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ABSTRACT

In this thesis we study symmetries of quantum field theory visible only at the non-perturbative

level, which arise from certain large deformations of the path integration contour. We exposit

the recently-developed theory of qq-characters [40] that organizes such symmetries in the case

of N = 2 supersymmetric gauge theories in four dimensions. We sketch the physical origin of

such observables from intersecting branes in string theory, and the mathematical origin as certain

equivariant integrals over Nakajima quiver varieties. We explain the main applications, including

the derivation of Seiberg-Witten geometry for quiver gauge theories and the relations to quantum

integrable systems.
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CHAPTER 1: INTRODUCTION

Quantum field theory is an essential component of the description of nature at the fundamental

level, as it is the mathematical language used to describe the interactions of elementary particles.

It also is a natural framework for providing low-energy effective descriptions of various systems

relevant to condensed matter physics. Despite its ubiquity in theoretical physics, robust exact

results in quantum field theory are rare and signify that there is still much to be learned in this

mature discipline.

Because of this lack of exact results, it is desirable to search for simple examples of field theories in

which exact calculations can be performed. During the past twenty years of research in mathemat-

ical physics, much progress has been made on developing effective methods of exact calculation

in N = 2 supersymmetric gauge theories in four dimensions (see e.g. [54] for a review of recent

developments). We emphasize that in our study, the assumption of supersymmetry is a theoretical

idealization used to formulate tractable models, not a prediction that such a symmetry is realized in

nature. The key to exact calculations in these theories is the supersymmetric localization technique

(closely related to the possibility of performing the topological twist introduced by Witten [60]).

This allows a certain sector of observables, known as the BPS sector, to be computed exactly by

reduction of the path integral to a finite-dimensional integral. After subjecting these theories to

the so-called Ω-deformation [39], [45], the resulting finite-dimensional integrals can be calculated

using the Atiyah-Bott localization formula in equivariant cohomology [1], [3], [13] which reduces

the integrals to sums over a set of fixed points of a group action.

Because of the ability to analyze N = 2 theories at an increased level of detail, it is desirable

to search for evidence of deeper symmetries present within them. One type of symmetry which

would ordinarily be out of reach in quantum field theory is a symmetry related to changing the
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instanton charge, that is, the topological sector of the field space (in the case of gauge theories in

flat space this means changing the second Chern class of the gauge field configuration). One finds

that the Ward identities for these symmetries of N = 2 theories, referred to as non-perturbative

Dyson Schwinger equations, are naturally organized via a structure known as the qq-characters

[40]. Strictly speaking, this structure is understood for only a subclass of all possible N = 2

theories known as quiver gauge theories. In this thesis, we will consider only quiver gauge theories.

The qq-characters are remarkable objects with diverse applications. In this thesis, we exposit their

origin in the study of gauge theories. We begin in chapter 2 with a mathematical motivation, ex-

plaining some geometric aspects of representation theory. In chapter 3 we review aspects of the

solution of random matrix models at large N, as many of the gauge theory constructions can be

motivated as an effort to reproduce this kind of analysis in the case of N = 2 gauge theories.

In chapter 4 we recall the basics of N = 2 supersymmetric gauge theories and define the quiver

gauge theories under study. In chapter 5 we explain the Atiyah-Drinfeld-Hitchin-Manin (ADHM)

construction of instantons [2] and the computation of the instanton partition function of the N = 2

theories in the Ω-background, the so-called Nekrasov partition function [39]. Finally, in chapter 6

we explain the generalization of the ADHM construction to the so-called moduli space of crossed

instantons [41] and introduce the qq-characters [40]. We explain some of the applications, in-

cluding the Seiberg-Witten solutions of the theories under study and a connection with integrable

systems via consideration of surface operators. The main objective of this thesis is the discussion

of chapter 6 reviewing qq-characters starting from their origin in geometry and gauge theory; the

majority of the document is an explanation of the technical background required to follow this

discussion.
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CHAPTER 2: CHARACTERS AND GEOMETRY

In this chapter we provide mathematical context for some of the structures to appear later within

this thesis, namely relations between representation theory (specifically the theory of characters)

and geometry. The purpose is to provide mathematically inclined readers with some motivation;

for readers interested purely in quantum field theory this chapter may be skipped. As this chapter

is purely motivational, we do not attempt to make completely rigorous or general mathematical

statements.

Characters from Quantum Mechanics

Representation theory is the study of group actions on vector spaces by linear transformations, say

a group G acting on a vector space V (in this thesis we take all vector spaces to be complex). A

natural origin for such a situation within physics comes from quantum mechanics, where G may

be identified with the group of symmetries of a particular quantum mechanical system and V is

identified with the Hilbert space of the system in question. It is often the case that such a quantum

mechanical system arises from quantizing a classical phase space (X ,ω), where X is a symplectic

manifold with symplectic form ω , such that the group G acts on X in a way that preserves ω .

Given a representation V of G, which is realized as a homomorphism ρ : G→GL(V ) where GL(V )

denotes the group of invertible linear maps from V to itself, one constructs the character

χV (g) = trV ρ(g). (2.1)

The character itself defines a homomorphism from the representation ring of G to the ring of

functions on G which are constant along conjugacy classes. If one denotes a set of local Darboux
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coordinates for (X ,ω) schematically by (q, p), then the phase space path integral expresses the

character (at least formally) in terms of the geometry of X :

χV (g) =
∫

γ(1)=g·γ(0)
D p(t)Dq(t)exp

{
i
∫

γ
∗
θ

}
(2.2)

where θ is a locally-defined one-form on X such that ω = dθ , and the integral is evaluated over the

space of maps γ : [0,1]→ X , where γ(t) = (q(t), p(t)), subject to the twisted boundary condition

γ(1) = g · γ(0). In certain situations this path integral can be reduced to a finite-dimensional

integral.

One such situation is when G is a compact simple Lie group, and X = G/T is the so-called com-

plete flag variety of G (T denotes a maximal torus of G). Then X is in fact a Kähler manifold

(in fact a projective algebraic variety), and one can apply the geometric quantization prescription

[63], [33] to quantize it. The cohomology class of the symplectic form ω is the first Chern class of

a G-equivariant holomorphic line bundle L over X–the integrality condition (Bohr-Sommerfeld

condition) in geometric quantization determines the topological isomorphism class of L uniquely

in terms of a weight λ of G, so we denote the line bundle by Lλ . The Borel-Weil-Bott construc-

tion [52], [4] claims that, so long as λ satisfies a positivity condition, the space of holomorphic

sections H0(X ,Lλ ) is an irreducible representation of G with highest weight λ . H0(X ,Lλ ) is also

identified with the Hilbert space in the geometric quantization setup, so in this way one produces

irreducible representations of compact Lie groups by quantizing classical phase spaces.

If Lλ is sufficently positive, then by the Kodaira vanishing theorem [22] the higher cohomologies

vanish, H i(X ,Lλ ) = 0 for i ≥ 1. The character of the representation V = H0(X ,Lλ ) can then

be evaluated using the equivariant version of the Grothendieck-Riemann-Roch formula. Because

characters are constant along conjugacy classes, it is enough to evaluate the character on a generic

element t ∈ T ⊂G. We abuse notation and identify t with the linear transformation representing its
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action on a given vector space, in a hopefully obvious sense; then the T -equivariant index formula

reads

χV (t) = trH0(X ,Lλ )
t = ∑

i≥0
(−1)i trH i(X ,Lλ )

t =
∫

X
tdT (X)chT (Lλ ). (2.3)

tdT and chT denote the T -equivariant Todd class and Chern character, respectively, see for example

[50]. The finite-dimensional integral on the right hand side of the above equation can be interpreted

as a reduction of the phase space path integral using supersymmetric localization1 but we will not

explore this interpretation further.

The objects tdT (X) and chT (Lλ ) define elements of the equivariant cohomology ring H∗T (X).

Then the integral from equation (2.3) may be evaluated by the Atiyah-Bott fixed point formula [1],

and reduces to a sum over the fixed points of T acting on X . It is easy to verify that such fixed

points are in one-to-one correspondence with the elements of the Weyl group of G, denoted by W ,

and if g = exp(u) for u ∈ Lie(G) then the weights of the group action in the holomorphic tangent

space to X at the fixed point corresponding to w ∈W are (w ·α)(u), where α ∈ Lie(G)∗ ranges

over the positive roots of Lie(G) and w ·α denotes the action of the element w ∈W on α . Then

the fixed point formula reads (we use the notation ta := exp(a(u)) for a ∈ Lie(G)∗):

χV (t) = ∑
w∈W

tw·λ

∏α>0(1− t−w·α)
= ∑

w∈W
ε(w)

tw·(λ+ρ)

∏α>0(tα/2− t−α/2)
. (2.4)

This is simply the Weyl character formula, where we denote the Weyl vector by ρ and ε : W →Z2

is the sign homomorphism. We write α > 0 as a shorthand for α being a positive root.

1The problem has no obvious supersymmetry, but it enters upon recalling that the phase space path integration
measure is defined via the Liouville measure on X which is essentially the Pfaffian of ω; upon representing this
Pfaffian via a fermionic path integral this system has a supersymmetry which acts on the fields as the equivariant de
Rham differential of the loop space of X , which is equivariant with respect to the U(1) symmetry rotating the loops.
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Representation Theory from Geometry

The discussion in the previous section has produced characters of highest weight representa-

tions of a compact Lie group G by applying geometric quantization to the complete flag variety

G/T . The vector space furnishing the representation was obtained as a sheaf cohomology group

H0(G/T ,Lλ ), utilizing the complex structure of G/T in an essential way.

In (relatively) recent years, a new method to construct representations of Lie algebras has emerged,

which uses topological cohomology groups as opposed to sheaf cohomology groups, and replaces

the flag varieties G/T by other objects with richer structure. For the purposes of this motivational

section, we do not explain the general theory, rather focusing on the special case of the sl2 Lie

algebra.

