nt Number of training symbols during channel estimation phase
Nd Number of data symbols during data transmission phase
Ptr Power of training symbols
hn, ĥn, h̃n Fading coefficient of SUn–AP link, LMMSE channel estimate, and its corresponding estimation error
γn, γ̂n, γ̃n Variances of hn, ĥn, h̃n
π0, π1 Prior probabilities ofH0 andH1

π̂0,n, π̂1,n Probabilities of spectrum bands being sensed idle or busy
ζk,n Probability of SUn battery being at state k
un Fading coefficient of PUtx–SUn link with variance δun
q Fading coefficient of PUtx–AP link with variance δq
zn Fading coefficient of SUn–PUrx link with variance δzn

problem, where the received signal at SUn can be written as:

H0 : yn[m] = wn[m],

H1 : yn[m] = un[m] p[m] + wn[m],
(4.11)

for m = 1, ..., Nse, where p[m] is the transmit signal of PUtx, wn[m] ∼ CN (0, σ2
wn) is the Additive White Gaussian

Noise (AWGN) at SUn and un[m] is the fading coefficient corresponding to PUtx–SUn channel. The two hypotheses

H0 and H1 with probabilities π0 and π1 = 1 − π0 denote the spectrum is truly idle and truly busy, respectively.

We assume that π0 and π1 are known to SUs based on long-term spectrum measurements. For spectrum sensing

we consider energy detector, where the decision statistics at SUn is Zn = 1
Nse

∑Nse

m=1 |yn[m]|2. The accuracy of

this detector is characterized by its false alarm probability Pfan = Pr(Ĥ1,n|H0) = Pr(Zn > ξn|H0) and detection

probability Pdn = Pr(Ĥ1,n|H1) = Pr(Zn > ξn|H1), where ξn is the local decision threshold. For large Nse, we can

invoke central limit theorem and approximate the CDF of Zn as Guassian. Hence, Pfan and Pdn can be expressed in

terms of Q function as below [2]

Pfan = Q

((
ξn
σ2
wn

− 1

)√
Nse

)
, (4.12a)

Pdn = Q

((
ξn
σ2
wn

− νn − 1

)√
Nse

2νn + 1

)
, (4.12b)
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where νn = Ppδun/σ
2
wn and Pp is the average transmit power of PUtx. For a given value of Pdn = P d, the false

alarm probability can be written as

Pfan = Q

(√
2νn + 1Q−1(P d) + νn

√
Tsefs

)
. (4.13)

The probabilities π̂0,n and π̂1,n, are related to Pdn and Pfan . In particular, we have π̂0,n = β0,n + β1,n and π̂1,n =

1− π̂0,n where

β0,n = Pr{H0, Ĥ0,n} = π0(1− Pfan), (4.14a)

β1,n = Pr{H1, Ĥ0,n} = π1(1− Pdn). (4.14b)

4.3 Channel Probing Phase

Depending on the outcome of its spectrum sensing, SUn either stays in spectrum sensing phase (i.e., remains silent in

the remaining of time slot) if its band is sensed busy (the detector outcome is Ĥ1,n), or it enters channel estimation

phase if its band is sensed idle (the detector outcome is Ĥ0,n). During channel estimation phase, we assume SUn sends

training vector xt =
√
Ptr 1, where 1 is an Nt × 1 all-ones vector to enable channel estimation at the AP. Let vector

sn = [sn(1), . . . , sn(Nt)]
T denote the discrete-time representation of received training symbols at the AP from SUn.

Assuming the fading coefficient hn corresponding to SUn–AP channel is unchanged during the entire time slot, we

have

H0, Ĥ0,n : sn[m] = hn
√
Ptr + vn[m],

H1, Ĥ0,n : sn[m] = hn
√
Ptr + q[m] p[m] + vn[m],

(4.15)

for m = 1, . . . , Nt, vn[m] ∼ CN (0, σ2
vn) is the AWGN at the AP, and q[m] is the fading coefficient corresponding

to PUtx–AP channel. The LMMSE estimate of hn given Ĥ0,n is [5, 117]

ĥn =ChnsnC
−1
sn sn, (4.16a)

Chnsn =E{hnsHn |Ĥ0,n}=γn
√
Ptr 1, (4.16b)

Csn =E
{
sns

H
n |Ĥ0,n

}
=ω0,n E

{
sns

H
n |H0, Ĥ0,n

}
+ ω1,n E

{
sns

H
n |H1, Ĥ0,n

}
, (4.16c)
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where

ω0,n = Pr{H0|Ĥ0,n} =
π0(1− Pfan)

π̂0,n
=
β0,n

π̂0,n
, (4.17a)

ω1,n = Pr{H1|Ĥ0,n} =
π1(1− Pdn)

π̂0,n
=
β1,n

π̂0,n
, (4.17b)

and

E
{
sns

H
n |H0, Ĥ0,n

}
= (γ̂0

nPtr + σ2
vn) I, (4.18a)

E
{
sns

H
n |H1, Ĥ0,n

}
= (γ̂1

nPtr + σ2
vn + σ2

p) I. (4.18b)

After substituting (4.17) into (4.16), ĥn reduces to

ĥn =
γn
√
Ptr

γnPtrNt + σ2
vn + ω1,nσ2

p

Nt∑
m=1

sn[m], (4.19)

where σ2
p = Ppδq . The estimation error is h̃n = hn−ĥn, where ĥn and h̃n are orthogonal random variables [117], and

ĥn and h̃n are zero mean. Approximating q[m]p[m] as a zero-mean Gaussian random variable with variance σ2
p, we

find that the estimate ĥn given Ĥ0,n is distributed as a Gaussian mixture random variable [5]. Let γ̂n and γ̃n, represent

the variances of ĥn and h̃n, respectively. Also, Let γ̂0
n and γ̂1

n represent the variances of ĥn under {H0, Ĥ0,n} and

{H1, Ĥ0,n}, respectively. We have

γ̂0
n = VAR{ĥn|H0, Ĥ0,n}=

γ2
nPtrNt

(
γnPtrNt+σ2

vn

)
(
γnPtrNt+σ2

vn+ω1,nσ2
p

)2 , (4.20a)

γ̂1
n = VAR{ĥn|H1, Ĥ0,n}=

γ2
nPtrNt

(
γnPtrNt+σ2

vn+σ2
p

)
(
γnPtrNt + σ2

vn+ω1,nσ2
p

)2 . (4.20b)
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Therefore, γ̂n = ω0,nγ̂
0
n+ω1,nγ̂

1
n. Also, let γ̃0

n and γ̃1
n indicate the variances of h̃n under {H0, Ĥ0,n} and {H1, Ĥ0,n},

respectively. We have

γ̃0
n =VAR{h̃n|H0, Ĥ0,n} = γn − γ̂0

n, (4.21a)

γ̃1
n =VAR{h̃n|H1, Ĥ0,n} = γn − γ̂1

n. (4.21b)

Hence, γ̃n = ω0,nγ̃
0
n +ω1,nγ̃

1
n. For ideal spectrum sensing, we get ω0,n = 1 and ω1,n = 0 and ĥn becomes Gaussian.

Let F εĝn(x) denote the CDF of ĝn under {Hε, Ĥ0,n} for ε = 0, 1. Note that under {Hε, Ĥ0,n} for ε = 0, 1, ĥn is zero

mean complex Gaussian. Hence, under {Hε, Ĥ0,n} for ε = 0, 1, ĝn is an exponential random variable with mean γ̂εn

and CDF

F εĝn(x) = 1− e
−x
γ̂εn . (4.22)

The CDF of ĝn, denoted as F εĝn(x), can be expressed in terms of F 0
ĝn

(x) and F 1
ĝn

(x) as the following:

Fĝn(x) = ω0,n F
0
ĝn

(x) + ω1,n F
1
ĝn

(x). (4.23)

After channel estimation, the AP feeds back the channel gains ĝn = |ĥn|2 over a feedback link to SUn.

4.4 Data Transmission Phase

After channel estimation phase, SUn enters this phase. We note that entering this phase is only possible, if in spectrum

sensing phase the outcome of the binary detector is Ĥ0,n. During this phase, SUn sends Gaussian data symbols to

the AP, while it adapts its transmission power according to information provided by the AP through the feedback

channel about SUn–AP link as well as its battery state. In particular, SUn transmits Nd zero-mean i.i.d. complex

Gaussian symbols xn[m] for m = 1, . . . , Nd with power Pk,n = αk,n pu, when the battery is at state k and αk,n is

given in (4.2). Let sn[m] denote the discrete-time representation of received signal at the AP from SUn. Due to error

in spectrum sensing, we need to distinguish the signal model for sn[m] underH0 andH1. We have

H0, Ĥ0,n : sn[m] = hnxn[m] + vn[m],

H1, Ĥ0,n : sn[m] = hnxn[m] + q[m] p[m] + vn[m].

