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ABSTRACT 

The continuous growth and demand of increased operating performances of electronics has 

brought about an increase in the chip power density posing threat to the thermal management of 

these devices. Although numerous thermal solutions ranging from passive to active cooling 

together with a variety of working fluids have been adopted, however, the question whether these 

available cooling methods could meet up with the ever-growing need for increased operating 

performances is a concerning one. Jet impingement cooling has been effectively used in many 

industrial applications due to its high heat transfer capability. The limited study at the micro scale 

suggests that it exhibits excellent heat transfer performance relative to conventional parallel flow 

in microchannels. Recently, Carbon dioxide in its supercritical state (304 K and 7.3 MPa) has been 

proven to be an excellent working fluid in dissipating high heat fluxes. Owing to the properties of 

this fluid (sCO2) and its high specific heat near the pseudocritical point, the heat transfer rate can 

be enhanced significantly compared traditional working fluids. However, knowledge about the 

heat transfer characteristics of micro jet impingement with Carbon dioxide in this state are lacking. 

In addition, flow boiling has been recognized to significantly enhance heat transfer rate due to its 

large thermal capacity giving an opportunity to further enhance the cooling ability of Carbon 

dioxide. 

In line of this continuous innovation the flow and the heat transfer characteristic of micro jet 

impingement with CO2 in both single-phase and two-phase were experimentally studied. A micro 

fluidic device was manufactured leveraging MEMS techniques. The micro device included a 

circular serpentine heater of diameter 2.01 mm and three resistance temperature detectors (RTDs) 

sputtered on a glass substrate made of fused silica, providing heating and temperature 
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measurements, respectively. The heater, RTDs and their vias were sputtered with the calculated 

lengths, widths and thicknesses to achieve the desired resistances. The RTDs were arranged on the 

heater in a concentric manner to measure the average radial temperature distribution as the flow 

was assumed to be symmetric. The effects of the working fluid was investigated under governing 

parameters such as radial position, heat flux, mass flow rate, inlet temperature and inlet pressure. 

Results from the single-phase investigation showed a higher sensitivity of the heat transfer rate to 

the proximity to the pseudocritical temperature of the fluid with the optimum heat transfer rate 

recorded around the pseudocritical temperature subject to the increased specific heat around this 

region. By utilizing the flow boiling process, a further enhancement was observed pre the critical 

heat flux condition, suggesting a need to operating within the nucleate boiling region in its 

industrial adoption. It was recorded that the single jet performed better than the multi jet as a result 

of the interjet spacing which governs the effect of the colliding jets. Finally, several correlations 

with minimal mean absolute errors were introduced due to discrepancies from literatures. 
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CHAPTER ONE: INTRODUCTION 

1.1. Moore’s Law and Advances in Microfabrication 

We live in a world where human wants have substantially increased; from wanting electronic 

components such as cell phones, electronic wearables to operate faster to making them as small as 

possible. This wants have however been made feasibly possible as a result of the advances in 

microfabrication geared towards a combination of a continued miniaturization of integrated 

circuits and a growing improvement in their performances brought about by an ever growing 

transistor counts according to [1]. According to this law (Fig 1) “the number of transistors in a 

dense integrated circuit doubles about every two years”, to satisfy people’s expectations of ever 

greater performance and functionality of electronic devices. Microfabrication technology has been 

successfully utilized in the development of integrated micro-electromechanical systems (MEMS) 

[2, 3] and complex electronic components [4] for a wide range of operations with continuous 

innovation and reduction of the component’s physical size. A distinct example is that seen between 

the first commercial main frame computer UNIVAC designed by J. Presper Eckert and John 

Mauchly weighing about 16,000 pounds containing 700 transistors for primary logic and the 

popular Apple MacBook Pro weighing about 4.5 pounds with a processing unit containing about 

16 billion transistors. This high energy electronic schemes promise substantial reduction in energy 

demand for emerging and growing computing needs. However, the diverging trend results in a 

substantial increase in heat flux and power density, posing challenges to the thermal management 

of these devices. [5-7] reported up a background heat flux of about 500 W/cm2 and local hotspots 

heat flux of about 1000 W/cm2 from high-speed microelectronic processors. Although the 

integration of microprocessors in now and future projects such as consumer electronics, robotics 
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to high-speed computing is promising in terms of their operating performances, major concern 

needs to be given to their thermal management to avoid thermal breakdown and lengthen their 

working lifecycle.  

 

Figure 1: Moore’s law  

Several thermal solutions have been employed ranging from passive [8-11] to active cooling 

[12, 13] with active cooling being superior due to the enhanced convection. However, the 

consequences regarding the physical size of the device, power requirements from blower, pump, 

fans etc. and other external devices to control the flow of the fluid undermines the adoption of this 

cooling technology in certain thermal design. Passive cooling on the other hand has proven 

dominance in smaller devices such as consumer electronics – mobile phones, laptops etc. This 

includes extended surfaces such as fins, heat spreaders, thermal paste, heat pipes etc., with their 

performances controlled by an interplay between their thermal conductivity and length. However, 

with this innovation, high end devices still undergo thermal throttling such as lags, and shutdowns 

limiting their ability to achieve maximum performances. Micro scaled cooling has gained 
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considerable interest in recent times, due to their high heat transfer rate and compatibility with 

most miniaturized electronics. The adoption of this rose with the increased surface area to volume 

ratio with the scale reduction.  

 

Figure 2: Advances in microfabrication, UNIVAC computer – from left to right; Apple MacBook 

Pro, Apple iPhone 13, Sony PlayStation 5 

Micro scale cooling encompasses a range of reduced cooling scales such as microchannels [14, 

15], micro jet impingement [16-18], micro pin fins [19-21]to mention a few. Microchannel has 

gained recognizable attention as a potential cooling solution for miniaturized electronics. Apart 

from their heat transfer ability, their integration in the chip design limiting the thermal contact 

resistance that would have been present if a heat sink was attached to the chip makes it a promising 

cooling method. However, the downside in its cooling ability is the inherently laminarity of the 

flow as the fluid flows through the small channels. Several heat transfer enhancement techniques 
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have been introduced and investigated to combat this downside such as micro pins [21, 22], micro 

pillars [23], micro impinging jets, concave and convex cavities for the sole purpose of distributing 

the flow. Micro jet impingement, an extension of micro scale cooling has dominated the micro 

cooling space as a result of its enhanced cooling ability brought about by its distinct hydrodynamic 

and thermal boundary layers. Generally, jet impingement cooling has been proven to be an efficient 

means of dissipating high heat fluxes from a heat generating surface or body [24-28]. They have 

been successfully employed in the field of heat and mass transfer because of their ease of control, 

effectiveness, and inexpensive running costs.  Specific application can be seen in various industrial 

applications, such as metal treatment, internal combustion engines, gas turbines etc., offering very 

high heat transfer capabilities. In addition to its promising application, jet impingement can be 

used as a local heat removal as it can be locally directed to a hotspot generated within the device. 

Macro scaled jets (jets with larger exit nozzle diameters) have been extensively studied [25, 26] 

and more importantly the shift to embedding cooling in a miniaturized electronic circuit has 

necessitated the development of micro impinging domain, which has been proven by available 

limited studies to offer an overall better heat transfer capability when compared to the macro jets 

[29-31]. This enhancement has been attributed to a more distorted velocity boundary layer brought 

about by a decrease in the nozzle exit diameter.  Anand et al [29], conducted a preliminary 

parametric analysis of micro jets to better understand its behavior and compare to macro jets. In 

this study, a semi-confined, single round axisymmetric submerged jet was modeled in Gambit and 

simulated in Fluent for varying nozzle diameter, while the mass flow was kept constant. Results 

showed a 37.3 % increase in heat transfer coefficient when the nozzle diameter was reduced from 

0.5 mm to 0.25 mm. Glynn and Murray [32] also reported about 20 % to 70 % increase in 
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stagnation values when the jet diameter was reduced from 1.5 mm to 1 mm in the experimental 

setup.   

1.2. Jet Impingement  

This section details an overview of a promising thermal geometrical cooling solution termed 

“jet impingement”, its background and present-day knowledge of its heat transfer and flow 

characteristics in both its single and multi-jets configurations. First, the jet impingement 

technology together with its current industrial applications are introduced, followed by a detailed 

description of its hydrodynamics and the flow features of multiple jet arrays. Concludingly, the 

heat transfer dependencies such as the Reynolds number and other geometrical parameters is 

discussed  

1.2.1. Background 

Research interest in jet impingement began in the 1970’s and 1980’s, which were mostly 

published in Japanese journals [33-35]. Even though the proposed correlations for the heat transfer 

predictions have limited applicability as a result of the inadequate measurements method adopted, 

these studies provided some fundamental insights into the jet phenomenon in both single phase 

and various boiling regimes. Experimental [26, 36], numerical [37], and analytical [38] studies 

have been extensively conducted on macro impinging jets, widely supported by comprehensive 

review studies [39, 40]. However, with the growing demand for high end cooling capabilities and 

size reduction of integrated circuits, micro cooling domains have become a promising solution for 

thermal management. Not only is the size compatible with these miniaturized systems, but they 

also offer high heat transfer rate due to their high surface to volume ratio.  Knowledge of the micro 
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cooling geometries have advanced through the years starting with revealing basic questions 

regarding continuum and incompressibility assumptions. Then channels were classified to macro, 

mini, micro and nano size according to their diameters. Both single-phase [40-42] and two-phase 

[43-45] flow heat transfer  have been studied in an impingement cooling, which a range of fluids, 

such as water [46-48], R113 [49], transformer oil and ethylene glycol [50], HFE7000 [18], 

kerosene [51] etc.   Likewise, some studies in chemical processes [52, 53] and cryogenic, that 

employed a throttling effect [54] require working with high pressured fluid. These studies confirm 

the feasibility of operating with high pressure within the micro domain; a condition that can be 

achieved with CO2 near the critical point.  

1.2.2. Jet Hydrodynamics 

Jet impingement cooling is a heat removal technique in which fluid is directed to impinge on 

a target surface through a hole or a slot. The fluid issues out from the nozzle exit and strikes the 

surface it’s been directed to, perpendicularly or at an angle. There are two different jet flow 

configurations namely, submerged, and free surface. In a submerged jet configuration, the working 

fluid entrains into a fluid surrounding that is almost the same as the jet itself. Martin [39] has 

extensively studied submerged jets. Free surface jet is characterized by fluid entraining into a fluid 

surrounding that is different from its state of matter. This flow configuration is developed 

immediately after the jet leaves the nozzle exit. Its jet shape is influenced by gravity, pressure 

forces and surface tension, however, gravitational effects are negligible in submerged jets. Both 

jets configurations have been studied and each proven its dominance in specific working 

conditions. Womac et al [55] investigated the effects of flow conditions with arrays of submerged 
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and free jets with FC-77 and water and concluded that submerged jets generally performed equally 

or more than free jets. Jets are also classified based on their boundaries, as confined and 

unconfined. Confined or semi-confined jet is characterized by fluid confined in a narrow channel 

bounded by the impingement surface and the surface containing the nozzle. Unconfined jets were 

previously studied, however the design compatibility of confined jets in various applications, has 

attracted more interest than its counterpart. Fluids undergo an amount of recirculation in confined 

jets due to bombardment of the impinged fluid with the top confinement.  

In most cases, at the nozzle exit, the jet is turbulent as a result of high Reynolds number, it also 

develops a uniform velocity profile as a result of little or no interaction with the stagnant fluid 

[56]. As the fluid impinges on the target surface, a thin layer of hydrodynamic and thermal 

boundary is developed just beneath the jet, due to jet deceleration and resulting pressure increase, 

after which the flow is then forced to accelerate in a direction parallel to the target surface. Jet has 

been subdivided into three regions namely the free jet region, stagnation region and wall jet region 

due to the various distortions that occur between the periods the jet exits the nozzle and strikes the 

target surface. The free jet is then subdivided into the potential core, developing zone and fully 

developed zones. In the case of submerged jets, a potential core region is formed as the fluid exits 

the nozzle and proceeds towards the target surface. In this region (potential core) the jet centerline 

velocity is almost the same as the nozzle exit velocity, keeping the velocity profile uniform. This 

uniformity is as a result of little or no interaction with the stagnant fluid. The potential core – 

length the axial distance of the potential core, is governed by the nozzle geometry and jet velocity, 

according to Hollworth and Wilson [57], this distance extends over six to eight nozzle diameters 
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for well-formed nozzles, and over two to three nozzle diameters for square orifices for larger 

Reynolds number (>4000) 

 

Figure 3:Hydrodynamics of single jet 

Downstream the flow, the jet undergoes transfer of momentum from the ambient fluid and results 

in the expansion of the jet, losing energy, forming the developing and fully developed zones. 

Beyond the potential core is the stagnation region, where the jet velocity is then affected by the 

stagnant ambient fluid, reducing its velocity. This region is reported to be approximately 1.2 nozzle 

diameters from the surface, where the jet starts being influenced by the impingement surface, and 

the velocity profile is then affected due to the exchange of momentum to the ambient [25, 39, 58]. 

As a consequence, it builds up static pressure and moves in the radial direction towards the wall 

jet region. In the stagnation zone, the flow is decelerated, impinged, and accelerated in axial and 

radial directions in this order. The flow in the axial direction collides with the flow issuing from 

the nozzle exit and reduces its acceleration just before it strikes the target surface. This velocity 

fluctuations and high momentum are the cause of high heat transfer coefficient around the 

stagnation region. The final region is the wall jet region, where the fluid is being accelerated to 
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move radially outward, parallel to the target surface. Shear is created between this region and the 

ambient, which causes turbulence resulting in higher heat transfer rates in this zone. 

1.2.3. Multiple Jets 

Jet impingement cooling, could be made up of a single jet or an array of multiple jets, evenly 

or unevenly spaced depending on the desired flow structure. The emergence of multi-jets is to 

obtain a uniform temperature distribution over the heater surface. As reported from literatures [25, 

39], the peak heat transfer coefficient is obtained at the stagnation zone and decreases radially 

some distances or diameters away from this zone. The idea of multi-jets is to cool much larger 

heated areas, while maintaining uniform heat transfer rate over the heat dissipating element. As 

aforementioned, the stagnation region is by far the most important region in the impinging jet, as 

this region exhibits enhanced heat transfer rates as a result of enhanced distortions due to the 

impingement effect and momentum exchange. In the view of this stagnation region’s importance, 

there is need to generate as many stagnation regions as possible evenly spaced over a heat 

dissipating device ensuring a more consistent surface temperature distribution brought about by 

incorporating as many jets as possible.  However, the flow structure of multiple jets is more 

complex as the jets are being affected by neighboring jets, cross flow are other features associated 

with a single jet, and if not properly designed, it could degrade the overall heat transfer rate. Multi-

jets array come with a more different and complex hydrodynamics as there exists other interactions 

that come in play with the development of the boundary layer. Contrary to the single jets, there 

exists other geometrical parameters such as the interjet spacing (S/d) [59, 60], and crossflow [61] 

etc. that control the overall heat transfer process. The interplay between these parameters presents 
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a refined flow region in its hydrodynamics as depicted in Fig 4. There exist two important features 

in this flow distribution – the fountain upwash which is generated by the colliding jets and the 

entrainment of ambient air into several regions of the flow [59]. As depicted in Fig 4, the flow 

regions are classified into; free jet region, stagnation region, wall jet region, fountain formation 

region, fountain upwash region and the entrainment region.  

 

Figure 4: Hydrodynamics of multi-jet [60] 

Compared to the single jet, the free, stagnation and wall jet region in the multi-jet flow region 

depict similar characteristics, while the fountain formation region located at the midpoint of the 

stagnation regions is as a result of the collision of the jets, moving perpendicularly to the surface 

and spreading spatially. Other parameters such as the heat flux, velocity magnitude and profile, 

turbulence intensity and wall temperature has been shown to influence the heat transfer rate [62] 

making the multiple jet impingement quite difficult to understand and correlate. The interjet 

spacing is one of the driving parameters that control the jets collision [60, 61]; for widely spaced 

jet, the rate of heat transfer is similar to that of the single jet as there exist little to no interaction 

between the jets, however for smaller interjet spacing, the heat transfer varies significantly 

solidifying the contribution of the jets collision to the overall heat transfer rate.  
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Another striking feature that influences the heat transfer process in a multiple jet impingement 

is the nozzles’ spatial arrangement. Among the numerous possible arrangements, the inline, 

staggered, and hexagonal are the commonly most used and experimentally investigated. The main 

difference between these arrangements is the number of the neighboring jets of each nozzle as 

wells as the impinged area per nozzle. Studies [63, 64] have shown that staggered jet arrangement 

leads to a more enhanced heat transfer rate as compared to its counterparts, however the choice of 

arrangement should be tailored towards the geometrical feature of the heat dissipating element.  