Fix an integer w ≥ 1, and consider the smooth complex manifold T ∗Gr(v,w), for some integer v

such that 0 ≤ v ≤ w. Gr(v,w) denotes the Grassmannian of v-planes in Cw, and T ∗ denotes the

holomorphic cotangent bundle. This space is in fact a smooth hyper-Kähler manifold. Consider

the vector space

V =
⊕

0≤v≤w

Hmid(T ∗Gr(v,w)) (2.5)

where Hmid denotes the middle-dimensional topological cohomology. Then it is known (see [36]

for a review) that V is an irreducible representation of sl2 with spin w/2. A key feature of the

construction is that the algebra of sl2 acts by correspondences, that is to say, subvarieties Z ⊂

T ∗Gr(v,w)×T ∗Gr(v′,w) determine linear maps δZ : Hmid(T ∗Gr(v,w))→Hmid(T ∗Gr(v′,w)) via

Poincaré duality and intersection pairing, and suitable choices of Z produce in this way generators

of sl2 acting on V .

The manifolds T ∗Gr(v,w) carry further structure: they are acted on by the group GL(w)×C×,
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where the GL(w) action is induced by the natural one on Cw and C× acts by scaling the fibers

of the cotangent bundle. One can consider another vector space, obtained by taking equivariant

cohomology: ⊕
0≤v≤w

H∗GL(w)×C×(T
∗Gr(v,w)). (2.6)

This vector space is a finite dimensional representation of an infinite-dimensional algebra known

as the Yangian of sl2, denoted by Y (sl2) [58]. There is a further generalization where one considers

the GL(w)×C×-equivariant K-theory of (the disjoint union over v of) T ∗Gr(v,w), which turns out

to be a representation of the so-called quantum affine algebra Uq(ŝl2) [37].

Since the Borel-Weil-Bott method of producing representations has a transparent physical inter-

pretation in terms of a quantization procedure, it is natural to ask how the above kinds of repre-

sentations can be produced using physical ideas. In this thesis, we will present an example of a

physical system where these structures appear, the so-called N = 2 supersymmetric gauge the-

ory with gauge group SU(n) coupled to 2n hypermultiplets in the fundamental representation. In

this construction, the Yangian Y (sl2) appears to be intimately related to deep symmetries of quan-

tum field theory. In fact, the quantum field theory constructions appear to generalize this story by

introducing an additional deformation parameter.

Another (more mathematical) question is if there is an analog of the formula (2.3) expressing the

character of the Borel-Weil-Bott representation in terms of the geometry of G/T via some kind

of equivariant integral (for us, an equivariant integral is an integral of an equivariant cohomology

class). One would like to express the character of the representations explained in this section in

terms of the geometry of T ∗Gr(v,w). Quantum field theory once again produces such a formula.
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CHAPTER 3: MATRIX MODELS AND LIMIT SHAPES

Before embarking on the study of the theories of interest, in this chapter we review certain con-

structions in the study of matrix models, that is, gauge theories in zero dimensions of spacetime.

These models are of great interest in their own right, but for our purposes they will serve as an

inspiration to study certain constructions in four-dimensional gauge theories.

Planar Diagrams and Spectral Curve

Matrix models are interesting toy models of quantum field theory because they are the simplest

theories with nontrivial large-N expansion, which can in turn be solved exactly at large N. The ex-

act solution involves the (classical) algebraic geometry of a Riemann surface known as the spectral

curve that characterizes the limiting behavior of the distribution of eigenvalues of these random

matrices as the size N of the matrix is taken to infinity. We briefly review this set of constructions

here. We provide some detail because a similar structure will be found in the gauge theories of

interest.

The partition function of the matrix model is defined as

Z =
1

volU(N)

∫
[dΦ]e−

1
gs trV (Φ). (3.1)

Here, Φ is an N×N hermitian matrix and V (Φ) is an arbitrary polynomial of some degree d, called

the potential, which also plays the role of the action in this zero-dimensional theory. The action is

clearly invariant under Φ→UΦU† for U ∈U(N), a zero-dimensional gauge transformation. The

parameter gs is known as the string coupling constant. If this were regarded as a zero-dimensional

Yang-Mills theory, the conventional gauge theory coupling constant would be related to it by gs =
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g2
Y M. It also plays the role of Planck’s constant, controlling the semiclassical expansion. The

measure is given by

[dΦ] = 2
N(N−1)

2

N

∏
i=1

dΦii ∏
1≤i< j≤N

d ReΦi jd ImΦi j. (3.2)

The volume of the gauge group simply sets the natural normalization for the gauge theory path

integral. It is straightforward to show that

volU(N) =
(2π)

N(N+1)
2

1! ·2! · ... · (N−1)!
. (3.3)

The free energy F = logZ of the matrix model is given as a sum over connected Feynman diagrams,

with Feynman rules depending on the choice of potential. In ’t Hooft’s double-line notation (see

e.g. [24], [64], [29] for a review), a Feynman graph with h index loops can be regarded as a

topological surface of some genus g with h disks removed, which has Euler characteristic χ =

2−2g−h. Summing over all topological types and denoting by Fg,h the amplitude associated with

the graphs with genus g and h holes, the free energy has an expansion

F(gs,N) = ∑
g≥0

∑
h≥1

g2g−2+h
s Fg,hNh. (3.4)

Following ’t Hooft, one considers the limit N → ∞, gs → 0, with t = gsN fixed. Then the free

energy has an expansion

F(gs, t) = ∑
g≥0

g2g−2
s Fg(t) (3.5)

with

Fg(t) = ∑
h≥1

Fg,hth. (3.6)

The 1/N expansion of the matrix model is naturally expressed as a sum over closed surfaces, with

the N2−2g contribution associated to a surface of genus g. In the N→∞ limit at fixed t, the surfaces
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of genus zero dominate, and their contribution is given as the sum of all planar Feynman diagrams

in the matrix model.

These are statements of general validity in a large class of quantum field theories, and do not pro-

vide much insight into solving the matrix model. We turn our attention to this issue. From equation

(3.1) it is clear that the large N limit at fixed t, in which gs→ 0, corresponds to evaluating the inte-

gral by saddle point approximation. To facilitate this one takes advantage of the U(N) symmetry

to convert the integral over matrices Φ to an integral over the eigenvalues λi, which introduces a

Jacobian factor given by the standard Vandermonde determinant. Equation (3.1) becomes, in these

variables,

Z =
1

N!

∫ dNλ

(2π)N ∏
1≤i< j≤N

(λi−λ j)
2 exp

{
− 1

gs

N

∑
i=1

V (λi)

}
. (3.7)

The integrand may be written as e−
N2
t Seff where we have introduced the effective action or Boltz-

mann weight

Seff(λ1, ...,λN) =
1
N

N

∑
i=1

V (λi)−
gs

N ∑
i< j

log(λi−λ j)
2. (3.8)

Note that the sum of N terms of order 1 is of order N, and recalling gs ∝ 1/N one sees that the

effective action is O(1) as N→ ∞ so the saddle point approximation is applicable to evaluate the

integral. The saddle point method is best thought of as taking place in the complex plane, so the

eigenvalues should be taken as complex and one should search for all possible complex critical

points–this is equivalent to allowing for a deformation of the contour in the integral over λi.

Differentiating (3.8) one finds that the saddle points must satisfy

V ′(λi) = 2gs ∑
j( 6=i)

1
λi−λ j

. (3.9)

This equation describes an equilibrium condition for a Coulomb gas of N eigenvalues in the plane

subject to a one-body potential V (x). Eigenvalues tend to condense near the critical points of V ,
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spreading out into line segments due to the Coulomb repulsion.

To confirm this naive expectation, introduce the so-called resolvent W1(x) via the equation (brack-

ets denote the expectation value with respect to the measure defined via the matrix model path

integral)

gsW1(x) =
〈

gs tr
1

x−Φ

〉
. (3.10)

We denote the planar limit of gsW1 by W0,1, given by

W0,1(x) = gs

N

∑
i=1

1
x−λi

(3.11)

where {λi}i=1,...,N satisfy (3.9). Since gs is O(1/N) in the limit, and the sum is O(N), W0,1(x)

is O(1). By deriving a quadratic equation for W0,1(x), one easily shows that in the large N limit

W0,1(x) is given by

W0,1(x) =
1
2
(V ′(x)−

√
(V ′(x))2−4 f (x)) (3.12)

where the quantity f (x) is a degree d−2 polynomial defined by

f (x) = gs

N

∑
i=1

V ′(x)−V ′(λi)

x−λi
. (3.13)

W0,1(x) has branch point singularities where the polynomial inside the square root vanishes. This

polynomial is of degree 2d, so in the generic situation one finds 2d branch points which may

be joined by a choice of d cuts. This is the so-called multicut solution to the matrix model. To

complete the solution of the model, the d−1 parameters in f (x) must be determined precisely. We

will return to this point momentarily.
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It is useful to define the quantity

−y(x) =
1
2

V ′(x)−W0,1(x). (3.14)

Up to a factor of 2 and a sign this is the effective force felt by a probe eigenvalue at the position x

in the background of the equilibrium configuration. Then y(x) satisfies the algebraic equation

y2− 1
4
(V ′(x))2 + f (x) = 0. (3.15)

This defines an algebraic curve for (x,y) ∈C×C known as the spectral curve because the analytic

structure of the quantity y(x) encodes the spectrum of eigenvalues in the large N limit. Strictly

speaking, the spectral curve of the matrix model is a smooth Riemann surface determined by the

normalization of the possibly singular curve defined above.

The Spectral Curve and its Moduli

The spectral curve is hyperelliptic of genus g ≤ d− 1. In the generic situation, g = d− 1, but

in general the curve may form singularities which decrease the genus by pinching cycles. The

geometric picture coming from the standard procedure of making the Riemann surface for y(x) by

gluing sheets along cuts is shown in Figure 3.1 for the generic situation in a 3-cut matrix model (a

curve of genus 2). Suppose there are d cuts and let Ai be the cycle wrapping the i-th cut clockwise.

