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ABSTRACT

In mathematical epidemiology, disease transmission is commonly assumed to behave in accordance

with the law of mass action; however, other disease incidence terms also exist in the literature. A

homogeneous Susceptible-Infectious-Removed (SIR) model with a generalized incidence term is

presented along with analytic and numerical results concerning effects of the generalization on the

global disease dynamics. The spatial heterogeneity of the metapopulation with nonrandom directed

movement between populations is incorporated into a heterogeneous SIR model with nonlinear

incidence. The analysis of the combined effects of the spatial heterogeneity and nonlinear incidence

on the disease dynamics of our model is presented along with supporting simulations. New global

stability results are established for the heterogeneous model utilizing a graph-theoretic approach

and Lyapunov functions. Numerical simulations confirm nonlinear incidence gives raise to rich

dynamics such as synchronization and phase-lock oscillations.
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CHAPTER 1: INTRODUCTION

In mathematical epidemiology, disease transmission is commonly assumed to behave in accordance

with the law of mass action, however other disease incidence terms also exist in the literature.

Hethcote and van den Driessche [9] investigated a Susceptible - Exposed - Infectious - Removed

- Susceptible (SEIRS) model with vital dynamics and a generalized nonlinear incidence term

of the form �g(I)S along with a delayed SIRS (Susceptible-Infectious-Removed-Susceptible)

model with vital dynamics. They gave specific results concerning the stability of the disease-free

equilibrium and endemic equilibria in the case that g(I) = Ip/(1 + ↵Ip). Li et. al. [12] applied

a similar generalized nonlinear incidence term to an SEIR model. Conditions were established

for the uniqueness and stability of the endemic equilibrium. A variety of epidemiological models

(i.e. SIS, SIR, SIRS, SEIS, SEIR and SEIRS) with a nonlinear incidence term of the form �IpSq

was proposed by Liu et. al. [15], [16]. The analysis was carried out rigorously to show the rich

dynamics when varying the exponent p.

Once a model for a homogeneous environment is proposed, the next logical step is to investigate

how the interaction between neighboring populations affect the course of a disease. Arino and

van den Driessche in [3] proposed an SIS model for modeling multi-city epidemics in a constant

population society. A multi-patch model was constructed by Wang and Zhao [20] in which they

incorporated demographics into a society with varying population sizes. The dynamics of a

different SIS epidemic patch model was developed in Allen et. al. [1]. They were able to

demonstrate that if both susceptible and infected are allowed to freely move between patches, then

both patches will reach an endemic state. If only infected are allowed to travel, then the disease

dies out in both patches. The endemic equilibrium for a multi-patch SIR model was shown to be

globally asymptotically stable in the paper by Li and Shuai [13]. This was accomplished using

Lyapunov functions in conjunction with a graph-theoretic approach developed by Li and Shuai
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[14]. Different forms of incidence functions were used in each of the papers discussed above.

In this thesis, a homogeneous Susceptible-Infectious-Removed (SIR) model with a generalized

incidence term is presented along with analytic and numerical results concerning the effects of

the generalization on the global disease dynamics. The basic reproduction number R0 is derived.

The disease-free equilibrium (DFE) is defined and shown to be globally asymptotically stable when

R0 < 1 and unstable when R0 > 1. The existence of a unique endemic equilibrium is proven when

R0 > 1 and a theorem is given for the globally asymptotic stability of the endemic equilibrium.

Two cases for commonly used incidence terms �SI and �SI/(↵ + I) are presented and shown

to have a globally asymptotically stable endemic equilibrium when R0 > 1. An example of

the incidence term �SI2 is presented as a case for the existence of multiple endemic equilibria,

thus failing the assumptions in the global stability theorem. Simulations of this case are used to

show the bistability as well as the co-existence of two stable limit cycles surrounding an endemic

equilibrium.

The spatial heterogeneity of the metapopulation with nonrandom directed movement between

populations is incorporated into the homogeneous SIR model with nonlinear incidence. The

analysis of the combined effects of the spatial heterogeneity and nonlinear incidence on the disease

dynamics is presented along with supporting simulations. New global stability results (Theorems

3.7.1 and 3.7.2) are established for the endemic equilibrium of the heterogeneous model utilizing

a graph-theoretic approach and Lyapunov functions. Numerical simulations confirm nonlinear

incidence raises rich dynamics such as synchronization and phase-lock oscillations.
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CHAPTER 2: A HOMOGENEOUS SIR MODEL WITH NONLINEAR

INCIDENCE

A homogeneous SIR model using a generalized incidence term is proposed in Section 2.1. The

disease-free equilibrium (DFE) is discussed in Section 2.2. In Section 2.3 we establish the feasible

region and verify that the DFE is the unique equilibrium on the boundary of feasible region. The

basic reproduction number R0 is derived in Section 2.4. Sections 2.5 and 2.6 establish the local

and global stability of the DFE when R0 > 1. We present conditions for the existence of a unique

endemic equilibrium in Section 2.7. In Section 2.8, we investigate the cases for global stability and

uniqueness of the endemic equilibrium, and provide examples for the cases of multiple endemic

equilibria.

2.1 Basic Model

We review an SIR model with the generalized incidence term �Sf(I), in addition we included

demographic terms for population dynamics. The model we will analyze is as follows

S 0 = ⇤� �Sf(I)� dSS, (2.1)

I 0 = �Sf(I)� (dI + �)I, (2.2)

R0 = �I � dRR, (2.3)

where ⇤ > 0 is the number of births during the period of the disease, � > 0 is the contact

coefficient, dS , dI , dR are the compartment specific death rates all greater than zero, and � > 0

is the average recovery rate of an infected individual. Of course S, I and R are the populations

for each respective compartment. We require that f(I) be C1(0,1), and assume throughout that
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f(I) � 0 and f(I) = 0 if and only if I = 0. Our analysis will be focusing on the following

reduced system (2.4), which is comprised only of Equations (2.1) and (2.2). We leave (2.3) out

since it can be considered completely determined once I is known.

S 0 = ⇤� �Sf(I)� dSS, (2.4)

I 0 = �Sf(I)� (dI + �)I.

S I R
�Sf(I) �I

dSS dII dRR

⇤

Figure 2.1: Homogeneous model flow diagram.

2.2 Disease-Free Equilibrium

Letting S 0 = I 0 = 0 = I , we get that ⇤ = �Sf(0) + dSS from (2.1) and (2.2). Since f(0) = 0,

then S = ⇤/dS . Let S0 := ⇤/dS and the unique disease-free equilibrium is P 0 = (S0, I0).