(4.24)
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Substituting hn = ĥn + h̃n in (4.24), we reach at6

H0,Ĥ0,n: sn[m]= ĥnxn[m]+

new noise ηn,0[m]

h̃nxn[m]+vn[m],

H1,Ĥ0,n: sn[m]= ĥnxn[m]+h̃nxn[m]+q[m]p[m]+vn[m]

new noise ηn,1[m]

,
(4.25)

where the new noise terms depend on h̃n. Given ĝn at the AP, we obtain an achievable rate expression for a time

slot by considering symbol-wise mutual information between channel input and output over the duration of Nd data

symbols as follows

Rn=
WDd

Nd

Nd∑
m=1

[
β0,n E

{
I
(
xn[m]; sn[m] | ĝn,H0, Ĥ0,n

)}
+β1,n E

{
I
(
xn[m]; sn[m] | ĝn,H1, Ĥ0,n

)}]
, (4.26)

where Dd = Td/Tf is the fraction of the time slot used for data transmission and the expectations in (4.26) are

taken over the conditional PDFs of ĝn given {Hε, Ĥ0,n} for ε = 0, 1. To characterize Rn in (4.26) we need to find

E{I(xn[m]; sn[m] | ĝn,Hε, Ĥ0,n)}. Exploiting the chain rule we can rewrite this expectation as follows

E
{
I
(
xn[m]; sn[m] | ĝn,Hε, Ĥ0,n

)}
=

K∑
k=0

ζk,n I
(
xn[m]; sn[m] | ĝn, k,Hε, Ĥ0,n

)
. (4.27)

Note that I(xn[m]; sn[m]|ĝn,Hε, Ĥ0,n) in (4.27) is the mutual information between xn[m] and sn[m] when the

battery state is k, given ĝn and {Hε, Ĥ0,n}. From now on, we drop the variable m in xn[m] and sn[m] for brevity of

the presentation. Focusing on I(xn; sn|ĝn,Hε, Ĥ0,n), we have

I
(
xn; sn | ĝn, k,Hε, Ĥ0,n

)
= h

(
xn | ĝn, k, Ĥ0,n,Hε

)
− h

(
xn | sn, ĝn, k, Ĥ0,n,Hε

)
, (4.28)

where h(·) is the differential entropy. Consider the first term in (4.28). Since xn ∼ CN (0, Pk,n) we have h(xn | ĝn, k, Ĥ0,n,Hε) =

log2(πePk,n). Consider the second term in (4.28). Due to channel estimation error, the new noises ηn,ε’s in (4.25)

are non-Gaussian and this term does not have a closed form expression. Hence, similar to [107, 111, 118] we employ

bounding techniques to find an upper bound on this term. This term is upper bounded by the entropy of a Gaussian

6We note that underHε, our channel model hn = ĥn + h̃n can be extended to include both the effects of channel estimation error and delayed
feedback due to SUn’s mobility. In particular, we can model hn = χhn + zn, where the parameter χ = J0(2πvTf/λ) is from Jakes’ model
for Rayleigh fading [115], v is the velocity of SUn, and λ is the wavelength of transmit signal, hn is the outdated CSI available at SUn, and
zn ∼ CN

(
0, (1− χ2)γ̂εn + γ̃εn

)
. Substituting this channel model in (4.24) we reach at a signal model that is different from (4.25), which can be

used to derive a new rate lower bound Rn,LB.
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random variable with the variance Θn,ε
M

Θn,ε
M = E

{∣∣∣∣xn − E
{
xn | ĝn, k, Ĥ0,n,Hε

}∣∣∣∣2
}
, (4.29)

where the expectations are taken over the conditional pdf of xn given sn, ĝn, k, Ĥ0,n,Hε. In fact, Θi,ε
M is the MSE

of the MMSE estimate of xn given sn, ĝn, k, Ĥ0,n,Hε. Using minimum variance property of MMSE estimator, we

have Θn,ε
M ≤ Θn,ε

L , where Θn,ε
L is the MSE of the LMMSE estimate of xn given sn, ĝn, k, Ĥ0,n,Hε. Combining all,

we find h(xn|sn, ĝn, k, Ĥ0,n,Hε) ≤ log2(πeΘn,ε
L ) and I(xn; sn|ĝn, k, Ĥ0,n,Hε) ≥ log2(Pk,n/Θ

n,ε
L ) where

Θn,ε
L =

Pk,nσ
2
ηn,ε

σ2
ηn,ε + ĝnPk,n

, (4.30)

σ2
ηn,ε = γ̃εnPk,n + σ2

vn + ε σ2
p. (4.31)

At the end, we obtain the lower bounds as follow

I
(
xn; sn | ĝn, k, Ĥ0,n,H0

)
≥ log2

(
1 + ĝnb

0
k,n

)
, (4.32a)

I
(
xn; sn | ĝn, k, Ĥ0,n,H1

)
≥ log2

(
1 + ĝnb

1
k,n

)
, (4.32b)

where

b0k,n =
Pk,n

(γ̃0
nPk,n+σ2

vn)
, b1k,n =

Pk,n
(γ̃1
nPk,n+σ2

vn+σ2
p)
. (4.33)

Substituting equations (4.27) and (4.32) in (4.26) and noting that the symbol-wise mutual information between channel

input and output for Nd data symbols are equal we reach at

Rn ≥ Rn,LB =Ddβ0,nW

K∑
k=0

ζk,nE
{

log2

(
1 + ĝnb

0
k,n

)
|H0

}

+Ddβ1,nW

K∑
k=0

ζk,nE
{

log2

(
1 + ĝnb

1
k,n

)
|H1

}
. (4.34)
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Next, we compute the conditional expectations in (4.34), in which we take average over ĝn, givenHε. Using (4.3) and

(4.4c) we have

E

{
log2

(
1 + ĝnb

ε
k,n

)
|Hε

}
=

bkΩnc−αt∑
i=1

∫ ci,k,n

ai,k,n

log2

(
1 + Sεi,n x

)
fεĝn(x)dx =

bkΩnc−αt∑
i=1

Vk(Sεi,n, γ̂
ε
n) (4.35a)

in which

S0
i,n=

i pu

(γ̃0
n i pu+σ2

vn)
, S1

i,n=
i pu

(γ̃1
n i pu+σ2

vn+σ2
p)
, (4.35b)

Vk(Si,n, γ̂n) = M(ci,k,n,Si,n, γ̂n)−M(ai,k,n,Si,n, γ̂n), (4.35c)

and

M(x,S, w) =

∫
log2(1 + Sx)

e
−x
w

w
dx =

e
1

Sw

ln(2)
Ei
(
−x
w
− 1

Sw

)
− e

−x
w log2(1 + Sx). (4.36)

Also, ci,k,n and ai,k,n are given in (4.4c). Substituting (4.35a) in (4.34) we reach to

Rn,LB = Ddβ0,nW

K∑
k=αt+1

bkΩnc−αt∑
i=1

ζk,nVk(S0
i,n, γ̂

0
n) +Ddβ1,nW

K∑
k=αt+1

bkΩnc−αt∑
i=1

ζk,nVk(S1
i,n, γ̂

1
n). (4.37)

We note that the lower bounds in (4.32) are achieved when the new noises ηn,0, ηn,1 in (4.25) are regarded as worst-

case Gaussian noise and hence the MMSE and LMMSE of xn given sn, ĝn, k, Ĥ0,n,Hε coincide. Given the rate

lower bound Rn,LB for SUn, the uplink sum-rate lower bound for all SUn’s is

RLB =

Nu∑
n=1

Rn,LB. (4.38)

So far, we have established a sum-rate lower bound on the achievable sum-rate. Next, we characterize the average

AIC. Suppose Iav is the maximum allowed average interference, i.e., the average interference that collective SUs

impose on PUrx cannot exceed Iav. To satisfy AIC, we have

Nu∑
n=1

In ≤ Iav, (4.39)

where In is the average interference power that SUn imposes on PUrx. We find

In = β1,nE{zn}
[
Dd E

{
Pn(ĝn)

}
+DtrPtr

]
(4.40)
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where Dtr = Ttr/Tf and the expectation is over the conditional pdfs of ĝn under {H1, Ĥ0,n}. Considering the right

side of (4.40), we note that the first term is the average interference power imposed on PUrx when SUn transmits

data symbols, and the second term is the average interference imposed on PUrx when SUn sends training symbols for

channel estimation at the AP. Using (4.3) we compute the term with expectation inside (4.40) as follows

E
{
Pn(ĝn)

}
=

K∑
k=0

ζk,n

K∑
i=0

Pr(αk,n = i|H1) i pu =

K∑
k=αt+1

ζk,n

bkΩnc−αt∑
i=1

ψ1
i,k,n i pu. (4.41)

Substituting (4.41) into (4.39), we can rewrite the AIC in (4.39) as

Nu∑
n=1

β1,nδzn

[
K∑

k=αt+1

ζk,n

bkΩnc−αt∑
i=1

ψ1
i,k,n i pu +DtrPtr

]
≤ Iav. (4.42)

For ideal spectrum sensing we get β1,n = 0 in (4.14), implying that data transmission from SUs to the AP does not

cause interference on PUrx and the left-hand side of (4.42) becomes zero, i.e., the AIC is always satisfied.

Next, we examine how spectrum sensing error and channel estimation error affect RLB and AIC expressions. First,

spectrum sensing error affects AIC via β1,n, and RLB via β0,n and β1,n. Recall β0,n, β1,n depend on π0, Pfan , Pdn

(see (4.14)). Second, channel estimation error affects AIC via Dtr, ψ
1
i,k,n, and RLB via γ̃εn.

Having the mathematical expressions for RLB and AIC, our goal is to optimize the set of transmission parameters

{Ωn, θn} for all SUs such that RLB is maximized, subject to the AIC. To inspect the underlying trade-offs between

decreasing the average interference imposed by SUn’s on PUrx and increasing the sum-rate lower boundRLB, we note

that increasing data symbol transmission power Pk,n increases RLB. However, it increases the average interference.

