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ABSTRACT

Cognitive Radio (CR) is a promising solution that enhances spectrum utilization by allowing an unlicensed or Sec-
ondary User (SU) to access licensed bands in a such way that its imposed interference on a license holder Primary
User (PU) is limited, and hence fills the spectrum holes in time and/or frequency domains. Resource allocation, which
involves scheduling of available time and transmit power, represents a crucial problem for the performance evalua-
tion of CR systems. In this dissertation, we study the spectral efficiency maximization problem in an opportunistic
CR system. Specifically, in the first part of the dissertation, we consider an opportunistic CR system where the SU
transmitter (SUyy) is equipped to a Reconfigurable Antenna (RA). RA, with the capabilities of dynamically modifying
their characteristics can improve the spectral efficiency, via beam steering and utilizing the spectrum white spaces in
spatial (angular) domain. In our opportunistic CR system, SU; relies on the beam steering capability of RA to detect
the direction of PU’s activity and also to select the strongest beam for data transmission to SU receiver (SU;,). We
study the combined effects of spectrum sensing error and channel training error as well as the beam detection error and
beam selection error on the achievable rates of an opportunistic CR system with a RA at SUy,. We also find the best
duration for spectrum sensing and channel training as well as the best transmit power at SU such that the throughput
of our CR system is maximized subject to the Average Transmit Power Constraint (ATPC) and Average Interference

Constraint (AIC).

In the second part of the dissertation, we consider an opportunistic Energy Harvesting (EH)-enabled CR network,
consisting of multiple SUs and an Access Point (AP), that can access a wideband spectrum licensed to a primary
network. Assuming that each SU is equipped with a finite size rechargeable battery, we study how the achievable sum-
rate of SUs is impacted by the combined effects of spectrum sensing error and imperfect Channel State Information
(CSI) of SUs—AP links. We also design an energy management strategy that maximizes the achievable sum-rate of

SUs, subject to a constraint on the average interference that SUs can impose on the PU.
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CHAPTER 1: INTRODUCTION AND LITERATURE REVIEW!23456

1.1 Cognitive Radio Systems

With the increasing demands for ubiquitous high data rate wireless access and smart mobile devices with bandwidth
consuming wireless applications, Radio Frequency (RF) spectrum is becoming more and more crowded. Contrasting
the general belief which says “we are running out of bandwidth,” the results of empirical measurements on electro-
magnetic spectrum occupancy show that a large portion of the licensed spectrum is not utilized for significant periods
of time. These findings suggest that spectrum scarcity is largely due to the inefficient utilization of the spectrum, rather
than the shortage of the spectrum. CR is a promising solution which addresses this challenge by allowing an unli-
censed or SU to access licensed bands in a such way that its imposed interference on a license holder PU is limited,

and hence fills the spectrum holes in time and/or frequency domains [7-11].

CR systems are mainly classified as underlay CR, opportunistic (or interweave) CR, and overlay CR systems. The
underlay CR approach allows concurrent primary and secondary transmissions if the interference imposed on PUs
is below a given threshold. In opportunistic CR approach, the SUs periodically monitor the radio spectrum and
opportunistically exploit spectral holes (in time and/or frequency domains) to communicate with minimal interference
to PUs. The overlay CR approach allows concurrent primary and secondary transmissions. The SUs are allowed to
access the licensed bands in return for improving the quality-of-service of primary transmissions by acting as a relay to
convey the messages form Primary User Transmitter (PUyy) to Primary User Receiver (PU,y). Inspired by the inherent
benefits of the above approaches, hybrid CR approaches, e.g., overlay-underlay [12] and interweave-underlay [13] CR
approaches have been proposed to improve the performance of CR systems. While underlay CR systems do not require
spectrum sensing to detect PU’s activities, they demand coordination between PUs and SUs (to obtain channel gain of
PU links at SUs) that is not always feasible. The enabling premise for overlay CR systems is that the Secondary User

Transmitter (SU;x) has knowledge of the PUs’ codebooks, messages and channel gains which requires coordination

l@ 2017 IEEE. Part of this chapter is reprinted, with permission, from [1].
2© 2018 IEEE. Part of this chapter is reprinted, with permission, from [2].
3© 2019 IEEE. Part of this chapter is reprinted, with permission, from [3].
4@ 2020 IEEE. Part of this chapter is reprinted, with permission, from [4].
5@ 2021 IEEE. Part of this chapter is reprinted, with permission, from [5].
6@ 2021 IEEE. Part of this chapter is reprinted, with permission, from [6].



between PUs and SUs. On the other hand, opportunistic CR systems utilize spectrum sensing to enable SUs to use a
licensed frequency band during a time interval, only if PUs are not using that frequency band within that time interval,

implying that coordination between PUs and SUs to acquire channel gain of PU links is not needed.

In this dissertation, we consider an opportunistic CR system where SUs are required to monitor the spectrum and to
identify transmission opportunities (spectrum holes) accurately. Our opportunistic CR system works in three main
phases, including “spatial spectrum sensing phase”, “channel training phase” and “data transmission phase”. SUs
Each SU, employs a frame with a fixed duration of 7} seconds which is used for spectrum sensing, channel training

and data transmission (see Fig. 1.1). When a SU¢ discovers a transmission opportunity, it can access the spectrum for

T
Spatial Spe-ctrurn Cha}nflel Data Transmission
Sensing Training
sensing duration channel transmission duration
estimation
duration

Figure 1.1: The structure of frame employed by SU .

channel training and data transmission, in such a way that their imposed interference on the PUs does not exceed the
maximum allowed interference level. While doing so, SUs also need to monitor the channels they occupy and vacate
them whenever PUs become active on these channels. Within this context, the available resources must be adaptively
allocated to the SUs to achieve a high system performance without interrupting the primary transmissions. In the

following we briefly review the three phases mentioned above and their corresponding challenges.

1.1.1 Transmit Power Control

To enhance the performance of CR systems while providing sufficient protection for PUs, the transmit power of SUs
must be adapted for different types of data traffic and channel statistics. Developing adaptive transmit power control
strategies has drawn a great interest in the literature of CR systems design. Researchers have developed different
transmit power control policies that are optimized considering various CR system performance metrics, transmit power
constraints and interference constraints [14—18]. For delay-insensitive data traffic such as email and file transfer, the

proper performance metric is the ergodic capacity’. The authors in [18] designed transmit power adaptation policies

7Ergodic capacity is the maximum achievable long-term data rate averaged over the channel fading states.
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that maximize the ergodic capacity of a CR system subject to both average and peak transmit power constraints. For
delay-sensitive data traffic such as video and VoIP, the proper system performance metric is the outage capacity®.
For instance, the authors in [16] developed optimal transmit power control schemes, considering both the ergodic
capacity and the outage capacity of an underlay CR system, subject to peak/average transmit power constrain and
peak/average interference constraint. In [19] the Energy-Efficiency (EE) is considered as the system performance
metric and the optimal transmit power control scheme is obtained subject to peak/average transmit power constraint
and peak/average interference constraint. A novel transmit power control policy is derived in [20] to minimize the
Symbol Error Probability (SEP) subject to an average interference constraint or an interference outage probability

constraint’ at PU,..

1.1.2  Spectrum Sensing

In opportunistic CR systems, spectrum sensing is necessary for detecting PUs’ activities and protecting PUs against
harmful interference. The SUs need to regularly sense and monitor the spectrum and reliably detect the spectrum holes
and utilize them opportunistically. Upon the detection of a PU’s presence, SUs must vacate the occupied spectrum

immediately.

Spectrum sensing can be formulated as a binary hypothesis testing problem in statistics in which the binary hypotheses

Ho and ‘H; denote the PU is truly inactive and truly active in the monitored spectrum, respectively, i.e.,

Ho :  PUis inactive
(1.1)
H,: PUis active

When adopting the Neyman-Pearson optimality criterion for the detection performance, the Neyman-Pearson theorem
says that for a given probability of false alarm, the test statistic that maximizes the probability of detection is the
Likelihood Ratio Test (LRT) defined as [21]

f(ylHq)

T =< 1.2
LRT FlylHo) (1.2)

80utage capacity is maximum achievable rate at a certain outage probability.

9This constraint mandates that the probability that the instantaneous interference at PU,x exceeds a threshold is less than a target outage
probability Poyt.



where y is the received signal vector and f(-) is the Probability Density Function (PDF). The major difficulty in using
the LRT is that it requires the exact knowledge of the conditional distribution of y. Depending on the level of infor-
mation available at SUs about the PUs’ signal, different LRT-based spectrum sensing methods have been introduced
in the literature, including energy detection, matched filter detection, cyclostationary feature detection [8, 22-24].
Among these spectrum sensing methods, energy detection [25] is the most common method due to its low computa-
tional complexity and not requiring any knowledge on PUs’ signal and channel gains at SUs. Matched filter detection
is the optimum method when perfect information about the PUs’ signal (including bandwidth, operating frequency,
modulation type and order, pulse shaping, etc) is available at SUs. Obtaining such information requires advanced sig-
nal processing techniques, which makes the implementation cost and complexity of this detection method very high.
Cyclostationary feature detector exploits the cyclostationary feature of the received signals (which is caused by the
periodicity in the PUs’ signals) to differentiate modulated signal from additive noise. This detection method requires
SUs to know the frequencies in the PUs’ signals, which increases the implementation cost and complexity. When
no knowledge about the PUs’ signal and communication channel statistics is not available at SUs, the LRT-based
spectrum sensing methods cannot be applied. The main approach to tackle spectrum sensing problem in the presence
of the aforementioned uncertainty is the Generalized Likelihood Ratio Test (GLRT). In [26], a GLRT detector for
a multiple antenna CR system is derived assuming that the channel gain, the additive noise variance and the PU’s
signal power are unknown. Based on the GLRT detection, other variations, including maximum eigenvalue detection,
maximum-minimum eigenvalue detection, and energy with minimum eigenvalue detection approaches are investigated
in [27-29]. In general, any spectrum sensing technique is prone to error, that can be described as mis-detection and
false alarm probabilities. This error can affect the opportunistic CR system performance and should be considered in

the CR system design.

1.1.3 Channel Estimation

An important factor that impacts the performance of opportunistic CR systems is the level of assumption made regard-
ing the availability of CSI. In opportunistic CR systems, although CSI corresponding to SU-PU link is not required
(which is a major advantage), still CSI corresponding to SUx—SU, link is needed for properly adapting the data
transmission. The CR literature mainly assumes that each SU;y has access to full CSI of all communication links
for its operation. However, in practice, SU;y has access only to partial CSI, due to several factors including channel

estimation error, mobility of PU or SU, and limitation of feedback channel. Partial (imperfect) CSI has deteriorating



effects on the fundamental performance limits of CRs and should not be overlooked. The authors in [30] considered
a pilot-based channel estimation in a CR system. During the training phase, SUyy sends training symbols to enable
channel estimation at Secondary User Receiver (SU,). Different Minimum Mean Square Error (MMSE) estimation
methods are considered for channel estimation at SU,.. We note that the impact of partial CSI on the performance of
underlay and opportunistic CR systems are different, due to inherent distinctions between these two CR systems. In
underlay CR systems, the additive noise is the only randomness that affects the quality of channel estimation. Several
researchers have studied the impact of imperfect CSI on the ergodic capacity [31-37] and the SEP [20] corresponding
to different modulation schemes for underlay CR systems. The authors in [35] investigated the effect of five different
levels of CSI on the capacity of a CR system under a minimum Signal-to-Interference-plus-Noise Ratio (SINR) con-
straint for PU,. However, in opportunistic CR (where spectrum sensing is necessary to detect the spectrum holes),
the quality of channel estimation is affected by the accuracy of spectrum sensing as well as the additive noise. Hence,
studying the problem of channel estimation is more challenging in opportunistic CR systems. We note that imperfect
CSI due to channel estimation error (even under perfect spectrum sensing) has negative influence on the link capacity.

Imperfect spectrum sensing exacerbates the negative effect of imperfect CSI on the link capacity.

1.1.4 Combined effects of Spectrum Sensing, Channel Estimation and Transmit Power Control in Opportunistic CR

Systems

Spectrum sensing is crucial in the detection of PUs’ signals and protecting them from harmful interference. However, it
has an incurred cost for high rate data transmission. As the time duration for spectrum sensing increases, the accuracy
of the employed spectrum sensing method increases, i.e., the false alarm probability decreases and the detection
probability increases. On the other hand, given the fixed length frame structure in Fig. 1.1, the available time for
data transmission decreases. Therefore, a trade-off exists between the spectrum sensing duration and the data rate
of opportunistic CR systems. [38—46]. Motivated by this fact, the authors in [41] formulated the sensing-throughput
tradeoff problem mathematically, and showed that their formulated problem indeed has an optimal spectrum sensing
time duration which yields the highest throughput. The authors in [38] obtained the jointly optimal transmit power
and spectrum sensing duration to maximize the energy efficiency of SUs, subject to peak interference constraint and
a minimum data rate constraint. The authors in [47] obtained the jointly optimal detection threshold (for spectrum
sensing) and transmit power of SUs, obtained to minimize the total energy consumption with the constraints on SUs’

quality-of-service and the detection probability of PU’ signals.



Besides spectrum sensing, channel estimation also induces a cost for high data rate transmission. As the allocated
transmission resources for channel estimation (i.e., time and power for sending training symbols to SU,) increases,
the channel estimation becomes more accurate and the channel estimation error decreases. On the other hand, the
average interference imposed on the PUs during transmission of training symbols increases, the available time for
data transmission and hence, the data rate decrease. Therefore, a trade-off exists between the time duration of channel
estimation and the data rate of CR systems. Hence, for opportunistic CR systems, we need to study the combined
effects of imperfect spectrum sensing and imperfect CSI as well as adaptive transmit power control policies on the CR
system performance. For example in [48], SU;, monitors the PU’s activity and estimates the PU’s signal power based
on its received signal during sensing-estimation time. If the spectrum is sensed idle, SUy sends data to SU,, with
a fixed transmit power. The authors showed that the constrained capacity of SU;x—SU, link can be significantly
enhanced (subject to a constraint on the detection probability corresponding to the spectrum sensing detector), via
optimizing the duration of sensing-estimation time. The work in [19] considered different levels of CSI corresponding
to SUx—SU,« and SU—PU links, and studied the optimal transmit power levels at SU¢, such that the capacity of

SU;x—SU, link is maximized.

1.2 Energy Harvesting in CR Systems

In addition to spectral efficiency, energy efficiency is another important metric to consider when designing commu-
nication systems [38,49-53]. EH has been recognized as an effective approach for improving the energy efficiency.
EH-powered devices can operate without the need for external power cables or periodic battery replacements [54-56].
EH-enabled CR systems have received substantial attention as a promising solution for increasing both energy effi-
ciency and spectral efficiency [57-59]. EH-enabled communication systems can harvest energy from ambient energy
sources (e.g., solar, wind, thermal, vibration) or RF signals [60, 61]. In practice, the energy arrival of ambient energy
sources, including ambient RF signal sources, is intrinsically time-variant and often sporadic. This natural factor
degrades the performance of the battery-free EH-enabled communication systems in which a “harvest-then-transmit”
strategy is adopted, i.e., users can only transmit when the energy harvested in one time slot is sufficient for data trans-
mission [62]. To flatten the randomness of the energy arrival, the harvested energy is stored in a battery, to balance the
energy arrival and the energy consumption [54]. In practice, the capacity of the batteries is limited, and this can result

in an energy overflow.

Power/energy management in EH-enabled communication systems with finite size batteries is necessary, in order to



adapt the rate of energy consumption with the rate of energy harvesting. If the energy management policy is overly
aggressive, such that the rate of energy consumption is greater than the rate of energy harvesting, the transmitter may
stop functioning, due to energy outage. On the other hand, if the energy management policy is overly conservative,
the transmitter may fail to utilize the excess energy, due to energy overflow, and the data transmission would become

limited in each energy allocation interval.

Focusing on opportunistic EH-enabled CR systems, we realize that power control strategies, aiming at optimizing the
performance of SUs, should be designed such that spectrum sensing (and its corresponding errors), as well as spectrum
sensing-data transmission trade-offs are incorporated in the design process [53, 63—66]. For instance, the authors
in [63] considered a system model, where SUy can perform energy harvesting and spectrum sensing simultaneously.
Depending on the results of spectrum sensing, SU¢y continues to harvest energy (when the spectrum is sensed busy) or
transmits data (when the spectrum is sensed idle), and studied maximizing SUy—SU,« channel capacity, via optimizing

the threshold of the energy detector (employed for spectrum sensing).

In general, the power control strategies designed for opportunistic EH-enabled CR systems should depend on the
level of assumption made regarding the availability of CSI corresponding to SUy—SU, link, and whether the adapted
transmit power levels are continuous or discrete values. In practice, only partial CSI can be available at SU, and
SU,x due to several factors (e.g., channel estimation error and limitation of feedback channel from SU,y to SUiy).
Partial CSI has deteriorating effects on the performance of communication systems (including EH-enabled CR sys-
tems), and should not be overlooked [67-70]. Assuming perfect CSI at the Receiver (RX) and partial CSI at the
Transmitter (TX) (due to channel estimation error), the authors in [68, 69] analyzed maximizing the TX’s average
throughput, in two asymptotic regimes (where the rate of energy harvesting is very small or very large), via optimizing

continuous-valued data transmit power.

1.3 Integration of Directional Antennas in Opportunistic CR Systems

All the cited works so far on developing spectrum sensing and data transmission approaches for CR systems are built
upon the main assumption that SUs are equipped with an onmi-directional antenna. Consequently, these approaches
can identify transmission and reception opportunities only across two dimensions of frequency and time. When a
SU;x with an onmi-directional antenna detects PU’s activity (in either of these domains) it cannot extract any infor-

mation about the directionality of the PU’s signal, i.e., SU¢y fails to identify transmission and reception opportunities



across spatial domain. A steerable directional antenna enables SU¢y to sense the spectrum in all directions (so-called
directional spectrum sensing) and to identify the angular directions that are vacant o the PUs’ activities in a certain
frequency band [1,2,71-73]. The spatial-spectral holes discovered by the steerable directional antenna present new
transmission and reception opportunities that would be missed if using an omni-directional antenna. One can signif-
icantly enhance the spectrum utilization via employing a steerable directional antenna and enabling transmission and
reception in the unoccupied angular directions and also providing spatial filtering for mitigating in-band interference

to and from PUs (by properly steering the antenna beam and creating nulls toward certain directions).

There is a rich literature provided by the researchers on optimizing transmission strategies for opportunistic spectrum
access of SUs, that are equipped with directional antennas, in the presence of PUs’ activities [74-81]. These works
have considered multi-antenna CR systems and focused on designing beamforming weights that optimize certain
system performance metrics. Multiple antennas, and in particular transmit beamforming techniques, have been utilized
to ameliorate the performance degradation due to the interference imposed on PUs in underlay CR systems [75,78,79]
and opportunistic CR systems [80] when perfect CSI of SUy—SU, link is available at SU;,. The authors in [81]
considered an opportunistic CR system, where SUy has a single antenna and SU,, has multiple antennas and applies
Maximum Ratio Combining (MRC) technique to combine the received signals at multiple antennas, and studied the
combined effects of spectrum sensing error and imperfect CSI of SU—SU, link at SU;x on the CR system Bit
Error Rate (BER) performance. The authors in [81] obtained the optimal spectrum sensing time, channel estimation
time, and SUy transmit power, such that BER is minimized, subject to average transmit power and peak interference
constraints. These works assume that transmit antennas use multiple RF chains connected to the antenna elements, and
hence the weight of each antenna element can be digitally adjusted to generate the desired beam pattern. We note that
the benefits of multi-antenna techniques come at the cost of requiring an expensive and power-hungry RF chain per
antenna, which consists of digital-to-analog converters, filters, mixers, and amplifiers. While multi-antenna techniques
are affordable for base station and access points, where cost, size, power, and complexity are of less concern, they are

not directly applicable to portable lightweight devices.

1.3.1 Reconfigurable Antenna

RA [82,83], with the capabilities of dynamically modifying their characteristics (e.g., operating frequency, beamwidth,
radiation pattern, polarization) can improve the spectral efficiency (well beyond what is attainable with omni-directional

antennas), via beam steering and utilizing the spectrum white spaces in spatial (angular) domain. RA, which has only



one RF chain, is a low-complexity and low-cost technology that addresses the aforementioned challenges in the
multi-antenna systems [84—-86]. RAs have been used to design directional wireless and 5G millimeter-wave commu-
nication systems to combat the significant path-loss and reduce the number of RF chains in massive Multiple-Input
Multiple-Output (MIMO) systems [87, 88]. For both underlay and opportunistic CR systems, RAs are used to in-
crease Signal-to-Noise Ratio (SNR) for transmission and reception of directional signals [89], enhance the accuracy

of spectrum sensing [8§9-91], and limit interference to and from PUs [3-5].

An Electrically Steerable Parasitic Array Radiator (ESPAR) antenna is a special kind of RAs, that has been used for
identifying the spectral holes in spatial domain in CR systems. ESPAR divides the angular domain into several sectors
(beams) and switches between beampatterns of sectors in a time-division fashion (only one of M beams is active at
a time) [92]. The ESPAR antenna relies on a single RF front end (an active element) coupled to several passive or
parasitic elements (mutually coupled to the active one) to steer beams in prescribed directions [92,93]. The active
element is connected to the transmitter/receiver circuit and the parasitic elements are reactively loaded. Since only
one RF chain is needed, the power consumption, cost, and hardware complexity are significantly reduced. The mutual
coupling between the ESPAR antenna elements is created by reducing the spacing between them, which makes this

antenna suitable for small mobile devices.

For CR systems, the ESPAR antennas provide an improved spectrum sensing, due to a SNR increase for transmis-
sion and reception of directional signals, and limit out-of-band interference to and from PUs [89]. Considering the
ESPAR antennas, the authors in [89-91, 94] designed spectrum sensing energy detectors, based on the received sig-
nal energy in different beams, and also eigenvalue-based detectors, based on the covariance matrix constructed from
the received signals in different beams. The advantages of spectrum sensing using ESPAR antennas are twofold.
First, the SNR gain from the directional beampatterns increases the probability of detecting PU’s activities within that
beam, and hence decreases the chance of causing interference on the PU. Second, the discovered unoccupied beams
in spatial (angular) domain during spectrum sensing represents directional transmission and reception opportunities
for SUs, which can be utilized to increase spectral efficiency (opportunities that would be missed when using an

omni-directional antenna at SUy, ).

The ESPAR antennas have the capability of transmitting multiple data streams by signal projection on beamspace
basis [95]. Also, they can be used for blind interference alignment through beampattern switching [96]. ESPAR
antennas have been used in [97], to provide an end-to-end solution for practically implementable cloud radio access

networks. RAs can enhance performance of MIMO systems, via enabling beam and antenna selection optimiza-



tion [98-102]. The work in [101] shows that comparing RA and traditional antenna selection, the former can offer

significant improvements in SNR.

A related research thrust in the context of ESPAR antennas for design of CR systems is developing adaptive beampat-
terns (also called beamforming) [89, 103—106]. Designing an adaptive beampattern algorithm for an ESPAR antenna
from a mathematical perspective is very challenging, due to the tunable reactive loads, which renders a non-convex
optimization problem with respect to the optimization parameters, without any closed form solution. Furthermore,

implementing such design incurs high computational complexity.

1.4 Motivation, Contributions and Dissertation Organization

Our literature survey indicates that the studies on optimizing spectrum sensing and optimizing data communication
have been pursued as two separate research thrusts: the works cited in [89-91, 94] focus on spectrum sensing in
opportunistic CR systems, whereas the works in [98—102] focus on data communication in underlay CR systems. The
developed beam selection and beamforming schemes in [98—102] are specifically tailored for underlay CR systems,
which do not require spectrum sensing to detect PU’s activities, and rely on the knowledge obtained from coordination
between PUs and SUs. Evidently, the literature lacks a holistic system design, that integrates spectrum sensing and
data communication in a cohesive manner for opportunistic CR systems. Such a holistic system design needs to take
into consideration the effect of imperfect spectrum sensing on data communication optimization, while taking full
advantage of beam steering capability of the ESPAR antennas. This is the motivation behind our work presented in

chapters 2 and 3.

In Chapter 2 we consider an opportunistic CR system consisting of a PU, a SUy, and a SU,, where SUy is equipped
with an ESPAR antenna with the capability of choosing one sector among M sectors for its data transmission to SU,.
We leverage on the beam steering capability of the ESPAR antenna for both spectrum sensing and data communication
optimization and we propose an integrated design for opportunistic CR systems. Different from the state-of-the-art,
our proposed integrated design incorporates induced errors due to: (i) imperfect spectrum sensing and determining the
correct beam corresponding to the PU’s location, such errors affect the interference imposed on the PU; (ii) selecting

the best beam for data communication over SU;,—SU,., link.

During the initial spatial spectrum sensing phase SU¢y senses the channel and monitors the PU’s activity. While being

in this phase, SUy determines the beam corresponding to the location (orientation) of the PU based on the received
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signal energy from all directions. SUy stays in this phase as long as the spectrum is sensed busy. It leaves this phase
and enters transmission phase when the spectrum is sensed idle. The transmission phase itself consists of two phases:
channel estimation phase followed by data transmission phase. During the former phase, SU sends training symbols
to enable channel estimation at SU, as well as selection of the strongest channel among all beams between SU—
SU, for data transmission. Also, SU,x employs an ny-bit quantizer to quantize the gain of the selected beam. Then,
SU,x feeds back the index of the selected beam as well as the ny-bit representation of the index of the quantization
interval over an error-free bandwidth limited feedback link to SUyy, so SU¢y can optimally adapt its discrete power
level accordingly. To the best of our knowledge, this is the first work that adopts a holistic approach to design an
opportunistic CR system using ESPAR antennas and integrates sector-based spectrum sensing and sector-based data
communication. All previous works use R As for enhanced communication in underlay CR systems. Utilizing ESPAR
antennas in opportunistic CR systems for spectrum sharing is a highly promising solution to enhance the data rate of

SUs’ links, while satisfying the AIC and ATPC [102].

The main contributions of Chapter 2 can be summarized as follows:

e Given our system model, we formulate a novel optimization problem, aiming at maximizing the constrained

ergodic capacity of SU—SU, link, subject to AIC and ATPC.

e Our problem formulation takes into consideration the effect of imperfect spectrum sensing as well as the error
due to incorrect determination of the beam corresponding to PU’s location (and its corresponding effect on

imposed average interference) occurred during spatial spectrum sensing phase.

e Our problem formulation also takes into account the probability of correct determination of the strongest beam
for data transmission from SUyy to SU,y, occurred during channel estimation phase. It also incorporates the

impact of CSI quantization on the constrained optimization problem in hand.

e We solve the formulated problem and optimize the time duration of spectrum sensing, thresholds of CSI quan-
tizer, and discrete transmit power levels (to be employed at SUyy) corresponding to CSI quantization intervals.

We also provide closed form expressions for outage probability'? and SEP.

e Taking advantage of the additional degrees of freedom offered by ESPAR antennas with variable beam di-
rections, we improve the spectral efficiency and reduce implementation complexity of opportunistic spectrum

sharing systems. Our simulations demonstrate and quantify the capacity improvement provided by the ESPAR

10We define the outage probability as the probability of SU¢x not transmitting data due to the weak SU¢x—SUrx channel.
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antenna, in terms of average transmit power P, and average interference I, constraints. For instance, at
P,,=12dB, I,,, = —6dB, the capacity of our CR system is 1.83 times larger than the capacity of a CR system
that its SUx has an omni-directional antenna. Also, we show that with only a small number of feedback bits
the capacity of our opportunistic CR system approaches to its baseline, which assumes the full knowledge of

unquantized SU;4—SU,, channel gain at SU¢y.

In Chapter 3, we consider the combined effects of spectrum sensing error and imperfect CSI of SU—SU, link on
the achievable rates of an opportunistic CR system with a RA at SUx. In our opportunistic CR system, SUyy relies
on the beam steering capability of RA to detect the direction of PU’s activity and also to select the strongest beam
for data transmission to SU,x. We assume SU;y sends training symbols to enable channel estimation at SU,, and
employs Gaussian input signaling for transmitting its data symbols to SU,. Also, SU,« shares its imperfect CSI of

SUx—SU, link with SUy, through an error-free low-rate feedback channel.

