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ABSTRACT 

Quantitative optical phase imaging techniques, such as optical diffraction tomography 

(ODT), are useful tools for refractive-index profiling. Many of them, however, rely on the weak-

scattering assumptions, thus cannot be applied to multiple-scattering objects, or turbid media. In 

this thesis, I report several approaches for expanding the efficacy of ODT techniques and adapting 

them to new applications by use of low-coherence broadband illumination. 

First, I developed a method for ODT reconstruction using regularized convex optimization 

with a new phase-based fidelity criterion. The new criterion is necessary because objects with very 

different refractive-index distributions may produce similar diffracted fields (magnitude and 

principal-phase) on the detection planes. This surjective, but non-injective relation, attributed to 

the cyclical nature of the phase, makes optimization algorithms using a field-based cost function 

prone to local minima, particularly for objects introducing large optical pathlength difference. I 

developed a phase-based optimization algorithm that avoids this and successfully tested it using 

simulations on phantoms and experimental data measured from samples of optical fibers. 

I have developed a method that applies total-variation regularization at each iteration of an 

iterative framework for ODT, which was developed with co-workers. I performed numerical and 

experimental tests using various highly scattering objects and demonstrated significant 

improvement in reconstruction SNR. 

I have also designed and constructed a new experimental setup for ODT measurement and 

expanded the new ODT algorithms from 2D to 3D. These algorithms have been numerically and 

experimentally validated using simulated data and data collected from the new experimental setup. 
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Additionally, I have investigated the use of temporally incoherent illumination in ODT and 

showed that it enables time-gating of artifacts caused by multiple-scattering. I have further 

demonstrated that ODT combined with Fourier-transform spectroscopy can be used for spectral 

tomographic imaging of the wavelength-dependent complex-valued refractive index volumetric 

distributions. 
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CHAPTER 1: INTRODUCTION 

Optical imaging is a method of using non-ionizing illumination for studying objects, using 

absorption or refractive-index (RI) as a contrast agent. In biological applications, optical imaging 

is both safe (non-ionizing), and highly-effective for imaging soft-tissue, when compared to x-ray 

imaging [1]. The choice of optical wavelengths is also highly-desirable for characterizing optical 

properties of ultraviolet (UV) sensitive materials. Key challenges in optical imaging include 

diffraction/scattering effects, since inhomogeneities in samples can be on a similar scale to the 

illumination wavelength. 

In the case of transparent objects (e.g., biological samples, or optical fibers) absorption-

based methods are either difficult, or may require the use of contrast agents to observe the sample 

clearly [2, 3, 4].  In biological optical imaging applications, contrast agents or fluorescent tags are 

frequently used to provide high-resolution detail about cellular processes [5, 6]. Unfortunately, 

these same labelling tools may affect cellular behavior or even be phototoxic to the cells being 

imaged. For such a class of samples, imaging the refractive-index, or the phase introduced by the 

objects is especially useful, since the sample’s RI can behave as its own contrast agent [7]. 

Optical phase imaging [8, 9, 10, 11] is particularly useful in tomographic reconstruction. 

For biological samples, optical tomographic methods offer inexpensive, non-invasive ways to 

study cells, or tissue in-vivo, up to sub-wavelength resolutions. Popular methods of optical phase 

tomography include tomographic phase microscopy (TPM) [12, 13, 14], which is a direct analogue 

to computed tomography (CT) [15], in addition to methods such as optical coherence tomography 

and diffuse optical tomography [16, 17, 18], which allow 3D imaging of phase objects in turbid 



2 

 

media. Optical diffraction tomography (ODT) [19], a mature technique of growing interest, 

accounts for the wave nature of light, unlike TPM, when reconstructing objects. 

Under weak-scattering conditions, optical diffraction tomography provides quantitative 3D 

refractive-index (and absorption) imaging of samples, at sub-wavelength resolution by linearly 

relating the scattered optical field to the permittivity distribution of a sample. Since its inception, 

ODT has been applied in RI profiling of live cells [20, 21] and other phase objects (e.g., optical 

fibers) [22]. Because ODT inversions typically employ linearizing assumptions, these inversions 

are hindered primarily by the presence of multiple scattering, which quickly breaks down the linear 

relationship between the sample and the scattered field. To address these challenges, new 

approaches have been proposed and developed to extend the efficacy of ODT inversions to highly 

scattering samples, or turbid media. This thesis begins with an overview of the theory of ODT and 

describes new approaches that extend the utility of ODT and address its various challenges. 
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CHAPTER 2: THEORY OF OPTICAL DIFFRACTION 

TOMOGRAPHY 

 2.1 Overview 

For optical imaging, many classes of phase objects contain inhomogeneities of a similar 

size to the illuminating wavelength, causing the illuminating light to diffract, instead of following 

linear trajectories through a sample (e.g., for x-rays in CT). For tomographic methods to accurately 

reconstruct objects where the effects of diffraction are non-trivial, the inverse scattering problem 

must be solved. 

For traditional ODT, schematically shown in Figure 2.1, an object to be imaged is 

illuminated by an impinging plane-wave, and the resulting scattered field is measured on the plane 

of a detector. In the case of weakly-scattering objects, the scattered field is linearly related to a 

slice of the Fourier transform of the object, through what is known as the Fourier Slice Theorem 

[16], a relationship that will be derived in this section. By illuminating the object for all angles, 

and collecting the respective scattered fields, information of the object’s Fourier transform, or 

Limiting Ewald’s Sphere, can be filled in, allowing the object to be reconstructed. 

 

Figure 2.1: Schematic of traditional ODT. Adapted from [16]. 
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To demonstrate this relationship, we take an object, described by f(r), that is contained 

inside a linear, isotropic, and homogeneous medium of background RI nb. For an objected 

illuminated by some field Uo, the throughout the object volume satisfies the inhomogeneous wave 

equation: 

(∇2 + 𝑘𝑏
2)𝑈(𝑟) = −𝑓(𝑟)𝑈(𝑟), (2.1) 

where kb≡ ω∙nb/c, and ‘object function’ f(r) relates to the relative permittivity (or RI) by: 

𝑓(𝑟) ≡ (
𝜔

𝑐
)

2

(𝑛(𝑟)2 − 𝑛𝑏
2). (2.2) 

The homogeneous solution to Equation (2.1), known as the Helmholtz Equation, describes 

the non-scattered background illumination, Uo (e.g., plane-wave), described by: 

(∇2 + 𝑘𝑏
2)𝑈𝑜(𝑟) = 0. (2.3) 

To reconstruct the object function, Equation (2.1) is typically linearly inverted, through 

either the 1st Born or Rytov approximation [19], which both assume weak scattering. 

2.1 The First-Born Approximation  

Developed by Born in 1926 as a means to invert the Lippmann-Schwinger equation [23], 

the 1st Born Approximation, as performed in Born and Wolf [19], first separates the ‘total field’ U 

into the illuminating ‘background field,’ Uo, and a respective ‘scattered field,’ Us, as follows: 

𝑈(𝑟) ≡ 𝑈𝑜(𝑟) + 𝑈𝑠(𝑟). (2.4) 

Substituting Equation (2.4) into the left-hand side of Equation (2.1): 

(∇2 + 𝑘𝑏
2)𝑈𝑜(𝑟) +  (∇2 + 𝑘𝑏

2)𝑈𝑠(𝑟) = −𝑓(𝑟)𝑈(𝑟), (2.5) 

which simplifies to: 

 (∇2 + 𝑘𝑏
2)𝑈𝑠(𝑟) = −𝑓(𝑟)𝑈(𝑟). (2.6) 
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We next note the Green’s function, which is a solution of Equation (2.1) for which f(r) is a 

delta function: 

(∇2 + 𝑘𝑏
2)𝐺(𝑟) = −𝛿(𝑟). (2.7) 

Decomposing the right-hand side of Equation (2.6) into delta functions, we see: 

 (∇2 + 𝑘𝑏
2)𝑈𝑠(𝑟) = − ∫ 𝑑𝑟′⃗⃗⃗⃗ 𝛿(𝑟 − 𝑟′⃗⃗⃗⃗ )𝑓(𝑟′⃗⃗⃗⃗ )𝑈(𝑟′⃗⃗⃗⃗ ) . (2.8) 

Substituting Equation (2.7): 

 (∇2 + 𝑘𝑏
2)𝑈𝑠(𝑟) = (∇2 + 𝑘𝑏

2) ∫ 𝑑𝑟′⃗⃗⃗⃗ 𝐺(𝑟 − 𝑟′⃗⃗⃗⃗ )𝑓(𝑟′⃗⃗⃗⃗ )𝑈(𝑟′⃗⃗⃗⃗ ) , (2.9) 

and so: 

𝑈𝑠(𝑟) = ∫ 𝑑𝑟′⃗⃗⃗⃗ 𝐺(𝑟 − 𝑟′⃗⃗⃗⃗ )𝑓(𝑟′⃗⃗⃗⃗ )𝑈(𝑟′⃗⃗⃗⃗ ) . (2.10) 

Assuming Us to be a small perturbation compared to Uo (Us ≪ Uo), the 1st Born approximation 

linearly relates the scattered field to the object function by: 

𝑈𝑠(𝑟) ≈ 𝑈𝐵(𝑟) ≡ ∫ 𝑑𝑟′⃗⃗⃗⃗ 𝐺(𝑟 − 𝑟′⃗⃗⃗⃗ )𝑓(𝑟′⃗⃗⃗⃗ )𝑈𝑜(𝑟′⃗⃗⃗⃗ ) . (2.11) 

The validity of the 1st Born approximation is typically interpreted to be that the 

accumulated phase of the scattered field must be much smaller than 2π. In other words, for a phase 

object of diameter D, and RI difference Δn, |koΔnD|≪ 2π, or |DΔn|≪λ [24]. For this reason, the 

Born approximation is known to fail in the case of objects of large size, or high index contrast. 
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2.2 The First Rytov Approximation 

An alternative approach to obtain UB from Equation (2.11), known as the 1st Rytov 

approximation [25], is done by expressing the total field’s complex phase a perturbation. The total 

and background fields are now instead defined as: 

𝑈(𝑟) ≡ 𝑒𝜙𝑜(𝑟)+𝜙𝑠(𝑟), 𝑈𝑜(𝑟) ≡ 𝑒𝜙𝑜(𝑟), (2.12) 

where 𝜙o and 𝜙s are respectively known as the ‘background’ and ‘scattered’ phases. Substituting 

Uo(r) from Equation (2.12) into Equation (2.3): 

(∇2 + 𝑘𝑏
2)𝑒𝜙𝑜(𝑟) = [∇2𝜙𝑜(𝑟) + (∇𝜙𝑜(𝑟))

2
+ 𝑘𝑏

2] 𝑈𝑜(𝑟) = 0. (2.13) 

The background phase satisfies the Riccati equation: 

∇2𝜙𝑜(𝑟) + (∇𝜙𝑜(𝑟))
2

+ 𝑘𝑏
2 = 0. (2.14) 

Likewise, the total field, from Equation (2.12) can be substituted into Equation (2.1) to obtain: 

∇2𝑒𝜙𝑜+𝜙𝑠 + 𝑘𝑏
2𝑒𝜙𝑜+𝜙𝑠 = ∇ ∙ [(∇𝜙𝑜(𝑟))𝑈(𝑟) + (∇𝜙𝑠(𝑟))𝑈(𝑟)] + 𝑘𝑏

2𝑈(𝑟), (2.15) 

(∇2𝜙𝑜 + (∇𝜙𝑜)2 + 𝑘𝑏
2)𝑈 + (∇2𝜙𝑠 + (∇𝜙𝑠)2 + 2∇𝜙𝑜 ∙ ∇𝜙𝑠)𝑈 =  −𝑓𝑈. (2.16) 

Substituting Equation (2.14) into Equation (2.16), and dividing both sides by U, we obtain the 

Riccati equation governing 𝜙s: 

∇2𝜙𝑠 + (∇𝜙𝑠)2 + 2∇𝜙𝑜 ∙ ∇𝜙𝑠 = −𝑓. (2.17) 

To relate the scattered phase, 𝜙s, to UB from Equation (2.11), we study the following 

equations: 

(∇2 + 𝑘𝑏
2)𝑈𝑜𝜙𝑠 = ∇ ∙ [(∇𝜙𝑜)𝑈𝑜𝜙𝑠 + (∇𝜙𝑠)𝑈𝑜] + 𝑘𝑏

2(𝑈𝑜𝜙𝑠) (2.18) 

= (𝛁𝟐𝝓𝒐 + (𝛁𝝓𝒐)𝟐 + 𝒌𝒃
𝟐)𝑈𝑜𝜙𝑠 + (∇2𝜙𝑠 + 2∇𝜙𝑜 ∙ ∇𝜙𝑠)𝑈𝑜 (2.19) 

Substituting Equation (2.14) into bolded portion: 



7 

 

(∇2 + 𝑘𝑏
2)𝑈𝑜𝜙𝑠 = (∇2𝜙𝑠 + 2∇𝜙𝑜 ∙ ∇ϕs)𝑈𝑜, (2.20) 

= (∇2𝜙𝑠 + 2∇𝜙𝑜 ∙ ∇𝜙𝑠 + (∇𝜙𝑠 )2 − (∇𝜙𝑠 )2)𝑈𝑜. (2.21) 

Substituting in Equation (2.17): 

(∇2 + 𝑘𝑏
2)𝑈𝑜𝜙𝑠 = −(𝑓 + (∇𝜙𝑠 )2)𝑈𝑜. (2.22) 

Green’s decomposition, as followed by Equations (2.6) through (2.10), gives: 

𝑈𝑜(𝑟)𝜙𝑠(𝑟) =  ∫ 𝑑3𝑟′⃗⃗⃗⃗ 𝐺(𝑟 − 𝑟′⃗⃗⃗⃗ ) [𝑓(𝑟′⃗⃗⃗⃗ ) + (∇𝜙𝑠(𝑟′⃗⃗⃗⃗ ))
2

] 𝑈𝑜(𝑟′⃗⃗⃗⃗ ) , (2.23) 

which relates to Equation (2.11) by: 

𝑈𝑜(𝑟)𝜙𝑠(𝑟) =  𝑈𝐵(𝑟) +  ∫ 𝑑3𝑟′⃗⃗⃗⃗ 𝐺(𝑟 − 𝑟′⃗⃗⃗⃗ ) (∇𝜙𝑠(𝑟′⃗⃗⃗⃗ ))
2

𝑈𝑜(𝑟′⃗⃗⃗⃗ ) . (2.24) 

The 1st Rytov Approximation assumes (∇φs)
2≪f, such that: 

𝜙𝑠(𝑟) ≡ log (
𝑈(𝑟)

𝑈𝑜(𝑟)
) ≈ 𝜙𝑅(𝑟) ≡

𝑈𝐵(𝑟)

𝑈𝑜(𝑟)
. (2.25) 

The log function in Equation (2.25) leaves the imaginary part of 𝜙s wrapped between -π 

and π, and so an unwrapping algorithm must be used to correctly obtain 𝜙s. The validity condition 

of the Rytov approximation requires that the scattered phase vary slowly on the scale of a 

wavelength, or more exactly (∇φs)
2 ≪ f. While this is true, the requirement that the Rytov phase 

be unwrapped correctly is often underappreciated – especially in the case of higher contrast 

samples. The presence of phase vortices makes unwrapping extremely difficult and causes the 

phase gradient to be locally large near the vortex (even with correct phase unwrapping). Although 

the Rytov approximation is often considered more versatile than the Born approximation [24], the 

latter does not require phase-unwrapping. 
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2.3 The Fourier Diffraction Theorem 

To show how the quantity UB relates to a curved slice of the object function’s Fourier 

transform (i.e., the Fourier Slice Theorem), we first derive an expression for the Green’s function 

in the frequency domain [26]. This is done by Fourier transforming both sides of Equation (2.7): 

∫ 𝑑3𝑟′⃗⃗⃗⃗ 𝑒𝑗2𝜋𝜈⃗⃗⃗∙𝑟′⃗⃗⃗⃗⃗
(∇2 + 𝑘𝑏

2)𝐺(𝑟′⃗⃗⃗⃗ ) = −1. (2.26) 

Expressing G(r) as the inverse Fourier transform of the transfer function H: 