Suppose there are Ni eigenvalues at the i-th cut, so that the parameter t i = gsNi is finite as N→ ∞.

These parameters are not independent, but satisfy the constraint ∑i t i = t, where t is regarded as a

12



Figure 3.1: The A and B cycles in a 3-cut matrix model. The line segments denote the cuts of y,
and the plane shown is the complex x-plane. The dotted lines on the B-cycles denote the passage
to the other sheet, corresponding to the other branch of the square root appearing in y(x). The
surface on the right comes from gluing the two sheets together. Note the spectral curve is naturally
noncompact because y has poles at infinity, but by adding two points at infinity it is compactified
to a hyperelliptic curve of genus 2. The noncompact version is slightly more natural because the
associated basis of relative homology cycles is better suited to the matrix model problem.

fixed external parameter. Then one has

t i =
1

2πi

∮
Ai

y(x)dx (3.16)

∂F0

∂ t i =
∫

Bi

y(x)dx. (3.17)

The cycle Bi is noncompact and is chosen to be canonically paired with the A-cycle, running from

the cut to a point at infinity. F0 is the planar free energy of the matrix model. We are not precise

with the signs, 2π factors, etc in these equations. These type of equations are known as special

geometry relations and are ubiquitous in string theory and supersymmetric gauge theory [8], [51].

The parameters t i are known as the filling fractions and there are d− 1 independent ones. Fixing

them to prescribed values determines the form of f (x) via the above relation.

The special geometry relations determine the solution of the matrix model–F0 is the sum of all
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planar Feynman diagrams–purely in terms of the geometry of the spectral curve. These equations

are closely analogous to the Seiberg-Witten geometry of N = 2 supersymmetric gauge theories,

and it will be shown in a later chapter that this analogy is quite literal.

Reformulation: Loop Equations

With the hope of generalizing some of these constructions to more general quantum field theo-

ries, we reformulate this discussion in terms of Dyson-Schwinger equations for the matrix model

known as loop equations. As usual with Dyson-Schwinger equations, the loop equations arise by

integration by parts in the path integral. One begins with (implied sum on i, j)

0 =
∫
[dΦ]

∂

∂ Φi j

(
e−

1
gs trV (Φ)(Φµ)i j

)
. (3.18)

One can then sum this relation over µ weighted by x−µ−1 to obtain the following equation for the

generating function W1(x) introduced previously:

g2
s

〈(
tr

1
x−Φ

)2〉
= gsV ′(x)W1(x)− f (x). (3.19)

This is known as the loop equation. The object f (x) is now defined by

f (x) = gs

〈
tr

V ′(x)−V ′(Φ)

x−Φ

〉
. (3.20)

In the planar limit this reduces to the definition of the previous section. If one introduces the

operator

Y (x) = gs tr
( 1

x−Φ

)
− 1

2
V ′(x) (3.21)
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then the loop equation may be interpreted as the statement that 〈Y (x)2〉 is a polynomial in x. In the

planar limit, due to large N factorization one has 〈Y (x)2〉 → 〈Y (x)〉2 and in this way one recovers

the spectral curve of the previous section. It is important to note that the loop equations hold

independent of any large N limit, and give rise to the spectral curve only as an effective, emergent

object in this limit. The loop equations can also be extended to an infinite family of equations

which allow one to recursively determine the 1/N2 corrections to the matrix model to any desired

order of the large N expansion via a framework known as the topological recursion, but we will

not elaborate on this further–see for example [14], [16].

The point of this analysis is that the Dyson-Schwinger equations of the matrix model can be recast

using an operator Y (x) which has poles when x is an eigenvalue of the random matrix Φ, and

organized as the statement that 〈Y (x)2〉 has no poles in x.

Application to Random Partitions

The localization technique for supersymmetric gauge theories, to be explained in subsequent chap-

ters, reduces partition functions of these theories to sums over discrete objects known as Young

diagrams or partitions. In this section we illustrate that these sums over partitions can sometimes

be rewritten as the partition function of a matrix model, which allows one to directly apply the

machinery developed thus far to analyze the limiting behavior of such sums. This will be applied

in later chapters to arrive at the Seiberg-Witten geometry of a large class of gauge theories.

A partition λ is defined as a nonincreasing sequence of positive integers λ1 ≥ λ2 ≥ ... ≥ λN ≥ 0,

and can be represented by a Young diagram. The quantity |λ | is the number of boxes in the Young

diagram, and is given by

|λ |= ∑
i

λi. (3.22)
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The length of partition `(λ ) is the number of nonzero integers in the sequence; we consider parti-

tions such that `(λ )≤N, and take N→∞ at the end. It is customary to define the related sequence

hi = λi− i+N, which satisfies h1 > h2 > ... > hN ≥ 0. Geometrically, if one puts the Young di-

agram at 45◦ to horizontal, the hi represent the x-coordinates of the outermost boxes (see Figure

3.2).

Figure 3.2: Young diagram corresponding to partition λ = (8,6,5,3,2,1,1), drawn in the “Russian
convention" along the diagonal. The hi that appear in the figure differ from the hi in the problem
statement by some trivial translation by N − 1

2 . The piecewise linear curve in bold along the
boundary of the diagram is known as the profile of the partition λ . In the limit of large partitions,
after some rescaling it converges to a more general (no longer piecewise linear) Lipschitz function
on an interval.

The partitions with k boxes index the irreducible representations of the symmetric group Sk [17].

The partition λ corresponding to the sequence {hi}i=1,...,N in turn corresponds to an irreducible

representation of dimension

dimλ = |λ |!
∏i< j(hi−h j)

∏i hi!
. (3.23)
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It is a standard result, valid for any finite group G, that

|G|= ∑
R
(dimR)2 (3.24)

where |G| denotes the number of elements of G and R runs over the set of irreducible representa-

tions of G. Therefore the quantity

P(λ ) =
(dimλ )2

k!
(3.25)

defines a normalized measure on the set of partitions with k boxes, known as the Plancherel mea-

sure. Consider the partition function for the “Poissonized" Plancherel measure on partitions of

length at most N:

Z(gs,N) =
∞

∑
k=0

g−2k
s
k! ∑

|λ |=k,`(λ )≤N

P(λ ). (3.26)

It is clear that the N → ∞ limit of Z with fixed gs is simply e1/g2
s , since the Plancherel measure

is normalized. In order to find something nontrivial, one must consider a limit with N → ∞ and

gs→ 0 simultaneously, motivating the analogy with matrix models.

Consider the matrix model-like partition function (expressed as an eigenvalue integral)

Z(gs,N) =
1

N!(2πi)N

∮
γN

dNx∏
i< j

(xi− x j)
2

N

∏
i=1

ϕ

( xi

gs

)
(3.27)

where

ϕ(x) =
Γ(−x)

Γ(x+ 1)
eiπxg−2x−1

s . (3.28)

The integral above is taken for each eigenvalue xi lying along a contour γ which encircles the

positive real axis. The integral can therefore be evaluated by residues. Note that Γ(x + 1) is

nowhere-vanishing on the positive real axis, so the only poles of ϕ(x) come from the poles of
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Γ(−x). These occur at each nonnegative integer n≥ 0, and we recall the asymptotics

Γ(−n+ ε) ∼ (−1)n

n!
1
ε

(3.29)

for ε → 0. Evaluating the integral by residues one finds

Z(gs,N) =
gN(N−1)

s

N! ∑
hi≥0

∏
i< j

(hi−h j)
2
∏

i

g−2hi
s

(hi!)2

= gN2−N
s ∑

h1>h2>...>hN≥0

∏i< j(hi−h j)2

∏i(hi!)2 g−2∑i hi
s .

(3.30)

To go from the first to second line, we have noted that we have invariance under the symmetric

group SN and used this to choose an ordering of the h’s so that the sum coincides with a sum over

partitions–note that terms with hi = h j with i 6= j do not contribute because of the Vandermonde

determinant. Now we recall hi = λi− i+N, so

∑
i

hi = |λ |−
N(N + 1)

2
+N2 = |λ |+ N(N−1)

2
. (3.31)

The integral is then

Z(gs,N) = ∑
`(λ )≤N

g−2|λ |
s

∏i< j(hi−h j)2

∏i(hi!)2

= ∑
`(λ )≤N

g−2|λ |
s

|λ |!
P(λ ).

(3.32)

This reproduces the partition function defined via the Poissonized Plancherel measure. The matrix

integral representation (3.27) provides a method for extracting the interesting asymptotics of the

Plancherel measure.

To determine more precisely the scaling limit encoding these interesting asymptotics, note that for
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large N, Z is a sum of terms

g−2k
s
k!

= exp(−2k loggs− logk!). (3.33)

To be accessible via the matrix model, this sum should be dominated by a saddle point as gs→ 0.

Clearly, for the terms to balance k must be large and we may use the Stirling formula logk! ∼

k logk− k, and we see a saddle point exists provided

k ∼ 1
g2

s
. (3.34)

Recalling that in terms of the partition λ , k = |λ |, which is the area of the region enclosed by the

Young diagram (in units where the boxes have unit length), we see that the partition is becoming

large with an area that grows like g−2
s for gs→ 0. This means that its length goes like `(λ )∼ 1/gs,

so the large N ’t Hooft asymptotics of the matrix model captures the regime where the sum is

dominated by large Young diagrams, and the saddle point dominating the sum is referred to as the

limit shape. The ‘t Hooft parameter t = gsN just sets the units of length of the limiting partition. It

may be set to any convenient value. We will choose such a value shortly. To find the precise form

of the limit shape, we evaluate the matrix model for Z(gs,N) in the ’t Hooft large N limit.

Note that the potential for the matrix model is given by ∑i logϕ

(
xi
gs

)
, and we only care about the

leading piece as gs→ 0. Since

ϕ(x) =
Γ(−x)

Γ(x+ 1)
eiπxg−2x−1

s (3.35)

the gs→ 0 behavior can be obtained from the Stirling formula:

Γ(x+ 1) ∼ xxe−x
√

2πx (3.36)

19



for x→ ∞. Applying this formula, one finds

ϕ

( x
gs

)
∼ exp

{
−2x

gs
logx+

2x
gs

+ . . .