Assuming that there are ATPC and AIC, we provide answers to the following research questions: How does spectrum
sensing error affect accuracy of detecting the direction of PU’s activity, estimating SUx—SU, channel, and selecting
the strongest beam for data transmission? How do training symbol transmission and beam detection error (error
in obtaining the true direction of PU’s activity) affect interference imposed on PU? How do the combined effects
of spectrum sensing error and channel estimation error, as well as beam detection error and beam selection error
(error in finding the true strongest beam for data communication to SU,) impact the achievable rates for reliable
communication over SUy—SU, link? How do the trade-offs between spatial spectrum sensing time, channel training
time, data transmission time, training and data symbol transmission powers affect the achievable rates? How can we
utilize these trade-offs to design transmit power control strategies, such that the achievable rates subject to ATPC and

AIC are maximized? Our main contributions follow:

e Given this system model, we establish a lower bound on the achievable rates of SU—SU, link, in the presence
of both spectrum sensing error and channel estimation error. We formulate a novel constrained optimization

problem, aiming at maximizing the derived lower bound subject to AIC and ATPC.

e Our problem formulation takes into consideration the combined effects of imperfect spectrum sensing and chan-
nel estimation as well as the errors due to (i) incorrect detection of the beam corresponding to PU’s location (and
its corresponding effect on average interference imposed on the PU) occurred during spatial spectrum sensing

phase, (ii) incorrect selection of the strongest beam for data transmission from SU;, to SU,, occurred during
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channel estimation phase. These beam detection and beam selection errors are introduced by the RA at SUy.

e Given a fixed-length frame, we optimize the durations of spatial spectrum sensing and channel training as well as
data symbol transmission power. Based on the structure of the optimized transmit power, we propose alternative
power adaptation schemes that are simpler to implement and yield lower bounds on the achievable rates that are

very close to the one produced by the optimized transmit power.

In Chapter 4 we consider an opportunistic EH-enabled CR network, consisting of N, SUs and an AP, that can
access a wideband spectrum licensed to a primary network. Each SU is capable of harvesting energy from natural
ambient energy sources, and is equipped with a finite size rechargeable battery, to store the harvested energy. Our main
objectives are (i) to study how the achievable sum-rate of SUs is impacted by the combined effects of spectrum sensing
error and imperfect CSI of SUs—AP links (due to channel estimation error), and (ii) to design an energy management
strategy that maximizes the achievable sum-rate of SUs, subject to a constraint on the average interference that SUs
can impose on the PU. To the best of our knowledge, our work in Chapter 4 is the first to study the impact of these

combined effects on the performance of an opportunistic EH-enabled CR network.

The importance of our study in Chapter 4 is evident by the works in [107—112], which demonstrate the significance
of considering the effect of imperfect CSI at the RX, due to channel estimation, on the TX achievable rate. We
note that the TX in these works is a primary transmitter (not a secondary transmitter in a CR system) and has a
traditional stable power supply. One expects that spectrum sensing error, combined with random energy arrival at the
TX, exacerbates the effect of imperfect CSI on the TX achievable rate. The challenges of our study are twofold: first,
it requires integration of energy harvesting, spectrum sensing, and channel estimation. Successful achievement of this
integration entails stochastic modeling of energy arrival, energy storage, and PU’s activities. These stochastic models
are utilized to establish an achievable sum-rate of SUs that takes into account both spectrum sensing error and channel
estimation error. Second, one needs to properly design energy control strategies for SUs, that strike a balance between
the energy harvesting and the energy consumption, and adapt transmit power according to the available CSI and the

battery state.

We assume that SUs operate under a time-slotted scheme, and SU,, is capable of harvesting energy during the entire
time slot. Each time slot consists of three sub-slots corresponding to spectrum sensing phase (during which SU,, senses
the spectrum), channel estimation phase (during which SU,, sends training symbols to the AP, when the spectrum is

sensed idle, for estimating the fading coefficient corresponding to SU,,—AP link), and data transmission phase (during
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which SU,, sends data symbols to the AP). Assuming that the AP feeds back its estimate of the fading coefficient to

SU,,, SU,, adapts its transmit power based on this information as well as the available energy in its battery.

Our main contributions can be summarized as follow:

e Our system model encompasses the stochastic energy arrival model for harvesting energy, the stochastic energy
storage model for the finite size battery, the stochastic model of PU’s activities, spectrum sensing error, and
channel estimation error (both at SUs and the AP). We model the randomly arriving energy packets during a

time slot as a Poisson process, and the dynamics of the battery as a finite state Markov chain.

e We propose a power adaptation strategy for SU,, that mimics the behavior of the rate-optimal power adaptation
scheme with respect to the estimated channel power gain g, available at SU,, and the AP, i.e., when g, is
below a cut-off threshold 6,,, the transmit energy is zero, and when g,, exceeds 6,,, the transmit energy increases
monotonically in proportion to a parameter €,,, as g,, increases. The parameters §2,, and 6,, play key roles in

balancing the energy harvesting and the energy consumption.

e Given our system model, we establish a lower bound on the achievable sum-rate of SUs—AP links, in the

presence of both spectrum sensing error and channel estimation error (both at SUs and the AP). We formulate a

novel constrained optimization problem with the optimization variables {£2,,, 6,, }nNgl, aiming at maximizing the
derived sum-rate lower bound, subject to the AIC imposed on the PU and the causality constraint of the battery.

We solve the formulated constrained optimization problem assuming that the battery reaches its steady-state.

e We derive closed form expressions for the battery outage probability and transmission outage probability and
demonstrate their behaviors, in terms of the average number of harvesting energy packets and the AIC. We also
study the existing trade-offs between spectrum sensing-channel estimation-data transmission and how these

trade-offs impact the sum-rate of our CR network.

Our work in Chapter 4 is different from [62, 67, 68, 70]. In particular, these works view the energy management
policy design as a sequential decision making problem, and hence, they adopt the Markov Decision Process (MDP)
framework to solve the problem. In this framework, the goal is typically optimizing a specific metric over a horizon
spanning several time slots. The solutions (obtained using dynamic programing) are dependent across time slots, and
also depend on the initial condition (i.e., the initial state of the battery). Here, we assume that the battery operates at its

steady-state, and hence, our proposed constrained optimization problem can be solved for each time slot. Furthermore,
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the problem can be solved offline and the optimized transmission parameters {€2,,, 9n}nN;1 (that do not depend on the
initial condition of the battery) can become available apriori at the AP and SUs. During the data transmission phase,
SU,, chooses its symbol power, using its optimized transmission parameters (2,,, 6,,, and based on its partial CSI of

SU,,—AP link (received via the feedback channel) as well as the available energy in its battery.

In Chapter 5, we explore a throughput-optimal design for a Device-to-Device (D2D) Millimeter Wave (MMWAVE)
network, where the nodes employ directional antennas for wireless communication. In particular, we consider a
MMWAVE network with a total available bandwidth of B, Hz, that supports communication of N cooperative pairs
of transmitters and receivers over fading channels. We assume the available spectrum band is divided into N, non-
overlapping sub-bands, where each sub-band has a bandwidth of W = B./N. Hz. Also, we assume N, < N. Each
node is capable of steering its beam within the range of its field of view (FOV) [1,5]. Also, each transmitter node
can adjust its transmit power. The transmitter-receiver pairs can form up to /N, disjoint coalitions, such that the pairs
in a particular coalition share the same sub-band for communication. Therefore, the pairs within a coalition cause

co-channel interference, whereas the pairs in different coalitions do not interfere.

The questions we address are: What is the best coalition among the pairs? What are the optimal beam steering angles
of directional antennas of the pairs within each coalition, and what are the optimal transmit powers such that the

network throughput, defined as the sum-rate of all [V transmitter-receiver pairs in IV, coalitions, is maximized?

We combine the concepts of coalition formation among cooperative transmitter-receiver pairs and directional MM WAVE
bands, and we take full advantage of adaptive beam steering and adaptive transmit power to improve the spectral effi-

ciency and maximize the network throughput.

Finally, Chapter 6 concludes the dissertation.
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CHAPTER 2: BEAM SELECTION AND DISCRETE POWER
ALLOCATION IN OPPORTUNISTIC COGNITIVE RADIO SYSTEMS

WITH LIMITED FEEDBACK USING ESPAR ANTENNAS!

In this chapter, we consider an opportunistic CR system consisting of a PU, SU;, and SU,, where SU; is equipped
with an ESPAR antenna with the capability of choosing one sector among M sectors for its data transmission to
SU,x. During the initial spatial spectrum sensing phase SUyy senses the channel and monitors the activity of PU.
While being in this phase, SU, determines the beam corresponding to the location (orientation) of PU based on the
received signal energy. SUy, stays in this phase as long as the channel is sensed busy. It leaves this phase and enters
transmission phase when the channel is sensed idle. The transmission phase itself consists of two phases: channel
training phase followed by data transmission phase. During the former phase, SU;, sends training symbols to enable
channel estimation at SU,., as well as selection of the strongest channel among all beams between SU;,—SU, for data
transmission. Also, SU,, employs an ny-bit quantizer to quantize the gain of the selected beam. Then, SU,, feeds
back the index of the selected beam as well as the n;-bit representation of the index of the quantization interval over an

error-free bandwidth limited feedback link to SUy, so SU can optimally adapt its discrete power level accordingly.

2.1 System Model and Problem Statement

2.1.1 Background on ESPAR Antennas

The ESPAR antenna is a circular array, comprised of one active element and M parasitic elements symmetrically
surrounding the active element, and the radius of the array is r < A./2, where A. is the carrier wavelength [92].
Fig. 2.1a depicts an ESPAR structure. The active element is connected to the single RF chain, while M parasitic
elements (which are mutually coupled to the active element) are short-circuited and loaded by M variable reactive
loads. Let ., be the reactive load of m-th element and vector & = [z1, ..., 2] denote the reactive loads of all M
parasitic elements. By adjusting these reactive loads, the beampatterns of the ESPAR antenna are designed such that

the angular space is divided into M spatial sectors or beams?. In particular, to design the beampattern corresponding to

1© 2020 IEEE. Part of this chapter is reprinted, with permission, from [4].

2Throughout this dissertation, “sector” and “beam” are used interchangeably.
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the first beam, entries of vector o, are optimized such that the beam gain is maximized at an angle (for example angle
0°) [92]. Since the ESPAR antenna structure is symmetric, the beampattern corresponding to the second beam can be
obtained by circularly shifting the entries of x;, such that the beam gain is maximized at angle ko = i—’} Repeating
this M times one can obtain M beampatterns corresponding to M beams such that the beampattern corresponding to
the m-th beam achieves its maximum at angle x,,, = W form = 1,..., M. It is noteworthy that the ESPAR

antenna can provide an omni-directional beampattern if the reactive loads of all parasitic elements are chosen equal

(omni-directional mode).

Similar to [113], to mathematically model the radiation pattern (antenna pattern) of the ESPAR antenna, we adopt the

Gaussian pattern in x —y azimuth plane in terms of angle ¢ given by

p() = A1 + Ag 6‘3(2;,532)2, 2.1
M(¢) = modar (¢ + 7) —m, (2.2)

mods, (¢) denotes the remainder of %, constant B = In(2), ¢sqp is the 3-dB beamwidth, A; and Ay are two constant

antenna parameters. The radiation pattern of m-th sector at angle ¢ is

P (@) =p(¢ — k) form=1,..., M. (2.3)

In Fig. 2.1b, the beampatterns of an ESPAR antenna with 8 parasitic elements are shown. In this chapter, we discuss
the received or transmitted signal at m-th sector of SU;. This means that, during the signal reception or transmission,
the reactive loads of all M parasitic elements (i.e., the entries of vector x) are set and tuned such that the beampattern
corresponding to the m-th beam is generated. Note that in our work we assume the reactive loads (i.e., the entries of
vector « and thus the shapes of beampatterns or equivalently the radiation patterns of M sectors) are determined by
the ESPAR antenna designer. Given the antenna design, we focus on how the sector-based structure of this ESPAR
antenna can be exploited to enhance the system performance of our opportunistic CR system, in which SUy optimizes

its sector-based data communication to SU,, according to the results of its sector-based spectrum sensing.
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Figure 2.1: The ESPAR antenna structure and its beampatterns, (a) The ESPAR antenna structure, (b) Beampatterns of an ESPAR
with 8 parasitic elements, assuming the Gaussian radiation pattern in (2.1).

2.1.2  Geometry of Our Opportunistic CR System

Our CR system model is illustrated in Fig. 2.2, consisting of a PU and a pair of SU;, and SU,... We note that PU in our
system model can be a primary transmitter or receiver. We assume when PU is active it is engaged in a bidirectional
communication with another PU, which is located far from SU;, and hence its activity does not impact our analysis.
We assume SUqy is equipped with an (M + 1)-element ESPAR antenna (for spectrum sensing and communication)
with the capability of choosing one sector among M sectors for its data transmission to SU,, while SU,, and PU
use omni-directional antennas. The reason for this assumption is to focus on quantifying the capacity improvement
provided by the ESPAR antenna at SUy,, in the presence of spectrum sensing error as well as ATPC and AIC. We also
assume there is an error-free bandwidth limited feedback channel from SU,, to SU;, (where the channel bandwidth is
measured in terms of the number of bits sent over the channel [15, 114], to help SUy, select the best sector for its data
transmission to SU, and also to provide SU;y with the quantized channel gain of the selected beam, so SU can adapt
its discrete power level accordingly. The direction (orientation) of PU and SU,y with respect to SUy are denoted by
angles ¢py, and ¢gg, receptively. Clearly, in our problem SU, does not know these directions or angles (otherwise,

the beam selection at SUy, for data transmission would become trivial).

Let h, hs, hep denote the fading coefficients of channels between SU and PU, SU, and SU,, and SU, and PU,
respectively, when the ESPAR antenna of SUy is in omni-directional mode. We model these fading coefficients

as independent circularly symmetric complex Gaussian random variables. We assume g = |h|?, gss = |hss|® and
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Figure 2.2: Our CR system with an (M +1)-element ESPAR antenna at SUx and omni-directional antennas at SU,x and PU.

gsp = |hsp|? are independent exponentially distributed random variables with mean -, 7ss and 7sp, respectively?.
Since in our problem SUs and PU cannot cooperate, SUs cannot estimate g and g,. However, we assume that
SUx knows the channel statistics, i.e., the mean values « and ~y,. Let ¥, and x,,, denote the fading coefficients of
channel between m-th sector of SUy, and PU, and between m-th sector of SUyy and SU,y, respectively, when the
ESPAR antenna of SUiy is in directional mode, where 1),, = hy/Pm(dpU)> Xm = s \/}m . We assume the
channel gain v,,, = |)<m|2 is an exponential random variable with mean §,,, and SU;y knows d,,,, for all m [102]. For

the readers’ convenience, we have collected the most commonly used symbols in Table 2.1.

2.1.3 Our Problem Statement

Suppose, SUs employ a frame with a fixed duration of 7 seconds, depicted in Fig. 2.3. We assume SUy, first senses
the channel and monitors the activity of PU. We refer to this period as spatial spectrum sensing phase (with a variable
duration of Tg, seconds). Depending on the outcome of this phase, SU;x stays in this phase or enters the next phase,
which we refer to as transmission phase. The transmission phase itself consists of two phases: channel training phase
(with a fixed duration of T}, seconds) followed by data transmission phase (with a variable duration of T} — Ty, — T},

seconds). During the former phase, SUy sends training symbols to enable channel estimation at SU,,. During the

3 We note that the distances between users are included in the small scale fading model [115]. In particular, we assume that the mean values
are v = (do/d)¢, vss = (do/dss)€, ¥sp = (do/dsp)€, where dy is the reference distance, € is the path-loss exponent, and d, dss and dsp are the
distances between SU¢x and PU, SU¢x and SU,x, and SU,x and PU, respectively.
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Table 2.1: Most commonly used symbols.

Symbol | Description

M Number of beams

Nse Number of samples used for spectrum sensing

ny Number of bits for quantization at SU,x

Pm (¢) Radiation pattern of m-th beam at angle ¢

Ym, Fading coefficient of channel between m-th beam of SUtx and PU

Xm Fading coefficient of channel between m-th beam of SU¢y and SUrx
Om Mean of channel gain between m-th beam of SUtx and SU;«

v* Channel gain of selected beam for data transmission from SU¢x to SU,x

¢pu, psr | Directions of PU and SU,x with respect to SUx
m;;U, ng Indices of selected beam for PU and SU,«

T, T Prior probabilities of Ho and H1

o, 71 Probabilities of channel being sensed idle or busy
T Duration of frame employed by SU¢x

Tse Duration of spatial spectrum sensing phase

latter phase, SUy sends data symbols to SU,x. Given Tt and T, we have 0 < Ty, < (Tt — T3;). In the following, we
describe how SUyq, operates in directional mode during these three distinct phases. Based on these descriptions, we

provide our problem statement.

T
Spatial Spectrum Channel Data Transmission
Sensing Training
Te T Tt = Toe = Tin

Figure 2.3: The structure of frame employed by SU¢x.

e Spatial Spectrum Sensing Phase: During this phase SU;y senses the channel and monitors the activity of PU.
Suppose H; and H represent the binary hypotheses of PU being active and inactive, respectively, with prior proba-
bilities Pr{?1} = m and Pr{Ho} = m. SUix applies a binary detection rule, as will be described in Section 2.2.1,
to decide whether or not PU is active. Let ﬁl and ﬁo denote the detector outcome, i.e., the detector finds PU active
(channel is sensed busy and occupied) and inactive (channel is sensed idle and unoccupied and thus can be used by
SUix for transmission), respectively. The accuracy of this binary detector is characterized by its false alarm probability
P, = Pr{’;q1|7—lo} and detection probability Py = Pr{ﬁl |#1}. Therefore, the probabilities of events ”;QO and ﬁl

become Ty = Pr{’;qo} =m(1—Py) + mo(1—Pra) and 7 = Pr{’}%} = 71 Py + P, respectively. Furthermore,

20



the joint probabilities are By = Pr{’Ho,?-A[o} = mo(1—Ps,) and 81 = Pr{?—h,ﬁo} = m1(1— Py). The accuracy
of spectrum sensing impacts the maximum information rate that SU, can transmit reliably to SU,. Our problem
formulation incorporates the effect of imperfect spectrum sensing on the constrained ergodic capacity maximization.
As long as the channel is sensed busy, SUy stays in spatial spectrum sensing phase. While being in this phase,
SUix determines the beam corresponding to the location (orientation) of PU based on the received signal energy. We
denote the sector index corresponding to PU’s location by mp;. SUjy uses mpy; for adapting its discrete power level
during data transmission phase. We note that, there is a non-zero error probability when SU, determines the beam
index mpy, i.e., it is possible that mf; is not the true beam index corresponding to PU. Our problem formulation

takes into account the impact of this error probability on the constrained ergodic capacity maximization.

o Channel Training Phase: When the channel is sensed idle, SUyy leaves spatial spectrum sensing phase and enters
this new phase and sends training symbols over all beams. Based on the received training signal, SU,y estimates the
channel gain v,,, = |X;,|? for all beams and determines the strongest channel v* = max{,, } among all beams, and
the corresponding beam index m§y = arg max{v,,}. Also, SU,x employs an n;-bit quantizer to quantize v*. The
quantizer has Ny, = 2™ thresholds, denoted by {uk}ivzbl, satisfying p10 = 0 < p1 < ... < pun,+1 = 00, and has
Ny, + 1 quantization intervals 7, = [y, tk+1) for k = 0,..., N,. The quantization mapping rule follows: if the
quantizer input v* lies in the interval Zj, then the quantizer output is i, for k = 0, ..., Np. The index of quantization
interval k can be represented by n-bits. Then, SU,, feeds back mgp as well as the ny-bit representation of the
index of the quantization interval to which v* belongs, over an error-free bandwidth limited feedback link to SUyy, so
SU, can optimally adapt its discrete power level accordingly. We take into account the probability of determining the
true beam corresponding to SU, as well as the probability of selecting the true strongest channel among all beams

between SU; and SU,, on the constrained capacity maximization.

e Data Transmission Phase: After channel training phase, SUy enters data transmission phase and transmits data
to SU,x over the selected beam mgr*. During this phase, SU;y adapts its discrete power level Py, where P, €
{Po, P1, Ps, ..., Py, }, using mpy and the information received from SU, through the feedback channel, such that
the ergodic capacity of SU;x—SU, link is maximized, subject to ATPC and AIC. We let Py = 0 to indicate that when

v* € Iy = [0, p11) then SU¢, does not transmit data to SU,y, since the channel is too weak.

Table 2.2 enumerates the sequential steps we take within each of the three phases: spatial spectrum sensing phase,

channel training phase, and data transmission phase.
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Table 2.2: Sequential steps within each three phases.

Phase Sequential steps in each phase

1.1. SU¢x senses the channel and monitors the activity of PU.

1.2. As long as the channel is sensed busy, SU¢y stays in this phase.

1. Spatial Spectrum Sensing Phase | 1.3. While being in this phase, SU;y determines the beam corresponding to the orientation of PU
denoted by m; (based on the received signal energy).

1.4. When the channel is sensed idle, SU leaves this phase and enters the next phase.

2.1. SU¢x sends training symbols over all beams.

2.2. SU,x estimates the channel gain v,,, for all beams and determines the strongest channel v* among
all beams and the corresponding beam index mgg *.

2. Channel Training Phase 2.3. SU,« employs an ny,-bit quantizer to quantize v™*.

2.4. SU,« feeds back mgg * as well as the n4,-bit representation of the index of the quantization interval
to which v™ belongs, over a feedback link to SU¢x.

2.5 SU¢x leaves this phase and enters the next phase.

3.1. SU¢ adapts its discrete power level Py, using mp; and the information received from SU,x

3. Data Transmission Phase through the feedback channel, such that the constrained ergodic capacity is maximized.

3.2. SUyx transmits data to SU,y with power Py over the selected beam méR.

Remark: It is worth emphasizing that in our problem, SU;, does not know the angles ¢py and ¢py, defined in Sec-
tion 2.1.2 (otherwise, the beam selection at SU¢, for data transmission would become trivial). We take full advantage
of beam steering capability of the ESPAR antenna that enables sector-based spectrum sensing and communication at
SUix. In this work, SUy, does not estimate the angles ¢py and ¢sr. Instead it determines the indices of the sectors
corresponding to PU and SU, (i.e., SUy finds mp; and learns mgy, during spatial spectrum sensing phase and chan-
nel training phase, respectively). For mathematical tractability, we assume that these sectors are unchanged during a
frame duration. Comparing with a CR system design that is based on angle (or directional of arrival) estimation at
SUiy, using the sector-based sensing and communication improves the system design resilience against the mobility

of users (as long as the determined sectors do not change due to mobility).

When spectrum sensing is imperfect, the capacity of SU;—SU, link can be written as [3]

C = Dq ]E{ﬁo Coo + b1 Cl,O}» 2.4)

where C; o is the instantaneous capacity of this link corresponding to the event H; and ﬁo, Dy = (Tt — Ty —
Ty )/Tt and E{-} is the statistical expectation operator. Let I, indicate the maximum allowed interference imposed
on PU and P,, denote the maximum allowed average transmit power of SU,. Given our aforementioned system
model description and to enable mathematically expressing the AIC and ATPC in our problem, we let P(v*) indicate
SUix transmit power in terms of the channel gain of the selected beam v* between SUy and SU,.. To satisfy the AIC,
we have

Ddﬁl E{gsp p(KER - K;U)P(V*)} S Tavv (25)
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and to satisfy the ATPC, we have
Dd;r\() E{P(V*)} S Pav. (26)

Notice that, had spectrum sensing have been ideal, 5; = 0 and data communication between SU¢, and SU,, would
cause no interference on PU. The more accurate spectrum sensing is, the smaller is the power of interference signal
imposed on PU. On the other hand, increasing the accuracy of spectrum sensing requires a longer 7T, and a shorter
Dy, given the frame duration 7. Reducing D4 decreases the capacity C' in (2.4). Therefore, there is a tradeoff
between increasing C' and decreasing the power of interference signal imposed on PU. Let F,«(-) be the Cumulative
Distribution Function (CDF) of v* (will be derived in Section 2.2.3). Given the discrete power levels Pg’s and the

quantization thresholds p’s, E { P(v*)} can be written as

{ } Zpk[ (k+1) — FV*(Nk)} 2.7

Therefore, the constraints in (2.5) and (2.6) can be rewritten as

Ddﬁl’YSpE{ KSR K/PU }ZP/C|: Mk+1 -F *(Mk):| < Tava (28)

Dy Z Py [ (1) — Fo (Mk):| < Pay. (2.9

Our main objective is to find the optimal spectrum sensing phase duration 7., the optimal quantization thresholds
p’s for the channel gain quantizer employed at SU,, and the optimal discrete power levels Pj’s corresponding to
each quantization interval Zj, = [ug, fik+1), such that the ergodic capacity C in (2.4) is maximized, subject to AIC
and ATPC given in (2.8) and (2.9), respectively. In other words, we are interested in solving the following constrained

optimization problem

Maximize C = Dd E{ﬂoC(),o + 5101’0} (2.P1)
TSev{Ukapk}iViH

st 0< Ty < (T3 —T),
0<p <...<pun, <oo,
P, > 0Vk,

(2.8) and (2.9) are satisfied.
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2.2 Characterizing Objective Function and Constraints in (2.P1)

Characterizing the objective function and the constraints in (2.P1) requires addressing the following three components.
First, the performance of the binary detector employed by SUy to detect PU activity during spatial spectrum sensing
phase plays role in the objective function and the AIC in (2.8) via 31, and in the ATPC in (2.9) via 7y. Obviously,
this performance depends on the choice of the detector. Section 2.2.1 describes our proposed binary detector, which is
based on the energy of the collected measurements from all sectors of the ESPAR antenna at SUy during this phase,
and provides closed form expressions for P4 and P, of this detector. Second, the error probability of finding the sector
index mpy; corresponding to PU at SUy during spatial spectrum sensing phase affects the AIC in (2.8). This error
probability depends on the mechanism through which SU¢, determines this sector index. Section 2.2.2 explains how
SUiy finds this beam index, using the received signal energy from all sectors of the ESPAR antenna during this phase,
and derives closed form expression of the corresponding error probability. Third, the probability of finding the sector
index mgy corresponding to SU. during channel training phase impacts the AIC in (2.8). During data transmission
phase SUy sends data to SU,. over the selected beam mgg. Section 2.2.3 discusses the method utilized by SU, to
find this beam index, using the received training signal transmitted by all sectors of SU¢ antenna, and derives a closed

form expression for the corresponding probability.

2.2.1 Energy-Based Binary Detector for Spectrum Sensing Using ESPAR Antenna

Spectrum sensing at SU¢ (detecting the activity of PU) during spatial spectrum sensing phase can be formulated as
a binary hypothesis testing problem. Suppose when PU is active (present), it transmits signal s(¢) with power P,. Let
ym(n) denote the discrete-time representation of received signal at m-th sector of SUyy at time instant ¢ = nT; where
Ty is the sampling period. Assuming SUiy collects Ngo = |Tso/(MTy)| samples corresponding to each sector we can

write

Ym(n) = ¥ (n)s(n) + wpm(n), for n =14+(m—1)Nge,...,mNge, m=1,..., M

We model the transmitted signal s(n) by PU as a zero-mean complex Gaussian random variable with variance P, and
we assume SUy, knows P,. The term Wy, (n) is the additive noise at m-th sector of SUy, antenna and is modeled
as wy,(n) ~ CN(0,02). We assume that ¢,,(n), s(n) and w,,(n) are mutually independent random variables.

