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ABSTRACT

This dissertation considers some of the advantages, and limits, of applying quantum com-

puting to solve two important graph problems. The first is estimating a graph’s quantum

chromatic number. The quantum chromatic number is the minimum number of colors neces-

sary in a two-player game where the players cannot communicate but share an entangled state

and must convince a referee with probability one that they have a proper vertex coloring.

We establish several spectral lower bounds for the quantum chromatic number. These lower

bounds extend the well-known Hoffman lower bound for the classical chromatic number.

The second is the Pattern Matching on Labeled Graphs Problem (PMLG). Here the objective

is to match a string (called a pattern) P to a walk in an edge labeled graph G = (V,E). In

addition to providing a new quantum algorithm for PMLG, this work establishes conditional

lower bounds on the time complexity of any quantum algorithm for PMLG. These include

a conditional lower bound based on the recently proposed NC-QSETH and a reduction

from the Longest Common Subsequence Problem (LCS). For PMLG where substitutions

are allowed to the pattern, our results demonstrate that (i) a quantum algorithm running

in time O(|E|m1−ε + |E|1−εm) for any constant ε > 0 would provide an algorithm for

LCS on two strings X and Y running in time Õ(|X||Y |1−ε + |X|1−ε|Y |), which is better

than any known quantum algorithm for LCS, and (ii) a quantum algorithm running in

time O(|E|m 1
2
−ε + |E| 12−εm) would violate NC-QSETH. Results (i) and (ii) hold even when

restricted to binary alphabets for P and the edge labels in G. Our quantum algorithm is for

all versions of PMLG (exact, only substitutions, and substitutions/insertions/deletions) and

runs in time Õ(
√

|V ||E| · m), making it an improvement over the classical O(|E|m) time

algorithm when the graph is non-sparse.
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CHAPTER 1: INTRODUCTION

The problems studied in this dissertation lie in the intersection of quantum computing and

computational problems on graphs. There are two main problems. The first is the quantum

chromatic number, a generalization of the traditional chromatic number of a graph to the

quantum setting. The quantum chromatic number relates to two-party games and the min-

imal amount of information that must be shared between the parties to successfully win the

game. Here we prove new lower bounds on this value. The second is the problem of (approx-

imately) matching a string or text to a walk within an edge labeled graph. We establish new

computational complexity results that imply the conditional hardness of this problem even

for quantum computers. We are also able to provide a quantum algorithm that provides a

speed up over the traditional algorithm for many graphs.

These results reveal some of the limitations, and advantages, of applying quantum mechanics

to solve problems on graphs. For the quantum chromatic number, we obtain a limitation

on how much entanglement can reduce the size of a vertex coloring that two parties must

share in order to convince a third party that they have a proper coloring. It has been shown

that this can be less than the traditional chromatic number when quantum entanglement is

utilized. However, our results provide a new, stronger lower bound on how much smaller this

coloring can be in terms of the eigenvalues of the graph’s adjacency matrix. For the problem

of matching patterns to labeled graphs, we are able to show that for non-sparse graphs a

quantum computer can offer some computational advantage over the traditional solution.

However, a reduction from the longest common subsequence (LCS) problem also suggests

the difficulty of using quantum computing to obtain an algorithm that always outperforms

the classical solution.
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We next present a brief historical overview of the two main problems considered here, as

well as a high-level overview of our results.

Quantum Chromatic Number

The chromatic number of a graph is one of the major classical definitions in graph the-

ory. Aside from applications including scheduling [63] and register allocation [24], finding

a graph’s chromatic number is one of the first problems considered in the study of NP-

completeness, being one of Karp’s original 21 NP-complete problems [55]. The chromatic

number of a graph is the minimum number of distinct integers that must be assigned to the

vertices of that graph such that no two adjacent vertices are assigned the same integer. An

alternative, somewhat more complicated, characterization of the chromatic number can be

given in terms of two-party one-round games as follows (a more formal definition is given

in Chapter 2): Consider two players Alice and Bob, and a referee. The game played by the

three of them is that Alice and Bob are given a graph G = (V,E) and allowed to commu-

nicate and pick a strategy before the first round. After this, Alice and Bob are not allowed

to communicate. Next the referee gives a vertex u ∈ V to Alice and a vertex v ∈ V to Bob.

Alice and Bob must each report an integer, a and b respectively, such that

(i) u = v implies a = b,

(ii) (u, v) ∈ E implies a ̸= b.

Alice and Bob win the game if they can always fulfill these conditions. In order for Alice

and Bob to answer the referee correctly with probability 1, they must assign integers to the

vertices in G, and the minimum number of distinct integers they assign to these vertices is

the chromatic number.
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One way to introduce the quantum chromatic number is through a generalization of the above

game where Alice and Bob are allowed to share an entangled state that they can measure

after being given their query vertex from the referee. This sort of game was studied under

the name pseudo-telepathy [14, 18, 29, 17, 9, 13, 40, 39] before the term quantum chromatic

number was formally defined by Peter Cameron [22] as the minimum number of integers

Alice and Bob need to assign to the vertices of G given that they can share an entangled

state. For some graphs, this can be smaller than the classical chromatic number [22]. In

this way, the difference between the classical chromatic number and the quantum chromatic

number demonstrates how sharing an entangled state can give players increased power in

two-player single-round games.

More recent work on quantum chromatic numbers includes introducing a commuting vari-

ant [68] and a method for computing this commuting variation through solving a sequence of

semi-definite programs (SDPs) [67]. The definition of quantum chromatic number is based

on relativistic field theory, and the idea that the operators used by Alice and Bob to mea-

sure the shared entangled state act on the same space and mutually commute. Since we

will not be establishing any new results on commuting quantum chromatic numbers, we

refer the interested reader to Paulsen et al.’s work [67]. It should be noted that on of the

main motivations for introducing quantum chromatic number is disproving Tsirelson’s con-

jecture by showing that there exists a graph such that its commuting quantum chromatic

number differs from its quantum chromatic number. However, Tsirelson’s conjecture was

subsequently proven false using different techniques [53], undercutting this motivation. It

remains unknown whether the commuting quantum chromatic number can be smaller than

the quantum chromatic number for some graphs. It also remains open whether computing

the quantum chromatic number is even a decidable problem.

In lieu of an algorithm for computing the quantum chromatic number, our results provide a
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lower bound on the quantum chromatic number by utilizing spectral graph theory. Spectral

graph theory is the study of the adjacency matrix or Laplacian matrix of a graph. Spectral

graph theory has shown that the eigenvalues of these matrices can provide fundamental

information on a graph, such as information about its connectivity, number of components,

and chromatic number. We refer the interested reader to Brouwer et al.’s work [16]. Our

result will build on the well known Hoffman lower bound [50] that bounds the chromatic

number of a given graph in terms of the eigenvalues of the graph’s adjacency matrix. Hoffman

proved that for a graph G where its adjacency matrix has eigenvalues µ1 ≥ . . . ≥ µn that

the chromatic number χ(G) satisfies χ(G) ≥ 1 + κ where κ is the smallest integer such that

µ1 +
κ∑

i=1

µn+1−i ≤ 0.

We strengthen this result by proving that χ(G) can be replaced by the quantum chromatic

number, χq(G). We also prove another lower bound for the quantum chromatic number,

χq(G) ≥ 1 + min{g, |µn|
µ2

}

for graphs where µ2 > 0 and where g is the multiplicity of µn, the smallest eigenvalue.

Finally, we investigate implications of these inequalities for the quantum chromatic number

of various classes of graphs such as strongly regular graphs and some non-strongly regular

graphs (defined formally in Chapter 2). For example, we demonstrate that the Kneser graph

(formally defined in Chapter 4) KGp,2 has χq = χ = p− 2.
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Pattern Matching on Labeled Graphs

Pattern matching on labeled graphs (PMLG) is an interesting problem from both an applied

and a theoretical standpoint. The exact case, where the given string or pattern must exactly

match a walk in the given edge-labeled graph can be reduced to the classical problem of

finding whether a nondeterministic finite automata (NFA) accepts a given string. For de-

terministic finite automata (DFA) and other restricted classes of graphs, this problem can

be solved in linear time [37]. For general NFAs, a standard algorithm that keeps track of

the current set of active states works for this task, and there exist several potential improve-

ments [51, 69, 23]. We will consider the more general case where edits, such as substitutions,

insertions, and deletions, can be made to the pattern. This approximate-PMLG was first

considered in the context of matching patterns to hypertext [8, 61, 65]. It has more re-

cently become an increasingly important problem in Computational Biology. This is mainly

due to the use of labeled graphs as multi-genomic references where sets of reads obtained

through sequencing must be mapped to a multi-genomic reference [66, 26, 33, 41, 58, 1] as

well as other applications in computational biology, such as variant calling [25, 32, 49] and

error correction [59, 64]. These data sets are often large, making the quadratic time algo-

rithm discussed next impractical in most cases. In most of the software tools cited above,

seed-and-extend heuristics are used as well to provide increased performance.

From a theoretical viewpoint, the problem has also received recent interest, particularly in

the realm of fine-grained-complexity, described in more detail in Chapter 2. The classical

algorithm for PMLG is a dynamic programming solution equivalent to finding a shortest

path through an alignment graph of size O(|E|m) like that shown in Figure 4.3 in Chapter

4. It was first shown by Equi et al. that an algorithm running in time O(|E|1−εm+ |E|m1−ε)

for any constant ε > 0 would contradict the Strong Exponential Time Hypothesis even for
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directed acyclic graphs (DAGs) in the exact matching case [35]. These results were later

strengthened by Gibney et al. who showed that the same lower bounds can be based on

likely weaker assumptions in circuit complexity [42].

Despite the extent of the applied and theoretical research, PMLG has yet to have been consid-

ered in terms of quantum computing. Several closely related problems have been considered

though. Aaronson et al. considered quantum algorithms for the problem of determining

whether a string is generated by a regular expression [2]. However, these regular expressions

are represented in monoid form rather than has an NFA. For finding exact matches in a

single string, which could be viewed as a path, there exists a quantum algorithm running in

Õ(
√
n +

√
m) time1 for a string of length n and pattern of length m [48]. Applied work

focusing on the implementation of quantum algorithms for DNA read mapping to a single

sequence under Hamming distance was presented in work by Sarkar et al. [70].