1.2.4. Highlighted factors affecting the heat transfer of impinging jet(s) 

Multiple variables control the heat transfer process of a jet including the Reynolds number 

(Re), Prandtl number (Pr), dimensionless standoff (L/d), interjet spacing (S/d), nozzle 

configurations, dimensionless radial position from the stagnation point (r/d), and system 

arrangement (e.g., confined jet, submerged jets, etc.). 

Effect of Reynolds Number 

A flow is classified as being laminar, turbulent, or transitional in nature. This flow 

classification postulated by Osborne Reynolds [65], has become a relevant method in analyzing 

and qualifying flow intensity. Laminar flow (Re<2300) is characterized by a smooth flow moving 

slowly through a path due to its low velocities. Turbulent flow (2300<Re<4000) on the other hand 

is a more disturbed flow as a result of higher velocities. Transitional flow is a mixture of laminar 

and turbulent flow. Each of these flows behave in different manners in terms of their frictional 
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energy loss while flowing with different correlations to predict their behavior. General the 

Reynolds number takes the form; 

𝑅𝑒 =
𝜌𝑢𝑑

𝜇
 

where 𝜌 is the fluid density, 𝑢 is the velocity, d is the channel diameter in which the fluid is being 

directed, and 𝜇 is the dynamic viscosity. The effect of Reynolds number on jet impingement has 

been investigated by numerous authors [25, 29, 39, 66] and has been demonstrated to be an 

important dimensionless parameter in predicting the behavior of the flow and its heat transfer 

characteristics alongside different working fluids. It’s been reported that higher Reynolds number 

increases the heat transfer coefficient as a result of more generation of disturbance in the flow [29, 

39]. The Reynolds number exponent in its Nusselt number dependency, has been reported by 

different authors, which varies depending on the nature of the flow (laminar or turbulent), its 

geometry and working fluid.  

The average Nusselt number has been generally correlated according to:  

 

𝑁𝑢𝑎𝑣𝑔 = 𝐶𝑅𝑒𝑚𝑃𝑟𝑛 

where C, m, and n are coefficients. The value of an experimentally obtained coefficient m is 

calculated with a least-squares fit and has been reported for a range of Reynolds numbers. 

Garimella and Schrorder [67] reported an m value of 0.693 for confined air jet arrays with 

Reynolds numbers of 5000 to 20,000. Martin [39] reported an m value of 2/3 for a wider range of 

Reynolds numbers (2000<Re<100,000). Florschuetz et al. [68] reported a value of 0.73 and argued 
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that it is a function of geometric parameters. Kercher and Tabakoff [69] also found that m is a 

function of several geometric parameters and reported values ranging from 0.65 to 0.95. Robinson 

and Schnitzler [70] found m to be 0.46 for much lower Reynolds numbers than the previously 

mentioned experiments (600<Re<6,500). A value of n = 0.42 is widely adopted and has been 

confirmed by several authors [17]. Effect of transitional flows have been investigated. 

Zumbrunnen and Aziz [71] performed experiments to enhance convective heat transfer due to 

intermittency in an impingement jet. Results from this work suggests an inflection point at an 

approximate value of r/d of 1.9, for a submerged jet at L/d of 2 and Reynolds of 24,000. Gardon 

and Akfirat [58] also observed the similar trend at exactly the same location (r/d = 1.9) for 

submerged circular turbulent jets with Reynolds number greater than 25,000. Baughn and Shimizu 

[72] also reported these peaks in the heat transfer profiles. These peaks in the profile can be as a 

result of transition from laminar to turbulence flow in the channel. Transition to turbulence is by 

far a stochastic process, works have been done to predict the ranges at which it occurs and its effect 

on heat transfer profiles.  

Ultimately, as demonstrated from literatures, an increase in Reynolds number significantly 

increases the area averaged Nusselt number, which in turns increases the heat transfer coefficients. 

Standoff Effects (L/d) 

The standoff effect popularly termed the nozzle-to-jet spacing, is the allowance or height 

designed between the nozzle exit and the target surface. As explained in Fig.3, various distortions 

occur between this distance, hence, the flow classification. Submerged jets have been proven to be 

more sensitive to this distance as compared to its counterpart free surface jet [55]. Another 
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important deciding factor is the length of the potential core, approximately 1.2 nozzle diameter. If 

the target surface is positioned within the potential core length, the heat transfer rate is only slightly 

affected at low Reynolds numbers, as a result of unaffected velocity profile at the potential core - 

significant effects are only seen at higher Reynolds numbers. By increasing the standoff, the heat 

transfer coefficient progressively increases to a peak and gradually diminishes, as a result of 

turbulence generated owing to the entrainment of the ambient fluid to the jet. This trend has been 

reported by many authors for a range of Reynolds number and working fluid. Anand [29] 

conducted a numerical study analyzing the standoff effects in micro jets. L/d values of 1, 3 and 6 

were simulated at constant nozzle diameter and Reynolds number. The results showed a negligible 

standoff effect on the local heat transfer as there seem to be no significant difference in the profiles, 

especially after r/d of 0.5. The study also indicated a maximum Nusselt number at r/d of 0.5, which 

is somewhat counterintuitive to the maximum Nusselt number values achieved at the stagnation 

zone (r/d = 0). Pamadi and Belov [73] also suggested that this peak could be as a result of 

turbulence created due to non-uniform mixing in the developing jet that penetrates the boundary 

layer. Stevens and Webb [74] investigated the local heat transfer coefficient under an axisymmetric 

single-phase liquid jet and suggested a Nusselt number correlation of 𝑁𝑢~(𝐿 𝑑⁄ )−0.032 for a 

Reynolds between 9600 to 10,500 and standoff from 1.7 to 3.4. The exponent value indicates 

almost a negligible standoff effect on the Nusselt number. At lower standoffs, the jet becomes very 

sensitive due to the acceleration and local thinning of the boundary layer, whereas the Nusselt 

number has been observed to diminish with an increase in this spacing. Studies have been done to 

understand and correlate the Nusselt number dependency on the lower standoff.  Lyte and Webb 

[75] studied the local heat transfer for submerged impinging jets at standoffs less than one nozzle 
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diameter (L/d = 0.1 to 1.0) at fixed Reynolds. They suggested a power law 

relationship 𝑁𝑢~(𝐿 𝑑⁄ )−0.191, which indicates an increase in the local Nusselt number as the 

standoff decreases. Choo et al [76] performed similar experiments in lower standoffs less than one 

nozzle diameter (L/d = 0.125 to 1.0) and reported negligible standoff effects on the Nusselt number 

under a fixed pumping power. Recently, the standoffs have also been correlated with the hydraulic 

jump diameters. Stevens and Webb [74] suggested a correlation for the hydraulic jump diameter 

as a function of the Reynolds number only, without taking into account the standoffs. Brechet and 

Neda [77] investigated both the theoretical and experimental of circular hydraulic jump and 

suggested a theoretical correlation for the hydraulic jump radius as a function of the standoff. 

Kuraan et al [78] recently investigated the heat transfer and hydrodynamics of free water jet 

impingement at low standoffs (L/d = 0.08 to 1.0). In this study, the normalized stagnation Nusselt 

number and hydraulic jump diameter were divided into two regions: Jet deflection region 

(L/d≤0.4) and Inertia dominant region (0.4<L/d≤1). The results obtained, suggest that the in the 

jet deflection region, the Nusselt number and hydraulic jump diameter decrease drastically with 

decreasing standoffs. This result was correlated as 𝑁𝑢~(𝐿 𝑑⁄ )−0.6 and 𝐻𝑑~(𝐿 𝑑⁄ )−0.4, where 𝐻𝑑 

is the hydraulic jump diameter. The standoff effect is negligible on the Nusselt number and 

hydraulic jump diameter due to the constant average velocity of the jet.  

Radial distribution to nozzle diameter (r/d) 

 The radial distribution to nozzle diameter (r/d) is the ratio of the radial measurement of the 

heater to the nozzle diameter. This is further used in classifying jet into its region (stagnation and 

wall jet region). With an r/d of 0, the area under the jet is said to be at the stagnation region where 
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the impingement effect is highly pronounced before it diminishes towards the wall jet region. 

Studies [29, 39] have shown maximum heat transfer rate observed at this region which decreases 

radially as the r/d increases. Likewise, some studies have reported a local maxima at r/d values of 

0.5 attributed to transition to turbulence within the impingement domain. In most literatures, r/d 

markers are implemented by placing temperature sensors at various radial distances on the heater.  

Cross flow 

The effect of the cross flow is observed in multiple jet array as has been proven to govern the heat 

transfer behavior. Obot and Trabold [61] investigated the crossflow effect subdividing them into 

three schemes namely, the minimum, intermediate and maximum crossflows as shown in Fig 5. 

The crossflow effect is mainly attributed to the passage of the spent fluid after impingement. It has 

been reported that the crossflows undermine the heat transfer rate by delaying impingement when 

the downstream jets are swept away by the upstream jets. The same study has found out that the 

magnitude of the crossflow effect is enhanced by increasing the standoff. 

 

Figure 5: Cross flow effect [61] 

Jet Inclination 

In some cases, the position of the nozzle exit could be oriented non-perpendicular relative 

to the target surface. This configuration affects the hydrodynamics of the flow which therein 
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affects its heat transfer characteristics. Stevens and Webb [74] reported an empirical correlation 

for local Nusselt number along the major and minor axes for free-surface jets at higher Reynolds 

number as  

𝑁𝑢 = 𝐴𝑅𝑒𝑑
𝑎exp [(𝑝𝜃2 + 𝑚𝜃 + 𝑛)(𝑟

𝑑⁄ )] 

Where, 𝜃 is the inclination angle of the jet relative to the target surface expressed in radians. [] 

also reported a correlation for axisymmetric oblique jets in both submerged and free surface 

configuration for Reynolds number less than 1000 as; 

𝑟
𝑑⁄ = (𝑀 + 𝑁𝜃)𝑐𝑜𝑠𝜃 

where M takes the value of 0.119 and 0.0176 for free-surface and submerged jets respectively. N 

also reported as 0.00454 for free-surface jets and 0.00754 for submerged jets.  

1.3. Carbon Dioxide 

 

The first use of CO2 as a refrigerant can be traced to the mid-nineteenth century [79] which 

were later displaced by chlorofluorocarbons (CHFs) after the World War II. The adoption of CO2 

as a viable thermal fluid is already growing. Hence, its applications in hydrocarbon storage, cold-

rooms, industry supermarkets, residential air conditioning etc. CO2 effectively operates at elevated 

pressures; the choice of operating regime can be appreciated from its P-T phase diagram.  
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Figure 6: Periodic table showing the composition of Carbon dioxide 

CO2 in its supercritical state is a promising fluid for a wide range of applications. In fact, the higher 

operating pressure does offer certain advantages such as a high fluid density throughout the cycle 

as a result of the elevated pressure which permits the miniaturization of cooling systems for use in 

mobile applications, such as in cars and trucks. The use of super critical CO2 in power cycles has 

been investigated and explored for decades while undergoing constant reinvention. Since the high 

density and the volumetric capacity of super critical CO2 make it more energy dense when 

compared to other working fluids, the size of most of the system components within the power 

cycles can be considerably reduced leading to a smaller plant footprint and lower capital costs.   

Recent applications of super critical CO2 can be seen in the areas of petroleum refining and 

petrochemistry [80], food processing [81, 82], separation processes [83], etc. which summarizes 

the advantages of carbon dioxide as a solvent. A more recent application of super critical CO2 has 

been explored in solar collectors [84], or in carbon capture and storage [85, 86]. In addition to the 

aforementioned properties, CO2 possess liquid-like density and gas-like viscosity in its super 
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critical state, therefore, when combined with other thermal properties and cooling geometries, one 

can achieve larger transfer of heat with relatively small pressure drops within a micro domain. As 

such, it is a good candidate for working fluid in compact systems like printed heat exchangers and 

micro domains 

 

1.3.1. Supercritical Carbon Dioxide (sCO2) 

1.3.1.1. Thermophysical Properties of sCO2  

As shown in Fig 7, the thermophysical properties of CO2 vary dramatically with the 

temperature and pressure in super critical state [87-89]. For a specified pressure, properties such 

as the dynamic viscosity, thermal conductivity and the density are significantly diminished with 

an increase in the fluid’s temperature. The specific heat capacity assumes a maximum value at the 

critical point and pseudocritical temperature which further declines as the pressure increases 

similar to that of the phase change processes of mixtures utilized in thermal energy storage [90]. 

Although the drastic drop in the density limits the potential use of super critical CO2 as a storage 

media, the thermophysical variations of the fluid at this state makes its heat transfer characteristics 

and performance different from available conventional fluids. The heat transfer performance of 

super critical CO2 can be classified into three heat-transfer regimes: normal, improved and 

deteriorated. The deteriorated regime is accompanied by higher heat fluxes and lower mass fluxes 

which can be greatly reduced by increasing the turbulence level of the flowing fluid. In a nutshell, 

the variations observed in the heat transfer performance are as a result of the dramatic changes in 
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the thermophysical properties in the radial direction leading to both pseudo-boiling and pseudo- 

film boiling phenomena. 

 

Figure 7: Thermophysical properties of Carbon dioxide 

1.4. Flow Boiling  

Flow boiling, a process that leverages liquid to vapor phase change to enhance heat transfer 

has been extensively studied in horizontal channels [91] and also in jet impingement [45, 48, 92-

94]. This process offers very high heat transfer coefficient making them attractive for electronic 

cooling applications.  In most cases the nucleate boiling regime as seen in Fig 8(a). is the most 

attractive as this region is characterized by a small increase in the wall superheat with a large 

increase in the heat flux. Flow boiling is a very complex phenomenon with quite a number of 

varying parameters interplaying to dictate the overall heat transfer ability. Focusing on this 
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fundamental and with the higher heat transfer coefficients associated with the nucleate boiling 

regime, its combination with micro jet impingement could significantly enhance the heat transfer 

performance while being suitable for electronic cooling. Although this combination could result 

in a more complex phenomenon as both the flow boiling process and jet impingement possess 

strong interplay of various parameters, meticulous study of important parameters and their 

contribution to the heat transfer performance can be analyzed. Typically, the increase in the heat 

transfer coefficient in the nucleate boiling regime is governed by the intense development of 

bubble motion and mixing [45, 95].  Studies have revealed the importance of various effects on jet 

impinging flow boiling. For instance, Wolf et al. [45] observed that the jet diameter, jet orientation 

and number of jets for multiple jet configurations and other jet configurations did not have a 

significant effect on heat transfer in nucleate flow boiling. On the other hand, Qui and Lui [96] 

suggested that the conditions of the heat transfer surface are an important variable. Studies also 

examined the critical heat flux (CHF) conditions [97-99], and a number of CHF correlations were 

proposed taking into account a range of parameters, such as the jet velocity, vapor and liquid 

densities, and heater size. This CHF condition is characterized by a drastic increase in the wall 

surface temperature as a result of the dry out conditions as a result of little to no fluid contact with 

the heated surface to sustain boiling. As depicted in Fig. 8(b), the liquid sublayer extracted from 

the liquid jet issuing from the nozzle sustains boiling until a condition where the issuing jet cannot 
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be supplied to this sublayer leading to a dry out, indicating a CHF condition.