2.3 Feasible Region

To establish the feasible region for our model we define N = S+I , where N is the total population

of the people in the compartments. Let d⇤ = min{dS, dI + �} and adding the two Equations in
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(2.4) together yields

N 0 = S 0 + I 0

= ⇤� dSS � (dI + �)I

 ⇤� d⇤(S + I) = ⇤� d⇤N.

Solving the right hand side of the last inequality, we get that N(t)  ⇤/d⇤ � ce�d⇤t where c is a

constant depending on the initial conditions. Taking the lim sup of both sides as t ! 1 we get

lim supt!1 N(t)  ⇤/d⇤. Looking further at our equation for S 0 we see that ⇤��Sf(I)�dSS 

⇤ � dSS and can achieve similar results namely, lim supt!1 S(t)  S0. We can say something

more, S 0  ⇤ � dSS = dS(S0 � S), then if S0  S = ⇤/dS then S 0  0 else we know it is

bounded above by some positive number. The feasible region is defined as

� = {(S, I) 2 R2
+ | S + I  ⇤/d⇤, S  S0}.

From [21] and [8] we have that a region is positively invariant with respect to a system if the

trajectories remain in that region for all time. Additionally it can be shown that the feasible region

� is positively invariant with respect to the system (2.4) by a similar method used in the proof of

Lemma 4.1 in [8].

2.4 Basic Reproduction Number

The basic reproduction number represents the average number of secondary infections resulting

from the placement of a single infectious agent within an entirely susceptible population over the

period the individual is infected, [6, Ch. 2] (also see [2]). It is also a threshold value, meaning

that we expect to see at least two different behaviors when the basic reproduction number is below
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or exceeds the threshold value 1. We will use the next generation method described in van den

Driessche and Watmough [18] for deriving the basic reproduction number. Beginning by taking

the Jacobian with respect to I of the Equation (2.2) and evaluating the result at the DFE. From

[18] we split J(I 0)
���
(S0,0)

= �S0f 0(0) � (dI + �) into F � V , where F represents the rate of

new infections appearing in the infectious compartment and V is comprised of all other terms

representing transfers in or out of the infectious compartment. From Equation (4) in [18] we have

the following definition for the basic reproduction number R0 = ⇢(FV �1) where ⇢ is the spectral

radius. Solving for V �1, we have that the basic reproduction number of (2.4) is

R0 = FV �1 =
�S0f 0(0)

(dI + �)
,

since F and V are scalars.

2.5 Local Asymptotic Stability of DFE

By Theorem 2 of van den Driessche and Watmough [18], if R0 < 1 then we have a locally

asymptotically stable equilibrium point and unstable when R0 > 1. From this result we have the

following proposition.

Proposition 2.5.1. If R0 < 1, then the DFE is locally asymptotically stable. If R0 > 1, then the

DFE is unstable.

2.6 Global Asymptotic Stability of DFE

Theorem 2.6.1. Assume that 0  f(I)  If 0(0) and f(I) = 0 iff I = 0. If R0 < 1, then the DFE

is globally asymptotically stable in the feasible region �.
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Proof. Let L = I as defined above. We differentiate it with respect our system in � to get

L0 = I 0

= (�Sf(I)� (dI + �)I)

 (�S0f(I)� (dI + �)I)

= (dI + �)

✓
�S0f(I)

(dI + �)
� If 0(0)

f 0(0)

◆

=
(dI + �)

f 0(0)

✓
�S0f 0(0)f(I)

(dI + �)
� If 0(0)

◆

 (dI + �)

f 0(0)
(f(I)� If 0(0)) .

By assumption f(I)  If 0(0), L0  0, implying that the function L is a Lyapunov function of the

system. When L0 = 0 it implies that 0 = �(S � S0)f(I) thus S = S0 or f(I) = 0. Focusing

on S = S0 for the moment, we get that 0 = ⇤ � �S0f(I) � dSS0 from (2.4) and thus f(0) = 0.

Since f(I) = 0 iff I = 0, this tells us that P 0 is the only invariant subset. By LaSalle’s Invariance

Principle [10] (see also [19]), P 0 is globally asymptotically stable in �.

2.7 Existence of Endemic Equilibrium

Theorem 2.7.1. If R0 > 1 then there exists at least one endemic equilibrium P ⇤ = (S⇤, I⇤) in the

interior of �.

Proof. Letting S 0 and I 0 in system (2.4) be equal to zero we get

0 = ⇤� �Sf(I)� dSS, (2.5)

0 = �Sf(I)� (dI � �)I. (2.6)
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Taking equation (2.6) we find that S = (dI+�)I
�f(I) . Substituting this value for S into (2.5) gets us

⇤� (dI + �)I =
dS(dI + �)I

�f(I)
.

Define the auxiliary function G(I) as follows

G(I) = �(I)� (I) = (⇤� (dI + �)I)�
✓
dS(dI + �)I

�f(I)

◆
.

From the definition of the feasible region we have that 0 < I < ⇤/d⇤. Then

lim
I!0

G(I) = lim
I!0

�(I)� lim
I!0

 (I)

= ⇤� dS(dI + �)

�f 0(0)

= ⇤

✓
1� dS(dI + �)

⇤�f 0(0)

◆

= ⇤

✓
1� 1

R0

◆
> 0,

and

G

✓
⇤

d⇤

◆
= �

✓
⇤

d⇤

◆
� 

✓
⇤

d⇤

◆

= ⇤� (dI + �)
⇤

d⇤
� dS(dI + �)

�

⇤

d⇤f(⇤/d⇤)

= ⇤

✓
1� (dI + �)

d⇤

◆
� dS(dI + �)

�

⇤

d⇤f(⇤/d⇤)
< 0.

Thus by the Intermediate Value Theorem there exists a c 2 [0,⇤/d⇤] such that G(c) = 0 and hence

there exists at least one endemic equilibrium for system (2.4).
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2.8 Stability of Endemic Equilibrium

In this section we assume that R0 > 1. Then by Theorem 2.7.1, there exists an endemic equilibrium

for system (2.4), denoted by P ⇤ = (S⇤, I⇤).