∫ 𝑑3𝑟′⃗⃗⃗⃗ 𝑒𝑗2𝜋𝜈⃗⃗⃗∙𝑟′⃗⃗⃗⃗⃗
(∇2 + 𝑘𝑏

2) ∫ 𝑑3𝑘⃗⃗ 𝐻(𝜈⃗) 𝑒−𝑗2𝜋𝜈⃗⃗⃗∙𝑟′⃗⃗⃗⃗⃗

= ∫ 𝑑3𝑟′⃗⃗⃗⃗ 𝑒𝑗2𝜋𝜈⃗⃗⃗∙𝑟′⃗⃗⃗⃗⃗
∫ 𝑑3𝑘⃗⃗𝑒−𝑗2𝜋𝜈⃗⃗⃗∙𝑟′⃗⃗⃗⃗⃗

(𝑘𝑏
2 − |2𝜋𝜈⃗|2)𝐻(𝜈⃗) =  −1, (2.27)

 

and so the Fourier transform of the Green’s function is  

𝐻(𝑘⃗⃗) =
−1

𝑘𝑏
2 − |𝑘⃗⃗|

2 , (2.28) 

where 𝑘⃗⃗ ≡ 2𝜋𝜈⃗. The form of Equation (2.28) is the same for 2D and 3D Green’s functions. The 

Fourier slice theorem can be readily shown by expressing the 3D convolution integral, defining 

UB, in frequency domain: 

𝑈𝐵̂(𝑘⃗⃗) ≡ 𝐻(𝑘⃗⃗) ∙ 𝑆(𝑘⃗⃗), (2.29) 

where S(k) is defined as the Fourier transform of f(r)∙Uo(r). In the case of Uo being a plane-wave 

along the vector ko, S(K) is simply the Fourier transform of the object function, shifted by ko. In 

this case, UB is given as: 

𝑈𝐵̂(𝑘⃗⃗) ≡ 𝐻(𝑘⃗⃗) ∙ 𝐹(𝑘⃗⃗ − 𝑘𝑏
⃗⃗⃗⃗⃗). (2.30) 
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Examining Equation (2.28), H(k) becomes infinitely large at kb
2 = |k|2, and so the Fourier 

transform of UB is dominated by the portion of H(k)∙F(k-kb) which falls on this slice. An alternative 

way to exactly show this relationship is by inverse Fourier transforming H(k) [26]: 

𝑔(𝑟) = ∬ 𝑑𝜈𝑥𝑑𝜈𝑦𝑒−𝑗2𝜋(𝜈𝑥 𝑥+𝜈𝑦 𝑦) ∫ 𝑑𝜈𝑧𝑒−𝑗2𝜋𝜈𝑧∙𝑧𝐻(𝜈⃗) . (2.31) 

The inner integral may be evaluated using in the following form: 

∫ 𝑑𝜈𝑧𝑒−𝑗2𝜋𝜈𝑧∙𝑧𝐻(𝜈⃗)
+∞

−∞

=
2

(2𝜋)2
∫ 𝑑𝜈𝑧

cos(2𝜋𝜈𝑧𝑧)

(𝑗𝑎)2 + 𝜈𝑧
2

+∞

0

, (2.32) 

where 𝑎 ≡ √(
𝑛𝑏

𝜆
)

2

− 𝜈𝑥
2 − 𝜈𝑦

2.  

I now use the relation from Erdelyi [27]: 

∫ 𝑑𝑥 
cos(𝑥𝑦)

𝑎2 + 𝑥2
=

𝜋

2𝑎
𝑒−𝑗𝑎|𝑦|

+∞

0

(2.33) 

to show that: 

1

(2𝜋)2
∫ 𝑑𝜈𝑧𝑒−𝑗2𝜋𝜈𝑧∙𝑧

1

(𝑗𝑎)2 + 𝜈𝑧
2

+∞

−∞

=
2

(2𝜋)2
∫ 𝑑𝜈𝑧

cos(2𝜋𝜈𝑧𝑧)

(𝑗𝑎)2 + 𝜈𝑧
2

+∞

0

=
1

𝑗4𝜋𝑎
𝑒−𝑗2𝜋𝑎|𝑧|, (2.34) 

and so Equation (2.31) may now be re-expressed as: 

𝐺(𝑟 − 𝑟′⃗⃗⃗⃗ ) = ∬ 𝑑𝜈𝑥𝑑𝜈𝑦

1

𝑗4𝜋𝑎
𝑒−𝑗2𝜋(𝜈𝑥 (𝑥−𝑥′)+𝜈𝑦(𝑦−𝑦′)+𝑎|𝑧−𝑧′|) . (2.35) 

Assuming the measured field is the transmitted field, the |z - z’| in Equation (2.35) is z - z’ 

(the reflected field requires z’- z, respectively). UB(r) is now written, using Equations (2.35) and 

(2.11), as: 

𝑈𝐵(𝑟) = ∫ 𝑑𝑟′⃗⃗⃗⃗ ∬ 𝑑𝜈𝑥𝑑𝜈𝑦

1

𝑗4𝜋𝑎
𝑒−𝑗2𝜋(𝜈𝑥 (𝑥−𝑥′)+𝜈𝑦(𝑦−𝑦′)+𝑎(𝑧−𝑧′)) 𝑓(𝑟′⃗⃗⃗⃗ )𝑈𝑜(𝑟′⃗⃗⃗⃗ )

 
, (2.36) 

Assuming Uo is a plane-wave directed along z: 
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𝑈𝐵(𝑟) = ∬ 𝑑𝜈𝑥𝑑𝜈𝑦

1

𝑗4𝜋𝑎
𝑒−𝑗2𝜋(𝜈𝑥𝑥 +𝜈𝑦𝑦+𝑎∙𝑧) 𝐹̂  (𝜈𝑥, 𝜈𝑦, 𝑎 −

𝑛𝑏

𝜆
) . (2.36) 

As shown above, the 2D Fourier transform of UB, at a given propagation distance z, is 

directly proportional to a slice of the object function’s Fourier transform, along the surface of a 

sphere of radius nb/λ. The form Equation (2.36) is a 1D inverse Fourier transform along the 

transverse frequency coordinate, in the case of 2D objects. 

2.4 Reconstruction Techniques 

Two well-known, traditional reconstruction methods that employ the 1st Born or Rytov 

approximations are filtered back-propagation (FBPP) [28] and direct Fourier interpolation (DFI). 

Beginning with the simplest method, DFI works by calculating UB, for a given distance ‘z,’ and 

then using Equation (2.36) to solve for a slice of the object function’s Fourier transform. After 

information of the slice is known, the values are interpolated to fill the 3D Fourier transform of 

the object, known as the Limiting Ewald Sphere (LES). After calculating slices for all illumination 

angles, the LES becomes filled in, and a 3D inverse Fourier transform yields the reconstructed 

object function. The reconstruction quality depends then on (1) the total number of illumination 

angles (i.e., how much of the LES volume is filled in) [16], (2) the accuracy of calculating UB for 

each illumination angle (the validity of the Born and Rytov assumptions), and (3) the quality of 

the interpolation method. 

The second, more popular method is FBPP, which is directly analogous to filtered back-

projection (FBPJ), used in CT reconstructions. The FBPP algorithm works by propagating the 

complex field (and by extension its phase) through the object volume, and then applying a spectral 

ramp filter on the back-propagated image. In 2D, FBPP is performed, using the following equation: 
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𝑓(𝑟) =
1

2
∫ 𝑑𝜃 Πθ(𝑥′, 𝑧′)

2𝜋

0

, (2.37) 

where x’, z’ are local (rotated) coordinates of x, z: 

[
𝑥
𝑧

] = [
cos(𝜃) − sin(𝜃 )

sin(𝜃) cos(𝜃)
] [

𝑥′

𝑧′] , (2.38) 

and Π(x’,z’) relates to UB, from Equation (2.36) by: 

Πθ(𝑥′, 𝑧′) ≡ ∫ 𝑑𝜈′|𝜈𝑥
′ |

𝑈𝐵̂(𝜈𝑥
′ ; 𝑧′ = 𝑙)

𝑈𝑜(𝑧 = 𝑙)
𝑒

−𝑗2𝜋√𝜈𝑏
2−𝜈𝑥

′ 2
(𝑧′−𝑙)

𝑒−𝑗2𝜋𝜈𝑥
′ 𝑥′

𝜈𝑏

−𝜈𝑏

. (2.39) 

To remove the quadratic phase associated with the product a∙z, in Equation (2.36), it is convenient 

to re-focus the field on the detector to the center of the object, where 𝑧 = 0, allowing the Fourier 

slice to be determined without problems of aliasing, for large distances as well as aid in noise 

suppression [29]. Additionally, the FBP algorithm was improved further by Juliana et al. (2014) 

[30] by propagating the measured field through the volume of the object, before calculating the 

Rytov phase. Since the Rytov phase propagates according to the Riccati equation in (2.17) and not 

as a field, a more accurate determination of UB is given, for each axial position in the back-

propagated image, used in Equation (2.37). By doing so, FBPP’s depth of focus is extended 

(EDOF-FBPP) [30]. 

More recently, iterative approaches for ODT have become popular, such as iODT [22], 

which I co-developed, and inversions which attempt to use regularized optimization frameworks, 

such as the fast iterative shrinkage thresholding algorithm (FISTA), and conjugate gradient descent 

(CGD) [31, 32], to minimize a cost function that seeks to satisfy a data fidelity criterion in which 

the measured fields are compared to counterparts that are simulated using an estimate of the 

sample’s RI. In the following section, a new method is proposed to extend the advantageous 
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capability of Rytov reconstructions, to use phase unwrapping to correctly link the unwrapped 

phase (e.g., optical phase delay) of the output fields, to the objects RI distribution. We also show 

the potential weaknesses of minimizing a field-based fidelity criterion, if the sample’s true RI 

contains a phase delay that is considerably different to the one from an estimated distribution. 
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CHAPTER 3: OPTICAL DIFFRACTION TOMOGRAPHY BY USE 

OF OPTIMIZATION AND PHASE-BASED FIDELITY CRITERION 

In this chapter, I introduce a new method for reconstructing phase objects in optical 

diffraction tomography (ODT) based on regularized convex optimization with a new phase-based 

fidelity criterion.  This work was published in an article in the IEEE Journal of Selected Topics in 

Quantum Electronics [33] of which I was principal author, and this chapter contains material 

therefrom.  

The new criterion is necessary because objects with very different refractive-index 

distributions may produce similar diffracted fields (magnitude and principal-phase) on the 

detection planes.  This surjective, but non-injective relation, attributed to the cyclical nature of the 

phase, makes optimization algorithms using a field-based cost function prone to local minima, 

particularly for objects introducing large optical pathlength difference. A phase-based optimization 

algorithm that avoids this problem has been developed and tested successfully using simulation 

results on phantoms as well as experimental data measured from optical fibers. 

3.1 Introduction 

Optical diffraction tomography (ODT) is a mature phase imaging technique for quantitative 

measurement of the 3D refractive index (RI) distribution in order to study biological processes or 

characterize optical materials [20, 34, 35, 36]. ODT measurements are performed by illuminating 

the phase object with monochromatic waves over multiple directions, holographically recording 

the resultant diffracted fields, and subsequently solving the inverse scattering problem to 

reconstruct the object. In the case of weak scattering, conventional ODT inversions linearize the 
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relationship between the diffracted output signal and the object’s distribution by using either the 

first Born or the Rytov approximation [19, 37]. Between the two, the Rytov approximation is 

considered more versatile [24] since the Born approximation restricts the phase introduced by the 

sample to be less than π, whereas the Rytov approximation may use phase unwrapping to 

reconstruct objects introducing larger phase delays. Linear ODT reconstructions are often 

performed by either mapping the measured signal onto an interpolated slice of the object’s Fourier-

transform, or by using the Filtered Backpropagation (FBPP) framework [28]. Recently, the FBPP 

framework was expanded to improve the reconstruction accuracy of off-axis features, using the 

Rytov approximation [30]. 

Although linear reconstruction algorithms are computationally fast, the relationship 

between the index distribution and the diffracted field is generally nonlinear, due to the presence 

of multiple scattering. In order to model the effects of multiple scattering to obtain accurate 

reconstructions of highly-scattering objects, iterative methods have been devised [22, 38, 39, 40]. 

Recently, new methods based on regularized optimization have also been developed for obtaining 

highly-accurate ODT reconstructions, even in the presence of multiple scattering [31, 32, 41, 42, 

43]. Typically, optimization methods seek to satisfy a fidelity criterion by minimizing a cost 

function for which the measured complex-valued field (or intensity) is compared with a simulated 

version thereof, calculated using an estimate of the object. Since these algorithms employ accurate 

(nonlinear) simulation solvers, and may also include sparsity-promoting regularization, they 

typically outperform conventional ODT reconstructions – especially in the case of missing, or 

incomplete datasets (e.g., in the missing cone problem) [44]. 
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In the case of objects with large optical pathlength difference (OPD), however, the standard 

field-based fidelity criterion may not be adequate since satisfying it only provides a good match 

between the measured and simulated fields but does not guarantee that the true (unwrapped) phases 

are themselves matched. Furthermore, as will be shown, using the standard field-based fidelity 

criterion tends to trap the optimization process in local minima, if the OPD of the initial estimate 

of the sample is not sufficiently close to the true distribution. Current optimization techniques for 

ODT have not included measures to address the use of phase unwrapping in the optimization 

paradigm, for large OPD samples. In this paper, we aim to fill this gap by proposing a new fidelity 

criterion aiming at matching the optical phase delay, obtained using phase unwrapping, to allow 

convex optimization methods to avoid the non-bijective (i.e., one-to-one) correspondence between 

the output diffracted fields and the RI, thereby allowing accurate reconstructions without the use 

of warm initialization, or more aggressively tuned regularization. 

3.2 Optimization with Phase-Based Fidelity Criterion 

In this section, we introduce a new fidelity criterion that matches the complex-valued 

phases of the measured and simulated fields and compare it to the standard fidelity criterion based 

on fields. Image formation in ODT is modeled by the vector equation 

𝒚(𝓵) = 𝐒(𝓵)(𝒏), (3.1) 

where 𝒏 ∈ ℝM is a vector representing the RI distribution 𝑛(𝑥, 𝑦, 𝑧), discretized into 𝑀 

pixels (or voxels), 𝒚(ℓ) ∈ ℂ𝑁  are N-dimensional complex vectors representing the measured 

diffracted fields that are holographically recorded at the plane of an 𝑁-pixel detector for the views 

ℓ = 1, 2, ⋯ 𝐿.  The mapping S represents a discretized version of the scattering model (e.g., the 
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Lippmann-Schwinger equation), which is generally nonlinear. To solve the inverse scattering 

problem, we seek an estimate of the RI distribution 𝒏̂ that minimizes a cost function: 

𝒏̂ ∈ arg min
𝒏̂∈ℝM

{𝒟(𝒏,̂ 𝒚) + 𝜏ℛ(𝒏̂)} , (3.2) 

where 𝒟(𝒏,̂ 𝒚) is a measure of fidelity with y = {𝒚(𝓵)}, ℛ(𝒏̂) is a regularization parameter, 

and τ is a weight that controls the strength of regularization. The standard fidelity criterion for the 

minimization problem is  

𝒟(𝒏̂) ≡
1

2𝐿
∑‖𝐒̂ℓ(𝒏̂) − 𝒚ℓ‖

2

2
𝐿

ℓ=1

, (3.3) 

where, for a given angle ℓ, 𝐒̂ℓ(𝒏̂) maps the estimated RI, 𝒏̂, to the simulated field on the 

detector. 