}
(3.37)

where . . . denotes terms less singular in gs. This means that the gs→ 0 asymptotics of Z is con-

trolled by the matrix model ∫
dNx∏

i< j
(xi− x j)

2e−
1
gs ∑i V (xi) (3.38)

where the potential is given by V (x) = 2x logx− 2x, so that V ′(x) = 2logx. To solve the matrix

model, we introduce the planar resolvent, expressed in terms of an effective eigenvalue density (a

continuous function with compact support) ρ(y) as

W0,1(x) = gs ∑
i

1
x− xi

→ t
∫

dy
ρ(y)
x− y

. (3.39)

Here, {xi}i=1,...,N denotes a set of xi solving the saddle point equation. We have also indicated the

large N limit of this expression, where the eigenvalues coalesce into a cut with some density ρ(x)

that will be presently determined. The resolvent clearly has asymptotics W0,1(x) ∼ t
x for x→ ∞,

and is analytic in the x-plane with a branch cut singularity along the support of the eigenvalue

density.

The saddle point equation may be expressed in terms of the behavior of the resolvent across its cut

as (see for example [29], [15])

W0,1(x+ i0+)+W0,1(x+ i0−) = 2logx. (3.40)

In this equation, x must be taken to lie along a cut of W0,1. The potential V (x) has a unique

minimum at x = 1, so we expect a one-cut solution. To solve this equation, we note that if V (x)

were a polynomial, the above equation would state that W0,1(x) was single-valued on a two-sheeted
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ramified covering of the x-plane, so to this end we introduce a coordinate z on such a cover via the

Joukowsky map:

x(z) = α +
β

2

(
z+

1
z

)
. (3.41)

The sheets of the covering are exchanged by the map z 7→ 1/z. The parameters α and β will be

determined by the solution of the saddle point equation; they characterize the location of the cut

occupied by the eigenvalues. In terms of z, W0,1(z) ∼ 2t
β z as z→ ∞. An obvious ansatz for W0,1(z)

with the correct asymptotics and singular behavior is

W0,1(z) = 2log
(

1+
t

β z

)
. (3.42)

The saddle point equation (3.40) now determines α and β–substituting the ansatz yields:

α = 1+
t2

β 2

β

2
=

t
β

.
(3.43)

These equations have the solution β =
√

2t, α = 1+ t
2 , and from this we determine that the cut

has endpoints a = 1+ t
2 −
√

2t and b = 1+ t
2 +
√

2t. This completes the solution of the matrix

model; for definiteness the resolvent is given as

W0,1(z) = 2log
(

1+

√
t
2

1
z

)
. (3.44)

To find the limit shape of the large partition, recall that the eigenvalues xi are related to the variables

hi by xi = gshi. The profile of the partition as a function of the index i is given by λi = hi+ i−N, and

we want the rescaled version λ̃i = xi+gsi−t. To make sense of gsi we note the following: the index

i as a function of x is simply the number of hi, or equivalently the number of eigenvalues, which are

to the right of that given value of x (the reader is encouraged to revisit Figure 3.2 if this is unclear).
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Since, in terms of the individual eigenvalues, the density is given by ρ(x) = 1
N ∑i δ (x− xi), the

index i(x) may be calculated as

i(x) = N
∫ b

x
ρ(x′)dx′ (3.45)

where b is the upper endpoint of the cut. This continues to hold true in the gs→ 0 limit, and one

has for λ̃i:

λ̃i(x) = x− t + t
∫ b

x
ρ(x′)dx′. (3.46)

In principle, the relation i(x) could be inverted and then the above equation could be used to plot λ

as a function of gsi. However, it is much more illuminating to consider the partition rotated by π

4 ,

which is given by λ̃i+gsi plotted against λ̃i−gsi–to this end, introduce the variable u = λ̃i−gsi =

x− t and consider plotting

λ̃i + gsi = x− t + 2t
∫ b

x
ρ(x′)dx′ (3.47)

as a function of u. This will give the limit profile f (u), that is f (u) = λ̃i(u)+ gsi(u).

To finish the calculation and determine f (u) in closed form, all that remains is to determine the

eigenvalue density ρ(x). ρ(x) is given by the discontinuity in W0,1(x) across its cut in the x-plane,

so we must first determine W0,1 as a function of x and then calculate its discontinuity.

The first step is simple, as one simply inverts the map x(z) above to obtain z(x):

1
z
=

1
β
(x−α−

√
(x−α)2−β 2) (3.48)

so we find

W0,1(x) = 2log
(

1+
1
2

(
x−1− t

2
−
√(

x−1− t
2

)2
−2t

))
. (3.49)

Recall that t plays essentially no role in the problem other than setting an overall scale, so we may
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set it to a convenient value, say t = 2, so that the resolvent simplifies to

W0,1(x) = 2log
(x

2
− 1

2

√
x2−4x

)
. (3.50)

With this value of t, the cut is at x ∈ [0,4] ⊂R. We may compute the eigenvalue density from the

discontinuity as

ρ(x) =
1
π

Imlog
(x

2
+

i
2

√
4x− x2

)
=

1
π

arctan
(√4x− x2

x

)
=

1
π

arcsin
(√4− x

2

)
. (3.51)

To further simplify this we can use some trigonometric identities

ρ(x) =
1
π

arcsin
(√4− x

2

)
=

1
2π

arccos
(

cos
(

2arcsin
(√4− x

2

)))
=

1
2π

arccos
(x−2

2

)
=

1
4
− 1

2π
arcsin

(x−2
2

)
.

(3.52)

From this we easily compute

gsi(x) = 2
∫ 4

x
ρ(x′)dx′ =

2− x
2

+
x−2

π
arcsin

(x−2
2

)
+

1
π

√
4− (x−2)2. (3.53)

From this we conclude, recalling u = x−2 and f (u) = u+ 2gsi(u):

f (u) =
2
π

(√
4−u2 + uarcsin

(u
2

))
. (3.54)

This is the famous Logan-Shepp-Vershik-Kerov profile [27], [59]. The point of relevance of this

construction is that sums over random partitions with Plancherel or Plancherel-like measures tend

to be dominated by limit shapes, which are large partitions that can be characterized by their limit-
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ing profile function. This profile function gives rise to a Riemann surface, in this construction it is

simply the spectral curve of the underlying matrix model. In later chapters this will be understood

as the mechanism producing Seiberg-Witten geometry of gauge theories.
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CHAPTER 4: SUPERSYMMETRIC GAUGE THEORIES AND

TOPOLOGICAL TWIST

We now define the gauge theories to be studied for the remainder of this thesis. They have N =

2 supersymmetry in four dimensions, that is, eight real supercharges. Supersymmetric theories

are considered solely for convenience because it is possible to perform exact computations in

these theories. The present chapter will deal primarily with formal aspects of these theories and

their Lagrangian descriptions, while the subsequent chapter will explain how to solve them using

the localization technique. We begin with pure N = 2 supersymmetric Yang-Mills theory, then

explain the topological twisting procedure, and then explain how to produce a large class of N = 2

theories by taking orbifold projections of the N = 4 supersymmetric Yang-Mills theory. We

neglect factors of 2pi, i etc in many of the formulas in this chapter because the explicit forms of the

Lagrangians are not relevant for the subsequent analysis; the purpose of this chapter is merely to

provide background for readers who are familiar with quantum field theory but less familiar with

the intricacies of supersymmetry. We do assume a basic familiarity with supersymmetry, for an

introduction to see for example [53], [7].

Pure N = 2 super-Yang-Mills

The simplest way to construct supersymmetric gauge theories with extended supersymmetry is to

start with a minimal supersymmetric theory in a higher dimension, and dimensionally reduce (i.e.

compactify on a torus of zero size) to the dimension of interest.

The minimal supersymmetric Yang-Mills Lagrangian may be written as (the following discussion
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takes formulas from [7])

L = − 1
4g2

Y M
trFµνFµν +

i
2g2

Y M
trλ

aΓµ

abDµλ
b. (4.1)

Here, λ a denotes a fermionic field in the minimal real spinor representation S of the group Spin(1,d−

1) of spacetime symmetries in dimension d and in the adjoint representation of the gauge group,

which we take to be SU(n) for simplicity. Γµ

ab denote the coefficients of the essentially unique

symmetric Spin(1,d−1)-equivariant morphism of representations Γ : S⊗S→V , where V denotes

the defining representation of SO(1,d−1). Fµν = ∂µAν −∂νAµ +[Aµ ,Aν ] is the field strength of

the gauge field Aµ . tr is taken over the gauge indices, and Dµ denotes the covariant derivative in

the adjoint representation.

This Lagrangian is supersymmetric in d = 3,4,6,10 with supersymmetry variations parameterized

by a spinor ηa:

δAµ = η
aΓµ

abλ
b

δλ
a =

1
2

η
bΓ̃µacΓν

cbFµν .
(4.2)

The objects Γ̃µac are the coefficients of the dual morphism Γ̃ : S∗⊗ S∗ → V , which satisfy the

Clifford relation Γµ
acΓ̃νcb +Γν

acΓ̃µcb = 2gµνδ b
a , where gµν is the inverse of the Minkowski metric.

Associated to this symmetry is a conserved charge Qa which transforms as a spinor.

In six dimensions, the minimal real spinor has eight real degrees of freedom, and therefore the

dimensional reduction of the above theory will produce a theory in four dimensions with eight

supercharges, that is, N = 2 supersymmetry, which is simply N = 2 supersymmetric Yang-Mills

theory.