We initiate the study of quantum algorithms for PMLG. We look at this problem in terms of

both computational complexity and possible algorithmic improvements arising from quantum

computing. First, we provide a reduction from the longest common subsequence (LCS)

problem on two strings X and Y to approximate PMLG with subsitutions to the pattern

on a labeled graph G = (V,E) over a binary alphabet. This reduction proves that an

algorithm running in time O(|E|1−εm + |E|m1−ε) for ε > 0 would provide an algorithm

running in time O(|X|1−ε|Y |+|X||Y |1−ε) for LCS (faster than any known quantum algorithm

for LCS). Moreover, this reduction implies that no Õ(|E| 12−εm+ |E|m 1
2
−ε) time algorithm is

possible under a proposed variant of the Strong Exponential Time Hypothesis for quantum

computing, NC-QSETH [21] (defined in Chapter 2). We then provide an algorithm running

in time Õ(m
√

|V ||E|), implying that quantum speedup is possible in the case where the

1Õ(t(n)) hides polylogarithmic factors, i.e., t(n) logc n ∈ Õ(t(n)) for all constants c.
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graph is even slightly dense, i.e., |E| = Ω(|V |1+ε). As these combined results suggest, the

reduction from LCS to PMLG creates a sparse graph. A subquadratic reduction from LCS

to a dense graph would provide a new, improved algorithm for LCS, suggesting the difficulty

of finding such a reduction. Moreover, the graph created by the reduction is cyclic. Results

discussed in the conclusion of this dissertation suggest it may be difficult to construct a

reduction from LCS to exact PMLG on DAGs.
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CHAPTER 2: TECHNICAL PRELIMINARIES

This chapter provides the technical background for understanding the results and proofs

presented in the rest of this dissertation. The first section is devoted to the technical pre-

liminaries required for Chapter 3 and the second section is for Chapter 4.

Lower Bounds on Quantum Chromatic Number

There are two equivalent definitions of the quantum chromatic number. The first is in

terms of pseudo-telepathy games, and the second is exclusively in terms of sets of projectors.

Although our results primarily use the second definition, the motivation for the second

definition is best understood through the first. To explain these, we must first provide some

technical preliminaries on linear algebra, graph theory, quantum mechanics, and pseudo-

telepathy games.

Linear Algebra

One of the most fundamental attributes of a matrix are its eigenvalues (also referred to as its

spectrum) and its eigenvectors. These describe subspaces, known as eigenspaces, such that

vectors are only scaled by some constant under the linear transformation represented by the

matrix. The formal definition is presented below.

Definition 1 (Eigenvalues and Eigenvectors). For a matrix A, an eigenvector of A is a

nonzero vector v such that there exists a complex number c where Av = cv. The scalar c is

called the eigenvalue of matrix A corresponding to the eigenvector v.
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The rank of a matrix is the number of non-zero eigenvalues (counting multiplicities). For

symmetric matrices the spectrum of the matrix consists of all real numbers. For a square

matrix A of graph G = (V,E), we use the notation µ↑
1(A) ≤ µ↑

2(A) ≤ · · · ≤ µ↑
n(A) to

denote the eigenvalues of A in increasing sorted order where µ↑
1(A) is the smallest. The same

notation, but without arrows for eigenvalues, means that the eigenvalues are in decreasing

order, so µ1 is the largest and µn is the smallest. The multiplicity of the maximum eigenvalue

µmax is 1 since G is connected.1

For a matrix A, we let aij be the entry on the ith row and jth column of A.

Definition 2 (Trace). The trace of an n×n square matrix A is the sum of its main diagonal,

that is Tr(A) =
∑n

i=1 aii.

The following properties of the trace follow directly from its definition:

• Tr(A+B) = Tr(A) + Tr(B).

• Tr(AB) = Tr(BA).

• Tr(A) is the sum of the eigenvalues of A.

Definitions 3-7 are particularly important for understanding the definitions arising from

quantum mechanics discussed later.

Definition 3 (Tensor Products). Let A be an n×m matrix and B be a p× q matrix. The

1The Perron-Frobenius theorem implies that the maximum eigenvalue µmax has multiplicity 1 because
the adjacency matrix A of the connected graph G is irreducible.
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tensor product of A and B is an (n · p)× (m · q) matrix denoted by A⊗B and defined by

A⊗B =


a11B . . . a1mB

. . .

an1B . . . anmB

 .

Definition 4 (Conjugate Transpose). The conjugate transpose of an n×m matrix A is an

m× n matrix B such that bij = aji for 1 ≤ i ≤ m, 1 ≤ j ≤ n.2 The conjugate transpose of

A is denoted by A†.

Definition 5 (Self-Adjoint). For a square matrix A, if A = A†, then A is called self-adjoint.

Definition 6 (Orthogonal Projector). A square matrix P is an orthogonal projector if

P 2 = P = P †.

Definition 7 (Mutually Orthogonal). A set of square matrices of the same dimension

{P1, . . . , Pn} are mutually orthogonal if PiPj = 0 for all i ̸= j.

Definition 8 (Span). The span of a set of d dimensional vectors V over C consists of all

linear combinations of vectors in V , i.e.,

span V = {x ∈ Cd | v =
k∑

i=1

αivi, k ∈ N, vi ∈ V, αi ∈ C}.

The next type of matrix will come up later in our discussion of quantum computing.

Definition 9 (Unitary). A matrix U is unitary if UU † = I.

2a is the complex conjugate of a.

10



Graphs and Adjacency/Laplacian Matrices

An unweighted, undirected graph with no loops or multiple edges is called a simple graph.

All of the graphs considered in Chapter 3 are simple graphs. For undirected graphs if the

Definition 10 (Adjacency Matrix). Let G = (V,E) be a graph whose vertex set is V =

{v1, . . . , vn}. An adjacency matrix A for G is n× n matrix where aij = 1 iff there exists an

edge from vi to vj and 0 otherwise.

Definition 11 (Degree Matrix). The degree matrix D of a graph G = (V,E) where V =

{v1, . . . , vn} is an n× n diagonal matrix. Letting deg(vi) denote the degree of vertex vi, the

diagonal elements of D are dii = deg(vi) for 1 ≤ i ≤ n. All other entries of D are zero.

Definition 12 (Laplacian Matrix). The Laplacian matrix of a graph G = (V,E) is the n×n

matrix L = D − A, where |V | = n, D is the degree matrix of G, and A is the adjacency

matrix of G.

Figure 2.1: A simple undirected graph to illustrate adjacency, degree, and Laplacian matrices

As an example, the adjacency matrix A, degree matrix D, and Laplacian matrix L of the
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graph in Figure 2.1 are:

A =



0 1 1 1 1

1 0 0 0 1

1 0 0 0 1

1 0 0 0 1

1 1 1 1 0


D =



4 0 0 0 0

0 2 0 0 0

0 0 2 0 0

0 0 0 2 0

0 0 0 0 4


L =



4 −1 −1 −1 −1

−1 2 0 0 −1

−1 0 2 0 −1

−1 0 0 2 −1

−1 −1 −1 −1 4



The following graph related definitions will also be used in Chapter 3.

Definition 13. Let G = (V,E) be a given graph. The set C ⊂ V is said to be a clique if

any two distinct vertices in C are adjacent. A clique C is said to be a maximum-sized clique

if there does not exist a clique with more vertices than C.

For example, in Figure 2.1, a maximum-sized clique is the triangle containing vertices v1, v3,

and v5.

Definition 14 (Clique number). The clique number of a graph G = (V,E), denoted by

ω(G), is the number of vertices in a maximum-sized clique.

Definition 15 (Orthogonal representation). The orthogonal representation of graph a G =

(V,E) is a collection of non-zero vectors xv for v ∈ V satisfying the orthogonality condition

x†vxw = 0 for all (v, w) ∈ E.

Definition 16 (Orthogonal rank). The orthogonal rank of a graph G is the smallest posi-

tive integer ξ(G) such that there exists an orthogonal representation for G using vectors of

dimension ξ(G).

Definition 17 (Normalized orthogonal rank). The normalized orthogonal rank of G is the

smallest positive integer ξ′(G) such that there exists an orthogonal representation, with the
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added restriction that the entries of each vector must all have the same modulus3.

We will also be showing the implications of our lower bounds on the quantum chromatic

number for strongly regular graphs (SRGs), defined below.

Definition 18 (Strongly regular graphs). A graph is strongly regular if there exists integers

λ and µ such that every two adjacent vertices have λ common neighbors and every two

non-adjacent vertices have µ common neighbors.

A graph with v vertices, degree k, and parameters λ, and µ (as defined above), is said to be

in the set SRG(v, k, λ, µ).

Quantum Mechanics

In this subsection, we introduce some necessary notations and definitions from quantum

mechanics.

Bra-ket Notation

We will use ‘bra-ket ’ notation, as is standard in quantum mechanics. An n×1 column vector

will be denoted using the ket notation |ϕ⟩ =


ϕ1

...

ϕn

. Its 1×n conjugate transpose is denoted

3Modulus here refers to the 2-norm ∥·∥2
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using the bra notation ⟨ϕ| =
[
ϕ1 . . . ϕn

]
. An n× n matrix A can be applied to |ϕ⟩ as

A|ϕ⟩ =


∑n

i=1 a1iϕi

...∑n
i=1 aniϕi


The inner product of two n × 1 vectors |ϕ⟩ and |ψ⟩ is defined as ⟨ϕ|ψ⟩ =

∑n
i=1 ϕiψi ∈ C.

The outer product of an n× 1 vector |ϕ⟩ and an m× 1 vector |ψ⟩ is defined as

|ϕ⟩⟨ψ| =



ϕ1ψ1 ϕ1ψ2 . . . ϕ1ψm

ϕ2ψ1 ϕ2ψ2 . . . ϕ2ψm

...
...

. . .
...

ϕnψ1 ϕnψ2 . . . ϕnψm


∈ Cn×m.

States and Superposition

The vectors used in quantum mechanics are referred to as states. In general, a state is a

linear combination (superposition) of other states, formally defined below. Let |i⟩ ∈ Cn be

the n× 1 vector with 1 in the ith row and 0 elsewhere.

Definition 19 (Superposition). A quantum state is a unit vector |ϕ⟩ that is a linear com-

bination of vectors |1⟩, |2⟩, . . . , |n⟩, i.e.,

|ϕ⟩ =
n∑

i=1

αi|i⟩,

where for each i, αi ∈ C, and
∑n

i=1 |αi|2 = 1. The vectors |1⟩, |2⟩, . . . , |n⟩ are called classical

states and the linear combination |ϕ⟩ =
∑n

i=1 αi|i⟩ is a superposition of classical states.
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An ‘operator A’ is a map between two mathematical spaces4. For our purposes, we can view

operators as linear maps between finite-dimensional vector spaces of the same dimension,

and thus, as square matrices. A positive operator can then be defined in several ways. Given

the standard inner product on Cn, a positive (semi-definite)5 operator has the property that

for all v ∈ Cn, ⟨Av|v⟩ =
∑n

i=1

∑n
j=1 aijvjvi ≥ 0. It can be shown that this is equivalent to

all of the eigenvalues of A being non-negative [73].