For certain samples – especially those that produce large OPDs – a potential disadvantage 

of comparing complex-valued fields in the data fidelity is that certain 𝒏̂ may map to fields, 𝐒̂ℓ(𝒏̂) 

that are highly similar to the measured ones, 𝒚ℓ, yet contain the incorrect OPD, due to the cyclical 

nature of the phase of the complex fields. For data fidelity criteria that compare intensities, the 

ambiguity is even greater, since all phase information is removed in the fidelity criterion. As we 

will demonstrate later, this ambiguity may lead to local minima, which prevent convergence to the 

correct RI distribution, even for weakly-scattering samples. To remove this ambiguity, we seek a 

fidelity criterion that, for every angle, uniquely compares the OPD from the estimated RI, 𝒏̂, to 

one from the true distribution, 𝒏, using the complex-valued phases of the fields, 𝐒̂(𝒏̂) and 𝒚, now 

defined as 

𝐒̂(𝒏̂) ≡ 𝑒𝛟̂𝐬(𝒏̂), (3.4) 

𝒚 ≡ ⅇ𝛟𝒚 . (3.5) 



17 

 

These phases, assumed to be continuous, are obtained by taking a log of the respective 

fields, and then performing phase-unwrapping on the imaginary part of the phase, otherwise 

bounded on the interval [−𝜋, 𝜋). We re-define the data fidelity term from Equation (3.3) as: 

𝒟(𝒏̂) ≡
1

2𝐿
∑‖𝛟̂𝐬

𝓵(𝒏̂) − 𝛟𝒚
ℓ‖

2

2
𝐿

ℓ=1

. (3.6) 

To perform the minimization problem in Equation (3.2) with the fidelity measure in 

Equation (3.6), we use a regularized gradient descent approach. The gradient of 𝒟(𝒏) is  

∇𝒟(𝒏) = [
𝜕

𝜕𝒏𝟏
𝒟(𝒏) ⋯

𝜕

𝜕𝒏𝑴
𝒟(𝒏)] (3.7)

=
1

𝐿
∑ Rⅇ {(𝛟𝐬

ℓ(𝒏) − 𝛟𝒚
ℓ)

H
[
𝜕𝛟𝐬(𝒏)

𝜕𝒏
]}

𝐿

ℓ=1

.

 

Assuming the gradient of the simulated complex phase defined by Equation (3.4) can be 

determined via the chain rule, 

[
𝜕𝐒(𝒏)

𝜕𝒏
] = diag{𝐒(𝒏)} [

𝜕𝛟𝐬(𝒏)

𝜕𝒏
] , (3.8) 

and if the values of 𝐒̂(𝒏) are non-zero (i.e., diagonal term is non-singular), the gradient of 

𝛟𝐬(𝒏) is: 

[
𝜕𝛟𝐬(𝒏)

𝜕𝒏
] = diag{1/𝐒(𝒏)} [

𝜕𝐒(𝒏)

𝜕𝒏
] , (3.9) 

where the division denotes an elementwise (Hadamard) division of 𝐒(𝒏). If the gradient of 

𝑺(𝒏) is known, the gradient of its phase can be determined, with minimal computational cost – 

provided the simulated phase is well-defined (i.e., |𝑺(𝒏)| not close to zero). It follows that the new 

fidelity criterion – and its gradient – can be readily integrated into state-of-the-art optimization 

frameworks for solving the inverse problem associated with ODT and other similar problems.  
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In the presence of strong scattering, the magnitude of the output fields may become small, 

and so the value of the associated phase(s) may become undetermined and introduce numerical 

instability when calculating the gradient in Equation (3.9). To improve numerical stability, we 

developed an algorithm (Algorithm 3.1) that first minimizes a cost function whose fidelity criterion 

compares the complex phase shown in Equation (3.6), while the difference between the imaginary 

part of the residue term is greater than π (i.e., iterations where phase unwrapping is necessary), 

and then switches to minimizing a cost function whose fidelity term is given by Equation (3.3). 

The switching criteria is described in Algorithm 3.1. 

To perform the minimization problem described by Equation (3.1), we use the gradient-

descent algorithm described in [31], which is similar to the fast-iterative shrinkage/thresholding 

algorithm (FISTA), and uses the Wide-Angle Beam Propagation Method (WA-BPM) [45] to 

evaluate 𝐒̂(𝒏̂). Rather than using all views, at each iteration, to compute the fidelity term in 

Equation (3.3) or Equation (3.6), this algorithm randomly selects, with equal probability, a subset 

of 𝐿̃ ≤ 𝐿  angles to approximately compute the fidelity term and its gradient. By doing so, 

computational efficiency is improved. For regularization, we elect to use the total-variation (TV) 

regularization algorithm, described in [31]. 
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3.3 Simulation and Experimental Results 

In this section, we report reconstruction using both simulation data and experimental 

measurements to validate the value and limitations of the phase-based fidelity criterion for ODT 

of phase objects introducing large OPD. During optimization, we follow Algorithm 3.1 over 300 

iterations. Typically, optimization using a phase-based fidelity criterion converges to an estimate 

that is sufficiently close to the true distribution within 10 iterations, so that subsequently 

optimizing on a field-based cost function will converge to the correct answer. In the case of highly-

scattering samples (e.g., the Shepp-Logann sample shown later), phase residues may be present in 

the sinogram that cannot be exactly subtracted out, using the first condition shown in step 3 of 

Algorithm 3.1. To ensure that Algorithm 3.1 swaps to the field-based fidelity criterion (which is 

not affected by the presence of residues), the swap condition also includes a maximum number of 

iterations, UWmax=15, before swapping to a field-based fidelity criterion. In the following results, 

hyperparameters for τ, and γ (as used in [31]) range from 10-4 to 10-2. In order to unwrap the 

imaginary portion of the complex phases, we elect to use the L2-norm phase-unwrapping method 

Algorithm 3.1 

Input: input field y0, measured fields {𝑦ℓ}ℓ∈[1...𝐿], current RI estimate 𝒏̂𝒈, UWmax 

Set: 𝑡 ← 1, 𝒏̂0 ← 𝒏̂𝒈 

Repeat: 

1. Compute simulated fields 𝒚̂ℓ = 𝐒(𝓵)(𝒏̂𝒕−𝟏) for each view. 

2. Compute 𝛟𝒚
ℓ , 𝛟𝐬

𝓵̂, using phase unwrapping on the imaginary parts. 

3. If (𝜋 <
1

𝐿
∑ max{|𝐼𝑚{𝝓𝒚

ℓ −  𝝓𝒔
𝓵̂}|}𝐿

ℓ=1 )  𝐨𝐫 (t < 𝑈𝑊𝑚𝑎𝑥) 

Minimize Equation 3.2 for one iteration, using convex optimization framework 

(e.g., FISTA) with Equation 3.6 as fidelity criterion. Obtain new RI estimate, 𝒏̂𝑡. 

Else 

Minimize Equation 3.2 for one iteration, using convex optimization framework 

(e.g., FISTA) with Equation 3.3 as fidelity criterion. Obtain new RI estimate, 𝒏̂𝑡. 

4. 𝒏̂𝒈  ← 𝒏̂𝒕 

5. 𝑡 ← 𝑡 + 1 

Until stopping criterion 

Return RI estimate 𝒏̂𝒈. 
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[46]. The mapping 𝐒̂(𝒏̂) models the complex optical fields on the detector, corresponding to plane-

wave probes that are diffracted by an object with refractive index 𝒏, which are then refocused to 

the center of the scattering volume by means of an imaging system, placed between the sample 

and the detector.  To improve consistency between simulated and experimental measurements, we 

model this imaging system, which exists in the physical setup for obtaining experimental data, as 

an ideal system that refocuses fields from the output boundary of the simulation volume to the 

sample’s center, using the angular spectrum method [47]. For simplicity, we assume an ideal lens 

system with infinite numerical aperture; however, the optical transfer function of a lens system can 

be accurately modelled, if the lens system(s) used in the experiment is known. 

For each sample, we compare the reconstruction qualities using the field-based and phase-

based criteria. To allow direct comparisons between the cost functions of each reconstruction, after 

convergence, we do not modify hyperparameters between reconstructions using a purely field-

based cost function, and ones performed using Algorithm 3.1 (e.g., τ, and γ that are used in 

Algorithms 1,2 of [31]). For reconstruction using the phase-based fidelity, we also plot, for 

visualization purposes only, the field-based cost function to demonstrate whether the initial guess 

of the sample (assumed to be the background) is within the locally convex well of the global 

minimum. If the initial estimate of the sample lies outside of the well, the cost function would need 

to first rise, reach a local maximum before being able to converge towards the correct solution 

using convex optimization. For each reconstruction, a “cold initialization” is used, where the 

sample’s distribution is assumed to be an empty, uniform distribution of the background RI, nb. 

Although in the case of simple objects, one may obtain a sufficiently accurate initialization using 

linear reconstruction methods (e.g., filtered back-propagation, or inverse Radon transform) for 
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minimizing the field-based cost function, these initializations are prone to failure in the presence 

of multiple scattering. In this case, the initial linear reconstruction may be further away from the 

global minimum than the cold initialization, and so minimizing a field-based cost on an inaccurate 

initialization is highly susceptible to converge to an incorrect minimum. For this reason, it may be 

advantageous to begin with a cold initialization, and then use an iterative method that uses 

regularization and constraints to obtain a sufficiently accurate estimate before minimizing a field-

based cost function. We use Algorithm 3.1 to implement this strategy. For each sample, 36 output 

diffracted fields are recorded for varying illumination angles that span from 0° to 175°, in 5° 

increments. We apply no constraints on the maximum or minimum RI during reconstructions.  

3.3.1 Numerical Validation 

For numerical validations, the “true” scattered fields are calculated using WA-BPM. For 

each phantom, the background RI is taken to be nb = 1.518, and the probe wavelength λo = 561 

nm. The reconstruction area used in numerical validation is 243×243 pixels, each of dimension dx 

= 0.072 μm (~λ0/8). Each iteration on average took about 2.7 seconds to complete. To directly 

measure the accuracy of reconstructions of known simulated objects, the root-mean-square 

deviation (RMSD) error in the real part of the reconstructed RI distribution is plotted, within a 

region of interest (ROI) of the samples’ features. This is done to prevent the RMSD from being 

biased by the large number of background pixels which may contain small deviations from nb. 

For the first sample, two disks of radius 4.5 μm, and n= 1.5863 are placed in the background 

medium, separated by 12 μm. The reconstruction, shown in Figure 3.1, using the field-based 
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fidelity criterion, shows an incorrect RI distribution; however, the diffracted fields, on the detector, 

match well in both amplitude and phase. 

The possibility of the diffracted field from an incorrect reconstruction to closely match the 

output field from the true object suggests that because the principal phase is surjective, but not 

injective, samples that produce OPD distributions that differ by integer multiples of 2π tend to 

create highly-similar diffracted fields. In such situations, the minimization problem is susceptible 

to being trapped in “deep” local minima, in which the data-fidelity criterion appears to be satisfied 

but, the RI distribution is significantly different from that of the true sample. At the local minimum 

shown in Figure 3.1, the cost function, after 300 iterations, converges to a value of 0.76, while the 

root-mean-square error, RMSE (or root-mean-square-deviation error, RMSD) of the RI 

reconstruction rose to 6.06, a level greater than the initial guess of background (no sample). 

 

Figure 3.1: Two-disk phantom. (a) True object. The dashed box indicates the ROI used to calculate the 

RMSE in (c). (b) Reconstruction after 300 iterations using the field-based fidelity criterion. (c) RMSE. (d) Cost. (e)  

Amplitude and (f) phase of the true (blue) and reconstructed (red) fields for θ = 0°. 
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Reconstruction results of the same two-disk phantom by use of the phase-based fidelity are 

depicted in Figure 3.2. Here, optimization does converge to the correct RI distribution. As shown 

in the first 10 iterations of Figure 3.2 (d), the phase-based cost function decreases rapidly between 

iterations, while the field-based cost function shows a local maximum at iteration 3. After iteration 

10, the fidelity criterion is changed to one based on field hence the red and blue lines in Figure 3.2 

(d) become identical. After 300 iterations, the cost function converges to a value of 0.37, while the 

RMSD reconstruction error converges to 0.92 – much lower than corresponding values in Figure 

3.1. We note that the cost function in Figure 3.2 should not be expected to fully converge to zero, 

since the regularization term of Equation (3.2) does not vanish, even if the data fidelity term is 

zero. The local maximum observed in the field-based cost function shown in Figure 3.2 (d) 

suggests that the global minimum lies outside of the convex well of field-based optimization with 

the cold initialization. In other words, a convex-optimization approach to minimizing the field-

based cost would lead to an incorrect local minimum, as observed in Figure 3.1 (b). 
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Figure 3.2: Two-disk phantom. (a) True object. The dashed box indicates the ROI used to calculate the 

RMSE in (c). (b) Reconstruction after 300 iterations using Algorithm 3.1. (c) RMSE. (d) Phase-based cost (blue) 

and field-based cost (red) as functions of iteration number. (e) Amplitude and (f) phase of true (blue) and 

reconstructed (red) fields for θ = 0°. 

The second example is a Shepp-Logan phantom with the same background RI and probe 

wavelength as before. The RI distribution of the phantom, shown in Figure 3.3 (a), uses the 

following parameters for the RI values: nb=1.518, n1=1.606, n2=1.627, n3=1.677, and n4=1.804. 

The field-based reconstruction results are shown in Fig 3.  In this test, the field-based cost function 

converged to a local minimum of 0.82, corresponding to a reconstruction whose diffracted fields 

matched the amplitude and principal phase of the “measured” field in simulation. Although the 

diffracted fields, from the reconstruction and true objects, seemingly match closely, the RMSE of 

the reconstruction increased from 8.56 to 9.40, suggesting that the final reconstruction is farther 

from the true RI distribution than the “cold” initial estimate of the sample. This result further 

implies that, due to the cyclical nature of phase, multiple RI distributions introducing phase delays 

differing by integer multiples of 2π may produce similar diffracted fields. In order to use convex 
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optimization to minimize a fidelity criterion that compares the complex fields, the phase 

introduced by the initial RI estimate should be sufficiently close to that introduced by the true 

object, in order to avoid converging to a local minimum. 

 

Figure 3.3: Shepp-Logan phantom. (a) True object. The dashed box indicates the ROI used to calculate the 

RMSE in (c). (b) Reconstruction after 300 iterations using the field-based fidelity criterion. (c) RMSE. (d) Cost. (e)  

Amplitude and (f) phase of true (blue) and reconstructed (red) fields for θ = 0°. 

Figure 3.4 shows results of reconstruction based a phase-based fidelity criterion (Algorithm 

3.1) in the first 15 iterations followed by field-based criterion. A peak is observed in the field-

based cost function (plotted for comparison purposes only) at iteration 2, while no corresponding 

peak is observed in the phase-based cost function. This suggests that the non-convex behavior of 

the field-based fidelity criterion towards the global minimum, which ultimately produced the local 

minimum shown in Figure 3.3, was not present when minimizing the difference in phase shift 

between the estimated and true objects. The cost function converged to a value of 0.28, while the 
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RMSE of the reconstruction dropped to 2.09, suggesting that the algorithm converged to an 

accurate reconstruction. 

 

Figure 3.4: Shepp-Logan phantom. (a) True object. The dashed box indicates the ROI used to calculate the 

RMSE in (c). (b) Reconstruction after 300 iterations using Algorithm 3.1. (c) RMSE. (d) Phase-based (blue) and 

field-based (red) cost as functions of iteration number. (e) Amplitude and (f) phase of true (blue) and reconstructed 

(red) fields for θ = 0°. 

3.3.2 Experimental Validation 

To experimentally validate our method, we perform reconstructions using raw data 

obtained from a commercial optical fiber profiler, the Intrafiber IFA-100. The experimental setup 

is an off-axis Mach-Zehnder interferometer, inside which an optical fiber sample is held, transverse 

to the illumination. The angular orientation of the fiber is controlled via a rotational motor. 

Diffracted field measurements are holographically obtained, using phase-shifting interferometry, 

for each orientation of the sample. The sample is illuminated using light from an incandescent 

source that is passed through a bandpass filter and linear polarizer. Although the small RI contrast 

of the optical fibers produce weak scattering, the size of the fibers produces large OPD across the 
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output fields. While accurate initial estimates of the fibers’ RI can be obtained using linear 

reconstructions that are based on the unwrapped phase of the diffracted field (e.g., Rytov ODT 

inversions), we seek to demonstrate that the challenges posed by minimizing field-based cost 

functions for samples that contain large OPD still exist – even in the case of weak scattering – and 

can be overcome by instead optimizing on the unwrapped, complex-valued phase. The 

reconstruction area used for experimental validation was 183×1383 pixels, each of dimension dx 

= 0.184 μm. Due to the larger volume of the following reconstructions, each iteration of Algorithm 

3.1 took, on average, 24 seconds to complete. 