     

(a)                                                                               (b) 

Figure 8: (a) Boiling curve (b) Schematic of flow boiling in jet impingement 

 

1.5. Objectives 

By scrutinizing the results of the research in the literature, it was observed that the enhancement 

of heat transfer rate can be attained by shrinking the nozzle exit diameter from the macro to a micro 

scale. Likewise, the varying thermophysical properties of carbon dioxide in its super critical state 

and its flow boiling properties can lead to higher heat transfer coefficient, removing heat from 

miniaturized electronic devices that dissipate very high heat fluxes as a result of the 

implementation of increasing processors and transistors in its integrated circuit for a better and 

faster operating system. Therefore, by combining the advantageous properties of the micro jet 

domain with carbon dioxide in its single-phase or two-phase condition, a more effective and 



 
 

23 
 

efficient cooling method can be achieved for these ever-growing integrated circuits.  Since limited 

studies have been dedicated to this study, this thesis aims to tackle the following scheme. 

• Evaluate the feasibility, applicability and effectiveness of micro impinging jets and high-

pressured fluid in a micro domain  

• Precisely obtain the spatial and temporal temperature measurements in the micro domain 

to infer the local and area-averaged heat transfer coefficient, inception of nucleate boiling 

and critical heat flux  

• Investigate the optimum cooling process/flow by varying important parameters such as the 

heat flux, mass flux, temperatures, and pressures. 

• Investigate the convective heat transfer characteristics at the pseudocritical region for the 

single-phase flow and nucleate boiling regime for the two-phase flow. 

• Evaluate CO2 as a potential coolant, compare its heat transfer properties with available 

correlations and develop new correlations if required 

1.6. Dissertation Overview  

As mentioned above, jet impingement is very complex phenomenon more importantly in the 

micro scale, and a well detailed understanding of the physical phenomenon is crucial for a flow 

and heat transfer characterization alongside the working fluid. With key attention on CO2 as the 

working fluid in both single-phase and two-phase conditions, meticulous experimental 

investigation is needed to qualify and quantify its behavior with micro jet impingement to fully 

understand its flow and heat transfer properties as well as its susceptible governing factors for next 

generation cooling. Therefore, using precise spatial and temporal temperature measurements, more 
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insights into the complex thermo-hydrodynamic phenomenon is to be obtained. In addition, the 

work includes the development of new correlations, mathematical equations to further improve the 

accuracy of available heat transfer predictions.  

 This thesis is organized below: 

Chapter 1: The introductory chapter begins with the advances in micro fabrication that 

brought about conflicting trend between the thermal management of these electronic devices 

and customer desire, the available thermal remedy as well as their issues and challenges. The 

chapter further describes the innovation in jet impingement cooling, the shift to micro scale 

cooling and the utilization of CO2 as a promising thermal fluid to alleviate concerning 

industrial thermal problems as well as setup a future cooling framework to meet up with ever-

growing transistor counts in dense integrated circuits. Finally, the scope and objectives are 

described.  This chapter also introduces historical review of jet impingement and CO2 in both 

single-phase and two-phase conditions, along with the physical fundamentals and 

hydrodynamics of jet impingement together with available correlations to predict the heat 

transfer behavior. 

Chapter 2: This chapter constitutes the experimental apparatus and set up utilized in this 

investigation. Here the steps employed in the development of the test specimen (micro fluidic 

device), its housing and the experimental setup are well detailed  

Chapter 3: This chapter introduces the experimental investigation of super critical CO2 in a 

single impinging jet. The observed heat transfer behavior as well as the optimum working 

condition is reported. Quantitative assessment of the heat transfer enhancement due to the 
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susceptible heat-transfer governance such as the radial position, heat flux, mass flux and inlet 

temperature is well documented in this section. Finally, a new correlation for future research 

and industrial use is reported.  

Chapter 4: Further hypothesized enhancement in single jet impingement with flow boiling of 

CO2 is explained in this chapter. The flow and heat transfer behavior are reported together with 

a comparison between super critical and subcritical pressures. Quantitative assessment of the 

of the heat transfer enhancement due to the susceptible heat-transfer governance such as the 

radial position, heat flux, mass flux and pressure is well documented together with a new 

critical heat flux correlation for future and industrial research. 

Chapter 5: This chapter further introduces the heat transfer and flow behavior utilizing an 

array of micro jet together with CO2 in its super critical state. The comparison between the 

single and multiple jet(s) is also well documented.  

Chapter 6: Concluding remarks from this study are reported in this chapter  
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CHAPTER TWO: METHODOLOGY 

The contents of this chapter have been published in: 

Adeoye, S., A. Parahovnik, and Y. Peles, A micro impinging jet with supercritical carbon dioxide. 

International Journal of Heat and Mass Transfer, 2021. 170: p. 121028. [100] 

 

Adeoye, S. and Y. Peles, Flow boiling of carbon dioxide with a micro impinging jet. International        

………... Journal of Heat and Mass Transfer, 2022. 187: p. 122495. [101] 

 

This section explicitly described an overview of the experimental apparatus, their design, 

and mechanical considerations to meet up the proposed system.  

The experimental apparatus consisted of four main systems; 

a) The microfluidic device to provide heating and temperature change measurement as a 

consequence of the jet’s cooling ability  

b) Device housing to support the micro fluidic device mechanically and electrically  

c) Experimental loop to channel the fluid onto/from the micro fluidic device at specific 

operating conditions. 

d) Data acquisition and processing units to simultaneously collect, record and digitally 

process data for analysis. 
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2.1. Microfluidic Device 

As highlighted above, a micro scaled test device with operations similar to traditional 

circuit layout was utilized as the main device to be cooled. This device consisted of a heater and 

three resistance temperature detectors (RTDs) mechanically supported on a 30.5 × 1.9 mm2 fused 

silica substrate to respectively supply heat and measure the local surface temperatures. The 

requirements for the substrate were the need to have a low thermal conductivity, reducing the heat 

lost by conduction, and for it to withstand the required operational pressure of up to 10 MPa. 

Silicon is the most suitable and common material for variety of micro fabrication processes; 

however, Silicon possesses a high thermal conductivity restricting the usage in this research. Other 

materials such as sapphire, borosilicate glass and fused silica present alternative approach for 

micro fabrication process due to their low thermal conductivity and mechanical strength. However, 

due to the scarcity and cost of purchase, fused silica remained the most prospective candidate to 

be used as the structural material for the microfluidic device.  

2.1.1. Heat generation and temperature measurement  

The heater comprised of a serpentine-shaped wire made of Titanium and Platinum with the 

former used to promote adhesion to the substrate, wound around in a circular form - This 

configuration was as a result of the targeted heater resistance of ~50 ohms confined in a 2 mm 

micro space, and a need for a circular heater to ensure a more uniform temperature distribution 

according to 

𝑅 =
𝜌𝐿

𝐴𝑐
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where ρ is the resistivity as a function of the temperature, L is the length and Ac is the cross-

sectional area of the wire. Right at the center of the heater, three RTDs were radially sputtered in 

a concentric manner to measure the radial temperature distribution on the surface of the heater 

during the experiment. The targeted resistances for the RTDs were 150 ~ 300 ohms, with 

compensations made to the width, length, and shape of the RTDs for uniform resistance 

measurement at constant temperatures. 

2.1.2. Device design and layout 

Three designs were attempted – 1st to 3rd generations, with selection criteria based on the 

cost of production, complexity, material consumption, no of RTDs and the stress concentration. 

The 1st generation device consisted of highest number of RTDs supported on thick substrate. When 

analyzed for stress concentration and higher number of temperature sensors, the 1st generation 

design would have been more appropriate, however, subject to the cost of production and 

complexity, the 3rd generation device offered the most suitable design with three RTDs, a thinner 

and a cost-effective substrate.  
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Figure 9: Microfluidic device consideration 

2.1.3. Mask Layout and Configuration 

Photomask is an opaque plate with holes or transparencies that allow light to shine through 

in a defined pattern. These masks are commonly used in photolithography operation. The masks 

are placed in direct contact with the photoresist coated surface and the wafer is exposed to 

ultraviolet radiation. The absorber pattern on the mask is opaque to UV light, whereas glass or 

quartz is transparent. This allows a 1:1 image of the masks to be transferred to the wafer where 

necessary etching operations are followed. For this microfabrication process, six photomasks as 

seen in Fig 10, were designed for each specific photolithography operation in order to pattern the 

heater, RTDs, their leads and the dicing grids.  

The microfluidic device was compromised of two layers; the heater (lower layer) and RTDs 

(upper layer). These layers were separated by a layer of Sodium dioxide (SiO2) (1.1 um thick) to 

electrically insulate the heater from the RTDs. Two masks were used in the design of the heater 
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and its leads, another set of two masks were used for the design of the RTDs and their leads and 

the last two masks were used in exposing the heater and RTDs’ leads for electrical connection. 

Each mask consisted of two alignment patterns (coarse and fine) used to align the masks during 

photolithograph process. These alignment patterns were used to ensure the masks were placed on 

the wafer evenly to disallow any form of deviation on the device.   

       

                   

Figure 10: Photomasks’ patterns used for photolithography operation 

The configuration and the purpose of each photomask is summarized below; 

Mask 1 (Heater leads) 

The first step in photolithography was to etch the heater vias. This was done after which 

Aluminum, Platinum and Titanium have been sputtered on the wafer. The purpose of the leads was 

to supply heat the heater though affixed contact probes.  
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Mask 2 (Heater) 

After the vias have been etched, the heater was shaped using this mask. The mask consisted 

of a pattern wound around in a circular manner to compensate for the small diameter (1.5 mm) of 

the heater.  

Mask 3 (RTD leads) 

The third mask shaped the RTD leads. This mask consisted of patterns of varying 

dimensions extending to both sides of the wafer (left and right). It also consisted of the dice 

borders, used in dicing the wafer after the micro fabrication steps had been completed.  

Mask 4 (RTD) 

The RTD mask shaped the RTDs as desired shown in Fig 11. The design consisted of three 

RTDs sputtered on top of the heater in a concentric manner. These RTDs were of varying radii to 

measure the average radial temperature distribution. RTD1 had the smallest diameter, in this case 

the pattern was wound around a 100 µm diameter template. The width measured 3 um and had an 

approximate length of 0.8 mm. RTDs 2 and 3 had similar pattern but with different radius and 

width, they measured 600 um, 1200 um radii, and 5.5 um, 11 um width respectively.  
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Figure 11: Mask 4 

Mask 5 (RTD Contact Pads) 

This mask exposed the contact pads of the RTDs. A layer of SiO2 was deposited after the 

RTDs have been etched to prepare the device for CMP polishing. Due to this reason, there is need 

to etch that layer of SiO2 in order to allow for electrical contact. The contact pads were in form of 

a circle measuring 3 mm in diameter.  

Mask 6 (Heater Contact Pads) 

Finally, the contact pads for the heater leads were needed to be exposed for the same reason 

as the RTD leads. These were also in form of circles measuring 3 mm in diameter similar to that 

of the RTDs.  
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Mask Alignment 

Since all dimensions were in micro scale, the slightest deviation (<1 um) could be 

detrimental to the microfabrication of the device. Thus, there is need to place each mask evenly 

and carefully on the wafer to ensure they were accurately positioned. Two types of alignments 

were used for this cause: coarse and fine alignments. 

Coarse alignment 

These alignment markers were located at each side of the mask; the resolution of these 

features were 10-50 µm as shown in the Fig 12. These markers were present in all the photomasks 

and were used as a coarse positioning indicator during the photolithograhy process. 

 

Figure 12: Coarse alignment markers 
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Fine alignment 

These markers were located beside the coarse alignment patterns. They consisted of a 

vertical and horizontal comb like pattern which aligned the mask in both horizontal and vertical 

positions. The purpose of this was to ensure each comb fingers aligned horizontally and vertically 

with the previous mask with minimum deviation. Mask 1 relied only on the coarse alignment 

method as it was the first mask being used, generating the fine alignment patterns, in which other 

masks used as a point of reference.  

 

Figure 13: Vertical and horizontal fine alignment patterns 

An illustration of the fine alignment method between masks 3 and 4 is shown below. The fingers 

of mask 3 (red) aligned with the fingers of mask 4 (black), vertically and horizontally. Each mask 

created a fine alignment pattern for the next mask to be used, to ensure even placement of the mask 

on the wafer. As seen in the figure 14, mask 3 contained the fine alignment patterns used to align 

with mask 2, likewise the patterns used to align with mask 4. The same goes for mask 4, which 

contained the patterns needed to align with mask 3 and 5. 
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(a) 

 

(b) 

Figure 14: Alignment methods (a) Horizontal and vertical placement of the fine alignment 

methods (b) Mask 3 and 4 placement using alignment markers  

 

2.1.4. Microfabrication  

This section details the microfabrication process employed to achieve the test device. The 

was micro fabricated leveraging a combination of conventional manufacturing tools and standard 

microelectromechanical systems techniques. 
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 The microfabrication process is explicitly discussed below with the tools and operations 

highlighted in each section, 

Wafer cleaning  

The microfabrication commenced with wafer cleaning process to remove contaminants on 

the substrate. This process employed the Hametch Hot Prihana tool with a wafer clean short 

operation for about 10 minutes. The tool consisted of a chuck that firmly held the wafer in place 

during loading, cleaning and unloading operations.   

       

(a)                                                                                                          (b) 

Figure 15: Wafer cleaning process (a) Wafer pre-cleaning (b) Hametch Hot Prihana tool 

Thin film Deposition 

After the cleaning process, the wafers were set for the thin film deposition (metal 

deposition) to orderly sputter layers of 7 nm thick Titanium, 100 nm thick Platinum and 1 µm thick 

Aluminum. To do this, the AJA sputtering machine was utilized, with two variable parameters: 
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the pressure (mTorr) and duration (sec) – Table 1. These parameters were used to control the 

targeted thickness of each metal as a result of different deposition rate due to the metal’s chemical 

and physical compositions. 

Table 1: Deposition rate for Titanium, Platinum and Aluminum 

Metal & Rate Pressure (mTorr) Time (sec) 

Titanium (1.67A/sec) 3 4975 

Platinum (4.69A/sec) 3 42 

Aluminum (2.01A/sec) 3 213 

 

                 

(a)                                                                                                (b) 

Figure 16: Final product of metal deposition on wafer (b) AJA sputtering tool 
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Photolithography 

Following the metal deposition, a photolithography process was employed which 

comprised of the following steps 

a) vapor priming: a process to promote adhesion of the photoresist to the metal by 

dehydrating the wafer with HMDS vapor.  

b) photoresist coating: in which a S18181 photoresist was spun at a speed of 3000 rpm for 

45 seconds over the wafer to protect important patterns after etching. 

c) soft baking to adhere the photoresist more to the wafer, by placing the water on an oven 

for 90 seconds at 115 ℃.  

d) photoresist bead removing process to scrap out the excess buildup of photoresist at the 

edges of the wafer after spinning.  

e) exposing the wafers to UV light using a MA6 contact aligner and specified mask at gap 

of 30 µm for 4.5 seconds.  

f) post-baking to bring the reactions to a halt by heating it up at a temperature of 115 ℃ 

for 90 seconds.  

g) wet development process (spray-on) to transform the latent resist image formed during 

exposure into a relief image.  

h) hard baking at 115 ℃ for 90 seconds to remove residual developing solvents and to 

ensure finer patterns on the wafer.  
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Figure 17: Highlighted photolithography steps 

Etching 

After the patterns have been protected by the photoresist the unprotected metals were 

etched by a combination of both wet and dry etching. The former was used to remove the 

unprotected Aluminum layer using Al etchant at room temperature for about 30 minutes and then 

thoroughly rinsed in deionized water while the latter removed unprotected Platinum and Titanium 

layer using the AJA ion mill at a 45-degree angle and a milling time of ~ 25 minutes. This was 

followed by the photoresist stripping by soaking the wafer in a solution of 1165 resist stripper in 

an ultra-sonic bath for about 30 minutes.  
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(a)                                                                                          (b) 

Figure 18: Etching (a) Wet etching with Aluminum etchant (b) Dry etching with AJA ion mill 

Upon the development of the first metal pattern which made up the heater leads, similar processes 

were followed to shape the heater, however in this case the Aluminum layer was etched in order 

to increase the electrical resistance of the heater as compared to its leads.  