Aiming to strike a balance between increasing RLB and decreasing the imposed average interference, we seek the

optimal {Ωn, θn}Nu
n=1 such that RLB in (4.34) is maximized, subject to AIC given in (4.42). In other words, we are
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interested in solving the following constrained optimization problem

Maximize
{Ωn, θn}Nu

n=1

RLB (4.P1)

s.t.: Ωn ∈ [0, 1], ∀n

θn ≥ 0, ∀n

ζn =

(
Φn − I +B

)−1

1, ∀n

AIC in (4.42) is satisfied.

Problem (4.P1) is not convex with respect to {Ωn, θn}Nu
n=1. Unfortunately, the objective function and the constraints

in (4.P1) are not differentiable with respect to {Ωn, θn}Nu
n=1. Hence, existing gradient-based algorithms for solving

non-convex optimization problems cannot be used to solve (4.P1). We resort to a grid-based search method, which

requires 2Nu-dimensional search over the search space [0, 1]Nu × [0,∞)
Nu .

To reduce the computation complexity of solving (4.P1), we propose to decompose (4.P1) to Nu sub-problems cor-

responding to Nu SUs. To achieve such decomposition, we assume that In in (4.40) cannot exceed Iav/Nu. Let

(4.SP1-SUn) refer to the sub-problem corresponding to SUn. We have

Maximize
{Ωn, θn}

Rn,LB (4.SP1-SUn)

s.t.: Ωn ∈ [0, 1],

θn ≥ 0,

ζn =

(
Φn − I +B

)−1

1,

In ≤ Iav/Nu.

We solve sub-problem (4.SP1-SUn) for n = 1, . . . , Nu, using a grid-based search method, which requires 2-dimensional

search over the search space [0, 1] × [0,∞). To curb the computational complexity of these searches, we can limit

θn’s to a maximum value, denoted as θmax. We refer to the solutions obtained from solving (4.P1) and solving Nu

sub-problems, respectively, the “optimal” and the “sub-optimal” solutions. Clearly, the accuracy of these solutions de-

pend on the resolution of the grid-based searches. We call the former solution the “optimal”, in the sense that it is the

best achievable solution, and the latter solution the “sub-optimal”, in the sense that solving Nu sub-problems always
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yield a sub-optimal solution, with respect to solving (4.P1), since AIC in (4.P1) is coupled across all SUs. When Iav

in (4.39) is large enough such that AIC is not active, the “optimal” and “sub-optimal” solutions become identical. In

the following, we compare the computational complexity of finding the “optimal” and “sub-optimal” solutions.

For finding both the “optimal” and the “sub-optimal” solutions, SUn needs to perform two tasks for each point in

its grid-based search: task (i) forming Φn and solving (4.10) to find ζn, task (ii) calculating Rn,LB and In. Our

numerical results show that for a fixed Ωn, θn, the computational complexity of task (i) and task (ii) are O(K3.1)

and O(K2.1), respectively. Assuming that the intervals [0, 1] and [0, θmax] are divided into NΩ and Nθ sub-intervals,

respectively, we realize that SUn needs to perform task (i) and task (ii) for NΩNθ times in total. Therefore, the com-

putational complexity of finding the “sub-optimal” solution is O(NuNΩNθ(K
3.1 + K2.1)), which can be simplified

to O(NuNΩNθK
3.1).

To solve (4.P1), however, the leftmost summation in (4.42) must be computed for all combinations of {Ωn, θn}Nu
n=1

and its computational complexity isO((NΩNθK
2.1)Nu). Therefore, the computational complexity of finding the “op-

timal” solution is O((NΩNθK
2.1)Nu +NuNΩNθK

3.1), which for Nu ≥ 2 can be simplified to O((NΩNθK
2.1)Nu).

We note that the computational complexity of obtaining the “optimal” and the “sub-optimal” solutions grow exponen-

tially and linearly, respectively, in Nu.

4.5 Simulation Results

In this section we corroborate our analysis on constrained maximization of the achievable uplink sum-rate lower bound

with Matlab simulations, and examine how the optimized uplink sum-rate lower bound depends on the average number

of harvesting energy packets ρn, the maximum allowed average interference power Iav, the duration of spectrum

sensing phase Tse, the number of consumed cells of energy for channel probing αt, and the size of the battery K. Our

simulation parameters are given in Table 4.2.

• Spectrum sensing-channel probing-data transmission trade-offs: To explore these trade-offs, in this section we

let Nu = 1 and examine how the rate lower bound RLB in (4.38) for a single user changes when we vary Tse, or αt.

The simulation parameters, except for αt, Tse, σ
2
w, σ

2
v are given in Table 4.2 7.

7Note that the variances of channel estimate and corresponding estimation error in (4.20) depend on the product PtrNt = αteufs and is
independent of Ttr. That is the reason, instead of Ttr, we consider varying αt, to understand channel probing trade-offs.
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Table 4.2: Simulation Parameters

Parameter Value Parameter Value
Pp 1watts σ2

vn 1
π0 0.7 σ2

wn
1

Ttr 0.1ms αt 1

Tse 1ms Pd 0.85
Tf 10ms W 10KHz
eu 0.01 δq 1

Fig. 4.6a shows RLB versus Tse for two values of the energy harvesting parameter ρ = 15, 16, σ2
w = σ2

v = 1 and

αt = 1. This figure suggests that there exists a trade-off between Tse and RLB. On the positive side, as Tse (or

equivalently Nse) increases, the accuracy of the energy detector for spectrum sensing increases (i.e., Pfan in (4.12b)

decreases). A more accurate spectrum sensing can reveal new opportunities for SUn to be exploited for its data

transmission, that can increase RLB. On the negative side, as Tse increases, the duration of data transmission phase

Td = Tf − Tse − Ttr decreases. This trade-off between spectrum sensing and data transmission indicates that, given

the parameters (including αt), there is an optimal Tse, denoted as T ∗se in Fig. 4.6a, that maximizes RLB. For instance,

for ρ = 15, 16 we have T ∗se = 0.6, 0.75 ms.

Fig. 4.6b plots RLB versus αt for ρ = 18, 20, Tse = 1 ms and σ2
w=σ2

v=5. This figure suggests that a trade-off exists

between αt andRLB. On the positive side, as αt increases, the accuracy of channel probing (measured by the variance

of channel estimation error in (4.20)) improves. A more accurate channel probing can increase RLB. On the negative

side, as αt increases, the available energy for data transmission decreases. This trade-off between channel probing and

data transmission shows that, given the parameters (including Tse), there is an optimal αt, denoted as α∗t in Fig. 4.6b,

that maximizes RLB. For instance, for ρ = 15, 16 we have α∗t = 4. The x-axis in Fig. 4.6b can be converted to the

normalized channel estimation error variance γ̃/γ.

• Effect of the optimization variables Ω, θ: In this section, we let Nu = 1 and we illustrate how the entries of the

steady-state probability vector ζ in (4.10), RLB in (4.38) for a single user, and the battery outage probability POut
b

defined below, the spectral efficiency ηSE and the energy efficiency ηEE defined below, depend on the optimization

variables Ω and θ. We define POut
bn

as the steady-state probability of the battery of SUn being equal or lower than αt.

When the battery is at outage, it cannot yield energy for data transmission or channel probing. We have

POut
bn = Pr(Bn ≤ αt) =

αt∑
k=0

ζk,n. (4.43)
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Figure 4.6: (a) RLB versus Tse for K = 80, θ = 0.25,Ω = 0.35, σ2
w =σ2

v = 1, (b) RLB versus αt for K = 200, θ = 0.25,Ω =
0.35, σ2

w=σ2
v=5.

We define the spectral efficiency of our CR system, denoted as ηSE and measured in bits/sec/Hz, as

ηSE =
RLB

total available bandwidth
=

RLB

MW
(4.44)

Inspired by [126], we define the energy efficiency of our CR system, denoted as ηEE and measured in bits/Hz/Joule,

as

ηEE =
ηSE

average transmit power of all SUs
. (4.45)

Let P denote the average transmit power of all SUs during channel probing and data transmission phases in our CR

system. We find P as the following

P = Dd

Nu∑
n=1

K∑
k=αt+1

ζk,n

bkΩnc−αt∑
i=1

i pu

[
β0,nψ

0
i,k,n + β1,nψ

1
i,k,n

]
+DtrPtr

Nu∑
n=1

π̂0,n. (4.46)

The simulation parameters are given in Table 4.2. Also, we let γ = 2, δu = 1, δz = 1. Fig. 4.7a illustrates RLB for a

single user versus Ω for ρ = 15, 20. We observe that RLB is neither a convex nor a concave function of Ω. This figure

suggests that there is an optimal Ω, which we denote as Ω∗, that maximizes RLB. Starting from small values of Ω, as

Ω increases (until it reaches the value Ω∗), RLB increases, because the harvested energy can recharge the battery and
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Figure 4.7: (a) RLB versus Ω for K = 80, θ = 0.2, (b) RLB versus θ for K = 80,Ω = 0.35.

can yield more power for data transmission. However, when Ω exceeds Ω∗, the harvested and stored energy cannot

support the data transmission and RLB decreases. Moreover, as ρ increases, RLB increases as well. The behavior of

RLB versus θ is shown in Fig. 4.7b for ρ = 15, 18. We observe that RLB is neither a convex nor a concave function of

θ. Similar to Ω, there is an optimal θ, which we denote as θ∗, that maximizes RLB. Starting from small values of θ, as

θ increases (until it reaches θ∗), RLB increases. However, when θ exceeds θ∗, RLB decreases.