2.8.1 Cases for Global Stability

Theorem 2.8.1. Assume that R0 > 1 and (f(I) � f(I⇤))
⇣

f(I)
I � f(I⇤)

I⇤

⌘
 0. Then the endemic

equilibrium P ⇤ = (S⇤, I⇤) for (2.4) is unique and globally asymptotically stable in the interior of

�.

Proof. Evaluating (2.4) at P ⇤ we get

⇤ = �S⇤f(I⇤) + dSS⇤,

�S⇤f(I⇤) = (dI + �)I⇤.

We will use the following fact n
p
⇧n

i ai �
Pn

i=1 ai  0 for ai � 0. We define V = S � S⇤ �

S⇤ ln
�
S⇤

S

�
+ I � I⇤ � I⇤ ln

�
I⇤

I

�
, then taking the derivative of V with respect to system (2.4) we

get

V 0 = S 0 � S⇤

S
S 0 + I 0 � I⇤

I
I 0

= (�S⇤f(I⇤) + dSS⇤)� dSS � (�S⇤f(I⇤) + dSS⇤)
S⇤

S

+�S⇤f(I) + dSS �
✓
�S⇤f(I⇤)

I⇤

◆
I � �Sf(I)

I⇤

I
+ �S⇤f(I⇤)

9



= 2�S⇤f(I⇤) + 2dSS⇤ � dSS � dSS⇤S
⇤

S
+ �S⇤f(I)

��S⇤f(I⇤)
S⇤

S
� �S⇤f(I⇤)

I

I⇤
� �Sf(I)

I⇤

I

 �S⇤f(I⇤)

✓
3� 1 +

f(I)

f(I⇤)
� S⇤

S
� I

I⇤

� Sf(I)I⇤

S⇤f(I⇤)I
� f(I⇤)I

f(I)I⇤
+

f(I⇤)I

f(I)I⇤

◆

 �S⇤f(I⇤)

✓
f(I)

f(I⇤)
� 1

◆✓
1� f(I⇤)I

f(I)I⇤

◆

=
�S⇤I

f(I)
(f(I)� f(I⇤))

✓
f(I)

I
� f(I⇤)

I⇤

◆
 0. (2.7)

Thus, by assumption, we have that V 0  0, hence V is a Lyapunov function for system (2.4). If

V 0 = 0, then S = S⇤ and f(I)/f(I⇤) = I/I⇤. Applying S = S⇤ to the first equation in (2.4) we

get

0 = S 0 = ⇤� �S⇤f(I)� dSS⇤

= ��S⇤(f(I)� f(I⇤)),

implying that f(I) = f(I⇤). Hence, I/I⇤ = f(I)/f(I⇤) = 1. The only invariant set that makes

V 0 = 0 is {P ⇤}, thus by LaSalle’s Invariance Principle [10], P ⇤ is globally asymptotically stable

and unique.

We will look at two cases for f(I), i.e. f(I) = I and f(I) = I/(↵ + I), and show that system

(2.4) satisfies the conditions for Theorem 2.8.1 and thus the endemic equilibrium is globally

asymptotically stable and unique.

Proposition 2.8.2. If f(I) = I and R0 = �S0

dI+� > 1, then the endemic equilibrium P ⇤ of system

(2.4) is globally asymptotically stable and hence unique.
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Proof. If f(I) = I then

(f(I)� f(I⇤))

✓
f(I)

I
� f(I⇤)

I⇤

◆
= (I � I⇤)

✓
I

I
� I⇤

I⇤

◆
= 0,

satisfying the inequality in Theorem 2.8.1.

Proposition 2.8.3. If f(I) = I
↵+I and R0 = �S0

↵(dI+�) > 1, then the endemic equilibrium P ⇤ of

system (2.4) is globally asymptotically stable and hence unique.

Proof. If f(I) = I
↵+I then

(f(I)� f(I⇤))

✓
f(I)

I
� f(I⇤)

I⇤

◆
=

✓
I

↵ + I
� I⇤

↵ + I⇤

◆✓
1

↵ + I
� 1

↵ + I⇤

◆

=

✓
(I � I⇤)↵

(↵ + I)(↵ + I⇤)

◆✓
I⇤ � I

(↵ + I)(↵ + I⇤)

◆

=
↵(I � I⇤)(I⇤ � I)

(↵ + I)2(↵ + I⇤)2

 0.

satisfying the inequality in Theorem 2.8.1.

2.8.2 Cases for Failure of Global Stability

In the event that the conditions assumed in Theorem 2.8.1 are not satisfied, then the endemic

equilibrium need not be unique and hence not globally asymptotically stable. We look at the

equilibrium for the special case f(I) = I2. From Equation (2.2), setting S 0 = 0 and solving for I

gives us

I =
(dI + �)

�S
. (2.8)

11



Taking (2.1), we get I2 = (⇤ � dSS)/(�S). Substituting (2.8) into the equation for I2, we arrive

at a quadratic equation in S

�dsS2 � �⇤S + (dI + �)2 = 0. (2.9)

Theorem 2.8.4. Letf(I) = I2 and ! = 4dS(dI + �)2/(⇤2�).

1. If ! < 1, then system (2.4) has two positive endemic equilibria.

2. If ! = 1, then system (2.4) has one positive endemic equilibrium.

3. if ! > 1, then system (2.4) has no endemic equilibrium.

Proof. Letting � = ⇤2�2 � 4dS�(dI + �)2, factoring out ⇤2�2 from �, we get

� = ⇤2�2 � 4dS�(dI + �)2

= ⇤2�2

✓
1� 4dS(dI + �)2

⇤2�

◆

= ⇤2�2(1� !). (2.10)

Thus from (2.9) and (2.10), have

S =
⇤� ±

p
⇤2�2(1� !)

2dS�

=
⇤� ± ⇤�

p
1� !

2dS�

=
⇤

2dS
± ⇤

2dS
p
1� !.

Thus, for ! < 1 we have two positive endemic equilibria since ⇤
2dS

p
1� ! < ⇤

2dS . When ! = 1,

we have one endemic equilibrium S = ⇤/(2dS), and when ! > 1, we have no positive endemic

equilibrium.
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CHAPTER 3: A HETEROGENEOUS SIR MODEL WITH NONLINEAR

INCIDENCE

A heterogeneous SIR model is proposed in Section 3.1 that incorporates spatial heterogeneity

and directed nonrandom movement. The disease-free equilibrium, feasible region, and the basic

reproduction number R0 are derived for the heterogeneous model in Sections 3.2-3.4. The stability

of the DFE, both locally and globally, is established in Section 3.5. The existence of the endemic

equilibrium is established in Section 3.6. Two theorems are proved in Section 3.7 for establishing

the global stability of the endemic equilibrium for the heterogeneous model.