SiO2 deposition 

After the development of the heater and its leads, a 1 µm layer of SiO2 was deposited to 

electrically insulate the heater from the RTDs. This was done using an OXFORD PEVCD operated 

at a deposition rate of 295 nm/min. The replica of the metal deposition order and rate, 

photolithography process and etching were carried out on the SiO2 layer with specific masks to 

form the RTDs and their corresponding leads. This was followed by another SiO2 deposition 

measuring ~ 3 µm to electrically insulate the RTDs and protect the micro device. 
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(a)                                                                                          (b) 

Figure 19: SiO2 deposition (a) To electrically insulate the heater from the RTDs (b) To 

electrically protect and insulate the micro device from the environment 

SiO2 etching 

A final photolithography step was carried out to etch the SiO2 layer exposing the RTD, and 

heater leads for electrical connections. This was done by an OXFORD 82 dry etch at an etching 

rate of 34.4 nm/min. 

Dicing and micro drilling 

The wafer was diced to produce individual micro devices and finally micro drilled to allow 

the passage of spent fluid during the experiment. The dicing machine diced the wafer horizontally 

and vertically by carefully positioning the dicing blade on the dicing grip features printed on the 

wafer during the photolithography process. 
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2.1.5. Conclusion 

We were able to micro fabricate a microfluidic device with heating and measuring 

properties similar to a heat dissipating device. The device comprised of a fused silica substrate 

with a hardness of 5.5 and a thermal conductivity of 1.38 W/m.K, a serpentine heater with a surface 

area of 4.88 x 10-5 mm2, three RTDs with RTD1 being the stagnation zone and four holes drilled 

into the substrate to allow for passage of pent fluid – Fig 20.    
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(a) 

(b) 

Figure 20: Final micro device images (a) CAD model showing layout (b) Real-life image with 

microscopic images of the device 
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2.2. Micro Device Housing  

The device was housed between two metal pieces made of type 304 stainless steel — the 

bottom piece, which accommodated the device, and the top piece where the nozzle exit was placed 

(Fig. 21). The material was selected to withstand a pressure of about 10 MPa and because of its 

low thermal conductivity limiting heat loss by conduction. Within the bottom piece were two 

pockets to accommodate the micro device and the top piece, four exit holes, collectively linked to 

a single exit channel, one O-ring groove to accommodate an O-ring to ensure appropriate seal and 

prevent fluid leakages, two pin slots for top piece alignment, and four screw holes to fasten the top 

and bottom pieces together. The pockets were machined with precise dimensions and tolerances 

to accommodate the device and the top piece. The top piece was composed of the jet orifice, the 

fluid inlet, eight holes for contact pads access, two pins for top-bottom alignment, one O-ring 

groove with dimensions similar to that in the bottom piece, and four screw holes. Four 5′16 socket 

head bolts and nuts are used to tighten the pieces together. The bolts were screwed with a torque 

wrench at a specified torque to avoid cracking the device. The nozzle configurations were 

machined in the top piece for both single and multi-jets configurations. with a nozzle exit of ø206 

µm. The pieces are chamfered at the edges for aesthetic reasons and most importantly to reduce 

the possibilities of sharp edges, which could be hazardous during operation. Two NPT pipes were 

fitted in the inlet and exit holes channeling the fluid from the entry, through the nozzle, and finally 

to the atmosphere.  
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(a) 

 

(b) 

Figure 21: Micro device package (a) CAD model showing the top piece and bottom piece (b) 

Real-life image of package after manufacture 
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The device was clamped between two O-rings to ensure appropriate seal and to prevent 

leakages during experiment. The package presented a confined jet configuration with the jet 

bounded by the top piece and the micro device. 

Single jet 

As aforementioned the jet configurations were machined in the top piece while the bottom 

piece supported the device. A single round hole was drilled in the top piece at the center with a 

depth of 1500 µm. Upon drilling, the hole measured about ø206 µm at the exit representing the 

single jet. 

 

Figure 22: CAD model of single jet configuration 

Multi-jet 

Similar to the single jet, the nozzles were machined into the top piece with configurations 

shown in Figs. 4(a), 4(b) and Table 1. The jets’ configuration consisted of a concentric distribution 

of the jets with an interjet spacing (S/d) of ~ 1.5 to allow for a uniform distribution of the jets over 

the RTDs. Upon drilling, the holes averagely measured ø206 µm at a depth of 1500 µm each.  
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Figure 23: CAD model of multi jet configuration 

 

2.2.1. Fluid Flow Direction 

The fluid flow direction is shown in Figs. 24 and 25 classified into three states (Fig. 25(b) 

to 3(d)) – pre-impingement, impingement and post-impingement states. The pre-impingement 

state is characterized as the fluid flow immediately after it exited the nozzle exit. Here the jet 

centerline velocity was assumed to be the same as the exit velocity. The impingement state is 

characterized as the fluid flow upon impingement on the heater. Here the jet velocity was reduced 

as a result of entrainment of the ambient fluid within the micro domain, with the jet spreading 

radially outward towards the wall jet region (exit holes). The final state “post-impingement” 

constituted of the radial flow of the jet after impingement into the exit holes, collected in a single 

exit channel as seen in Fig 3(c).   
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Figure 24: Sectional view of micro device package showing flow direction 

 

(a)                                                                                          (b) 

 

(c) 

Figure 25: Fluid direction state (a) pre-impingement (b) impingement (c) post-impingement 
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2.2.2. Electrical connection 

A printed circuit board (PCB) was designed using PCB123 software as seen in Fig 26. and 

manufactured to mechanically support and electrically connect the leads to a data acquisition 

system. The PCB boards consisted of a 0.062ʺ thick board with pad width of 0.066ʺ and hole 

diameter of 0.05ʺ which were evenly divided upon manufacture. Power was supplied to the heater 

through two S-1 SERIES contact probes while data were taken from six other S-1 SERIES contact 

probes fixed into the top piece in contact with the RTD leads. 

   

(a)                                                                                          (b) 

Figure 26: Electrical connection (a) Designed PCB (b) Contact probe arrangement 

2.2.3. Conclusion 

A micro device was designed and manufactured to mechanically and electrically support 

the micro device. The package was analyzed for both structural and static analysis to validate the 

experimental objective. The package was designed on SolidWorks and manufactured using 

computer numerical controlled machines. The jets were micro drilled with at the center of the top 

piece allowing the flow of the jet onto the device. Four exit holes were machined in the bottom 
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piece collectively linked to one single channel for the passage of the spent fluid out of the micro 

domain. The layout of the package is shown in Fig 27.  

 

(a) 

 

(b) 
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(c) 

Figure 27: (a) CAD model of final package assembly (b) Real-life image of package installation 

in the fluid line (c) Exploded view of device package 

 

2.3. Experimental Loop 

The experimental open loop, shown in Fig. X, comprised of two tanks each containing CO2 

gas and N2 gas, pressure regulators, a high-pressure vessel tank containing a separating vessel, 

three ball valves, one three-way valve, two PX309-5KG5V Omega pressure transducers, two 

preheaters and a MC-Gas Alicat scientific flow meter. The experimental aim was to achieve a 

pressure about 4.8 to 15 MPa, an inlet fluid temperature of 295 to 350 K and a mass flow rate up 
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to 1 g/sec. Before the selection of this configuration, both open and closed loop configurations 

were considered, however due to the cost value of purchasing a pump to circulate low flow rate, 

the open loop system was adopted. This selection was also strengthened by the CO2 low toxicity 

property making it nonhazardous to the environment.  Upon the start of each experiment, the high-

pressure tank was emptied and then filled with CO2 regulated by a pressure regulator and a three-

way valve, compressing the separating vessel against the inlet of the N2 gas. The separating vessel 

was composed of a TOC11-40 high-pressure tubular reactor (double ended pressure vessel) 

containing a piston separator and an O-ring enclosure with a 7000-psi pressure rating. The piston 

together with the O-ring enclosure separated the CO2 from the N2 gas and allowed for compression 

within the cylinder of up to 7000 psi.  This flow was then discontinued after which the N2 gas was 

allowed entry into the high-pressure tank compressing the separating vessel against the initially 

occupied CO2. The operating pressure was regulated by the pressure regulator attached to the N2 

gas tank, and after the system was stabilized, the three-way valve was switched, allowing the high-

pressured CO2 entry into/out of the microfluidic device through connecting loops. This high-

pressured CO2 was channeled into the package at the desired inlet pressure conditions, by 

controlling the three-way valve and the ball valve right before the first preheater and by controlling 

the pressure regulator of the N2 tank. Two preheaters were located before the fluid entered and 

exited the package. These preheaters were made of BriskHeat’s RKP heating tapes wound around 

the pipe with ends connected to a digital temperature controller where the heat supplied to the 

tapes was controlled. These preheaters were used to respectively control the inlet temperatures of 

the fluid and to avoid the Joule-Thompson effect at the exit as a result of a drastic pressure drop 

just when the fluid exited the package. Likewise, two PX309-5KG5V Omega pressure transducers 
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were positioned immediately upstream and downstream the package to record the inlet and exit 

pressures. These together with the needle valve, and a constant atmospheric pressure of 0.101325 

MPa at the loop exit were used to control the experimental steady state conditions. A thermocouple 

was affixed in the jet’s inlet just before it struck the heater to record the fluid’s inlet temperature. 

Away from the second preheater a MC-Gas Alicat scientific flow meter was installed for the 

purpose of recording the mass flow of the CO2 through the package. 

 

Figure 28: Schematic image of experimental loop 

2.4. Data Acquisition and Processing  

The sampling setup consisted of the power supply unit, multi meters, breakout board and 

sampling hardware. The temperature measurements were obtained from a temperature-resistance 
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curve fit generated for each RTDs and interpreted on a LabView software for data processing. The 

pressure transducers ranged from 0.1 to 34 MPa with an uncertainty of ±0.017 MPa, likewise, 

there were two separate compatible mass flow meters: low mas flux range (0 to 20 slpm) and high 

mass flux range (0 to 100 slpm) to record the mass flow rate into the device. These flow meters 

had uncertainties of ±0.1 slpm and ±0.5 slpm respectively. 

The local surface temperatures over the heater were measured by the radial distribution of the 

RTDs, however before collection of the data, the RTDs were calibrated to generate a linear 

temperature-resistance curve to be incorporated in the data acquisition and processing unit. To do 

this, prior to the start of the experiments, the device was placed in another package made of copper 

(k = 407 W/m K) to ensure a more efficient and uniform heat spread over the heater. The 

temperatures of the device in this exercise were recorded by placing the package in a temperature-

controlled oven (Quincy lab, 30AFE Mechanical Convection Oven) with controls to regulate the 

interior temperature. Inside the oven were two thin wired thermocouples - affixed to the device 

within the package (right at the heater area) and in the oven space very close to the package. The 

thermocouples simultaneously recorded the temperatures of the oven and that of the heater at a 

specific time. The RTD leads were connected to a cDAQ and SCXI 1102 made by National 

Instruments™ through six contact probes soldered to two PCBs, and the oven was sealed tight to 

avoid entrainment from the outside environment. The device was calibrated from 21 °C to 90 °C 

by gradually increasing the oven’s temperature with steps of 5 °C and recording the measured 

RTDs’ resistances when the two thermocouples achieved uniform temperatures and at steady state 

which took approximately 40 minutes per temperature step. The data were then collected and 
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processed on a Python programming language software to generate the temperature-resistance 

curves of each RTD, and their preceding correlation as seen in Fig 29. 

The measured resistance-temperature relations were curve fitted, has shown in Fig. 29 and 

expressed in Table 2. 

 

(a)                                                                             (b) 

 

(c) 

Figure 29: Temperature -resistance curve (a)RTD1 (b) RTD2 (c) RTD3 
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Table 2: Temperature-resistance correlation for each RTD 

RTDL Equation R2 

RTD1  

𝑇 =
𝑅−137.251

0.275
℃  

 

 

1.0 

RTD2  

𝑇 =
𝑅−282.417

0.574
℃  

 

 

1.0 

RTD3  

𝑇 =
𝑅−283.805

0.583
℃  

 

 

1.0 

 

2.5. Data Reduction 

The local HTCs as measured by the RTDs were calculated as: 

ℎ =
𝑞″

𝑇𝑠,𝑖−𝑇𝑠𝑎𝑡
 (1) 

where q″ is the net heat flux from the heater, Ts,i is the locally measured surface temperature by 

the RTDs during the experiment, and Tsat is the fluid saturation temperature. The heat flux was 

calculated according to: 

𝑞″ =
𝑃

𝐴𝐻
− 𝑞𝑙𝑜𝑠𝑠

″  (2) 

where AH is the area of the heater, qʺloss is the average heat flux lost to the environment, and 𝑃 is 

the power supplied.  

The average HTC was calculated as 

ℎ𝑎𝑣𝑔 =
𝑞″

𝑇𝑠,𝑖−𝑇∞̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
 (3) 
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𝑇𝑠,𝑖 − 𝑇𝑠𝑎𝑡
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 𝑚𝑖𝑟𝑎𝑣𝑔 + 𝑏𝑖 (4) 

𝑟𝑎𝑣𝑔 =
∫ 2𝜋𝑟2𝑑𝑟

𝑟𝑚𝑎𝑥
0

∫ 2𝜋𝑟 𝑑𝑟
𝑟𝑚𝑎𝑥

0

=
2𝑟𝑚𝑎𝑥

3
 (5) 

where 𝑇𝑠,𝑖 − 𝑇∞
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ is the average superheat temperature change inferred at the mean radius (ravg) 

where rmax is the maximum heater radius. The average surface temperatures, 𝑇𝑠,𝑖
̅̅ ̅̅ , at each RTD 

location and heat flux were measured and used to estimate the slope (mi) and intercept (bi). Then, 

the averaged saturation temperature over the experiment was subtracted from this temperature 

(𝑇𝑠,𝑖
̅̅ ̅̅ ) to determine 𝑇𝑠,𝑖 − 𝑇∞

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅.     

In the single-phase experiment (sCO2), T∞ was noted as T0 recorded from the RTDs with no heat 

flux from the heater. This gave a more approximate measurement of the fluid temperature. While 

in the flow boiling experiment, T∞ was noted as Tsat by averaging the recorded inlet fluid 

temperature as measured by the inlet thermocouple together with those measured by the RTDs 

with no heat flux from the heater.  

The inlet Reynolds number was estimated as  

𝑅𝑒 =
𝜌𝑢𝑑

𝜇
 (6) 

where ρ is the inlet fluid density, u is the average velocity at the inlet, 𝑑 is the nozzle exit diameter, 

and µ is the dynamic viscosity of the fluid at the inlet. 

The average jet velocity was estimated as  

𝑢 =
�̇�

𝜌𝐴𝑑
 (7) 

where Ad is the nozzle exit area. 
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The local and average Nusselt number were calculated as 

𝑁𝑢 =
ℎ𝑑

𝑘𝑓
  (8) 

𝑁𝑢𝑎𝑣𝑔 =
ℎ𝑎𝑣𝑔𝑑

𝑘𝑓
 (9) 

where d is the nozzle diameter and kf is the fluid’s thermal conductivity at the inlet. 

The inlet vapor quality was calculated according to:  

𝑥𝑖𝑛 =
ℎ𝑖𝑛−ℎ𝑓,𝑖𝑛

ℎ𝑓𝑔,𝑖𝑛
 (10) 

where hf,in is the enthalpy of saturated liquid, hfg,in is the latent heat of vaporization, and hin is the 

enthalpy of the fluid at the nozzle inlet. These values were extracted from NIST REFPROP based 

on the inlet temperature and pressure.   

The radial mass quality was calculated as 

𝑥𝑟 =
ℎ𝑟−ℎ𝑓,𝑟

ℎ𝑓𝑔,𝑟
 (11) 

where hf,r and hfg,r are, respectively, the enthalpies of saturated liquid and latent heat of vaporization 

of the fluid based on the radial temperature of the fluid measured by the RTDs. hr is the enthalpy 

of the local fluid at the RTD position calculated as  

ℎ𝑟 =
�̇�

�̇�
+ ℎ𝑖𝑛 (12) 

where �̇� is the power dissipated to the fluid, which accounts for the heat lost by conduction, and 

�̇� is the mass flow rate. The average radial mass quality was calculated like the average surface 

temperature as  
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�̅�𝑟 = 𝑚𝑖𝑟𝑎𝑣𝑔 + 𝑏𝑖 (13) 

where the slope, mi, and bi were calculated from the line connecting the radial mass quality at each 

heat flux. 