Fig. 4.8 plots the entries of the steady-state probability vector ζ versus k for Ω = 0.45, 0.3 and θ = 0.2. Fig. 4.9 plots

the entries of ζ versus k for θ = 0.1, 0.5 and Ω = 0.35. To quantify the effect of Ω and θ on the entries of ζ we define

the average energy stored at the battery of SUn as

Bn = E{Bn} =

K∑
k=0

k ζk,n, (4.47)

where the largest possible value for Bn is K. Considering Figs. 4.8a and 4.8b, we find B(a)
= 16.97 for Ω = 0.45,

implying that the battery is near empty, and B(b)
= 66.30 for Ω = 0.30, implying that the battery is near full.

Considering Figs. 4.9a and 4.9b, we find B(a)
= 24.08 for θ = 0.1 and B(b)

= 71.55 for θ = 0.5. Clearly, the

values of Ω and θ affect B. Given θ, when Ω is large, data transmit energy αk in (4.2) is large. Due to large energy

consumption for data transmission, compared to energy harvesting, the battery becomes near empty at its steady-state

and SU may stop functioning, due to energy outage. When Ω is small, αk in (4.2) is small. Due to small energy
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Figure 4.8: ζk versus k for K = 80, ρ = 15, θ = 0.2, (a) Ω = 0.45 , (b) Ω = 0.30.
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Figure 4.9: ζk versus k for K = 80, ρ = 15,Ω = 0.35, (a) θ = 0.1 , (b) θ = 0.5.

consumption for data transmission, compared to energy harvesting, the battery becomes near full at its steady-state,

indicating that SU has failed to utilize the excess energy. Both cases inevitably hinder data transmission, leading to a

reduction in RLB. Similar argument holds true, when θ varies and Ω is given. In particular, when θ is small, transmit

energy αk in (4.2) is large, and when θ is large, transmit energy αk in (4.2) is small. Again, both cases impede data

transmission, leading to a lower RLB. Overall, the observations we make in Figs. 4.7, 4.8, 4.9 confirm that optimizing

both Ω and θ to achieve a balance between the energy harvesting and the energy consumption for data transmission is

of high importance.
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Figure 4.10: (a) POut
b versus Ω for K = 80, θ = 0.05, (b) POut

b versus θ for K = 80,Ω = 0.35.

Fig. 4.10a illustrates the behavior of POut
b for a single user in terms of Ω for θ = 0.05. Fig. 4.10b plots POut

b versus

θ for Ω = 0.35. For αt = 1, POut
b in (4.43) reduces to POut

b = ζ0 + ζ1, i.e., POut
b depends on Ω and θ, via only

the first two entries of vector ζ. Fig. 4.10a shows that, as Ω increases, POut
b increases as well. This is because as

Ω increases, given θ, αk in (4.2) increases. Due to large energy consumption for data transmission the chance of the

battery depletion and hence POut
b increase. Fig. ?? demonstrates that, as θ increases, POut

b decreases. This is because

as θ increases, given Ω, αk in (4.2) decreases. Due to small energy consumption for data transmission the chance of

the battery depletion and hence POut
b decrease.

Fig. 4.11a shows how ηEE and ηSE vary as Ω changes. As Ω increases, both ηEE and ηSE increase, until Ω reaches a

certain value, denoted as Ω∗EE. We note that at Ω = Ω∗EE, ηEE achieves its maximum value. When Ω exceeds Ω∗EE,

ηEE decreases while ηSE increases. This trend continues until Ω reaches another certain value, denoted as Ω∗SE. We

note that at Ω = Ω∗SE, ηSE achieves its maximum value. When Ω exceeds Ω∗SE, both ηEE and ηSE decrease. We also

observe that Ω∗SE > Ω∗EE.

Fig. 4.11b shows how ηEE and ηSE vary as θ changes. As θ increases, both ηEE and ηSE increase, until θ reaches a

certain value, denoted as θ∗SE. We observe that at θ = θ∗SE, ηSE achieves its maximum value. When θ exceeds θ∗SE,

ηSE decreases while ηEE increases. This trend continues until θ reaches another certain value, denoted as θ∗EE. When

θ exceeds θ∗EE, both ηEE and ηSE decrease. We also observe that θ∗SE < θ∗EE.
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Figure 4.11: (a) ηEE versus ηSE for different values of Ω and θ = 0.02, (b) ηEE versus ηSE for different values of θ and Ω = 0.6.

Motivated by [126] we define a new metric, denoted as Z below, which is a weighted summation of ηSE and ηEE

Z = κ ηSE + (1− κ) ηEE. (4.48)

where 0 ≤ κ ≤ 1 is the weighting factor. When κ = 1, maximizing Z defined in (4.48) becomes equal to maximizing

the spectral efficiency (our problem in (4.P1)). When κ = 0, maximizing Z becomes equal to maximizing the energy

efficiency. Fig. 4.12a illustrates Z versus Ω for different values of κ. We observe that the value of Ω which maximizes

Z is different for different values of κ. Fig. 4.12b illustrates Z versus θ for different values of κ. We observe that the

value of θ which maximizes Z is different for different values of κ.

• Solving Problem (4.P1): Next, we consider solving the constrained optimization problem (4.P1) and (4.SP1-SUn)

and plot the maximized RLB, denoted as R∗LB (R∗LB is RLB evaluated at the solutions obtained from solving (4.P1)

and (4.SP1-SUn)).

Fig. 4.13 depicts R∗LB obtained by solving (4.P1) and (4.SP1-SUn) versus Iav for Nu = 3, π0 = 0.7, 0.8. We let

the statistics of fading coefficients be different across SUs, γ = [2, 2.2, 2.1], δu = [1, 0.8, 1.2], δz = [1, 0.5, 0.8]

and K = 60, ρ = 10 be equal for all SUs. We observe that for small Iav the “sub-optimal” solution obtained from

solving (4.SP1-SUn) yields a lower sum-rate in comparison to the “optimal” solution obtained from solving (4.P1).

However, for large Iav, when AIC is not active these two solutions become identical. As π0 increases, the probability

94



0.1 0.2 0.3 0.4 0.5 0.6
0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

(a)

0.05 0.1 0.15 0.2 0.25 0.3
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

(b)

Figure 4.12: (a) Z versus Ω for θ = 0.02, (b) Z versus θ for Ω = 0.6.
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Figure 4.13: RLB versus Iav for K = 60, ρ = 10, Nu = 3.

of the spectrum being actually idle increases and the opportunity for SUs to utilize the spectrum for data transmission

increases. Consequently, the sum-rate lower bound increases as π0 increases, for a given Iav.

Fig. 4.14 depicts R∗LB versus K for Nu = 3, ρ = 30, 40. We observe that as K increases, R∗LB increases. This is

expected, since as K increases the chance of energy overflow decreases, leading to a larger amount of stored energy

in the battery, which can be utilized to support a higher data rate transmission. Fig. 4.15 shows R∗LB versus Iav for

K = 80, ρ = 10, 15 and Nu = 3. For small Iav, the AIC in (4.42) is active and consequently, it limits transmit power
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Figure 4.14: R∗LB versus K for Iav = 2 dB.
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Figure 4.15: R∗LB versus Iav for Nu = 3,K = 80.

of SUs. As Iav increases, SUs can transmit at higher power levels and R∗LB increases, until R∗LB reaches its maximum

value. Increasing Iav any further, beyond the knee point in Fig. 4.15, does not increase R∗LB. This is because for large

Iav, transmit power levels are restricted by the amount of harvested and stored energy in the battery ( i.e., they are not

restricted by AIC). Therefore, increasing Iav beyond the knee point has no effect on R∗LB. Moreover, for small Iav

where the AIC is active, increasing ρ has no effect on R∗LB. On the other hand, for large Iav, when ρ increases, R∗LB

increases.

Considering SU1, Fig 4.16 depicts POut
b1

of this user versusK where the optimization variables Ω1 and θ1 are obtained

by solving (4.P1) and maximizing RLB and then substituting the optimized variables in (4.43) to calculate POut
b1

. We

observe that increasing K leads to a lower POut
b1

.

We define the transmission outage probability POut
αn as the probability of SUn not being able to transmit data to the AP,

due to either a weak SUn–AP link with small fading coefficient or insufficient amount of stored energy at the battery.

We have

POut
αn = Pr(Pn = 0|Ĥ0,n) = ω0,n Pr(Pn = 0|Ĥ0,n,H0) + ω1,n Pr(Pn = 0|Ĥ0,n,H1), (4.49)
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Figure 4.16: POut
b1

for SU1 versus K when Iav = 2 dB.
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Figure 4.17: POut
α1

for SU1 versus Iav for SU1 whenK = 100.

where

Pr(Pn = 0|Ĥ0,n,Hε)

=

αt∑
k=0

ζk,n Pr(αk,n = 0|Ĥ0,n,Hε,Bn ≤ αt) +

K∑
k=αt+1

ζk,n Pr(αk,n = 0|Ĥ0,n,Hε,Bn≥αt+1). (4.50)

Substituting (4.3) and (4.50) in (4.49) we get

POut
αn =

αt∑
k=0

ζk,n +

K∑
k=αt+1

ζk,nYk,n. (4.51)

Fig. 4.17 shows POut
α1

for SU1 versus Iav where the optimization variables Ω1 and θ1 are obtained by solving (4.P1)

and maximizing RLB and then substituting the optimized variables in (4.51) to compute POut
α1

. Starting from small

Iav, as Iav increases, SUs can transmit at higher power levels and POut
α1

decreases, until POut
α1

reaches its minimum

value. Increasing Iav any further, beyond the knee point in Fig. 4.17, does not reduce POut
α1

. This is because for large

Iav transmit power levels are restricted by the amount of harvested and stored energy in the battery ( i.e., they are not

restricted by AIC). Therefore, increasing Iav beyond the knee point has no effect on POut
α1

.
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4.6 Conclusion

We considered an uplink opportunistic CR network, that can access a spectrum band licensed to a primary network.