3.1 Patch Model

We begin with a construction of a flow chart of the behavior we wish to model, see Figure 3.1. The

indicated figure shows only two such patches, but we will analyze the n-patch case. With Figure

3.1 guiding us, we now define our n-patch SIR model as follows

S 0
i = ⇤i � �iSif(Ii)� dSi Si +

nX

j=1

aijSj �
nX

j=1

ajiSi, (3.1)

I 0i = �iSif(Ii)� (dIi + �i)Ii +
nX

j=1

bijIj �
nX

j=1

bjiIi, (3.2)

R0
i = �iIi � dRi Ri +

nX

j=1

cijRj �
nX

j=1

cjiRi. (3.3)

Here �i is the contact coefficient of the disease in question, ⇤i is the number of births during the

period of the disease, �i is the recovery rate of an infected individual, and dSi , dIi , and dRI are

the compartmental death rates in the ith patch. The populations for the susceptible, infectious, and

recovered compartments for patch i are denoted by Si, Ii and Ri respectively, with the corresponding

13



nonnegative transfer matrices denoted as A = [aij], B = [bij] and C = [cij] with (i, j) entry

representing movement from patch j to patch i. We will require that f(Ii) be nonnegative for all

I � 0 and f to be at least C1. We also require �i, �i, dS , dI , dR, and ⇤i to be positive. As for the

system (2.4) in Chapter 1, we will be focusing on a reduced system

S 0
i = ⇤i � �iSif(Ii)� dSi Si +

nX

j=1

aijSj �
nX

j=1

ajiSi, (3.4)

I 0i = �iSif(Ii)� (dIi + �i)Ii +
nX

j=1

bijIj �
nX

j=1

bjiIi.

Ii

Ij

Si

Sj

Ri

Rj

aijSj ajiSi bijIj bjiIi cjiRicijRj

�iSif(Ii) �iIi

�jSjf(Ij) �jIj

⇤i

⇤j

dSi Si dIi Ii dRi Ri

dSj Sj dIj Ij
dRj Rj

Figure 3.1: Heterogeneous model flow diagram.

3.2 Disease-Free Equilibrium

We set S 0
I and I 0i equal to zero and we also assume that there are no infectious people in the

population so Ii = 0. This gives us that (3.2) is identically equal to zero if f(0) = 0. Assuming

14



this, we get the following from (3.1):

0 = ⇤i � dSi Si +
nX

j=1

aijSj �
nX

j=1

ajiSi.

Hence,

⇤i =

 
dSi +

nX

j=1

aji

!
Si �

nX

j=1

aijSj.

Let ⇤ = (⇤1,⇤2, . . . ,⇤n) and S = (S1, S2, . . . , Sn), we arrive at

⇤ =

2

66666664

dS1 +
Pn

j 6=1 aj1 �a12 . . . �a1n

�a21 dS2 +
Pn

j 6=2 aj2 . . . �a2n
...

... . . . ...

�an1 �an2 . . . dSn +
Pn

j 6=n ajn

3

77777775

S.

Defining

D =

2

66666664

dS1 +
Pn

j 6=1 aj1 �a12 . . . �a1n

�a21 dS2 +
Pn

j 6=2 aj2 . . . �a2n
...

... . . . ...

�an1 �an2 . . . dSn +
Pn

j 6=n ajn

3

77777775

,

we can then write ⇤ = DS. From Theorem 2.3 in Berman and Plemmons [4] we have that D is a

non-singular M-matrix. This follows from the theorem, since our matrix D is column diagonally

dominant and hence non-singular. It is clear that adding any non-negative diagonal matrix to D

will preserve the diagonal dominance and its non-singularity. Thus D�1 exists and is non-negative,

S = D�1⇤ � 0, and define S0 = (S0
1 , S

0
2 , . . . , S

0
n) = D�1⇤. We then denote the DFE to be

P 0 = (S0
1 , 0, S

0
2 , 0, . . . , S

0
n, 0).
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3.3 Feasible Region

Before we can define the feasible region, we need to define a few terms. Let ⇤ =
Pn

i=1(⇤i),

d⇤ = min{dSi , dIi+�i}, and N =
Pn

i=1(Si+Ii), where N represents the total population influencing

the disease dynamics. It follows that

N 0 =
nX

i=1

(S 0
i + I 0i)

=
nX

j=1

�
⇤i � dSi Si � (dIi + �i)Ii

�


nX

j=1

⇤i � d⇤
nX

j=1

(Si + Ii)

= ⇤� dSN.

Solving the differential inequality we arrive at N(t)  ⇤/d⇤ � ce�d⇤t, this implies that the

lim sup
t!1

N(t)  ⇤/d⇤. It follows

S 0
i = ⇤i � �iSif(Ii)� dSi Si +

nX

j=1

aijSj �
nX

j=1

aijSi

 ⇤i � dSi Si +
nX

j=1

aijSj �
nX

j=1

aijSi

= ⇤i �
  

dSi +
nX

j=1

aij

!
Si �

nX

j=1

aijSj

!

= (DS0 �DS)i.

So S 0
i  0 if S0

i  Si.
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We call our feasible region � and define it as

� =

(
(S1, I1, . . . , Sn, In) 2 R2n

+

�����

nX

i=1

(Si + Ii) 
⇤

d⇤
;Si  S0

i

)
.

Now, we need to verify that there do not exist any other equilibria on the boundary of �.

Theorem 3.3.1. We assume that the movement matrix B = [bij] is irreducible and that Ii = 0 for

some i = 1, . . . , n, then Ij = 0 for all j 6= i. It then follows P 0 is the only equilibrium point on the

boundary of �.

Proof. Let Ii = 0 for some i and Ij 6= 0 for all j 6= i then (3.2) becomes

0 =
nX

j 6=i

bijIj, (3.5)

if bij > 0 then Ij = 0. This tell us that if Ii = 0 and bij > 0, then Ij = 0 for some j. Using our

irreducibility assumption on (bij), we know that there exists a path from Ii to Ij . Then applying

(3.5) we see

0 = bie1Ie1 + be1e2Ie2 + · · ·+ bem�1emIm + bemjIj,

which implies that

Ie1 = 0, Ie2 = 0, . . . , Im = 0.