The superheat temperature (∆Tsat) of the heat transfer surface was calculated as 

∆𝑇𝑠𝑎𝑡 = (𝑇𝑠,𝑖 − 𝑇𝑠𝑎𝑡
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )  (14) 

The mean absolute error (MAE) was estimated as 

𝑀𝐴𝐸 =
1

𝑁
∑

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛−𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡

𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡
𝑁
1 × 100% (15) 

2.6. Heat Loss Estimation 

Since there exists a fraction of heat lost by conduction from the device’s substrate, the heat 

lost for the experiment was experimentally analyzed. To do this the device was first evacuated, 

and power was supplied to the heater with no fluid flow (G = 0) at small increments. At zero mass 

flux, all heat dissipated by the heater consisted of the heat loss, which was a function of the surface 

temperature. Heat flux-local surface temperature curves were generated for all RTDs depicted in 

Fig. 30. The slope that corresponded to the resistance by conduction was estimated at each RTD 

as: 

𝑅𝑐𝑜𝑛𝑑 =
∆𝑇𝑠,𝑖

∆𝑞″  (16) 

∆𝑞″ = 𝑞𝑙𝑜𝑠𝑠
″  (17) 

where ∆𝑞″ is the heat flux lost to the environment.   
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Figure 30: Heat loss estimation 
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CHAPTER THREE: SINGLE MICRO IMPINGING JET WITH SCO2  

 

The contents of this chapter have been published in: 

Adeoye, S., A. Parahovnik, and Y. Peles, A micro impinging jet with supercritical carbon dioxide. 

International Journal of Heat and Mass Transfer, 2021. 170: p. 121028 [100] 

3.1. Introduction 

A growing number of studies explored impinging jet cooling at the micro scale [102-104] 

and reported a significant heat transfer enhancement compared to results at the conventional scale. 

Shen and Gau [103] experimentally investigated micro-scaled impingement cooling on a thermal 

chip with arrays of sensors and heaters and noted that both the heat transfer process and the 

impinging jet flow structure are notably different from that at the macro scale. Patil and Narayanan 

[104] conducted an experimental study about impinging circular microscale jet (125 µm) for a 

range of Reynolds numbers (690-1770) at three standoffs (2d, 4d, and 6d). The average Nusselt 

numbers were compared to the study of Martin [39], which were about 40% lower for lower 

Reynolds numbers (< 1000) and about 25% higher at higher Reynolds numbers (> 1700). An 

experimental study by Glynn and Murray [32] reported 20% to 70% increase in the stagnation 

zone HTC when the jet diameter was reduced from 1.5 mm to 1 mm. Anand and Jubran [29] 

numerically showed a 37.3 % increase in the HTC when the nozzle diameter was reduced from 0.5 

mm to 0.25 mm.  

A more recent study [105] has shown that an array of single-phase micro jets with water can attain 

a heat transfer coefficient of up to 414,000 W/m2 K at a Reynolds of 3290, a corresponding Nusselt 
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number of 76 and a heat flux of up to 1110 W/cm2. Although this bespeaks the high performance 

of water for cooling, its compatibility with electronics is a concern. For this reason, several 

refrigerants, such as R134a and R113, were studied [106], but because of low thermal conductivity, 

their heat transfer capabilities are inferior to water. To alleviate this issue, jet boiling was also a 

topic that has been carefully examined. For instance, Browne et al. [41], and Zhou and Ma [49] 

investigated flow boiling of R134a and R113, respectively, and demonstrated a significant heat 

transfer enhancement. However, the microelectronics industry has been reluctant to adopt flow 

boiling heat transfer methods for thermal management systems because of reliability issues. 

With the recent reemergence of carbon dioxide (CO2) as a viable coolant around the critical state 

(304.13 K and 7.3 MPa), its cooling applicability has been a topic of interest as discussed above. 

This is partially because of the thermophysical property variations of CO2 and its high specific 

heat and thermal conductivity near the pseudocritical condition, a condition corresponding to a 

significant change in the thermophysical properties of the fluid at or slightly above the critical 

condition (chapter 1). Above all, its ability to adopt properties midway that of liquid and gas and 

its low toxicity and environmental impact serve as a trademark in hypothesizing that it could be a 

better replacement for traditional cooling fluids while still achieving high HTC. As part of this new 

development, Chen et al [107] performed experiments with supercritical CO2 (sCO2) with a 20 

mm nozzle diameter, and reported a maximum average HTC of 5000 W/m2 K at a mass flow rate 

of 8.34 kg/h. The maximum local HTC also occurred at the stagnation zone and decreased radially. 

Joo-Kyun and Toshio [108] conducted numerical analysis on axisymmetric laminar jet 

impingement cooling of an isothermal flat surface with sCO2 and reported that the heat transfer 

was better when the inlet temperature was close to the pseudocritical condition. Chen et al. [109] 
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conducted a numerical study of heat transfer characteristics of confined round jet impingement on 

a flat silicon plate at constant heat flux with sCO2 and reported a high average HTC due to the high 

specific heat of the fluid in its supercritical state.  

While jet impinging cooling has been extensively studied at the macro scale, and more recently at 

the micro scale, the heat transfer characteristics of micro jets impinging with a fluid that is 

experiencing significant property changes, such as CO2, around the critical condition, has been 

rarely studied. Thus, this chapter reports on an experimental study about fluid flow and heat 

transfer of micro jet impingement with sCO2 near the critical condition.   

3.2. Results And Discussion  

Susceptible heat transfer governance such as the radial position, heat flux, mass flux and 

inlet temperatures were experimentally studied to understand their influences of the heat transfer 

rate of sCO2. The range of operations is illustrated in Table 3 with the results discussed in the 

preceding section.  

Table 3: Experimental Inlet conditions 

Parameter Range 

Radial position (r/d) 0.21, 1.44, and 2.89 

Heat flux (W/cm2 K) 0 ~ 100 

Mass flux (kg/cm2 s) 0.53 ~ 1.5 

Inlet temperature (℃) 22.1 ~ 38.6 

 



 
 

64 
 

3.2.1. Heat Flux and Radial Position Effect 

The heat flux varied from 0 to ~100 W/cm2 at a pressure of 7.45 MPa, a mass flux of 0.53 

kg/cm2s (corresponding to a Reynolds number of ~15,500), and an inlet temperature of 21 °C. The 

locally measured surface temperatures by each RTD are depicted in Figure 31(a) as a function of 

heat flux, and Fig. 31(b) depicts the corresponding local HTCs. As expected, the local HTC 

decreased radially away from the stagnation zone for all heat fluxes. This is attributed to the jet 

hydrodynamics and radial position effect as explained in chapter 1. As the sCO2 exited the nozzle, 

it assumed a uniform velocity profile as a result of little or no interaction with the stagnant fluid in 

the micro domain. Based on the operating conditions and according to Draksler et al. [25] the 

potential core length was estimated to be ~1.2d, such that the potential core region extended 247.2 

µm into the micro domain. Right after the development of the potential core, the velocity degraded, 

building up static pressure in the stagnation zone. There the flow decelerated in the axial direction 

before impinging on the heater and then accelerated in the radial direction after impingement. This 

velocity characteristics and the high momentum caused the high HTC observed around the 

stagnation region. As the flow continued radially towards the exits, the influence of the 

impingement diminished, resulting in a velocity decline and ultimately a gradual diminishing of 

the HTC seen in the radial positions away from the stagnation zone. 

Figure 31(c) depicts the local HTC as a function of heat flux. The HTC at r/d = 0.21 first increased 

with heat flux, then decreased, and finally increased to a peak before decreasing drastically. Away 

from the stagnation zone (i.e., r/d = 1.44 and 2.89), the HTC increased to a peak before decreasing 

with heat flux. Peak local HTCs of about 40,000 W/m2 K, 20,000 W/m2 K, and 10,000 W/m2 K at 
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r/d = 0.21, 1.44 and 2.89 were recorded at heat fluxes of 54.5 W/cm2, 19.4 W/cm2 and 25.4 W/cm2, 

respectively.   

 

(b) 

 

(c) 

Figure 31: Radial position and heat flux effect (a) Local surface temperature as a function of 

heat flux; (b) Local heat transfer coefficient as a function of radial position for a range of heat 

fluxes;  (c) Local heat transfer coeffcient as a function of heat flux. Conditions: p = 7.45 MPa, 

𝑇𝑖𝑛= 21.1°𝐶 , 𝐺 = 0.53 kg/cm2s W/cm2 

Figures 32(a)-32(c) show the local HTC and its corresponding surface temperature at r/d = 0.21, 

r/d = 1.44, and r/d = 2.89, respectively. The peak local HTC observed at the three radial positions 
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was achieved when the local surface temperature was around the pseudocritical temperature (𝑇𝑝𝑐), 

corresponding to a fluid flow experiencing rapid variation in the thermophysical properties that 

modified the heat transfer process. Similarly, the area-average HTC with the corresponding 

average surface temperature, shown in Fig. 32(d), also peaked when the average surface 

temperature was slightly above the pseudocritical temperature.  

 

 

Figure 32: Local heat transfer coefficient and surface temperature as a function of heat flux. (a) 

RTD1, (b) RTD2, (c)RTD3, (d) Average heat transfer coefficient and average surface 

temperature as a function of heat transfer rate. The dashen horizontal line in (d) represents the 

pseudocritical temperature 

While the HTC is generally not a function of heat flux for single-phase flows with approximately 

constant thermophysical properties, it is for sCO2 near the critical conditions. As the fluid 

temperature was modified by the heat flux, so were the properties of sCO2. Specifically, when the 
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fluid temperature experienced a transition across the pseudocritical conditions, its specific heat 

and thermal conductivity increased rapidly and then decreased. This was accompanied by sharp 

decreases in the dynamic viscosity and density. The large increase in the specific heat acted 

somewhat like that of latent heat, such that the fluid temperature near the pseudocritical condition 

hardly increased with heat addition — a favorable process that tends to increase HTC. Likewise, 

the sharp increase in the thermal conductivity was associated with enhanced conduction, which 

also led to higher HTC. In addition, the decrease in the dynamic viscosity increased the local 

Reynold number (enhanced turbulence), and thus, increased advection heat transfer. On the other 

hand, the sharp decrease in the density accelerated the flow, which could have adversely affected 

the HTC as discussed by [110]. This was because the accelerated flow lowered the static pressure 

and generated favorable pressure gradients, which led to a phenomenon known as relaminarization 

— an increase in the thickness of the viscous sub-layer and a decrease in the thickness of the 

turbulent boundary layer. This in turn, increased the thermal resistance from the wall to the fluid, 

and thus, decreased the HTC. The favorable effects that tended to enhance the HTC dominated the 

one potential adverse effect (i.e., flow acceleration) such that the overall result yielded an increase 

in the HTC when the flow gradually crossed the pseudocritical conditions. It should be noted that 

flow acceleration in jet impingement has usually been ascribed to the presence of secondary peaks 

in the HTC in certain radial positions (r/d ≈ 1.5 to 2) as discussed in chapter 1 (standoff effects). 

These peaks have also been attributed to a secondary recirculation zone as a result of the confining 

top surface. However, the presence of secondary peaks was not observed in this study as the HTC 

declined radially in all cases studied. This might be due to the radial positions selected for RTD2 
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and RTD3 or for a fully developed flow towards these temperature sensors and/or the dimensionless 

standoff (L/d = 7.3).  

To quantify the contribution of the specific heat on the increased HTC, a specific heat analysis was 

conducted. For this the increase in the mean fluid temperature was calculated and compared to the 

experimentally obtained average surface temperature change, (𝑇𝑠,𝑖 − 𝑇0
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ). The mean fluid 

temperature in the micro domain at each heat flux (Tm,i) was estimated as  

𝑇𝑚,𝑖 =
𝑇𝑠,𝑎𝑣𝑔+𝑇0,𝑎𝑣𝑔

2
 ℃ (18) 

�̅�0 =
𝑇0,𝑅𝑇𝐷1+𝑇0,𝑅𝑇𝐷2+𝑇0,𝑅𝑇𝐷3

3
 ℃ (19) 

The average initial mean temperature (T0,avg) was constant as it was obtained at q″ = 0. With the 

known mean fluid temperature at each heat flux, the corresponding specific heats were extracted 

from the NIST REFPROP database at a constant pressure of 7.45 MPa. (It should be noted that the 

maximum pressure drop recorded during the experiment was less than 0.1 MPa, and thus, a 

constant pressure of 7.45 MPa was used for all experiments). These specific heats were then used 

to compute the mean fluid temperature increase according to: 

(𝑇𝑚,𝑖 − 𝑇0
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)

𝑒
=

𝑞

�̇�𝑐𝑝,𝑓
  (20) 

(�̅�𝑚,𝑖)𝑒 =
𝑞

�̇�𝑐𝑝,𝑓
− �̅�0 (21) 

where 𝑞 is the heat transfer rate in W, �̇� is the mass flow rate in kg/s, cp,f  is the specific heat of 

the fluid, and Tm,i is the average fluid temperature. To validate the mean fluid temperature an 

iterative procedure was utilized (Eq. 21), which took the values of the previously extracted specific 
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heats up until the value of Tm,i marginally changed. The estimated average fluid temperature 

increase was compared to (𝑇𝑠,𝑖 − 𝑇0
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ), as shown in Fig 13. As seen, the difference between the 

estimated average temperature change as a function of the fluid specific heat accounted for 

approximately 62±5% of the experimental average temperature change at each specific heat 

indicating a higher dependency of temperature change profile on the specific heat, which in turn 

dictated the HTC trend. Likewise, the peak estimated specific heat corresponded to the peak area-

averaged HTC as earlier shown in the experimental data. The residual ~38% (Ts,i-Tm) depicted in 

Fig. 33 could be attributed to the increased thermal conductivity around the pseudocritical 

conditions and/or other factors resulting in a new temperature change profile.  

 

Figure 33: Specific heat effect on the heat transfer rate 

3.2.2. Mass Flux Effect 

The effect of mass flux was studied at an inlet pressure of 7.45 MPa, an inlet temperature 

of 21 °C, and a heat flux of 34.5 W/cm2. The mass flux varied from 0.53 kg/cm2s to 1.5 kg/cm2s, 

corresponding to inlet Reynold numbers of approximately 15,500 to 44,000. Figure 34(a) shows 
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the local measured surface temperature and the associate HTC as a function of mass flux at the 

three radial positions. As expected, an increase in mass flux was accompanied by a decrease in the 

surface temperature and an increase in the HTC at all radial positions. In most cases, at the nozzle 

exit, the sCO2 jet was turbulent as a result of high Reynolds numbers. As the sCO2 impinged on 

the heater, a thin layer of hydrodynamic and thermal boundary was developed just beneath the jet 

due to the jet deceleration and the resulting increase of the static pressure, after which the flow 

accelerated in a direction parallel to the heater towards the micro device exit holes, greatly 

influenced by the mass flux. A higher velocity corresponded to an enhanced turbulent flow, and 

upon impingement on the heater, a greater velocity fluctuation was achieved enhancing the HTC. 

The radial position farther from the stagnation region (r/d = 2.89) attained a local HTC of 

approximately 33,000 W/m2 K at a mass flux of 1.5 kg/cm2s, similar to the one attained at the 

radial position at the stagnation region (r/d = 0.21) at a lower mass flux of 0.53 kg/cm2s.  
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Figure 34: Mass flux effect (a) Local surface temperature as a function of mass flux; (b) Local 

heat transfer coefficient as a function of mass flux;  (c) Area-averaged  heat transfer coefficient 

and surface temperature as a function of mass flux. Conditions: p = 7.45 MPa, 𝑇𝑖𝑛= 21.1°𝐶 , 𝑞″ 

= 34.5  W/cm2 

As shown in Fig. 34(c) the area-averaged HTCs continued to increase with mass flux regardless 

of if the surface temperature was above or below the pseudocritical condition, suggesting that HTC 

was more dependent on the mass flux than the proximity of the flow to the pseudocritical 

conditions. Local surface temperatures at RTD1 (r/d = 0.21) were always lower than the 

pseudocritical temperature and continued to drop with mass flux. However, those for RTD2 and 

RTD3 were higher and eventually dropped below the pseudocritical temperature conditions at the 

higher mass fluxes. At a constant heat flux, the heat transfer was strongly influenced by the mass 

flux undermining the effects of the drastic change in the thermophysical properties of the flow 

around the pseudocritical conditions. 