Each SU is equipped with a finite size battery, for storing energy. Modeling the dynamics of the battery as a finite state

Markov chain, we established a lower bound on the achievable uplink sum-rate of SUs–AP links, in the presence of

both spectrum sensing and channel estimation errors. We proposed a parameterized transmit power control strategy

that allows each SU to adapt its power, according to the received feedback information from the AP regarding its

link fading coefficient and its stored energy in the battery. We optimized the transmit parameters such that the derived

uplink sum-rate lower bound is maximized, subject to AIC. Since the proposed constrained optimization problem is not

convex and the objective function and the constraints are not differentiable with respect to the optimization parameters,

we resorted to grid-based search methods to solve the problem. We explored the trade-offs between RLB, spectrum

sensing duration, and channel estimation error. We also illustrated the trade-offs between spectral efficiency and

energy efficiency for our CR system. As future work, we plan to study how a non-ideal feedback channel, combined

with spectrum sensing and channel estimation errors, will affect our sum-rate maximization problem. In particular, we

will consider the effects of SUn’s mobility and bandwidth-limited feedback channel on our optimization problem and

its solution.
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CHAPTER 5: THROUGHPUT-OPTIMAL D2D MMWAVE

COMMUNICATION: JOINT COALITION FORMATION, POWER, AND

BEAM OPTIMIZATION

In this chapter, we explore a throughput-optimal design for a D2D MMWAVE network, where the nodes employ

directional antennas for wireless communication. In particular, we consider a MMWAVE network with a total available

bandwidth of Bc Hz, that supports communication of N cooperative pairs of transmitters and receivers over fading

channels. We assume the available spectrum band is divided into Nc non-overlapping sub-bands, where each sub-

band has a bandwidth of W = Bc/Nc Hz. Also, we assume Nc � N . Each node is capable of steering its beam

within the range of its field of view (FOV) [1, 5]. Also, each transmitter node can adjust its transmit power. The

transmitter-receiver pairs can form up to Nc disjoint coalitions, such that the pairs in a particular coalition share the

same sub-band for communication. Therefore, the pairs within a coalition cause co-channel interference, whereas the

pairs in different coalitions do not interfere.

The questions we address are: What is the best coalition among the pairs? What are the optimal beam steering angles

of directional antennas of the pairs within each coalition, and what are the optimal transmit powers such that the

network throughput, defined as the sum-rate of all N transmitter-receiver pairs in Nc coalitions, is maximized? We

combine the concepts of coalition formation among cooperative transmitter-receiver pairs and directional MMWAVE

bands, and we take full advantage of adaptive beam steering and adaptive transmit power to improve the spectral

efficiency and maximize the network throughput.

5.1 System Overview

5.1.1 System Model

To describe our system model, suppose link i denotes the wireless communication link between transmitter ti and

receiver ri of pair i, for i = 1, . . . , N (see Fig. 5.1). Our wireless channel propagation model encompasses both flat

fading and path loss. Suppose nodes ti and rj are located at Cartesian locations (Xti , Yti) and (Xrj , Yrj ), respectively.

Let the angles φti and φrj (measured in radian) denote the the antenna orientations of nodes ti and rj in their local
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coordinates, respectively. Also, let the angle θtirj denote the orientation of the line connecting nodes ti and rj where

θtirj = tan−1

(
Yti − Yrj
Xti −Xrj

)
. (5.1)

Suppose A`(φ) denotes the antenna gain of node ` (which can be either a transmitter or receiver) at an arbitrary angle

φ. Suppose pair i is in coalition c, i.e., the pair is communicating over sub-band c, for c = 1, ..., Nc. The received

signal power at node ri from node ti can be written as

P ctiri = P cgctiriGtiri(φti , φri), (5.2)

where P c is the transmit power of ti, gctiri is the power of fading channel between ti and ri corresponding to sub-

band c. We model gctiri as an Exponential random variable with mean E{gctiri}= d0
(dtiri )

α , where d0 is the reference

distance, dtiri =
√

(Xti −Xri)
2 + (Yti − Yri)2 is the Euclidean distance between ti and ri, and α is the path loss

exponent. Also, Gtiri(φti , φri) is the product of antenna gains of ti and ri when the antenna orientations of ti and ri

in their local coordinates are φti and φri , respectively. We have

Gtiri(φti , φri) = Ati(φti − θtiri)Ari(φri − π − θtiri). (5.3)

Note that communication of pair i in coalition c causes co-channel interference on other receiver nodes in this coalition.

Similarly, communication of other pairs in coalition c causes co-channel interference on node ri in this coalition.

Suppose Ictjri denotes the interference power imposed on ri from tj in coalition c. This interference power can be

written as

Ictjri = P cgctjriGtjri(φtj , φri), (5.4)

where gctjri is the power of fading channel between tj and ri corresponding to sub-band c, and

Gtjri(φtj , φri) = Atj (φtj−θtjri)Ari(φri−π−θtjri). (5.5)

To simplify the presentation, we let the binary variable aci indicate whether or not transmitter-receiver pair i is in

coalition c, i.e., if aci = 1 then pair i is in coalition c and thus link i operates in sub-band c, otherwise, aci = 0. The
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Figure 5.1: An example of 5 transmitter-receiver pairs in a coalition. In each pair, the directional antennas of transmitter and
receiver are exactly along the center of their main lobes (which is not necessarily throughput-optimal).

rate of link i operating over sub-band c can be written as

Rci = W log2

(
1 +

aciP
c
tiri

N0W +
∑N
j=1, j 6=i a

c
jI
c
tjri

)
, (5.6)

where N0 is the power spectral density of the receiver additive white Gaussian noise. Then, the sum-rate of all pairs

in coalition c can be written as

Rc =

N∑
i=1

Rci . (5.7)

Consequently, the network throughput is
∑Nc
c=1R

c =
∑Nc
c=1

∑N
i=1R

c
i .

Clearly, the network throughput depends on the coalition formation among the pairs, beam steering angles of direc-

tional antennas of the pairs within each coalition, and transmit powers. We ask the following questions: How does the

throughput-optimal coalition formation look like? In other words, given each sub-band c, which transmitter-receiver

pairs should operate over this sub-band? Furthermore, within each coalition, what are the best beam steering angles

of directional antennas of the pairs and the best transmit power, in terms of maximizing the network throughput?
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Figure 5.2: An example of A`(φ).

5.1.2 Antenna Model

Let A`(φ) denote the gain of directional antenna of node ` (which can be a transmitter or a receiver). We express

A`(φ) as the following

A`(φ) =


A`ml e

−B
(

φ

φ`
3dB

)2

, |φ| ≤ φ`ml

A`sl, |φ| > φ`ml

(5.8)

where φ denotes an arbitrary angle within the FOV range [−φ`FOV, φ
`
FOV], φ`ml denotes the main lobe width, φ`3dB is

the half-power beamwidth, A`ml is the maximum antenna gain, A`sl is the sidelobe gain and B = ln(2). We adopt our

antenna gain pattern in (5.8) from [127]. This is a realistic model for directional antennas with sidelobe gain. Fig. 5.2

illustrates an example of A`(φ) for A`ml = 1, A`sl = 0.05, φ`ml = 45◦, φ`3dB = 35◦.

5.1.3 Problem Formulation

To formulate the network throughput maximization problem, we need to incorporate the constraints on the binary

variable aci in (5.6). Since each transmitter-receiver pair can belong to at most one coalition, we have

Nc∑
c=1

aci ≤ 1, for i = 1, ..., N. (5.9)
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Let Pmax indicate the maximum allowed total transmit power of all transmitter nodes in the network. To satisfy this

power constraint, we need to have

Nc∑
c=1

N∑
i=1

P caci ≤ Pmax. (5.10)

Finally, we note that the beam steering angle φ of node ` is limited to be within its field of view range [−φ`FOV, φ
`
FOV].

Therefore, the beam steering angles of nodes ti and ri in pair i are limited as the following:

φti ∈ [φ
(low)
ti , φ

(up)
ti ], φri ∈ [φ(low)

ri , φ(up)
ri ], ∀i (5.11)

where

φ
(low)
ti = θtiri − φ

ti
FOV, φ

(up)
ti = θtiri + φtiFOV,

φ(low)
ri =π + θtiri − φ

ri
FOV, φ(up)

ri = π + θtiri + φriFOV.