We then have that Ij = 0 for all j, so when (bij) is irreducible and Ii = 0 for some i, then I = 0

for all Ii for i = 1, . . . , n. Thus P 0 is the only equilibrium point on the boundary.
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3.4 Basic Reproduction Number

We will utilize the next generation method as described in the paper by van den Driessche and
Watmough [18]. We take the derivative of (3.2) with respect to Ii and evaluate the result at the
DFE,

J(I0i)
���
P0

=

2

666666666664

�1S0
1f

0(0)� (dI1 + �1)�
nP

j 6=1
bj1 b12 . . . b1n

b21 �2S0
2f

0(0)� (dI2 + �2)�
nP

j 6=2
bj2 . . . b2n

...
...

. . .
...

bn1 bn2 . . . �nS0
nf

0(0)� (dIn + �n)�
nP

j 6=n
bjn

3

777777777775

.

Performing a splitting, we define the new disease matrix

F =

2

66666664

�1S
0
1f

0(0) 0 . . . 0

0 �2S
0
2f

0(0) . . . 0

...
... . . . ...

0 0 . . . �nS
0
nf

0(0)

3

77777775

and disease transfer matrix

V =

2

66666664

(dI1 + �1) +
Pn

j 6=1 bj1 �b12 . . . �b1n

�b21 (dI2 + �2) +
Pn

j 6=2 bj2 . . . �b2n
...

... . . . ...

�bn1 �bn2 . . . (dIn + �n) +
Pn

j 6=n bjn

3

77777775

.

Then the basic reproduction number is R0 = ⇢(FV �1), where F represents the rate of appearance

of new infected individuals and V is comprised of the number of infected transferred between

patches.
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3.5 Stability of DFE

By Theorem 2 from van den Driessche and Watmough [18], we have that the DFE is locally

asymptotically stable if R0 < 1 and unstable otherwise. Furthermore, the following results show

the DFE is globally asymptotically stable when R0 < 1.

Theorem 3.5.1. Assume R0 < 1, [bij] is irreducible, 0  f(Ii)  f 0(0)Ii and f(I) = 0 iff I = 0.

Then the DFE is globally asymptotically stable in the interior of � and unique.

Proof. We have that V is column diagonally dominant, then by similar reasoning used to establish

that D is a non-singular m-matrix we have the V is a non-singular m-matrix as well. Thus

V �1 � 0. From Theorem 1.3d in Plemmons and Berman [4], we have that V �1 is irreducible.

Similarly, we can show that V �1F is irreducible, thus by Perron-Frobenius theorem, there exists a

left eigenvector ! of V �1F that is strictly positive. The corresponding eigenvalue ⌫ = ⇢(V �1F ) =

⇢(FV �1) = R0. We then have the following

!V �1F = !R0,

!

R0
= !F�1V.

Define ci = !i/(�iS
0
i f

0(0)) and L =
Pn

j=1 ciIi. Taking the derivative of L with respect to t we get

L0 =
nX

j=1

ciI
0
i

=
nX

j=1

ci

 
�iSif(Ii)� (dIi + �i)Ii +

nX

j=1

bijIj �
nX

j=1

bjiIi

!


nX

j=1

ci

 
�iS

0
i f(Ii)� (dIi + �i)Ii +

nX

j=1

bijIj �
nX

j=1

bjiIi

!
.
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Applying our assumption that f(Ii)  f 0(0)Ii, we have

L0 
nX

j=1

ci

 
�iS

0
i f

0(0)Ii � (dIi + �i)Ii +
nX

j=1

bijIj �
nX

j=1

bjiIi

!

= c(F � V )I

= (! � !F�1V )I

= !

✓
1� 1

R0

◆
I.

Thus, L0  0 when R0 < 1. Namely, L is a Lyapunov function of (3.1) & (3.2). If L0 = 0, this

implies that Si = S0
i or Ii = 0. Assume that Si = S0

i . Looking back at (3.1) we get �iS
0
i f(Ii) = 0

which implies that f(Ii) = 0. Thus, the invariant set where L0 = 0 is {P 0}. By LaSalle Invariance

Principle [10], the DFE, P 0, is globally asymptotically stable.

3.6 Existence of Endemic Equilibrium

Theorem 3.6.1. If R0 > 1, then there exists at least one endemic equilibrium P ⇤ = (S⇤
1 , I

⇤
1 , . . . , S

⇤
n, I

⇤
n)

for the system (3.4) in the interior of �.

Proof. Take ci = !i/(�iS
0
I f

0(0)) and L =
Pn

j=1 ciIi as defined in the proof of Theorem 3.5.1.

Then,

L0 =
nX

j=1

ci

 
�iSif(Ii)� (dIi + �i)Ii +

nX

j=1

bijIj �
nX

j=1

bjiIi

!

=
nX

j=1

ci

  
�iSif(Ii)

Ii
� (dIi + �i)�

nX

j=1

bji

!
Ii +

nX

j=1

bijIj

!

= c( eF � V )I.
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Here fFij =
�iSif(Ii)

Ii
when i = j, fFij = 0 for i 6= j, and lim(Si,Ii)!(S0

i ,0)
eF = F . Taking the limit of

L0 we get

lim
(Si,Ii)!(S0

i ,0)
L0 = lim

(Si,Ii)!(S0
i ,0)

c( eF � V )I

= c(F � V ) lim
(Si,Ii)!(S0

i ,0)
I

= !

✓
1� 1

R0

◆
lim

(Si,Ii)!(S0
i ,0)

I � 0.

Thus, if R0 > 1, then L0 > 0 for some neighborhood N✏(P 0) about P 0. This implies P 0 is unstable

and all trajectories that start close enough to the DFE will leave N✏(P 0). Hence the system (3.4) is

uniformly persistent by [7, Theorem 4.3] and a similar argument in [11, Proposition 3.3]. Uniform

persistence and uniform boundedness of solutions in the interior of � implies the existence of at

least one endemic equilibrium (see Theorem D.3 in [17] or Theorem 2.8.6 in [5]).

3.7 Stability of Endemic Equilibrium

Theorem 3.7.1. Assume that [aij] = 0, [bij] is irreducible, and (f(Ii)� f(I⇤i ))
⇣

f(Ii)
Ii

� f(I⇤i )
I⇤i

⌘


0. If R0 > 1, then the endemic equilibrium P ⇤ of system (3.4) is globally asymptotically stable

and unique in the interior of �.