3.2.3. Inlet Temperature Effect 

 The effect of the inlet temperature was studied at an inlet pressure of 7.45 MPa, a mass 

flux of 0.53 kg/cm2s, and a heat flux of 34.5 W/cm2. The inlet temperature varied from 22.1 ℃ to 
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38.6 ℃. The local measured surface temperature distribution as a function of the inlet temperature 

at all radial positions is shown in Fig. 35(a). To evaluate the effect of the specific heat, similar 

analysis to that discussed in the heat flux effect was used. However, the average initially recorded 

temperature (�̅�0), estimated as �̅�0,𝑎𝑣𝑔, varied based on the inlet temperature. Upon iteration and 

comparison, the average surface temperature change as a function of the specific heat accounted 

for approximately 55±5% of the experimental average surface temperature change. Although the 

estimation suggest other contributions from varying factors, more than half of experimental values 

was governed by the specific heat of the fluid. Other parameters, such as the thermal conductivity, 

which influences the temperature profile can make up the other contribution to the surface 

temperature distribution. As shown in Fig. 35(b), the local HTC closest to the stagnation zone first 

increased with inlet temperature until peaking at an inlet temperature of 28.2 °C and then gradually 

declined. The HTC in the other two measured locations were not as significantly affected by the 

inlet temperature. The local HTCs range were approximately 30,000 W/m2.K, 8,000 W/m2.K and 

2,000 W/m2.K with increasing the radial positions.  

Figure 35(c) shows that the highest local HTC was recoded at the stagnation region at an 

inlet temperature of 28.2 ℃, corresponding to a surface temperature slightly above the 

pseudocritical temperature. As discussed earlier, the thermophysical properties of sCO2 affected 

the HTC, with a greater influence from the high specific heat attained around the pseudocritical 

region. Local HTC and surface temperature comparison for r/d = 1.44 and 2.89 were not shown as 

their local surface temperatures were always higher than the pseudocritical temperature at the inlet 

conditions used for this investigation. For this reason, the HTC were not greatly influenced by an 

increase in the inlet temperature. Chen et al [107] reported a higher HTC when the inlet 
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temperature was slightly lower than the pseudocritical temperature near the stagnation region for 

macro jet, and Joo-Kyun and Toshio [108] reported that the heat transfer was enhanced when the 

inlet temperature was close to the pseudocritical conditions for axisymmetric laminar jet. 

 

(a)                                                                                          (b) 

 

(c) 

Figure 35: (a) Local surface temperature as a function of inlet temperature, (b) Local heat 

transfer coeffcient as a function of inlet temperature (c) Local heat transfer coefficient and 

surface temperature as a function of inlet temperature at RTD1. All sub-figu 
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3.2.4. Comparison To Available Correlations 

A number of empirical correlations have been proposed and considerable work has been 

done to model the heat transfer characteristics under a single impinging jet. Several of these 

correlations were compared to the experimental results reported here as shown in Fig. 12 and Table 

3. Although in the Martin’s correlation [39], the r/d range falls above this used in the current study, 

comparison was still made as several studies reported a similar trend in micro and macro scale 

correlations [103]. Hoffmann [111] further extended Martin’s [39] work for a range of micro and 

macro jets and proposed a local and area averaged Nusselt number correlations.  

Predictions by Wen and Jang [112] and Tawfek [113] were much above the experimental values. 

The area average Nusselt number correlations of Martin and Hoffman overlapped with each other, 

as Hoffman’s work was an extension of Martin’s for a wider range of r/d. These correlations 

offered closest prediction to the experiment with that of Martin’s much closer at higher Reynolds 

number. Goldstein and Behbahani [114] proposed an average Nusselt number correlation for a 

single round jet for two L/d. Although the L/d for the current study fell oustide the range of the 

correlation, that for L/d = 6 was closer to the experiment at lower Reynolds number, but gradually 

deviated at higher Reynolds number. In sum, most correlations over predicted the experiments 

except for Goldstein and Behbahani [114] and Choo et al. [30] correlations.  
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Figure 36: Comparison to available correlations 

 

 

Table 4: Available Nusselt correlations for jet impingement 

Source Correlation Range MAE 

(%) 

Martin 

[39] 
𝑁𝑢𝑎𝑣𝑔 = 𝑃𝑟0.42

𝑑

𝑟

1 − 1.1 𝑑 𝑟⁄

1 + 0.1(𝐿 𝑑⁄ − 6) 𝑑 𝑟⁄
𝐹(𝑅𝑒) 

 

𝐹(𝑅𝑒) = 2𝑅𝑒0.5 (1 +
𝑅𝑒0.55

200
)

0.5

 

 

 

2,000 ≤ 𝑅𝑒

≤ 400,000 

 2.5 ≤ 𝑟 𝑑⁄ ≤

7.5 

 2 ≤ 𝐿 𝑑⁄ ≤ 12 

 

19.19 

Hoffman 

[111] 

 

𝑁𝑢𝑎𝑣𝑔 = 𝑃𝑟0.42[𝑅𝑒3 + 10𝑅𝑒2]0.25
1 − 𝑒−0.025(

𝑟
𝑑

)
2

0.025(𝑟 𝑑⁄ )2
 

 

 

3,000 < 𝑅𝑒

< 210,000 

0.5 <
𝐿

𝑑
< 40  

0 <
𝑟

𝑑
< 70 

 

 

23.37 
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Goldstein 

and 

Behbahan

i [114] 

𝑓𝑜𝑟 𝐿 𝑑 = 6, 𝑁𝑢𝑎𝑣𝑔 =
𝑅𝑒0.6

[3.329 + 0.273(𝑟/𝑑)1.3]
⁄  

𝑓𝑜𝑟 𝐿 𝑑 = 12, 𝑁𝑢𝑎𝑣𝑔 =
𝑅𝑒0.6

[4.577 + 0.4357(𝑟 𝑑⁄ )1.14]
⁄  

 

 

34,000 ≤ 𝑅𝑒

≤ 121,300 

0.5 <
𝑟

𝑑
< 32   

 

41.24 

 

69.41 

Tawfek 

[113] 
𝑁𝑢𝑎𝑣𝑔 = 0.453𝑃𝑟

1
3𝑅𝑒0.691 (

𝐿

𝑑
)

−0.22

(
𝑟

𝑑
)

−0.38

 
3,400 < 𝑅𝑒

< 41,000 

6 <
𝐿

𝑑
< 58  

2 <
𝑟

𝑑
< 30 

 

220.4

4 

Wen and 

Jang [112] 
𝑁𝑢𝑎𝑣𝑔 = 0.442𝑃𝑟1 3⁄ 𝑅𝑒0.696 (

𝐿

𝑑
)

−0.20

(
𝑟

𝑑
)

−0.41

 
750 < 𝑅𝑒

< 27,000 

3 <
𝐿

𝑑
< 16  

0 <
𝑟

𝑑
< 7.14 

 

237.8

5 

Choo et al 

[30] 

𝑁𝑢𝑎𝑣𝑔 = 1.07 × 10−5𝑅𝑒𝑚2(𝐿 𝑑⁄ )4.5 

𝑚2 = 2.015 − 0.294 (
𝐿

𝑑
) + 0.0142(𝐿 𝑑⁄ )2 

2500 < 𝑅𝑒

< 5000 

𝐿

𝑑

=  2,3,5 𝑎𝑛𝑑 10 

 

96.67 

 

 

3.2.5. New Correlations 

A number of correlations have been proposed following the experimental data to better 

quantify and predict important parameters while working with CO2 either in its super critical state 

condition. Following the dependency of the HTC on the heat flux while operating with sCO2 and 
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more importantly the heat flux magnitude where the maximum HTC is achieved, a pseudocritical 

heat flux (qʺpc) was defined as the heat flux needed to bring the surface temperature slightly above 

the pseudocritical temperature of the fluid. This heat flux took the form  

𝑞𝑝𝑐
″ = 1.62𝑇𝑝𝑐 − 23.39𝑒𝑥𝑝

𝑇𝑝𝑐
80.04

⁄  𝑊 𝑐𝑚2⁄   (22) 

for an inlet pressure of 7.45 MPa, mass flux of 0.53 kg/cm2s, and inlet temperature of 21 °C. (Note 

that p is the pressure in bar). Tpc is the fluid’s pseudocritical temperature. In dimensionless form: 

𝜁 =
𝑞′′

𝑞𝑝𝑐
′′ =

1.62𝑇𝑠,𝑎𝑣𝑔−23.39𝑒𝑥𝑝
𝑇𝑠,𝑎𝑣𝑔

80.04⁄
 

1.62𝑇𝑝𝑐−23.39𝑒𝑥𝑝
𝑇𝑝𝑐

80.04⁄
 

  (23) 

0 ≤ 𝜁 ≤ 5.5 

As shown in Fig. 37, the maximum HTC was expected when   

1 < 𝜁 ≤ 1.1 

 

Figure 37: Area-averaged Nusselt vs dimensionless heat flux 

Likewise, the power needer needed to bring the surface temperature slightly above the 

pseudocritical temperature termed the pseudocritical power was estimated as  

𝑃𝑐𝑝 = 𝐴𝐻 (1.62𝑇𝑝𝑐 − 23.39𝑒𝑥𝑝
𝑇𝑝𝑐

80.04
⁄ − 𝑞𝑙𝑜𝑠𝑠

′′ )  𝑊. (24) 
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for an inlet pressure of 7.45 MPa, a mass flux of 0.53 kg/cm2 s, and inlet temperature of 21 ℃. Ah 

is the area of the heater. 

The available correlations detailed above appeared to predict the experimental results with a 

limited degree of success. In addition, the importance of the heat flux, or dimensionless heat flux 

(ζ), on the area-averaged HTC/Nu appeared to be significant in this study but is unaccounted in 

available correlations. Thus, a new correlation was proposed for the area averaged Nusselt number. 

The proposed area averaged Nusselt number introduced the dimensionless heat flux. The standoff 

dependency (Nu ∝ L/d) was not accounted for as it was constant in this study. The dependency on 

the dimensionless heat flux (Nuavg ∝ ζ) was fitted with a fourth-degree polynomial as shown in 

Fig. 38(a) yielding an MAE of approximately 3.08%. Likewise, its dependency on the Reynolds 

number was also fitted with a curve as shown in Fig. 38(b) with a MAE of approximately 11.10%. 

A Prandtl number dependency of Nu ∝ Pr0.42 was used following the recommendation by Shi et al 

[115]. The new resulting Nusselt number correlation proposed takes the form 

𝑁𝑢𝑎𝑣𝑔 = 0.02𝑃𝑟0.42(𝑟
𝑑⁄ )−1.59𝑅𝑒0.61(−1.2𝜁4 + 14.98𝜁3 − 63.53𝜁2 + 95.56𝜁 + 22.25)0.94

 (25) 

valid for: 

15,500 ≤ 𝑅𝑒 ≤ 44,000 

0.21 ≤ 𝑟 𝑑⁄ ≤ 2.89 

0 ≤ 𝜁 ≤ 5.5 
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(a)                                                                                          (b) 

Figure 38: Curve fitting (a) varying dimensionless heat flux (b) Varying Reynolds number 

 

3.3. Conclusion 

Major results from this investigation are summarized below:  

- The local HTC increased until reaching a peak and then decreased drastically with increasing 

heat flux. The maximum local HTC were recorded when the corresponding local surface 

temperature was around the pseudocritical temperature. 

- The peaks in both local and area averaged HTC were quantified in respect to the effect of the 

specific heat of sCO2 at the pseudocritical region. 

- Increasing the mass flux, increased the local and averaged HTC. 

- The effect of mass flux undermined the specific heat effect as the HTC increased regardless of 

the surface temperature distribution below or above the pseudocritical region. 
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- The local HTC at the stagnation region first increased and then decreased with increasing inlet 

temperature, while those farther from the stagnation region showed no significant change with 

increasing inlet temperature. The maximum local HTC at the stagnation region (RTD1) was 

recorded when the inlet temperature was slightly lower than the pseudocritical temperature, which 

corresponded to a local surface temperature slightly higher than the pseudocritical temperature. 

Insignificant variations were observed in RTD2 and RTD3 as their local surface temperatures were 

already above the pseudocritical temperature. 

- The local surface temperature distribution over the heater were sensitive to the inlet temperature 

at all RTDs. 

- Available correlations did not take into account the effect of heat flux, which is a significant 

parameter controlling the Nusselt number. Likewise, most of the correlations over predicted the 

area-averaged Nusselt number, thus, a new correlation was proposed. 

Conclusively, we were able to experimentally investigate the heat transfer properties of sCO2 in a 

microjet impingement with optimum working condition around the pseudocritical temperature or 

the maximum design flow rate. 
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CHAPTER FOUR: FLOW BOILING OF CARBON DIOXIDE IN A 

SINGLE JET IMPINGEMENT  

 

The contents of this chapter have been published in: 

Adeoye, S. and Y. Peles, Flow boiling of carbon dioxide with a micro impinging jet. International 

Journal of Heat and Mass Transfer, 2022. 187: p. 122495. [101] 

 

4.1.Introduction 

As stated above, the utilization of jet impingement at the micro scale has attracted 

considerable interest and has been proven to be an effective cooling method, mostly as a result of 

the enhanced disturbance generated within the cooling medium when compared to its traditional 

counterpart. In addition, the transition from single-phase to two-phase cooling offers additional 

heat transfer enhancement owing to varying factors, such as nucleate boiling, bubble generation 

and collapse that control the flow distribution of the fluid within the cooling medium. Likewise, 

CO2 can serve as a good replacement for convectional working fluids owing to its properties in its 

two-phase conditions, and other associated two-phase flow phenomena. Many other studies have 

proven a notable enhancement in the heat transfer capabilities of flow boiling over single-phase 

conditions for varying working fluids such as water [116, 117], R134a and HFE-7000 [118], 

however, a few papers have been dedicated to the utilization of CO2. More importantly, the need 

to replace or improve on present conventional cooling methods to meet the ever-growing transistor 

counts in a dense integrated circuit according to Moore’s law [1] sets up a trademark, suggesting 
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that the utilization CO2 in its two-phase condition in a micro-scaled impinging jet can significantly 

enhance the heat transfer abilities, ultimately offering a more effective and efficient cooling 

approach. Thus, this chapter discussed the experimental investigation of the heat transfer and flow 

characteristics of CO2 in its two-phase condition within a single micro impinging jet geometry, by 

varying susceptible heat-transfer-governance, such as the radial position, heat flux, mass flux and 

pressure. Finally, the heat transfer behavior was compared with available correlations and a new 

critical heat flux correlation was proposed. 

4.2.Results And Discussion  

Susceptible heat transfer governance such as the radial position, heat flux, mass flux and 

inlet temperatures were experimentally studied to understand their influences of the heat transfer 

rate of sCO2. The range of operations is illustrated in Table 5 with the results discussed in the 

preceding section. 

Table 5: Experimental Inlet conditions 

Parameter Range 

Radial position (r/d) 0.21, 1.44, and 2.89 

Heat flux (W/cm2 K) 0 ~ 140 

Mass flux (kg/cm2 s) 0.7 ~ 2.4 

Pressure (MPa) 5.3, 5.9, and 6.7 

Mass quality 0 ~ 1 
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4.2.1. Boiling Curve 

The boiling curves for most of the experiments performed in this study are depicted in Fig. 

5. Although no clear indication of the flow visualization is shown in this study, the ONB observed 

through the boiling curves suggests that flow boiling of the CO2 occurred close to the inlet after a 

small heat flux (< 7.4 W/cm2 K) was generated from the heater as a result of the fluid’s inlet 

thermodynamic properties corresponding approximately to its saturation condition. The slope, 

which is directly related to the heat transfer coefficient, and the critical heat flux depended on the 

radial position, heat flux (for the HTC), mass flux, and saturation temperature. (Note that Figs. 