Since SUyy takes samples of the received signal for different sectors sequentially (in different time instants), 1., (n)
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and noise samples w,,(n) are independent and thus uncorrelated both in time and space (sector) domains. Under
hypothesis H1, given 1,,, we have y,,(n) ~ CN(0, 02, +02) where 02, = |th,,,|*> P,. Under hypothesis H, we have

ym(n) ~ CN(0,02). The hypothesis testing problem at discrete time instant n for m-th sector is then given by

Ho : ym(n) = wm(n)z
(2.10)

Hy ym(n) = wm(n)s(n) + wm(n)

Our proposed energy-based binary detector uses all the collected samples from M sectors (total of Neq = M Nge

collected samples). Let €, be the energy of received signal at sector m. We have

mNge

S ‘ym(n)

se n=1Hm—1)Nge

2

@2.11)

Under hypothesis #( and also under H; (given v,,,), the sector energy ¢, is distributed as a central chi-square random
variable with 2Ny, degrees of freedom. We consider the summation of energies of received signals over all sectors as

the decision statistics 7' given below

M 77

1 Ha
T:ME Em = 1) (2.12)

m=1 HO

(2.13)

Note that T is the summation of N.q random variables. When N, is large enough 7' can be approximated as a
Gaussian random variable. Thus, Under hypothesis H, for large N.q we invoke the Central Limit Theorem (CLT),
to approximate 7' as Gaussian with distribution 7' ~ N'(03, 075, ), Where 07,5, = 03, /Neq. Similarly, under
hypothesis H; for large Neq, T can be approximated with another Gaussian with distribution 7' ~ N (C, U%Iﬂl)

where ( = P,yE4 + 02, and U%‘Hl is given below

1 ’)/ZPQ M M
O, = o Oy + 2YPy B0y, +v° P2 (SEB - MNE%) T M; Z Z Erme, (2.14)
€ m=1m'=1
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where

1 27
Em = %/0 D (0) P (0)d0, (2.15a)
1 27
Eq= —/ p(6)do, (2.15b)
21 J

and Ep = E,,,». Then, the false alarm and detection probabilities of this detector are given as the following

Pfa=Q<”_"V2“>, Pd=Q< 1% ) (2.16)

IT|Ho IT|Hy

where Q(-) is the Q-function. For a given value of Py = Py, the false alarm probability can be written as

1P 2
P =Q (aT'”lQ (Pa) +¢ UW) . (2.17)

O—T\’Ho

2.2.2 Determining the Beam Corresponding to PU

During spatial spectrum sensing phase when the channel is sensed busy, SU, determines the beam corresponding to
the orientation of PU based on the received signal energy €,,,,m = 1,..., M. Ordering these calculated energies,
SUix selects the beam index corresponding to the largest energy mp = argmax{e,,} among all sectors. For
example, in Fig. 2.4a, we have mp; = 3, that is, the third beam has received the largest amount of energy. As we
mentioned, under hypothesis #1, given v,, (or equivalently given g and ¢py), the sector energy &,, is distributed as a

central chi-square random variable with 2Ny, degrees of freedom and its conditional PDF and CDF expressions are

gNee 1 e%
fem ($|97¢PU> = W7 (2.18a)
’Y(NSE7 ?)
F.,, (wlg,¢Pu> = F(T)” (2.18b)
where 02 = (02,+0%2)/ Ny and (-, -) is the lower incomplete gamma function
v(s,x) = 2°e¢ "I(s ZF e (2.19)

J=
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(b)

Figure 2.4: A schematic to show how different beams can be selected to indicate the orientation of SU¢ with respect to PU and
SUix (a) mpy =3, (b) mgg =2.

Let A; ,,, represent the average error probability of finding the sector index corresponding to PU, i.e., the probabil-

ity that mp; = ¢ while the true orientation of PU belongs to the angular domain of m-th sector, ¢ppy € @, =

2#(%;3/2)7 2ﬂ(mj\/—[1/2)>, for i # m,i,m = 1,...,M. To find A, ,, we start with finding ; = Pr{m}y =

ilg, ¢pu }, which is the probability that the index of selected sector, given g and ¢py, is i. We have

Q; =Pr {ml*gU =1

g,cbpu} =Pr{€1 < Eiyeey€inl <€y Ei41 < Ejye vy EM <£Z}

M 0o M
=E., { [] F. (mg,¢pu) = /0 fes <y|97¢PU) 11 7. <y|g,¢pU) dy. (2.20)
m=1

m=1
m#i m#i

in which f. (z|g, ¢py) and F,

Em

(z|g, ¢pu) are the conditional PDF and CDF of ¢, given in (2.18). Without loss of
generality, suppose ¢ = 1. After some mathematical manipulations and taking expectation with respect to €1, {2; in

(2.20) can be written as

M
G—MNee N T (MNse+§ :j:2 k'j)
= 2. ; (2.21)
L DN [N 02 Sk GRS

where

ITED DD I3

)
k2=0 k3=0 kp=0
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m=1 ©m

M M 1
Ek:HUgij(kj+Nse+1), G: Z O_T
j=2

To illustrate the behavior of ; (averaged over fading gain g) we define A; = E {1} = Pr{m}{y, = 1|¢py} and
plot Ay versus ¢py for M = 8 and SNRpy = va/a‘?V = 0dB. Fig. 2.5a shows A; versus ¢py for Nge = 20 and
¢sap =20°, 30°. We observe that when ¢sqp decreases from 30° to 20°, beam selection becomes more accurate, i.e.,
A increases for ¢ppy € P =[—22.5°,22.5°), however, it decreases outside this angular interval. Fig. 2.5b plots A
versus ¢py for Nge = 10, 30,200 and ¢3qp = 20°. We observe that as Vg, increases beam selection becomes more
accurate. For large Ng., we can see that A; approaches one for ¢py € @, and it is approximately zero outside this

angular interval. Now, we are ready to find A; ,,, using A; = Pr{m}; = i|¢py}. We have

1 1 T : ;
RN V10
o1 vV - =N =30
08r 1 08f |1 W — N =200/ |
i |
! 1
! 1
06F 1 06F " 1
< <
04r g 04 ]
02f 1 02f il A\ 1
: v
ayE H
0 | | 0 == . | S\ - =
-90 -60 -30 0 30 60 920 -90 -60 -30 0 30 60 90
¢py |degree] ¢py |degree]
(a) (b)

Figure 2.5: A1 versus ¢py for M =8 and SNRpy =0dB (a) Nse =20, ¢zas =20°,30° (b) ¢psap =20°, Nse = 10, 30, 200.

N = / A Pr{¢PU € (I)m} dopy. (2.22)
[

PUEDPH

Due to the symmetrical structure of the ESPAR antenna we have A; ,, = A,, ;. Note that A, ; is the probability
of selecting the correct beam and A; ,,, for i # m is the probability of selecting the incorrect beam, leading to error
probability in beam selection. The average error probability A; ,,, versus the index beam m is shown in Figs. 2.6a and

2.6b for SNRpy =0, —5dB. As expected, Zl,l increases and Zl,m, m # 1 decreases as Vg, increases.
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Figure 2.6: A1, versus the index beam m for ¢345 =20° (a) SNRpy =0dB, (b) SNRpy = —5dB.

2.2.3 Determining the Beam Corresponding to SU,x

When the channel is sensed idle, SU;y leaves spatial spectrum sensing phase and enters channel training phase.
During this phase, SU¢y sends training symbols over all beams to enable channel estimation at SU,y. Using the
received training signal, SU,, estimates the channel gains v,,, = |, |? corresponding to all sectors and determines the
strongest channel v* = max{v,, } among all beams and the corresponding beam index mg = arg max{v,,}. For
example, in Fig. 2.4b, we have mg = 2, i.e., the second beam has the largest channel gain. SU,, employs an n;-bit
quantizer, with quantization thresholds {uk}i@o and quantization intervals {Ik},lc\[:"o, to quantize v* and to find the
quantization interval to which v* belongs to. Then, SU, feeds back mgg as well as the n;-bit representation of the
index of the quantization interval to which v* belongs, over the feedback link to SUy. Let ¥; = Pr{ng = i} denote
the probability that mgy = ¢. To characterize ¥; we need to find the CDF and PDF of v*, denoted as F-(-) and

fu= (), respectively. Note that given our assumptions, v,,,’s are independent across sectors, however, not necessarily

identically distributed. Therefore, F, - () can be written as

M
Fy* (Z‘) == H FV,,L(-T)a

m=1
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where F, (x) = 1 — €% . After simplification, (2.23) can be written as
M
Fye(z) =1+ (-1 Zm exp (—2Aj,5,) (2.24)
m=1
where

M—-—m+1 M—m+2 M

1
Ajlza‘nl:;g’ 2.5 2 2 )

Ji=1 J2=j1+1 Jm=Jm-1+1

From the CDF in (2.24), we can find the PDF

M
for(@) = (1™ Zm Ajy g, exp (24, 5,,) - (2.25)

m

[

Similar to section 2.2.2, we can express U; as the following

o M
U; = Pr {ng = 2} = /O Foi @) T] Fon (v) dy. (2.26)
m=1

mAi
Without loss of generality, suppose ¢ = 1. After some mathematical simplification, ¥; can be expressed as

M—-1

' 1
U, =Pr {ng = 1} =1+ (-1)™ - (2.27)
mz::l 2 L+ 018,

where
M—m M-—m+1 M—1

S SRR R

Ji=1 je=ji1+1 jm=jm-1+1

2.3 Formalizing and Solving (2.P1)

After channel training phase, SU enters data transmission phase. Going through the previous two phases, at this
point SU¢, knows the beam indices mpy;, mgr as well as the index of quantization interval to which the largest
channel gain * belongs to. Knowing the quantization interval index, SU¢y infers the quantized value of v* and adopts
its discrete power level accordingly. For instance, if v* € Zj then the quantized v* is u and the associated discrete
power level is P,. From a system-level design perspective, one can optimize the quantization thresholds p’s and
the associated discrete power levels Py’s, such that the constrained capacity is maximized. Furthermore, the capacity

expression itself and the power of interference signal imposed on PU during this phase depend on the accuracy of the
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energy-based binary detector in Section 2.2.1, in a way that increasing the detector accuracy has a positive effect on
lowering the interference and a negative impact on enhancing the capacity itself. This implies that an optimal T}, can
exist that maximizes the constrained capacity. In the following we express C o and C' o in terms of the optimization
variables { s, Py} ", and we find the term E{p(r%g—+5y;)} in (2.8) using the analysis we have conducted in sections
2.2.2 and 2.2.3. We modify the objective function and the constrains in terms of the optimization variables in Section

2.3.1. Then, we provide our solution to the problem in Section 2.3.2.

2.3.1 Formalizing (2.P1) with Modified Objective Function and Constraints

Starting with the continuous valued v* and its corresponding continuous valued transmit power P(v*), we can write
the expressions for the instantaneous capacity Cp ¢ and C'y o in (2.4) as [1]

V*P(v*) V*P(v*)
Coo=1 1+— Cio=1 1+ ———7-"—). 2.28
bomtons(1+55). cuamton (14 e

Since SUs and PU cannot cooperate, SU cannot estimate the channel gain g, and thus C ¢ cannot be directly
maximized at SUs. Instead, we consider a lower bound on its average over gsp, denoted as Egsp{CLo}. Using the
Jensen’s inequality [116], the lower bound on E,_{C1 o} becomes
v P(v*) LB
]Egsp {0170} > 10g2 <1 + OM) = Ol,O (229)
where ag = P, E{gsp} = Ppysp- Let CM'B = D4E,~ BoCo + 510%}3} where CB is the lower bound on C in

(2.4). From now on, we focus on CTB. Let R(()kg and ngg denote the discrete transmission rates when the quantization

interval index of v* is k, i.e., v* € Ty, quantized v* is uy, and discrete power level is Py. From (2.28) we have

(k) _ ot P k) _ i P
Ry o = log, (1 + = ) ; Ry = logg(l + o2 +ag)' (2.30)

Recall that the probability of quantized v* being in the interval Zj, is equal to F« (ftx41)—F,« (11 ). By averaging over

all possible quantization intervals, we can rewrite C™B in terms of the discrete transmission rates as the following:

Ny,
CLB _ D, Z(,@m&’ﬁ%mﬁ%) {Fy*(ukﬂ) - Fl,*(,uk)]. (2.31)
k=1
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Next, we focus on the constraint in (2.8) and find the term E{p(x§y —rp)}. Using the average probabilities derived

in (2.22) and (2.26) we have

E{p(ﬁgR - n%)} =3 "N U Ay i plky — i) (2.32)
j=1i=1
Then, the constraint in (2.8) can be written as
Ny,
Dabo »_ Pi {F (1) —Foe (uk)] < Ty, (233)
k=1
where by is
M M
bo = 51%1, Z Z \I/j Zm;\U,i p(/ﬁlj — K,‘). (234)
j=1i=1

We end this section with the statement of the constrained optimization problem we solve. In Section 2.3.2 we solve

the following constrained optimization problem

Ny,
Maximizg CMB = Dy Z (BOR(()IB + B1R§If3) [Fu* (k1) — Fo (pur) 2.P2)
Tae,{pi, P} 2y k=1

st: 0< Ty < (Tt —Tir),
0</L1<---<,UNb<OOa
P, > 0VEk,

(2.33) and (2.9) are satisfied.

It is worth mentioning that (2.P2) includes the special case where the locations (orientations) of PU and SU, are such
that they belong to the same beam, with respect to SU;. First, suppose mp; = mgg. In this case, the interference
imposed on PU increases and SUyy uses a small transmit power level Py, such that the AIC in (2.33) is satisfied.
Next, suppose mpy 7 mgg. In this case SUy, uses a larger P, compared with the case where mp; =mgg (because
SU¢x wrongly assumes that PU and SU, lie in two different beams/sectors). Although the instantaneous interference

in this case becomes larger (compared with the case where mp; =mgp), the AIC in (2.33) is still satisfied.
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2.3.2 Solving (2.P2)

We note that (2.P2) is a non-convex problem and can be solved using exhaustive search, which can be computationally
expensive. Therefore we develop an iterative suboptimal algorithm with a much less computational complexity, to find

the local optimal solution using the Lagrangian method. The Lagrangian is

Ny,
L=-Dg)y <BoRé’f3 + &R%’f&) [F (1) = Foe w] (2.35)
k=1

Ny, Ny,
+A (Dd?roZPk[Fw (1) —Foe w} —Pav> +0 (DdboZP{Fu* (1) — Foe (uk)] —Iav>

k=1 k=1

where A\ and ¢ are the nonnegative Lagrange multipliers, associated with the ATPC and AIC, respectively. The
Lagrangian multipliers can be obtained using the subgradient method. Our iterative algorithm is based on the Block
Coordinate Descent (BCD) algorithm which relies on the following principle: all variables expect one are assumed
to be fixed and the optimal variable that minimizes (2.35) is found. This process is iterated for all the variables until
the final solution is reached. Convergence is achieved if there exists a single solution that minimizes (2.35) at each
iteration [15]. To apply the principle of BCD algorithm in our problem, we consider the following. Assuming fixed
pr’s and Tie, the problem (2.P2) becomes convex with respect to Py. Therefore, the optimal Py’s that minimize (2.35)

are the solutions to the Karush-Kuhn-Tucker (KKT) optimality necessary and sufficient conditions

+
F,++vT
P, = {”2‘“} . fork=1,2,...,N, (2.36)
F = 0 _20@4—03 T, — F,f—i o3 (oa+07) B Toos+ P10
1H(2) ()\%04‘19[)0) 123 ’ 125 M 11’1(2) ()\%0 —+ ’l9b0) ’

where [x]T = max(z,0). On the other hand, assuming fixed P;’s and T, the optimal py’s that minimize (2.35)
are the solutions to 0L/duy, = 0 for k = 1,..., Ny, which is the first derivative of £ with respect to p. Setting
OL/0ux = 0 we reach to

Jor (1)

Bo (Rg'jg - Réﬁ;“) + B (Rﬁ’fg - Rg’j;”) — (Mo + 9b0) (P — Pe_1)

e (prv1) = Fo= () + (2.37)

P Bo + B1
In(2) \ 02 +py Py o'gv+og+ukPk

Note the values of A and ¥ in (2.36) and (2.37) are obtained by applying the constraints given in (2.33) and (2.9).

Recall that 49 = 0 and i, +1 = oo and hence F«(p19) = 0 and Fy (un,+1) = 1.
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We are now ready to state our iterative algorithm to find the local optimal solution of (2.P2). In the first step, let T, be a
value in the interval (0, T; — T, ). We initiate 1 > 0 and find P; using (2.36). Having Py, Py = 0 and ;1 we obtain po
using (2.37). We repeat this and iterate between (2.36) and (2.37) until we find { Py, uk}ggl. At this point, we check
whether or not Fy« (pn,+1) = 1. If Fo«(pn, +1) is less (greater) than one, we increase (decrease) the initial value of
w1 and find a new set of values for { Py, uk}g:bl and check for the condition Fy- (un, +1) = 1. We continue changing
the initial value of ;1 and finding new values for { Py, uk}gil and checking for the condition Fy« (pn, +1) = 1, until
we find the set of values such that this condition is satisfied. In the second step, given { Py, Hk}ziVL values reached
at the end of the first step, we find T, that minimizes (2.35), using search methods such as bisection method*. A

summary of our proposed iterative algorithm for solving (2.P2) is given in Algorithm 1.

Algorithm 1: Our proposed iterative algorithm for solving (2.P2)
1: Initialize Tse € (0, Tt — Tir), pu1, \, 9.

2: Set Py = 0.

3: repeat

4 repeat

5 Find P; using (2.36).

6: fork=2: Ny

7 Having P, ..., Px—1, obtain uy using (2.37).
8: Having i, obtain P, using (2.36).

9: end

10: Update A and ¢ using subgradient method.

11:  until Constraints in (2.33) and (2.9) are satisfied.
12: Find Fy~ (un, +1) using (2.37).
13: if Fo(pny41) <1

14: increase fi1.

15:  elseif Fo« (1) > 1
16: decrease 1.

17: end

18: until Fo« (i +1) =1
19: Find TOP* that maximizes C'B using bisection method.

2.4 Outage and Symbol Error Probabilities

Two other relevant metrics to evaluate the performance of our opportunistic CR system with the ESPAR antenna at

SUix are outage probability and SEP, denoted as P, and P, respectively. We define P, as the probability of

4The problem in (2.P2) can be solved offline, based on the statistical information of the channels between SUgx—PU and SUx—SU,«, the number
of sectors M, and the number of feedback bits np. In particular, given each pair ml*i,U, ng € {1, ..., M } there is a set of optimal solution for T,
{1k, Pk}iv:bl. These M? sets of solutions are available a priori at SUtx. Also, the M? sets of {,uk}g:bl are available a priori at SU;x. During
channel training phase, SU¢x can also send its finding ml*:,U to SUrx. With the knowledge of ml*;,U and mggr *, SUrx would know which set of
quantization thresholds to use for quantizing v*. The idea of offline power allocation optimization with a limited feedback channel has been used
before for distributed detection systems in wireless sensor networks [114].
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SUix not transmitting data due to the weak SUx—SU,« channel. In the following, we derive closed-form expressions
for P, and P, based on the solutions provided in Section 2.3.2. The outage probability P, can be directly obtained

using the CDF of v* as

P, =Pr {P(l/*)zO} =Pr {V* <,u1} = F«(p1). (2.38)

For many digital modulation schemes SEP can be written as P, = E {Q( VP SNR)} where p is a constant parameter
related to the type of modulation [100]. Considering the noise (plus interference) imposed on SU,, under hypotheses

Ho and H1, we can write P, as

B pv*P(v*) pv*P(v*)
PeﬂoE{Q< ﬁ)}*ﬂlE{Q< M)} (2.39)

Let focus on the expectation in the first term of (2.39). Since P(v*) = P, when v* € T}, = [pg, ftk+1), We have

* v 00 xP(x Ny Hk+1 T
E{Q( /”/j;()>}/o Q( P (i( )>fy*(x)dx2/ Q( p05k>fy*(x)dx. (2.40)

k=0

Similarly, we can find the expectation in the second term of (2.39). Using the following equation

o v

° 1
/ Q(\/%)e—f“ﬂcczgc:Z e 1Q(\/bp) — (2.41)
14 /1 + %
and after some manipulation, the P, in (2.39) can be written as
M Ny
Po=3 (=1 S |6 (V(MkH,SNR,(CO)) - V(Mk,SNR,?)))
m=1 k=0
+61 (V(Mk+1, SNR{Y) — V(. SNR,il’)) (2.42)
where
Q (Vu(SNR +24,,;)
V (1, SNR) = ( n)) — e mQ (\/uSNR) (2.43)
1+ e
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In (2.42), SNR,(CO) and SNRS) are the received SNR at SU,, when v* € 7 and the channel is sensed idle and busy,

respectively, defined as
PPy

PPk PP
03V+O'I2).

SNR(” = & SNR(Y = (2.44)
g

2
2.5 Simulation Results

We corroborate our analysis on constrained maximization of ergodic capacity as well as outage probability and SEP
derivations with Matlab simulations. To illustrate the advantage of ESPAR antennas on increasing constrained capac-
ity, we compare the performance of our CR system with another CR system in which SUy, has an omni-directional
antenna. Different from an ESPAR antenna that concentrates the electromagnetic power in specific directions (so-
called sector or beam), an omni-directional antenna spreads the power equally in all angles. To fairly compare the
performance of our CR system (in which SU¢, has an ESPAR antenna) with the other CR system (in which SUyy has
an omni-directional antenna), we let p©™(¢) = E, for ¢ € (—m,7), i.e., we set the gain of the omni-directional

antenna to be I 4. Note that, with this setting, we have the following equality?

27 27
! p(¢)do = L /O PO (¢)do, (2.45)

% 0 2w

Fig. 2.7a shows the beampatterns of omni-directional and ESPAR antennas in polar coordinate, where Ay = 0.97,
A1 =0.03 (corresponding to E 4 = 0.145). Note that the radius of the red beampattern is 0.145 and the blue beam-
pattern has the maximum value of p(0) = A; + Ap = 1 at angle ¢ = 0 radians. The area covered by the solid blue
beampattern is equal to the area covered by the dashed red beampattern, in the sense that the equality in (2.45) holds
true. Fig. 2.7b plots the same beampatterns in Cartesian coordinate. For the CR system with the omni-directional an-
tenna at SUyy, we consider a modified procedure for spatial spectrum sensing, channel training and data transmission
phases® (with respect to the description in Section 2.1.3) and denote the constrained capacity in (2.P2) evaluated at
LB,Om

the optimized variables T, pui’s, Py’s, by C¢ . For our CR system let C%]g‘t denote the constrained capacity in

(2.P2), that is evaluated at the optimized variables T, px.’s, Py’s. Obviously, the optimized variables obtained from

5 We note that comparing an ESPAR antenna with the omni-directional antenna obtained from the same ESPAR antenna is not a fair comparison
for the following reason. The omni-directional beampattern obtained from the same ESPAR antenna (when reactive loads of all parasitic elements
are equal) becomes pO™ (¢) = A1+Ag for ¢ € (—m, 7). Clearly, this beampattern does not satisfy the equality in (2.45) and hence the comparison
between the two CR systems is not fair.

6Since the omni-directional antenna has only one beampattern, there is no beam selection corresponding to the orientations of PU and SU,.
Thus, step 1.3 of Table 2.2 will be removed. The following steps in Table 2.2 are modified: in step 2.2, SU,x estimates only one channel gain
v, in step 2.4, SUx feeds back only the n;-bit representation of the index of the quantization interval to which v belongs to SU,x, in step 3.1,
SU¢x adapts its discrete power level Py, using the information received from SU,.
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solving (2.P2) for omni-directional and ESPAR antennas can be different.
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Figure 2.7: Parameters Ap = 0.97, A1 = 0.03, which correspond to £4 = 0.145. For a fair comparison, we set the gain of the
onmi-directional antenna p°™ (¢) = E for ¢ € (—m,7), to ensure that the equality in (2.45) holds true. (a) polar coordinate, (b)
Cartesian coordinate.

Table 2.3: Simulation Parameters

[ Parameter [ Value H Parameter [ Value H Parameter [ Value ]

Ao 1,2 ~Yss 3 a2 1

Ay 0.01 Y Ysp 1 Py 1 watts
$34B 200 T 0.3 Tt 20 ms

p 4 Py 0.9 Tay —6dB

Our simulation parameters are given in Table 2.3. First, we explore the effect of increasing the number of quantization
bits ny,. Fig. 2.8a shows C§P, and C’élst’om versus P, for different ny, when M =8, mp; =1 (¢ppy=12°), mig =1
(psr = 0°) and Ag = 1, A; = 0.01 (corresponding to E4 = 0.127). As a baseline we also plot the capacity when
perfect CSI (for SUx—SU, link) is available for both CR systems (labeled as nj, = co in the figures). Clearly, our
CR system with the ESPAR antenna at SUy, yields a higher capacity than the CR system with the omni-directional
antenna at SUy. This figure also shows that as n, increases, CGo, increases and for ny, = 4 bits C5P, is very close to

the baseline capacity. To observe the impact of increasing the number of beams (the number of parasitic elements of

the ESPAR antenna), Fig. 2.8b plots C52, and C(%];’t’om versus P, for different n;, when M = 12. Comparing Figs.
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2.8a and 2.8b we observe that as M increases a higher capacity can be achieved.
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Figure 2.8: C’B]St and Cé];’t’om versus P, for mig =mpy=1and (a) M =8, (b) M =12.

To explore the effect of changes in PU orientation, Figs. 2.9a and 2.9b illustrate C5, and CGr ™ versus P, for
M =8 when mp; =2 and mpy; = 3, respectively (with fixed mgy =1). Comparing Figs. 2.8a, 2.9a, 2.9b we observe
that as mp; becomes further away from mgy, the imposed interference on PU from SUg, decreases and SU, can
transmit at a higher transmit power level, leading to an increase in Cglgt. Note that Cé];’t’om in Figs. 2.8a, 2.8b, 2.9a,

.9b are the same. Let enote that is averaged over all possible ¢& and ¢5y;. Fig. 2.10a plots an
2.9b h L ngtd C(%Eth ged 1l possible ¢ and ¢py;. Fig. 2.10a pl C(%Et d

Cg]st’om versus P, for n, = 2,3, 4, 0. Clearly, our CR system with the ESPAR antenna at SUy yields a higher

capacity on average, compared to the CR system with the omni-directional antenna at SU¢.

To quantify the capacity improvement provided with the ESPAR antenna, we define the ratio A = @Et/ Célst’om.
Fig. 2.10b shows A versus P, for I,, = —6,—2,2dB and n;, = co. First, we consider how A behaves as P,
increases, for a given I, value. Fig. 2.10b shows that, as P, increases from zero to a certain value, A decreases. As
P, increases beyond that certain value, A increases, however, it becomes constant after P, reaches a certain point.
For instance, given I..,=—6dB, A decreases from 2.9 to 1.65, as P, increases from zero to 15 dB, it increases from
1.65 to 2.22, as P, increases from 15dB to 27 dB, and it becomes constant afterward. The reason for this behavior
is that, when P,, <15dB, the ATPC in (2.9) is dominant for both ESPAR and omni-directional antennas. For 15 dB
< P,, < 27dB, the ATPC is dominant for the ESPAR antenna and the AIC in (2.33) is dominant for the omni-

directional antenna. For P,, > 27 dB, the AIC is dominant for both ESPAR and omni-directional antennas. Next, we
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examine how A behaves as I, decreases, for a given P, value. Fig. 2.10b shows that, for P,, <15dB A does not
vary much as I, decreases, since the ATPC is dominant. However, this behavior changes as P, increases beyond
15dB, where we note A increases as I, decreases. Overall, we observe that the ESPAR antenna can provide a high

capacity improvement (A varies between 1.4 and 2.9 in Fig. 2.10b), compared with the omni-directional antenna, and

pt

the capacity improvement changes as P, and I, vary.
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39

6.5 [C5_ESPAR, n, = 2
6 |---ESPAR, n, =3
sl —o—ESPAR, nj = 4
2 |- x--ESPAR, nj = 00
> 5 Omni, ny = 2
ks | |-<-Omni, ny =3
§4‘5 —— Omni, n, =4
O 4 |-»%--Omni, n, = 0o
Bas
E 3
8 25
sz
2
1547
K
0. L L - : ;
0 3 6 9 12 15
Py [dB]
(b)

B and C’ggt’om versus P, for M =8, mfg =1 and (a) mpu*=2, (b) mpy =3.