For the first experiment, we choose a “PANDA-type” polarization-maintaining single-

mode optical fiber. The fiber is known to contain a stepwise RI distribution that includes two 

pronounced, circular stress rods on either side of the fiber core. For this experiment, a 650 nm, 10 

nm wide bandpass filter was used for illumination. The background RI of the index-matching oil 

at 650 nm is nb=1.4566. Although the background medium is matched closely to the cladding of 

the fiber, the resultant OPD from the measured fields still exceed 2π, due to the 125 μm fiber 

diameter, and so phase-unwrapping must be used to correctly measure the fiber’s OPD. Since we 

do not know the exact values of the fiber’s RI distribution, we apply no constraint to the maximum 

or minimum RI possible in reconstructions. 

As shown in Figure 3.5, because of the large OPD of the panda fiber, the reconstruction 

obtained using a purely field-based fidelity criterion fails to provide a correct RI profile of the 

fiber. Despite the erroneous, elliptical cladding-like feature around the fiber’s center, diffracted 

fields from the reconstruction are similar to the respective fields obtained in experiment. The final 

value of the cost function, after convergence to the minimum, is 0.82. Similar to the simulated 2-
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disk experiment before, convergence to this local minimum suggests that the success of convex 

optimization using a field-based fidelity criterion must either rely heavily on the initial estimate of 

the sample or use a “warm” initialization and/or constraints based on a-priori knowledge of the 

sample, to obtain correct reconstructions. 

 

Figure 3.5: (a) Reconstructed RI distribution of a Panda fiber after 300 iterations, using the field-based 

fidelity criterion for experimentally measured diffracted fields. (b) Cost as a function of iteration number. (c) 

Amplitude and (d) phase of the true (blue) and reconstructed (red) fields for θ = 0°. 

The reconstruction obtained using Algorithm 3.1 (Figure 3.6) shows a RI profile consistent 

with a typical, commercial panda fiber. Algorithm 3.1 optimized on a phase-based fidelity criterion 

for the first 7 iterations, and a field-based criterion thereafter. Unlike the reconstruction shown in 

Figure 3.5, two stress rods are now clearly visible, along with an inner cladding region and core. 

Additionally, the final value of the cost function of 0.12 suggests Algorithm 3.1 converged to a 
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more accurate minimum than before. Like earlier reconstructions of simulated objects, the field-

based cost in Figure 3.6 shows a peak around iteration 3. 

 

Figure 3.6: (a) Reconstructed RI distribution of a Panda fiber after 300 iterations, using Algorithm 3.1 for 

experimentally measured diffracted fields. (b) Phase-based cost (blue) and field-based cost (red) as functions of 

iteration number.  (c) Amplitude and (d) phase of the true (blue) and reconstructed (red) fields for θ = 0°. 

The object for the second experiment is a hollow-core fiber (HCF), filled with dimethyl 

sulfoxide (DMSO) by means of capillary action. The fiber is known to have a glass cladding within 

an outer diameter of 169 μm, and inner diameter of 85 μm. The “hollow” core region itself contains 

seven 23 μm diameter glass capillaries, each with a thickness of 400 nm. The core region, and the 

capillaries within it are filled with the DMSO liquid. For this experiment, the fiber is illuminated 

at λ0 = 615 nm. The associated RI of the background medium (matching liquid) at the probe 

wavelength is nb = 1.4577.  The total phase shift induced by the fiber is measured to be larger than 
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2π.  Results of field-based reconstruction are shown in Figure 3.7. For cold initialization, the cost 

function converged to a minimum of 0.74 corresponding to an RI distribution whose diffracted 

fields matched the measured fields. The reconstructed RI shown in Figure 3.7 (a) is believed to be 

incorrect since we know that the index in core region is uniform with value equal to that of DMSO. 

 

Figure 3.7: (a) Reconstruction of the RI distribution of a hollow-core fiber filled with DMSO using 

experimentally measured diffracted fields and optimizing on a field-based fidelity criterion for 300 iterations. (b) 

Cost as a function of iteration number. (c) Amplitude and (d) phase of the true (blue) and reconstructed (red) fields 

for θ = 0°. 

As shown in Figure 3.8, phase-based reconstruction matches more closely with our prior 

knowledge of the sample’s structure. Unlike the field-based reconstruction, the RI values now 

correspond to three distinct regions: the background oil, glass capillaries of the HCF, and the 

DMSO liquid which fills the core region. Unlike the reconstruction in Figure 3.7 (a), the structure 

of the glass capillaries inside the core region are now clearly defined. The cost function converges 
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quickly to a value of 0.43, indicating that the reconstructed object produces diffracted fields more 

consistent with the measured fields. The field-based cost in Figure 3.8 (b) exhibits a peak during 

optimization in which the phase-based fidelity criterion is used, showing the purely field-based 

fidelity criterion must climb out of the well-of-convergence to the local minimum shown in Figure 

3.7 (a), before being able to converge to the minimum shown in Figure 3.8 (a). 

 

Figure 3.8: (a) Reconstruction of the RI distribution, after 300 iterations of Algorithm 3.1, of a hollow-core 

fiber filled with DMSO using experimentally measured diffracted fields. (b) Phase-based cost (blue) and field-based 

cost (red). (c) Amplitude and (d) phase of the true (blue) and reconstructed (red) fields for θ = 0°. 

3.3.3 Convergence Study 

To reduce computational complexity and avoid unnecessary unwrapping at each iteration, 

Algorithm 3.1 switches its fidelity criterion from one based on (unwrapped) phase, to one that 

compares fields. While doing so may improve overall computational speed, since no unwrapping 
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algorithm is used after the swap condition, the rate of convergence when optimizing with either 

criterion is not guaranteed to be the same. In the following study, the rates of convergence, over 

100 iterations, are compared using the RMSE of reconstructions, as functions of iteration number, 

obtained using a cost that contains a field-based fidelity criterion, and a phase-based fidelity 

criterion. For this comparison study, a phantom distribution is chosen with a maximum phase delay 

near π, but small enough such that optimizing either cost yields an accurate solution. Next, the test 

is repeated using the same distribution, but with a contrast that produces a phase delay much 

smaller than π. For each test, we optimize over 100 iterations. 

For the first test, shown in Figure 3.9, the Shepp-Logan distribution from Figs 3.3, 3.4 is 

used, with an RI contrast scaled to produce a phase delay near π, and a second test with a phase 

delay much smaller than π. In the higher-contrast case, optimizing the phase-based cost initially 

converges more efficiently than the field-based counterpart. In the lower-contrast case, however, 

both cost functions converge at a similar rate. This test was repeated for other samples, and similar 

conclusions were reached. This study demonstrates that the swap condition from Algorithm 3.1, 

which swaps the fidelity criterion when the phase delay is near π can be further tuned to enhance 

computational efficiency. 

 

Figure 3.9: Convergence study for Shepp-Logan phantom. (a) Phantom RI distribution. (b) RMSD as a 

function of iteration number, for cost function based on field (red) and phase (blue).  

(a)

(c)

(b)

(d)



33 

 

CHAPTER 4: ITERATIVE OPTICAL DIFFRACTION 

TOMOGRAPHY WITH EMBEDDED REGULARIZATION 

In this chapter, I describe a new method in which total-variation regularization is applied 

at each iteration of an iterative framework for optical diffraction tomography. The performance of 

this approach was validated by numerical and experimental tests on various highly scattering 

objects, which were previously used to demonstrate an iterative ODT reconstruction technique 

developed by my group [22]. Significant improvement in reconstruction SNR were demonstrated.  

This work was recently submitted to Optics Express and is currently under review.  

4.1 Introduction 

An iterative Rytov-based ODT (iODT) algorithm [22] has recently been used for 

reconstruction of highly scattering objects. This algorithm works by forward propagating the 

known input field and backward propagating the measured output fields through an estimate of the 

sample’s RI distribution, for each illumination angle. The differential Rytov phase between these 

two fields is then used in a filtered backpropagation framework to calculate the error in the estimate 

of the sample. This error is then subtracted from the estimate to obtain a more accurate update of 

the RI distribution, and the process is repeated recursively.  

One of the limitations of the iODT algorithm, under conditions of high-contrast RI 

distributions, is that the phase of the forward and backward propagated fields may become ill-

defined in areas of the scattering volume where the fields contain small amplitudes. When this 

occurs, the Rytov phases used to reconstruct the RI become contaminated with phase-vortices that 

introduce challenges to correct phase unwrapping resulting in reconstruction artifacts. We have 
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found that regularized optimization-based approaches that minimize a cost function based on the 

complex fields, or their respective complex phases [31, 33, 41, 42], can be particularly effective at 

achieving accurate reconstructions for such objects because the iterative use of regularization (e.g., 

total-variation) alleviates challenges associated with poorly behaved signal, or missing 

information. Unfortunately, optimization algorithms that are based on a field fidelity criterion 

typically require a sufficiently accurate initial estimate to converge to a correct solution [33, 48]. 

Furthermore, gradient-descent approaches may take several dozens of iterations before sufficiently 

converging to a solution. Unlike convex optimization approaches, however, iODT seeks a new 

“best estimate” of the sample’s RI distribution, rather than a gradual “descent” to the correct 

solution. This perturbative approach gives iODT an advantage in computational efficiency over 

optimization-based solutions.  

Here, we introduce and validate a new strategy that combines iODT’s efficient framework 

with the benefits of regularized optimization techniques. This is achieved by applying total-

variation (TV) regularization [31, 49, 50, 51] in each iteration of the standard iODT algorithm. We 

call this method regularized iODT (R-iODT). We have validated this technique using simulated 

data and an experimental test and concluded that a substantial improvement in the signal-to-noise 

ratio (SNR) of reconstructions was obtained. Application of TV regularization at each iteration is 

significantly better than its application after the termination of the iteration. 
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4.2 R-iODT Validation 

4.2.1 iODT Algorithm 

The iODT algorithm [22], summarized in Algorithm. 4.1, uses a Rytov-like approach to 

iteratively reconstruct the RI distribution by using the complex-valued phase of diffracted fields. 

The “true,” or “measured,” diffracted fields are recorded holographically for each illumination 

angle in experimental tests [20, 52, 53], or numerically simulated by propagating the known input 

field through phantoms using a numerical solver such as the beam propagation method, or finite-

difference time-domain (FDTD) method [45, 54]. The object function, 𝑓(𝑥, 𝑦) , described in 

Algorithm 4.1 is related to the RI by 𝑓(𝑥, 𝑦) ≡ 𝑘𝑜
2[𝑛2(𝑥, 𝑦) − 𝑛𝑏

2], where ko is the wavenumber 

2π/λo, and nb is the background RI. As shown in Figure 4.1, propagation is performed in local 

coordinates (𝜉, 𝜂) , which relate to the global coordinates (𝑥, 𝑦)  by the transformation 𝑥 =

𝜉 cos 𝜃 − 𝜂 sin 𝜃 , 𝑦 = 𝜉 sin 𝜃 + 𝜂 cos 𝜃. The true fields are measured along the local coordinate 

axis η, while propagation for each illumination angle θ is along the ξ axis.  

Algorithm 4.1. iODT 

1: input: u0, ut, f(0), mmax 

2: set: m=0, θ, 𝒞, 𝒮 

3: repeat: 

4: 𝑢fwd
(𝑚)(𝜉, 𝜂, 𝜃) ← 𝓢[𝑢0, 𝑓(𝑚)(𝑥, 𝑦), 𝜃]  ᐅ Propagation 

5: 𝑢bwd
(𝑚) (𝜉, 𝜂, 𝜃) ← 𝓢−𝟏[𝑢t, 𝑓(𝑚)(𝑥, 𝑦), 𝜃] 

6: Δ𝜙R
(𝑚)(𝜉, 𝜂, 𝜃) ← ln[𝑢fwd

(𝑚)(𝜉, 𝜂, 𝜃)/𝑢bwd
(𝑚) (𝜉, 𝜂, 𝜃)] ᐅ Inversion 

7: ΔΠ(𝑚)(𝜉, 𝜂, 𝜃) ← Δ𝜙R
(𝑚)(𝜉, 𝜂, 𝜃) ∙ |𝑘𝜂| 

8: Δ𝑓(𝑚)(𝑥, 𝑦) ← −𝑗2𝜋𝑘b ∫ ΔΠ(𝑚)(𝜉, 𝜂, 𝜃)d𝜃
2𝜋

0
 

9: 𝑓(𝑚)(𝑥, 𝑦) ← 𝑓(𝑚)(𝑥, 𝑦) − Δ𝑓(𝑚)(𝑥, 𝑦)  ᐅ Update 

10: 𝑓(𝑚)(𝑥, 𝑦) ← 𝓒𝑓(𝑚)(𝑥, 𝑦)    ᐅ Constraint 

11: 𝑚 ← 𝑚 + 1 

12: until stopping condition 

13: return 𝑓(𝑚) 
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Figure 4.1: Schematic of an ODT experiment. Plane wave 𝑘𝑏 illuminates the sample at θ and travels along 

ξ direction. The scattered field is measured on the screen at 𝜉 = 𝑑 along the η direction. The illumination angle is 

changed and the process is repeated. 

Using an initial guess of the sample f (0), the iODT algorithm takes a known input field u0 

for each illumination angle θ and forward propagates it through the sample to create 𝑢fwd
(𝑚)(𝜉, 𝜂, 𝜃). 

Likewise, the respective measured field for each illumination angle is backpropagated through the 

estimated RI to generate a field 𝑢bwd
(𝑚) (𝜉, 𝜂, 𝜃) . The forward and backward propagation is 

implemented using solvers, denoted by 𝒮 and 𝒮-1, respectively. In this paper, we elect to use a 

“cold” initialization (𝑓(0) = 0) of the object’s distribution. For each iteration m, a differential 

“Rytov” phase, ΔϕR is calculated and used to reconstruct the estimated error in the estimated 

distribution of the object Δ𝑓(𝑚), which is subtracted from the current estimate of the object 𝑓(𝑚) 

to form a new estimate for the next iteration. The framework for 3-dimensional objects is 

straightforward but requires an updated Green’s function to perform field propagation and 

inversion. For computational brevity, we elect to perform reconstructions on two-dimensional 

objects, or 2-D cross-sections of extended objects (e.g., optical fibers). 
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Due to the multivalued nature of the algorithm used to calculate the Rytov phase, it is 

necessary to apply a phase-unwrapper is necessary on the imaginary part of ΔϕR. For this study, 

we elect to use an L-2 norm phase-unwrapper [55] to perform this task. For objects that produce 

large amounts of scattering, the phase may contain local features vortices, where the value of the 

phase is ill-defined. Such vortices may introduce artifacts and even inhibit the process of 

unwrapping, thereby leading to reconstructive error. 

At the end of each iODT iteration, constraints, denoted by the 𝒞 operator, may be applied 

to the current estimate of the object (e.g., non-negativity). In this paper, we expand the iODT 

constraint operator to include TV-based regularization (e.g., TV), which is applied to the current 

estimate of the object at the end of each iteration. By doing so iteratively, the iODT algorithm can 

suppress artifacts caused by poor data quality, poorly behaved phase features due to phase 

unwrapping, or the presence of phase vortices. 

This process is repeated until a stopping criterion is satisfied. For cross-comparison 

purposes, we elect to run the iODT (and R-iODT) algorithm(s) for a set number of iterations, mmax, 

which is specified for each experiment. The stopping condition, described in Algorithm 4.1, is 

based on the convergence of the normalized root-mean-square (nRMS) errors in amplitude and 

phase of the sinogram: 

𝜖𝐴(𝑚) ≡
√∑ [|𝑢𝑡

𝜃| − |𝑢𝑓𝑤𝑑
𝜃 |]

2
𝑁𝜂⁄𝜃

rangⅇ[|𝑢𝑡
𝜃|]

 , (4.1) 

𝜖𝜙(𝑚) ≡
√∑ [Arg[𝑢𝑡

𝜃/𝑢𝑓𝑤𝑑
𝜃 ]]

2

𝑁𝜂⁄𝜃

rangⅇ [Arg[𝑢𝑡
𝜃/𝑢𝑓𝑤𝑑

𝜃 ]]
 , (4.2) 
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where ut
θ and 𝑢fwd

𝜃  are the “true” (or measured) and simulated forward-propagated field, 

for a given illumination angle θ, and 𝑁𝜂  denotes the number of pixels on the detector. In the 

standard iODT algorithm [22], the stopping criteria is satisfied when both Equations (4.1) and (4.2) 

are smaller than a prescribed value δthresh, (set to ~10−3) over a number of successive iterations Q, 

or until the algorithm runs for a maximum number of iterations, mmax. 