Our goal is to find the set of binary variables {aci},∀i, c, the transmit powers {P c},∀c, and the set of beam steering

angles of directional antennas of all pairs {φti , φri},∀i such that the network throughput is maximized, subject to the

constraints in (5.9), (5.10) and (5.11). In other words, we are interested to solve the following constrained optimization

problem

Maximize
{aci},∀i,c,{P c},∀c, {φti , φri},∀i

Nc∑
c=1

Rc (5.P1)

s.t.
∑Nc
c=1 a

c
i ≤ 1, ∀i,∑Nc

c=1

∑N
i=1 P

caci ≤ Pmax,

φti ∈ [φ
(low)
ti , φ

(up)
ti ], φri ∈ [φ

(low)
ri , φ

(up)
ri ], ∀i.

We note that (5.P1) is a mixed-integer nonlinear programming problem with exorbitant computational complexity

[128]. Even if the binary variables {aci},∀i, c are relaxed to be in the interval [0, 1], the optimal solution of (5.P1)

cannot be obtained via the gradient descent algorithm, due to the constraints on aci . Even if the beam steering angles

{φti , φri},∀i and the transmit powers {P c},∀c are given in (5.P1), still the computational complexity of finding the

optimal binary variables {aci},∀i, c is NP-hard, and it can only be found for a small network with small N and Nc.
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5.2 Solving Problem

We propose an iterative method based on the BCD algorithm to solve (5.P1) [129]. The underlying principle of

the BCD algorithm is that, at each iteration one variable is optimized, while the remaining variables are fixed. The

iteration continues until it converges to a stationary point of (5.P1) [5, 109]. To apply the principle of the BCD

algorithm to (5.P1), we decompose (5.P1) into three sub-problems, which we refer to as (5.SP1), (5.SP2), and (5.SP3).

In (5.SP1), we search for the binary variables {aci}, ∀i, c, given {P c},∀c and {φti , φri},∀i. In other words, we solve

the following problem

Given {P c},∀c and {φti , φri},∀i (5.SP1)

Maximize
{aci},∀i,c

Nc∑
c=1

Rc

s.t.
∑Nc
c=1 a

c
i ≤ 1, ∀i.

To solve (5.SP1), we take a a coalitional game approach. The approach and the algorithm are discussed in Section

5.2.1. In (5.SP2), we search for the transmit powers {P c},∀c given {aci},∀i, c and {φti , φri},∀i. In other words, we

solve the following problem

Given {aci},∀i, c and {φti , φri},∀i (5.SP2)

Maximize
{P c},∀c

Nc∑
c=1

Rc

s.t.
∑Nc
c=1

∑N
i=1 P

caci ≤ Pmax.

We note that (5.SP2) is a jointly concave function of {P c},∀c. Hence, we use the Lagrange multiplier method and

solve the corresponding KKT conditions to find the solution. The details are explained in Section 5.2.2. In (5.SP3),

we search for the beam steering angles {φti , φri},∀i, given {P c},∀c and {aci},∀i, c. In other words, we solve the
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following problem

Given {P c},∀c, {aci},∀i, c (5.SP3)

Maximize
{φti , φri},∀i

Nc∑
c=1

Rc

s.t. φti ∈ [φ
(low)
ti , φ

(up)
ti ], φri ∈ [φ

(low)
ri , φ

(up)
ri ], ∀i.

We note that (5.SP3) is neither a convex nor a concave function with respect to {φti , φri},∀i. We use interior-point

method to solve (5.SP3). Section 5.2.3 provides more details on how we solve (5.SP3). We iterate between solving

(5.SP1), (5.SP2), and (5.SP3) until we converge to a stationary point of (5.P1), which is our solution.

5.2.1 Solving Sub-problem (5.SP1)

To solve (5.SP1), we take a coalitional game approach, where N transmitter-receiver pairs in the MMWAVE network

are regarded as the players of the game [127, 130]. In the following, we briefly mention some definitions of the

coalitional game approach, that are important for designing the coalition formation algorithm.

Our coalitional game is defined by (I, U), where I is the set of game players (i.e., the set ofN cooperative transmitter-

receiver pairs) and U is the utility function (i.e., the sum-rate of the pairs in a coalition). A sub-set Sc ⊆ I indicates the

set of transmitter-receiver pairs in coalition c which communicates over sub-band c. Then U(Sc) represents the value

of coalition c, i.e., U(Sc) = Rc is equal to the sum-rate of the pairs in set Sc. Different coalitions in our MMWAVE

network satisfy the following constraints:

I =

Nc⋃
c=1

Sc, Sc ∩ Sc′ = ∅, ∀c, c′ and c 6= c′.

We notice that the transmitter-receiver pairs are not motivated to form a grand coalition, where all the pairs commu-

nicate over only one sub-band, since the co-channel interference will become very large and will negatively impact

the coalition value. In fact, the transmitter-receiver pairs prefer to form as many disjoint coalitions as possible, to

maximize the overall coalition value. Since there are Nc sub-bands in our MMWAVE network, the pairs are motivated

to form Nc disjoint coalitions.

A coalitional partition is defined as the set Π = {S1, . . . SNc}, which partitions the set of game players I into disjoint
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subsets Sc’s. The total utility of this partition is

U(Π) =

Nc∑
c=1

U(Sc). (5.13)

The players of the game prefer the coalitional partition Π′ = {S′1, . . . S′Nc} instead of Π = {S1, . . . SNc} if the total

utility achieved by Π′ is strictly greater than by Π, i.e.

Nc∑
c=1

U(S′c) >

Nc∑
c=1

U(Sc). (5.14)

The players of the game decide to join or leave a coalition based on a defined preference relation. For any player i ∈ I,

the preference relation Sp �i Sq means player i strictly prefers being a member of coalition Sp over being a member

of coalition Sq , where Sp, Sq ⊆ I and Sp 6= Sq . The preference relation Sp �i Sq is quantified as the following

U(Sp ∪ i) + U(Sq\i) > U(Sp) + U(Sq). (5.15)

Given a coalitional partition Π = {S1, . . . SNc}, if player i switches from coalition Sq to coalition Sp, then the current

coalitional partition Π of I is modified into a new coalitional partition Π′ = (Π\{Sq, Sp})∪{Sq\i}∪{Sp∪ i}. Player

i is allowed to switch from coalition Sq to coalition Sp (i.e., player i leaves Sq and joins Sp) if and only if Sp �i Sq .

Algorithm 2 summarizes our approach to solve (5.SP1), which is based on the above definitions and the switching

rule. The iterations in Algorithm 2 stop when the partition converges to the final Nash-stable coalitional partition

ΠNash = {S′′1 , . . . S′′Nc}. The partition ΠNash satisfies the following. For any player i ∈ I, if i is a member of coalition

Sp, then Sp �i Sq for any q 6= p.

5.2.2 Solving Sub-problem (5.SP2)

We solve (5.SP2) using the Lagrangian multiplier method. Let L({P c},∀c, λ) be the Lagrangian for (5.SP2), where

λ is the Lagrange multiplier. The Lagrangian is

L({P c},∀c, λ) = −
Nc∑
c=1

Rc + λ

( Nc∑
c=1

N∑
i=1

aciP
c − Pmax

)
, (5.16)
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Algorithm 2: Algorithm for Solving (5.SP1)
1: Given {P c}, ∀c and {φti , φri}, ∀i,
2: Initialize the system by any random partition Πini. Set the

current partition Πcur = Πini,
3: repeat
4: Randomly choose a link i ∈ I, and denote its current

coalition as Sp ∈ Πcur,
5: Randomly choose another coalition Sq ∈ (Πcur ∪ {∅}),

such that Sp 6= Sq ,
6: if the switch operation from Sp to Sq satisfying

Sq �i Sp
7: Πcur = (Πcur\{Sp, Sq}) ∪ {Sp\{i}} ∪ {Sq ∪ i}
8: else
9: Πtmp = (Πcur\{Sp, Sq}) ∪ {Sp\{i}} ∪ {Sq ∪ i}

10: Randomly choose one link i′ ∈ I, and denote its
current coalition as Sp′ ∈ Πtmp,

11: Randomly choose another coalition,
Sq′ ∈ (Πtmp ∪ {∅}), Sp′ 6= Sq′

12: Obtain the partition Π′tmp as
Π′tmp = (Πcur\{Sp′ , Sq′}) ∪ {Sp\{i′}} ∪ {Sq′ ∪ i′}

13: if U(Π′tmp) > U(Πcur)
14: Πcur = Π′tmp

15: end
16: end
17: until the partition converges to a final Nash-stable

partition.

The optimal set {P c},∀c that minimizes (5.16) is the solution to the KKT optimality necessary and sufficient condi-

tions. The KKT conditions are the first derivatives of L with respect to P c, λ being equal to zero. We have

∂L
∂P c

= −∂R
c

∂P c
+ λ

N∑
i=1

aci = 0, ∀c (5.17a)

λ

( Nc∑
c=1

N∑
i=1

aciP
c − Pmax

)
= 0, (5.17b)

where ∂Rc/∂P c is

∂Rc/∂P c = W

N∑
i=1

acig
c
tiriGtiriN0W(

N0W +
∑
j 6=i a

c
jI
c
tjri

)(
N0W + P cacig

c
tiriGtiri +

∑
j 6=i a

c
jI
c
tjri

) . (5.18)

Since the closed-form analytical solution for (5.17a) cannot be found, we solve these equations numerically, via the

following iterative method. We first initialize λ and then find P c for c = 1, . . . , Nc using (5.17a). Next, we update λ
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Algorithm 3: Algorithm for Solving (5.SP2)
1: Given {aci}, ∀i, c and {φti , φri}, ∀i and λini,
2: Set n = 0, λ(0) = λini,
3: repeat
4: Calculate P c,(n) by solving (5.17a) for c = 1, . . . , Nc,
5: Calculate λ(n+1) using (5.19),
6: n← n+ 1;
7: until (5.20) is satisfied.

using the subgradient method

λ(n+1) =

[
λ(n) + t0

( Nc∑
c=1

N∑
i=1

aciP
c − Pmax

)]+

, (5.19)

where t0 is the step size and [x]+ = max{x, 0}. Using the updated λ, we find {P c},∀c again using (5.17a). We repeat

this procedure until λ converges, i.e., the following pre-determined stopping criterion is met for a given small number

δ

λ(n)

∣∣∣∣ Nc∑
c=1

N∑
i=1

aciP
c − Pmax

∣∣∣∣ ≤ δ. (5.20)

Algorithm 3 summarizes our approach to solve (5.SP2).