30

161

141

12 . . . . . . .

—-—1I,,=—6dB
---I,,=—-2dB| |
—-—I,, = +2dB

P, [dB]
(b)

versus Pay, (b) A versus Py .

12 15 18 21 24 27

30 33 36

39



Next, we explore the influence of parameter £ 4 defined in (2.15b). Fig. 2.11 plots @E’t and C(g]st,om versus P,
for A; =0.01, np, = 0o and two choices of Ay: Ag =1 (corresponding to F4 =0.127) and Ay =2 (corresponding to
E 4 =0.245). We observe that, for a given P, value, when we increase Ap =1 to Ay =2, the capacity enhancement
for the ESPAR antenna is higher than that of the omni-directional antenna. To explain this observation, let L = Ag/A;
denote the ESPAR beampattern attenuation in side-lobe with respect to its maximum value (main-lobe). Increasing
L positively affects @ in two ways. First, the ESPAR antenna can reduce the imposed interference on PU more
effectively, and hence SU¢, can transmit at higher power levels, without violating the AIC. Second, SUx—SU, link
becomes a stronger link for data communication. Increasing L, however, affects Cglth,Om differently. We note that,

although increasing L renders SU;,—SU, link a stronger link for data communication (positive impact), it increases

the imposed interference on PU (negative impact), and hence SUyy is enforced to transmit at lower power levels to

satisfy the AIC.
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Figure 2.11: CEB, and CGr;°™ versus Pay.

Let P,y and P, denote P, and P, that are the averaged over all possible ¢§ and ¢p;, respectively. For comparison,
we also include the outage and symbol error probabilities PS’J‘S and PO™ corresponding to the CR system that its
SUx has an omni-directional antenna. Fig. 2.12a illustrates P, and Po(i‘t“ versus P,,. We observe that given an
ny, value, both outage and symbol error probabilities decrease as P,, increases. However, they remain constant as
P, increases beyond a certain point (they reach error floors). These behaviors can be explained as the following.
For low P,,, the ATPC in (2.9) is dominant and P,,; and P, decrease as P,, increases, since SUy can transmit

at higher power levels. On the other hand, for high P.,, the AIC in (2.33) is dominant and SUy, cannot increase its

transmit power level, regardless of how high P, becomes. As a result, P, and P, remain constant. Compared
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with the ESPAR antenna, the omni-directional antenna imposes a larger interference on PU. Thus, the AIC for the
omin-directional antenna becomes active at a smaller P, value, compared with the ESPAR antenna. As a result both
outage and symbol error probabilities reach error floors at smaller P,, values, compared with the ESPAR antenna.
Also, we note that as n;, increases Poy; decreases. Fig. 2.12b plots P, and PO™ versus P,,. Similar observations to
those of Fig. 2.12a can be made here. In a nutshell, Figs. 2.12a and 2.12b show that our proposed CR system yields

lower outage and symbol error probabilities, compared with the CR system that its SU;, has an omni-directional

antenna.
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Figure 2.12: (a) Pou and P™ versus Pay, (b) Pe and PO™ versus Py

2.6 Conclusions

We proposed a holistic system design for integrated sector-based spectrum sensing and sector-based data communica-
tion for an opportunistic CR system consisting of a PU, SUyy, and SU,, where SU¢y is equipped with an ESPAR an-
tenna that has M parasitic elements, and there is an error-free bandwidth limited feedback channel from SU, to SU .
We formulated a constrained optimization problem, where the ergodic capacity for SU;—SU, link is maximized,
subject to ATPC and AIC, and the optimization variables are spectrum sensing duration, quantization thresholds at
SU,x, and discrete power levels at SUy,. Our problem formulation takes into consideration the effect of imperfect
spectrum sensing, the error in determining the true orientation of PU, the error in selecting the strongest channel for

data communication, and the impact of channel gain quantization. We developed an iterative suboptimal algorithm
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with a low computational complexity, based on the BCD algorithm, that finds a unique and locally optimal solution
for the constrained problem. In addition, we derived closed form expressions for outage and symbol error probabil-
ities of our opportunistic CR system. We corroborated our mathematical analyses with extensive simulations. Our
numerical results demonstrate that our proposed CR system with the ESPAR antenna at SUyy yields a significantly
higher capacity, a lower outage probability, and a lower symbol error probability, compared with a CR system that its
SU¢x has an omni-directional antenna. The capacity improvement varies as the ATPC and AIC change. For instance,
at P,, =12dB, I,, = —6dB, the capacity of our CR system is 1.83 times larger than the capacity of the CR system
with omni-directional antenna. Furthermore, we showed that with only a small number of feedback bits the capacity

of our CR system approaches to its baseline, which assumes the full knowledge of unquantized channel gain.
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CHAPTER 3: ACHIEVABLE RATES OF OPPORTUNISTIC COGNITIVE
RADIO SYSTEMS USING RECONFIGURABLE ANTENNAS WITH

IMPERFECT SENSING AND CHANNEL ESTIMATION!

In this chapter, we consider the combined effects of spectrum sensing error and imperfect CSI of SUy—SU, link on
the achievable rates of an opportunistic CR system with a RA at SU. In our opportunistic CR system, SUy, relies
on the beam steering capability of RA to detect the direction of PU’s activity and also to select the strongest beam
for data transmission to SU,x. We assume SU;, sends training symbols to enable channel estimation at SU,, and
employs Gaussian input signaling for transmitting its data symbols to SU,. Also, SU,, shares its imperfect CSI of

SUx—SU, link with SUy, through an error-free low-rate feedback channel.

Assuming that there are ATPC and AIC, we provide answers to the following research questions: How does spectrum
sensing error affect accuracy of detecting the direction of PU’s activity, estimating SU;x—SU, channel, and selecting
the strongest beam for data transmission? How do training symbol transmission and beam detection error (error
in obtaining the true direction of PU’s activity) affect interference imposed on PU? How do the combined effects
of spectrum sensing error and channel estimation error, as well as beam detection error and beam selection error
(error in finding the true strongest beam for data communication to SU,,) impact the achievable rates for reliable
communication over SUy—SU, link? How do the trade-offs between spatial spectrum sensing time, channel training
time, data transmission time, training and data symbol transmission powers affect the achievable rates? How can we
utilize these trade-offs to design transmit power control strategies, such that the achievable rates subject to ATPC and

AIC are maximized?

1© 2021 IEEE. Part of this chapter is reprinted, with permission, from [5].
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3.1 System Model

3.1.1 Structure of a RA

We consider a RA which can generate M beampatterns and these beampatterns cover the angular plane from ¢; to
(o, i.e., the angular space from ¢, to ¢, is divided into M spatial sectors or beams®. One can extend this angular
space to cover the entire azimuth plane. The beampattern corresponding to m-th beam achieves its maximum at angle
Km = w form = 1,..., M. Fig. 3.1 shows the beampatterns of a RA with M = 7 beams. It is noteworthy
that the RA can also reconfigure itself to generate an omni-directional pattern. To mathematically model the radiation

pattern of beams, we adopt the Gaussian pattern in x —y azimuth plane in terms of angle ¢ given by [4]

p(¢) = Al + A() e_B( 3dB ) M(¢) = m0d27r(¢ + ﬂ—) -, (31)

where mody, (¢) denotes the remainder of % B = 1n(2), ¢3qp is the 3-dB beamwidth, A; and Ay are two constant

antenna parameters. The radiation pattern of m-th beam at angle ¢ is

Pm (@) = p(@d — k), form=1,..., M. (3.2)

In this chapter, we discuss the received or transmitted signal at m-th beam of SU. This implies that, during the signal
reception or transmission, the SU;y’s antenna parameters are set and tuned such that the beampattern corresponding
to m-th beam is generated. Given the antenna design, we focus on how the sector-based structure of this RA can be
exploited to enhance the system performance of our opportunistic CR system, in which SUy optimizes its sector-based

data communication to SU, according to the results of its sector-based spectrum sensing.

3.1.2 Description of Our Opportunistic CR System

Our opportunistic CR system model is illustrated in Fig. 3.1, consisting of a PU and a pair of SU, and SU,.
We note that PU in our system model can be a primary transmitter or receiver. We assume when PU is active it is
engaged in a bidirectional communication with another PU, which is located far from SU¢, and hence its activity does

not impact our analysis. We assume SU is equipped with an M-beam RA (for spatial spectrum sensing, channel

2Throughout this chapter, ”sector” and “beam” are used interchangeably.
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Figure 3.1: Our opportunistic CR system with an M-beam RA at SU;x and omni-directional antennas at SU,x and PU.

training and data transmission) with the capability of choosing one out of M sectors for its data transmission to SU,,
while SU,, and PU use omni-directional antennas. We assume there is an error-free low-rate feedback channel® from
SU,x to SUi, to enable SUy select the best sector for its data transmission to SU,, and to adapt its transmit power
according to the SUyy—SU,« channel information. The direction (orientation) of PU and SU, with respect to SUy are
denoted by angles ¢py, and ¢sg, receptively, where ¢sr, ¢pu € (P1, d2). Clearly, in our problem SUy, does not

know these directions or angles (otherwise, the beam selection at SUy, for data transmission would become trivial).

Let h, hgs, hsp denote the fading coefficients of channels between SUx and PU, SUy, and SU,, and SU, and PU,
respectively, when the RA of SUy, is in omni-directional mode. We model these fading coefficients as indepen-
dent zero mean circularly symmetric complex Gaussian random variables. Equivalently, g = |h|?, gss = |hss|? and
gsp = |hsp|? are independent exponentially distributed random variables with mean 7, vss and s, respectively*. In
our problem we assume that SUs and PU cannot cooperate, and hence SUs cannot estimate g and gs,. However,
SU¢x knows the channel statistics, i.e., the mean values -y and ~ys,. Let 9, and X, denote the fading coefficients of
channel between m’-th sector of SUy, and PU, and between m-th sector of SU;, and SU,,, respectively, when the
RA of SUiy is in directional mode. Using the radiation pattern expression in (3.2) we can relate 1,,,» to h and x.,

10 hss a8 Vs = A/ P (PPU)s Xom = hss\/Pm (dsr). We assume the channel gain v,,, = |x,,|? is an exponentially

3Given a low rate feedback, the error-free feedback channel is a reasonable assumption [78].

4We note that the distances between users are included in the small scale fading model [115], i.e., the mean values =, yss, Ysp €ncompass
distance-dependent path loss.
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distributed random variable with mean «,,,, and SU;, knows «,,,, for all m [4, 102]. For the readers’ convenience, we

have collected the most commonly used symbols in Table 3.1.

Symbol

Table 3.1: Most commonly used symbols.

| Description

M

Nse

Ny

Ptr

wm’

Xy Xm> Xm

Qm, Om, Om

* *
Mpy, MgR
’l;*

Number of beams

Number of samples used for spatial spectrum sensing

Number of samples used for channel training

Power of training symbols

Fading coefficient of channel between m/-th beam of SU¢x and PU

Fading coefficient of channel between m-th beam of SUx and SU;x, LMMSE
channel estimate, and its corresponding estimation error

Variances of X, Xm, Xm

Indices of selected beam for PU and SU,«

Channel gain of selected beam for data transmission from SU¢x to SUrx

Suppose, SUs employ a frame with a fixed duration of Tt seconds, depicted in Fig. 3.2. We assume the SU;—

SU,x channel remains constant over the frame duration. SUy first senses the spectrum and monitors PU’s activity.

We refer to this period as spatial spectrum sensing phase with a variable duration of Ty, = M N T} seconds, where

Ty is the sampling period and Ny, is the number of collected samples during this phase per beam. Suppose H1 and H,

represent the binary hypotheses of PU being active and inactive, respectively, with prior probabilities Pr{#;} = m;

and Pr{H} =mo. SUix applies a binary detection rule to decide whether or not PU is active. The details of the binary

detector are presented in Section 3.2.1. While being in this phase, SU, determines the beam corresponding to the

orientation of PU based on the received signal energy as we describe in Section 3.2.2.

Tt
Spatial Spectrum Channel Data Transmission
Sensing Training
Tse Tir Ty =Tt — Tse — Tix

Figure 3.2: The structure of frame employed by SU¢x.

Depending on the outcome of spectrum sensing, SUy stays in spatial spectrum sensing phase or enters the next

phase, which we refer to as channel training phase with a variable duration of T, = M N7} seconds. In this phase,

SUix sends N, training symbols with fixed symbol power P;, per beam to enable channel estimation at SU,, as we
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explain in Section 3.3.1. Based on the results of channel estimation for all beams, SU;, selects the beam with the
largest SU—SU, fading gain, as we describe in Section 3.3.2. This information as well as the corresponding beam
index are shared with SUy, via the feedback channel. Next, SUy, enters data transmission phase with a variable dura-
tion of Ty = Tt —Ty.—T, seconds. During this phase, SU;x sends Ng = Ty /7 Gaussian data symbols with adaptive
symbol power P to SU, over the selected strongest beam. SU;y adapts P aiming at maximizing the achievable rates,
subject to ATPC and AIC as we describe in Section 3.4. In the following sections, we describe how SU¢, operates

during spatial spectrum sensing phase, channel training phase, and data transmission phase.

3.2 Spatial Spectrum Sensing Phase

3.2.1 Eigenvalue-Based Detector for Spatial Spectrum Sensing

Let ﬁl and ’}-A[O denote the detector outcome, i.e., the detector finds PU active (spectrum is sensed busy and occupied)
and inactive (spectrum is sensed idle and unoccupied and thus can be used by SU for data transmission), respectively.
Suppose when PU is active, it transmits signal s(t) with power P,,. Let y,,, (n) denote the discrete-time representation
of received signal at m-th sector of SUiy at time instant ¢ = nT;. We model PU’s transmitted signal s(n) as a zero-
mean complex Gaussian random variable with variance P, and we assume SUy, knows P,. Since SUy, collects Ny
samples per beam during spatial spectrum sensing phase, the hypothesis testing problem at discrete time instant n for
m-th sector is

HO: Ym (n) = wm(n)v

Hi: ym(n) = Ym(n)s(n) + wp(n).

(3.3)

The term w,, (n) is the additive noise at m-th sector of SUy, antenna and is modeled as w,,(n) ~ CN(0,02). We
assume that ¢,,,(n), s(n) and wy,(n) are mutually independent random variables. Since SUi, takes samples of the
received signal for different sectors sequentially (in different time instants), ¥,,,(n) and w,,(n) are independent and
thus uncorrelated both in time and space (sector) domains. Under hypothesis H;, given ,,, we have y,,(n) ~

CN(0,02,+02) where 02, = [¢),,,|* P,. Under hypothesis Hg, we have y,,,(n) ~ CN(0,02).

m

Our proposed binary detector uses all the collected samples from M sectors. To facilitate the signal processing needed
for the binary detection, we define an M x N, sample matrix Z = [z1, ..., zn. |, where the first row of Z is the Ny,

samples collected from the first sector, the second row of Z is the Ny, samples collected from the second sector, and
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so forth. Given our assumptions, the columns of Z are orthogonal under both hypotheses, that is
]E{zizﬂ?-lo} =0, E{zizfml} =0, fori#j, i,j=1,..., N (3.4)
where E{-} is the statistical expectation operator and have the below covariance matrices
Ty = ]E{zjzjfmo} =021y, I, = E{zjzf%, zp} = Py 4 021y, (3.5)

where vector 1 = [th1, 12, ...,9n|T. Therefore the sample covariance matrix R becomes R = 1\%Z ZH . Let
f(Z|Ho) and f(Z|H1, ) denote the PDF of Z under H and H; (given v)), respectively. These PDF expressions

are

—o2 mNea det (L' ) Nse —2

H -1 H
)= ¢y exp{tr(zz )}, 1(2IH, ) 1exp{tr(rlzz)}, (36)

where Noq = M N,.. The optimal detector would compare the Logarithm of Likelihood Ratio (LLR) against a

threshold 7y to detect the PU’s activity as below

~

LIR = o L @HLY) > Hlno. 3.7

o) = 4,

In the absence of the knowledge of the fading coefficients vector ¢, SU, obtains the GLRT [26-29,41] which uses
the Maximum Likelihood (ML) estimate of @) under H;. Let £1(Z) = In f(Z|H1, ¢). To find the maximum of £, (Z)
with respect to 1), we take the derivative of £;(Z) with respect to 1 and solve %Cl (Z) = 0 for 1. The obtained

solution is the ML estimate of v». Substituting this solution into (3.7) and after some mathematical manipulation,

~

Ha . L . .
’};";‘ E __n [26], where T is the test statistics, Amax is the maximum
e o

eigenvalue of 1/%, and 7 is the threshold. For large g, T" under H, is distributed as Tracy-Widom distribution of order

we reach the following decision rule T' =

2 [26, Lemma 1] and the probability of false alarm P, = Pr(”qu |Ho) = Pr(T > n|Ho) is

P =1- Frw» (”‘9> : (3.8)

O-SEI'I
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where Frw;(+) is the CDF of Tracy-Widom distribution of order 2 and 6sc,, and oy, in (3.8) are given below

2 1
0 14 M L (14,/M L, Ly (3.9)
sen — 5 Osen — —r—— ~ e — . .
Nge VNse Nee \/Nse VM

For large Nge, T under H; is Gaussian distributed [26, Lemma 2] and the probability of detection Py = Pr(’}% |H1) =

Pr(T > n|H1) is [26,29]

Ui Nse M—1
Py = vose —/Nae |, 1
d Q <1+5sen 6sen\/ ]Vse ) (3 0)

Ppﬂ;””Z. The average detection probability P4 can be computed by averaging (3.10) over vector 1,

w

where dgen =
Py = E{Ps}. For a given P4, we can numerically find 1 and obtain Py, using (3.8). We can also compute the

probabilities of events ’;QO and ﬁl as o :Pr{’;qo} = By + 51 and 71 :Pr{?-Al,l} = 1 — 7y, respectively, where

ﬁoZPr{'Hmﬁo}:ﬂo(l—ﬁfa), ﬁl ZPI"{H177:Z()}:7T1(1—ﬁd). (3.11)

3.2.2  Determining the Beam Corresponding to PU Direction

During spatial spectrum sensing phase when the spectrum is sensed busy, SU;y determines the beam corresponding to
the direction of PU based on the received signal energy. Let ¢,,, be the energy of received signal at m-th beam. We

have
mNge

S > ‘ym(n)

se n=1+(m—1)Nge

2

(3.12)

SUix determines the beam with the largest amount of received energy mp; = arg max{e,, } among all beams. For
large Ny, we invoke CLT to approximate €,,’s as Gaussian random variables under both hypotheses. Thus, under
Ho we approximate &, as a Gaussian with distribution &, ~ N (02,02 /Ny.). Similarly, under H;, given ¢py we
approximate &, as another Gaussian with distribution &,,, ~ N (o, Ugm\Hl ), where the mean g,,, = YP, pi (¢pu) +
o2, and the variance Ugml’Hl is given below

2

1
Tenltts = N O + 3P pl,(6pu) + 205 Poy pm(dpU) | - (3.13)

We note that, there is a non-zero error probability when SU; determines the beam index mpy, i.€., it is possible that

mpy is not the true beam index corresponding to PU direction.
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Let A, ,,, represent the average error probability of finding the sector index corresponding to PU direction, i.e., the

probability that m}; = 4 while the true PU direction lies in the angular domain of m-th sector, ¢py € @, =

27r(m]\;3/2)7 2”(”}\;1/2)) fori # m,i,m = 1,...,M. To find A;,, we start with finding A; = Pr{m}, =
i|¢pu, H1}, which is the probability that the index of selected sector is i, given ¢py and H; (the binary detector in
Section 3.2.1 finds PU active). Note that under both hypotheses, €,,’s are independent. Also, under Hg, €,,’s are

identically distributed. Therefore, we have

A; =Pr {51 > Em ¢PU7Q1}
Vm, m#i
o0 M o0
=6 / feima (l/|¢PU> I Fia (y|¢PU> dy + Co/ JermHo (iU) Fé\ifﬁo (y) dy (3.14)
0 — 0
ety
where f. |3, (z)and F_ |y, () are the PDF and CDF expressions of ¢, under H,, ¢ = 0, 1 and
~ 7o P. ~ m P,
o = Pr{Ho|H,} = =, ¢ =Pr{Hy|H,} = 1% d (3.15)
1
Using A;, we find A, ,,, as the following
Zi,m = / Az PI‘{(pr € q)m} d¢pU. (316)
PPUED,

Note that A, ; is the probability of selecting the correct beam and A; ,,, for i # m is the probability of selecting
the incorrect beam, leading to error probability in beam selection. The average error probability A; ,, versus the
index beam m is shown in Figs. 3.3a and 3.3b for SNRpy = 'pr/agv =0,—5dB. As expected, Zl,l increases and

A1 m, m # 1 decreases as NN increases.

3.3 Channel Training Phase

3.3.1 Channel Estimation at SU

During this phase, SU; sends the training vector x; over all beams to enable channel estimation at SU,,. Without
loss of generality, we assume x; = +/FP;; 1, where 1 is an Ny x 1 all-ones vector and P, is given. Let r,, =

[T (1), ..., 7m(Ny)]T denote the discrete-time representation of received training symbols at SU, from m-th sector
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of SU;x. We note that SUy, enters this phase when the outcome of the binary detector in Section 3.2.1 is ﬁo. Due to

error in spatial spectrum sensing, we need to differentiate the signal model for r,, under Hy and ;. Assuming the

fading coefficient ,, is unchanged during the frame, we have

Ho,ﬁoi rm(n) = Xm V Pur +qm(n)a

7—[1,7:1\0: Tm(n) = Xm \/Pitr + hsp(n) 5(”) + Qm(”)a

(3.17)

where ¢, (n) is the additive noise at SU, antenna and is modeled as ¢,,(n) ~ CAN(0, 0(2]). The Linear Minimum

Mean Square Error (LMMSE) estimation of fading coefficient y,,, when the spectrum sensing result is ’QO can be

obtained as [117]

where
N 1— Py, ~ 1-P,
wo = PI‘{H0|H0} = 7“)(%7()” = %, w1 = PI‘{H1|H0} = 7]—1(%70(1) = %

X\m = CX'm"'WL C’I‘_.,,ll Tm,
CXmT‘m :E{erg‘HO} - Ptr (0779 1,

Cr,. :]E{rmrﬂﬁo} = wy E{rmrgmo,ﬁo} +wy E{rmrgml,ﬁo}
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Finally, the LMMSE estimation of x,, when the spectrum sensing result is ﬁo, given in (3.18a), reduces to

~ Ptr
- 3.20
X amPtrNt n 02 + w102 z:: 5:20

where 0127 = Py7ysp. The estimation error is X, = Xm — Xm Where Xy, and X, are orthogonal random variables [117],
and X, and X, are zero mean. Approximating hs,(n)s(n) as a zero-mean Gaussian random variable with variance
ag, we find that the estimate X, is distributed as a Gaussian mixture random variable [19, 46]. Let @, and &,
represent the variances of Y, and X, respectively. Also, Let a0, and &}, represent the variances of X, under H

and H,, respectively. We have

azn,PtrNt (amptrNt +Jg>

a0 =VAR{Xm|Ho, Hol = - (3.21a)
(amPtrNt —l—ag—l—wlag)
agnptrNt (amptrNt +03+012>)

al, =VAR{Xm|H1, Ho} = (3.21b)

p)
(amPtrNt + 0'C21—|-w10'12))

Therefore, &, = wo a + wy a .. Also, let & a and & a . indicate the variances of Y, under o and H 1, respectively.
We have

&0, = VAR{Xm[Ho, Ho} = am — a0, &b, = VAR{Xm|H1, Ho} = ot — . (3.22)
Hence, &, = wy a + w1 a . For perfect spectrum sensing, we get wg = 1 and w; = 0 and ,,, becomes Gaussian.
3.3.2 Determining the Beam Corresponding to SU,x Direction

SU,, finds X, for all beams Consider the random variable 7,,, = |X,»|?>. Under hypothesis H;, ¢ = 0,1, given ﬁo,

¥, is an exponential random variable with mean &, , and PDF

1 —y
74 al
34 = __edb . 3.23
o (Y) are (3.23)
Hence, the PDF of 7,,, can be written as
f’/)rn (y) = CUO ff/O\nL (y) + w1 fﬂl\m (y)’ (3'24)
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SU, obtains 7* = max{7,, } among all beams and the corresponding beam index mgy = arg max{7,,} and feeds
back this information to SUy. Let W = Pr{mZy = i|Hy, Ho} denote the probability that m = i under hypothesis
‘H, and the binary detector outcome is ﬁo. To characterize \Ilf we need to find the CDF and PDF of 7* given H,,
denoted as F%. (-) and f%.(-), respectively. Note that given our assumptions, ¥,,’s are independent across sectors,

however, not necessarily identically distributed. Therefore, the CDF Fé* (z) can be written as

M M
FL)=T] L, =1+ 3 (-)m Y e (3.25)
m=1 m=1
m 1 M—-—m+1 M-—m+2 M
‘ _ _
Ajrsg =2 77 )INID DD DELEED
=1 Ji Ji=1 J2=j1+1 Jm=Jm—-1+1
From the CDF in (3.25), we can find the PDF f£. (y)
M M M ,
Fo) =2 ) [T ) = Do (1m0 Af e W, (3.26)
=1 m=1 m=1
m#i
Similar to section 3.2.2, we obtain \Ilf as
0o M
vp = / 5@ T Fh () dy. (3.27)
0 m=1
m#£i

Without loss of generality, suppose i = 1. After some mathematical simplification, ¥4 can be expressed as

M-1
/ 1
Ul =1+ —-1)m . 3.28
1 S aa
m=1 J1:0m
where
m 1 , M—-—m M-—-m+1 M-—1
e P — P . e
Bj =2 = DBIED DY )
i=1 ~ 1+7Ji J1=1 jo=j1+1 Jm=Jm-1+1

Then, we have U; = Pr{m&g = i|Ho} = wo ¥¥ + w; Wl
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3.4 Data Transmission Phase

During this phase, SU;x sends Gaussian data symbols to SU,.,, while data symbol transmission power is adapted based
on the information provided by SU, through the feedback channel. In particular, SU;x transmits z(n) ~ CN (0, P)
over the selected beam ¢ = mgg, where P depends on 7;, and symbols are independent and identically distributed
(i.i.d). Let u(n) denote the discrete-time representation of received signal at SU,y from i-th beam of SUy,. We note
that SU¢ enters this phase when the outcome of the binary detector in Section 3.2.1 is ﬁo. Due to error in spatial

spectrum sensing, we need to distinguish the signal model for u(n) under H, and H;. We have

Ho, Ho u(n) = x; x(n) + q(n),

(3.29)
Hi,Ho: u(n) = xiz(n) + hsp(n) s(n) + q(n),
where g(n) ~ CN(0,02) and are i.i.d. Substituting x; = X; + X; in (3.29), we reach at
new noise 7;,0(n)
- ~
Ho, Ho : u(n) =Xiz(n) + Xiz(n) + q(n),
(3.30)

HiHo: uln) = Xie(n) + Xiw(n) + hap(n)s(n) + q(n).

new noise 7;,1(n)

‘We obtain an achievable rate expression for a frame by considering symbol-wise mutual information between channel

input and output over the duration of Ny data symbols as follows

Ng

R— %j 3 E{I (e(n); u(n) |5, 7o) }

n=1

N,
Dy =

N,
dn:l

ﬂOE{I (a:(n);u(n) | a,Ho,ﬁo) } n 5111«:{1 (x(n);u(n) |ﬁ,H1,ﬁo) }] . (331

where Dy = Ty4/T; is the fraction of the frame used for data transmission and the expectations are taken over U =

[P1,...,U0m] given Ho and H, £ = 0, 1. To characterize R in (3.31) we need to find E{I(w(n), u(n) | v, He, 7?[()) }
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given as the following

]E{I(x(n);u(n) |ﬁ,m,ﬁo> }

:/ I (m(n),u(n) |ﬁl,7:[\0,7-lg) fE (1) Pr (vl > vy, form =2, ..., M| 7—[@,7/-20) doy

P1=0
+...
o o~ o~
+/ I (x(n),u(n) |ﬁM,’H0,7-[e) éM (Uar) Pr(vM >y, form=1,...,.M—-1 |7—lz,7-l0> AUy
Upr=0
M o R M
-3 / 1 (w(n); un) |23, Ho, He) 14, 05) [T FE, () doy. (3.32)
1/ U;=0 ] m=
7=t Term 1 . ""#J'l ,
Term 2

Term 1 in (3.32) is the mutual information between z(n) and u(n) when SUi, transmits over j-th beam, given the

estimated channel gain 7; = |y;|?, and given H, and Ho. Term 2 in (3.32) is the PDF of estimated channel gain
U; = |X;|* when j-th beam is the selected strongest beam, and is characterized by statistics of channel estimation

error and beam selection error, occurred during channel training phase. Focusing on Term 1 in (3.32) we have
1 (w(n)su(n) |93, Ho He) = h (w(n) |93, Ho He) = (2(n) [ u(n), 7, Ho, He) (3:33)

where h(-) is the differential entropy. From now on, we drop the variable n in x(n) and u(n) for brevity. Consider
the first term in (3.33). Since # ~ CA(0, P) we have h(z|D;, Ho, He) = log,(weP). Consider the second term in
(3.33). Due to channel estimation error, the new noises 7; ¢ in (3.30) are non-Gaussian and this term does not have a
closed form expression. Hence, similar to [107, 111, 118] we employ bounding techniques to find an upper bound on

this term. This term is upper bounded by the entropy of a Gaussian random variable with the variance @fvf

2
@%—E{ }, (3.34)

where the expectations are taken over the conditional PDF of x given u, 7;, ﬁo, H,. In fact, @f\}f is the Mean Square

T — E{x | ﬁi,’rqo,'Hg}

Error (MSE) of the MMSE estimate of x given u, 7;, 7:20, ‘H,. Using minimum variance property of MMSE estimator,
we have @fv[’z < @i’e, where @i’z is the MSE of the LMMSE estimate of x given u, I;, 7—70, ‘H,. Combining all, we

find h(x|u, i, Ho, He) < log, (7e©1*) and I(x, u|;, Ho, He) > log, (P/©1*) where

2
ot = e 2, =aP+02+ Lo} 3.35
L2 1P Oy =P+ 05+ loy. (3.35)
i, e
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At the end, we obtain the lower bounds as follow

-~ 5 v; P
I (:v;u | 1/1-,7-[0,7-[0) > log, <1 + W) , (3.36a)

% q

I

/N

s P
zul 1/7;,7-10,7-[1> > log, <1 + 07%”03“3) . (3.36b)

Substituting equations (3.32) and (3.36) in (3.31) and changing the integration variable (replacing 7; with y), we reach

at
R > Rip = DqfoRo + DaB1 Ry, (3.37)
where
M 0o yP M
Ry = / logy | 14+ =55 | fow) || B2 (v)dy,
2 ), e\ ey ) B 115
m#j
M s P M
R, = 1 1+ | f2 Fl (y)dy.
1 ;A 0g2< + OCJ1P+UC21+UIQ)> l/j(y) n:!—:ll um(y) Y
m#j

We note that the lower bounds in (3.36) are achieved when the new noises 7,0, 1)m,1 in (3.30) are regarded as worst-

case Gaussian noise and hence the MMSE and LMMSE of x given u, Uy, ﬁo, H, coincide.