4.2.2 TV Algorithm 

TV regularization is a popular regularization choice for convex optimization problems in 

tomographic phase imaging. One TV regularization approach, developed by Beck and Teboulle 

[51], and used in [31], employs a “dual approach” method to apply TV regularization on a 

reconstructed RI distribution. The modular nature of this approach is particularly useful for iODT 

since it accepts an input of an RI distribution, along with hyperparameters and constraints to return 

a new RI image with TV enhancement applied. We elect to adopt this modular TV algorithm so 

that both constraints on the RI distribution and regularization can be included in the 𝒞 operator in 

Algorithm 4.1 at the end of every iteration. This modular dual approach — specifically for 

isotropic TV in our study — is shown in Algorithm 4.2 (from Appendix B in [31]), in which  D is 

the discrete gradient operator applied to the input image (or datacube), projχ is a projection used 

to apply constraints, such that the values of the vectorized input RI distribution x are truncated to 

lie between nmin and nmax, [𝐠]𝑛 ∈ ℝ3×𝑵 is the gradient vector field of the discretized image 𝒙 ∈ ℝ𝑵 

at the pixel position 𝑛 ∈ [1, … , 𝑁], and proj𝒢 is the projection used in the case of isotropic TV: 

[proj𝒢(𝐠)]
𝑛

≡
[𝐠]𝑛

max(1, ‖[𝐠]𝑛‖ℓ2)
. (4.3) 
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4.3 R-iODT Validation 

In this section, we validate R-iODT through both simulations and experiments. To 

numerically validate R-iODT, reconstructions are performed on various phantoms that either 

exhibit complicated structure or large optical path-length difference (OPD). Data for the “true” 

sinogram fields is obtained using a FDTD solver with a grid spacing of λo/20, over a 360° span of 

illumination angles θ, in 5° increments. The illumination wavelength is λo = 1 μm. For each 

simulation, a reconstruction was performed using the standard iODT algorithm, with real-valued 

constraints on the RI distribution, and another using TV regularization, with the same constraints. 

For samples whose RI distribution is known (i.e simulations in Sec. 4.2.1), the signal-to-

noise-ratio  

SNR ≡ 10 ∙ log10 (
‖𝑛𝑡 − 𝑛𝑏‖2

2

‖𝑛𝑡 − 𝑛𝑟𝑒𝑐‖2
2)   dB (4.3) 

is presented for both standard iODT and R-iODT, where nt is the true RI distribution, nb is the 

background RI distribution, and nrec is the respective reconstructed RI distribution for the current 

iteration. For these samples, the values for nmin and nmax are set to −∞ and +∞, respectively, to 

Algorithm 4.2. 𝒞 operator (isotropic TV regularization) 

1: input: 𝒛 ∈ ℝ𝑁, nmin, nmax, 𝜏 > 0 

2: set: 𝑡 ← 1, 𝐝0 ← 𝐠0, 𝑞0 ← 1, 𝛾 ← 1 12𝜏⁄  

3: repeat: 

4: 𝐠t ← proj𝒢 (𝐝𝑡−1 + 𝛾𝐃 (proj𝜒(𝒛 − 𝜏 𝐃𝑇𝐝𝑡−1)))  

5: 𝐱t ← projχ(𝒛 − 𝜏 𝐃𝑇𝐠𝑡) 

6: 𝑞𝑡 ←
1

2
(1 + √1 + 4𝑞𝑡−1

2 ) 

7: 𝐝𝐭 ← 𝐠𝑡 + ((𝑞𝑡−1 − 1) 𝑞𝑡⁄ )(𝐠𝑡 − 𝐠𝑡−1) 

8: 𝑡 ← 𝑡 + 1 

9: until stopping condition 

    10: return xt 
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lift constraints on the real part of the RI distribution. The imaginary RI was forced to be zero 

(corresponding to no loss or gain constraint).  

4.3.1 Validation through Simulation 

In the first example, Phantom 1, a simple distribution with high index contrast consisting 

of three disks, shown in Figure 4.2 (a), was used. Each disk has a 4.5 μm radius, and RI of 1.348. 

The background RI 𝑛𝑏 is 1.518.  For this simulation, phase unwrapping was turned off after 10 

iterations. As shown in Figure 4.2 (c), while the phase unwrapping allowed iODT to obtain a 

maximum reconstructed SNR of 16.5 dB upon turning off phase unwrapping at the 𝑚 = 11 

iteration, phase vortices introduce artifacts at each subsequent iteration, which result in an overall 

degradation in SNR to 12.8 dB at iteration 50 (Fig 4.2 (b)). The R-iODT reconstruction, however, 

shows a better SNR of 17 dB upon turning off phase unwrapping, and finishes with an SNR of 

23.2 dB after 50 iterations. A maximum SNR of 23.7 dB is obtained using R-iODT, as shown in 

Figure 4.2 (b) around the 𝑚 = 28 iteration, suggesting that iterative artifacts caused by phase 

vortices are suppressed, but not eliminated, by TV regularization. 
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Figure 4.2: (a) Phantom 1 RI distribution, (b) SNR of the iODT and R-iODT reconstructions over the first 

50 iterations. (c and d) Respective iODT and R-iODT reconstructions at the m= 50 iteration. 

For Phantom 2, a more complex, walled, cell-like structure, shown in Figure 4.3 (a), was 

used with the background RI nb = 1.518, n1 = 1.378, n2 = 1.358, n3 = 1.548, and n4 = 1.568. The 

SNR of the reconstruction, shown in Figure 4.3 (b), shows that the R-iODT algorithm climbs to a 

progressively higher SNR reconstruction, while the iODT reconstruction obtains a maximum SNR 

of 14 dB at iteration 16, after which artifacts cause a steady degradation in reconstructive accuracy. 

The nRMS errors of the output fields’ amplitude and phase are respectively plotted in 

Figure 4.3 (c and d), and show that both algorithms yield reconstructions that reduce error in output 

fields, even though the iODT reconstruction contains a larger SNR error. This suggests that 

regularization can guide the algorithm away from possible solutions that presumably contain 

higher total variance than the correct distribution. Using 𝑄 = 10 for the stopping criterion outlined 

in 4.2.1, based on the 𝜖𝐴 and 𝜖𝑝ℎ plots in Figure 4.3 (c) and (d), respectively, the iODT algorithm 

would have satisfied the stopping criterion in Algorithm 4.1 at the 𝑚 = 43 iteration, and the R-

iODT algorithm at the 𝑚 = 49 iteration, with corresponding reconstructions shown in Figure 4.4 
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(e and f). The iODT and R-iODT reconstructions after the m=50 iteration are shown in Figure 4.3 

(g and h). 

The plots in Figure 4.3 (b-d) exhibit a non-smooth feature at the m=10 iteration, marking 

the iteration where phase-unwrapping is turned off. Unlike iODT, however, a noticeable drop in 

the 𝜖𝐴 and 𝜖𝑝ℎ nRMS errors for R-iODT near iteration 30, suggesting that the algorithm was able 

to “lock on” to a solution that better matched both the output fields and the correct RI distribution. 

The standard iODT algorithm, however, shows a decline in both nRMS error and SNR, suggesting 

that the algorithm was trapped in a solution whose output fields that match the measured ones, but 

contains the incorrect RI distribution. 

 

Figure 4.3: (a) Phantom 2 RI distribution, (b) SNR of the iODT and R-iODT reconstructions over the first 

50 iterations. (c and d) nRMS errors in amplitude and phase of the sinogram 𝜖𝐴 and 𝜖𝜙 for iODT and R-iODT, over 

the first 50 iterations. Blue and red arrows are used to mark the iteration where the stopping criterion is satisfied. (e) 

iODT reconstruction after stopping criterion satisfied (m=43). (f) R-iODT reconstruction after stopping criterion 

satisfied (m=49). (g and h) Respective iODT and R-iODT reconstructions after m= 50 iterations. 

As demonstrated in Figures 4.2 (c) and 4.3 (e) for Phantoms 1 and 2, the iODT algorithm 

is sensitive to phase-vortex contamination of the Rytov phase. These vortices can appear in objects 

with large OPDs, as well as objects of complicated structure, whose features contain large RI 
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contrast. To demonstrate the effectiveness of R-iODT for such objects, reconstructions are 

performed on Phantom 3, a 19-disk distribution shown in Figure 4.4 (a), where nb=1.518, n1=1.38, 

and n2=1.418. Although the overall OPD of the object is less than 2π, the complicated structure of 

many small, high-contrast features produces phase vortices that contaminate the Rytov phase. 

Although iODT and R-iODT have similar SNR upon turning off phase unwrapping at iteration 15, 

phase vortex artifact contamination limits the SNR of the iODT reconstruction to 4.5 dB. Like the 

previous objects, the contaminated phase introduces error at each iODT iteration, which begin to 

lower the SNR of the iODT reconstruction after iteration 22. For R-iODT, these artifacts are 

suppressed at each iteration, allowing the algorithm to reach an SNR of 15.9 dB. 

For the three simulations above, each iODT iteration takes on average of 35 seconds to 

complete. The R-iODT algorithm differs only in the use of a TV-enhancement step at the end of 

each iteration. The latter method, on average takes 42 seconds to complete. The code for the iODT 

algorithm, however, has been optimized for the CPU and unparallelized computation, and much 

shorter iteration times are possible.  

To assess the feasibility of reducing the computational burden of R-iODT versus the 

standard iODT, we compare the SNR of R-iODT (TV regularization at each iteration) to a 

reconstruction where TV regularization is performed only once, after the final iODT 

reconstruction. The result, shown in Figure 4.5 (c), has an SNR of 4.7 dB, demonstrating that the 

R-iODT algorithm that is shown in Figure 4.5 (b) reconstructs more accurately when TV 

regularization is applied at each iteration (or every few iterations) rather than after the final iODT 

reconstruction. 
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Figure 4.4: (a) Phantom 3 RI distribution, (b) SNR of the iODT and R-iODT reconstructions over the first 

50 iterations. (c) and (d) Respective iODT and R-iODT reconstructions after 𝑚 =  50 iterations. 

 

Figure 4.5: Phantom 3 reconstructions (a) iODT, (b) R-iODT using TV at each iteration, and (c) iODT with 

TV regularization applied to final (𝑚 = 50) reconstruction. 

While the numerical validation of R-iODT, using TV regularization, has shown 

considerable improvement over the standard iODT algorithm, the choice of the type of 

regularization used for the type of sample must be carefully made. When reconstructing features 

that are of similar scale to the resolution limit of ODT (i.e., ~𝜆𝑜/2), the TV enhancement may 
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lower the overall SNR of small, reconstructed features if the algorithm is unable to sharpen such 

features while preserving their correct values. For such samples, a more sophisticated 

regularization approach may be considered. 

4.3.2 Experimental Validation 

We have applied the R-iODT algorithm to holographically measured ODT data taken on a 

19-core step-index multicore fiber using an Intrafiber IFA-100 optical fiber profiler at λ0 = 630 

nm. The raw dataset used is the same as in [22]. Reconstructions using the standard iODT without 

TV regularization, applying TV regularization once after the final standard iODT iteration, and 

using R-iODT are shown in Figure 4.6. A cleaner reconstruction in the central region of the fiber 

is observed when iteratively applying regularization in the R-iODT algorithm. The pixel size for 

the reconstruction is Δx = 0.184 μm, and the diffracted fields are measured on the object over 36 

angles, ranging from 0° to 175°, in intervals of 5°. 

 

Figure 4.6: Reconstructions based on experimental measurements of a multicore optical fiber (a) SEM of 

fiber, (b) iODT, (c) iODT with TV regularization applied to final iteration (𝑚 = 50), and (d) R-iODT using TV at 

each iteration. 
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CHAPTER 5: EXPERIMENTAL AND NUMERICAL 3D 

RECONSTRUCTIONS 

The majority of the ODT reconstructions presented in Chapters 2-4, and in [22, 33, 40, 48, 

56] have been for either 2-D numerical phantoms, or of 2-D cross-sections of extended 3-D 

cylindrical objects (e.g., optical fibers). The reason for using such objects was two-fold: (i) 2-D 

reconstructions provide results that are, in principle, analogous to 3-D counterparts and (ii) 3-D 

reconstructions are significantly more computationally intensive. To move beyond the 2-D 

domain, I have expanded the iODT and optimization-based framework from 2-D to 3-D, and 

updated the field propagation models for this purpose.  I have also built an ODT experimental 

setup capable of more general tomographic phase imaging in order to test the new 3D 

reconstruction methods.  

5.1 ODT Experimental Setup 

Our initial experimental data that were used to verify 2D reconstruction were obtained by 

use of the Intrafiber IFA-100 profilometer shown in Figure 5.1. This setup, which employed a 

Mach-Zehnder interferometer (MZI), was used exclusively to reconstruct 2D cross-sections of 

optical fibers’ RI profile. The instrument worked by rotating a fiber about its axis to a set of angles, 

and measuring a hologram for each angle, respectively. Because optical fibers are spatially 

invariant along one axis, diffracted fields extracted from the profiler’s holograms were averaged 

into representative 1D diffracted fields from a 2D object (i.e., the 2D RI cross-section of the fiber) 

for each illumination angle. Next, an ODT algorithm (e.g., iODT) was used to reconstruct the 

cross-section of the fiber’s RI. 
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Figure 5.1: Intrafiber IFA-100 profilometer. 

One of the major features of the profiler is that the object (i.e. an optical fiber) was rotated 

directly to record measurements at each illumination angle. This configuration of rotating the 

sample itself for each perspective, known as the Object Rotation Configuration (ORC) allows the 

object to be viewed from a full 360° span of angles, as shown in Figure 5.2 (a). Unfortunately, the 

very act of rotating the object directly naturally perturbs the object and causes it to move between 

measurements. Since ODT reconstructions assume the object to be stationary over the entire span 

of angular measurements, additional care had to be taken to correct for the sample’s displacement 

during and between each angular measurement, or else such instability would corrupt 

reconstructions. For bioimaging applications, the ability to rotate the object directly between 

measurements may not only become difficult, but the perturbation of the sample may even be 

deemed unacceptable. Instead, an alternative configuration to ORC is used, called the 

“Illumination Scanning Configuration” (ISC). 

For ISC measurements, the sample is held stationary on a mount (e.g., a microscope slide). 

Rather than rotating the object for each illumination angle, the illuminating beam is instead 
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scanned to pass through the sample at a given angle and the diffracted field is holographically 

recorded on a detector at x=d, as shown in Figure 5.2 (b). By holding the object stationary during 

the experiment, the stability of the measurement is enhanced. Moreover, the illumination angle is 

often controlled by a galvanometer mirror, digital micromirror device, or fast scanning mirror, 

allowing the acquisition time of the ODT dataset to be significantly faster than ORC 

measurements. A short acquisition time is particularly important for in vivo cellular imaging, 

where bioprocesses may occur over short timescales [20]. 

 

Figure 5.2: Field measurement schematic for (a) object rotated configuration and (b) illumination scanning 

configuration.  

To allow the reconstruction of other classes of objects – in true 3D – I designed and 

constructed a second experimental setup, shown in Figure 5.3, that acquires data using ISC. The 

setup consists of a microscope – configured for illumination scanning measurements, followed by 

a Michelson shearing interferometer used to obtain same-path phase measurements from the 

microscope. To accommodate white-light holographic measurements (discussed later), we elected 

to use a same-path measurement approach to generate holograms, as opposed to the MZI design 
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used in the IFA-100. This decision was primary driven by the difficulty in aligning a MZI setup 

and balancing the path lengths and dispersion for both arms, which our setup trivializes. This is 

because the beam is cross-referenced after the microscope’s imaging system using an empty 

Michelson. 

 

Figure 5.3: (Left) Experimental setup with beam path illustrated. (Right) Conceptual schematic of setup. 

To perform ISC measurements, a fast-scanning mirror (FSM) is used to perform beam 

steering. The angle from the FSM is magnified using a lens system comprised of a scan lens (SL), 

Thorlabs ACT508-250-A-ML, and a condenser lens (CL), Nikon D-CUO DIC Oil Condenser, 1.4 

NA. The resultant diffracted field is then imaged onto a CCD using a U Plan Fluorite 60X Oil 

Objective lens (OL), NA 1.25-0.65, and a Thorlabs TTL180-A, f=180 mm tube lens (TL). 