5.2.3 Solving Sub-problem (5.SP3)

Considering (5.SP3) we note that it is neither a convex nor a concave function with respect to {φti , φri},∀i. Since

the optimization variables are continuous-valued, we can solve (5.SP3) using gradient descent-based algorithms. We

choose interior-point method to solve (5.SP3). Note that the solution of interior-point method depends on the initial

values for {φti , φri},∀i. Hence, we randomly choose Nφ sets of initial values for {φti , φri},∀i and run the interior-

point algorithm Nφ times and find Nφ sets of solutions. Among these sets, we let the set that provides the largest

network throughput be the solution of (5.SP3).

5.3 Numerical Performance Evaluations

In this section, we corroborate our analysis on constrained maximization of the network throughput with Matlab

simulations. We assume that the antenna gainA`(φ),∀` are the same. In our simulations, all transmitters and receivers

are uniformly distributed in a circle with radius of 30 meters. The simulation parameters are given in Table 5.1.
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Table 5.1: Simulation Parameters

Parameter Value Parameter Value
Asl 1 φFOV 60◦

Aml 0.05 N0 −110 dBm/Hz
φ3dB 35◦ Bc 400 MHz
φml 45◦ δ 0.001
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Figure 5.3: Network throughput versus Pmax for N = 20, Nc = 4.

• Impact of coalition formation optimization on throughput maximization: Fig. 5.3 plots the network throughput versus

Pmax for N = 20, Nc = 4, considering two scenarios: the scenario where Algorithm 2 is employed to optimize the

coalition formation among the transmitter-receiver pairs, and the scenario where the pairs form coalitions randomly,

without any optimization (i.e., the pairs are randomly assigned to a coalition). In both scenarios, the beam steering

angles and the transmit powers are optimized. The gap between the two curves in Fig. 5.3 indicate the impact of

coalition formation optimization on the throughput maximization. We note that, as Pmax increases, this performance

gap increases. For both scenarios as Pmax increases, the throughput increases, since the transmitters in all coalitions

are allowed to transmit at higher transmit powers.

• Impact of transmit power optimization on throughput maximization: Fig. 5.4 plots the network throughput versus

Pmax for N = 20, Nc = 4, considering two scenarios: the scenario where Algorithm 3 is employed to optimize

the transmit powers, and the scenario where Pmax is uniformly distributed among N transmitters in the network,

without any optimization. In both scenarios, the coalition formation and the beam steering angles are optimized.

The gap between the two curves in Fig. 5.4 illustrates the impact of transmit power optimization on the throughput

maximization.
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Figure 5.4: Network throughput versus Pmax for N = 20, Nc = 4.
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Figure 5.5: Network throughput versus Pmax for Nc = 4.

• Impact ofN on throughput maximization: Fig. 5.5 shows the network throughput versusPmax forN = 12, 16, 20, Nc =

4. Given a Pmax value, as N increases, the network throughput increases. We conjecture that this trend would change

whenN becomes very large (e.g., N = 100). We expect that asN increases further, the network throughput decreases

(since the total transmit power and the total bandwidth are fixed).

• Impact of Nc on throughput maximization: Fig. 5.6 shows the network throughput versus Nc for N = 30, Pmax =

30 dB. This figure suggests that there is a trade-off between Nc and the network throughput. On the one hand, as the

number of sub-bands Nc increases, the number of coalitions increases and the co-channel interference generated in

each coalition decreases, which can lead into increasing the sum-rate in each coalition and thus increasing the network

throughout. On the other hand, as Nc increases, the bandwidth W of each sub-band decreases, which can lead into

decreasing the network throughput. Therefore, given N one can find the optimal Nc that provides the highest network
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Figure 5.6: Network throughput versus Nc for N = 30, Pmax = 30 dB.
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Figure 5.7: Network throughput versus φ3dB for N = 20, Nc = 4.

throughput. For instance, in Fig. 5.6, Nc = 2 yields the highest network throughput.

• Impact of half-power beamwidth φ3dB on throughput maximization: Fig. 5.7 shows the effect of φ3dB on the

network throughput for Pmax = 27, 30 dB. We note that as φ3dB increases the network throughput decreases. This is

because as φ3dB increases, the transmitters within a particular coalition impose a stronger co-channel interference on

the non-intended receivers within the same coalition.
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5.4 Conclusion

We considered a D2D MMWAVE network with bandwidth of Bc = WNc Hz, where N cooperative transmitter-

receiver pairs form Nc coalitions and communicate over Nc non-overlapping sub-bands, each with bandwidth of W

Hz. Each node is equipped with a directional antenna that has beam steering capability. Also, each transmitter can

adjust its transmit power. We formulated the network throughput maximization problem, subject to certain constraints,

and we proposed a BCD algorithm, to find the optimal coalition among the transmitter-receiver pairs, the optimal beam

steering angles of directional antennas of the pairs within each coalition, and the optimal transmit powers. Through

numerical simulations, we investigated the effects of N,Nc, Pmax, φ3dB on the network throughput maximization.

Our simulations show that, given N,Pmax there is an optimal Nc value that provides the highest network throughput.

Also, we showed that a lower φ3dB yields a higher network throughput.
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CHAPTER 6: CONCLUSION

In this dissertation we studied the effects of several factors, including spectrum sensing error, channel estimation error,

channel quantization error, errors due to incorrect detection of the beam corresponding to PU’s location and incorrect

selection of the strongest beam for data transmission on the performance of opportunistic CR systems. We derived

the achievable rate of a CR system and optimized some parameters, including durations of spectrum sensing Tse and

channel training Ttr as well as data symbol transmission power at SUtx such that the derived rate is maximized, subject

to ATPC and AIC.

In the following, we summarize our contributions in Chapters 2-4.

6.1 Conclusions

In Chapter 2, we proposed a holistic system design for integrated sector-based spectrum sensing and sector-based

data communication for an opportunistic CR system consisting of a PU, SUtx, and SUrx, where SUtx is equipped

with an ESPAR antenna that has M parasitic elements, and there is an error-free bandwidth limited feedback channel

from SUrx to SUtx. Different from the state-of-the-art, our proposed integrated design incorporates induced errors

due to: (i) imperfect spectrum sensing and determining the correct beam corresponding to PU’s location, such errors

affect the interference imposed on PU; (ii) selecting the best beam for data communication over SUtx–SUrx link.

We formulated a constrained optimization problem, where the ergodic capacity for SUtx–SUrx link is maximized,

subject to ATPC and AIC, and the optimization variables are spectrum sensing duration, quantization thresholds at

SUrx, and discrete power levels at SUtx. We developed an iterative suboptimal algorithm with a low computational

complexity, based on the BCD algorithm, that finds a unique and locally optimal solution for the constrained problem.

In addition, we derived closed form expressions for outage and symbol error probabilities of our opportunistic CR

system. We corroborated our mathematical analyses with extensive simulations. Our numerical results demonstrate

that our proposed CR system with the ESPAR antenna at SUtx yields a significantly higher capacity, a lower outage

probability, and a lower symbol error probability, compared with a CR system that its SUtx has an omni-directional

antenna. The capacity improvement varies as the ATPC and AIC change. Furthermore, we showed that with only

a small number of feedback bits the capacity of our CR system approaches to its baseline, which assumes the full

knowledge of unquantized channel gain.
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In Chapter 3, we studied the combined effects of spectrum sensing error and imperfect CSI of SUtx–SUrx link on

the achievable rates of an opportunistic CR system with a RA at SUtx. We considered an opportunistic CR system

consisting of a PU, SUtx, and SUrx, where SUtx is equipped with a RA that has M beams, and there is an error-free

low-rate feedback channel from SUrx to SUtx. Utilizing the beam steering capability of the RA, we regarded a design

framework for integrated sector-based spectrum sensing and data communication. In this framework, SUtx senses

the spectrum and detects the beam corresponding to active PU’s location. SUtx also sends training symbols (prior

to data symbols), to enable channel estimation at SUrx and selection of the strongest beam between SUtx–SUrx for

data transmission. We established a lower bound on the achievable rates of SUtx–SUrx link, in the presence of

spectrum sensing and channel estimation errors, and errors due to incorrect detection of the beam corresponding

to PU’s location and incorrect selection of the strongest beam for data transmission. We formulated a constrained

optimization problem, where a lower bound on the achievable rate of SUtx–SUrx link is maximized, subject to ATPC

and AIC, with the optimization variables being the durations of spatial spectrum sensing Tse and channel training

Ttr as well as data symbol transmission power at SUtx. Moreover, we proposed two alternative power adaptation

schemes that are simpler to implement. We solved the proposed constrained optimization problems using iterative

methods based on the BCD algorithm. Our simulation results demonstrate that one can increase the achievable rates

of SUtx–SUrx link significantly, via implementing these optimizations, while maintaining the ATPC and AIC. They

also showed that the achievable rates obtained from employing simple schemes 1 and 2 are very close to the one

produced by the optimized transmit power. Our numerical results also showed that between optimizing Tse and Ttr,

optimizing the latter has a larger effect on increasing the achievable rates in our system.