Definition 20 (Positive Operator-Valued Measure (POVMs)). A set of positive operators

{P1, . . . , Pk} is called a POVM measurement if
∑k

i=1 Pi = In, where In is the n× n identity

matrix.

For example, the operators {|i⟩⟨i| | 1 ≤ i ≤ n} are POVMs of rank 1 since
∑n

i=1 |i⟩⟨i| = In.

The state is measured using a set of POVMs {P1, . . . , Pk} and obtain a measurement (or

outcome) j ∈ {1, . . . , k}. The probability of obtaining outcome j given state |ϕ⟩ =
∑n

i=1 αi|i⟩

is Tr(ρPj) where ρ =
∑n

i=1 |αi|2|i⟩⟨i|.

The last notion we require is entanglement. A quantum state is separable relative to two

sets of basis vectors {|i1⟩, |i2⟩, . . . , |in⟩} and {|j1⟩, |i2⟩, . . . , |jm⟩} if it can be written as the

tensor product

(
n∑

h=1

αh|ih⟩

)
⊗

(
m∑

h=1

βh|jh⟩

)
, αh, βk ∈ C, 1 ≤ h ≤ n, 1 ≤ k ≤ m.

If a state is not separable, it is called entangled.

4The definition of ‘mathematical space’ depends on the properties the space is endowed with, e.g., inner
product space.

5We will omit ‘semi-definite’ and say positive operator A.
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Pseudo-Telepathy Games

A pseudo-telepathy game is a game for two players, conventionally called Alice and Bob.

Formally, it is defined as a six-tuple (X, Y,A,B, P,W ), where X and Y are input sets, A and

B are called output sets. A set P ∈ X×Y is called the promise set. A setW ∈ A×B×X×Y ,

is known as a winning condition, which is a relation between inputs and outputs that must

be satisfied by Alice and Bob whenever the promise is fulfilled.

Before the first round, the players, Alice and Bob, can exchange any information. They are

also allowed to share an entangled state of any dimension. When the game begins, Alice

and Bob are not allowed to communicate anymore. Alice is given x ∈ X and her task is

to produce the output a ∈ A based on x and measurements to the shared entangled state.

Similarly, Bob is given y ∈ Y , and his task is to produce the output b ∈ B based on y and

the shared entangled state. The pair (x, y) is called the question and the pair (a, b) is called

the answer. The question (x, y) is said to be legitimate if (x, y) ∈ P and the answer (a, b)

is said to be appropriate if (x, y, a, b) ∈ W . Alice and Bob will win the round if they are

given a question that is not legitimate or their answer is appropriate, that is (x, y) /∈ P or

(x, y, a, b) ∈ W . Alice and Bob win the game if they win every round. If Alice and Bob have

a winning strategy they are mathematically certain to win every round.

For the quantum chromatic number, we will only consider single-round games.

Quantum Chromatic Number

We recall our discussion of quantum chromatic number from Chapter 2 and see how it

combines with quantum mechanics to provide an alternative definition in terms of orthogonal

matrices.
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Recall from Chapter 1 that a proper vertex coloring of a graph G = (V,E) assigns a natural

number (or color) to every vertex in such a way that if u, v ∈ V and (u, v) ∈ E, u and v are

assigned different natural numbers. The minimum number of natural numbers required to

form a proper graph coloring of G is called G’s chromatic number and denoted χ(G). In the

non-quantum version of our game, Alice and Bob are given a graph G = (V,E) and allowed

to communicate and pick a strategy prior to the first round. Once the first round starts a

referee gives a vertex u ∈ V to Alice and a vertex v ∈ V to Bob. Alice and Bob must each

report an integer, a and b respectively, where the answer is appropriate if and only if

(i) u = v implies a = b,

(ii) (u, v) ∈ E implies a ̸= b.

It can be shown that {1, 2, . . . , χ(G)}, is the smallest set of values that Alice and Bob must

assign to vertices of G in order to have a winning strategy.

Returning to Pseudo-Telepathy games, a natural question (asked by Cameron et al. [22]) is

whether Alice and Bob having a shared entangled state allow them to use fewer, say c, vertex

colors. Given the vertex u, the strategy now adopted by Alice is to measure the entangled

state |ϕ⟩ using the POVMs {Eui : 1 ≤ i ≤ c} and if k is the outcome, report k. Given the

vertex v the strategy now adopted by Bob is to measure the entangled state |ϕ⟩ using the

POVMs {Fvj : j ∈ [c]} and if h is the outcome, report h. Conditions (i) and (ii) from the

definition of the non-quantum game are reflected in the definition of Quantum c-coloring in

terms of these POVMs.

Definition 21 (Quantum c-coloring). A quantum c-coloring of the graph G = (V,E) is two

collections of POVMs {Ev,i : v ∈ V, i ∈ [c]} and {Fv,i : v ∈ V, i ∈ [c]} and entangled state |ϕ⟩

such that for all u, v ∈ V and i, j ∈ [c],
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(i) u = v and i ̸= j implies ⟨ϕ|Eu,i ⊗ Fv,j|ϕ⟩ = 0,

(ii) (u, v) ∈ E implies ⟨ϕ|Eu,i ⊗ Fv,i|ϕ⟩ = 0 for all i ∈ [c].

Definition 22 (Quantum chromatic number). The quantum chromatic number of a graph

G, χq(G), is the smallest c for which a quantum c-coloring exists.

This was further simplified by Cameron et al. [22] who demonstrated that we can assume

the shared entangled state is always the same entangled state and that Alice and Bob share

a single set of POVMs per vertex, {Pv,i : v ∈ V, i ∈ [c]}. The strategy for Alice given the

vertex u is to use the POVMs {Pu,i : i ∈ [c]} for measurement and the strategy for Bob given

the vertex v is to use the POVMs {Pv,i : i ∈ [c]}.

Corollary 1 (Quantum c-coloring). A quantum c-coloring of the graph G = (V,E) is a

collection of orthogonal projectors {Pv,k : v ∈ V, k ∈ [c]} in Cd×d all of the same rank such

that for all vertices v ∈ V ∑
k∈[c]

Pv,k = Id

for all edges vw ∈ E, and for all k ∈ [c], Pv,kPw,k = 0d.

Here the dimension d and the projector’s ranks are not fixed. Based on its previous definition,

χq(G) is the minimum c for which a quantum c-coloring exists over all dimensions d. Letting

d vary allows additional graph parameters to be defined. For a graph G = (V,E), we define

the minimum c for which a quantum c-coloring exists using projectors of rank r (exactly),

and a maximally entangled state of dimension rc as the rank r quantum chromatic number,

χ
(r)
q (G) [22]. Note that bounding the rank r of the projectors and enforcing the bound

χ
(r)
q (G) ≤ c also bounds the dimension d. This is since, for all graphs G, d = χ

(r)
q (G)·r ≤ c·r.

It is also shown in Cameron et al. [22] that for all graphs G that:
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• r < r′ implies χ
(r′)
q (G) ≤ χ

(r)
q (G);

• χq(G) = infr{χ(r)
q (G)}, and

• χ
(1)
q (G) is an upper bound for for χq(G).

A classical c-coloring also gives rise to a quantum c-coloring in dimension d = 1. The

orthogonal projectors in the resulting quantum c-coloring are the scalars 0 and 1. These

operators are rank 1, which implies for all graphs G,

χq(G) ≤ χ(1)
q (G) ≤ χ(G). (2.1)

Moreover, the separation between χ(G) and χ
(1)
q (G) can be exponentially large for a class of

graphs known as Hadamard graphs [71, 72].

Definition 23 (Hadamard Graph, [57]). A Hadamard graph Gn = (V,E) is the graph whose

vertex set is the set of vectors in {0, 1}n. There exists an edge between two vertices iff the

hamming distance of their corresponding vectors is n
2
.

See Figure 2.2 for an example.
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Figure 2.2: The Hadamard graph for n = 4. The vertex 0000 is adjacent to vertices 0011,

0101, 0110, 1001, 1010, and 1100. The corresponding edges are shown in blue.

Another important aspect of the rank r quantum chromatic number is that by bounding the

rank, the problem of checking if χq(G) = c becomes decidable. Its computational complexity

remains unknown, however.

Pattern Matching on Labeled Graphs

Problem Definitions

This section formally defines the PMLG problem and the variants that we will consider.

In this section and Chapter 4 we allow graphs to be multi-graphs with multi-edges and

self-loops.
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Definition 24 (Walk matching a pattern). For a given directed edge-labeled graph G =

(V,E), a walk is a ordered list of edges in E, i.e., e1, ..., em where ei and ei+1 are incident to

the same vertex for 1 ≤ i < m. Edges are allowed to be repeated in a walk. Letting label(e)

denote the edge label for an edge e ∈ E, we say a length m string (also referred to as the

pattern) P [1,m] matches a walk e1, ..., em if P [i] = label(ei) for 1 ≤ i ≤ m.

Definition 25 (Exact Pattern Matching on Labeled Graphs (PMLG-exact)). Given a di-

rected graph G = (V,E), having edges labeled with symbols from an alphabet Σ, a pattern P

of length m also over alphabet Σ, determine if there is a walk in G that matches P .

Let dH(P, P
′) be the Hamming distance between strings P and P ′, i.e., the minimum number

of symbols in P that must be substituted so that the resulting string is identical to P ′.

Definition 26 (Pattern Matching on Labeled Graphs with Substitutions (PMLG-sub)).

Given a directed graph G = (V,E), having edges labeled with symbols from an alphabet Σ, a

pattern P of length m also over alphabet Σ, and δ ≥ 0, determine if there exists a walk on

G that matches a string P ′ such that dH(P, P
′) ≤ δ.

Let dE(P, P
′) be the edit distance between strings P and P ′, i.e., the minimum total num-

ber of symbol insertions, deletions, and substitutions that must be made to P so that the

resulting string is identical to P ′.

Definition 27 (Pattern Matching on Labeled Graphs with Substitutions (PMLG-edit)).

Given a directed graph G = (V,E), labeled with symbols from an alphabet Σ, a pattern P of

length m also over alphabet Σ, and δ ≥ 0, determine if there exists a walk on G that matches

a string P ′ such that dE(P, P
′) ≤ δ.

We use ◦ to denote concatenation. Recall that a subsequence of a string X = X[1] ◦X[2] ◦

· · · ◦X[n] is a string X[i1] ◦X[i2] ◦ · · · ◦X[ik] where 1 ≤ i1 < i2 < · · · < ik ≤ n. Here k is the
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length of the subsequence. A string is called a common subsequence of strings X and Y if

it is a subsequence of both X and Y . Our results for PMLG will make use of the following

well-known problem.

Definition 28 (Longest Common Subsequence (LCS)). Given two strings X and Y and

integer k, determine if there exists a subsequence contained in both X and Y that is of length

at least k.