Between the TL and the detector, a Michelson shearing interferometer (MSI) is positioned 

to generate a shear hologram, allowing phase measurements of the sample to be acquired using 
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cross-referenced holographic microscopy (CRHM) [57]. Unlike [57], however, a balanced 

Michelson (similar to [58]) was chosen used instead of a Sagnac to generate the shear hologram, 

to ensure the total optical path of the shear interferometer was within the focal length of the TL. 

5.2 Numerical Validation of 3D ODT 

As alluded to in Section 2.3 and Equation (2.28), the mathematical expansion of ODT 

framework from 2D to 3D is mostly updating the Green’s function from a Hankel function in 2-D 

to a spherical wave function in 3-D. Unfortunately, numerical considerations are less simple, and 

numerically efficient propagation algorithms, such as the WA-BPM method [45] are highly 

desirable. Assuming the use of the WA-BPM algorithm  to perform slice-by-slice propagations 

along “M” slices, the increase in computational complexity for a 2-dimensional 𝑀 ×

𝑁 computational area to a 3-dimensional 𝑀 × 𝐿 × 𝑁 computational volume is 𝑂(𝑀𝑁 log(𝑁)) to 

𝑂(𝑀𝐿𝑁 log(𝐿𝑁)), respectively (in addition to significantly larger memory requirements). In the 

case of the iODT algorithm, efficient propagation is particularly important, because the forward-

propagated input field, and the backward-propagated measured field must be calculated throughout 

the reconstruction volume for every illumination angle. The illumination angles are described by 

θ and ϕ, as shown in Figure 5.4. The angle θ describes the angle of kb, measured from the optical 

axis (denoted as z), while ϕ denotes the azimuthal angle measured in the x-y plane from the x-axis. 

The θmax in an ISC experiment is limited by the NA of the condenser and objective (whichever is 

lower), and the RI of the background medium, as given by: 

𝜃𝑚𝑎𝑥 = sin−1 (
𝑁𝐴

𝑛𝑏
) . (5.1) 
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Figure 5.4: Angular representation of illumination angles θ and ϕ, with respect to object assumed to be 

centered at the origin. 

For numerical validation of the 3D R-iODT and phase optimization algorithms, the 

reconstructive accuracy of each algorithm is quantified using the root-mean-square error (RMSE), 

for each iteration m, between the known object’s RI distribution, ntrue, and the current estimate of 

the distribution, 𝑛𝑒𝑠𝑡
(𝑚)

. The dummy index j denotes the lexicographically ordered voxel number in 

the 3D distribution, and Nvox is the total number of voxels in the reconstruction volume:  

𝑅𝑀𝑆𝐷(𝑚) = √
1

𝑁𝑣𝑜𝑥
∑ |𝑛𝑡𝑟𝑢𝑒,𝑗 − 𝑛𝑒𝑠𝑡,𝑗

(𝑚)
|

2

𝑛

. (5.2) 

For experimental validations, the true RI distribution is not known, and so the RMSE error 

of the measured and simulated sinograms (umeas and uest, respectively) is calculated instead: 

𝑅𝑀𝑆𝐷(𝑚) = √
1

𝑁𝑝𝑖𝑥𝑁𝑣𝑖𝑒𝑤𝑠
∑ ∑ |𝑢𝑚𝑒𝑎𝑠,𝑗

(𝑘)
− 𝑢𝑒𝑠𝑡,𝑗

(𝑘)
|

2

𝑘𝑗

. (5.3) 

In the above equation, Npix denotes the number of pixels in each image of the compared 

sinograms, and Nviews denotes the number of angular measurements. The dummy indices j and k 

𝑥ො 

𝑦ො 

𝑧Ƹ 

𝜃 

𝜙 𝑘⃗⃗𝑏 
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denote the lexicographically ordered pixel number in each image of the sinogram, and the view 

number, respectively. The simulated sinogram, uest, is the output sinogram generated by the current 

iteration’s estimated distribution, 𝑛𝑒𝑠𝑡
(𝑚)

.  

5.2.1 Numerical performance of R-iODT in 3D 

To study the reconstructive performance of 3D iODT using different angular coverage, a 

numerical ORC experiment is devised using noiseless data. The object is illuminated by a plane 

wave, λ0 = 0.532 μm. A series of three tests is performed using ‘full’ angular coverage (i.e., 

θmax=180°), and two tests of partial angular coverage where θmax is set to 53° and then 35°. For 

each test, the R-iODT algorithm from Chapter 4 is run for 100 iterations, using a cold initialization 

(i.e., nest initialized to nb). Figure 5.5 roughly shows the frequency domain coverage of the Limiting 

Ewald Sphere (LES), if a DFI reconstruction algorithm were to be used, and demonstrates regions 

of missing information (especially along the kz axis and kz  > 0). As θmax is reduced, the role played 

by regularization becomes more important as information about the object becomes sparser. Still, 

the strength of regularization is held constant between the tests, to allow direct comparison 

between results. 
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Figure 5.5: LES frequency coverage for each respective test, assuming DFI mapping in the kz = 0, kx = 0, 

and ky = 0 planes. A bar is added for scale showing the size of kb. 

The phantom in the experiment, shown below in Figure 5.6 (a), consists of 3 spheres of 4 

μm diameter, located at (x = 5, y = 0, z = 0 μm), (x = 0, y = 0, z = 0 μm) and (x = 0, y = 0, z = 5 

μm). The background RI, nb, is 1.56, and refractive indices of each sphere is 1.565, 1.57, and 1.58, 

respectively. For the ‘full-angle’ test, θ is swept from 0° to 330° in spacing of 30°, with ϕ = 0° 

(i.e., 𝑘̂𝑏 in the y = 0 plane). Another span of angles is measured in the z = 0 plane (i.e., θ = 90°), 

with ϕ being swept from 30° to 150°, and from 210° to 330° in steps of 15° to provide decently 

uniform angular coverage. The primary objective of this test is to ensure that each sphere is 
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reconstructed clearly. The results of this test are shown below in Figure 5.6 (b), and show a clear, 

accurate reconstruction of each sphere. 

For the θmax = 53° test, the value of θmax represents the best-case angular coverage scenario 

using the NA from the experimental setup and following Equation (5.1). Unlike data from the 

experimental setup, ORC numerical data is still used to allow a more comparison to the full 

coverage reconstruction. For this test, ϕ is swept in a circle (θ = 53°) from 0° to 330° in steps of 

30°. An additional line of angles is swept along the x-axis (ϕ = 0°) from θ = -45° to +45° in steps 

of 15°. The reconstruction, shown in row (c) of Figure 5.6, is similar to the previous test, though 

the “missing cone” problem caused by θmax manifests itself as a slight degradation in resolution 

along the z-axis, which manifests as slight error between objects in the y = 0 and x = 0 planes. 

Although each sphere is resolvable using the previous test’s “best case” scenario for θmax, 

in practice θmax for the experimental setup is limited to ~35° due to a design flaw in the objective 

lens. For the third test, ϕ is swept along a smaller circle (θ = 35°) from 0° to 330° in steps of 30°. 

A line of angles is also swept along the x-axis (ϕ = 0°) from θ = −30° to +30° in steps of 10°. In 

this test, the missing angular coverage is substantial, compared to prior tests, as demonstrated in 

the bottom row of Figure 5.5. The reconstruction shown in Figure 5.6 (d) shows a more substantial 

drop in resolution along the z-axis, such that the spheres in the x = 0 plane are unable to be correctly 

resolved as separate objects. The third sphere, at x = 5 μm is correctly reconstructed because (1) 

the x and y resolution of the reconstruction is not strongly impacted by the missing angular 

coverage, and (2), the object is not embedded behind any object that would need to first be 

reconstructed correctly before the field data at the embedded object can be correctly known. It is 
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worth noting, however, that for trivially small RI contrasts, assumptions about weakly-scattering 

objects hold, and issues involving embedded objects become are less significant.  

 

Figure 5.6: Row (a): RI distribution of the true object. Rows (b-d): Respective R-iODT reconstructions 

after 100 iterations using full angular span, θmax = 53°, and θmax = 35°. 
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In addition to affecting the overall resolution along the z-axis, the missing-angle problem 

also causes slower R-iODT convergence as θmax is decreased. To show this effect, the RMSE of 

the RI reconstruction is plotted for each test in Figure 5.7, as a function of iteration number. The 

R-iODT algorithm was able to converge to the correct solution for both the ‘full angle’ test and 

the θmax=53° test, as evidenced by similar reconstructions in Figure 5.6 (b) and (c), as well as 

similar RMSE after 100 iterations – though the latter converged slower. In the final test, however, 

the two spheres in the x = 0 plane failed to fully resolve from each other, presumably due to limited 

coverage of the LES, as shown in the bottom row of Figure 5.5. 

 

Figure 5.7: RMSE of the RI distribution for each R-iODT test. 
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5.2.2 Numerical performance of phase-based optimization in 3D 

To evaluate the performance of ODT optimization using a phase-based fidelity criterion, 

the three tests from 5.2.1 are repeated using Algorithm 3.1 to reconstruct the RI. Unlike the R-

iODT algorithm, a convex optimization algorithm does not attempt to reconstruct the object at 

each iteration, but rather gradually converges towards a solution. As in 5.2.1, a cold initialization 

is used, though Algorithm 3.1 is run for 100 iterations instead of 20 to give the algorithm time to 

converge. The reconstructions for the 3 optimization tests are shown in Figure 5.8, and a 

comparison the RMSE of the RI reconstruction at each iteration is shown in Figure 5.9.  

For the first two tests, shown in rows (b) and (c) of Figure 5.8, the final reconstructions are 

mostly consistent with the respective tests from 5.2.1 in rows (b) and (c) of Figure 5.6. The final 

RMSE for these tests were near 2 ×10-4, suggesting that both algorithms could find the “global 

minimum” corresponding to the correct reconstructive solution using either a full span of angles, 

and using a partial span of angles where θmax=53° (at the cost of slower convergence). 

Unlike the final test of 5.2.1, however, the θmax=35° reconstruction for phase-based convex 

optimization converged to a local minimum with a larger RMSE than its R-iODT counterpart, 

where the two spheres in the x = 0 plane are failed to be differentiated as two objects. This implies 

that the R-iODT algorithm was able to either work past or avoid this local minimum due to its 

perturbative approach to reconstructing errors in the object. 
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Figure 5.8: Row (a): RI distribution of the true object. Rows (b-d): Respective phase-based optimization 

reconstructions after 100 iterations using full angular span, θmax = 53°, and θmax = 35°. 
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Figure 5.9: RMSE of the RI distribution for each phase-based optimization test. 

5.3 ISC to ORC conversion 

Although the results from 5.2.1 and 5.2.2 were done using data from ORC propagation 

models, data collected from the second setup is acquired using illumination scanning. Still, the size 

of the propagation volume required for 3D ISC forward/backwards propagation is considerably 

larger than for ORC, as shown in Figure 5.10 (a) and (b). This is because a larger transverse volume 

(at least along one transverse axis) is necessary to accommodate the ISC propagation in global 

coordinates, or else the diffracted signal will begin to “walk off” the boundaries of the simulation 

volume, as shown in Figure 5.10 (a). The larger computational volume for ISC propagation solvers 
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leads to longer computation times than for ORC models, and thereby lowering the time-efficiency 

of reconstructions. 

 

Figure 5.10: Propagation using (a) an ISC framework and (b) ORC framework. A dashed border indicates 

the approximate necessary boundaries of the simulation volume.  

In addition to being potentially slower, ISC propagation may also be potentially less 

accurate. This is because fields that are propagated at oblique angles are not sampled along the 

axes of the grid’s voxels, where they can be most densely sampled. Furthermore, for multi-slice 

propagation algorithms such as WA-BPM, the accumulated OPD from the object for each slice is 

no longer well modelled as a line-integrated phase along the z-direction over the width of the slice. 
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To work around these issues, I created a method that converts off-axis field data, measured 

in “global coordinates” from an ISC experiment (see Figure 5.10 (a)), into on-axis fields in “local 

coordinates” (see Figure 5.10 (b)) that are then compatible with our standard ODT algorithms that 

assume ORC measurements. By doing so, the required propagation volume is reduced, and the 

accuracy of the efficient WA-BPM solver is maintained. This three-step process, shown 

schematically in Figure 5.11, first refocuses a field measured at the plane z=d in global coordinates 

to a parallel plane at 𝑧 = 0 in the background medium. Next, the field is propagated from the z = 0 

plane to a rotated plane, 𝑧′= 0, in local coordinates. Lastly, a standard, on-axis propagation solver 

(e.g., angular spectrum method) is used to propagate the field in the background medium to the 

output boundary of the simulation volume, 𝑧′ = 𝑑. Since the incident field is normally assumed to 

be a known planewave travelling along 𝑘𝑏̂, the incident field at the 𝑧′ = −𝑑 boundary is already 

immediately known. 

 

Figure 5.11: Schematic showing propagation steps for converting ISC field measured at 𝑧 = 𝑑 plane to 

ORC field “measured” at 𝑧′ = 𝑑 plane. 
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The measured ISC output field, described in global coordinates as 𝑈(𝑥, 𝑦, 𝑧 = 𝑑) , is 

refocused (in the background medium) to the z = 0 plane, such that the conversion from the z=0 

plane in global coordinates to the 𝑧′ = 0 plane in local coordinates is a simple rotation about their 

respective origin: 

[
𝑥
𝑦
𝑧

] = 𝑅̂𝜃,𝜙 [
𝑥′

𝑦′

𝑧′

] , (5.4) 

where 𝑀̂𝜃,𝜙is the 3D rotational matrix between the two coordinate systems. The matrix 

𝑅̂𝜃,𝜙 is orthogonal, and so: 

[
𝑥′

𝑦′

𝑧′

] = 𝑅̂𝜃,𝜙
𝑇  [

𝑥
𝑦
𝑧

] . (5.5) 

Next, we follow the steps laid out in [59] for propagating scalar fields (or alternatively in 

[60] for vector fields) in the background medium from the plane at z=0 to a rotated plane at 𝑧′ =

0. To show this, we start with a field sampled in local coordinates as: 

𝑈(𝑥′, 𝑦′, 𝑧′) = 𝑈(𝑥(𝑥′, 𝑦′, 𝑧′), 𝑦(𝑥′, 𝑦′, 𝑧′), 𝑧(𝑥′, 𝑦′, 𝑧′)) 

= ∬ d𝜈𝑥d𝜈𝑦 𝑒𝑗2𝜋[𝜈𝑥𝑥(𝑥′,𝑦′,𝑧′)+𝜈𝑦𝑦(𝑥′,𝑦′,𝑧′)+𝜈𝑧𝑧(𝑥′,𝑦′,𝑧′)]𝑈̂(𝜈𝑥, 𝜈𝑦; 0) (5.6) 

where 𝑈̂(𝜈𝑥, 𝜈𝑦) is the Fourier transform of the field at the plane z=0, 𝑈(𝑥, 𝑦, 𝑧 = 0). We 

now express 𝑅̂𝜃,𝜙 from Equation (5.4) in terms of its elements: 

𝑅̂𝜃,𝜙 = [

𝑟11 𝑟12 𝑟13

𝑟21 𝑟22 𝑟23

𝑟31 𝑟32 𝑟33

] . (5.7) 

Equation (5.6) can now be rewritten as: 
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𝑈(𝑥′, 𝑦′, 𝑧′) = ∬ d𝜈𝑥d𝜈𝑦 𝑈̂(𝜈𝑥, 𝜈𝑦)ⅇxp (𝑗2𝜋[𝜈𝑥(𝑟11𝑥′ + 𝑟12𝑦′ + 𝑟13𝑧′)

+𝜈𝑦(𝑟21𝑥′ + 𝑟22𝑦′ + 𝑟23𝑧′) + 𝜈𝑧(𝑟31𝑥′ + 𝑟32𝑦′ + 𝑟33𝑧′)]. (5.8)
 

We also relate the spatial frequencies (νx,νy,νz) and (𝜈𝑥
′ ,𝜈𝑦

′ ,𝜈𝑧
′) by the rotation matrix: 

[

𝜈𝑥
′

𝜈𝑦
′

𝜈𝑧
′

] = 𝑅̂𝜃,𝜙
𝑇  [

𝜈𝑥

𝜈𝑦

𝜈𝑧

] . (5.9) 

Using this relation, Equation (5.8) is now rewritten as: 

𝑈(𝑥′, 𝑦′, 𝑧′) = ∬ d𝜈𝑥d𝜈𝑦 𝑈̂(𝜈𝑥 , 𝜈𝑦)𝑒𝑗2𝜋[𝜈𝑥
′ 𝑥′+𝜈𝑦

′ 𝑦′+𝜈𝑧
′ 𝑧′] . (5.10) 

Next, we use a change of variables and express the field at the plane z’=0 as: 

𝑈(𝑥′, 𝑦′, 0) = ∬ d𝜈𝑥d𝜈𝑦 |
𝜕(𝜈𝑥, 𝜈𝑦)

𝜕(𝜈𝑥
′ , 𝜈𝑦

′ )
| 𝑈̂ (𝜈𝑥(𝜈𝑥

′ , 𝜈𝑦
′ ), 𝜈𝑦(𝜈𝑥

′ , 𝜈𝑦
′ )) 𝑒𝑗2𝜋[𝜈𝑥

′ 𝑥′+𝜈𝑦
′ 𝑦′]

𝐶

. (5.11) 

The domain of C covers frequencies where both 𝜈𝑧 and 𝜈𝑧
′  are positive. As shown in [59], 

the Jacobian from Equation (5.11) is simply: 

|
𝜕(𝜈𝑥, 𝜈𝑦)

𝜕(𝜈𝑥
′ , 𝜈𝑦

′ )
| =

𝜈𝑧(𝜈𝑥
′ , 𝜈𝑦

′ )

𝜈𝑧
′ (𝜈𝑥

′ , 𝜈𝑦
′ )

. (5.12) 

For numerical considerations, the Fourier transforms are handled using an FFT algorithm. 