There is a somewhat subtle point when dealing with real spinors in d = 5+1, owing to the fact that
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the irreducible complex spinor representations of Spin(1,5) are pseudoreal. The reality condition

on fermions can only be imposed after doubling the fields, that is to say the fermions λ in d = 5+1

carry indices as λ aI , where a is the index for the (say) left-handed chiral spinor representation,

ranging from a = 1, . . . ,4 and I = 1,2. The reality condition then reads ( ja
b are the coefficients of

the quaternionic structure of the spinor representation)

(λ aI)∗ = ja
bεIJλ

bJ . (4.3)

Note that this equation is Spin(1,5)×SU(2)-equivariant, so that I can be thought of as an SU(2)

index. This is the so-called symplectic Majorana condition. It is necessary to consider the sym-

plectic Majorana spinors in what follows since the general supersymmetric action discussed above

is written for a minimal real spinor.

Upon reduction to d = 4, the six-dimensional supercharge descends to a pair QI
α of four-dimensional

supercharges, such that (QI
α)

† =Q†
Iα̇

(using the standard dotted/undotted notation for four-dimensional

chiral spinors). The six-dimensional supersymmetry algebra reduces to the N = 2 supersymme-

try algebra in four dimensions. The momentum P4 + iP5 descends to the central charge Z of four-

dimensional supersymmetry, and the BPS states in four dimensions correspond to the massless

states in six dimensions.

With the details of the fermionic fields addressed, the field content of the pure N = 2 super-

symmetric gauge theory is simple to analyze. The six dimensional gauge field AM reduces to a

four-dimensional gauge field Aµ and two scalars A4,A5, which may be combined into a single

complex scalar φ in the adjoint representation. The six-dimensional spinor λ aI reduces to a pair

of four-dimensional Weyl fermions λ αI , also in the adjoint representation. Their adjoints λ̄ α̇
I are

right-handed Weyl fermions. The group SU(2) acting on the I index is a global symmetry of

N = 2 super-Yang-Mills theory known as R-symmetry, which we denote by SU(2)I . The field
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content is a representation of N = 2 supersymmetry known as the vector multiplet.

For completeness, the Lagrangian of the N = 2 supersymmetric Yang-Mills theory is (ignoring

irrelevant factors including the coupling constant g2
Y M; interested readers may perform the dimen-

sional reduction explicitly to find the factors):

L ∼−1
4

trFµνFµν + trDµφ
†Dµ

φ − tr
[
φ ,φ †

]2

− i tr λ̄
β̇

I σ
µ

αβ̇
Dµλ

αI + iεαβ εIJ trλ
αI
[
φ

†,λ βJ
]
+ c.c.

(4.4)

The objects σ
µ

αβ̇
are well-known, they are simply the gamma matrices acting on chiral spinors. In

addition to this piece, the well-known θ term should be added to the action, most conveniently

expressed as
θ

8π2

∫
tr(FA∧FA) (4.5)

where FA = dA + A∧ A is the 2-form representing the field strength of the gauge field A. In

supersymmetric theories, it is useful to introduce the complexified coupling

τ =
θ

2π
+

4πi
g2

Y M
. (4.6)

Many quantities of interest will depend holomorphically on τ .

Topological Twist

The key to performing exact calculations in N = 2 supersymmetric theories is the topological

twisting procedure introduced by Witten [60]. The procedure of topological twisting can be moti-

vated by the desire to define a supersymmetric theory on a curved spacetime background–without

modification, the theory will be supersymmetric on a curved manifold only if the manifold admits
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covariantly constant spinors. The procedure of twisting alters the way that the theory couples to

gravity so that there is a scalar supercharge on an arbitrary curved background.

Concretely, the way this is done is as follows. Coupling to gravity can be thought of as gauging

the Lorentz group. The Lorentz group for a Euclidean theory is Spin(4) = SU(2)L×SU(2)R. For

N = 2 super-Yang-Mills, we also have the R-symmetry SU(2)I and may consider the action of

the full group SU(2)L×SU(2)R×SU(2)I .

The twisted theory is produced by defining SU(2)′R to be the diagonal subgroup of SU(2)R×

SU(2)I and treating the group SU(2)L×SU(2)′R as the “Lorentz group" of the theory. Practically,

this means replacing the index I of R-symmetry by α̇ of SU(2)R. In flat space, where the Lorentz

group is not gauged, this is just a change in notation that reorganizes the same field content. How-

ever, the new organization is quite powerful for exact calculations.

It is useful to understand how the various fields in the theory behave after twisting. The left-handed

fermions λ αI are replaced with the object λ αβ̇ , which is an object in the (1
2 , 1

2) representation of

SU(2)×SU(2), in other words a four-vector ψµ .

Likewise, the right-handed fermions λ̄α̇I become an object in the (0, 1
2)⊗ (0, 1

2) = (0,0)⊕ (0,1)

representation of SU(2)×SU(2), which is the same as a scalar η together with a self-dual1 two-

form χ+
µν . Note that the twisting procedure takes place in Euclidean signature, where all fields are

naturally complex and the reality conditions of Minkowski signature must be relaxed–thus, λ̄α̇I is

no longer the complex conjugate of a left-handed fermionic field, it is regarded as an independent

entity.

1Depending on one’s convention for the Lorentz group, self-dual may be replaced with anti-self-dual here. The
two choices are related by parity, which exchanges SU(2)L and SU(2)R.
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Similarly, the supercharges of the theory are reorganized as

QI
α , Q†

α̇I → Q, Gµ , Q+
µν . (4.7)

The scalar supercharge generates a fermionic symmetry δ of the field space which satisfies δ 2 = 0

up to gauge transformation. The action of the theory may be written as

S = (topological term)+ δ (...). (4.8)

Treating δ as an exterior derivative on field space, by usual integration by parts arguments the

δ -exact terms decouple. This fact can be used to show that the correlation functions of the twisted

theory on an arbitrary four-manifold produce the so-called Donaldson invariants [60], [9].

The supersymmetry of the twisted theory is most conveniently represented by introducing an aux-

iliary self-dual two-form field H+, in which case the supersymmetry variations under the scalar

supercharge δ take the form (all fields are written in differential forms notation in these equations,

and we replace the notation φ † with φ̄ ):

δA = ψ δφ = 0 δ χ
+ = H+

δψ = DAφ δ φ̄ = η δH+ =
[
χ
+,φ

]
(4.9)

δη = [φ̄ ,φ ]

The action of the theory may be rewritten in the twisted formalism as (we are again imprecise with
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numerical factors)

S =− 2πiτ
8π2

∫
R4

trFA∧FA

+ δ

(∫
R4
− trψ ∧?DAφ̄ + trη ? [φ̄ ,φ ]− tr χ

+∧
(

F+
A −

g2
Y M
8

H+
))

.
(4.10)

Note that all metric dependence in the action is δ -exact and hence decouples, which is responsible

for the name topological twist. In this equation, F+
A denotes the self-dual part of the two-form

FA. After integrating out the auxiliary field H+, this action agrees with that above for N = 2

super-Yang-Mills when both theories are defined in flat space, up to the changes in notation due to

the twisting.

Consulting the discussion in, e.g. [5] one recognizes the supersymmetry variation δ as represent-

ing the equivariant de Rham differential on the space A of all connections on an SU(n) principal

bundle over R4, equivariant with respect to the infinite-dimensional group G of gauge transfor-

mations (automorphisms of the principal bundle). The fields are organized into multiplets of the

δ -symmetry as (A,ψ), (φ , φ̄ ,η), and (χ+,H+), and one recognizes the δ -exact piece of the action

as essentially representing a supersymmetric delta function supported on the locus F+
A = 0, mod-

ulo the action of the group G . This is one way to define the moduli space of instantons in gauge

theory, which is actually a finite dimensional space (strictly speaking this is true when gauge fields

are considered within a fixed connected component of A , that is, gauge fields have fixed second

Chern class or instanton charge), so in this way the path integral reduces to a finite-dimensional

integral.

Introduce the space

M (k,n) = {A ∈A |F+
A = 0, c2 = k}/G∞ (4.11)

where c2 =
1

8π2

∫
tr(FA∧FA) denotes the second Chern class of the gauge field configuration. The
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quotient is with respect to the group G∞ of gauge transformations which approach 1 at infinity.

This space is known as the moduli space of framed instantons. For an elementary introduction to

instantons see [53].

We address one subtle point closely related to the framing of the instantons. Strictly speaking,

DAφ̄ is a generator of a transformation in G∞ only if φ̄ → 0 at infinity. However, this is not

necessarily the case. As is evident from δ (trη [φ̄ ,φ ]) = tr [φ , φ̄ ]2 + ..., for the physical choice of

integration contour over the scalar fields in the path integral with φ̄ = φ † the vacua of the theory

are at
[
φ ,φ †] = 0, which are the set of φ diagonalizable by a gauge transformation (recall the

gauge group is SU(n) gauge theory for some n). Without loss of generality the asymptotic value

of φ is set to φ∞ = diag(a1, ...,an) where aα are complex numbers, α = 1, ...,n which sum to zero.

It is only the nonzero modes of φ which are integrated over in the path integral–the aα stay as

fixed parameters describing the vacuum of the theory (more mathematically, they characterize a

boundary condition on the fields integrated over in the path integral). The notation a = (a1, ...,an)

is convenient. These parameters are also referred to as Coulomb moduli. This means that the path

integral represents a supersymmetric delta function along F+
A = 0, and implements a quotient only

by the group G∞. The zero modes of the scalar field become equivariant parameters (in the sense

of equivariant cohomology [56], [23]) for the group G of constant gauge transformations acting

nontrivially on M (k,n).

The path integral therefore reduces to an integral over the space M (k,n), where the integrand is

determined by the surviving zero modes of the fields (introduce the notation q = e2πiτ and recall

that one must sum over all instanton numbers–note F+
A = 0 has no solutions for k negative):

Z(a;q) = ∑
k≥0

qk
∫
M (k,n)

e−δ (g(V (φ̄∞),ψ)). (4.12)

In this equation, g is the metric on M (k,n) inherited from the field theory action (which is the
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same as the one inherited from the natural metric on A ), V (φ̄∞) is the vector field on M (k,n)

descending from DAφ̄∞ = [A, φ̄∞] that generates constant gauge transformations, and finally ψ is

the zero mode of the field of the same name that has survived the projections. This reduces the

problem of computing the gauge theory partition function to a problem of integrating over the

moduli space of instantons. In the next chapter, the evaluation of these integrals will be explained.