5(b) and 5(c) were inferred from the area-averaged ∆Tsat). For low mass fluxes, such as for G = 

1.0 kg/cm2s, ONB was assumed to have started rapidly at the inlet due to the presence of a thicker 

boundary layer leading to a warmer fluid near the wall, and thus, necessitating less heat to initiate 

boiling. Some temperature overshoot was observed at the higher two mass fluxes (G = 1.5 kg/cm2 

s and 2.4 kg/cm2 s) before ONB. 
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(a)                                                                                          (b) 

 

Figure 39: Boiling curves – (a) radial position effect (Tin=21.2 ℃, Tsat = 21.5 ℃, G= 1.0 

kg/cm2s); (b) mass flux effect (Tin=21.2 ℃, Tsat = 21.5 ℃, ravg = 0.4); (c) pressure effect (G= 

1.0 kg/cm2s, ravg = 0.4) 

4.2.2. Heat Flux and Radial Position Effect 

Here the heat flux varied from 0 ~ 100 W/cm2 at an inlet temperature of 21.2 ℃ and a 

saturation temperature (Tsat) of 21.5 °C, corresponding to an inlet saturation pressure (Psat) of ~5.9 

MPa, and a mass flux of 1.0 kg/cm2 s. Figure 40(a) depicts the surface temperature as a function 

of radial position and heat flux. The increase in the local surface temperature was incremental with 

increasing heat flux at all radial positions before abruptly increasing above heat fluxes of 74.8 

W/cm2, 47.4 W/cm2, 38.9 W/cm2 with respect to RTD1, RTD2 and RTD3, respectively. The local 

HTC decreased radially at selected heat fluxes as seen in Fig 6(b). For single-phase flow, this is 

associated with the influence of the jet hydrodynamics for which a more pronounced impingement 

effect at the stagnation region is present. For flow boiling an additional factor is triggered that is 

associated with the liquid-to-vapor phase change process pre-CHF that can be dominated by 

nucleate boiling or convective boiling. If the inlet enthalpy is insufficient for ONB at the stagnation 
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zone, but sufficiently high for boiling inception at the wall jet region, it is conceivable that the 

HTC will increase downstream. However, this was not observed in this study primarily because 

the hydrodynamic effect of the impingement jet overshadowed the liquid to vapor phase change 

effect leading to a decline in the local HTC with increasing radial position.    

The local and area-averaged HTC as, respectively, depicted in Fig. 40(c) and 40(d) were 

significantly increased with heat flux to a peak before a drastic decline is observed. Such 

dependency has always been attributed to the dominance of nucleate boiling. However, the 

transition from nucleate boiling to convective is expected to occur at lower mass qualities than 

those observed here. Since in this study the increase in the heat flux was also associated with 

increase in mass quality, the transition from nucleate boiling to convective boiling probably 

occurred at lower mass quality than those observed in the peaks (x = 0.44 to 0.81) shown in 

Fig.40(c). Thus, the sharp drop in the HTC, which suggests the arrival of a CHF condition, 

occurred during convective boiling and is a result of dry-out.    

 

(a)                                                                                          (b) 
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(c)                                                                             (d) 

Figure 40: Effect of radial position and heat flux at xin= 0.002. (a) local surface temperature 

distribution vs. heat flux. (b) local HTC vs. dimensionless radial position at selected heat fluxes. 

(c) local HTC vs. heat flux. (d) average local surface temperature 

  

 

Chen et al. [30] reported similar results with flow visualization showing how the boiling area 

propagated from the wall jet to the stagnation region in their study of jet impingement boiling 

cooling with CO2. Other studies [20, 37, 42, 43] also reported a similar trend in the HTC with the 

heat flux regardless of the working fluid and/or cooling geometry. The CHF are also dependent on 

the radial position as earlier depicted in Fig 5(a) and Fig. 6(c). The CHF is expected to start at the 

exit and gradually propagate upstream with increasing heat flux as a result of a higher mass quality 

downstream, thus, the CHF decrease with increasing radial position.  
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4.2.3. Mass Flux Effect 

A heat flux of 47.93 W/cm2  K was set constant while the mass flux varied from 0.7 kg/cm2s 

to 1.6 kg/cm2s at an inlet temperature of 21.2 ℃ and a pressure of ~5.9 MPa. The superheat 

temperature decreased for all RTD locations with mass flux, as shown in Fig. 41(a), suggesting 

that convective boiling, together with nucleate boiling, was also an important mechanism 

controlling the heat transfer process. However, locations at or closer to the stagnation region were 

usually more influenced by the mass flux. For example, the differences between the maximum and 

minimum superheat temperatures were approximately 3.1 ℃, 2.0 ℃ and 1.0 ℃ with radial 

positions. In the position furthest away from the stagnation zone (i.e., at RTD3) the HTC was only 

increased by approximately 24% from G = 0.7 kg/cm2s to G = 1.6 kg/cm2s, as compared to an 

approximate 74 % and 169 % for RTD2 and RTD1, respectively. The area-averaged HTC increased 

by 65.1 % between G = 0.7 kg/cm2s and G = 1.6 kg/cm2s. The larger increase in the HTC near the 

stagnation zone suggests that in this region, although the mass quality was the lowest (xr=0.39), 

convective boiling effects were significant. This is perhaps because the flow in all RTD locations 

already transitioned to convective boiling and the stagnation zone was more sensitive to mass flux. 

Nusselt number correlations for single-phase flow typically separate the stagnation region from 

the wall jet region [55, 119]. According to Womac et al. [55], the single-phase Nusselt number in 

the stagnation zone is typically a function of Re0.5 while in the wall jet region it is slightly more 

dependent on the Reynolds number (Re0.532), which seems to contradict the trend observed here. It 

is being reported from chapter 3 that there exist a significant sensitivity of the HTC to mass flux 

especially in the stagnation region with an estimated average Reynolds number dependency of 
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0.61; this could be attributed to the increase in the local HTC with mass flux at RTD1 as observed 

in this experiment.   

It should be noted that conflicting results pertinent to the effect of the mass flux on the boiling 

curves have been reported before. Zhou and Ma [49] reported little effect of jet velocity on 

submerged jet boiling heat transfer. Similarly, Cardenas and Narayanan [120] reported that jet 

velocity doesn’t affect the boiling curve but influences the CHF. These reports have been attributed 

to fully developed region where the hydrodynamics of the fluid is not apparent and the major factor 

governing the heat transfer is the bubble ebullition process. Chen et al. [121] also reported that the 

mass flux effect on the heat transfer coefficient disappeared when the flow transitioned from 

single-phase to two-phase. However, other studies, such as [41, 44], reported a significant effect 

of the mass flux on both the boiling curve in fully developed region as well as a greater influence 

on the CHF and ONB in the nucleate boiling regimes — these studies reported an overall better 

heat transfer performance with increasing mass flux. Nonetheless, this study reports a significant 

effect of the mass flux on the HTC.  

To identify the CHF conditions, the area-averaged HTC was examined while varying the heat flux 

to identify a notable drastic surface temperature increase at selected mass flux. Three mass fluxes 

of 1.0 kg/cm2s, 1.5 kg/cm2s and 2.4 kg/cm2s were examined over a heat flux from 0 up to 140 

W/cm2. As depicted in Fig. 41(d), while the CHF increased with mass flux, the area-averaged HTC 

only increased pre-CHF condition and the mass flux effect diminished after transition. Likewise, 

most of the increase in the area-averaged HTC might be due to the increased heat flux suggesting 

an overall reduced sensitivity of the HTC to the mass flux for flow boiling process.  
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(a)                                                                                                      (b) 

 

 

Figure 41: Mass flux effect on flow boiling of CO2. (a) local superheat temperature vs. mass flux 

(b) local HTC vs. mass flux (c) area-averaged HTC vs. mass flux and surface temperature. (Tin = 

21.2 ℃, psat = 5.9 MPa, q″ = 47.93 W/cm2K) (d) Mass flux effect on HTC of flow boiling of CO2 

at varying heat fluxes 

 

4.2.4. Pressure Effect 

Pressure effect was examined for pressure ranging from 5.3 to 6.7 MPa, corresponding to 

saturation temperatures of 16.5 ℃ to 26.7 ℃ from a vapor quality of 0.3 ~ 1.0 over a heat flux of 

7.4 ~ 100 W/cm2 and a constant mass flux of 1.0 kg/cm2s (Fig 39(c)). A shift in the boiling curve 

to the left with pressure (i.e., saturation temperature) is notable, depicting a significant dependency 
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of the curve slope (i.e., the HTC) on the pressure. Figure 42 shows the area-averaged HTC as a 

function of the averaged exit vapor quality (�̅�𝑜𝑢𝑡) for the three pressures. The area-averaged HTC 

mostly increased with pressure at low qualities pre-CHF and post-CHF conditions. This increase 

at low mass qualities was a result of a more rigorous bubble ebullition process at the liquid sub-

layer region with increasing pressure. In a cooling geometry different from a jet impingement, 

Choi et al. [122] observed similar trend in the HTC with pressure at low mass qualities, attributing 

it to an enhanced activation of nucleate boiling. Likewise, several other studies [93, 123] about the 

effect of reduced pressure on the HTC in nucleate boiling suggested a pressure-HTC correlation 

for CO2 where the intensity of the nucleate boiling is highly dependent on the fluid pressure. The 

increase in the HTC with pressure could also be attributed to the liquid to vapor density ratio, 

which decreased as the saturation temperature (i.e., pressure) increased. As suggested by Yun 

[124], the increase in the HTC could also be attributed to a decrease in surface tension with 

saturation temperature supporting a more consistent and rigorous bubble ebullition process with 

the associate enhanced heat transfer. 
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Figure 42: Area-averaged HTC for three pressures as a function of averaged exit vapor quality. 

(q″ =7.4 ~ 100 W/cm2, G = 1.0 kg/cm2 s) 

4.2.5. Comparison To Available Correlations 

Table 6 lists several CHF correlations for jet impingement boiling that considered the jet 

velocity (u), liquid density (ρf), vapor density (ρg), surface tension (σ), nozzle diameter (d), 

distance of the orifice from the heater (i.e., standoff), and/or the heater diameter (dH). Most of these 

correlations were derived from experimental studies of water and refrigerants, such as R12 and 

R113. These correlations were compared to the experimental data, as depicted in Fig. 43, where 

the heater’s length from [125, 126] was approximated as the heater diameter. Most of the 

correlations over-predicted the experimental data except for Katto and Ishii [126], which 

underpredicted the data with a MAE of -47.43%. These discrepancies could be because of the fluid 

thermal properties and/or the jet velocity range being used in developing the correlations. While 

the correlation by Katto and Ishii [126] underpredicted the experimental data, it also offered the 

closest MAE.  
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Figure 43: Comparison to available correlations 

 

Table 6: Available CHF correlations 

Source  Correlation MAE 

(%) 

 

Zhang et al  

[27] 

  

𝑞ʺ𝐶𝐻𝐹

𝐺ℎ𝑓𝑔
= 0.16 (

𝜌𝑔

𝜌𝑓
)

0.399

(
2𝜎𝜌𝑓

𝐺2𝑑
)

0.267

(1 +
𝐿

𝑑
)

−0.44

 

 

 

 

167.23 

Qui and Liu 

[47] 
𝑞ʺ𝐶𝐻𝐹

𝐺ℎ𝑓𝑔
= 0.130 (1 +

𝜌𝑔

𝜌𝑓
)

1/3

(
𝜎𝜌𝑓

𝐺2𝑑
)

1/3

(
𝜌𝑔

𝜌𝑓
)

1.4/3

 

 

 

60.88 

Liu and Zhu  

[99] 
𝑞ʺ𝐶𝐻𝐹

𝐺ℎ𝑓𝑔
= 0.132 (1 +

𝜌𝑔

𝜌𝑓
)

1/3

(
𝜎𝜌𝑓

𝐺2𝑑
)

1/3

(
𝜌𝑔

𝜌𝑓
)

1.4/3

 

 

 

63.36 

Haramura 

and Katto 

[127] 

𝑞ʺ𝐶𝐻𝐹

𝐺ℎ𝑓𝑔
= 0.175 (

𝜌𝑓

𝜌𝑔
)

0.533

(
𝜎𝜌𝑓

𝐺2𝑑𝐻
)

1/3

(1 +
𝜌𝑔

𝜌𝑓
)

1 3⁄

 

 

 

292.67 
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Wang and 

Monde 

[125] 

𝑞ʺ𝐶𝐻𝐹

𝐺ℎ𝑓𝑔
= 0.193 (

𝜌𝑓

𝜌𝑔
)

0.533

(
𝜎𝜌𝑓

𝐺2𝐿
)

1/3

 

 

 

299.92 

Katto and 

Ishii [126] 
𝑞ʺ𝐶𝐻𝐹

𝐺ℎ𝑓𝑔
= 0.0164 (

𝜌𝑓

𝜌𝑔
)

0.867

(
𝜎𝜌𝑓

𝐺2𝐿
)

1/3

 

 

 

-47.43 

Mitustake and 

Monde  

[128] 

𝑞ʺ𝐶𝐻𝐹

𝐺ℎ𝑓𝑔
= 0.221 (1 +

𝜌𝑓

𝜌𝑔
)

0.645

(
2𝜎𝜌𝑓

𝐺2(𝑑𝐻 − 𝑑)
)

0.343

(1 +
𝑑𝐻

𝑑
)

−0.364

 

 

 

161.09 

 

 

4.2.6. New Correlations 

Several boiling studies [45, 111] correlated the heat flux as: 

𝑞″ = 𝐶1∆𝑇𝑠𝑎𝑡
𝑚  (26) 

and the area-average HTC as:  

ℎ𝑎𝑣𝑔 = 𝐶2∆𝑇𝑠𝑎𝑡
𝑛  (27) 

where ∆Tsat is the average superheated surface temperature (𝑇𝑠,𝑖 − 𝑇𝑠𝑎𝑡
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ). The coefficients C1, C2, 

and m are predicted by curve fitting experimental data. This type of correlation was used in the 

current study up until the CHF condition and yielded the following relation: 

𝑞″ = 0.81∆𝑇𝑠𝑎𝑡
2.81 (28) 

where qʺ is in W/cm2 and ∆Tsat is in ℃ (or K). This correlation is valid for a ∆Tsat range of 

2.5 ℃ <  ∆𝑇𝑠𝑎𝑡 < 4.5 ℃ 
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In comparison, Wolf et al. [45] reported a C1 of 0.00637 and an m of 2.95 within a surface 

superheat temperature of 23 ℃ < ∆Tsat < 51 ℃. Figure 44 show the correlations up until the 

CHF condition along with the experimental data. 

A correlation for the area-averaged HTC was also obtained by a least square fit according to:  

ℎ𝑎𝑣𝑔 = 0.75𝑞″0.71 (29) 

where havg is in W/cm2·K and qʺ is in W/cm2. This equation is valid for 

7.4 𝑊/𝑐𝑚2 ≤ 𝑞″ ≤ 48 𝑊/𝑐𝑚2 

For comparison, Wolf et al. [45] also reported a value of 0.052 for C2 and an n value of 0.87 for a 

heat flux range of 100 < qʺ < 640 W/cm2. 

  

(a)                                                                                     (b) 

Figure 44: Correlation for nucleate boiling regime; (a) q″ ∝ ∆Tsat, (b) havg ∝ q″ (Tsat = 21.5 

℃, psat = 5.9 MPa, G = 1.0 kg/cm2 s, ravg= 0.4) 
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As a result of the discrepancies with available correlations, a new correlation for a 

dimensionless CHF for flow boiling of CO2 in a micro jet impingement was developed. As 

suggested by [27, 50, 52, 53], this correlation took the following dimensionless form:  

𝑞ʺ𝐶𝐻𝐹

𝐺ℎ𝑓𝑔
= 𝑓 ((

𝜌𝑓

𝜌𝑔
) , (

𝜎𝜌𝑓

𝐺2𝑑
)) (30) 

Similar to [27,50-53], an exponent of 1/3 for the reciprocal of the Weber number (σρf/G
2d) was 

adopted to yield the following CHF correlation: 

𝑞ʺ𝐶𝐻𝐹

𝐺ℎ𝑓𝑔
= 0.22 (

𝜌𝑓

𝜌𝑔
)

0.57

(
𝜎𝜌𝑓

𝐺2𝑑
)

1/3

 (31) 

The coefficients 0.22 and 0.57 for the density ratio (ρf/ρg) were recorded from curve fitting with 

the experimental data. The dependency on the heater dimension was neglected as the values were 

fixed in this experiment. The new CHF equation correlates the experimental data with a MAE of 

±1.4% as seen in Fig 45. 