Because 𝑈̂(𝜈𝑥, 𝜈𝑦)  is sampled uniformly along νx, νy, interpolation is required to sample 

𝑈̂ (𝜈𝑥(𝜈𝑥
′ , 𝜈𝑦

′ ), 𝜈𝑦(𝜈𝑥
′ , 𝜈𝑦

′ )) onto a uniform grid of  𝜈𝑥′, 𝜈𝑦
′ , such that an IFFT algorithm can be used 

to obtain 𝑈(𝑥′, 𝑦′, 0). The domain of C from Equation 5.11 is numerically enforced by applying a 

Boolean mask in frequency domain. 
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5.4 Experimental Results 

To experimentally validate our 3D frameworks for R-iODT and phase-based optimization, 

as well the ISC to ORC conversion framework, the ISC experimental setup, shown in Figure 5.3 

was used to collect 17 illumination angles within a cone of θmax=35°. For each extracted field form 

the experiment, an ISC to ORC conversion was performed, as demonstrated in Figure 5.12. Then, 

I use Algorithm 3.1 to reconstruct the object. 

 

Figure 5.12: (a) and (b): Amplitude and phase, respectively, of a measured ISC field at the plane z = 0 μm 

in global coordinates. (c) and (d): Amplitude and phase, respectively, of the field after being converted to an ORC 

“measurement” at the plane 𝑧′ = 0 μm in local coordinates. A bar is added in (a) to show scale. 
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The object to-be-imaged is taken from a slide of prepared polystyrene beads loaded with a 

fluorophore that excites and emits in the UV (Sphereotech Fluorescent UV Particle Slide). The 

average diameter of the spheres is 10.7μm, and the background medium is a fixative whose RI is 

assumed to be 1.571. To avoid the issue of the object strongly fluorescing, the object is illuminated 

at 532 nm. 

As already implied by the phase of the field shown Figure 5.12, the reconstruction after 

100 iterations of Algorithm 3.1 shows that the object tis not a simple polystyrene sphere, but rather 

a sphere with an asymmetric lobe facing the +ẑ direction, shown below in Figure 5.13. A second 

feature, believed to be a coating is seen clearly as a ring of lower RI in the z=0μm plane (Figure 

5.13 (a)) and likely surrounds the entire object. Due to lack of angular coverage, however, the full 

coating was unable to be reconstructed. 

 

Figure 5.13: Experimental reconstruction of polystyrene bead. 

The RMSE of the measured and simulated sinograms, shown in Figure 5.14, suggests that 

Algorithm 3.1 finished converging after 20 iterations. After this point, minor changes to the 

estimate of the RI distribution are guided largely by the regularization. Furthermore, unlike the 

simulated data used in our numerical ODT validations, data from the experiment likely contains 



66 

 

error caused by aberrations in the microscope, speckle from the laser, and small amounts of dust 

in the microscope’s immersion oil. These sources of error vary between each angular 

measurement, which likely prevents the algorithm from converging further beyond the first 20 

iterations. In the case of experimental data that is contaminated with artifacts that cannot easily be 

modelled, in addition to limited angular measurements, the choice of regularization likely plays a 

crucial role in the quality of reconstructions. Although our current choice for regularization is 

based on isotropic TV minimization, more advanced regularization choices exist and are used in 

the limited angle tomography community [61, 62, 63]. Still, because the measured fields 

themselves are contaminated with error that cannot be easily modelled, fields that propagated 

through the correct RI distribution of the sample would likely still differ from their respective 

fields that are measured in experiment, and so the sinogram’s RMSE error should not be expected 

to converge completely to 0.  
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Figure 5.14: RMSE of the simulated output sinogram, using the best guess of the object’s RI and the 

measured sinogram from the experiment. 
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CHAPTER 6: SPATIOTEMPORAL ODT 

An alternative strategy for combating multiple-scattering in turbid media borrows from the 

principle of ballistic imaging (BI) [64, 65]. As shown below in Figure 6.1, the optical path delay 

for traversing a turbid object depends on the path taken through it (i.e., the scattering experienced). 

If a short pulse is sent through an absorbing object that is embedded in a turbid medium, photons 

arriving first at a detector (placed after the object) would have scattered least, while diffusely 

scattered photons would arrive last. By time-gating away the multiply-scattered light, a clear 

silhouette of the absorbing object can be seen on the detector. 

 

Figure 6.1: Schematic of OPDs for various forms of scattering. 

Using the same principle from BI, we may use time-gating to reject higher-order scattering 

effects from the measured field on the detector, allowing standard ODT inversions to be used, even 

for objects in turbid media. To achieve this affect, we first illuminate the sample using a short, 
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plane-wave pulse, and a coherent detector integrates the time-gated response (see Figure 6.1). We 

call this technique spatiotemporal ODT (ST-ODT) [56]. 

6.1. Mathematical Formulation of ST-ODT 

We now describe a mathematical foundation for ST-ODT. For a linear, shift-invariant 

system, we take an illuminating field Ui, assumed to be spatially uniform, and its corresponding 

diffracted field at the detection plane, Uobj, and relate them through an impulse response, hobj, as 

follows: 

𝑈𝑜𝑏𝑗(𝑟; 𝑡) = ∬ 𝑑2𝑟′⃗⃗⃗⃗ 𝑑𝑡′ℎ𝑜𝑏𝑗(𝑟; 𝑟′⃗⃗⃗⃗ ; 𝑡′) ⋅ 𝑈𝑖( 𝑡 − 𝑡′) . (6.1) 

At the detection plane, the diffracted field Uobj is interfered with a delayed copy of the 

illumination, Ui(t-τ). For a slow detector that integrates over time, the following interferogram is 

sampled, at a fixed distance r=(x, z =d), recorded as the following time average:  

𝐼(𝑟; 𝜏) =< 𝑈𝑖
2 > +< 𝑈𝑜𝑏𝑗

2 >  + 2 ∙ 𝑅𝑒{< 𝑈𝑜𝑏𝑗(𝑟, 𝑡)𝑈𝑖
∗(𝑡 − 𝜏) >} 

=< 𝑈𝑖
2 > + < 𝑈𝑜𝑏𝑗

2 >  + 2 ∙ 𝑅𝑒{𝐶(𝑟; 𝜏)}, (6.2)                

where the correlation integral C(r; τ) is defined as the following time-average: 

𝐶(𝑟; 𝜏) ≡< ∬ 𝑑2𝑟′⃗⃗⃗⃗ 𝑑𝑡′ℎ𝑜𝑏𝑗(𝑟, 𝑟′⃗⃗⃗⃗ ; 𝑡′)𝑈𝑖(𝑡 − 𝑡′) 𝑈𝑖
∗(𝑡 − 𝜏) >,  

     =    ∬ 𝑑2𝑟′⃗⃗⃗⃗ 𝑑𝑡′ℎ𝑜𝑏𝑗(𝑟, 𝑟′⃗⃗⃗⃗ ; 𝑡′) < 𝑈𝑖(𝑡 − 𝑡′) 𝑈𝑖
∗(𝑡 − 𝜏) > (6.3) 

By defining Ci as the autocorrelation of the illumination field, Equation (6.3) becomes: 

𝐶(𝑟; 𝜏) =   ∬ 𝑑2𝑟′𝑑𝑡′ℎ𝑜𝑏𝑗(𝑟, 𝑟′⃗⃗⃗⃗ ; 𝑡′)𝐶𝑖(𝜏 − 𝑡′) . (6.4) 
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In order to probe the time-dependence of hobj, we use an illumination for which Ci behaves 

narrow, with respect to hobj. Recalling that the autocorrelation is given as the time following time 

average: 

𝐶𝑖(𝜏 − 𝑡′) ≡ ∫ 𝑑𝑡 𝑈𝑖(𝑡 − 𝑡′) ∙ 𝑈𝑖
∗(𝑡 − 𝜏)

+∞

−∞

, (6.5) 

whose width depends only on the spectral power density of the source. A narrow Ci can be 

obtained using either a temporally incoherent source (i.e., white-light), or a short pulse, such that: 

𝐶𝑖(𝜏 − 𝑡′) ≈ 𝐼𝑖𝛿(𝜏 − 𝑡′). (6.6) 

At this limit, Equation (6.4) collapses to: 

𝐶(𝑟; 𝜏) =   𝐼𝑖 ∫ 𝑑2𝑟′ℎ𝑜𝑏𝑗(𝑟, 𝑟′⃗⃗⃗⃗ ; 𝜏) . (6.7) 

6.2. Equivalence to CW ODT 

We now compare the result from Equation (6.7) to a result obtained from Equation (6.1) 

for the case of a monochromatic (ω = ωo) plane-wave source: 

Uobj(𝑥; 𝑡) = |𝑈𝑖| ∫ 𝑑2𝑟′⃗⃗⃗⃗ ∫ 𝑑𝑡′ℎ𝑜𝑏𝑗(𝑥, 𝑥′; 𝑡′) ⋅ ⅇjωo(t−t′) , (6.8) 

which, in turn, is equal to: 

= |𝑈𝑖|𝑒
𝑗𝜔𝑜𝑡 ∫ 𝑑2𝑟′⃗⃗⃗⃗ ∫ 𝑑𝑡′ℎ𝑜𝑏𝑗(𝑟, 𝑟′⃗⃗⃗⃗ ; 𝑡′) ⋅ ⅇ−jωo𝑡′

  

=
|𝑈𝑖|

2𝜋
𝑒𝑗𝜔𝑜𝑡 ∫ 𝑑2𝑟′⃗⃗⃗⃗  𝐻𝑜𝑏𝑗(𝑟, 𝑟′⃗⃗⃗⃗ ; 𝜔𝑜) . (6.9) 

We now show that the same information from Equation (5.9) is accessible from Equation 

(6.8), by numerically integrating Equation (6.7) in software domain as: 
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𝑈𝑜𝑏𝑗(𝑟; 𝑡) ∝  ∫ 𝑑𝜏 𝐶(𝑟; 𝜏)𝑒𝑖𝜔𝑜(𝑡−𝜏) =
|𝑈𝑖|

2

2𝜋
𝑒𝑗𝜔𝑜𝑡 ∫ 𝑑2𝑟′⃗⃗⃗⃗  𝐻𝑜𝑏𝑗(𝑟, 𝑟′⃗⃗⃗⃗ ; 𝜔𝑜) . (6.10) 

 

Using the approximation from Equation (6.6), we have now established an equivalence 

between the τ integrated correlation, C(r; τ), from Equation (6.10), and a corresponding CW 

diffracted field, shown in Equations (6.8) and (6.9). An important difference, however, between 

these two results is that the field obtained from Equation (6.10) is now accessible to time-gating. 

We now apply a time-gated integration between times T1 and T2, shown in Figure 6.1, and express 

the time-gated field, Uobj,TG, as the following numerically obtained integration: 

𝑈𝑜𝑏𝑗,𝑇𝐺(𝑟, 𝑡) ∝ |𝑈𝑖|
2𝑒𝑗𝜔𝑜𝑡 ∫ 𝑑2𝑟′⃗⃗⃗⃗ ∫ 𝑑𝜏 ℎ𝑜𝑏𝑗(𝑟, 𝑟′⃗⃗⃗⃗ ; 𝜏) ⋅ ⅇ−jωo𝜏

𝑇2

𝑇1

. (6.11) 

The time-gated field is now used in standard, linear ODT inversions as a CW field, where 

multiple-scattering has been rejected, extending the efficacy of ODT inversions to turbid media. 

6.3. Numerical Validation of ST-ODT 

To validate ST-ODT [56], we used a numerical forward solver (FDTD) to propagate short 

pulses through various phantoms. Standard ODT (EDOF-FBPP) reconstructions were performed, 

using the time-gated field in Equation (6.11), for various choices of T1 and T2 in the time-gate 

(TG), in addition the CW field (no TG used). In the following three examples, an FDTD forward 

solver was used to measure a diffracted envelope from a 2D object, using a spatial grid size of 

λ/20, a background index of 1, λ = 1μm, and a temporally Gaussian, plane-wave pulse of 40 fs 

duration. 
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To demonstrate ST-ODT’s ability to reconstruct objects embedded in turbid media, we 

tested the case of a disk, of diameter 10λ and 7% contrast, surrounded by 800 Mie-Rayleigh objects 

of randomly generated diameter (between λ/10 and λ/4) and position (Figure 6.2). We found that 

by time-gating, the diffuse Rayleigh background is screened from the reconstruction. This 

demonstrates that, for simulated turbid media, by multiple-scattering is able to be rejected by time-

gating and improve reconstruction quality. 

 

Figure 6.2: Clockwise from top left: Simulation layout, long TG reconstruction (CW), short TG 

reconstruction, and diffracted pulse envelope, measured vs. time on 1D detector. 

In order to test ST-ODT’s ability to reject multiple Mie-scattering (particle sizes larger than 

λ), 19 disks were placed in a 2-layer hexagon configuration (see Figure 6.3). Each disk (diameter 

3λ, 9% contrast) is separated by 6λ. Phase vortices, caused by multiple scattering, caused total 
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reconstruction failure in the CW case. Using an extremely strict TG (T1 and T2 both before the 

peak arrival of pulse), the position and size of the 19 disks are successfully reconstructed. 

 

Figure 6.3: Clockwise from top left: Simulation layout, long TG reconstruction (CW), short TG 

reconstruction, and diffracted pulse envelope, measured vs. time on 1D detector. 

In the first example, multiple-scattering was caused primarily by the presence of many 

Rayleigh objects (small particle diameter). Unlike Mie-scattering, Rayleigh-scattering has a 

dipolar scattering profile, and so the OPD of its multiple-scattering is larger, with respect to single 

scattering, due to more back-scattering and larger scattering angles. Mie-scattering, on the other 

hand, more strongly favors forward scattering. Strong multiple Mie scattering, therefore, has 

smaller OPD with respect to single-scattered light, while still breaking the linear relationship 

assumed by the Fourier diffraction theorem. For this reason, ST-ODT is most effective at screening 

multiple-scattering from small particle sizes (< λ/4). 
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To test this conclusion, we studied a phantom consisting of two Mie-scattering disks 

(diameter 10λ, contrast 7%), separated by 15λ. The medium is then peppered by 100 Rayleigh 

scatterers, similar to the first example. We found after time-gating, reconstruction noise caused by 

the pepper is screened, while artifact from non-linear Mie-scattering remain (compare 

reconstruction artifacts between disks in Figure 6.4 to those in the ODT reconstruction of Figure 

3.1). 