So far, we have established a lower bound on the achievable rates. Next, we characterize AIC and ATPC. Let I,,,

indicate the maximum allowed interference imposed on PU. To satisfy the AIC, we need to have

M
B E{g) DdE{png—n;U) P, Ho}wtrar 3 E{pw o) [ Ho} T (3

j=1

where Dy, = Ti,/Tt. The first term in (3.38) is the average interference imposed on PU when SUy, transmits data
symbols, and the second term is the average interference imposed on PU when SU;y sends training symbols for
channel estimation at SU,y. Consider the two conditional expectation terms inside the bracket in (3.38). Using the
fact that, given H;, ’;flo, p(+) and P (which depends on 7*) are independent, and also the average probabilities derived

in (3.16) and (3.27) we have

M M
}E{p(figR — kpy)|Hi, 7—[0} = Z Z \I/j1 Ay i P(Rj — Ki), (3.39)

j=11i=1
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M
E{p( — Kpy) |H17HO} Z b P(Kj — k). (3.40)

Then, the constraint in (3.38) can be written as

DdbOE{PHI;QO} +Dtru0Ptr Sjav; (341)
where
M M
bo =By Wi Ay i plij — ki), (3.42a)
j=11:=1
MM
uo =By Y Y Ay p(kj — ki), (3.42b)
j=1i=1
]E{Pl%ﬁo} =/ P(y) f3- (y)dy. (3.42c)
0

We note that spectrum sensing error, PU beam selection error, and SU,, beam selection error are reflected in AIC
through variables Bl, My and Ul respectively. Also, channel estimation error influences AIC through variable

P. Let P,, denote the maximum allowed average transmit power of SU¢,. To satisfy the ATPC, we need to have
50DdE{P'Ho, ﬁo} + 51DdE{P|H1, ﬁo} + ToDix Por < Py, (3.43)

where E{P|Ho, Ho} = 15" P(y) 2. (y)dy, and the third term in (3.43) accounts for transmit power used for training
symbols. We note that spectrum sensing error affects ATPC through variables 3y, 81 and 7y. Also, channel estimation

error affects ATPC through variable P.

Now that we have characterized a lower bound on the achievable rates Ry g in (3.37), AIC in (3.41), and ATPC
in (3.43), we summarize how the four error types, namely, spectrum sensing error, beam detection error, channel
estimation error, and beam selection error, affect these expressions. First, spectrum sensing error affects AIC via /31,
both ATPC and Ry via By and 3. Recall 3y, 51 depend on 7y, Pg., Pq (see (3.11)). Second, beam detection error
affects AIC via Zm;mi and does not have a direct impact on ATPC and Ry,p. Third, channel estimation error affects
both AIC and ATPC via Ti,, and Ry g via a . Fourth, beam selection error impacts AIC, ATPC and Ry p via P

(which depends on the estimation channel gain of the selected beam).

Having the mathematical expressions for Ryp, AIC, ATPC, our goal is to allocate transmission resources such that
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Rpp is maximized, subject to the aforementioned constraints. To determine our optimization variables, we need
to examine closely the underlying trade-offs between decreasing average interference and average transmit powers,
decreasing four types of errors (i.e., spectrum sensing error, beam detection error, channel estimation error, and beam
selection error), and increasing Ry p. Within a frame with fixed duration of 7} seconds, time is divided between three
phases with variable durations: spatial spectrum sensing with duration Tg., channel training with duration 7},, and
data transmission with duration of Ty. Suppose T, increases. On the positive side, spectrum sensing error, beam
detection error, and average interference imposed on PU decrease (i.e., for ideal spectrum sensing 5; = 0 in (3.11)
and data transmission from SUy, to SU,4 does not cause interference on PU). On the negative side, T, + T4 decreases,
that can lead to increasing channel estimation error (due to decrease in 7;,) and/or decreasing Ry,p (due to decrease
in Ty). Given T, as T}, increases, channel estimation error in (3.22) decreases. However, average interference
imposed on PU during transmission of training symbols increases and Rpp decreases °. Finally, increasing data
symbol transmission power P increases Ry, however, it increases average interference and average transmit power.
Based on all these existing trade-offs, we seek the optimal T, T},, P such that Rrp in (3.37) is maximized, subject

to AIC and ATPC given in (3.41) and (3.43), respectively. In other words, we are interested in solving the following

constrained optimization problem

Maximize Rrp (3.P1)

sesyLtry

st 0< Ty <Tt— Ty
Ty >0, P>0

(3.41) and (3.43) are satisfied.

Before delving into the solution of (3.P1), we have a remark on how our adopted fading model in Section 3.1.2 affects

our derivations in this section.

Remark: Our theoretical framework can be extended to the more general Nakagami fading model, however, certain
expressions need to be re-derived. In particular, Pq = E{ P4} in (3.10) changes, since the pdf of 1) changes. Also,
the conditional pdf of 7,,, given {ﬁo, He} in (3.23), and the CDF and pdf of 7* in (3.25), (3.26) change. Consequently,
the expressions for \I/f in (3.27), E{P|H1, ”;Qo} in (3.42¢), and Ry g in (3.37) must be re-calculated.

5Note that as channel estimation error in (3.22) decreases, the lower bounds in (3.36) increase. However, this logarithmic increase is dominated
by the linear decrease of Dy in (3.37), which leads into a decrease in Ry,p.
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3.5 Constrained Maximization of Rate Lower Bound

In this section, we address the optimization problem (3.P1). Taking the second derivative of Ry with respect to
(w.r.t.) the optimization variables, we note that (3.P1) is not jointly concave over Ty, Tt,, P. However, given T, and
Tir, (3.P1) is concave® w.r.t. P. We propose an iterative method based on the BCD algorithm to solve (3.P1). The
underlying principle of the BCD algorithm is that, at each iteration one variable is optimized, while the remaining
variables are fixed. The iteration continues until it converges to a stationary point of (3.P1) [109]. To apply the
principle of the BCD algorithm to (3.P1), we consider the following three steps.

Step (i): given Ty, T}, we optimize P using the Lagrangian method. The Lagrangian is
L =—Rip+ p|LHS of (3.41) — Iav} +A {LHS of 3.43) — P, |, (3.44)

in which LHS stands for left-hand side, A and p are the nonnegative Lagrange multipliers, associated with the ATPC
and AIC, respectively. Therefore, the optimal P that minimize (3.44) is the solution to the KKT optimality necessary
and sufficient conditions. The KKT conditions are the first derivatives of £ w.r.t. P, u, A being equal to zero, i.e.,

OL/OP = 0,0L/0u = 0,0L/0X\ = 0. We have

1 ! M ((7 + KU ff M L L
e Zﬂe A H 5o (Y) + A [30]& (y) + Brf5 (y)} + pbo f5« (y) =0, (3.452)
n2) = = o2, (yP +02, Z) m=1

LHS of (3.41) — Iav> =0, (3.45b)

A

=
N N

LHS of (3.43) — Pav) =0. (3.45¢)

The closed-form analytical solution for (3.45) cannot be found. Hence, we solve these equations numerically for every
realization of *, via the following iterative method. We first initialize the Lagrangian multipliers p and A and then find
P using (3.45a), and verify that it satisfies (3.45b), (3.45¢c). Next, we update p and A using the subgradient method.
Using the updated ;¢ and A, we find P again using (3.45a). We repeat this procedure until ;2 and A converge (i.e., a
pre-determined stopping criterion is met).

Step (ii): given P and Ti,, we optimize Ty.. The optimal Ty, is the solution of the equation ORy5/0Ts = 0. In

%The cost function of (3.P1) given in (3.37) depends on P through the two logarithms, that can be viewed, in terms of P, as (1 + #ﬁc), where
a, b, c are positive. Since the arguments of these logarithms are concave, Ry,p is also concave w.r.t. P.
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Appendix A.1, we show that this equation has one solution in the interval (0,7t — T%,). This solution can be found
using numerical search methods (e.g., bisection method).

Step (iii): given P and T, we optimize Ti,, via solving ORyp/IdT;, = 0. In Appendix A.2, we show that this
equation has one solution in the interval (0,7t — Ty.), which can be found numerically using search methods (e.g.,

bisection method).
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Figure 3.4: The optimized P obtained from (3.45a) versus 2* (and c) for P,, = 2dB.

To gain an insight on the solution of (3.P1), we look into the behavior of the optimized P versus the realizations of
the estimated channel gain 7*. Fig. 3.4 illustrates the optimized P versus 7* (and ¢, where U* = c¢mg- and mgp- is
the mean of v*) for I,,, = —15.5, —14dB and other simulation parameters given in Table 3.3. For these parameters
mp+» = 0.1484. We observe that the optimized P for very small 7* (when 7* is smaller than a cut-off threshold
¢ = 3.5mgp~) is zero. As U* increases the optimized P increases gradually until it reaches a maximum value. As U*
increases further, the optimized P decreases, until it reaches a minimum value for very large 7* (when 7* > 85 mg+),
not shown in the figure. Comparing the curves for I, = —15.5dB and I,, = —14dB, we note that the optimized P
decays faster (after it reaches its maximum value) for lower I,,. Moreover, the cut-off threshold ( is lower for higher
I.,. The behavior of the optimized P versus U* is different from our intuitive expectation that expects to see the
optimized P increases monotonically as * increases. We explore this by examining the optimized P, which satisfies

(3.45a).

Although for general M the optimized P does not have a closed form expression, for M = 1 and under a simplifying
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assumption’ it can approximated as follows:

pa | FHVT + P B (") + _20‘%0’2’, (3.46)
2 lm2ﬂAQ%w«ﬁﬂ+ﬁQ-+um} g
W)+ 24 BoW (v*)o2
rpe 4 [ctop (W) e
U* U*

mmb%wwwwqu

where W (0*) = f9.(v*)/ fh (v*) = a'/a° e (Gn—ar), Considering (3.21) we realize that @° < a'. This implies

as U* increases, W (v*) and T decrease. However, the behavior of F' changes, i.e., F' increases until it reaches a
maximum value. As U* increases further, F' decreases. Considering (3.46) we note that the behavior of P (in terms
of *) is dominated by the behavior of F'. In the ideal scenario when there is no channel estimation error, we have
~0

a’ = @' = a and W(7*) = 1, F monotonically increases and Y deceases, i.e., P in (3.46) monotonically increases

as U* increases, which is what we intuitively expect.

The optimized P we discussed so far requires solving (3.45) several times for each realization of 7*. Integrating the
insights we have gained into how this optimized P varies in terms of 7*, we propose two transmit power control
schemes that are simpler to implement and yield achievable rate lower bounds that are very close to the maximized
Ry p values in (3.P1). Since Pr(7* > ¢mgp+) is very small for ¢ > 8 (see Table 3.2), we focus on the regime when
U* < 8 mg+ and develop two schemes, dubbed here scheme 1 and scheme 2, that mimic the behavior of the optimized

P in this regime.

Table 3.2: Pr(7* > ¢mgp~) in terms of ¢, given mp- = 0.1484.

[c [ Pr(@* > cmp«) |
4 3.01 x 10~3
8 7.04 x 10~6
12 | 1.54 x 10°8
16 | 4.87 x 10~11

7We assume that the optimized T%, is large enough such that &P + afl ~ o2. This assumption allows us to approximate (3.45a) for M = 1 as
a quadratic polynomial in P (originally a polynomial of degree 4 in P) and find a closed-form expression for P.
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3.5.1 Scheme I

For scheme 1, when the spectrum is sensed idle, SU;, sends data to SU, over the selected sector i = mgp according

to the following rule:

I, if v*>G
P, = (3.47)
0, if 7" <G

i.e., when U* is less than a cut-off threshold (7, SU, remains silent, when 7* is larger than (3, SUy, lets its transmit

power be equal to constant II;. The parameter II; can be found in terms of 7ge, T},, (1, via enforcing AIC in (3.41)

and ATPC in (3.43) as the following:

1 Pav_ADrPr Iav_ DrPr
I, = — min Mot YoZurttr L (3.48)

Pa S0 Be (1—F§* (Cl)) ’ bo (1—F§*(Cl))

Let Rg, denote the lower bound on the achievable rates when SUy adopts the power control scheme in (3.47). We

find Rg, expression by substituting Ps, in (3.37) and taking expectation w.r.t. U* given as the following

Dd : Z ~0 4 < m 14 4
Rs, ZMZ@Z Y(aj,SNRj> + Z(—l) ZmY<dj7m,SNRj> : (3.49)
=0 j=1 7’71";]1
Y (a,b) = / In(1+ br)~e™ dr = e~/ n(1 + b¢y) — eV Ei(=(y /a — 1/ab),

1

where dﬁ,m = (Af;l: K, T aif_)’l, SNR? = a?lllag ,SNR; = #&%Jﬂf% and Ei(+) is the exponential integral. With this
transmit power scheme, we consider a modified problem to (3.P1), where the lower bound Rg, in (3.49) is maximized
(subject to the same constraints) and the optimization variables are T, Tt,, (1. To solve this modified problem, we
use an iterative method based on the BCD algorithm and implement the following three steps: Step (i), given T, Tt,,
we optimize (3, via maximizing Rg,, using bisection search method. Step (ii), given (1, T};, we optimize T, using

bisection search method. Step (iii), given (1, T3, we optimize T},, using bisection search method. In Section 3.6 we

numerically compare the maximized Ry,g in (3.P1) and the maximized Ryg, .
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3.5.2 Scheme 2

For scheme 2, when the spectrum is sensed idle, SU sends data symbols to SU, over the selected sector ¢ = mgy

according to the following rule:

H2< 52>7 if "> ¢
Ps, — (3.50)
0, if 7% < G

Different from scheme 1, in the scheme 2 when 7* exceeds the cut-off threshold (5, SUyy transmits at a variable power.

The power level increases as U™ increases, until it reaches its maximum value of Iy, i.e., limp« o Ps, = II3. The

parameter II, can be found in terms of Ty, T}, (2, via enforcing AIC in (3.41) and ATPC in (3.43) as the following:

1 Pav*ADrPr Iav* DrPr
I, = — min ol YoZul L (3.51)

Da S0 Be [1—6@(@)] by [1—Gl<<2)}

where GY((2) = F5. (C2) + (T((2) and

oo ¢f M
5> He} Y I AOFHES  E S oAl Ei(-GAL, ). (3.52)

1
4 _

m=1

Let Rg, represent the lower bound on the achievable rates when SUy, adopts the power control scheme in (3.50). We
find Rg, by substituting Ps, in (3.37) and taking expectation w.r.t. 7*. With this transmit power scheme, we consider
a modified problem to (3.P1), where the lower bound Rg, is maximized (subject to the same constraints) and the
optimization variables are Ty, T},, (2. To solve this modified problem, we use an iterative method based on the BCD
algorithm and implement the following three steps: Step (i), given Ti,, Ts., we optimize (2, via maximizing Rg,,
using bisection search method. Step (ii), given (5, T;;, we optimize T}, using bisection search method. Step (iii),
given (2, T, we optimize T%,, using bisection search method. In Section 3.6 we numerically compare the maximized

Ry in (3.P1) and the maximized Rg,. Note that the closed-form expression for Rg, cannot be obtained.

3.5.3 Discussion on Computational Complexity of Proposed Algorithms

In the following, we discuss the computational complexity of the three proposed algorithms, namely, the first algorithm

in Section 3.5, Scheme 1 in Section 3.5.1, and Scheme 2 in Section 3.5.2.
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The first algorithm consists of three steps. We discuss the computational complexity of each step. Step (i): given
Tye, Ty, we find P via solving (3.45a), (3.45b), (3.45¢) numerically. In particular, noting that y in (3.45a) is positive,
we partition the real positive line into N, intervals. Given y is in one of these IV, intervals, we initialize the La-
grangian multipliers ;z and A\ and then solve (3.45a) for P using bisection method. The computational complexity of
bisection method to provide an ej-accurate solution for each of these IV, intervals is O(log(1/ep)) [119,120]. Hence,
the computational complexity for solving (3.45a) N,, times is O(N, log(1/¢,)). Moving on to (3.45b) and (3.45¢),
we need to compute LHS of (3.41) and (3.43), respectively, which requires calculating the conditional expectations
E{P|H1, ﬁo} and E{P|H,, 7:[\0} and integrating over y. Hence, the computational complexity for computing (3.45b)
and (3.45¢) is O(N,). Since N, < N, log(1/¢,), we can neglect the computational complexity of solving (3.45b),
(3.45¢), with respect to that of solving (3.45a). Hence, the computational complexity of solving (3.45), given p and
A, 18 O(Ny log(1/€,)). Next, we update i and A using the subgradient method. Using the updated £ and A, we solve
(3.45a) for P again. We repeat this procedure until both x4 and A\ converge. The computational complexity to get
ec-convergence for p and A is O(S1), where S1 = (N, log(1/ep))/ec. Step (ii): given P and Ty, we find T using
bisection search method. The computational complexity of bisection search method to provide an ege-accurate solution
is O(Ss), where So = log(1/¢se). Step (iii): given P and T, we find T}, using bisection search method. The compu-
tational complexity of bisection search method to provide an e, -accurate solution is O(Ss3), where S3 = log(1/eq,).
At each iteration of Step (iii), we execute Step (ii) and at each iteration of Step (ii), we execute Step (i). Hence, the

overall computational complexity of the first algorithm is O(51.5253).

Scheme 1: Similar to the first algorithm, Scheme 1 consists of three steps. At the first step, given Ty, Tt,, We
optimize (; using bisection search method. The computational complexity of bisection search method to provide an
ec-accurate solution is O(log(1/e.)). The second and third steps are exactly the same as Step (ii) and Step (iii) in the

first algorithm. Hence, the overall computational complexity of Scheme 1 is O(S2.53log(1/¢c)).

Scheme 2: Similar to the first algorithm, Scheme 2 consists of three steps. At the first step, given Ty, Tt,, We
optimize (5 using bisection search method. The computational complexity of bisection search method to provide
an ec-accurate solution is O(log(1/e¢)). The computational complexity of integrating over y in (3.37) within each
iteration of bisection search method is O(NV,). Hence, the computational complexity for the first step of Scheme 2
is O(Ny log(1/ec)). The second and third steps are exactly the same as Step (ii) and Step (iii) in the first algorithm.

Hence, the overall computational complexity of Scheme 2 is O(N,, 5255 log(1/ec)).
Comparing the computational complexity of these three schemes, it is clear that Scheme 2 has a higher computational
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complexity than that of Scheme 1. Under the assumption e, = €,z = ¢, we find that the first scheme has the highest

and Scheme 1 has the lowest computational complexity.

3.6 Simulation Results

Table 3.3: Simulation Parameters

Parameter | Value [[ Parameter | Value [[ Parameter | Value |

Ao 0.98 Yes 0.1 02,02 0.5

Ay 0.02 Y5 Ysp 0.5 P, 0.5 watts
$3dB 20° o 0.7 Ty 30 ms
o1 —55° || Pq 0.85 Py, 2 watts
o2 +55° || M 7

We corroborate our analysis on constrained maximization of achievable rate lower bounds with Matlab simulations.
Our simulation parameters are given in Table 3.3. We start by illustrating the the behavior of our proposed power
allocation schemes versus 7*. Fig. 3.5 shows the optimized P obtained by solving (3.45a) and the two proposed
suboptimal schemes Ps, and Ps, versus *. We observe that Ps, and Ps, mimic the behavior of the optimized P.

Furthermore, for the cut-off thresholds we have { < {; < (5.

Next, we explore the effect of spatial spectrum sensing duration 75, on the achievable rate lower bounds of our system.
Fig. 3.6a shows the maximized Ry g, Rg, and Rgs, (which we refer in the figures to as “Rate”) versus Ty.. To plot
this figure, we maximize the bounds w.r.t. only 7, and P, subject to ATPC and AIC. We note that for all T
values we have Ry > Rs, > Rg,. We observe that the achievable rates always have a maximum in the interval
(0, T — Tt,). For the simulation parameters in Table 3.3 the optimized Ty, = 0.75ms = 2.5% Tt. Also, scheme 2
yields a higher achievable rate than that of scheme 1, because its corresponding power Ps, fits better to the optimized
power P obtained from solving (3.45a). The achievable rate Rg, is very close to Ry, and we do not have a significant

performance loss if we choose the simple transmit power control scheme in (3.50).

To investigate the effect of channel training duration 7}, on the achievable rate lower bounds, we plot Fig. 3.6b
which illustrates the maximized Ryg, Rs, and Rg, versus Ti,. To plot this figure, we maximize the bounds w.r.t.
only Ty and P, subject to ATPC and AIC. For all T, values we have Rip > Rg, > Rg,. We observe that the
achievable rates always have a maximum in the interval (0, Tt — Ty ). For the simulation parameters in Table 3.3 the

optimized T, = 0.67ms = 2.23% T;. Comparing Fig. 3.6b and Fig. 3.6a, we notice that the achievable rates are
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Figure 3.5: P versus 0* for P,, = 2dB, I,, = —12dB.
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more sensitive to the variations of T}, compared to that of T... To be more specific, considering Fig. 3.6a and Fig.

3.6b, suppose we choose Ty, and T}, values that are different from their corresponding maximum values by 20%, i.e.,

AT, = 20%, ATy, = 20%. Then

ARLB/ATtr > ARLB/ATse;

ARSQ /ATtr > ARSz/ATSE,

ARsl/ATtr > ARSl /ATse.

These indicate that proper allocation of T}, is more important than that of T, for providing higher achievable rates in
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our system.

To explore the effects of the number of beams M and I,, on the achievable rate lower bounds, Fig. 3.7a illustrates
the maximized Ry, Rg,, Rg, versus I, for M = 7,11 and P,, = 2dB. We observe that as M increases a higher
rate can be achieved. For all M and I,, values we have Ry > Rg, > Rg,. We realize that as I, increases from
—18dB to —14 dB, the achievable rates are monotonically increasing and the AIC is dominant. However, as Ty

increases beyond —14 dB, the achievable rates remain unchanged and the ATPC is dominant. Fig. 3.7b illustrates the
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Figure 3.7: (a) Rate versus Tay for M = 7,11 and P,.. = 2dB, (b) Rate versus P,y for M = 7,11 and T., = —14dB.

maximized Ry g, Rg,, Rs, versus P,, for M = 7,11 and I,, = —14dB. The behaviors of the achievable rates in
terms of M are the same as Fig. 3.7a. We note that as P, increases from —4 dB to 2 dB, the achievable rates are
monotonically increasing and the ATPC is dominant. However, as P, increases beyond 2 dB, the achievable rates

remain unchanged and the AIC is dominant.

We also consider outage probability as another performance metric to evaluate our system. We define the outage
probability as the probability of SU;y not transmitting data symbols due to the weak SU;,-SU,x channel when the

spectrum is sensed idle, i.e., Py = Pr{P = 0] 7—70}. This probability can be directly obtained using the CDF of v*
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evaluated at the cut-off threshold as the following

P =Pr(v* < (|Ho) = woF2 () + wiFL(C),
Pout,s, =Pr(0* < ¢i|Ho) = woF2 (C1) + w1 FA (C),

Pouss, =Pr(v* < GalHo) = woFL. (C2) + w1 F (Ga).

Fig. 3.8 illustrates Py, Pout,Ss > Pout,s, Versus P,, for I,, = —8dB. We observe that as P,, increases the outage
probabilities decrease. Moreover, for a given P,, we have P,y < Pout,s, < Pout,s, - This is consistent with Fig. 3.5
which shows for a given P,,, we have { < (; < (,. Combined this with the fact that the CDF F5. (-) is an increasing

function of its argument, we reach the conclusion that P,y < Poyt,s, < Pout,s, -

10°

—4— P, (maximized Rip)
- Pous, (maximized Rg,)
N =6-- Py, (maximized Ry, )

~—

Outage Probability

10°

P,, [dB]

Figure 3.8: P,y versus P, for I,, = —8dB.