As discussed in Chapter 1, both PMLG and LCS have been studied in terms of computational

complexity. We next briefly discuss some of the main ideas utilized in fine-grained complexity

that will also appear in this work.

Fine-grained Lower Bounds

Fine-grained complexity is primarily focused on proving conditional hardness results for

problems with polynomial-time solutions. This hardness is most commonly based on pop-

ular conjectures such as the Strong Exponential Hypothesis (SETH) [52], the hardness of

3-SUM [38], and the hardness of the All-Pairs-Shortest-Path problem [76]. Examples of

problems where conditional lower bounds of this sort have been established include the Edit

Distance problem [10, 6], the Longest Common Subsequence problem [4, 5], Subtree Isomor-

phism [3], graph diameter [11], and PMLG [35, 42], to name only a few.

One key aspect of proving a conditional lower bound such as those discussed above is that

the reduction used must be efficient enough to establish the desired hardness result. For

example, consider the case where a Karp reduction from problem A of size n to problem B

is being used, i.e., a single instance of problem B is being creating from the given instance of

problem A. If the conjectured hardness of problem A is that there does not exist a O(n2−ε)
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time algorithm for problem A for any ε > 0, then the reduction should run in strongly sub-

quadratic time. Otherwise, no matter how efficient an algorithm there was for problem B, it

would not (through the reduction, at least) imply a strongly sub-quadratic time algorithm

for problem A. Our reduction from an instance of LCS on strings X and Y to an instance

of PMLG runs in time Õ(|X|+ |Y |), allowing for all the desired hardness results for PMLG

to be established.

The Strong Exponential Time Hypothesis (SETH) is that for all γ < 1 there exists some

k where k-SAT cannot be solved in time 2γn+o(n) [52]. Support for SETH comes from the

best-known algorithms for k-SAT requiring time approaching 2n+o(n) as k increases. This was

first applied to prove the hardness of problems with polynomial-time algorithms by Williams

who reduced it to an intermediate problem known as the orthogonal vectors problem [75]. A

subquadratic time reduction was later provided to edit distance [10] and the longest common

subsequence problem [4], demonstrating that a strongly subquadratic algorithm for either

would contradict SETH. We hold off on the description of the quantum extension of SETH

until after the discussion on quantum computing.

Quantum Computing

Quantum algorithms are often represented as quantum circuits, where the system state is

captured by the state of wires (each representing a basis vector and whose tensor product

makes up the overall system state) and the unitary operators acting on the state are repre-

sented by quantum gates. A quantum circuit consisting of these wires and gates indicates

the order in which the state is acted on by the operators, and thus describes an algorithm.

IBM’s Quisik provides an example of a modern set of programming tools based around this

paradigm [28]. This paradigm is useful for describing fundamental quantum algorithms such
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as Grover’s search, discussed next. However, it is possible for programs written in a high-

level, imperative programming style to utilize quantum computing as subroutines [74], and

under the commonly used assumption of quantum random access memory, also possible for

quantum algorithms to invoke classical algorithm subroutines with only a constant factor of

overhead in terms of the number of quantum gates [7, 19]. In particular, assuming quantum

random access, a classical algorithm running in T -time can be converted into a quantum

subroutine in O(T ) time. This allows for high-level descriptions of algorithms that apply

data structures and other programming constructs not easily expressible in the language of

quantum circuits. A high-level description of quantum algorithms will be the approach taken

in this work. As such, we will not be covering quantum circuits in any depth.

For quantum algorithms the input instance is most commonly expressed as an input oracle.

These input oracles represent problem instances as functions that allow one to query the

input. These are often treated as black boxes, where a single query allows one to recover

a Boolean output. One example is an instance of 3-SAT on n variables taking as input an

0 − 1 assignment to these variables and the output being either 1 representing the 3-SAT

instance evaluating to true on this input and a 0 representing the 3-SAT instance evaluating

to false on this input. We can more generally assume that the oracle can return a value

[0,m − 1] represented as a binary encoding since this could be decomposed into ⌈logm⌉

Boolean oracles. It is also possible for the oracle descriptions to be provided algorithmically.

The query complexity of a quantum algorithm is defined as the number of times that the

input oracle is queried by the algorithm. The time complexity of a quantum algorithm is the

number of queries made by the algorithm in addition to the number of quantum gates used

in the circuit. We will be concerned with both query complexity and time complexity. Using

known lower bounds, or other common techniques for establishing lower bounds on query

complexity, has an immediate limitation for proving superlinear lower bounds on quantum
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time complexity for problems where the input represents something such as a graph. Once

a linear number of queries have been made the entire input is obtained by the algorithm.

Then, since the whole input as been obtained, the problem can be solved without making any

additional queries. An alternative approach taken by Buhrman et al. [20] is to use conditional

hardness results and efficient reductions, as is typically done in fine-grained complexity. The

main hypothesis used here for establishing lower bounds, NC-QSETH is described in Section

2 following the description of some fundamental quantum algorithms.

Grover’s Algorithm and Quantum Graph Algorithms

Grover’s algorithm [44] is a fundamental building block of many quantum algorithms. Given

an oracle f : {1, ..., N} 7→ {0, 1} it allows one to determine an index i such that f(i) = 1,

or declare one does not exists with constant probability using Õ(
√
N) queries to the oracle.

Grover’s algorithm can be adapted to work for oracles f that map onto the natural number

to return the index mapping to the minimum value [31], and also to count the number of

indices mapping to non-zero values [15]. Although, as mentioned above, an oracle may be

described algorithmically, Grover’s algorithm is indifferent to the details of this description

and treats f only as a black box.

Our quantum algorithm for PMLG will utilize Durr et al.’s quantum algorithm for computing

the shortest path between two vertices in a directed graph [30]. We will assume that the

representation of these graphs is in terms of adjacency lists rather than an adjacency matrix.

Further details are given when necessary in Chapter 4. Durr et al.’s algorithm is based on

adapting Dijkstra’s algorithm well-known algorithm to apply Grover’s search. On a graph

G = (V,E), Durr et al.’s algorithm has query complexity O(
√

|V ||E| log2 |V |). For the case

where the graph G is a DAG, this was later improved by Khadiev and Safina to a query
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complexity ofO(
√

|V ||E| log |V |) [56]. Both of these run in quantum time that is within poly-

logarithmic factors of their query complexity and solve the st-shortest path problem correctly

with constant probability greater than 1
2
. Our algorithm is based on the observation that we

can modify the input oracles given for a PMLG instance to be oracles for the corresponding

sequence alignment graph that can answer queries with only constant overhead. Finding the

shortest path in this seqeuence alignment graph corresponds to finding an optimal walk in

G. Our algorithm prevents the construction of the actual sequence alignment graph, which

is defined formally in Section 4) and is of size O(|E|m).

NC-QSETH and Superlinear Quantum Hardness Results

Utilizing Grover’s search, Conjunctive Normal Form (CNF)-SAT can be solved in 2
n
2
+o(n)

time. Due to this, many problems with quadratic classical time complexity lower bounds

based on SETH have only linear lower bounds when the analogous conjecture is made for

quantum computation, that is, for some k large enough 2
n
2
+o(n) time is required to solve

k-SAT. However, unlike in the traditional case, with edit distance and LCS problems this

causes a polynomially large gap between the best known quantum algorithm and the lower

bound. This is since for both edit distance and LCS, the best known quantum algorithms are

not strongly subquadratic. Motivated by this gap, Buhrman et al. defined the NC Quantum

Strong Exponential Time Hypothesis, or NC-QSETH [21]. To formally define this, we need

several definitions.

Definition 29 (Boolean Function Properties [21]). Given a Boolean functions f : {0, 1}n →

{0, 1}, and P : {0, 1}2n → {0, 1}. We say property P holds on f if P (tt(f)) = 1 where tt(f)

is the truth table (list of output values ordered according to the query input order) of f .

A popular example of a property is P being 1 iff there exists a 1 in tt(f). This corresponds to
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f being satisfiable. Another is P being 1 iff there only exists 1’s in tt(f). This corresponds

to f being a tautology. In the case where we can query a Boolean circuit describing f , it is

assumed that the description is at least as complex as a polynomial-sized depth 2 Boolean

circuit consisting of AND and OR gates.

Definition 30 (White box time complexity qT imeWBϵ(P ) [21]). The time taken by a quan-

tum computer to decide whether property P holds with probability at least ε given a Boolean

circuit description of f is called the white box time complexity of P , written qT imeWBϵ(P ).

Definition 31 (Black box time complexity qT imeBBϵ(P ) [21]). The time taken by a quan-

tum computer to decide whether property P holds with probability at least ε given only oracle

access to f is called the black box time complexity of P , written qT imeBBϵ(P ).

Let C be a circuit representation of some Boolean function and γ be some subset of Boolean

circuits, e.g., polynomial-sized depth 2 Boolean circuits consisting of AND and OR gates.

Definition 32 (Compression Oblivious CO(γ) Properties [21]). The set of compression

oblivious properties CO(γ) is exactly the set of properties P such that

qT imeBBϵ(P |Sγ ) ≥ Ω(Qε(P ))

where

• Sγ = {tt(C) | C is an element of γ},

• qT imeBBϵ(P |Sγ ) is the black box time complexity to determine if P holds when the

input set of oracles is restricted to those whose truth tables are in Sγ ,

• Qε(P ) is the quantum query complexity, or the minimum number of queries necessary

to determine with probability at least ε that property P holds, taken over all oracles.
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In short, compression oblivious properties are those where the restriction to only f with

tt(f) ∈ Sγ still makes the query complexity lower bounded by the query complexity across

all oracles.

We also need the notion of NC and branching programs. Here, NC refers to the set of

polynomial-sized circuits of poly-logarithmic depth consisting of fan-in 2 gates (AND, OR,

NOT gates with two inputs), rather than the set of all decision problems decidable using

such circuits as is used in other contexts. A branching program consists of a set of n Boolean

variables x1,..., xn and a leveled DAG with a single source vertex start on the first level

and two sink vertices labeled accept and reject respectively on the last level. Let ℓ be the

number of levels, also referred to as the branching programs length. Each level besides the

first and last consists of W vertices called the branching program’s width, and being leveled,

edges occur only from level i to level i + 1 for 1 ≤ i ≤ ℓ − 1. Every edge is labeled xj or

x̄j for some 1 ≤ j ≤ n. A particular assignment to the variables x1, ..., xn is said to satisfy

the branching program if there exists a path from start to accept following only edges whose

labels evaluate to true under the assignment. Barrington’s theorem [12] is a famous result

that states for every branching program of constant width there is an equivalent circuit in

NC with O(log n) depth, and for every circuit in NC with depth d there is an equivalent

branching program with width 5 and length 4d. Equivalent here means that the branching

program is satisfied by the Boolean assignment on n variables if and only if the circuit in

NC is. Hence, it makes sense to talk about the NC representations of particular subsets of

branching programs, S, as is done next.