 

Figure 6.4: Clockwise from top left: Simulation layout, long TG reconstruction (CW), short TG 

reconstruction, and diffracted pulse envelope, measured vs. time on 1D detector. 

6.4. Proposed Method: Time-Resolved Phase Unwrapping in Optical Tomography 

While ST-ODT reconstructions are shown to effectively screen multiple-scattering from 

Rayleigh objects, we found Mie-scattering was difficult to discriminate against – especially in a 

practical experimental setting. Fortunately, the methods outlined in Chapters 3 and 4 are effective 
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for handling reconstruction nonlinearities caused by linear Mie-scattering. We are currently 

exploring the use of time-of-flight information to allow access to the unwrapped phase – which 

may be difficult when large amounts of scattering are present. By combining this information with 

iterative solvers (such as iODT, or the algorithm proposed earlier in Chapter 3), expansion to the 

IODT framework where the temporal-distribution of the field, measured on the detector, is used 

to know the OPD of a sample, before a CW component of the field is then used to reconstruct the 

object, using the correctly unwrapped phase distribution, thereby alleviating challenges posed by 

phase-unwrapping in highly scattering media. A preliminary demonstration of this effect was 

obtained using an optical fiber sample. 

 

Figure 6.5: Raw interferogram of row of spatial pixels on a CCD detector, at the output of the IFA-100, 

using an optical fiber sample. Vertical pixels correspond to a row of spatial pixels on the camera, while horizontal 

pixels correspond to readings at varying differential delays 
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Figure 6.6: Estimated RI cross-section through center of fiber, which directly corresponds to the time-of-

flight measurements observed in the temporal distribution shown in Figure 5.5. Pixels in the output temporal 

response, associated with light that has passed through regions of the fiber of negative RI, with respect to the 

background (in this case, the cladding) arrive before the “leading edge” of the background signal, while areas of 

positive RI, and positive OPD trail the background signal. 

6.5. Proposed Method: Fourier-Transform ODT 

Using the same derivation for Equation (6.7), one finds obtains a second application for 

measuring the τ-dependent impulse response: 3D Fourier-transform (FT) ODT. Instead of 

evaluating Equation (6.10) at a fixed frequency ωo, we measure the CW diffracted field for every 

frequency ω by taking a Fourier transform of Equation (6.7): 

𝑈𝑜𝑏𝑗(𝑟; 𝜔) ∝
1

2𝜋
 ∫ 𝑑𝜏 𝐶(𝑟; 𝜏)𝑒𝑖𝜔𝜏 = |𝑈𝑖|

2 ∫ 𝑑2𝑟′⃗⃗⃗⃗  𝐻𝑜𝑏𝑗(𝑟, 𝑟′⃗⃗⃗⃗ ; 𝜔) . (6.12) 

We may then reconstruct the object function for each ω, using Algorithm 4.1, to obtain the 

3D relative permittivity distribution of the object, with frequency. Secondly, we note that the 

derivations in sections 2.1 and 2.2 make no assumption that this distribution must be real. In this 

sense, one may use a combination of FT spectroscopy, and ODT to measure the hyperspectral RI 

and absorption distribution of a sample, in full 3D, at spectral resolution defined by the user. 

Furthermore, because FT-ODT and ST-ODT rely on the same information to perform 



77 

 

reconstructions, one may explore both applications simultaneously, using the same experimental 

setup. This technique is already used as a tool for index profiling of optical fibers, using CT 

reconstructions [66]. 

ODT and TPM reconstructions are traditionally done using, or assuming, monochromatic 

illumination. By frequency-sweeping the source (e.g., using a grating), however, and then 

successively reconstructing the complex RI of the sample at each illumination frequency, both 

techniques can be used as a tomographic imaging spectroscopy tool, whereby for each spatially 

resolved pixel (or voxel) in the reconstructed volume, a spectrum of the object's complex-valued 

RI is known, as a function of wavelength. The spectral and spatial information from the 

reconstruction can serve to identify materials, as well as provide contextual and functional 

information about the sample. Unlike imaging spectroscopy methods based solely on 

absorptive/reflective properties of a material, the ability to also record spectral information of the 

real part of a material's refractive index provides additional discriminating information of imaged 

materials, within the spectral window of a detector. 

ODT, as a spectroscopic tool, has already been demonstrated in 2016 by Park et al. [67], 

by sweeping the frequency of the source; however, the paper discussed only the reconstruction of 

the real part of the RI distribution. Another approach, by Andrew Yablon (2010) [66], combined 

Fourier transform spectroscopy (FTS) with a CT inversion algorithm, to spatially resolve the real 

RI distribution of optical fibers, as a function of wavelength. In this paper, we combine FTS with 

iODT inversions, to reconstruct the complex RI of materials, as a function of wavelength. We call 

this technique Fourier-transform optical diffraction tomography (FT ODT). FT ODT is 
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experimentally validated using optical fiber samples, filled with some known liquid, using 

capillary action. 

6.5.1. Experimental validation 

For convenience, FT ODT is experimentally validated using hollow core and photonic 

crystal fiber (HCF and PCF, respectively) samples, assumed to be "2D" objects. The airholes in 

each sample are filled with absorptive solutions of fluorescent dye (Atto594), dissolved in DMSO 

at various concentrations. For both fiber designs, solutions of dye, at concentrations of 200 and 

700 μm are used. A control sample was prepared, for both fiber designs, in which only DMSO is 

present. FT ODT is then used to tomographically reconstruct a cross-section of the fiber samples' 

complex RI, over several wavelengths between 480 and 900 nm. Consequently, a spectrum of the 

sample's complex RI is recorded for each spatial pixel (or voxel) in the reconstructed volume. Like 

other FTS techniques, the spectral resolution of FT ODT is inversely proportional to the scanned 

range of the interferometer's differential delay, while the spectral window of the instrument is 

typically limited by the detector's sensitivity. The spectral window of the Silicon detector used in 

this experiment (Imi Tech Mega-pixel Digital CCD Camera) allows for reconstructions between 

480 and 900 nm. 

We have designed a setup, shown in Figure 6.7, to measurer the interferogram in Equation 

(6.2), using a white-light source. Currently, a microscopic imaging system is being incorporated 

into the setup, in order to measure transmitted diffracted fields used in ST-ODT (and FT-ODT) 

reconstructions. 
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Figure 6.7: Diagram of ST-ODT experimental setup. 

While the setup is being constructed, we have obtained experimental ODT data from an 

Interfiber Analysis IFA-100 instrument, shown below in Figure 6.8. 

 

Figure 6.8: Interfiber Analysis IFA-100 fiber index profiler. 
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While the tool functions well as a tool for acquiring ODT (and IODT) experiments, the 

tool could not be physically be modified or adapted to accommodate greater delay range, or other 

magnifications. Moreover, the user is unable to modify software parameters during scans (e.g., 

noise averaging, sample rotation angular step size, etc.), preventing improvements to the overall 

quality of the data. Still, we are able to effectively demonstrate a “proof of concept” for FT-ODT. 

For our first validation, we took a PCF fiber, whose cores were filled with a non-absorbing 

liquid, dimethylsulfoxide (DMSO). The cross-section of the fiber is shown in Figure 6.9, while 

three representative RI dispersion curves are plotted, taken from regions of interest (ROIs) within 

the reconstruction volume: the background medium, the glass gladding region, and the cores of 

the PCF. For each frequency, RI values of pixels in these ROIs are averaged together and plotted 

as points in the plots shown in Figure 6.10. 

 

Figure 6.9: SEM of PCF cross-section. During the experiment, PCF cores were filled with DMSO liquid. 
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Figure 6.10: (Left) CW reconstruction of PCF at 633 nm. (right) Representative RI plots showing the 

spectral behavior of three ROI regions: fiber cores (filled with DMSO), glass fiber cladding, and background 

medium (RI matching oil). 

For our second validation, we took an HCF (SEM shown in Figure 6.11), and filled it with 

DMSO, containing varying concentrations of dissolved fluorescent dye (Atto 594). The absorption 

spectra of the DMSO liquid, and 200 μM solution were independently measured using a 

spectrometer, as shown in Figure 6.12; however, because the 700μM concentration of the dye 

caused substantial attenuation that saturated the spectrometer and prevented accurate 

measurement. 

 

Figure 6.11: SEM image of HCF cross-section. 
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Figure 6.12: Measured absorption spectrum of DMSO/dye solution at 200 μM concentration, as well as for 

a pure DMSO (no dye present).  

Since ODT reconstructions allow the reconstruction of both real and imaginary parts of the 

RI (i.e. n and κ), we were able to reconstruct a hyperspectral cube containing the spatial distribution 

of the complex-valued RI of the fiber, over a range of frequencies between 400 and 900 nm. We 

were successfully obtained a spatial distribution of the complex RI, as well as representative n and 

κ spectra, for various regions of the reconstruction volume. As shown in Figure 6.13, we not only 

show that κ of the dye (found only in the liquid core region) is larger at the expected absorption 

feature near 615 nm, while the spectral distribution of the RI in the liquid core exhibits a kink in 

the real part of the RI that is associated with the Kramers–Kronig relationship. As the Beer-

Lambert law suggests, the absorption coefficient of the liquid should vary linearly with the 

concentration of the absorbing dye in the DMSO material. As we see in Figure 6.13, the size of 

the peak values of κ seems to scale linearly with concentration, which follows this expectation. 
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We hope to further demonstrate these relationships using more samples and concentrations in the 

future. 

 

Figure 6.13: (Top and bottom left) Spatial reconstructions of n and κ, respectively, at 615 nm. (Top and 

bottom right) Respective plots of the core region for n and κ, for 200 and 700 μM concentrations of dye, as well as 

for pure DMSO. 

6.5.2 FTS measurements with updated setup 

Currently, the ISC ODT setup is used to perform CW reconstructions. By placing a 

Michelson interferometer before the microscope tower shown in Figure 5.3, however, the 

illumination can be modulated such that the microscope can be converted into a Fourier-transform 

spectral phase imaging system, as shown in Figure 6.14. 
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Figure 6.14: Michelson interferometer for FTS measurements preceding ODT setup in Figure 5.3. 

Although the ISC setup has yet to be used to reconstruct a sample’s RI at each frequency 

(as experimentally performed before on the IFA-100), the Michelson itself allows FTS 

measurements to practically arbitrary spectral resolution – up to theoretically sub-Angstrom, as 

allowed by the span of the Michelson’s differential delay arm. In practice, the spectral resolution 

can be selected based on the needs of the current sample. For example, if the refractive-index 

varies somewhat slowly throughout the visible spectrum, less spectral resolution is necessary. On 

the other hand, if a Mid-infrared camera were used to look at the spectrum of a polymer sample, a 

much higher spectral resolution would be necessitated, as the absorption spectrum (and RI by 

extension) contains much more features. 



85 

 

A preliminary FTS test has been performed using the Michelson attachment to the 

microscope to measure the spectra of a 532 nm (green) laser source, a white-light supercontinuum 

source, the superposition of both sources, and lastly the spectrum of a supercontinuum source 

passed through a 10 nm bandpass filter at 650 nm. The differential delay was scanned over a 40μm 

range for this experiment, corresponding to a spectral resolution of approximately 6nm. The 

results, shown in Figure 6.15 show the laser’s spectrum to be a “delta-function” at 564 THz (or 

532 nm), while the supercontinuum appears to be a broad peak across the visible spectrum. 

Although the true spectrum of the supercontinuum spans a much larger bandwidth, the observed 

spectrum is bottlenecked by the spectral sensitivity of the detector (i.e., camera). As expected, the 

spectrum when both lasers are used simultaneously is a linear superposition of their respective 

spectra. Finally, a test was performed where the combined illumination was passed through a 10nm 

bandpass filter at 650 nm, yielding a narrow spectral peak corresponding to the filter’s transmission 

spectrum. In reality, the spectrum of the laser in the first column of 6.15 is much narrower than 

the transmission spectrum of the bandpass filter (shown in the fourth column). To show this, higher 

spectral resolution would be needed (done by spanning a wider range of differential delay in the 

Michelson in Figure 6.14). 
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Figure 6.15: Holographic measurements and respective spectra using different illumination sources. 

Because 3D ODT reconstructions are somewhat resource intensive, the process of 

performing FT-ODT measurements for 3D objects relies on (1) obtaining an ODT reconstruction 

at a single frequency, and then (2) using that reconstruction as an initial guess for the reconstructed 

RI at a neighboring frequency. This process is repeated until a reconstruction is obtained for each 

desired frequency in the spectrum. By doing so, we remove unnecessary iterations spent on 

reconstructing the overall shape of the object, but rather only update the value of the RI at each 

region of the object. In the future, a constraint may be developed that enforces knowledge that the 

shape of the object cannot change significantly with illumination wavelength, but rather only 

values within the shape. This is because the object is stationary and unaltered between all 

illumination frequencies. 
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CHAPTER 6: CONCLUSION 

Optical diffraction tomography is a powerful tool for quantitative 3-dimensional refractive 

index imaging. While linear inversions are popular, their validity is somewhat limited to simple, 

weakly-scattering phase objects. To reconstruct more complicated objects, or objects with larger 

OPD, iterative perturbative and optimization-based approaches have been developed. This 

dissertation has introduced techniques that expand the reconstructive efficacy of ODT using 

iterative and regularized optimization tools. Additionally, the utility of ODT as a quantitative phase 

imaging method has been expanded to include spectral imaging.   

I have demonstrated the shortcomings of field-based optimization in ODT, as the 

relationship between the object’s distribution and the phase of its diffracted field is surjective, but 

not injective. This allows multiple reconstruction distributions to exist that yield highly similar 

diffracted output fields to the ones measured, causing convex optimization methods to become 

trapped in deep local minima if the algorithms are not initialized sufficiently close to the global 

minimum. I introduced a new method that uses convex optimization to instead minimize a fidelity 

criterion based on unwrapped output phase, allowing the algorithm to approach the correct 

solution. 

Because iterative ODT (iODT) seeks to fully reconstruct an object at each iteration, it is 

typically more efficient than optimization methods at obtaining a solution; however, the Rytov-

based algorithm is susceptible to artifacts caused by phase singularities. I introduced a second 

method that combined TV regularization – used in our optimization methods – with the efficient 

perturbative framework of iODT, allowing both efficient and accurate reconstructions of the 

refractive index. 
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I have designed and built a new ODT experimental setup that uses illumination scanning 

to obtain ODT data. In order to use the new algorithms for reconstruction based on data taken with 

the setup, I expanded the ODT frameworks from 2D to 3D, and validated each numerically and 

experimentally. To increase the numerical performance of reconstruction, I created a method that 

converts ISC data from the experiment into ORC data, that can be propagated in smaller simulation 

volumes with efficient solvers such as WA-BPM. 

Lastly, I have demonstrated the utility of using temporally incoherent illumination in ODT 

applications. Because multiply-scattered light arrives later than the ballistic and weakly-scattered 

signal, I have shown that temporally incoherent illumination can be used to discriminate against 

the multiply-scattered signal and reject its associated artifacts that appear in linear ODT 

reconstructions. I have demonstrated an alternative application of using Fourier-transform 

spectroscopy on the temporally-incoherent signal to separate the measured white-light hologram 

data into many CW holographic components. Because ODT models typically assume CW 

illumination, ODT data at each CW illumination frequency component can be used to reconstruct 

the object’s refractive index at that frequency. ODT reconstructions are performed at every 

frequency in the measured bandwidth of the source. Thus, a 3D distribution of the object’s 

complex-valued refractive index can be obtained, and for every voxel in the distribution, the 

spectral dependence of the refractive index can be estimated. This allows ODT to be used as a 

powerful characterization technique for analyzing the linear optical properties of materials. 

The experimental setup I built will serve as a platform for performing Fourier-transform 

ODT measurements at a much greater spectral resolution than obtained using the IFA-100 

instrument. To help this process, I have recently explored the efficiency and utility of various on 
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and off-axis propagation frameworks for ISC and ORC ODT reconstructions to allow efficient 

estimation of large spatio-spectral datasets. Such study should be invaluable for processing large 

datasets on standard desktop computers. I intend to conduct future studies of the use of temporally 

incoherent illumination to allow time-of-flight measurements for validating ST-ODT. Another 

area of exploration in future research may be the integration of spatially incoherent illumination 

with ODT models in order to reject higher orders of scattering from measured data, while 

preserving the spatial resolution allowed by ODT measurements.  
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