3.7 Conclusions

We considered an opportunistic CR system consisting of a PU, SU;y, and SU,, where SUyy is equipped with a
RA that has M beams, and there is an error-free low-rate feedback channel from SU,, to SU;x. We proposed a
system design for integrated sector-based spatial spectrum sensing and sector-based data symbol communication.
We studied the entangled effects of spectrum sensing error, channel estimation error, and beam detection and beam
selection errors (introduced by the RA), on the system achievable rates. We formulated a constrained optimization

problem, where a lower bound on the achievable rate of SUy—SU, link is maximized, subject to ATPC and AIC,
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with the optimization variables being the durations of spatial spectrum sensing 7, and channel training 7, as well as
data symbol transmission power at SU;,. Moreover, we proposed two alternative power adaptation schemes that are
simpler to implement. We solved the proposed constrained optimization problems using iterative methods based on
the BCD algorithm. Our simulation results demonstrate that one can increase the achievable rates of SU—SU, link
significantly, via implementing these optimizations, while maintaining the ATPC and AIC. They also showed that the
achievable rates obtained from employing simple schemes 1 and 2 are very close to the one produced by the optimized
transmit power. Our numerical results also showed that between optimizing T, and T},, optimizing the latter has a

larger effect on increasing the achievable rates in our system.
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CHAPTER 4: STEADY-STATE RATE-OPTIMAL POWER ADAPTATION
IN ENERGY HARVESTING OPPORTUNISTIC COGNITIVE RADIOS

WITH SPECTRUM SENSING AND CHANNEL ESTIMATION ERRORS

In this chapter, we consider an uplink opportunistic EH-enabled CR network, consisting of /V,, SUs and an AP, that
can access a wideband spectrum licensed to a primary network. Each SU is capable of harvesting energy from natural
ambient energy sources, and is equipped with a finite size rechargeable battery, to store the harvested energy. Our main
objectives are (i) to study how the achievable sum-rate of SUs is impacted by the combined effects of spectrum sensing
error and imperfect CSI of SUs—AP links (due to channel estimation error), and (ii) to design an energy management
strategy that maximizes the achievable sum-rate of SUs, subject to a constraint on the average interference that SUs
can impose on the PU. To the best of our knowledge, our work is the first to study the impact of these combined effects

on the performance of an opportunistic EH-enabled CR network.

One expects that spectrum sensing error, combined with random energy arrival at the TX, exacerbates the effect
of imperfect CSI on the TX achievable rate. The challenges of our study are twofold: first, it requires integration
of energy harvesting, spectrum sensing, and channel estimation. Successful achievement of this integration entails
stochastic modeling of energy arrival, energy storage, and PU’s activities. These stochastic models are utilized to
establish an achievable sum-rate of SUs that takes into account both spectrum sensing error and channel estimation
error. Second, one needs to properly design energy control strategies for SUs, that strike a balance between the energy

harvesting and the energy consumption, and adapt transmit power according to the available CSI and the battery state.

We assume that SUs operate under a time-slotted scheme, and SU,, is capable of harvesting energy during the entire
time slot. Each time slot consists of three sub-slots corresponding to spectrum sensing phase (during which SU,, senses
the spectrum), channel estimation phase (during which SU,, sends training symbols to the AP, when the spectrum is
sensed idle, for estimating the fading coefficient corresponding to SU,,—AP link), and data transmission phase (during
which SU,, sends data symbols to the AP). Assuming that the AP feeds back its estimate of the fading coefficient to

SU,,, SU,, adapts its transmit power based on this information as well as the available energy in its battery.
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4.1 System Model

We consider an uplink opportunistic EH-enabled CR network, operating in FDD mode, that can access a wideband
spectrum band licensed to a primary network, consisting of M non-overlapping narrowband spectrum bands, each
with a bandwidth of W Hz [121]. The primary network consists of a PU;, and a PU,,. The secondary network

consists of an AP and N, SUs (see Fig. 4.1).

PUtx q

E":l AP

PU,x h

2/

Figure 4.1: Schematics of the uplink CR network.

The AP can serve up to M SUs simultaneously and we assume that N, < M. We also assume that narrowband
spectrum bands are pre-assigned to SUs and thus each SU knows which band to sense and transmit data over. The SUs
are equipped with identical energy harvesting circuits to harvest energy from the ambient environment and identical
finite size batteries for energy storage (see Fig. 4.2). We consider block fading channel model and suppose flat fading
coefficients from PU, to SU,,, PUy, to AP, SU,, to PU,4, and, SU,, to AP are four independent zero-mean complex

Gaussian random variables, which we denote by u,,, ¢, 2, and h,, with variances d,,, , d4, 9.,, and ~,,, respectively.

4.1.1 Battery and Energy Harvesting Models

We assume that SUs operate under a time-slotted scheme, with slot duration of 7} seconds, and they always have data

to transmit. Each time slot is indexed by an integer ¢ fort = 1, 2, .. .. The energy harvester at each SU stores randomly
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Figure 4.2: Our CR system model corresponding to SU,, forn = 1,..., Ny.

arrived energy packets in a finite size battery and consumes the stored (harvested) energy for spectrum sensing, channel
estimation, and data transmission. Each battery consists of K cells (units) and the amount of energy stored in each

unit is equal to e,, Joules. Thus, the battery can store up to Ke, Joules of energy.

When £ cells of the battery is charged (the amount of stored energy in the battery is ke, Joules) we say that the battery
is at state k. Let BS) € {0,1,..., K} denote the discrete random process indicating the battery state of SU,, at the
beginning of time slot t. We define the Probability Mass Function (PMF) of the discrete random variable Bgf) as

,gle = Pr(Bﬁf) = k), where Z,If:o ¢ ,Etzl = 1. Note that B = 0 and BY = K represent the empty battery and full

battery levels, respectively.

Let &(f) denote the randomly arriving energy packets during time slot ¢ of SU,,, where the energy packet measured in
Jules is e,, Joules. The discrete random process 5,(:) is typically modeled as a sequence of independent and identically
distributed (i.i.d) random variables [53], regardless of the spectrum occupancy state of PU;,. We assume that the
discrete random variables E,St)’s are i.i.d. over time and independent across sensors. We model 5,?) as a Poisson

random variable with the PMF f¢ (r) =Pr(€ =r) =e Pp] /rlforr =0,1,..., 00, where p,, denotes the average
(®)
hn

units in the battery at SU,, during time slot £. This harvested energy agfz cannot be used during time slot £. Since the

battery has a finite capacity of K cells, we find that 0‘22 is an element of the finite set {0,1,..., K}. Also, 0‘22 are

number of arriving energy packets during one time slot of SU,,." Let ; ’ be the number of stored (harvested) energy

ii.d. over time slots and independent across sensors. Let f,, (r) = Pr(as, = r) denote the PMF of ozgfj. We can

'We note that p;, does not depend on the duration of spectrum sensing phase, since we assume each node is capable of harvesting energy during
the entire slot. If we limit harvesting energy to spectrum sensing phase, then p,, would change to py, Tse/Tt. Poisson distribution for statistical
modeling of ambient energy and solar energy has been applied before in [122]. We note, however, that our analysis is not tied to this specific
distribution and can be applied for any discrete non-Poisson distribution.
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find the PMF of ag in terms of the PMF of £ as the following?

fgn(r)7 fo<r<K-1
o (1) = (4.1)
Z:::K fe(m), ifr =K.

4.1.2  Slot Structure of SUs

Each time slot consists of three sub-slots (see Fig. 4.3), corresponding to spectrum sensing phase, channel estimation
phase, and data transmission phase, with fixed durations of Ty = Ngo/ fs, Ttr = N/ fs, Ta = Na/ fs, respectively.
Note that f; is the sampling frequency, Ny is the number of collected samples during spectrum sensing phase, Ny
is the number of training symbols sent during channel estimation phase, and Ny is the number of data symbols sent
during data transmission phase. Also, we have Tt = Ty + T, + Ty.

T T

Sensing | Probing Data Transmission Sensing | Probing Data Transmission

Tse Tix Ty Tse Tox Ta
e £ e

| : J |

Figure 4.3: Slot structure of SUs.

During spectrum sensing phase, SU,, senses its pre-assigned single spectrum band to detect PU¢,’s activity. We model
the PUy’s activity in each spectrum band as a Bernoulli random variable and we assume the statistics of PUyy are
i.i.d. across M spectrum bands and over time slots. Therefore, we can frame the spectrum sensing problem at SU,,
as a binary hypothesis testing problem. Suppose 7—[?) and ’H(()t) represent the binary hypotheses of PUy, being active
and inactive in time slot ¢, respectively, with prior probabilities Pr{?—[gt)} = m; and Pr{?—l(()t)} = my. SU,, applies
a binary detection rule to decide whether or not PUy, is active in its pre-assigned band. Let ﬁo,n and 7-7,1,”, with
probabilities 7o, = Pr{’}-ALO,n} and T, = Pr{ﬁl’n} denote the SU,, detector outcome, i.e., the detector finds
PU;x active and inactive (the result of spectrum sensing is busy or idle), respectively. The accuracy of this binary

detector is characterized by its false alarm and detection probabilities. The details of the binary detector are presented

2Equation (4.1) assumes that the energy storage process is lossless. For a lossy storage process, one needs to model such loss via establishing
a functional relationship between «y,,, and En,ie., Qp, = Jn(En), where the function Jy,(-) can be approximated using the battery type and
specifications. Knowing Jy (-) and the pmf fg, (r), one can find the pmf fu,, (7) using transformation method.

73



in Section 4.2.

Depending on the outcome its of spectrum sensing, SU,, stays in spectrum sensing phase or enters channel estimation
phase. In this phase, SU,, sends N; training symbols with fixed symbol power P;, = aiey/Tiy, to enable channel
estimation at the AP, where o is the number of consumed cells of energy for channel estimation®. We assume that the
battery always has o units of stored energy for channel estimation. Let h%t ) denote the SU,,—AP fading coefficient in

time slot ¢ and g,(f) = |h5f ) |2 be the corresponding channel power gain. Using the received signals corresponding to the

training symbols, the AP estimates ﬁSf ) and lets @(f) = |E$f ) |2 and shares this value with SU,, via a feedback channel.
Next, SU,, enters data transmission phase. During this phase, SU,, sends N4 Gaussian data symbols with adaptive
symbol power according to its battery state and the received information via the feedback channel about SU,,—AP
link. If the battery is at state k, then SU,, allocates «y ,, cells of stored energy for each data symbol transmission,

implying that the adaptive symbol power is P,Etzl = a,(f)npu, where p, = e, /Ty. Note that since a,(:’_)n is discrete, P,gtzl

)

,, according to the battery state & and the feedback information g,, are given

is discrete. The details of the choice of Oz,(:’_

in Section 4.1.3 and the details of channel estimation are explained in Section 4.3.

4.1.3 Transmission Model and Battery Dynamics

As we stated, we assume that during time slot ¢, SU,, adapts its transmit energy per data symbol (power) according to
its battery state k and the received information via the feedback channel about its channel power gain g,,. In particular,
we choose a power adaptation strategy that mimics the behavior of the rate-optimal power adaptation scheme with
respect to the channel power gain [5], i.e., when g, is smaller than a cut-off threshold 6,, (to be optimized), the
transmit energy is zero, and when g,, exceeds 6,,, the transmit energy increases monotonically as g,, increases until it
reaches its maximum value of |k, | — «t, where €, € [0, 1] (to be optimized), and |- | denotes the floor function.

Mathematically, we express aff}n for SU,, as the following

o), = max {ag)n, 0}, fork=0,1,..., K, (4.22)
(t) 0 \ "

3For ease of presentation, we assume that circuit power (energy) consumption is negligible in comparison to the consumed energy for channel
estimation and data transmission. Otherwise, it can easily be incorporated into the system model.
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where ()T = max{z, 0}. The parameters 2,, and 6,, in (4.2) play key roles in balancing the energy harvesting and
the energy consumption. Given 6,,, when €, is large (or given £2,,, when 6,, is small), such that the rate of energy
consumption is greater than the rate of energy harvesting, SU,, may stop functioning, due to energy outage. On the

other hand, given 6,,, when €,, is small (or given §2,,, when 6,, is large), SU,, may fail to utilize the excess energy, due

(t

to energy overflow, and the data transmission would become limited in each slot. Note that a;, ) in (4.2) ensures that

n
the battery always has a4 units of stored energy for channel estimation. Furthermore, the transmission policy in (4.2)
satisfies the causality constraint of the battery. The causality constraint restrains the energy corresponding to symbol
transmit power to be less than the available stored energy in the battery, i.e., o ,, < k — a. Note that oy ,, is discrete
random variable and oy ,, € {0,1,... K} Let Vikm = Pr(ag,, = i|H.) denote the conditional PMF of ay

given H.,c = 0,1. We have

1, fO<k<ay,i=0
0, ifO<k<aq,i#0
ik = Yen, ifk>o+1,i=0 4.3)

Qi,k,na if k Z at+1; 1 S { S LanJ — Oy

0, if k> ontl, 0> [kQ) —an + 1
in which
Qi,k,n = ngn (Ci,k,n) - an (ai,k,n) (4.4a)
min(|kQy,], o)
Yk,n = 5" (en) + Z Qm—at,k,n (44b)
m=1
0, k2, 0, k2,

(4.40)

Uik =767 Cikn =757
s an*Oét*Z, L an*Oét*’Lfl,

where £ (x) = Fy, (x|H.) is the CDF of g,, given #.. Note that if ¢; 1, », < 0, we set ¢; i, = +00.

The battery state at the beginning of time slot ¢ 4+ 1 depends on the battery state at the beginning of time slot ¢, the

harvested energy during time slot ¢, the transmission symbol, as well as . In particular, if at time slot ¢, SU,, senses

4Examining (4.2) we realize that the largest value that agct)n can take is K — a. Hence, the maximum transmit energy of SU,, is bounded by

K — oy. The system designer can choose K such that signél distortion, due to the nonlinear behavior of power amplifiers, is prevented and the
operation of power amplifiers in their linear regions is guaranteed.
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its spectrum band to be idle, the state of its battery at the beginning of slot ¢ + 1 is
B = min { (Bﬁﬁ —ay—al) + aﬁj)) , K} . (4.5)

On the other hand if at time slot ¢, SU,, senses its spectrum band to be busy, the state of its battery at the beginning of
slott + 11is
BU+Y = min { (B(t + a(t)> , K} , (4.6)

since a,g ) —o. Considering the dynamic battery state model in (4.5) and (4.6) we note that, conditioned on agfj and

a,(m)n the value of BSf +b only depends on the value of Bg) (and not the battery states of time slots before ¢). Hence,
the battery state random process BS') can be modeled as a Markov chain (see Fig. 4.4). Let the probability vector of
battery state in time slot ¢ be ¢,, (1) — =1 (fr)” ey g)n]T Note that the probability ¢ ,(:L depends on the battery state at
slot ¢ — 1, the number of battery units filled by the harvested energy during slot ¢ — 1, the probability of spectrum
band sensed idle, and, the number of energy units allocated for data transmission at slot £ — 1 when the spectrum
band is sensed idle, i.e., C k. depends on Bgf_l) aEf 1), To,ms agnl), respectively. Assuming the Markov chain is

time-homogeneous®, we let ®,, denote the (K + 1) x (K + 1) transition probability matrix of this chain with its

(4,7)-thentry ¢ ; = Pr(B(t) |B(t U= J) given as

K
Goi= [wl imTonFa, (e +1=5)| + Finka, (=) (4.7a)
=0
K
P = Z [¢2j7n%0,n (1—Fahn(at+l+K—j)ﬂ + Tin (1 Fahn(K—j)> (4.7b)
=0
K
EDY lwlmwo"f% (aw+l+i—j) | +Finfa, (i—j) fori=1,... K1 (4.7¢)
=0
where F;,, (-) is the CDF of ay,,. We have
¢ =@, ¢l 4.8)

Since the Markov chain characterized by the transition probability matrix ®,, is irreducible and aperiodic, there exists

a unique steady-state distribution, regardless of the initial state [123]. Let {,, = lim; o ¢ S ) be the unique steady-state

5 A Markov chain is time-homogeneous (stationary) if and only if its transition probability matrix is time-invariant. Adopting homogeneous
Markov chain model for studying EH-enabled communication systems is widely common [123].
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Figure 4.4: Schematics of Markov chain corresponding to the battery state random process Bﬁp.

probability vector. This vector satisfies the following equations

Co=2,¢,, (4.92)
K

1= Gn =1, (4.9b)
k=1

where 1 is an all-ones vector, i.e., ¢,, is the normalized eigenvector corresponding to the unit eigenvalue of ®,,, such

that the entries of ¢,, sums up to one. The closed-form expression for ¢,, is [124]
¢, =(®,—I+B)""1, (4.10)

where B is an all-ones matrix and I is the identity matrix. From this point forward, we assume that the battery is at

its steady-state and we drop the superscript t.

To illustrate our transmission model in (4.2) we consider the following simple numerical example. Assuming that the
battery has K = 7 cells, Fig. 4.5 shows an example of ay ,, for our CR system for two sets of {€2,,,6,,} given as
Qg{l) = 0.75, 97@ = 0.02 and leb) = 0.95, H%b) = 0.02. The corresponding transition probability matrices are given
in the following

0.42 0.29 0.17 0.08 0.02 0 0 0 0.54 0.43 0.31 0.18 0.08 0.03 0 0
0.12 0.13 0.12 0.09 0.05 0.02 0 0 0.18 0.11 0.13 0.12 0.1 0.06 0.02 0
0.19 0.12 0.13 0.12 0.09 0.05 0.02 0 0.04 0.18 0.11 0.13 0.12 0.1 0.06 0.02
0.07 0.19 0.12 0.13 0.12 0.09 0.05 0.02 0.04 0.04 0.18 0.11 0.13 0.12 0.1 0.06
2l = L=
0.05 0.07 0.19 0.12 0.13 0.12 0.09 0.05 0.05 0.04 0.04 0.18 0.11 0.13 0.12 0.1
0.05 0.05 0.07 0.19 0.12 0.13 0.12 0.09 0.05 0.05 0.04 0.04 0.18 0.11 0.13 0.12
0.04 0.05 0.05 0.07 0.19 0.12 0.13 0.12 0.04 0.05 0.05 0.04 0.04 0.18 0.11 0.13
0.06 0.1 0.15 0.2 0.27 0.46 0.58 0.71 0.06 0.1 0.15 0.2 0.24 0.28 0.46 0.57

77



Figure 4.5: This example shows how many energy units (ax,,) SU, spends for data transmission, given its battery state and the
received information about its channel gain via feedback link. (a) Q% = 0.75, 6" = 0.02, (b) Q¥ = 0.95, 6% = 0.02.

Our goal is to find the transmission parameters {2,,, 8,, } in (4.2b) for all SUs such that the uplink sum-rate of our CR
network is maximized, subject to a constraint on the average interference that collective SUs can impose on PU,. We
assume that this optimization problem is solved offline at AP, given the statistical information of (i) fading channels
and noises, (ii) randomly arriving energy packets, and (iii) PU’s activities, the number of samples collected during
spectrum sensing phase Vg, the number of training symbols sent during channel probing phase N; and power of
training symbols P;,. The solutions to this optimization problem, i.e., the optimal set {2, Qn}nN;1 is available a
priori at the AP and SUs, to be utilized for adapting symbol power during data transmission phase. The idea of offline
power allocation optimization with a limited feedback channel has been used before for distributed detection systems
in wireless sensor networks [125]. In the following sections, we describe how SUs operate during spectrum sensing
phase, channel estimation phase, and data transmission phase. For the readers’ convenience, we have collected the

most commonly used symbols in Table 4.1.

4.2 Spectrum Sensing Phase

In order to access its spectrum band, SU,, first needs to sense its band during spectrum sensing phase, to determine

whether it is busy or idle (see Fig. 4.3). We formulate the spectrum sensing at SU,, as a binary hypothesis testing
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Table 4.1: Most commonly used symbols.

Symbol | Description

Nse Number of collected samples during spectrum sensing phase
Ni Number of training symbols during channel estimation phase
Ny Number of data symbols during data transmission phase

Py Power of training symbols

hn, En, En Fading coefficient of SU,,—AP link, LMMSE channel estimate, and its corresponding estimation error
Yn, Yn, Yn | Variances of hy,, hn,, hy,

T, T1 Prior probabilities of Ho and H1

T0,n, T1,n | Probabilities of spectrum bands being sensed idle or busy
Ck,n Probability of SU,, battery being at state k

Un Fading coefficient of PU¢x—SUj, link with variance d,,,
q Fading coefficient of PUyx—AP link with variance 4

Zn Fading coefficient of SU,,—PU, link with variance §,,

problem, where the received signal at SU,, can be written as:

Ho : yalm] = wn[m],
.11
Hi : ya[m] = unm] plm] + wn[m],

for m = 1, ..., Nye, where p[m] is the transmit signal of PUyy, wy,[m] ~ CN'(0, 07, ) is the Additive White Gaussian
Noise (AWGN) at SU,, and u,,[m] is the fading coefficient corresponding to PU;x—SU,, channel. The two hypotheses
Ho and H; with probabilities mg and m; = 1 — 7y denote the spectrum is truly idle and truly busy, respectively.

We assume that 7y and 7 are known to SUs based on long-term spectrum measurements. For spectrum sensing

we consider energy detector, where the decision statistics at SU,, is Z,, = Nle Zgil |yn|[m]|?. The accuracy of
this detector is characterized by its false alarm probability Pr,, = Pr(ﬁl,n\Ho) = Pr(Z, > &,|Ho) and detection
probability Py, = Pr(?—A{,Ln\Hﬂ = Pr(Z, > &,|H1), where &, is the local decision threshold. For large N, we can

invoke central limit theorem and approximate the CDF of Z,, as Guassian. Hence, P, and P4, can be expressed in

terms of () function as below [2]

Pfan :Q (Oin_ )\/Nse ) (4123)

W,

€7L NSe
Py = =1 )y ), 4.12b
an =@ (ﬁn v 2w+ 1 (4.12b)

79



where v, = P06y, / ofun and P, is the average transmit power of PU,. For a given value of Py, = Py, the false

alarm probability can be written as

Pr, = Q (WQl(Pd) + un\/Tscfs>. (4.13)

The probabilities 7 ,, and 7y ,,, are related to Py, and P, . In particular, we have 7 ,, = By, + (1, and Ty, =

1 — 7p,, where

Bom = Pr{Ho, Hon} = mo(1 — Pr,), (4.14a)

Bim = Pr{H1, Hon} = m(1— Py,). (4.14b)

4.3 Channel Probing Phase

Depending on the outcome of its spectrum sensing, SU,, either stays in spectrum sensing phase (i.e., remains silent in
the remaining of time slot) if its band is sensed busy (the detector outcome is ﬁl,n), or it enters channel estimation
phase if its band is sensed idle (the detector outcome is 7:20,77,)- During channel estimation phase, we assume SU,, sends
training vector &; = /P, 1, where 1 is an N; x 1 all-ones vector to enable channel estimation at the AP. Let vector
Sn = [sn(1),...,5,(INt)]* denote the discrete-time representation of received training symbols at the AP from SU,,.
Assuming the fading coefficient h,, corresponding to SU,—AP channel is unchanged during the entire time slot, we

have

Ho, Hon: sulm] = hu/Poc + va[m],
4.15)

Hi, Hon: sulm] = hoy/Por + alm] plm] + v, [m)],

form =1,..., Ny, va[m] ~ CN(0,02 ) is the AWGN at the AP, and ¢[m] is the fading coefficient corresponding
to PUx—AP channel. The LMMSE estimate of h,, given 7:20,,1 is [5,117]

B =Ch,s,Cs.t 8, (4.162)
Chnsn = E{hns’l{;qﬁoyn} :’Y’ﬂ, Ptr 1) (4.16b)
Cs, = E{SnSfl’f?o,n} =wo,n E{snsffIHo, ’ﬁo,n} + win E{snsf{ml, ﬁo,n}, (4.16¢)
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where

7 1- Pa n
won = Pr{Ho|Hon} = Mol = Pa,) _ fom (4.17a)
T0,n TO,n
~ 1-P n
w1 = Pr{H;|Hon} = ml=F,) _ B : (4.17b)
To,n TO,n
and
]E{snan?-lo, ﬁo,n} = (ﬁgPtr + ggn) I, (4.18a)
E{snsfﬂl, ﬁoyn} =@pPu+os +op) L (4.18b)
After substituting (4.17) into (4.16), ﬁn reduces to
T TnV Ptr il
B 5 ) salm], (4.19)

= 2
’)/nptrNt + UUn + LULnO'p oo

where afj = P,d,. The estimation error is En =h, —/f;n, where ﬁn and En are orthogonal random variables [117], and

h,, and h,, are zero mean. Approximating g[m]p[m] as a zero-mean Gaussian random variable with variance o2

5 We

find that the estimate ﬁn given 7:20,71 is distributed as a Gaussian mixture random variable [5]. Let 7,, and 7,,, represent
the variances of En and ﬁn, respectively. Also, Let 'Ayg and AA/}L represent the variances of ﬁn under {H,, ﬁo’n} and

{1, Ho.n}. respectively. We have

'Y%PtrNt ('YTLPtrNt +O'12;n>

30 = VAR{ " |Ho, Hon } = 5, (4.20a)
<’antrNt+U%n +W1,n0—g>
Y2 P Ny (’antrNt +o2 +UZ)
At = VAR{h,|H1, Hon}= (4.20b)

2
(’antrNt + Ugn +w1,n012;>
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Therefore, ¥, = wo n Yo +w1n7.. Also, let 72 and 7} indicate the variances of o, under {Ho, ﬁo,n} and {H1, ﬁo,n},

respectively. We have

30 = VAR{hn|Ho, Hon} = n — 72, (4.21a)

AL =VAR{h,|H1, Hon} = — T (4.21b)

Hence, v,, = wo,,ﬁ,ol + wl,,ﬁ}l. For ideal spectrum sensing, we get wg , = 1 and wy ,, = 0 and ﬁn becomes Gaussian.
Let F§ (x) denote the CDF of g, under {#., ﬁo,n} for e = 0, 1. Note that under {#., 7:20’“} fore = 0,1, o is zero
mean complex Gaussian. Hence, under {#., ﬁo’n} fore = 0,1, g, is an exponential random variable with mean 72
and CDF

—x

Fi(z)=1—¢n. 4.22)

The CDF of g,, denoted as F; (), can be expressed in terms of Fgﬂ (x) and Fgln (x) as the following:
Fy, (z) = won Fy () + win Fy (). (4.23)

After channel estimation, the AP feeds back the channel gains g,, = \ﬁn \2 over a feedback link to SU,,.