ADE Quiver Gauge Theories

In this section, we briefly sketch a construction of a large class of N = 2 supersymmetric gauge

theories which have their origin in N = 4 supersymmetric Yang-Mills theory, known as ADE

quiver gauge theories. In fact, the natural home of these constructions is within string theory.

The starting point for the construction is the N = 4 supersymmetric Yang-Mills theory, which is

obtained from dimensional reduction of the minimal supersymmetric theory in d = 9+ 1 to four

dimensions. To analyze the field content, one restricts to the subgroup Spin(1,3)× Spin(6) ⊂

Spin(1,9). Since Spin(6) ∼= SU(4), the theory has an SU(4) global symmetry, which is identified

as the R-symmetry of N = 4 supersymmetry. The supercharges carry indices as Qi
α , where i =

1, . . . ,4 is an index for SU(4).

The vector multiplet for N = 4 supersymmetry is obtained by reduction of the vector multiplet

from 9+ 1 dimensions. The ten-dimensional gauge field becomes a four dimensional gauge field

A and six scalars which transform as the vector of Spin(6), so the scalars organize into a two-

index antisymmetric tensor of SU(4) denoted φ i j. The fermionic content of the theory consists of

four Weyl fermions λ αi transforming as the fundamental of SU(4). All fields are in the adjoint

representation of the gauge group, which we take to be U(n) for simplicity.

To reduce the supersymmetry, one chooses a discrete subgroup Γ⊂ SU(4) and restricts to only the
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Γ-invariant fields. It is useful to rescale the rank of the gauge group to consider the U(n|Γ|) gauge

theory. The centralizer of Γ inside of SU(4) dictates how much supersymmetry is preserved. Fix

a subgroup Γ⊂ SU(2)⊂ SU(2)×SU(2)⊂ SU(4). This choice will preserve SU(2) R-symmetry

and therefore produce an N = 2 supersymmetric theory.

Discrete subgroups Γ ⊂ SU(2) have an ADE classification (for more detail on some of what fol-

lows, see for example [46]), so the resulting quiver gauge theories are referred to as the ADE quiver

gauge theories. To obtain any interesting structure, the discrete symmetry Γ must be related to the

gauge symmetry. A canonical way to do this is to realize the gauge group U(n|Γ|) as acting on

the vector space Cn⊗C|Γ|, and interpret the second factor as the regular representation of Γ. The

regular representation decomposes into the irreducible representations of Γ as

C|Γ| =
⊕
i∈Γ∨

Cai⊗Ri (4.13)

where ai = dimRi is the dimension of the irreducible representation Ri, and Γ∨ denotes the set

of irreducible representations of Γ. It is also important to note that, if T denotes the defining

representation of SU(2) regarded as a representation of Γ, then

T ⊗Ri =
⊕
j∈Γ∨

CAi j ⊗R j (4.14)

where Ai j is the adjacency matrix of the corresponding ADE affine Dynkin graph, where the ADE

type is determined by Γ. The main case we consider in future sections is Γ = Zr+1, which leads

to the affine Dynkin graph of type Âr. In what follows, we use in an essential way the McKay

correspondence, which (among other things) identifies the set Γ∨ with the set of vertices of the

affine Dynkin graph of the same ADE type as Γ.

With these notations, the fields decompose as follows. The gauge field Aµ transforms trivially un-
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der R-symmetry, so the projection onto the Γ-invariant part (i.e. the restriction to EndΓ(C
n⊗C|Γ|))

produces a set of gauge fields Ai
µ , where i ∈ Γ∨ runs over the set of irreducible representations

of Γ, or the vertices of the corresponding affine Dynkin graph. The gauge group is reduced to

∏i∈Γ∨U(nai), so there is one unitary gauge group factor for each vertex of the corresponding

Dynkin graph.

The scalars transform nontrivially under R-symmetry. Introduce indices (A, I), both taking the

values 1,2, associated to the subgroup SU(2)× SU(2) ⊂ SU(4). The index A will be “eaten" by

the orbifold projection, while the index I survives as the SU(2) R-symmetry index in the resulting

theory. Then the scalars φ i j decompose under SU(2)× SU(2) as two real scalars transforming

trivially, and a complex field QAI which inherits the reality condition (QAI)
† = εABε IJQBJ from

the fact that φ i j is in a real representation of SU(4). The two real scalars may be combined into a

complex scalar Φ, which decomposes exactly as the gauge field to a set Φi of scalars labeled by

the vertices of the corresponding ADE Dynkin graph. These are simply the scalars of the N = 2

vector multiplets built on the gauge fields Ai
µ .

The other scalars decompose according to (in fact there is an SU(2) R-symmetry doublet worth

of each field, but we suppress the index I because it is acted upon trivially by Γ, alternatively the

I = 2 fields are essentially the complex conjugates of the I = 1 fields due to the reality condition):

HomΓ(C
n⊗C|Γ|,T ⊗Cn⊗C|Γ|) =

⊕
i, j,k

HomΓ(C
nai⊗Ri,Cna jA jk⊗Rk)

=
⊕
i, j

Hom(Cnai ,Cna j)⊗CAi j .
(4.15)

We have used the fact that Ai j is a symmetric matrix. Under the McKay correspondence, the

nonzero entries of A correspond to the edges of the affine ADE Dynkin graph, such that Ai j con-

nects vertices i and j. Call the graph γ , its set of edges Edgeγ , and its set of vertices Vertγ . Orient
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the edges such that each edge e has a source s(e) = i ∈Vertγ and target t(e) = j ∈Vertγ . Then one

has, for the decompositon of QA1:

⊕
e∈Edgeγ

Hom(Cnas(e) ,Cnat(e))⊕Hom(Cnat(e) ,Cnas(e)). (4.16)

Thus, to each edge of the Dynkin graph one has a pair of complex scalars (Qe, Q̃e), transforming

in dual bi-fundamental representations of the gauge group–if Qe connects vertices i and j, and

the graph is oriented such that t(e) = j, then Qe is in the fundamental of U(na j) and the anti-

fundamental of U(nai), and vice versa for Q̃e. The reality condition on the original set of Q’s

implies that the pair  Qe

−Q̃†
e

 (4.17)

transforms in the doublet of SU(2) R-symmetry. This is the bosonic field content of the so-called

N = 2 hypermultiplet, which plays the role of a matter field in the N = 2 supersymmetric con-

text.

The fermions are simple to analyze now that these cases have been worked out. The fundamental

of SU(4) decomposes into the direct sum of the fundamental of each SU(2) factor of SU(2)×

SU(2)⊂ SU(4), so the fermions transform under SU(2)×SU(2) as λ αA, and λ αI . The fields λ αI ,

after orbifold projection become a set λ αI
i , i ∈ Vertγ of vector multiplet fermions, transforming as

the doublet of SU(2) R-symmetry. The fields λ αA decompose as the scalars to pairs of fields

(ψα
e , ψ̃α

e ) for each edge of the Dynkin graph, transforming in dual bi-fundamental representations

of the gauge group. These fields are the hypermultiplet fermions, and they are acted on trivially by

R-symmetry.

The Lagrangian for N = 4 supersymmetric Yang-Mills theory is, again neglecting numerical
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factors,

L ∼−1
4

trFµνFµν + εi jkl trDµφ
i jDµ

φ
kl− εi jklεmnpq tr

[
φ

i j,φ mn][
φ

kl ,φ pq
]

− i tr λ̄
β̇

i σ
µ

αβ̇
Dµλ

αi + εαβ εi jkl trλ
αi
[
φ

jk,λ β l
]
+ c.c.

(4.18)

The action for the ADE quiver gauge theories can be obtained by inserting the Γ-invariant fields

into this expression, but it is not particularly illuminating. Suffice it to say that there are now

complexified gauge couplings τi as well as Coulomb moduli for each node of the graph, since

each node has its own vector multiplet. The couplings between the vector multiplets are via the

hypermultiplets in the bi-fundamental representations of the gauge group.

Since the field content of the ADE quiver gauge theories can be written purely in terms of the

underlying Dynkin graph, ignoring the fact that it is an affine Dynkin graph of type ADE, it is

possible to define quiver gauge theories for arbitrary oriented graphs. We will not pursue this, in

fact the quiver gauge theories in Cartan type A are already quite nontrivial.

Quiver gauge theories associated to finite, rather than affine, Dynkin graphs can be obtained by set-

ting the gauge couplings associated to certain nodes to zero, for example the quiver gauge theory

of type A1 can be obtained from the Â2 theory from decoupling the nodes associated to the 0 and 2

representations of the McKay dual group Z3, leaving behind a theory of a N = 2 vector multiplet

with gauge group U(n), coupled to n hypermultiplets in the fundamental and n hypermultiplets

in the antifundamental representation. The flavor symmetry of the theory associated to the multi-

plicity of the hypermultiplets can be interpreted as a gauge symmetry with a nondynamical vector

multiplet, and the associated mass terms of the hypermultiplets can be interpreted as the Coulomb

moduli of the decoupled nodes. These features will resurface in the following chapter when we

perform explicit calculations in these theories.
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CHAPTER 5: INSTANTON MODULI SPACES AND LOCALIZATION

In the previous chapter it was demonstrated that, upon topological twisting, the path integral for

pure N = 2 supersymmetric Yang-Mills theory reduces to a finite-dimensional integral over the

moduli space of instantons M (k,n). In the present chapter we explain how to use this fact to solve

the theories, by introducing a certain compactification M (k,n) of the instanton moduli space and

deformation of the N = 2 supersymmetric field theory which allows the resulting integrals to be

evaluated by the Atiyah-Bott localization formula.