The set S used for defining NC-QSETH is a set of non-deterministic branching programs

where, given the matrix representation of their truth table, the truth table contains a ‘path’

satisfying certain requirements. To avoid further descriptions of these paths we refer the

reader to Buhrman et al’s work [21] for more details. NC-QSETH states that for compression
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oblivious properties satisfied by NC circuits for branching programs in S, the white box

quantum time is bounded from below by the quantum query complexity on all branching

programs in S, represented by their NC description.

Definition 33 (NC-QSETH [21]). For the class of representations NC, i.e., the set of poly-

nomial sized circuits of polylogarithmic depth consisting of fan-in 2 gates, for all properties

P ∈ CO(NC ∩ S), we have qT imeWBϵ(P |NC∩S) ≥ Ω(Qϵ(P |S)).

Burnham et al. prove the following conditional lower bounds based on NC-QSETH, restated

here as a lemma for our purposes.

Lemma 1 (NC-QSETH LCS lower bounds [21]). Under NC-QSETH the longest common

subsequence problem (LCS) on two sequences of length n cannot be solved in time O(n1.5−ε)

for any constant ε > 0.

Ultimately, the reduction presented in this work is from the LCS problem on strings X and

Y to an instance of PMLG G = (V,E) and P [1,m] where |E| = |X| and m = |Y |. Therefore,

the details for NC-QSETH described prior to Lemma 1 are not needed to understand how

an algorithm running in time O(|E| 12−εm + |E|m 1
2
−ε) for PMLG contradicts NC-QSETH.

However, the above exploration of NC-QSETH illustrates some of the consequences of such

an algorithm. Such an algorithm would imply that having white box access to an NC circuit

representing inputs in S would provide an algorithm with quantum query complexity superior

to the query lower bound possible without white box access. In other words, having access

to the underlying circuit description provides a benefit over simply being able to query the

circuit for different inputs, contradicting NC-QSETH. Of course, a more direct result is that

a O(|E|1−εm + |E|m1−ε) time algorithm would give a quantum algorithm for LCS running

in time O(|X||Y |1−ε + |X|1−ε|Y |), which itself would still be a new and interesting result.
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CHAPTER 3: LOWER BOUNDS ON QUANTUM

CHROMATIC NUMBER

An earlier version of this work appeared in [78].

Elphick and Wocjan [34] proved that many spectral lower bounds for χ(G) are also lower

bounds for χq(G) by using a linear algebra technique called pinching. Definition 34 defines

what pinching is.

Definition 34 (Pinching). Let Pk ∈ Cm×m for k ∈ [c] be orthogonal projectors such that

they form a resolution of the identity, that is,

∑
k∈[c]

Pk = Im. (3.1)

The operation D : Cm×m → Cm×m defined by

X 7→ D(X) =
∑
k∈[c]

PkXPk (3.2)

is called pinching. We say that it annihilates X if D(X) = 0.

The following theorem is stated as Theorem 1 in [34]. For the sake of completeness, we

include a condensed proof below. We use {ev : v ∈ V } to denote the standard basis in Cn.

Theorem 1. Let {Pv,k : v ∈ V, k ∈ [c]} be an arbitrary quantum c-coloring of G in Cd.

Then, the following block-diagonal projectors

Pk =
∑
v∈V

eve
†
v ⊗ Pv,k ∈ Cn×n ⊗ Cd×d (3.3)
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define a pinching operation that annihilates A⊗ Id, that is,

∑
k∈[c]

Pk(A⊗ Id)Pk = 0. (3.4)

Proof. We have

∑
k∈[c]

Pk =
∑
k∈[c]

∑
v∈V

eve
†
v ⊗ Pv,k (3.5)

=
∑
v∈V

eve
†
v ⊗

∑
k∈[c]

Pv,k (3.6)

=
∑
v∈V

eve
†
v ⊗ Id (3.7)

= In ⊗ Id. (3.8)

This shows that the orthogonal projectors Pk form a resolution of the identity, that is, form

a pinching operation.

For v, w ∈ V , let avw denote the entries of the adjacency matrix. For k ∈ [c], we have

Pk(A⊗ Id)Pk =
∑

v,w∈V

avw · eve†w ⊗ Pv,kPw,k. (3.9)

Whenever avw = 1, or equivalently (v, w) ∈ E, the corresponding orthogonal projectors Pv,k

and Pw,k must be orthogonal. This shows that the above sum is equal to 0d, that is, the

corresponding pinching operation annihilates A⊗ Id.

Remark 1. In the classical case the projectors Pk are a diagonal in the standard basis of Cn

and each projector corresponds to a color class, that is, each projector Pk projects onto the

subspace spanned by the standard basis vectors corresponding to the vertices that have been

colored with the kth color.
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New bounds for the quantum chromatic number

The following lemma is a standard interlacing result in matrix analysis. We describe it in

detail since it is the main result that we rely on to prove the new stronger bounds on the

quantum chromatic number.

Lemma 2. Let X ∈ Cn×n be a hermitian matrix and let S ∈ Cn×m be a matrix such that

S†S = Im, that is, its m column vectors s1, . . . , sm are orthonormal vectors. Then,

µ↑
i (X) ≤ µ↑

i (S
†XS) (3.10)

for i ∈ [m].

Proof. This follows from the Courant-Weyl-Fisher theorem stating

µ↑
i (X) = min

Mi

max
x∈Mi

x†Xx, (3.11)

where the minimum is taken over subspaces Mi of dimension i and the maximum is taken

over unit vectors x ∈ Mi. By multiplyingX by S† and S from the left and right, respectively,

we effectively restrict the subspaces Mi to have the form

Mi = {Sy : y ∈ Ni} (3.12)

where Ni is a subspace of Cm of dimension i ∈ [m].

We obtain the following corollary by using the identity µ↑
i (−X) = −µi(X) and applying the

above lemma to the matrix −X.
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Corollary 2. Let X ∈ Cn×n and S ∈ Cn×m with S†S = Im as in Lemma 2. Then

µi(X) ≥ µi(S
†XS). (3.13)

In the following, we will only use this corollary with i = 1, that is,

µmax(X) ≥ µmax(S
†XS). (3.14)

First new bound for χq(G)

Theorem 2 (First bound on quantum chromatic number). Let χq(G) be the quantum chro-

matic number of a connected graph G with adjacency matrix A. Let κ be the smallest integer

such that

0 ≥ µmax(A) +
κ∑

i=1

µ↑
i (A) (3.15)

holds. Then the quantum chromatic number is bounded from below by

χq(G) ≥ 1 + κ. (3.16)

Proof. Let {Pv,k : v ∈ V, k ∈ [c]} be any quantum c-coloring in dimension d. Construct the

corresponding collection {Pk : k ∈ [c]} of block-diagonal projectors as in Theorem 1.

Let z ∈ Cn denote the unique eigenvector of A corresponding to the largest eigenvalue

µmax(A). Let fj ∈ Cd for j ∈ [d] denote the standard basis vectors. Let s1, . . . , sm be an

orthonormal basis of the subspace

S = span{Pk(z ⊗ fj) : k ∈ [c], j ∈ [d]}. (3.17)
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Its dimension m satisfies

d ≤ m ≤ cd. (3.18)

For the lower bound, observe that the d orthogonal vectors z ⊗ fj are contained in S since

z ⊗ fj = (In ⊗ Id)
(
z ⊗ fj

)
=
(∑
k∈[c]

Pk

)
(z ⊗ fj) =

∑
k∈[c]

Pk(z ⊗ fj). (3.19)

For the upper bound, observe that there are exactly cd vectors in eq. (3.17) and, thus, m

cannot be larger than cd.

Let S ∈ Cnd×m be the matrix with s1, . . . , sm as column vectors. The following two arguments

show that the largest eigenvalue of the matrix S†(A ⊗ Id)S is equal to µmax(A) and its

multiplicity is equal to d. First, there exist d orthogonal vectors y1, . . . , yd ∈ Cm such that

Syj = z ⊗ fj since the latter vectors are contained in the subspace S, or equivalently, the

column space of S. We have

S†(A⊗ Id)Syj = S†(A⊗ Id)(z ⊗ fj) (3.20)

= µmax(A)S
†(z ⊗ fj) (3.21)

= µmax(A)S
†Syj (3.22)

= µmax(A)yj. (3.23)

Second, using Corollary 2, the largest eigenvalue of S†(A⊗ Id)S cannot be greater than the

largest eigenvalue of A⊗ Id.

We can always choose the orthonormal basis vectors s1, . . . , sm such that for each i ∈ [m]
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there exists a unique ki ∈ [c] with

Pkisi = si and Pksi = 0 for all k ̸= ki. (3.24)

This is because S =
⊕

k∈[c] Sk, where Sk = span{Pk(z⊗ fj) : j ∈ [d]} since the projectors Pk

form a resolution of the identity.

We now see that the diagonal entries of the matrix S†(A⊗ I)S must all be zero since

(S†(A⊗ I)S)ii = s†i (A⊗ Id)si = s†iPki(A⊗ Id)Pkisi = 0. (3.25)

For the last equality we used that Pk(A⊗ Id)Pk = 0 for all k ∈ [c].

So using Lemma 2, we obtain

0 = tr(S†(A⊗ I)S)

=
m∑
i=1

µ↑
i (S

†(A⊗ I)S)

=
m−d∑
i=1

µ↑
i (S

†(A⊗ I)S) + d · µmax(A)

≥
m−d∑
i=1

µ↑
i (A⊗ I) + d · µmax(A).

Now let κd be the smallest integer such that

0 ≥
κd∑
i=1

µ↑
i (A⊗ I) + d · µmax(A). (3.26)

Using (3.18), we have

(c− 1)d = cd− d ≥ m− d ≥ κd. (3.27)
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Note that κd ≥ (κ − 1)d + 1 must hold because otherwise the condition that κ = κ1 is

minimal would be violated. This implies c− 1 ≥ ⌈κd/d⌉ = ⌈κ− 1 + 1/d⌉ = κ. In particular,

this hold for a quantum c-coloring attaining χq(G) so that χq(G) ≥ 1 + κ.

A weaker version of Theorem 2, with χ(G) replacing χq(G), was proved by Hoffman [50] in

1970. This theorem immediately implies that

1 +
µ1

|µn|
≤ χq(G) ≤ χ(G), (3.28)

which was proved in [34] using different techniques.

The proof of the following bound generalises a proof due to Haemers ([45], [46]) from the

classical to the quantum chromatic number.

Second new bound for χq(G)

Theorem 3 (Second bound on quantum chromatic number). For any connected graph G

with µ2 > 0:

χq(G) ≥ 1 + min

{
g,

|µn(A)|
µ2(A)

}
, (3.29)

where g is the multiplicity of µn(A) = µmin(A).