4.4 Data Transmission Phase

After channel estimation phase, SU,, enters this phase. We note that entering this phase is only possible, if in spectrum
sensing phase the outcome of the binary detector is ,}:ZO,n- During this phase, SU,, sends Gaussian data symbols to
the AP, while it adapts its transmission power according to information provided by the AP through the feedback
channel about SU,,—AP link as well as its battery state. In particular, SU,, transmits Ny zero-mean i.i.d. complex
Gaussian symbols x,,[m] for m = 1,..., Nq with power Py ,, = ax_, Py, When the battery is at state k and oy, ,, is
given in (4.2). Let s,,[m] denote the discrete-time representation of received signal at the AP from SU,,. Due to error

in spectrum sensing, we need to distinguish the signal model for s,,[m] under H, and ;. We have

Ho,ﬁo,n: sn[m] = hpxp[m] 4+ v, [m],
(4.24)

Ha, Hont sulm] = hnza[m] + qlm] plm] + v [m].
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Substituting A, = hy, + h,, in (4.24), we reach at®

new noise 7y,0[m|

o~

Ho Hom: so[m]=hnanm]+hpzam]+vam),
~ ~ - 4.25)
Hq 7HO,n: Sn[m] = hnxn[m] + hnxn[m] +q [m}p[m] + Un[m] )

new noise 7,,,1[m|

where the new noise terms depend on En Given g, at the AP, we obtain an achievable rate expression for a time
slot by considering symbol-wise mutual information between channel input and output over the duration of Ny data

symbols as follows

Ng

> (8o E {1 (walml: sulm] | Gus Ho, Fo) }+ 810 E {1 (walm]s sulm] [ Ha Hon) |, 426)

m=1

WDy

R, A

where Dq = Tg4/T; is the fraction of the time slot used for data transmission and the expectations in (4.26) are
taken over the conditional PDFs of g,, given {H., ﬁo,n} for e = 0, 1. To characterize R,, in (4.26) we need to find

E{I(zn[m]; sn[m]| Gn, He, 7—707”)}. Exploiting the chain rule we can rewrite this expectation as follows
K
E {1 (wnlmls snlm] |G Hes Fon ) b = D7 G I (wnlmls sulm] [ G, b, He, Fon ) (“.27)
k=0

Note that I(z,[m]; $n [m]|§n,’HE,ﬁ0,n) in (4.27) is the mutual information between x,,[m] and s,[m] when the
battery state is k, given g,, and {#H., ’}207”}. From now on, we drop the variable m in x,,[m] and s,,[m] for brevity of

the presentation. Focusing on I(2; Sn|Gn, He, ﬁo,n), we have
I(xn§ Sn |./g\n7 k,He, ﬁo,n) =h (xn |./g\n7 k, ﬁO,rn He) —h (xn ‘ Snv./g\ru k, ﬁo,nvﬂa) ) (4.28)

where () is the differential entropy. Consider the first term in (4.28). Since x,, ~ CN (0, Py ,) we have h(z, | Gn, k, ﬂoyn, He) =
logy(me Py ,,). Consider the second term in (4.28). Due to channel estimation error, the new noises 7, ’s in (4.25)
are non-Gaussian and this term does not have a closed form expression. Hence, similar to [107,111, 118] we employ

bounding techniques to find an upper bound on this term. This term is upper bounded by the entropy of a Gaussian

OWe note that under H., our channel model h,, = Tzn + En can be extended to include both the effects of channel estimation error and delayed
feedback due to SU;,’s mobility. In particular, we can model h,, = Xﬁn + zn, where the parameter x = Jo(2wvT/A) is from Jakes’ model
for Rayleigh fading [115], v is the velocity of SUy,, and X is the wavelength of transmit signal, hy, is the outdated CSI available at SU,,, and
zn ~ CN (07 (1 —x2)78 + 7yfl). Substituting this channel model in (4.24) we reach at a signal model that is different from (4.25), which can be
used to derive a new rate lower bound R, 1,.B.
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random variable with the variance ©y;°

2
QU =E { } , (4.29)

where the expectations are taken over the conditional pdf of x,, given s, g, k, ﬁo,n, He. In fact, G)f\’/f is the MSE

Ty — E{xn ‘gnv kaﬁo,ans}

of the MMSE estimate of x,, given s, gn, &, ﬁo’m ‘H.. Using minimum variance property of MMSE estimator, we
have ©};° < O, where O is the MSE of the LMMSE estimate of z,, given s,,, gn, k, ?/-Zo’n, H.. Combining all,
we find h(xy|5n, Gn, k,?qo,m?-ls) < log,(7eO1"°) and I(zy; 51 |G, k,?—A[o,n,Hs) > logy (Py,n/O1 ) where

Pk TLU2
O = 5 ="5— 430
- 0-727n.5 + gnPk,n ’ ( )
an . =VaPin + oo, +e0p. 431)

At the end, we obtain the lower bounds as follow

1 (03 50 |G ks Ao, Ho ) > logy (1 + §nb2,n), (4320
I (xn; Sn | §na k7 ﬁO,na Hl) > 10g2 (1 + @\nb]lgm) y (4.32b)
where
Plc,n Pk,n
B = =555 bhn="= > (4.33)

(VW Prnto2)’ (Vi Prnto2 +02)

Substituting equations (4.27) and (4.32) in (4.26) and noting that the symbol-wise mutual information between channel

input and output for N4 data symbols are equal we reach at

K
R, > R, 1.8 =Dafo W Z Ck,nE{logz (1 + ﬁnbg,n) |H0}

k=0

K
+DafraW Y Q,ME{log2 <1 + Enb}w) |H1}. (4.34)
k=0
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Next, we compute the conditional expectations in (4.34), in which we take average over g, given H.. Using (4.3) and

(4.4c) we have
[EQp]—a Cikm [ EQ ]
E{log2(1 +n k> } Z / logz(l +85, 7 ) )dy = Z Vie(S5 0 5) (4.352)
Qi k,n
in which
i Pu 1 1Py
) = % S;. 4.35b
T Bipaten) O Ghipetod, 07 (3330
Vk(si,na :Y\n) = M(ci,k,na Si,nv :Y\n) - M(ai,k,na Si,na ﬁn)7 (435C)
and
M(z,S,w) —/10 (1+sm)id:c— SRS (e S A (1+ Sx) (4.36)
W)= [ 1082 w  In(2) w  Sw B2 ' '
Also, ¢; i,n and a; j ,, are given in (4.4c). Substituting (4.35a) in (4.34) we reach to
K |kQn]—o K |kQp]—ag
Rots=DaBonW D> Y CeaVi(SLuAn) + DaBiaW Y Y CenVi(SiAn): (4.37)
k=a;+1 =1 k=a;+1 11=1

We note that the lower bounds in (4.32) are achieved when the new noises 7, 0, 1,1 in (4.25) are regarded as worst-
case Gaussian noise and hence the MMSE and LMMSE of x,, given s,, gn, k, 7:[\0,117 H. coincide. Given the rate

lower bound R,, 1,5 for SU,,, the uplink sum-rate lower bound for all SU,,’s is

N\]
Rip = Z R, 1. (4.38)

n=1

So far, we have established a sum-rate lower bound on the achievable sum-rate. Next, we characterize the average
AIC. Suppose I,, is the maximum allowed average interference, i.e., the average interference that collective SUs

impose on PU,, cannot exceed I.v. To satisfy AIC, we have
I, < Ty, (4.39)
where I,, is the average interference power that SU,, imposes on PU,. We find

I, = 01 nE{z,} {Dd ]E{P @ )} + DtrPtr} (4.40)
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where Dy, = Tt /T and the expectation is over the conditional pdfs of g,, under {H;, ﬁo’n}. Considering the right
side of (4.40), we note that the first term is the average interference power imposed on PU,, when SU,, transmits
data symbols, and the second term is the average interference imposed on PU,, when SU,, sends training symbols for

channel estimation at the AP. Using (4.3) we compute the term with expectation inside (4.40) as follows

[kt
E{ } ZCkHZPrakn—ﬂ’Hl ipy = Z Com Z Ol iD (4.41)
k=a+1
Substituting (4.41) into (4.39), we can rewrite the AIC in (4.39) as
[k ]—ext
Zﬂln zyL[ Z Ck n Z 7vzjzkn7fpu+DtrPt1 < Iy. (4.42)
k=a+1 =1

For ideal spectrum sensing we get 31, = 0 in (4.14), implying that data transmission from SUs to the AP does not

cause interference on PU, and the left-hand side of (4.42) becomes zero, i.e., the AIC is always satisfied.

Next, we examine how spectrum sensing error and channel estimation error affect Ry,p and AIC expressions. First,
spectrum sensing error affects AIC via 31 ,,, and Ry via 3y, and 31 . Recall 3y, 51, depend on 7y, P, , Py,
(see (4.14)). Second, channel estimation error affects AIC via Dy, 1)}

i kon> and Rpp via 5.

Having the mathematical expressions for g and AIC, our goal is to optimize the set of transmission parameters
{2, 0,} for all SUs such that Ry p is maximized, subject to the AIC. To inspect the underlying trade-offs between
decreasing the average interference imposed by SU,,’s on PU,, and increasing the sum-rate lower bound R1,3, we note
that increasing data symbol transmission power Py ,, increases [t;,p. However, it increases the average interference.
Aiming to strike a balance between increasing Ry and decreasing the imposed average interference, we seek the

optimal {2, (9”}7]:7;1 such that Ry p in (4.34) is maximized, subject to AIC given in (4.42). In other words, we are
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interested in solving the following constrained optimization problem

Maximize Rip 4.P1)
{Qm en}gil

st , €[0,1], Vn

0, >0, Vn

-1
¢, = (tI’n—I—FB) 1, Vn

AIC in (4.42) is satisfied.

Problem (4.P1) is not convex with respect to {2, 0,, } 2[; 1- Unfortunately, the objective function and the constraints
in (4.P1) are not differentiable with respect to {Q,,, Hn}fjgl. Hence, existing gradient-based algorithms for solving
non-convex optimization problems cannot be used to solve (4.P1). We resort to a grid-based search method, which

requires 2N,-dimensional search over the search space [0, 1]M x [0, 00)™".

To reduce the computation complexity of solving (4.P1), we propose to decompose (4.P1) to /N, sub-problems cor-
responding to N, SUs. To achieve such decomposition, we assume that I,, in (4.40) cannot exceed Tov /Ny. Let

(4.SP1-SU,,) refer to the sub-problem corresponding to SU,,. We have
Maximize R, 1,8 (4.SPp1-SU,,)
{Qn, 0.}
s.t.: Q, €[0,1],

9’]’7,207
-1
¢, = <<I>n—I+B> 1,

In < Tav/Nu-

We solve sub-problem (4.SP1-SU,,) forn = 1,..., N, using a grid-based search method, which requires 2-dimensional
search over the search space [0, 1] x [0,00). To curb the computational complexity of these searches, we can limit
0,’s to a maximum value, denoted as 6,,,x. We refer to the solutions obtained from solving (4.P1) and solving N,
sub-problems, respectively, the “optimal” and the “sub-optimal” solutions. Clearly, the accuracy of these solutions de-
pend on the resolution of the grid-based searches. We call the former solution the “optimal”, in the sense that it is the

best achievable solution, and the latter solution the “sub-optimal”, in the sense that solving /NV,, sub-problems always
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yield a sub-optimal solution, with respect to solving (4.P1), since AIC in (4.P1) is coupled across all SUs. When I,
in (4.39) is large enough such that AIC is not active, the “optimal” and “sub-optimal” solutions become identical. In

the following, we compare the computational complexity of finding the “optimal” and “sub-optimal” solutions.

For finding both the “optimal” and the “sub-optimal” solutions, SU,, needs to perform two tasks for each point in
its grid-based search: task (i) forming ®,, and solving (4.10) to find (,,, task (ii) calculating R, 1,5 and I,,. Our
numerical results show that for a fixed €2,,, 6,,, the computational complexity of task (i) and task (ii) are O(K31)
and O(K?'1), respectively. Assuming that the intervals [0, 1] and [0, f,,.x] are divided into Ng, and Ny sub-intervals,
respectively, we realize that SU,, needs to perform task (i) and task (ii) for Nq Ny times in total. Therefore, the com-
putational complexity of finding the “sub-optimal” solution is O(N,No Ng (K31 + K*1)), which can be simplified
to O(NyNqNgK31).

To solve (4.P1), however, the leftmost summation in (4.42) must be computed for all combinations of {2, Qn}nN;1
and its computational complexity is O((Nq Ny K 21)™Nv). Therefore, the computational complexity of finding the “op-
timal” solution is O((NqNgK?*1)Ne + N, Nq Ny K31), which for N, > 2 can be simplified to O((NqNgK21)Nu).
We note that the computational complexity of obtaining the “optimal” and the “sub-optimal” solutions grow exponen-

tially and linearly, respectively, in IV,,.

4.5 Simulation Results

In this section we corroborate our analysis on constrained maximization of the achievable uplink sum-rate lower bound
with Matlab simulations, and examine how the optimized uplink sum-rate lower bound depends on the average number
of harvesting energy packets p,,, the maximum allowed average interference power I,,, the duration of spectrum
sensing phase T4, the number of consumed cells of energy for channel probing a4, and the size of the battery K. Our

simulation parameters are given in Table 4.2.

e Spectrum sensing-channel probing-data transmission trade-offs: To explore these trade-offs, in this section we
let Ny, = 1 and examine how the rate lower bound Ry p in (4.38) for a single user changes when we vary Tge, or oy.

The simulation parameters, except for o, Ty, 02, 02 are given in Table 4.2 7.

"Note that the variances of channel estimate and corresponding estimation error in (4.20) depend on the product P Ny = ageyfs and is
independent of Tt,. That is the reason, instead of 7%, we consider varying ., to understand channel probing trade-offs.
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Table 4.2: Simulation Parameters

[ Parameter [ Value H Parameter [ Value
P, Twatts [ o2 1
0 0.7 O‘E)_n 1
Ter 0.1ms Qg ' 1
Tse 1ms Py 0.85
T 10 ms w 10 KHz
eu 0.01 Oq 1

Fig. 4.6a shows Ryp versus Ty, for two values of the energy harvesting parameter p = 15,16,02 = 02 = 1 and
oty = 1. This figure suggests that there exists a trade-off between Ty, and Rrp. On the positive side, as T, (or
equivalently NVy.) increases, the accuracy of the energy detector for spectrum sensing increases (i.e., P, in (4.12b)
decreases). A more accurate spectrum sensing can reveal new opportunities for SU,, to be exploited for its data
transmission, that can increase Rrp. On the negative side, as T increases, the duration of data transmission phase
Tq = Tt — Tse — T}, decreases. This trade-off between spectrum sensing and data transmission indicates that, given
the parameters (including o), there is an optimal 7., denoted as T}, in Fig. 4.6a, that maximizes Ry,g. For instance,

for p = 15,16 we have T, = 0.6,0.75 ms.

Fig. 4.6b plots R1p versus a4 for p = 18,20, Ty = 1 ms and a?u = U?) =5. This figure suggests that a trade-off exists
between o and Rrp. On the positive side, as oy increases, the accuracy of channel probing (measured by the variance
of channel estimation error in (4.20)) improves. A more accurate channel probing can increase Ry . On the negative
side, as o, increases, the available energy for data transmission decreases. This trade-off between channel probing and
data transmission shows that, given the parameters (including 7T%.), there is an optimal o, denoted as «; in Fig. 4.6b,
that maximizes Ry p. For instance, for p = 15,16 we have of = 4. The z-axis in Fig. 4.6b can be converted to the

normalized channel estimation error variance 7 /7.

o Effect of the optimization variables €2, 8: In this section, we let IV, = 1 and we illustrate how the entries of the
steady-state probability vector ¢ in (4.10), Ryp in (4.38) for a single user, and the battery outage probability Pbo‘“
defined below, the spectral efficiency sk and the energy efficiency ngg defined below, depend on the optimization
variables 2 and 6. We define Pb(Z“t as the steady-state probability of the battery of SU,, being equal or lower than o.

When the battery is at outage, it cannot yield energy for data transmission or channel probing. We have

Qg
PO =Pr(By <o) = Y Crm- (4.43)
k=0
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We define the spectral efficiency of our CR system, denoted as ngg and measured in bits/sec/Hz, as

Inspired by [126], we define the energy efficiency of our CR system, denoted as ngr and measured in bits/Hz/Joule,

as

TISE

TIEE

system. We find P as the following

The simulation parameters are given in Table 4.2. Also, we let v = 2,8, = 1,8, = 1. Fig. 4.7a illustrates Ryg for a
single user versus €2 for p = 15,20. We observe that Ry g is neither a convex nor a concave function of §2. This figure
suggests that there is an optimal €2, which we denote as 2*, that maximizes Ry p. Starting from small values of €2, as

Q) increases (until it reaches the value Q0*), Ry p increases, because the harvested energy can recharge the battery and

Rip

Rip

- total available bandwidth - MW

TISE

[k ]—ox

Ny K
ﬁ:DdZ Z Ck,n Z 1Py
=1

n=1k=a+1

90

|:50,n¢?,k7n + ﬁl,n¢z‘1,k,n:|

~ average transmit power of all SUs’

Ny

+ DtrPtr Z 7?0,n~

n=1

02=1, (b) Rup versus o for K = 200,60 = 0.25,Q =

(4.44)

(4.45)

Let P denote the average transmit power of all SUs during channel probing and data transmission phases in our CR

(4.46)
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Figure 4.7: (a) Ry versus € for K = 80,60 = 0.2, (b) Ry, versus 0 for K = 80, = 0.35.

can yield more power for data transmission. However, when (2 exceeds 2*, the harvested and stored energy cannot
support the data transmission and Ryp decreases. Moreover, as p increases, Ryp increases as well. The behavior of
Ry versus 6 is shown in Fig. 4.7b for p = 15, 18. We observe that Ry is neither a convex nor a concave function of
6. Similar to 2, there is an optimal 6, which we denote as §*, that maximizes Ryg. Starting from small values of 0, as

0 increases (until it reaches 0*), Ry, increases. However, when 6 exceeds 0*, R;,g decreases.

Fig. 4.8 plots the entries of the steady-state probability vector ¢ versus k for 2 = 0.45,0.3 and 6 = 0.2. Fig. 4.9 plots
the entries of ¢ versus k for § = 0.1, 0.5 and 2 = 0.35. To quantify the effect of {2 and 6 on the entries of ¢ we define

the average energy stored at the battery of SU,, as

B, =E{B,} = i k Coyns (4.47)

k=0
where the largest possible value for B,, is K. Considering Figs. 4.8a and 4.8b, we find B(a) = 16.97 for Q = 0.45,
implying that the battery is near empty, and E(b) = 66.30 for = 0.30, implying that the battery is near full.
Considering Figs. 4.9a and 4.9b, we find B(a) = 24.08 for # = 0.1 and E(b) = 71.55 for § = 0.5. Clearly, the
values of 2 and 6 affect B. Given 6, when € is large, data transmit energy oy in (4.2) is large. Due to large energy
consumption for data transmission, compared to energy harvesting, the battery becomes near empty at its steady-state

and SU may stop functioning, due to energy outage. When (2 is small, o in (4.2) is small. Due to small energy
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Figure 4.9: (j, versus k for K = 80, p = 15,2 =0.35, (a) 0 = 0.1, (b) 6 = 0.5.

consumption for data transmission, compared to energy harvesting, the battery becomes near full at its steady-state,
indicating that SU has failed to utilize the excess energy. Both cases inevitably hinder data transmission, leading to a
reduction in Ry p. Similar argument holds true, when 6 varies and {2 is given. In particular, when 6 is small, transmit
energy «y, in (4.2) is large, and when 6 is large, transmit energy oy, in (4.2) is small. Again, both cases impede data
transmission, leading to a lower Ry . Overall, the observations we make in Figs. 4.7, 4.8, 4.9 confirm that optimizing
both €2 and 6 to achieve a balance between the energy harvesting and the energy consumption for data transmission is

of high importance.
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Figure 4.10: (a) P versus Q for K = 80,6 = 0.05, (b) P°"" versus 6 for K = 80,Q = 0.35.

Fig. 4.10a illustrates the behavior of PbO“t for a single user in terms of €) for # = 0.05. Fig. 4.10b plots PbOut versus
¢ for Q = 0.35. For a; = 1, POU in (4.43) reduces to PO = (o + (1, i.e., POU depends on  and 6, via only
the first two entries of vector {. Fig. 4.10a shows that, as {2 increases, Pbout increases as well. This is because as
Q) increases, given 6, aj in (4.2) increases. Due to large energy consumption for data transmission the chance of the
battery depletion and hence PO increase. Fig. ?? demonstrates that, as § increases, PO decreases. This is because
as 0 increases, given {2, a in (4.2) decreases. Due to small energy consumption for data transmission the chance of

the battery depletion and hence P°1 decrease.

Fig. 4.11a shows how 7 and 7gg vary as €2 changes. As (2 increases, both ngg and 7nsg increase, until €2 reaches a
certain value, denoted as (2. We note that at Q = Qfp, 7gE achieves its maximum value. When 2 exceeds Qfp,
ner decreases while ngg increases. This trend continues until 2 reaches another certain value, denoted as §2§. We
note that at 0 = Qfp, nsg achieves its maximum value. When Q exceeds Q2§, both ngr and nsg decrease. We also

observe that &, > Qfp.

Fig. 4.11b shows how ngg and nsg vary as 6 changes. As 6 increases, both ngg and 7ngg increase, until 6 reaches a
certain value, denoted as 65;. We observe that at § = 65, sk achieves its maximum value. When 6 exceeds 6§,
nsk decreases while ngp increases. This trend continues until 6 reaches another certain value, denoted as 05;. When

6 exceeds 05, both gy and ngy decrease. We also observe that 05, < 0.
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Figure 4.11: (a) ner versus nsg for different values of 2 and 8 = 0.02, (b) ner versus 7sg for different values of 6 and €2 = 0.6.

Motivated by [126] we define a new metric, denoted as Z below, which is a weighted summation of ngg and ngg

Z =knsg+ (1 — K)NEE. (4.48)

where 0 < k < 1 is the weighting factor. When « = 1, maximizing Z defined in (4.48) becomes equal to maximizing
the spectral efficiency (our problem in (4.P1)). When x = 0, maximizing Z becomes equal to maximizing the energy
efficiency. Fig. 4.12a illustrates Z versus {2 for different values of x. We observe that the value of {2 which maximizes
Z is different for different values of «. Fig. 4.12b illustrates Z versus 6 for different values of x. We observe that the

value of @ which maximizes Z is different for different values of .

o Solving Problem (4.P1): Next, we consider solving the constrained optimization problem (4.P1) and (4.SP1-SU,,)
and plot the maximized Ry p, denoted as Ry (R] g is Rip evaluated at the solutions obtained from solving (4.P1)

and (4.SP1-SU,,)).

Fig. 4.13 depicts Rj obtained by solving (4.P1) and (4.SP1-SU,,) versus I, for Ny = 3,m9 = 0.7,0.8. We let
the statistics of fading coefficients be different across SUs, v = [2,2.2,2.1],d, = [1,0.8,1.2],6, = [1,0.5,0.8]
and K = 60,p = 10 be equal for all SUs. We observe that for small I, the “sub-optimal” solution obtained from
solving (4.SP1-SU,,) yields a lower sum-rate in comparison to the “optimal” solution obtained from solving (4.P1).

However, for large I,,,, when AIC is not active these two solutions become identical. As 7y increases, the probability
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Figure 4.12: (a) Z versus €2 for § = 0.02, (b) Z versus 6 for 2 = 0.6.
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Figure 4.13: Ryp versus I, for K = 60, p = 10, N, = 3.

of the spectrum being actually idle increases and the opportunity for SUs to utilize the spectrum for data transmission

increases. Consequently, the sum-rate lower bound increases as 7 increases, for a given I,

Fig. 4.14 depicts Rf g versus K for N, = 3,p = 30,40. We observe that as K increases, Rz increases. This is
expected, since as K increases the chance of energy overflow decreases, leading to a larger amount of stored energy
in the battery, which can be utilized to support a higher data rate transmission. Fig. 4.15 shows R} versus I, for

K =80, p = 10,15 and N, = 3. For small I,,, the AIC in (4.42) is active and consequently, it limits transmit power
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Figure 4.14: R versus K for Iy = 2dB. Figure 4.15: R} versus Iny for Ny = 3, K = 80.

of SUs. As I, increases, SUs can transmit at higher power levels and ¢ increases, until R}  reaches its maximum
value. Increasing I, any further, beyond the knee point in Fig. 4.15, does not increase R; . This is because for large
Iy, transmit power levels are restricted by the amount of harvested and stored energy in the battery ( i.e., they are not
restricted by AIC). Therefore, increasing I, beyond the knee point has no effect on R} 5. Moreover, for small I,

where the AIC is active, increasing p has no effect on R . On the other hand, for large I, when p increases, R g

increases.

Considering SU1, Fig 4.16 depicts Pb?“t of this user versus K where the optimization variables €2; and 6; are obtained
by solving (4.P1) and maximizing Ry p and then substituting the optimized variables in (4.43) to calculate Pb?“t. We

observe that increasing K leads to a lower Pbolut.

We define the transmission outage probability Po?ft as the probability of SU,, not being able to transmit data to the AP,
due to either a weak SU,,—AP link with small fading coefficient or insufficient amount of stored energy at the battery.
We have

PO = Pr(P, = 0|Ho,n) = won Pr(P, = 0|Ho,n, Ho) + win Pr(Py = 0[Hon, Ha), (4.49)
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where

Pr(Pn = 0|ﬁ0,narHs)

Qg K
=3 Cem Pr(arn = 0[Hon, He, By S at) + > Con Pr(akn = 0[Hom, He, Bp > v +1).  (4.50)
k=0 k=a¢+1

Substituting (4.3) and (4.50) in (4.49) we get

oy K

PO =N "Cont D ConYien: 451)
k=0 k= +1

Fig. 4.17 shows PO(Z“t for SU; versus I, where the optimization variables €2; and 6; are obtained by solving (4.P1)

and maximizing Ryp and then substituting the optimized variables in (4.51) to compute Paol“t. Starting from small

I, as I, increases, SUs can transmit at higher power levels and PO(Z“t decreases, until Po?l“t reaches its minimum

value. Increasing I, any further, beyond the knee point in Fig. 4.17, does not reduce Po?l‘“. This is because for large

1, transmit power levels are restricted by the amount of harvested and stored energy in the battery ( i.e., they are not

restricted by AIC). Therefore, increasing I ,, beyond the knee point has no effect on Pglut.
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4.6 Conclusion

We considered an uplink opportunistic CR network, that can access a spectrum band licensed to a primary network.
Each SU is equipped with a finite size battery, for storing energy. Modeling the dynamics of the battery as a finite state
Markov chain, we established a lower bound on the achievable uplink sum-rate of SUs—AP links, in the presence of
both spectrum sensing and channel estimation errors. We proposed a parameterized transmit power control strategy
that allows each SU to adapt its power, according to the received feedback information from the AP regarding its
link fading coefficient and its stored energy in the battery. We optimized the transmit parameters such that the derived
uplink sum-rate lower bound is maximized, subject to AIC. Since the proposed constrained optimization problem is not
convex and the objective function and the constraints are not differentiable with respect to the optimization parameters,
we resorted to grid-based search methods to solve the problem. We explored the trade-offs between Ry g, spectrum
sensing duration, and channel estimation error. We also illustrated the trade-offs between spectral efficiency and
energy efficiency for our CR system. As future work, we plan to study how a non-ideal feedback channel, combined
with spectrum sensing and channel estimation errors, will affect our sum-rate maximization problem. In particular, we
will consider the effects of SU,,’s mobility and bandwidth-limited feedback channel on our optimization problem and

its solution.
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CHAPTER 5: THROUGHPUT-OPTIMAL D2D MMWAVE
COMMUNICATION: JOINT COALITION FORMATION, POWER, AND

BEAM OPTIMIZATION

In this chapter, we explore a throughput-optimal design for a D2D MMWAVE network, where the nodes employ
directional antennas for wireless communication. In particular, we consider a MM WAVE network with a total available
bandwidth of B. Hz, that supports communication of /N cooperative pairs of transmitters and receivers over fading
channels. We assume the available spectrum band is divided into /N, non-overlapping sub-bands, where each sub-
band has a bandwidth of W = B./N. Hz. Also, we assume N, < N. Each node is capable of steering its beam
within the range of its field of view (FOV) [1,5]. Also, each transmitter node can adjust its transmit power. The
transmitter-receiver pairs can form up to N, disjoint coalitions, such that the pairs in a particular coalition share the
same sub-band for communication. Therefore, the pairs within a coalition cause co-channel interference, whereas the

pairs in different coalitions do not interfere.

The questions we address are: What is the best coalition among the pairs? What are the optimal beam steering angles
of directional antennas of the pairs within each coalition, and what are the optimal transmit powers such that the
network throughput, defined as the sum-rate of all [V transmitter-receiver pairs in N, coalitions, is maximized? We
combine the concepts of coalition formation among cooperative transmitter-receiver pairs and directional MMWAVE
bands, and we take full advantage of adaptive beam steering and adaptive transmit power to improve the spectral

efficiency and maximize the network throughput.

5.1 System Overview

5.1.1 System Model

To describe our system model, suppose link ¢ denotes the wireless communication link between transmitter ¢; and
receiver r; of pair ¢, for i = 1,..., N (see Fig. 5.1). Our wireless channel propagation model encompasses both flat
fading and path loss. Suppose nodes ¢; and r; are located at Cartesian locations (Xy,, Y;,) and (X, Y, ), respectively.