ADHM Construction of Instantons

Recall that Yang-Mills instantons (for an elementary introduction to instantons see [53]) are solu-

tions to the self-duality equation

F+
A = 0 (5.1)

for a gauge field A in R4 with second Chern class k, modulo the action of gauge symmetries which

approach 1 at infinity. Atiyah, Drinfeld, Hitchin, and Manin [2] provided a method to characterize

the space of solutions to this equation in terms of a set of matrices.

Dirac Zero Modes

To motivate the construction, recall the following simple fact: an instanton in a d-dimensional

theory may be thought of as a soliton in a (d+1)-dimensional theory. To understand solitons, it is

natural to probe their interaction with other particles in the theory. In particular, one can search for

bound states of these solitons and Dirac fermions charged under the fundamental representation of
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U(n).

Concretely, what this means is one wishes to find L2 normalizable solutions to the Dirac equation in

four dimensional Euclidean spacetime in the background of an instanton, that is, spinors ψ valued

in the vector bundle E associated with the fundamental representation, satisfying

/DAψ = 0. (5.2)

The bundle S of spinors splits as S = S+⊕S−, where S± are the bundles of positive and negative

chirality spinors. After choosing a complex structure to identify R4 ∼= C2, one may identify

S+ ∼= (Ω0,0⊕Ω0,2)⊗
√

K

S− ∼= Ω0,1⊗
√

K.
(5.3)

√
K denotes the square root of the canonical bundle of C2, and Ωp,q denotes the bundle of forms

with p holomorphic indices and q anti-holomorphic indices; thus K = Ω2,0. Since
√

K is trivial, it

can be omitted and spinors may be regarded as differential forms. With these identifications, one

has /DA =
√

2(∂̄A− ∂̄
†
A).

Using this description, one readily shows that there are no nontrivial solutions to the Dirac equation

in (Ω0,0⊕Ω0,2)⊗E. From an index theorem, one concludes that the dimension of the space of

χ ∈ Γ(Ω0,1⊗E) solving the Dirac equation in the background of instanton charge k is k. Let

K ∼= Ck denote this space, that is, K the kernel of /DA acting on negative chirality spinors. Let

N ∼= Cn denote the fiber of the bundle E over the S3 at infinity; since A approaches pure gauge

at infinity, E has a natural trivialization over S3 and thus all fibers may be identified with N. The

claim of the ADHM construction is that K and N, together with some linear maps between them,

allow one to completely reconstruct the instanton solution.
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Write (z1,z2)∈C2 as the coordinates in C2 ∼=R4; then there are natural maps Γ(S⊗E)→ Γ(S⊗E)

given by ψ 7→ zαψ for α = 1,2. These operators commute, however their projections to the

subspace of spinors solving the Dirac equation may not. If Π : Γ(S⊗E)→ K denotes orthogonal

projection, then we define the operators

Bα := Π ◦ zα

∣∣∣∣
K
∈ End(K) (5.4)

for α = 1,2.

Let χ denote the row vector of size k whose entries are some orthonormal basis of solutions to

the Dirac equation–note that these solutions are sections of Ω0,1⊗E, so χ is an n× k matrix with

entries valued in Ω0,1. Then the operators B1,B2 ∈ End(K) ∼= Matk(C) are (we rescale by a factor

π
√

2 for later convenience)

Bα =
1

π
√

2

∫
R4

zα χ
†∧?χ (5.5)

for α = 1,2. Note that orthonormality means that

∫
R4

χ
†∧?χ = 1K . (5.6)

Thus there is a natural action of U(k) by χ 7→ χU for U ∈U(k) which acts on the B’s by conju-

gation. A basis-free way to write this is U(K) the group of unitary transformations preserving the

canonical hermitian structure on the vector space K.

To learn about N, consider the limit r =
√
|z1|2 + |z2|2 → ∞. The Dirac equation states, for the

(0,1) spinors, that ∂̄Aχ = ∂̄
†
Aχ = 0, and since these operators square to zero χ is locally the sum of

∂̄A and ∂̄
†
A-exact pieces. These pieces are easily shown to satisfy the Laplace equation for large r,

so the natural ansatz is to take them to have the same asymptotics as the L2 normalizable Green’s
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function for the Laplacian, leading to the behavior

χ ∼ ∂̄A

(g−1I†

r2

)
+ ∂̄

†
A

(
g−1 J

r2 dz̄1∧dz̄2

)
, r→ ∞. (5.7)

Here, I is some k× n matrix and J is some n× k matrix, and again there is some natural U(K)

action.

In this way we have produced a set of linear operators (B1,B2, I,J) between the vector spaces K

and N. These may be represented as matrices, up to an action of U(K) reflecting the arbitrariness

in the choice of basis of K.

By a tedious Green’s function computation (see [6]), one shows that (B1,B2, I,J) satisfy the equa-

tions, which are invariant under the U(K) action:

[B1,B2]+ IJ = 0[
B1,B†

1

]
+
[
B2,B†

2

]
+ II†− J†J = 0.

(5.8)

We refer to a multiplet of (B1,B2, I,J) satisfying these equations as ADHM data. In this way one

has produced a map

Instanton gauge field A with charge k −→ ADHM Data up to U(K) action. (5.9)

The claim of the ADHM construction is that this map is an isomorphism, namely the gauge field

A may be uniquely reconstructed from the U(K) orbit of ADHM data. The claim is demonstrated

by constructing the inverse map explicitly.
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ADHM Construction

Given ADHM data (B1,B2, I,J), an instanton solution may be uniquely (re)constructed. We review

the main point here, namely how to obtain a rank n vector bundle with anti-self-dual connection A

and the matrix χ of normalized solutions to Dirac equation from ADHM data, see [6] for further

details.

For each z = (z1,z2) ∈ C2 define the operator D†
z : (K⊗C2)⊕N→ K⊗C2 by

D†
z :=

 B1− z1 B2− z2 I

−B†
2 + z̄2 B†

1− z̄1 −J†

 (5.10)

One verifies using the ADHM equations that the operator D†
z Dz : K⊗C2→K⊗C2 may be written

as D†
z Dz = ∆z⊗1C2 , with

∆z = (B1− z1)(B
†
1− z̄1)+ (B2− z2)(B

†
2− z̄2)+ II† ∈ End(K). (5.11)

Note that ∆z ≥ 0, and restricting to the locus of ADHM data such that ∆z > 0 for all z ∈ C2 then

Dz has no kernel and D†
z is surjective with dimkerD†

z = n. Then the space of pairs

E = {(z,v) ∈ C2× ((K⊗C2)⊕N)|v ∈ kerD†
z } (5.12)

defines a rank n vector bundle over C2. The claim is that E naturally carries a connection A such

that F+
A = 0, and that sections of S⊗E may be identified with spinors charged in the fundamental

of U(n).

To see that E has a natural connection, note that it is a sub-bundle of the trivial bundle over C2 with

fiber (K⊗C2)⊕N. The trivial bundle naturally carries the trivial connection, which is just the d
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operator on appropriate vector-valued functions on C2. If πz : (K⊗C2)⊕N → kerD†
z denotes

orthogonal projection in the natural hermitian structure, then D := πz ◦ d defines a connection on

E, and one verifies that its curvature is anti-self-dual.

To make the above remarks more explicit, note that the fiber of E is a vector space of dimension n

and may therefore be identified with N. Let Ψz : N→ (K⊗C2)⊕N be the identifying map; thus

it is a solution to

D†
z Ψz = 0. (5.13)

The columns of Ψz define a basis for the fiber of E at each point z–by taking this basis to be

orthonormal one may assume Ψ†
z Ψz = 1N . Then the connection A on E defined via the projection

above is

A = Ψ†
z dΨz. (5.14)

One readily verifies that this is indeed a U(n) connection, and by direct computation demonstrates

that F+
A = 0. Note that A is invariant under the U(K) action on the ADHM data.

The ADHM data also allow one to describe solutions to the Dirac equation valued in E. Write

Ψz =


ν+

ν−

ξ

 (5.15)

for ν± : N→ K, ξ : N→ N, then upon identifying S− ∼= Ω0,1,

χ = ν
†
+∆−1

z dz̄1 +ν
†
−∆−1

z dz̄2 (5.16)

is an n× k matrix of one-forms (in more intrinsic language, it is a map from K to sections of

Ω0,1⊗E–Ψχ takes values in sections of Ω0,1⊗E) satisfying the Dirac equation ∂̄Aχ = ∂̄
†
Aχ = 0.
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This is readily demonstrated by straightforward computation.

This apparatus of constructions allows one to define the moduli space M (k,n) in purely finite-

dimensional terms:

M (k,n) =

{
(B1,B2, I,J) ∈ (End(K)⊗C2)⊕Hom(N,K)⊕Hom(K,N)

∣∣∣∣∣
Equations (5.8) are satisfied and Dz is injective ∀z ∈ C2

}/
U(K).

(5.17)

Note, in this description, it is a simple parameter count to see that dimM (k,n) = 4kn. It is also

not difficult to see that M (k,n) is a smooth manifold.

Compactness, Singularities and Resolution

Using the ADHM construction, it is possible to describe the geometric properties of the instanton

moduli space more concretely. The injectivity of Dz ensures that M (k,n) is a smooth manifold.

However, M (k,n) is not compact. In order to integrate over it, one must define a suitable com-

pactification.

Note that there are actually two sources of noncompactness for M (k,n). One is due to the fact

that the space of matrices (B1,B2, I,J) is non-compact and that the equations defining ADHM

data are homogeneous under scaling these variables. This type of non-compactness is an infrared

effect, and is due to the fact that instantons can grow arbitrarily large and/or escape to infinity.

These effects are a consequence of defining a quantum field theory in infinite volume, and later we

explain how to deal with them by Ω-deformation.

The other source of non-compactness is the requirement that Dz be injective for all z ∈ C2–it’s

possible to find a sequence of (B1,B2, I,J) which converges to a configuration such that Dz has
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a zero mode for some z. The Donaldson-Uhlenbeck compactification of the moduli space [10]

simply adds in the requisite points as limits of these sequences (in other words, it is given by

the same definition as above but without the constraint on the rank of Dz). While sufficient for

some purposes, this compactification has the undesirable feature that the space is singular at the

added points. These singularities are known as “small instanton singularities", because Dz can

develop zero modes at particular values of z ∈C2. These points may be interpreted as locations of

instantons that have shrunk to zero size.