Proof. Evaluating system (3.4) at P ⇤ gives us,

⇤i = �iS
⇤
i f(I

⇤) + dSi S
⇤,

(dIi + �i) =
�iS

⇤
i f(I

⇤
i )

I⇤i
+

nX

j=1

bij
I⇤j
I⇤i

�
nX

j=1

bji.

We will utilize n
p
⇧n

i xi �
Pn

i=1 xi  0 for xi � 0 and 1 � x + ln(x)  0 for x > 0. Let
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Vi = Si � S⇤
i � S⇤

i ln
⇣

S⇤
i

Si

⌘
+ Ii � I⇤i � I⇤i ln

⇣
I⇤i
Ii

⌘
, differentiating with respect to (3.4) we get,

V 0
i = ⇤i � �iSif(Ii)� dSi Si �

S⇤
i

Si

�
⇤i � �iSif(Ii)� dSi Si

�

+�iSif(Ii)� (dIi + �i)Ii +
nX

j=1

bijIj �
nX

j=1

bjiIi

�I⇤i
Ii

 
�iSif(Ii)� (dIi + �i)Ii +

nX

j=1

bijIj �
nX

j=1

bjiIi

!

= dSi S
⇤
i

✓
2� Si

S⇤
i

� S⇤
i

Si

◆

+�iS
⇤
i f(I

⇤
i )

✓
2� S⇤

i

Si
+

f(Ii)

f(I⇤i )
� Ii

I⇤i
� Sif(Ii)I⇤i

S⇤
i f(I

⇤
i )Ii

◆

+
nX

j=1

bijI
⇤
j

✓
Ij
I⇤j

� Ii
I⇤i

� IjI
⇤
i

I⇤j Ii
+ 1

◆

 �iS
⇤
i f(I

⇤
i )

✓
2� S⇤

i

Si
+

f(Ii)

f(I⇤i )
� Ii

I⇤i
� Sif(Ii)I⇤i

S⇤
i f(I

⇤
i )Ii

◆

+
nX

j=1

bijI
⇤
j

✓
Ij
I⇤j

� Ii
I⇤i

� IjI
⇤
i

I⇤j Ii
+ 1

◆


nX

j=1

bijI
⇤
j

✓
Ij
I⇤j

� ln

✓
Ij
I⇤j

◆�
�

Ii
I⇤i

� ln

✓
Ii
I⇤i

◆�◆

=
nX

j=1

bijI
⇤
j (Hj(Ij)�Hi(Ii)) ,

where Hi(Ii) = Ii
I⇤i

� ln
⇣

Ii
I⇤i

⌘
. We define the weighted digraph D with the associated weight

matrix W as the ordered pair (D,W) and let entries (wij) = bijI
⇤
j . Furthermore we define ci =

P
T 2T w(T ) � 0, then by Theorem 2.3 in [14], we have the following:

nX

i=1,j=1

cibijI
⇤
j (Hj(Ij)�Hi(Ii)) = 0.

We then define V (S1, I1, . . . , Sn, In) =
Pn

i=1 ciVi(Si, Ii), with ci > 0 if (D,W) is irreducible,
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giving us that

V 0 =
nX

i=1

ciV
0
i (Si, Ii)


nX

i=1

ci

 
nX

j=1

bijI
⇤
j (Hj(Ij)�Hi(Ii))

!

= 0

for all (S1, I1, S2, I2, . . . , Sn, In) 2 �, thus V is a Lyapunov function for system (3.4). Since we

have that B is irreducible, then ci is irreducible, and thus ci > 0 for all i. Thus, V 0 = 0 implies

that Si = S⇤
i and f(Ii)/f(I⇤i ) = Ii/I

⇤
i for all i. Substituting S⇤

i for Si in (3.1), we get that

0 = (Si)0 = (S⇤
i )

0 = ⇤i � �iS
⇤
i f(I

⇤
i )� dSi S

⇤
i +

Pn
j=1 aijS

⇤
j �

Pn
j=1 ajiS

⇤
i

implying that f(I⇤i ) = f(Ii) for all i. Hence, Ii/I⇤i = f(Ii)/f(I⇤i ) = 1. The only invariant set that

makes V 0 = 0 is {P ⇤}, thus by LaSalle Invariance Principle [10], P ⇤ is globally asymptotically

stable and unique.

Theorem 3.7.2. Assume [bij] = 0, [aij] is irreducible, and (f(Ii)� f(I⇤i ))
⇣

f(Ii)
Ii

� f(I⇤i )
I⇤i

⌘
 0. If

R0 > 1, then the endemic equilibrium P ⇤ of system (3.4) is unique and globally asymptotically

stable in the interior of �.

Proof. Evaluating system (3.4) at P ⇤ gives us,

dSi =
⇤i

S⇤
i

� �iS
⇤
i f(I

⇤)

S⇤
i

+
nX

j=1

aij
S⇤
j

S⇤
i

�
nX

j=1

aji,

(dIi + �i) =
�iS

⇤
i f(I

⇤
i )

I⇤i
.

We will utilize n
p
⇧n

i xi �
Pn

i=1 xi  0 for xi � 0 and 1 � x + ln(x)  0 for x > 0. Let
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Vi = Si � S⇤
i � S⇤

i ln
�
S⇤

S

�
+
R Ii
I⇤i

f(⇠)�f(I⇤i )
f(⇠) d⇠, differentiating with respect to (3.4) we get,

V 0
i = ⇤i � �iSif(Ii)� dSi Si +

nX

j=1

aijSj �
nX

j=1

ajiSi

�S⇤
i

Si

 
⇤i � �iSif(Ii)� dSi Si +

nX

j=1

aijSj �
nX

j=1

ajiSi

!

+�iSif(Ii)� (dIi + �i)Ii �
f(I⇤i )

f(Ii)

�
�iSif(Ii)� (dIi + �i)Ii

�

= ⇤i

✓
2� S⇤

i

Si
� Si

S⇤
i

◆

+�iS
⇤
i f(I

⇤
i )

✓
f(Ii)

f(I⇤i )
� 1� Ii

I⇤i
+

f(I⇤i )Ii
f(Ii)I⇤i

◆

+
nX

j=1

aijS
⇤
j

✓
Sj

S⇤
j

+ 1� Si

S⇤
i

� SjS
⇤
i

SiS⇤
j

◆


nX

j=1

aijS
⇤
j

✓
Sj

S⇤
j

� ln

✓
Sj

S⇤
j

◆�
�

Si

S⇤
i

� ln

✓
Si

S⇤
i

◆�◆

=
nX

j=1

aijS
⇤
j (Kj(Sj)�Ki(Si)) ,

where Ki(Si) = Si
S⇤
i
� ln

⇣
Si
S⇤
i

⌘
. We define the weighted digraph D with the associated weight

matrix W as the ordered pair (D,W) and let entries (wij) = aijS
⇤
j . Furthermore, we define

ci =
P

T 2T w(T ) � 0, then by Theorem 2.3 in [14] we have

nX

i=1,j=1

ciaijS
⇤
j (Kj(Sj)�Ki(Si)) = 0.