 

Figure 45: New CHF correlation vs experimental data 
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4.2.7. Comparison to single-phase  

Fig 46 shows the the area-avereged HTC observed in a single phase (sCO2) and two-phase 

(flow boiling) at a mass flux of 1.0 kg/cm2 over a heat flux of 0 ~ 100 W/cm2 and an inlet 

temperature of 21.2 ℃. The aim of this investigation was to further support the flow boiling’s 

enhacemnt on the heat transfer performace of CO2. As observed, there is a singifacnt increase 

(~283 %) in the area-averaged HTC while operating in the two phase condition mostly at the 

nucleate boiling regime. The ONB began rapilly as a result of the inlet conditions almost simiar to 

the saturation conditions of the fluid at a pressure ~ 5.9 MPa. The increase in the area-averaged 

HTC with increasing heat flux is as a result of the activation of more nucleate boiling sites with 

increasing heat flux. Correspondingly, with increasing the heat flux, it is assumed that the rate at 

which the bubbles are generated are higher than the detachment rate causing the heavy bubbles to 

collapse, and upon settling, the colder fluid from the jet is prevented from cooling the heated 

surface. As a consequence, this non-heated cold fluid distorts the heat transfer causing a decline in 

the HTC. The point where this condition begins is marked at the CHF mark on the two-phase trend 

which depicts the departure from the nucletae boiling characterized by a drastic decline in the area-

averaged HTC. Although flow boiling is always a better cooling process, its is usually used as the 

last resort in engineering applications as a result of the physical complexity and its depedncy on 

quite a number of parameters. 
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Figure 46: Comparison to single phase 

4.3.Conclusion 

- The boiling curves, CHF, and HTC were influenced by the radial position, heat flux, mass 

flux and saturation temperature; 

- The local and area-averaged HTC increased with heat flux with ~300% increase from 0 

W/m2 K heat flux, up until the CHF was triggered due to dryout; 

- The CHF decreased with increasing radial position as a result of an increase in the outlet 

mass quality; 

- The CHF and HTC increased with increasing mass flux; 

- The area-averaged HTC increased with increasing pressure mostly at low mass qualities as 

a result of a more rigorous bubble ebullition process; 

- Flow boiling of CO2 offered higher HTC of up to 283% before the CHF condition 

- Most available correlations overpredicted the CHF, therefore, a new CHF correlation for 

flow boiling of CO2 in a jet impingement with a MAE of ±1.4% was proposed. 
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Conclusively, we were able to experimentally investigate the heat transfer properties of CO2 in its 

two-phase region in a microjet impingement with enhancement supporting the hypothesis. 

Likewise, a new CHF correlation was proposed for further research and industrial applications 
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CHAPTER FIVE: SINGLE-PHASE CO2 IN MULTIPLE JET 

IMPINGEMENT  

5.1.Introduction 

The development of array of impinging jets resulted from the radial decrease in the heat 

transfer coefficient for as single jet has reported in prior chapters. In other to assume more 

consistent temperature distribution over the heater, the jet configuration can include a number of 

jets properly positioned over the heater, this configuration allows for an even spread of the jets 

over the heater, giving to a rise in a uniform and/or higher HTC. The advantage of this over the 

single jet is tied to the industrial adoption and utilization where one single jet is not enough based 

on the size of the heat dissipating element.  

This chapter explicitly reported the experimental investigation of super critical carbon 

dioxide in an array of jet within a defined micro domain over varying parameters such as the heat 

flux, radial position, mass flux and inlet pressure. Specific comparisons were also made to the 

single jet counterpart (chapter 3)  

 

5.2.Results And Discussion  

Susceptible heat transfer governance such as the radial position, heat flux, mass flux and inlet 

pressures were experimentally studied to understand their influences of the heat transfer rate of 

sCO2 in a jet array. The range of operations is illustrated in Table 8 with the results discussed in 

the preceding section. 
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Table 8: Experimental Inlet conditions 

Parameter Range 

Radial position (r/d) with 

reference to the center jet 

0.21, 1.44, and 2.89 

Heat flux (W/cm2 K) 0 ~ 80 

Mass flux (kg/cm2 s) 1.0 ~ 3.2 

Pressure (MPa) 7.7, 8.8, and 10.3 

 

5.2.1. Heat Flux and Radial Position Effect 

The heat flux effect was investigated over a heat flux increment of 0 ~ 80 W/cm2, at a 

constant fluid pressure of 8.0 MPa – much higher than the supercritical pressure of CO2, an inlet 

temperature of 21.7 ℃, and a constant mass flux of 1.1 kg/cm2 corresponding to a Reynolds 

number of 40,600. Fig 47(a) depicts the surface temperature distribution as measured by the RTDs 

over the experimented heat flux range and the corresponding local HTC. There exists a consistent 

temperature distribution over the heater up until a heat flux of ~ 50 W/cm2. With further increase 

in the heat flux beyond this region, a notable deviation is observed with RTD3 measuring the 

highest temperature. As shown in chapter 2, RTD1 was totally covered by the center jet while 

although the spatial distribution of the other jets was concentrically positioned on RTDs 2 and 3, 

there exists surface areas not fully covered the jets. These areas are assumed to behave like the 

wall jet region as observed in a single jet or represent the upwash region in a multi-jet 

hydrodynamics. The upwash effect is generated due to the colliding jets and the entrainment of 

ambient air into the flow [59]. This effect has been proven to be dependent on the interjet spacing 

(S/d) with its strength deceasing with an increase in the S/d. Therefore, with an interjet spacing of 
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1., the interactions between the neighboring jet were more pronounced degrading the convective 

heat transfer ability of the fluid with further increase in the heat flux.  

  

(a) (b) 

 

 

(c)            (d) 

 

Figure 47: (a) Local surface temperature as a function of heat flux; (b) Local heat transfer 

coefficient as a function of heat flux. (p = 8.0 MPa, Tin= 21.7°C ,G = 1.1 kg/cm2s W/cm2). (c) 

Average heat transfer coefficient and average surface temperature as a fun 

 

 

Fig 47(b) correspondingly shows the calculated local HTC, depicting a local maxima of about 2.5 

W/cm2 K at RTDs 1 and 2. There exists an interplay between RTDs 1 and 2 in terms of the 
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maximum local HTC with RTD2 superseding RTD1 in the first quarter of the experiment attributed 

to the multi-jet effect. Contrary to a single jet where the local HTC has been proven to radially 

decrease with an increasing distance from the stagnation zone, multi-jets behave quite differently 

as the distribution of the jets incites a number of stagnation zones within the overall 

hydrodynamics. Similarly, as expected, the local HTCs at all radial position increased until a peak 

before a gradual decline supported by recent research [100, 107]. Although a more uniform 

temperature distribution was recorded over the heater, the interject spacing, multi-jet 

hydrodynamics and jet arrangement were assumed to have played an important role in the heat 

transfer rate. 

 

5.2.2. Mass Flux Effect 

Quantitative assessment of the mass flux was conducted over a mass flux range of 1.0 to 

3.3 kg/cm2 s at an inlet pressure of 8.0MPa, an inlet temperature of 21.7 ℃, and a constant heat 

flux of 28.35 W/cm2. Depicted in Fig 48(a) is the local surface temperatures over the heater as 

measured by the RTDs. As expected, the temperatures declined with increasing mass flux as a 

result of increased turbulence associated with increasing the Reynolds number. Similar to the 

observation in the heat flux effect, RTD1 recorded the least temperatures due to its sensor fully 

covered by the center jet. Correspondingly, the effect of the multi jet is noticeable as the maximum 

temperature difference between RTDs 1 and 3 was about 4 ± 1℃. Fig 48(b) shows the area-

averaged HTC with the corresponding averaged temperature over the investigated mass flux. A 

maximum area-averaged HTC of 3.3 W/cm2 k was recorded at a Reynolds number of 90,000 with 

surface temperature farther from the pseudocritical temperature. This observation undermines the 
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heat flux effect on the HTC as the trend was significantly driven by the mass flux. As seen the 

area-averaged HTC continued to increase regardless of its proximity to the pseudocritical 

temperature line. Similar observation was observed in its single jet counterpart both in micro 

(chapter 3) and macro scale [107].  

 

(a)                                                                            (b) 

Figure 48: Mass flux effect (a) local surface temperature with increasing mass flux (b) Area-

averaged HTC and temperature distribution with increasing heat flux (p = 8.0 MPa, T_in= 

21.7°C ,q″ = 28.35  W/cm2) 

 

 

5.2.3. Inlet Temperature Effect 

The fluid inlet pressure was varied from 7.7 MPa to 10.3 MPa – much higher than the 

supercritical pressure of 7.37 MPa over a heat flux of up to 80 W/cm2 at an inlet temperature of 

21.7 ℃, and a mass flux of 1.1 kg/cm2 s. (Note that the maximum pressure drop recorded during 

the experiment was ~ 0.13 MPa). Fig 8(a) depicts the measured area-averaged HTC and surface 

temperature over the varied pressures with increasing the heat flux. Similar to the aforementioned 

curve in the heat flux investigation, the HTC at each isobaric line increased to a peak before a 
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decline with increasing heat flux. In addition, it is observed that the area-averaged HTC increased 

with increasing the inlet pressure with a peak HTC of ~ 3 W/cm2 K at 10.3 MPa pressure. This 

increase is attributed to the proximity to the pseudocritical temperature line where the specific heat is 

maximum. According to Adeoye et al [100], the pseudocritical temperature is defined according to; 

𝑇𝑝𝑐 = −120.9 + 6.124𝑝 − 0.1657𝑝2 + 0.01773𝑝2.5 − 0.0005608𝑝3 ℃ (32) 

Where p is the pressure in bar. Therefore, for a pressure of 7.7,8.8 and 10.3 MPas, the resulting 

Tpc are respectively 34.4 ℃, 40.66 ℃ and 50.02 ℃. Equation 22 states that the pseudocritical 

temperature increases with pressure, as a result, the pseudocritical heat flux (q″pc) – defined as the 

heat flux needed to bring the surface temperature around the pseudocritical temperature, would 

increase with a pressure increase, setting a much higher threshold for the heat transfer to assume a 

peak according to h α q″ and the specific heat contribution. 

 

Figure 49: Pressure effect at varying heat flux 
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5.2.4. Comparison to Single Jet and New Correlation 

To further analyze the heat transfer properties of the multi-jet, comparison was made with 

the single jet under similar conditions. The Nusselt number correlation as predicted in chapter 4, 

and Equation 25 was compared to that recorded in this chapter. As shown in Fig. 49 the exist a 

notable deviation at both constant Reynolds number Fig. 49(a) and dimensionless heat flux Fig. 

49(b) with the single jet correlation over predicting the heat transfer rate. This observation is 

somewhat counterintuitive to the proposed hypothesis, as a multi-jet configuration incites a more 

uniform HTC over the heat dissipating devices leading to a higher area-averaged HTC. However 

there exist a number of driving potentials in the multi-jet hydrodynamics which significantly 

govern the heat transfer ability. Of these factors, is the interjet spacing which contributes to the 

upwash effect as detailed in Chapter 1. It is assumed that for an interjet spacing of 1.5 as recorded 

in this experiment, the influence of the neighboring jet is more dominant, degrading the overall 

heat transfer process. Although, the trend of the heat transfer is similar peaking at a ζ = 1, This 

further validates the polynomial curve utilized in predicting the heat transfer process.  Therefore, 

for multi jet configurations, there exists an added driving potential “S/d” in its prediction 

substituted for the standoff expression (r/d) as expressed in Equation 33 which fits the 

experimental result with a reduced MAE of 0.54. Likewise, there is a reduced dependency on the 

Reynolds number which is also attributed to the degradation n the overall heat transfer process 

brought about by the jet-to-jet interaction. 

𝑁𝑢𝑎𝑣𝑔 = 0.02𝑃𝑟0.42(𝑆
𝑑⁄ )−4.4𝑅𝑒0.48(−1.2𝜁4 + 14.98𝜁3 − 63.53𝜁2 + 95.56𝜁 + 22.25)0.94  (33) 

valid for: 

30,000 ≤ 𝑅𝑒 ≤ 90,000 
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0 ≤ 𝜁 ≤ 5.5 

  

(a) (b) 

 

Figure 50: Comparison with single jet and proposal of new correlation (a) constant Reynolds 

Number (a) constant dimensionless heat flux 

5.3.Conclusion 

The conclusion from this experiment is heighted below  

- The multi jet behaved similar to the single jet with increasing both the heat flux and mass 

flux  

- There exists a strong influence of the interjet spacing on the overall heat transfer rate as a 

smaller S/d limited the heat transfer ability when compared with the single jet  

- An increase in the pressure further increased the heat transfer coefficient as a result of an 

increased pseudocritical temperature threshold where the maximum temperature is 

achieved  

- The single jet correlation overpredicted the heat transfer ability which was further corrected 

by factoring in the interjet spacing effect.  
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CHAPTER SIX: FUTURE WORKS AND CONCLUSION 

The heat transfer characteristics of carbon dioxide in both its single phase and two-phase 

conditions were experimentally studied in a micro single and multi-impinging jets. The heat 

transfer ability was estimated based on the temperature changes and power applied to the heat 

dissipating device. The heat dissipating device and temperature measurement sensors consisted of 

a serpentine heater and three Resistance Temperature Detectors to simultaneously supply heat and 

measure the temperature changes as a result of the impinging effect. The investigation was varied 

over a number of susceptible parameters such as the radial position, heat flux, mass flux, inlet 

temperature and pressure. The highlighted result from the experiments are summarized below 

- For single phase cooling, there exist a strong dependence on the heat flux with the 

maximum heat transfer coefficient expected around the pseudocritical region – This region 

is characterized by a drastic jump in the specific heat which has been analyzed to contribute 

to more than half of the temperature distribution. Therefore, for optimum results, work 

must be done to raise the surface temperature with close proximity to the pseudocritical 

temperature of the fluid. 

- With increasing the mass flux, a much higher heat transfer rate, CHF and ONB can be 

achieved in both single and two-phase conditions. In the single phase, the increase is as a 

result of an increased turbulence in the flow depicting a stronger hydrodynamic profile. 

While for the two-phase, other factors such as the rate of bubble generation and collapse 

together with the increased turbulence are suspected to have contributed to the heat transfer 

process  
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- Flow boiling can improve the heat transfer process due to its ability to maintain its 

temperature with increasing the heat flux up until the CHF where the effect is greatly 

degraded.  

- The pseudocritical heat flux defined as the heat flux needed to bring the surface temperature 

around the pseudocritical condition is highly dependent on the inlet pressure which further 

increases the maximum HTC possible with a pressure increase  

- There exists a strong contribution of the interjet spacing on the overall heat transfer rate 

due to colling jets – a consequence of jet-to-jet interaction.  

Despite the promising enhancement in heat transfer brough about by these cooling technology, 

major issues regarding its adoption still exist. For example, the shoot up of temperature right after 

the CHF condition during flow boiling impacts its industrial adoption. Although many 

technologies have adopted phase change materials, boiling and condensation in its cooling 

systems, however with at very high heat fluxes, the devices could fail due to a dramatic increase 

in the temperature which could lead to a sudden and unexpected undermined performance. Other 

factors to reduce these possibilities should be further investigated. Likewise, in the line of the multi 

jet configuration, careful parametric study needs to examine specific contribution of the interjet 

spacing to the overall heat transfer process. This study can analytically dictate the optimum 

conditions with respect to the interjet spacing when working with multi jets. In addition, the 

turbulence generated with the cooling micro domain can be further improved my introducing 

several disturbances in the flow such as cavities, pores, pin fins, etc.  
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