Proof. Consider an arbitrary quantum c-coloring in dimension d. Assume that c ≤ g.

Let S be defined as in the proof of the previous theorem in (3.17). Let T be the sub-

space spanned by the eigenvectors corresponding to the cd smallest eigenvalues µ↑
1(A ⊗
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I), . . . , µ↑
cd(A⊗ I). We now show that there exists a non-zero unit vector y with

y ∈ S⊥ ∩ T . (3.30)

To this end, define R = span{z ⊗ fj : j ∈ [d]}. Observe that both S⊥ and T are contained

in the subspace R⊥ and

dimR⊥ = nd− d < nd = (nd− cd) + cd ≤ dim T + dimS⊥. (3.31)

For i ∈ [c], define yi = Piy. Let m be the number of yi that are non-zero. We now show that

at least two of them (w.l.o.g. y1 and y2) must be non-zero, that is, m ≥ 2. First of all, at least

one must be non-zero because otherwise we would have 0 ̸= y = (In⊗Id)y =
(∑

k∈[c] Pk

)
y =∑

k∈[c] yk = 0. Now assume that only y1 were non-zero, or equivalently, y = P1y. But this

leads to the contradiction

0 > µ↑
c(A) = µ↑

cd(A⊗ Id) ≥ y†(A⊗ Id)y = y†P1(A⊗ Id)P1y = 0, (3.32)

where the first inequality holds because c ≤ g, the second inequality holds because y ∈ T ,

and the last equality holds because P1(A⊗ Id)P1 = 0. The latter follows from the fact that

P1 is one of the projectors forming a pinching that annihilates A⊗ Id.

Define the orthonormal vectors si = yi/∥yi∥ for i ∈ [m] and S to be the matrix whose

columns are si. Define the matrix X = A⊗ Id −∆ · zz† ⊗ Id, where ∆ = µmax − µmin and z

is the (unit) eigenvector corresponding to µmax.

Since y is in the column space of S, the smallest eigenvalue of S†XS is at most y†Xy, which

in turn is at most µ↑
cd(A ⊗ Id) = µ↑

c(A) = µn(A) as y ∈ T and c ≤ g. Also, it holds that

µmax(S
†XS) ≤ µmax(X) = µ2(A).
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We now show that the trace of S†XS is equal to 0. The diagonal entries of S†XS are all

zero because

(S†XS)ii = s†iXsi ∝ y†iXyi (3.33)

= y†Pi

(
A⊗ Id −∆ · zz† ⊗ Id

)
Piy (3.34)

= y†Pi(A⊗ Id)Piy −∆ ·
∑
j∈[d]

y†Pi(zz
† ⊗ fjf

†
j )Piy (3.35)

= 0 (3.36)

where we used that Pi(A ⊗ Id)Pi = 0 and y ⊥ Pi(z ⊗ fj) for each j. The latter holds as

y ∈ S⊥ and Pi(z ⊗ fj) ∈ S.

Combining that S†XS is traceless with the above bounds on its minimum and maximum

eigenvalues yields that

0 = tr(S†XS) =
∑
i∈[m]

µ↑
i (S

†XS) ≤ µn(A) + (m− 1)µ2(A), (3.37)

which completes the proof.

A weaker version of this bound, with χ(G) replacing χq(G), is already known, for example

in Corollary 3.6.4 in [16].

We note that both Theorems are also valid for weighted adjacency matrices of the form

W ◦ A, where W is an arbitrary Hermitian matrix and ◦ denotes the Hadamard product

(also called the Schur product). An example of using a weighted adjacency matrix is to

replace A with the normalized adjacency matrix A = D−1/2AD−1/2, where D is the diagonal

matrix of vertex degrees, in both bounds for χq(G). This choice of weight matrix reproduces

the lower bound for χ(G) in Theorem 2.2 in Coutinho et al. [27], once account is taken of
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the differences in notation.

Implications for quantum chromatic number

Strongly regular graphs (SRGs)

Elphick and Wocjan [34] discussed implications of their results for the quantum chromatic

number. For example, they demonstrated using an inertial bound that the Clebsch graph

(seen in Figure 3.1) has χq(G) = 4. Since the Clebsch graph has spectrum (51, 110,−35)

this also follows immediately from Theorem 3. The generalised quadrangle, GQ(2, 4), on 27

vertices has χ = 6, but in [34] the authors were only able to show that χq ≥ 5. The spectrum

of GQ(2, 4) is (101, 120,−56), so from Theorem 3 it follows that χq = 6.

Figure 3.1: A Clebsch Graph (16,5,0,2)

Both of these graphs are strongly regular, and Theorems 2 and 3 can be used to calculate the

quantum chromatic number of many strongly regular graphs (SRGs). For example the Kneser

graph Kp,2 (with p ≥ 4) has χ = p− 2 and spectrum ((p− 2)(p− 3)/21, 1p(p−3)/2, (3− p)p−1),

which using Theorem 3 implies χq = χ = p− 2. The Hoffman-Singleton graph, SRG(50, 7,

0, 1) has spectrum(71, 228,−321) and χ = 4. Theorem 2 implies χq = 4 also.
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Fiala and Haemers [36] identified (see their Theorem 10.1) all SRGs with χ = 5. So,

using Theorem 2, SRG(15, 8, 4, 4) and SRG(25, 8, 3, 2) have χq = 5; and using Theorem

3, SRG(21, 10, 3, 6) and SRG(25, 16, 9, 12) have χq = 5. The Gewirtz graph, SRG(56, 10, 02),

has χ = 4 and spectrum (101, 235,−420); so using Theorem 2 it has χq = 4.

The Higman-Sims graph is SRG(100, 22, 0, 6). Its spectrum is equal to (221, 277,−822) and

it has χ = 6 (see [36]). Theorem 2 implies χq ≥ 4 and Theorem 3 implies χq ≥ 5. We do

not however know whether χq = 5 or 6. Similarly the M22 graph is SRG(77, 16, 04) with

spectrum (161, 255,−621) has χ = 5 (see [36]). Theorems 2 and 3 imply χq ≥ 4, but we do

now know whether χq = 4 or 5.

Non-SRGs

The orthogonality graph, Ω(n), has vertex set the set of ±1−vectors of length n, with two

vertices adjacent if they are orthogonal. With 4|n (see [62]), it is known that χq(Ω(n)) = n

but χ(Ω(n)) is exponential in n. A proof that χq(Ω(n)) = n is as follows. It is immediate

from the definition of Ω(n) that ξ′(Ω(n)) = n, and it is known that χq(G) ≤ ξ′(G), where

ξ′(G) is the normalized orthogonal rank of G [77]. However, using Theorem 2 and results in

section 4.3 of [43] on the eigenvalues of orthogonality graphs we have that:

χq(Ω(n)) ≥ 1 +
µ1

|µn|
= 1 +

1 · 3 · · · (n− 3) · (n− 1)

1 · 3 · · · (n− 3)
= n.

Theorem 4. The orthogonality graph Ω(n) has a quantum coloring in dimensions pn, where

p is a positive integer.

Proof. We can construct a quantum coloring of Ω(n) using n colors as follows. Let dimension
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d = n, let U = diag(1, ω, . . . , ωn−1) be a unitary matrix where ω = e2πi/n, and let zv denote

the ±1 vector of length n assigned to vertex v. Then let

Pv,k = Ukzvz
†
v(U

†)k : v ∈ V, k ∈ [c].

It is straightforward that this collection of orthogonal projectors satisfy the completeness

and orthogonality conditions in Definition 21, so this completes the quantum coloring with

d = n.

For d = pn, where p > 1, let

P̃v,k = Pv,k ⊗ Ip : v ∈ V, k ∈ [c].

This new collection of orthogonal projectors also satisfy the completeness and orthogonality

conditions in Definition 21.

We note in passing that with 4|n, a proof that ω(Ω(n)) = n, would provide a proof of the

Hadamard Conjecture, which dates from 1867.

Vertex Transitive(12, 27) and Vertex Transitive(12, 54) are examples of non-SRGs for which

Theorem 3 is exact with χq = 4. Barbell graphs and irregular complete q−partite graphs

have χq = χ, using Theorem 2.

Hoffman colorings

Any graph for which

1 +
µ1

|µn|
= χ(G),
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is said to have a Hoffman coloring. All such graphs therefore have χq(G) = χ(G). Examples

include SRG(49, 12, 5, 2) which has χq = 7 and the Schlafli graph SRG(27, 16, 10, 8) (seen

in Figure 3.2) which has χq = 9. Haemers and Touchev investigated graphs with Hoffman

colorings, and Table 1 in [47] lists many such SRGs with up to 100 vertices.

Figure 3.2: A Schlafi Graph (27,16,10,8)
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CHAPTER 4: QUANTUM ALGORITHMS FOR PATTERN

MATCHING ON LABELED GRAPHS

Lower Bounds

Our main subject for this section will be the proof of Theorem 5, stated below.

Theorem 5. There exists a reduction from LCS with strings X and Y over alphabet Σ

to PMLG with substitutions over a binary alphabet. This requires O((|X| + |Y |) log(|X| +

|Y |) · log2 |Σ|) time (on a classical computer) and outputs a graph G = (V,E), where |E| =

O(|X| log(|X|+ |Y |) · log2 |Σ|) and pattern P [1,m], where m = O(|Y | log(|X|+ |Y |) · log2 |Σ|).

Theorem 5 leads immediately to Corollary 3.

Corollary 3. An algorithm for PMLG with substitutions to the pattern over a binary alphabet

running in quantum time Õ(|E|1−εm + |E|m1−ε) for any constant ε > 0 would provide an

algorithm running in quantum time Õ(|X||Y |1−ε + |X|1−ε|Y |) for LCS.

It should be noted that no strongly sub-quadratic quantum algorithms for LCS are known.

Theorem 5, in addition to Lemma 1, leads immediately to Corollary 4.

Corollary 4. Under NC-QSETH, PMLG cannot be solved in quantum time that is O(|E| 12−εm+

|E|m 1
2
−ε) for any constant ε > 0.

Main Reduction to PMLG-sub over Large Alphabet

Our hardness result will be proven through a reduction from the decision version of LCS to

PMLG. We first present a simplified version of the reduction for larger edge label alphabets
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Figure 4.1: Reduction from LCS to PMLG for X = aababbbab. Note that dashed edges are
only shown from v1 but similar edges are present from every vi, 1 ≤ i ≤ n. If Y = baabbabaa
then P = #4b#4a#4a#4b#4b#4a#4b#4a#4a.

and then show how to modify it to obtain the result for binary alphabets. In the decision

version of LCS we are given as input two sequences X and Y and an integer k and have

to decide whether there exists a common subsequence to X and Y of length k. Suppose

|Y | ≥ |X| and let n = |Y |.