We then define V (S1, I1, S2, I2, . . . , Sn, In) =
Pn

i=1 ciVi(Si, Ii), with ci > 0 if (D,W) is irreducible,

giving us

V 0 =
nX

i=1

ciV
0
i (Si, Ii) 

nX

i=1

ci

 
nX

j=1

aijS
⇤
j (Kj(Sj)�Ki(Si))

!
= 0
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for all (S1, I1, S2, I2, . . . , Sn, In) 2 �. Thus V is a Lyapunov function for system (3.4). Since we

have A is irreducible, then ci is irreducible, and thus ci > 0 for all i. Thus, V 0 = 0 implies that

Si = S⇤
i and f(Ii)/f(I⇤i ) = Ii/I

⇤
i for all i. Substituting S⇤

i for Si in (3.1) we get that

0 = (Si)0 = (S⇤
i )

0 = ⇤i � �iS
⇤
i f(I

⇤
i )� dSi S

⇤
i +

Pn
j=1 aijS

⇤
j �

Pn
j=1 ajiS

⇤
i

implying that f(I⇤i ) = f(Ii) for all i. Hence, Ii/I⇤i = f(Ii)/f(I⇤i ) = 1. The only invariant set that

makes V 0 = 0 is {P ⇤}, thus by LaSalle Invariance Principle [10], P ⇤ is globally asymptotically

stable and unique.
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CHAPTER 4: SIMULATIONS

In this chapter, we present simulations supporting and complementing our analysis in Chapters 2

and 3. Specifically, we choose f(I) = I2 in the previous models (2.4) and (3.4), as it gives more

interesting dynamical behavior. Simulations for the homogeneous model (2.4) are carried out in

Section 4.2 while the simulations for the heterogeneous model (3.4) are in Section 4.3.

4.1 Parameter Values

For our simulations we took the birth rate in the United States to be 13.42 births / 1,000 population,

the death rates dS and dI were assumed equal and given the value 8.15 deaths/ 1,000 populations.

Both of the death rate and birth rate were found online at the CIA’s World FactBook and is an

estimate for 2014. In addition, we assumed an infectious period 1/� of 15 days for a single

infected individual.

4.2 Homogeneous Model

Consider the homogeneous model (2.4) with f(I) = I2. We have

S 0 = ⇤� �SI2 � dSS, (4.1)

I 0 = �SI2 � (dI + �)I.

Define � := 4dS(dI+�)2

⇤2 , rewriting � from (2.10) so that the sign is dependent on the difference of

� and � we get� = ⇤2�(���). Using the parameter values defined in section 4.1, the calculated

the value of � = 4dS(dI+�)2

⇤2 ⇡ 2.4⇥ 10�9. For our simulations, we will take � to be greater than �,

26



then by Table 4.1 we can expect two endemic equilibrium to be present.

Table 4.1: Number of equilibria based on � relative to �.

� < � 0 positive equilibrium
� = � 1 positive equilibrium
� > � 2 positive equilibria

The nullclines of (4.1) are shown in Figures 4.1(a)-(d) for different � values. When � < �, we

have the case depicted in Figure 4.1(a), where the S nullcline intersects the I nullclines only on

the boundary, meaning that we have no endemic equilibrium, only the disease-free equilibrium.

When � = �, Figure 4.1(b) shows that there is exactly one intersection between the S nullcline

and the I nullcines in the interior of �, thus we have a single endemic equilibrium. Once � > �

the S nullcline intersects the I nullclines in two places in the interior of the feasible region (see

Figure 4.1(c)), demonstrating that there will be two endemic equilibrium. As � increases the lower

endemic equilibrium (EE1) gets closer to the DFE, while the upper endemic equilibrium (EE2)

approaches the I axis (Figure 4.1(d)).

From the vector field overlaid the nullclines in Figure 4.1(c) and (d), we see that the flow undergoes

significant changes in the vicinity of the nullclines. This was investigated further by looking

at the end behavior of solutions curves starting from different initial conditions. We were able

to demonstrate that (4.1) exhibits bistability, see Figure 4.2(a)-(f). The behavior of the infected

population vs time can be seen in Figure 4.2(a)-(c), where (b) and (c) are the respective closer

views of the upper and lower endemic equilibria. We selected five initial conditions, labeled I.C. 1,

. . . , I.C. 5 in Figure 4.2, two points around the upper (I.C. 5, I.C. 4), two points around the lower

endemic equilibrium (I.C. 3, I.C. 2), and one point near the DFE (I.C. 1). Looking at the Figure

4.2(b), we see that I.C. 4 and 5 experience sustained oscillation at different amplitudes throughout

the duration of the simulation, Figure 4.2(e) shows that the solutions settle into two distinct limit
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cycles about EE2. The solution resulting from I.C. 3 has the curve leaving the vicinity of EE1 and

entering into a limit cycle about EE2. This is shown in the fact that the solution curve leaves the

plot area of Figure 4.2(c), enters Figure 4.2(b) from the bottom and then enters orbit about EE2

(this can also be seen in (e) and (f)). While for I.C. 1 and 2, they end up in a disease free state,

Figure 4.2(c) and (f).
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Figure 4.1: Nullclines of system (4.1) with vector field overlaid for different values of � relatively
to �.
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For the final simulation involving the homogeneous model, we looked at how the behavior of

a solution changed for a fixed initial condition as � was varied. Figure 4.3(a)-(f) shows our

results from this simulation. We found that for the chosen initial condition the behavior changed

significantly based on the � value. For the initial � value, the disease would die out in the

population after invoking an epidemic. As � was increased, the infected population experienced

sustained oscillations, Figure 4.3(b)-(d), before going to an endemic state (Figure 4.3(e) and (f)).
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Figure 4.2: Bistability of system (4.1) with � = 1.784⇥ 10�6 > �. Subplot (b) corresponds with
a closer look of EE2 in (a), (c) corresponds with a closer look of EE1 in (a). While (e) is a closer
look at EE2 in (d) and (f) is a closer look at EE1 in (d).
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Figure 4.3: Behavior of system (4.1) near EE2 with 1.274⇥ 10�6  �  2.028⇥ 10�6.
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4.3 Heterogeneous Model