Let the angles ¢;, and ¢, (measured in radian) denote the the antenna orientations of nodes ¢; and r; in their local
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coordinates, respectively. Also, let the angle ¢;,,., denote the orientation of the line connecting nodes ¢; and r; where

0., = tan~! RO (5.1)
iy Xt,i _ er

Suppose Ay(¢) denotes the antenna gain of node ¢ (which can be either a transmitter or receiver) at an arbitrary angle
¢. Suppose pair 7 is in coalition ¢, i.e., the pair is communicating over sub-band ¢, for ¢ = 1,..., N.. The received

signal power at node r; from node ¢; can be written as
Ptcﬂ-i = chfﬂ'i Gtim (Qstl ) ¢7‘71)3 (52)

where P€ is the transmit power of ¢;, g, is the power of fading channel between ¢; and r; corresponding to sub-

band c. We model g7 ,.. as an Exponential random variable with mean E{gf , } = (dtfii‘?_)a, where d is the reference

distance, dy,,, = \/(X1, — Xr,)2 + (Y3, — Yy, )? is the Euclidean distance between ¢; and r;, and « is the path loss
exponent. Also, Gy, (41, dr,) is the product of antenna gains of ¢; and r; when the antenna orientations of ¢; and r;

in their local coordinates are ¢., and ¢,.,, respectively. We have

Gti"‘i (¢ti) ¢T7) = Ati (¢t7 - Hti,?“i) ATi (¢T1 - = ati""i)' (53)

Note that communication of pair ¢ in coalition c causes co-channel interference on other receiver nodes in this coalition.
Similarly, communication of other pairs in coalition ¢ causes co-channel interference on node r; in this coalition.
Suppose Ifj », denotes the interference power imposed on 7; from ¢; in coalition c. This interference power can be

written as

Igjn = chtcjn thri (¢tj , (bm)v 5.4)

where gfjri is the power of fading channel between ¢; and r; corresponding to sub-band ¢, and

thm (¢tj ) ¢r1) = At]‘ ((btj _9tj7“i) ATi(d)”‘i _ﬂ-_etj""i)' (5.5)

To simplify the presentation, we let the binary variable af indicate whether or not transmitter-receiver pair ¢ is in

coalition c, i.e., if af = 1 then pair % is in coalition c and thus link ¢ operates in sub-band c, otherwise, a; = 0. The
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Figure 5.1: An example of 5 transmitter-receiver pairs in a coalition. In each pair, the directional antennas of transmitter and
receiver are exactly along the center of their main lobes (which is not necessarily throughput-optimal).

rate of link ¢ operating over sub-band c can be written as

¢ pe
RS =Wlog, [ 1+ kA : (5.6)
NoW + Zj:l,j;éi ajIf...,

where N is the power spectral density of the receiver additive white Gaussian noise. Then, the sum-rate of all pairs

in coalition ¢ can be written as

N
R°=> "R (5.7)
=1

Consequently, the network throughput is "¢, Re = SN SV Re,

Clearly, the network throughput depends on the coalition formation among the pairs, beam steering angles of direc-
tional antennas of the pairs within each coalition, and transmit powers. We ask the following questions: How does the
throughput-optimal coalition formation look like? In other words, given each sub-band ¢, which transmitter-receiver
pairs should operate over this sub-band? Furthermore, within each coalition, what are the best beam steering angles

of directional antennas of the pairs and the best transmit power, in terms of maximizing the network throughput?
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Figure 5.2: An example of A;(¢).

5.1.2 Antenna Model

Let Ay(¢) denote the gain of directional antenna of node ¢ (which can be a transmitter or a receiver). We express

Ag(9) as the following

o) .
Ag((b) _ Arnle 9 |¢| S ¢m1 (58)

Aglv |¢| > d)ﬁll

where ¢ denotes an arbitrary angle within the FOV range [—d)f}ov, qbf;ov], gbf;ﬂ denotes the main lobe width, ¢§dB is
the half-power beamwidth, A is the maximum antenna gain, Afl is the sidelobe gain and B = In(2). We adopt our
antenna gain pattern in (5.8) from [127]. This is a realistic model for directional antennas with sidelobe gain. Fig. 5.2

illustrates an example of Ay (¢) for Aﬁll =1, Agl = 0.05, c;bf;ll = 45°, ¢§dB = 35°.

5.1.3 Problem Formulation

To formulate the network throughput maximization problem, we need to incorporate the constraints on the binary

variable af in (5.6). Since each transmitter-receiver pair can belong to at most one coalition, we have

N.
Zaf <1, fori=1,..,N. (5.9)
c=1
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Let P, ax indicate the maximum allowed total transmit power of all transmitter nodes in the network. To satisfy this

power constraint, we need to have

Ne

N
> ) Poal < Prax (5.10)

c=1i=1

Finally, we note that the beam steering angle ¢ of node £ is limited to be within its field of view range [qu%OV, gb%ov].

Therefore, the beam steering angles of nodes ¢; and r; in pair ¢ are limited as the following:

dr, € [0, 1), b, € [0, W] v (5.11)
where
1) — g, — dlioy, A = 0, + Plicy,

¢9¢0W) =7+ eti"'i - ¢71:“iOV7 ¢$ljp) =7m+ eti"'i + qb;iOV'

Our goal is to find the set of binary variables {a$}, Vi, ¢, the transmit powers { P¢}, Ve, and the set of beam steering
angles of directional antennas of all pairs {¢:,, ¢, }, Vi such that the network throughput is maximized, subject to the

constraints in (5.9), (5.10) and (5.11). In other words, we are interested to solve the following constrained optimization

problem
N,
Maximize R° 5.P1
{a¢}Vi,c,{ P} Ve, {¢p;, br; }.Vi Cz:; ( )

st. S Ne e <1, W,

c=1"1

Z«jz\gl Ezjil Ptai < Pyax,

or, € [0V, ] 6, € [p0V, )] i,

We note that (5.P1) is a mixed-integer nonlinear programming problem with exorbitant computational complexity
[128]. Even if the binary variables {a$}, Vi, c are relaxed to be in the interval [0, 1], the optimal solution of (5.P1)
cannot be obtained via the gradient descent algorithm, due to the constraints on af. Even if the beam steering angles
{b4,, v, }, Vi and the transmit powers { P¢}, Ve are given in (5.P1), still the computational complexity of finding the

optimal binary variables {a$}, Vi, ¢ is NP-hard, and it can only be found for a small network with small N and N..
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5.2 Solving Problem

We propose an iterative method based on the BCD algorithm to solve (5.P1) [129]. The underlying principle of
the BCD algorithm is that, at each iteration one variable is optimized, while the remaining variables are fixed. The
iteration continues until it converges to a stationary point of (5.P1) [5, 109]. To apply the principle of the BCD
algorithm to (5.P1), we decompose (5.P1) into three sub-problems, which we refer to as (5.SP1), (5.SP2), and (5.SP3).
In (5.SP1), we search for the binary variables {a$}, Vi, ¢, given { P}, Ve and {¢y,, ¢y, }, Vi. In other words, we solve

the following problem

Given {P°},Vcand {¢y,, ¢r, }, Vi (5.SP1)
N
Maximize R°
{a$},Vic P
st SNeac<1, Vi

To solve (5.SP1), we take a a coalitional game approach. The approach and the algorithm are discussed in Section
5.2.1. In (5.SP2), we search for the transmit powers { P}, Ve given {a$}, Vi, c and {¢,, ¢, }, Vi. In other words, we

solve the following problem

Given {a;},Vi,cand {¢,, ér,}, Vi (5.5P2)
N.

Maximize R¢
{Pc},Ve vt

N. «—N ,
st oty 2y Peaf < Prax.

We note that (5.SP2) is a jointly concave function of { P¢}, Ve. Hence, we use the Lagrange multiplier method and
solve the corresponding KKT conditions to find the solution. The details are explained in Section 5.2.2. In (5.SP3),

we search for the beam steering angles {¢y,, ¢r, }, Vi, given {P°}, Ve and {a$}, Vi, c. In other words, we solve the
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following problem

Given {P°},Vc,{aj}, Vi, c (5.SP3)
N

Maximize R¢
{bt;s br; },Vi o)

st o, € 80,0, ¢y, € 1™ )], Vi,

We note that (5.SP3) is neither a convex nor a concave function with respect to {¢s,, ¢r, }, Vi. We use interior-point
method to solve (5.SP3). Section 5.2.3 provides more details on how we solve (5.SP3). We iterate between solving

(5.SP1), (5.SP2), and (5.SP3) until we converge to a stationary point of (5.P1), which is our solution.

5.2.1 Solving Sub-problem (5.SP1)

To solve (5.SP1), we take a coalitional game approach, where N transmitter-receiver pairs in the MMWAVE network
are regarded as the players of the game [127,130]. In the following, we briefly mention some definitions of the

coalitional game approach, that are important for designing the coalition formation algorithm.

Our coalitional game is defined by (Z, U'), where Z is the set of game players (i.e., the set of N cooperative transmitter-
receiver pairs) and U is the utility function (i.e., the sum-rate of the pairs in a coalition). A sub-set .S, C 7 indicates the
set of transmitter-receiver pairs in coalition ¢ which communicates over sub-band c. Then U (S.) represents the value
of coalition ¢, i.e., U(S.) = R° is equal to the sum-rate of the pairs in set S.. Different coalitions in our MMWAVE

network satisfy the following constraints:

NC
I = U Se, S.NSy =0, Ve, andc#¢.

c=1

We notice that the transmitter-receiver pairs are not motivated to form a grand coalition, where all the pairs commu-
nicate over only one sub-band, since the co-channel interference will become very large and will negatively impact
the coalition value. In fact, the transmitter-receiver pairs prefer to form as many disjoint coalitions as possible, to
maximize the overall coalition value. Since there are N. sub-bands in our MMWAVE network, the pairs are motivated

to form [V, disjoint coalitions.

A coalitional partition is defined as the set IT = {51, ... Sn, }, which partitions the set of game players Z into disjoint

105



subsets S.’s. The total utility of this partition is
U(I) =) " U(S.). (5.13)

The players of the game prefer the coalitional partition IT" = {7, ... S } instead of Il = {5, ... Sy} if the total

utility achieved by IT’ is strictly greater than by II, i.e.

N. Ne
S US> U(Se). (5.14)
c=1 c=1

The players of the game decide to join or leave a coalition based on a defined preference relation. For any player: € Z,
the preference relation S;, >-; S, means player s strictly prefers being a member of coalition S, over being a member

of coalition S,, where S;,,.S; C Z and S}, # S,. The preference relation S}, -; S, is quantified as the following

U(S, Ui) + U(S,\i) > U(S,) + U(S,). (5.15)

Given a coalitional partition IT = {51, ... Sy, }, if player ¢ switches from coalition S, to coalition S, then the current
coalitional partition II of Z is modified into a new coalitional partition IT' = (II\{.S,, S, }) U{S,\i} U{S, Ui}. Player

1 is allowed to switch from coalition S, to coalition S}, (i.e., player ¢ leaves S, and joins .S}, if and only if S, >=; .S,.

Algorithm 2 summarizes our approach to solve (5.SP1), which is based on the above definitions and the switching
rule. The iterations in Algorithm 2 stop when the partition converges to the final Nash-stable coalitional partition
TNash = {57, .. S;(,C }. The partition ITn,en satisfies the following. For any player ¢ € Z, if 7 is a member of coalition

Sp, then S, =; S, for any g # p.

5.2.2  Solving Sub-problem (5.SP2)

We solve (5.SP2) using the Lagrangian multiplier method. Let £({P°},Ve, \) be the Lagrangian for (5.SP2), where

A is the Lagrange multiplier. The Lagrangian is

N N. N
L{P}, Ve, \) = —ZRC+A(ZZCL§PC—PWX), (5.16)
c=1 c=1i=1
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Algorithm 2: Algorithm for Solving (5.SP1)

1: Given {P°},Vc and {¢z,, ¢r, }, Vi,

2: Initialize the system by any random partition IT;y;. Set the

current partition I, = I,

3: repeat

4:  Randomly choose a link ¢+ € Z, and denote its current
coalition as .S, € Ile,

5:  Randomly choose another coalition S € (Ilewr U {0}),
such that S, # Sg,

6:  if the switch operation from S}, to S, satisfying

Sq i Sp
7: Heur = (Heur\{Sp, Sa}) U{Sp\{i}} U {S, Ui}
8: else
9: Mimp = (Hewr\{Sp, Sg}) U {Sp\{i}} U{S, Ui}
10: Randomly choose one link i’ € Z, and denote its
current coalition as S/ € Ilimp,
11: Randomly choose another coalition,
Sgr € (Mump U{D}), Spr # Sy
12: Obtain the partition I, as
MWy = (Ha\{S,r, Sy ) U {S,\{i'}} U S, U’}
13: if U (i) > U(Iewr)
14: Heur = Ty
15: end
16: end
17: until the partition converges to a final Nash-stable
partition.

The optimal set { P°}, Ve that minimizes (5.16) is the solution to the KK T optimality necessary and sufficient condi-

tions. The KKT conditions are the first derivatives of £ with respect to P¢, A being equal to zero. We have

. N
oL OR® .
ﬁ——apc—i—)\;ai—O, Ve (5.17a)
N. N
)\( > agpe— Pmax> =0, (5.17b)
c=11=1
where OR°/OP° is
aggtciri Gti’l‘iNOW

(5.18)

N
ORC/OP* =W )
i=1 (NOW + 3 aj[fm) (NOW + Peatgs, G, + s a?lfjn)

Since the closed-form analytical solution for (5.17a) cannot be found, we solve these equations numerically, via the

following iterative method. We first initialize A and then find P¢ for ¢ = 1,..., N, using (5.17a). Next, we update A
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Algorithm 3: Algorithm for Solving (5.SP2)

1: Given {af},Vi,cand {¢¢,, pr, }, Vi and Aini,

2: Setn = 0, AV = A,

3: repeat

Calculate P*(™ by solving (5.17a) forc =1, ..., N,
Calculate A"V using (5.19),

n<+<n+1;

: until (5.20) is satisfied.

AN

using the subgradient method

N. N +
)\(n+1) _ |:)\(n) +t0(zzafpc _ Pmax):| ; (5.19)

c=1i=1

where tg is the step size and [z]T = max{z, 0}. Using the updated \, we find { P}, Vc again using (5.17a). We repeat
this procedure until A converges, i.e., the following pre-determined stopping criterion is met for a given small number
5

A < 4. (5.20)

N. N
E E c pc

aip - Pmax
c=1i=1

Algorithm 3 summarizes our approach to solve (5.SP2).

5.2.3  Solving Sub-problem (5.SP3)

Considering (5.SP3) we note that it is neither a convex nor a concave function with respect to {¢:,, ¢., }, Vi. Since
the optimization variables are continuous-valued, we can solve (5.SP3) using gradient descent-based algorithms. We
choose interior-point method to solve (5.SP3). Note that the solution of interior-point method depends on the initial
values for {¢;,, ¢., }, Vi. Hence, we randomly choose N, sets of initial values for {¢;,, ¢, }, Vi and run the interior-
point algorithm Ny times and find IV sets of solutions. Among these sets, we let the set that provides the largest

network throughput be the solution of (5.SP3).

5.3 Numerical Performance Evaluations

In this section, we corroborate our analysis on constrained maximization of the network throughput with Matlab
simulations. We assume that the antenna gain A,(¢), V¢ are the same. In our simulations, all transmitters and receivers

are uniformly distributed in a circle with radius of 30 meters. The simulation parameters are given in Table 5.1.
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Table 5.1: Simulation Parameters

[ Parameter [ Value H Parameter [ Value

Agl 1 Prov 60°
Aml 0.05 No —110dBm/Hz
$3dB 35° Be 400 MHz
bml 45° 5 0.001
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Figure 5.3: Network throughput versus Pyax for N = 20, N, = 4.

o Impact of coalition formation optimization on throughput maximization: Fig. 5.3 plots the network throughput versus
Prax for N = 20, N. = 4, considering two scenarios: the scenario where Algorithm 2 is employed to optimize the
coalition formation among the transmitter-receiver pairs, and the scenario where the pairs form coalitions randomly,
without any optimization (i.e., the pairs are randomly assigned to a coalition). In both scenarios, the beam steering
angles and the transmit powers are optimized. The gap between the two curves in Fig. 5.3 indicate the impact of
coalition formation optimization on the throughput maximization. We note that, as P,,, increases, this performance
gap increases. For both scenarios as Py, increases, the throughput increases, since the transmitters in all coalitions

are allowed to transmit at higher transmit powers.

o Impact of transmit power optimization on throughput maximization: Fig. 5.4 plots the network throughput versus
Pax for N = 20, N, = 4, considering two scenarios: the scenario where Algorithm 3 is employed to optimize
the transmit powers, and the scenario where P,y is uniformly distributed among N transmitters in the network,
without any optimization. In both scenarios, the coalition formation and the beam steering angles are optimized.
The gap between the two curves in Fig. 5.4 illustrates the impact of transmit power optimization on the throughput

maximization.
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Figure 5.4: Network throughput versus Ppax for N = 20, N, = 4.
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Figure 5.5: Network throughput versus Py ax for N, = 4.

o Impact of N on throughput maximization: Fig. 5.5 shows the network throughput versus Py« for N = 12,16, 20, N, =
4. Given a Py« value, as N increases, the network throughput increases. We conjecture that this trend would change
when N becomes very large (e.g., N = 100). We expect that as N increases further, the network throughput decreases

(since the total transmit power and the total bandwidth are fixed).

e Impact of N, on throughput maximization: Fig. 5.6 shows the network throughput versus N, for N = 30, Ppax =
30dB. This figure suggests that there is a trade-off between N, and the network throughput. On the one hand, as the
number of sub-bands N, increases, the number of coalitions increases and the co-channel interference generated in
each coalition decreases, which can lead into increasing the sum-rate in each coalition and thus increasing the network
throughout. On the other hand, as IV, increases, the bandwidth W of each sub-band decreases, which can lead into

decreasing the network throughput. Therefore, given N one can find the optimal N that provides the highest network
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Figure 5.7: Network throughput versus ¢3qp for N = 20, N, = 4.

throughput. For instance, in Fig. 5.6, N. = 2 yields the highest network throughput.

e [mpact of half-power beamwidth ¢s3qp on throughput maximization: Fig. 5.7 shows the effect of ¢3qp on the
network throughput for P,.x = 27,30 dB. We note that as ¢3qp increases the network throughput decreases. This is
because as ¢3qp increases, the transmitters within a particular coalition impose a stronger co-channel interference on

the non-intended receivers within the same coalition.

111



5.4 Conclusion

We considered a D2D MMWAVE network with bandwidth of B. = W N_. Hz, where N cooperative transmitter-
receiver pairs form N, coalitions and communicate over N, non-overlapping sub-bands, each with bandwidth of W
Hz. Each node is equipped with a directional antenna that has beam steering capability. Also, each transmitter can
adjust its transmit power. We formulated the network throughput maximization problem, subject to certain constraints,
and we proposed a BCD algorithm, to find the optimal coalition among the transmitter-receiver pairs, the optimal beam
steering angles of directional antennas of the pairs within each coalition, and the optimal transmit powers. Through
numerical simulations, we investigated the effects of NV, N, Ppax, @345 on the network throughput maximization.
Our simulations show that, given N, P, there is an optimal N, value that provides the highest network throughput.

Also, we showed that a lower ¢34p yields a higher network throughput.
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CHAPTER 6: CONCLUSION

In this dissertation we studied the effects of several factors, including spectrum sensing error, channel estimation error,
channel quantization error, errors due to incorrect detection of the beam corresponding to PU’s location and incorrect
selection of the strongest beam for data transmission on the performance of opportunistic CR systems. We derived
the achievable rate of a CR system and optimized some parameters, including durations of spectrum sensing 7. and
channel training 7}, as well as data symbol transmission power at SU¢, such that the derived rate is maximized, subject

to ATPC and AIC.

In the following, we summarize our contributions in Chapters 2-4.

6.1 Conclusions

In Chapter 2, we proposed a holistic system design for integrated sector-based spectrum sensing and sector-based
data communication for an opportunistic CR system consisting of a PU, SUyy, and SU,, where SUy is equipped
with an ESPAR antenna that has M parasitic elements, and there is an error-free bandwidth limited feedback channel
from SU,, to SU. Different from the state-of-the-art, our proposed integrated design incorporates induced errors
due to: (i) imperfect spectrum sensing and determining the correct beam corresponding to PU’s location, such errors
affect the interference imposed on PU; (ii) selecting the best beam for data communication over SU—SU, link.
We formulated a constrained optimization problem, where the ergodic capacity for SU—SU, link is maximized,
subject to ATPC and AIC, and the optimization variables are spectrum sensing duration, quantization thresholds at
SU,, and discrete power levels at SUy,.. We developed an iterative suboptimal algorithm with a low computational
complexity, based on the BCD algorithm, that finds a unique and locally optimal solution for the constrained problem.
In addition, we derived closed form expressions for outage and symbol error probabilities of our opportunistic CR
system. We corroborated our mathematical analyses with extensive simulations. Our numerical results demonstrate
that our proposed CR system with the ESPAR antenna at SUy yields a significantly higher capacity, a lower outage
probability, and a lower symbol error probability, compared with a CR system that its SU, has an omni-directional
antenna. The capacity improvement varies as the ATPC and AIC change. Furthermore, we showed that with only
a small number of feedback bits the capacity of our CR system approaches to its baseline, which assumes the full

knowledge of unquantized channel gain.
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In Chapter 3, we studied the combined effects of spectrum sensing error and imperfect CSI of SU—SU, link on
the achievable rates of an opportunistic CR system with a RA at SU,. We considered an opportunistic CR system
consisting of a PU, SUiy, and SU,, where SUy is equipped with a RA that has M beams, and there is an error-free
low-rate feedback channel from SU, to SUy. Utilizing the beam steering capability of the RA, we regarded a design
framework for integrated sector-based spectrum sensing and data communication. In this framework, SU;y senses
the spectrum and detects the beam corresponding to active PU’s location. SUyy also sends training symbols (prior
to data symbols), to enable channel estimation at SU,y and selection of the strongest beam between SU;—SU, for
data transmission. We established a lower bound on the achievable rates of SU—SU, link, in the presence of
spectrum sensing and channel estimation errors, and errors due to incorrect detection of the beam corresponding
to PU’s location and incorrect selection of the strongest beam for data transmission. We formulated a constrained
optimization problem, where a lower bound on the achievable rate of SU;x—SU, link is maximized, subject to ATPC
and AIC, with the optimization variables being the durations of spatial spectrum sensing 7. and channel training
Ti, as well as data symbol transmission power at SU;,. Moreover, we proposed two alternative power adaptation
schemes that are simpler to implement. We solved the proposed constrained optimization problems using iterative
methods based on the BCD algorithm. Our simulation results demonstrate that one can increase the achievable rates
of SU;x—SU,« link significantly, via implementing these optimizations, while maintaining the ATPC and AIC. They
also showed that the achievable rates obtained from employing simple schemes 1 and 2 are very close to the one
produced by the optimized transmit power. Our numerical results also showed that between optimizing 7%, and 7.,

optimizing the latter has a larger effect on increasing the achievable rates in our system.

In Chapter 4, we considered the problem of sum-rate maximization in an opportunistic EH-enabled CR network. The
CR network consists of N, SUs and an AP, that can access a wideband spectrum licensed to a primary network.
Each SU is capable of harvesting energy from natural ambient energy sources, and is equipped with a finite size
rechargeable battery, to store the harvested energy. The SUs operate under a time-slotted scheme, where each time slot
consists of three non-overlapping phases: spectrum sensing phase, channel estimation phase, and data transmission
phase. The AP feeds back its estimates of fading coefficients of SUs—AP link to SUs. Our main objectives were
(i) to study how the achievable sum-rate of SUs is impacted by the combined effects of spectrum sensing error and
imperfect CSI of SUs—AP links (due to channel estimation error), and (ii) to design an energy management strategy
that maximizes the achievable sum-rate of SUs, subject to a constraint on the average interference that SUs can impose
on the PU. Modeling the randomly arriving energy packets during a time slot as a Poisson process, and the dynamics

of the battery as a finite state Markov chain, we established a lower bound on the achievable sum-rate of SUs—AP
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links, in the presence of both spectrum sensing and channel estimation errors. To strike a balance between the energy
harvesting and the energy consumption, we proposed a parametrized power control strategy that allows each SU to
adapt its power, according to the feedback information and its stored energy. We optimized the parameters of the
proposed power control strategy, such that the derived sum-rate lower bound is maximized, subject to the AIC. We
validated our analysis via Matlab simulations and explored spectrum sensing-channel estimation-data transmission
trade-offs. We also illustrated how the AIC, the harvesting parameter, and the battery size impact the sum-rate, as well

as transmission outage probability.

In Chapter 5, we considered a D2D MMWAVE network with bandwidth of B, = W N, Hz, where N cooperative
transmitter-receiver pairs form N, coalitions and communicate over [N, non-overlapping sub-bands, each with band-
width of W Hz. Each node is equipped with a directional antenna that has beam steering capability. Also, each
transmitter can adjust its transmit power. We formulated the network throughput maximization problem, subject to
certain constraints, and we proposed a BCD algorithm, to find the optimal coalition among the transmitter-receiver
pairs, the optimal beam steering angles of directional antennas of the pairs within each coalition, and the optimal
transmit powers. Through numerical simulations, we investigated the effects of N, N., Pyax, ¢345 on the network
throughput maximization. Our simulations show that, given N, P,,., there is an optimal N, value that provides the

highest network throughput. Also, we showed that a lower ¢3qp yields a higher network throughput.
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A.1 Showing that Ry /0T = 0 has one solution in the interval (0, Tt — T};)

Let Ryg = Cy + Cy where Cy = DgfgRo and C; = Dgf51 Ry. To calculate ORy5/0Ts. we need the following

derivatives:
aCy 0Dq 9Bo | Bo 9o
T, = Ry [ﬂoaTge—I—DdaTSJ =Ry [T—FDdﬁTSJ’
oCy 0Dq opr ] B B
0Tse = [5 YoT.. D 8TSJ = [ T; D 8T5J '

Recall By = mo(1 — Pg,) and B1 = m1(1 — Pq) in (3.11). We assume P4 is given, hence 931 /9Ty = 0. On the other

hand, P, in (3.8) is variable w.r.t. Ty, and hence we have

8 - esen 8 - esen
ajii - 7T0fTW2 (n sen ) 8jjse (na'sen ) (Al)

where frw, denotes the PDF of the Tracy-Widom distribution of order 2, and, sy, e are given in (3.9). Evaluating

gg“ and aCl when Tse — 0 we have
0Cy . —50 (Ty—Tir) . 0B
li =1 1 = A2
Tgigo 0T e Tigo Tf o+ T; Ro nggo 0Ty oo, (A-22)
————
=400
0C . —51 (Tr—T) 0B
li =1 li 0. A.2b
TS?EO 0Ty ngo Tf 1t Tt F Tsego 0T e < ( )
=0
Evaluating aCO and 601 when T, — Tt — T}, we have
oCy —Bo . 9B
o OT%e S TfRO ool dm o Da i lm T ) < 0, (A.3a)
————

=0

OCt _ Jim _”BlRlJrRl( lim Dd>< lim 8 1) < 0. (A.3b)

1m
ToenTi—Tor OTge  Toe—Ti—Tw Tt Toe—T;—Tir Toe—Ti—Tor OTge

=0

The inequalities in (A.2a) and (A.2b) show that limz,__,¢ %I;LB > 0. On the other hand, the inequalities in (A.3a)

and (A.3b) show that lim7 7,7, %I;,LB < 0. Together, these indicate that the equation ORyg/0Ts. = 0 has one

solution in the interval (0, 7} — T}, ). This solution can be found using bisection search method.
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A2 Showing that Ry /0T:, = 0 has one solution in the interval (0, Ty — T.)

To calculate O Ry 5 /0T, we need the following derivatives:

aC, [ OR, ODg . | ORy 0% Ry
— 6y |D Ro| =00 | Dg S~ 20 7%m 710
o1, o \Pagr, + ar, o) =P 4D 5a0 T, T |
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o, " [Paar, om0 14206, 0T, T
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The inequalities in (A.4a) and (A.4b) show that limr, _o da{}LB > 0. On the other hand, the inequalities in (A.5a)

and (A.5b) show that limp, 7,7, ‘90}%‘3 < 0. Together, these indicate that the equation ORy,5/0Tt, = 0 has one

solution in this interval, which can be found numerically using bisection search method.
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