In Chapter 4, we considered the problem of sum-rate maximization in an opportunistic EH-enabled CR network. The

CR network consists of Nu SUs and an AP, that can access a wideband spectrum licensed to a primary network.

Each SU is capable of harvesting energy from natural ambient energy sources, and is equipped with a finite size

rechargeable battery, to store the harvested energy. The SUs operate under a time-slotted scheme, where each time slot

consists of three non-overlapping phases: spectrum sensing phase, channel estimation phase, and data transmission

phase. The AP feeds back its estimates of fading coefficients of SUs–AP link to SUs. Our main objectives were

(i) to study how the achievable sum-rate of SUs is impacted by the combined effects of spectrum sensing error and

imperfect CSI of SUs–AP links (due to channel estimation error), and (ii) to design an energy management strategy

that maximizes the achievable sum-rate of SUs, subject to a constraint on the average interference that SUs can impose

on the PU. Modeling the randomly arriving energy packets during a time slot as a Poisson process, and the dynamics

of the battery as a finite state Markov chain, we established a lower bound on the achievable sum-rate of SUs–AP
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links, in the presence of both spectrum sensing and channel estimation errors. To strike a balance between the energy

harvesting and the energy consumption, we proposed a parametrized power control strategy that allows each SU to

adapt its power, according to the feedback information and its stored energy. We optimized the parameters of the

proposed power control strategy, such that the derived sum-rate lower bound is maximized, subject to the AIC. We

validated our analysis via Matlab simulations and explored spectrum sensing-channel estimation-data transmission

trade-offs. We also illustrated how the AIC, the harvesting parameter, and the battery size impact the sum-rate, as well

as transmission outage probability.

In Chapter 5, we considered a D2D MMWAVE network with bandwidth of Bc = WNc Hz, where N cooperative

transmitter-receiver pairs form Nc coalitions and communicate over Nc non-overlapping sub-bands, each with band-

width of W Hz. Each node is equipped with a directional antenna that has beam steering capability. Also, each

transmitter can adjust its transmit power. We formulated the network throughput maximization problem, subject to

certain constraints, and we proposed a BCD algorithm, to find the optimal coalition among the transmitter-receiver

pairs, the optimal beam steering angles of directional antennas of the pairs within each coalition, and the optimal

transmit powers. Through numerical simulations, we investigated the effects of N,Nc, Pmax, φ3dB on the network

throughput maximization. Our simulations show that, given N,Pmax there is an optimal Nc value that provides the

highest network throughput. Also, we showed that a lower φ3dB yields a higher network throughput.
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APPENDIX A: APPENDIX FOR CHAPTER 3
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A.1 Showing that ∂RLB/∂Tse = 0 has one solution in the interval (0, Tf − Ttr)

Let RLB = C0 + C1 where C0 = Ddβ0R0 and C1 = Ddβ1R1. To calculate ∂RLB/∂Tse we need the following

derivatives:
∂C0

∂Tse
= R0

[
β0
∂Dd

∂Tse
+Dd

∂β0

∂Tse

]
=R0

[
−β0

Tf
+Dd

∂β0

∂Tse

]
,

∂C1

∂Tse
= R1

[
β1
∂Dd

∂Tse
+Dd

∂β1

∂Tse

]
=R1

[
−β1

Tf
+Dd

∂β1

∂Tse

]
.

Recall β0 = π0(1−P fa) and β1 = π1(1−P d) in (3.11). We assume P d is given, hence ∂β1/∂Tse = 0. On the other

hand, P fa in (3.8) is variable w.r.t. Tse, and hence we have

∂β0

∂Tse
= π0fTW2

(
η−θsen

σsen

)
∂

∂Tse

(
η−θsen

σsen

)
(A.1)

where fTW2 denotes the PDF of the Tracy-Widom distribution of order 2, and, θsen, σsen are given in (3.9). Evaluating

∂C0

∂Tse
and ∂C1

∂Tse
when Tse → 0 we have

lim
Tse→0

∂C0

∂Tse
= lim
Tse→0

−β0

Tf
R0 +

(Tf−Ttr)

Tf
R0

(
lim
Tse→0

∂β0

∂Tse︸ ︷︷ ︸
=+∞

)
= +∞, (A.2a)

lim
Tse→0

∂C1

∂Tse
= lim
Tse→0

−β1

Tf
R1 +

(Tf−Ttr)

Tf
R1

(
lim
Tse→0

∂β1

∂Tse︸ ︷︷ ︸
=0

)
< 0. (A.2b)

Evaluating ∂C0

∂Tse
and ∂C1

∂Tse
when Tse → Tf − Ttr we have

lim
Tse→Tf−Ttr

∂C0

∂Tse
= lim
Tse→Tf−Ttr

−β0

Tf
R0 +R0

(
lim

Tse→Tf−Ttr

Dd︸ ︷︷ ︸
=0

)(
lim

Tse→Tf−Ttr

∂β0

∂Tse

)
< 0, (A.3a)

lim
Tse→Tf−Ttr

∂C1

∂Tse
= lim
Tse→Tf−Ttr

−β1

Tf
R1 +R1

(
lim

Tse→Tf−Ttr

Dd︸ ︷︷ ︸
=0

)(
lim

Tse→Tf−Ttr

∂β1

∂Tse

)
< 0. (A.3b)

The inequalities in (A.2a) and (A.2b) show that limTse→0
∂RLB

∂Tse
> 0. On the other hand, the inequalities in (A.3a)

and (A.3b) show that limTse→Tf−Ttr

∂RLB

∂Tse
< 0. Together, these indicate that the equation ∂RLB/∂Tse = 0 has one

solution in the interval (0, Tf − Ttr). This solution can be found using bisection search method.
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A.2 Showing that ∂RLB/∂Ttr = 0 has one solution in the interval (0, Tf − Tse)

To calculate ∂RLB/∂Ttr we need the following derivatives:

∂C0

∂Ttr
=β0

[
Dd

∂R0

∂Ttr
+
∂Dd

∂Ttr
R0

]
=β0

[
Dd

M∑
m=1

∂R0

∂α̂0
m

∂α̂0
m

∂Ttr
− R0

Tf

]
,

∂C1

∂Ttr
=β1

[
Dd

∂R1

∂Ttr
+
∂Dd

∂Ttr
R1

]
=β1

[
Dd

M∑
m=1

∂R1

∂α̂1
m

∂α̂1
m

∂Ttr
− R1

Tf

]
.

Evaluating ∂C0

∂Ttr
and ∂C1

∂Ttr
when Ttr → 0 we have

lim
Ttr→0

∂C0

∂Ttr
=
−β0

Tf

(
lim
Ttr→0

R0︸ ︷︷ ︸
=0

)
+ β0

(Tf−Tse)

Tf

M∑
m=1

(
lim
Ttr→0

∂R0

∂α̂0
m︸ ︷︷ ︸

>0

)(
lim
Ttr→0

∂α̂0
m

∂Ttr︸ ︷︷ ︸
>0

)
> 0 (A.4a)

lim
Ttr→0

∂C1

∂Ttr
=
−β1

Tf

(
lim
Ttr→0

R1︸ ︷︷ ︸
=0

)
+ β1

(Tf−Tse)

Tf

M∑
m=1

(
lim
Ttr→0

∂R1

∂α̂1
m︸ ︷︷ ︸

>0

)(
lim
Ttr→0

∂α̂1
m

∂Ttr︸ ︷︷ ︸
>0

)
> 0. (A.4b)

Evaluating ∂C0

∂Ttr
and ∂C1

∂Ttr
when Ttr → Tf − Tse we have

lim
Ttr→Tf−Tse

∂C0

∂Ttr
= lim
Ttr→Tf−Tse

−β0R0

Tf
+ β0

(
lim

Ttr→Tf−Tse

Dd︸ ︷︷ ︸
=0

)(
lim

Ttr→Tf−Tse

M∑
m=1

∂R0

∂α̂0
m

∂α̂0
m

∂Ttr

)
< 0 (A.5a)

lim
Ttr→Tf−Tse

∂C1

∂Ttr
= lim
Ttr→Tf−Tse

−β1

Tf
R1 + β1

(
lim

Ttr→Tf−Tse

Dd︸ ︷︷ ︸
=0

)(
lim

Ttr→Tf−Tse

M∑
m=1

∂R1

∂α̂1
m

∂α̂1
m

∂Ttr

)
< 0 (A.5b)

The inequalities in (A.4a) and (A.4b) show that limTtr→0
∂RLB

∂Ttr
> 0. On the other hand, the inequalities in (A.5a)

and (A.5b) show that limTtr→Tf−Tse

∂RLB

∂Ttr
< 0. Together, these indicate that the equation ∂RLB/∂Ttr = 0 has one

solution in this interval, which can be found numerically using bisection search method.
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