We will first construct our graph G based on the string X. We start by making two sets

of vertices u1, u2, ..., un and v1, v2, ..., vn. We add directed edges (vi, ui) with labels X[i]

for 1 ≤ i ≤ |X|. All remaining edges are labeled with a new symbol # that is not found in

either X or Y . We then create edges (ui, vi+1) for 1 ≤ i ≤ n− 1. Next, for vi, 1 ≤ i ≤ n we

create edges (vi, vi), (vi, vi+1), (vi, vi+2), (vi, vi+4), ..., (vi, vi+2c) for the largest c such that

i+ 2c ≤ n and the edge (u|X|, u|X|).

Next, we create the pattern P based on the string Y . Let

P = #⌈logn⌉+1 Y [1] #⌈logn⌉+1 Y [2] #⌈logn⌉+1 . . . #⌈logn⌉+1 Y [n].

and let δ = n− k. This construction is shown in Figure 4.1.
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The following lemma will help to establish the correctness of the above reduction.

Lemma 3. The shortest path between any vi and vj for any j > i has at most ⌈log n⌉ edges.

Proof. Let i′ be the largest value such that i ≤ i′ ≤ j and there exists edge (vi, vi′) ∈ E. By

construction i′ = i+ 2x for some x ≥ 0. We claim i′ > j−i
2

+ i. Otherwise

i′ = i+ 2x ≤ j − i

2
+ i

implies i + 2x+1 ≤ j,contradicting that i′ index was the largest possible. Since the distance

between the current index and j can always be at least halved, by repeatedly apply the same

process, we need at most ⌈log n⌉ additional edges before reaching j.

The correctness of the reduction can now be established by the following lemma.

Lemma 4. There exists an LCS of length at least k for strings X and Y iff and there exists

a walk in G that matches P after at most δ substitutions to P .

Proof. First assume there exists an LCS of length k′ ≥ k, withX[i1],X[i2],...,X[ik′ ] matching

Y [j1], Y [j2],..., Y [jk′ ]. We obtain a walk on G as follows: starting at vertex vi1 , we traverse

the self-loop (vi1 , vi1) until we reach the Y [j1] in P , substituting symbols in P to # as

necessary. Then we follow edge (vi1 , ui1) matching Y [j1] in P . We now traverse the edge

(ui, vi+1) and the shortest path from vi+1 to vi2 , which by Lemma 3 has at most ⌈log n⌉

edges. We next traverse the self-loop (vi2 , vi2) until reaching the symbol Y [j2] in P , at which

point we match Y [j2] with the edge (vj2 , uj2). This process is repeated until Y [n] is matched.

Exactly n− k′ ≤ n− k = δ symbols in P are substituted to #.

Next suppose there exists a walk in G that matches P with δ′ ≤ δ substitutions. This

implies that n− δ′ of the non-#-symbols in P are not substituted and instead matched with
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symbols on edges (vi, ui). By construction, once the edge (vi, ui) is traversed, the next edge

with a non-#-label traversed is an edge (vi′ , ui′) where i′ > i. Hence, the non-# symbols

in P matched with edges in G correspond to a common subsequence of X and Y of length

n− δ′ ≥ n− δ = k.

Hardness of PMLG-edit over Large Alphabet

Lemma 5. For an instance of PMLG constructed as above, there exists an optimal solution

where only substitutions are made in P .

Proof. Any substring of P consisting of only # can be matched without edit cost from any

vertices vi, 1 ≤ i ≤ |X|. From the vertices ui, 1 ≤ i ≤ |X|, an edge with # needs to be

traversed regardless so it would be suboptimal to delete any # in P that could be matched

on an edge (ui, vi+1). Combining these, an optimal solution never deletes a substring of P

of the form #x, x ≥ 1. This leaves only substrings that contain some symbol Y [i]. However,

the cost for deleting any such substring is at least the cost of substituting Y [i] to a #-symbol.

We conclude that no deletions need to be made to P in an optimal solution.

For insertions, a similar argument holds. Any insertion of a substring of the form #x, x ≥ 1,

is clearly suboptimal since there exist enough #-symbols to traverse from any two vertices

vi and vj. An insertion that includes a non-#-symbol is also unnecessary, since the edge

matched against that symbol could have been not traversed for the same cost.

Due to Lemma 5, Lemma 4 continues to hold when deletions and insertions are also allowed

to P .

46



Figure 4.2: The conversion of an edge in G with label α from u to v to two paths between
u and v in G′.

Hardness of PMLG-sub over Binary Alphabet

Some additional work must be done to convert the above reduction to work for a binary

alphabet in G and P .

Let Σ′ = Σ ∪ {#}, σ = |Σ′| ≥ 3, and ℓ = 2⌈log σ⌉. We will create our own constant

weight binary code (i.e., one where all codewords have the same number of 1’s) for Σ′. We

first take t = ⌈log σ⌉. This makes
(
ℓ
t

)
≥ σ and allows us to assign to every symbol in Σ′ a

distinct binary string of length ℓ containing exactly t 1’s. Let enc(α) denote this encoding for

α ∈ Σ′. Controlling the number of 1’s allows us to compute the cost of an optimal solution,

as described next. We modify the earlier reduction by replacing every edge (u, v) (allowing

for v = u) having label α ∈ Σ′ with:

• A directed path from u to v that matches (10t−2+ℓ)t0t−1 enc(α). These paths are called

symbol paths ;

• A parallel directed path starting and ending at the same vertices (or vertex) that

matches the string (10t−2+ℓ)t1t−10ℓ. These are called escape paths.
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This is illustrated in Figure 4.2. We denote the resulting graph as G′. The pattern P ′ is

created by replacing every symbol P [i] with (10t−2+ℓ)t1t−1 enc(P [i]) for 1 ≤ i ≤ n. Let

δ′ = t(n− k) + (t− 1)(|P | − (n− k))

= t(n− k) + (t− 1)(n(⌈log n⌉+ 2)− (n− k)).

Note that |V ′|, |E ′|, and |P ′| are O(n log n · log2 σ) where n = |Y | ≥ |X| and σ is the size of

the original alphabet of X and Y plus 1. For the remainder of this section, the definitions of

G, P , and δ are fixed from the previous section and the definitions of G′, P ′, and δ′ remain

fixed to the ones just given.

The next lemma will simplify future analysis by establishing constraints on any optimal walk

for P ′ in G′.

Lemma 6. Any walk in G′ matching P ′ with at most δ′ mismatches must start at some

vertex corresponding to an original vertex in V .

Proof. First, consider a walk starting at some vertex w internal to a subdivided path (i.e.,

one not corresponding to an original vertex in G) and where w does not have an edge with

1 leaving it. By construction, this creates at least t mismatches for every complete sub-

divided path traversed. To see this, for each substring (10t−2+ℓ)t1t−1 enc(P [i]) in at most

one of the 1’s in the prefix (10t−2+ℓ)t can be matched to an edge and at least one of the 0’s

is mismatched to a 1 edge as well.

If the walk starts at a non-original vertex with an edge leaving it labeled 1, but not a edge in-

ternal to subpath labeled 1t in any escape path. Then for each substring (10t−2+ℓ)t1t−1 enc(P [i])

in P ′, the substring enc(α) is forced to traverse a subpath labeled 0t, causing at least t mis-

matches once again. Finally, suppose the walk starts at a non-original vertex with an edge
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leaving it labeled 1, but an internal to subpath labeled 1t in some escape path. Then for

each substring (10t−2+ℓ)t1t−1 enc(P [i]) in P ′, the prefix (10t−2+ℓ)t once again again causes t

mismatches.

In all cases, at least t|P | > δ′ mismatches are causes in total.

The following lemma establishes the correctness of the reduction in the binary case.

Lemma 7. There exists an LCS of length at least k for strings X and Y iff and there exists

a walk in G′ that matches P ′ after at most δ′ substitutions to P ′.

Proof. First, suppose there exists an LCS of length at least k. Follow the walk in G′ cor-

responding to the walk in G that requires at most δ substitutions to P . When doing so,

take the symbol path when the symbol in P matched the corresponding edge in G, and the

escape path otherwise. This incurs t−1 mismatches per subdivided edge corresponding to a

match and t mismatches per subdivided edge corresponding to a mismatch. Hence the total

number of mismatches is at most t(n− k) + (t− 1)(|P | − (n− k)) = δ′.

Next, suppose there exists a walk in G′ matching P ′ with at most δ′ mismatches. By Lemma

6, substrings of the form (10t−2+ℓ)t1t−1 enc(P [i]) are matched (after substitutions) to sub-

paths in the walk that start at the beginning of symbol or escape paths. If enc(P [i]) ̸= enc(α),

then the number of mismatches for that substring is t since the number of mismatches

for matching the escape path is t (Hamming distance of 1t−1 enc(P [i]) and 1t−10ℓ), versus

the symbol path, which is at least t (Hamming distance of 1t−1 enc(P [i]) and 0t−1 enc(α)).

If enc(P [i]) = enc(α), by matching the symbol path, the number of mismatches is t − 1

(Hamming distance of 1t−1 enc(P [i]) and 0t−1 enc(α)). We conclude that in an optimal

solution the total number of mismatches is t times the number of mismatched symbols

between P and the corresponding walk in G, plus t−1 times the number of matched symbols
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between P and the corresponding walk in G. Hence, if the number mismatches for G′ is at

most δ′ = t(n− k) + (t− 1)(|P | − (n− k)), the number mismatched symbols in G is at most

n− k = δ. By Lemma 4, this implies the LCS of X and Y is at least k.

This completes the proof of Theorem 5.

Quantum Algorithm for PMLG

The following section describes an algorithm that can be easily adapted for PMLG-exact,

PMLG-sub, and PMLG-edit. We will first describe the algorithm for PMLG-edit and then

the modifications necessary for PMLG-exact and PMLG-sub.

Durr et al.’s shortest path algorithm assumes that the graph is represented by oracles such

that for a vertex v ∈ V it can return the vertices adjacent to v along with an edge weight [30].

In particular, if we assume some arbitrary ordering on the vertices in V , given that the

outdegree vi is deg
+(vi), the oracles fi : [deg

+(vi)] 7→ {1, ..., |V |} × N have

fi(j) = (the jth vertex adjacent to vertex vi, the weight on the corresponding edge).

Under this representation of the input graph, Durr et al. provide an algorithm that finds

the shortest path from a vertex s ∈ V to a vertex t ∈ V , uses O(
√

|V ||E| log2 |V |) oracle

queries, and runs in quantum time within logarithmic factors of the query complexity.

We assume that the graph G = (V,E) is given as input for PMLG with |E| = Ω(|V |).