For our simulations of the the heterogeneous mode,l we consider the special case of (3.4) with 2

patches [n=2] and f(I) = I2. Namely, we consider

S 0
1 = ⇤1 � �1S1I

2
1 � dS1S1 + a12S2 � a21S1,

S 0
2 = ⇤2 � �2S2I

2
2 � dS2S2 + a21S1 � a12S2, (4.2)

I 01 = �1S1I
2
1 � (dI1 + �1)I1 + b12I2 � b21I1,

I 02 = �2S2I
2
2 � (dI2 + �2)I2 + b21I1 � b12I2.

We also assumed all movement rates are the same, i.e. a12 = a21 = b12 = b21 = a, with a being a

positive constant. In our simulations of the heterogeneous model, we varied the contact coefficients

between the patches and held all other parameter values fixed (i.e. �1 6= �2, but dI1 = dI2 = dS1 = dS2

and �1 = �2).

For our first simulation, we chose �1 and �2 such that in isolation patch 1 would be experiencing

sustained oscillations in the population while the disease in patch 2 dies out, see Figure 4.4(a).

Once movement is initiated, we see in Figure 4.4(b) that both patches enter into an endemic state

until the movement rate surpasses a threshold value, resulting in both patches becoming disease

free, Figure 4.4(c).

We then kept �1, but chose a different �2 value for patch 2, such that in isolation an epidemic would

occur before the disease died out. With population movement taking place between patches, we

see in Figure 4.5(b) that both patches experience periodic epidemics, but with the epidemics in

patch 1 preceding those in patch 2. When the movement rates increases enough, the epidemics

experienced by both patches are synchronized and have equal magnitude.
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Figure 4.4: Simulations of (4.2) with �1 = 1.784 ⇥ 10�6, �2 = 1.784 ⇥ 10�8 and increasing
movement.
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Figure 4.5: Simulations of (4.2) with �1 = 1.784⇥10�6, �2 = 1.3⇥10�6 and increasing movement.

Next we look at when there is no movement between patch 1 and 2, patch 2 is in an endemic state,

and patch 1 experiences periodic epidemics, Figure 4.6(a). Once movement is allowed, 4.6(b)

shows that both exhibit periodic epidemics. As movement increases, the phase shift between the

epidemics of each patch diminishes resulting in the synchronization of the epidemics as seen in

Figure 4.6(c). For a larger �2 value we see a completely different result. With movement between

the patches both go to endemic equilibrium, and any further increases results in both patches

approaching the same endemic equilibrium, see Figure 4.7.
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Figure 4.6: Simulations of (4.2) with �1 = 1.6⇥ 10�6, �2 = 1.9⇥ 10�6 and increasing movement.
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Figure 4.7: Simulations of (4.2) with �1 = 1.6⇥ 10�6, �2 = 5⇥ 10�6 and increasing movement.

When both patches are experiencing periodic epidemics in isolation, as seen in Figure 4.8(a),

and the populations are allowed to travel between the patches, the only outcome we were able to

show was that both patches would equalize and have periodic epidemics, Figure 4.8(c). Prior to

synchronization of the patches the oscillation periods match although with differing amplitudes,

Figure 4.8(b).

The final experiment was to investigate the case when, for no movement between the patches,

patch 1 was in an endemic state while the disease died out for patch 2, Figure 4.9(a). From Figure
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4.9(b) we see that with movement between the patches both go to an endemic equilibrium. Further

increases in the movement gave rise to both patches experiencing periodic epidemics, Figure 4.9(c).
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Figure 4.8: Simulations of (4.2) with �1 = 1.6⇥10�6, �2 = 1.68⇥10�6 and increasing movement.
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Figure 4.9: Simulations of (4.2) with �1 = 3.1⇥ 10�6, �2 = 1.5⇥ 10�7 and increasing movement.
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CHAPTER 5: CONCLUSIONS AND FUTURE STUDIES

An SIR model with spatial heterogeneity was investigated to understand the effects of movement

between isolated communities (patches) at various degrees of infection. Our initial consideration

of the homogeneous SIR model was to establish the behaviors of the individual patches before

allowing population movement between patches. We were able to establish conditions for the

stability of the disease-free equilibrium and endemic equilibrium for the homogeneous model

with generalized incidence, as well as for the heterogeneous SIR model that incorporates the

nonrandom, directed movement among the patches. In the case of the homogeneous model, we

looked at two incidence terms common to the literature and showed that the endemic equilibrium

is globally asymptotically stable in both cases. When these conditions are not met, we can expect

interesting dynamical behavior to occur; specifically, we established the presence of bistability as

well as multiple endemic equilibria. For the heterogeneous model, we established the uniqueness

and global stability of the endemic equilibrium when either susceptible or infectious populations

are allowed to move freely between patches.

In our simulations, we were able to confirm the existence of the multiple endemic equilibrium for

a single patch, the existence of two limit cycles, and bistability. When we looked at the two patch

case of our heterogeneous model it was seen that different behaviors can be observed for different

movement rates for a given contact coefficient. This is seen when coupling a patch experiencing

periodic epidemics with one in which the disease dies out, the result is that for sufficiently small

movement rates both patches will go to endemic equilibrium, while for larger movement rates

the disease dies out in both patches. Another example is when a particular disease is endemic

in a given patch is coupled with a patch in which the disease died out, the result was that both

went to an endemic state. For larger movement rates the two patches developed oscillations. In

all simulations conducted, as movement between patches was increased the effective difference
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between the populations diminished.

In the future, we plan on continuing to work towards establishing the global stability of the endemic

equilibrium for the heterogeneous model when both the susceptible and infectious populations are

allowed to move freely. In addition to performing the simulations for the case when the initial

conditions are not equal, we plan on investigating the instance when the interpatch movement is

not symmetric. We also plan on performing numerical investigations where the rate of transfer of

the susceptible population differs from the infectious population. In addition, further numerical

investigation into the dynamics of multi-patch models would be of interest.
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