Otherwise, the graph is not connected and we can solve the problem on different (weakly

connected) components separately. We assign an arbitrary ordering to V . For the PMLG-

edit, Amir et. al. [8] provide a construction of a graph G′ based on G and length m pattern
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P with special vertices s and t such that there exists a path from s to t whose edge weight

sum to at most δ iff there exist a walk in G matching P after at most δ modification to P .

Their construction results in a graph that has Θ(|V |m) vertices and Θ(|E|m) edges and is

based around duplicating the graph m times with modifications made based on the symbols

in P . We call this graph G′ the alignment graph. Let (vi, vj, w) denote the edge from vi to

vj with weight w. Formally, the alignment graph consists of vertices:

V ′ = {vji | 1 ≤ i ≤ |V |, 1 ≤ j ≤ m+ 1} ∪ {s, t}.

and edges

E ′ ={(s, v1i , 0) | 1 ≤ i ≤ |V |} (4.1)

∪ {(vji , v
j+1
i′ , 0) | 1 ≤ j ≤ m, (vi, vi′) ∈ E, label((vi, vi′)) = P [j]} (4.2)

∪ {(vji , v
j+1
i′ , 1) | 1 ≤ j ≤ m, (vi, vi′) ∈ E, label((vi, vi′)) ̸= P [j]} (4.3)

∪ {(vji , v
j+1
i , 1) | 1 ≤ j ≤ m, 1 ≤ i ≤ |V |} (4.4)

∪ {(vji , v
j
i′ , 1) | 1 ≤ j ≤ m, (vi, vi′) ∈ E} (4.5)

∪ {(vm+1
i , t, 0) | 1 ≤ i ≤ |V |} (4.6)

The interpretation of the graph is as follows:

• Edges (4.2) correspond to P [j] being matched to edge (vi, vi′) and have weight 0.

• Edges (4.3) correspond to P [j] being substituted to match edge (vi, vi′).

• Edges (4.4) correspond to the symbol P [j] being deleted. In this case the current

vertex, vi, the walk is on is unaltered.

• Edges (4.5) correspond to the symbol label(vi, vi′) being inserted in P between the
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(j − 1)th symbol and the jth symbol. If j − 1 = 0, this means inserting prior to P [1].

An example of an alignment graph is provided in Figure 4.3.

Lemma 8 ([8]). There exists an st-path in the alignment graph G′ with total weight δ iff

there exists a walk in G that P matches after δ edits.

The key insight into efficiently using Durr et al.’s shortest path algorithm on directed graphs

is that the alignment graph does not need to be constructed in full in order to simulate the

input oracles used by the algorithm. If we did have to construct the alignment graph, the

Θ(|E|m) edges needed would result in no speed up over the classical case. Instead, only the

vertices in the alignment graph are constructed, the values output by the adjacency oracles

are computed by the new oracles we provide in constant time, given the original input oracles

for the starting graph G and pattern P . In what follows, we describe the construction of the

vertices and these adjacency oracles.

Construction

Let G = (V,E) be the original graph given where V = {v1, ..., v|V |}. Our algorithm allows

for insertions and deletions in addition to substitutions. Assume we have substitution cost

S, deletion cost D, and insertion cost I. The alignment graph G′ = (V ′, E ′) is constructed

as follows: Recall that the vertex set is V ′ = {vji | 1 ≤ i ≤ |V |, 1 ≤ j ≤ m+ 1} ∪ {s, t}. The

linearized index for s is 0, for t it is (m+ 1)|V |+ 1, and for vji , 1 ≤ i ≤ |V |, 1 ≤ j ≤ m+ 1,

it is (j − 1)|V |+ i.
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Figure 4.3: The alignment graph G′ for PMLG-edit constructed from the starting graph G
shown above it. The edges with label I correspond to insertion and have weight 1, edges
with label S correspond to substitution and have weight 1, edges with label D correspond
to deletion and have weight 1, black edge correspond to exact match and have weight 0.
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Adjacency Oracles

We next define a set of adjacency oracles for G′.

The first gives adjacency’s of a given vertex vji ∈ V ′, 1 ≤ i ≤ |V |, 1 ≤ j ≤ m. These

will all be of the form f j
i : [deg+(vji )] 7→ [|V ′|] × N. Recall that we have adjacency oracle

fi : [deg+(vi)] 7→ [|V |] for vi ∈ V . The out-degree degree for a vertex vji , is deg
+(vji ) =

2deg+(vi) + 1, we define

f j
i (k) =



((j − 1)|V |+ fi(k), I) 1 ≤ k ≤ deg+(vi)

(j|V |+ fi(k − deg+(vi)), 0) deg+(vi) + 1 ≤ k ≤ 2d+(vi) and

label((vi, vfi(k−deg+(vi)))) = P [j]

(j|V |+ fi(k − deg+(vi)), S) deg+(vi) + 1 ≤ k ≤ 2deg+(vi) and

label((vi, vfi(k−deg+(vi)))) ̸= P [j]

(j|V |+ i,D) k = 2deg+(vi) + 1

For 1 ≤ i ≤ |V |, j = m + 1 is deg+(vji ) = 1, and f j
i (1) = ((m + 1)|V | + 1, 0). Finally, the

out-degree of s is deg+(s) = |V | and for 1 ≤ k ≤ |V |, fs(k) = (k, 0), and the out-degree of t

is 0.

Applying the quantum shortest path algorithm of Durr et al [30] while utilizing the ora-

cles above yields an algorithm running in quantum time Õ(
√

|V ′||E ′|). Using that |V ′| =

m|V |+2 and |E ′| = Θ(m|E|) this yields an algorithm with quantum query/time complexity

Õ(m
√
|V ||E|). In the case where |E| = Ω(|V |1+ε) for any ε > 0, this provides an improve-

ment over the classical algorithm.
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Modifications for PMLG-sub

To obtain an algorithm for PMLG-sub, we only want to allow for the edges representing

exact matches and edges representing subsitutions in Figure 4.3. In terms of the oracles, for

1 ≤ i ≤ |V |, 1 ≤ j ≤ m, this makes the outdegree of vertex vji equal to deg+(vji ) = deg+(vi)

and

f j
i (k) =


(j|V |+ fi(k), 0) 1 ≤ k ≤ deg+(vi), ℓ((vi, vfi(k))) = P [j]

(j|V |+ fi(k), S) 1 ≤ k ≤ deg+(vi), ℓ((vi, vfi(k))) ̸= P [j]

As before, for 1 ≤ i ≤ |V |, j = m + 1 is deg+(vji ) = 1, and f j
i (1) = (m|V | + 1, 0). The

out-degree of s is deg+(s) = |V | and for 1 ≤ k ≤ |V |, fs(k) = (k, 0), and the out-degree of t

is still 0.

Modifications for PMLG-exact

To obtain an algorithm for PMLG-exact, we only want to allow for the edges representing

exact matches in Figure 4.3. In terms of the oracles, for 1 ≤ i ≤ |V |, 1 ≤ j ≤ m, this makes

the outdegree of vertex vji , deg
+(vji ), equal to the number of edges leaving vi with label P [j],

denoted deg+(vi)|P [i]. Letting k1, k2, . . . , kdeg+(vi)|P [i]
denote the indices of vertices adjacent

to vi where label((vi, vkh)) = P [j], 1 ≤ h ≤ deg+(vi)|P [i], we have

f j
i (k) = (j|V |+ fi(kh), 0) 1 ≤ h ≤ deg+(vi)|P [i]

For 1 ≤ i ≤ |V |, j = m+ 1 is deg+(vji ) = 1, and f j
i (1) = (m|V |+ 1, 0). The out-degree of s

is deg+(s) = |V | and for 1 ≤ k ≤ |V |, fs(k) = (k, 0), and the out-degree of t is 0.
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CHAPTER 5: CONCLUSION

To conclude, we present several interesting open questions related to the topics addressed in

this dissertation.

Questions Related to Quantum Chromatic Number

Our lower bounds on quantum chromatic number leave open many open questions regarding

this graph parameter. Perhaps the most fundamental question regarding quantum chromatic

number is whether it is decidable. The difficulty here lies in the possibly unbounded dimen-

sion of the projectors assigned to each vertex. This question was even asked in the work by

Cameron et al. where quantum chromatic number was introduced [22]. Being well studied,

this question may be difficult to answer, however the more recent semi-definite programming

solution for commuting quantum chromatic number [67] may give a starting point. Some

more specific, and perhaps more approachable, questions related to our lower bound are

listed below.

• The pentagon (C5) demonstrates that both of the bounds in this dissertation are not

lower bounds for the vector chromatic number [54] or the fractional chromatic num-

ber [60]. The orthogonal rank, ξ(G), is incomparable to χq(G). The first question we

ask here is whether ξ(G) can replace χq(G) in Theorems 2 and 3?

• We have shown that the Kneser graph Kp,2 has χq = χ, but is this true for all Kneser

graphs? Are there any strongly regular graphs with χq < χ?

• In Corollary 1 the dimension d is any finite positive integer. Let χd(G) denote the

smallest c for which graph G admits a quantum c-coloring in dimension d. From
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Theorem 4, we know that for the orthogonality graph Ω(n), we have χ1(Ω(n)) =

χ(Ω(n)) which is exponential in n, but χpn(Ω(n)) = n for p a positive integer. This

raises the question of what is the value of χd(Ω(n)) for d ̸= pn? In particular does

χn+1(Ω(n)) = n?

Questions Related to PMLG

An immediate question raised by this work is whether the same lower-bounds on quantum

time complexity can be established for PMLG-exact or any version of PMLG on DAGs. This

is interesting in light of improvements in quantum algorithms being possible for the problem

of identifying if a string is in a regular language when the regular language is represented

by an acyclic monoid [2]. Transferring these results from acyclic monoids to acyclic NFAs,

would suggest the difficulty of finding a reduction from LCS to PMLG-exact on DAGs.

Another problem that deserves consideration is whether a reduction is possible from an LCS

instance with strings X and Y to a dense graph G = (V,E) where |V | = o(min(|X|, |Y |).

The reductions used in this work (and in other works proving hardness results on PMLG in

the classical case) construct sparse graphs where |E| = Θ(|V |). It is unknown whether an

algorithm more efficient than O(|E|m) exists in the classical case where |E| = Ω(|V |1+ε).

Based on our algorithm in Chapter 4, a reduction from LCS to PMLG that constructs a

graph where |E| = |X|, m = |Y |, and |V | = o(|E|) would imply that there exists a quantum

algorithm for LCS running in time O(|X||Y |1−ε + |X|1−ε|Y |).

Finally, an interesting direction is to develop a strongly subquadratic reduction from PMLG

to LCS, proving subquadratic equivalence. LCS is arguably more studied, and such a reduc-

tion could have the benefit of transferring new results for LCS to PMLG.
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