The physical reason that these singularities must be dealt with carefully is that this type of non-

compactness is intimately related with the ultraviolet cutoff needed to produce a well-defined

quantum field theory [28]. It is physically unreasonable to discuss instantons of characteristic

size smaller than this cutoff scale. For computations of physically relevant quantities, the precise

value of the cutoff should be irrelevant so long as it is much shorter than all other length scales in

the theory.

Thus, one would like to arrive at a compactification of the instanton moduli space which has the

property that small instantons are forbidden, and instantons are frozen at some cutoff scale. The

construction is known in the mathematical literature as the Gieseker-Nakajima compactification

[20], [35], and is achieved as follows. Fix a real number ζ > 0, then

M (k,n) =

{
(B1,B2, I,J) ∈ (End(K)⊗C2)⊕Hom(N,K)⊕Hom(K,N)

∣∣∣∣∣
[B1,B2]+ IJ = 0[
B1,B†

1

]
+
[
B2,B†

2

]
+ II†− J†J = ζ 1K

}/
U(K).

(5.18)

One can prove the following key result about this moduli space (see [41] for an argument), known

as the stability theorem (GL(K) denotes the group of invertible linear maps from the space K to
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itself–upon picking a basis it may be identified with GL(k,C)):

M (k,n) =

{
(B1,B2, I,J) ∈ (End(K)⊗C2)⊕Hom(N,K)⊕Hom(K,N)

∣∣∣∣∣
[B1,B2]+ IJ = 0, and

C[B1,B2]I(N) = K

}/
GL(K).

(5.19)

The requirement C[B1,B2]I(N) = K is known as the stability condition. From this description, it

follows that M (k,n) is a smooth complex manifold. It also admits a map M (k,n)→M (k,n)DU

which is a resolution of singularities (the superscript DU denotes Donaldson-Uhlenbeck compact-

ification). Physically, this reflects the obvious fact that at length scales�
√

ζ , configurations in

M (k,n) look like ordinary instantons, and the configurations toward the small instanton limit are

“smoothed out" by the cutoff (which can be interpreted as reflecting ignorance about hidden ultra-

violet degrees of freedom). We will not explore the physical interpretation of M (k,n) further, but

direct readers to [47], [38] for more information.

As an aside, we note that the stability theorem establishes that M (k,n) is also the moduli space of

torsion-free sheaves on CP2 of rank n and second Chern class k which have a fixed trivialization

over the CP1 at infinity [35]. It can also be thought of as parameterizing instantons in gauge theory

defined on “noncommutative R4" [47].

It is the smooth space M (k,n) that should be used in localization calculations, since it has more

desirable properties and reflects a more sensible choice of ultraviolet regularization. It is not a

compact space, but provides a partial compactification of the naive instanton moduli space M (k,n)

because it adds in limit configurations for small instantons. It does not cure the problem of large

instantons, but this is a separate problem addressed by the Ω-deformation.
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Ω-deformation

The final ingredient needed to perform the instanton counting calculations in N = 2 gauge theories

is known as the Ω-deformation [39], [45]. There are many ways to define it, for simplicity we give

only the definition within the framework of the twisted N = 2 theories and consider pure N = 2

super-Yang-Mills, returning to the issue of matter later on. We replace the integrals over M (k,n)

with integrals over the partial compactification M (k,n).

As pointed out in the last chapter, the scalar supercharge δ of the twisted N = 2 theory acts as

an equivariant de Rham differential in field space, which is equivariant with respect to the group

of gauge transformations. Upon reduction of the path integral to zero modes, one produces an

integral in equivariant cohomology of M (k,n) where the Coulomb moduli of the gauge theory

become identified with the equivariant parameters associated to the (maximal torus of) the group

U(n) of constant gauge transformations acting on M (k,n). In fact, only the group SU(n)/Zn

acts nontrivially on the moduli space, but we ignore this subtlety. The Ω-deformed gauge the-

ory is defined by working equivariantly also with respect to the (maximal torus of the) SO(4)

symmetries of spacetime. Such a rotation is characterized by two parameters ε1,ε2 such that

(z1,z2) 7→ (e−iβε1 ,e−iβε2z2). This transformation is generated by some vector field V µ

ε , and the

Ω-deformation corresponds to replacing the scalar supercharge Q discussed previously with the

deformed supercharge Q+V µ

ε Gµ , with Gµ defined as in the previous section. The corresponding

differential on the fields is denoted δε .

47



The corresponding supersymmetry variatons are

δεA = ψ δεφ = iV (ε1,ε2)ψ δε χ
+ = H+

δεψ = DAφ + iV (ε1,ε2)FA δε φ̄ = η δεH+ =
[
χ
+,φ

]
+DAiV (ε1,ε2)χ

++ iV (ε1,ε2)DAχ
+

(5.20)

δεη = [φ̄ ,φ ]+ iV (ε1,ε2)DAφ̄

and the corresponding modification of the action to preserve δε symmetry is

Sε =−
2πiτ
8π2

∫
R4

trFA∧FA

+ δε

(∫
R4
− trψ ∧?(DAφ̄ + iVε

FA)+ trη ? ([φ̄ ,φ ]+ iVε
DAφ )− tr χ

+
(

F+
A −

g2
Y M
8

H+
))

.

(5.21)

This action defines the Ω-deformed theory.

Because the geometric meaning of the terms is the same, the χ+ integral once again restricts to

F+
A = 0 and the integral over nonzero modes of φ , φ̄ together with η implements the division

by G∞. The only difference is that the vector field on M (k,n) is now the one descending from

DAφ̄ + iVε
FA, denoted by V (ā, ε̄1, ε̄2). It generates the action of the maximal torus Tn+2 of the

group of symmetries acting on M (k,n), where T2 ⊂ SO(4). Then the instanton contribution to

the partition function of the Ω-deformed theory is

Zinst(a,ε1,ε2;q) = ∑
k≥0

qk
∫
M (k,n)

e−δε (g(V (ā,ε̄1,ε̄2),ψ)). (5.22)

Now, Tn+2 acts with a finite number of isolated fixed points on M (k,n), so the integral may

easily be done by localization. The fixed point calculation will be discussed shortly. Because
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e−δε (...) = 1+ δε(...) = 1 in cohomology, one often writes the instanton integral as simply

∫
M (k,n)

1 = ∑
fixed pt.

1
∏(weights)

. (5.23)

In the equality we have used the localization formula. Note that the integral of 1 does not really

make sense, but it is understood in the sense of equivariant cohomology–the RHS is essentially

the definition of the LHS using localization. We employ this shorthand frequently in what follows.

Alternatively, one may think of the operation of integration algebraically as simply a pushforward

H∗G(M (k,n))→ H∗G(pt) in G-equivariant cohomology for symmetry group G.

Now that the integral has been reduced to the application of localization formulas, the problem

becomes combinatorial. We now turn to the explicit description of the fixed points of the group

action and weights in the tangent space of M (k,n).

Fixed Points and Weights

The localization arguments discussed in the previous section almost complete the explicit solution

of the Ω-deformed N = 2 theory, but it remains to show that the maximal torus of U(n)×SO(4)

acts with isolated fixed points and calculate the weights in each subspace. In this section, we sketch

a combinatorial description of the fixed points and weights using Young diagrams [35], [39].

The (compactified) instanton moduli space is the set of (B1,B2, I,J) satisfying µC(B1,B2, I,J) :=

[B1,B2] + IJ = 0 (and the stability condition) up to the action of GL(K), where (B1,B2, I,J) ∼

(gB1g−1,gB2g−1,gI,Jg−1), with g∈End(K). Since µC : (End(K)⊗C2)⊕Hom(N,K)⊕Hom(K,N)→

End(K), for each (B1,B2, I,J) representing a point in the moduli space there is a complex

0→ End(K)→ (End(K)⊗C2)⊕Hom(N,K)⊕Hom(K,N)
dµC−−−−−−→ End(K)→ 0. (5.24)
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The first map sends ξ 7→ ([ξ ,B1], [ξ ,B2],ξ I,−Jξ ). The second map sends (δB1,δB2,δ I,δJ) 7→

[δB1,B2] + [B1,δB2] + δ IJ + IδJ = dµC(δB1,δB2,δ I,δJ). This sequence is in fact a complex

because the infinitesimal GL(K) action is a symmetry of µC = 0. One proves using the stability

condition that this complex has vanishing cohomology in degree zero and degree two, which estab-

lishes that M (k,n) is a smooth complex manifold. The holomorphic tangent space of M (k,n) at

the point corresponding to (B1,B2, I,J) may be identified with H1 of this complex. For this reason

the above complex is known as the tangent complex.

This identifies TpM (k,n) at any point p as a vector space. However, to compute the weights, one

is interested in TpM (k,n) as a Tn×T2-module, for p a fixed point of Tn+2. The advantage of

the description using cohomology is that its algebraic nature readily yields representation-theoretic

data. But first, one must classify the fixed points p.

The Tn+2 action on the space (End(K)⊗C2)⊕Hom(N,K)⊕Hom(K,N) is given by, for (eβa,eβε1 ,eβε2)∈

Tn+2:

(eβa,eβε1 ,eβε2) · (B1,B2, I,J) = (e−βε1B1,e−βε2B2, Ie−βa,e−β (ε1+ε2)eβaJ). (5.25)

This is the canonical action induced naturally from the definitions of these operators. Note that

the action of U(n) is defined simply by the fact that N splits into one-dimensional eigenspaces Nα

each carrying an eigenvalue eβaα –we have used the notation a to denote also the diagonal matrix

diag(a1, ...,an). The geometric construction of ADHM data, where N is identified with the fiber of

the bundle E in which the Dirac fermions in the fundamental take values, makes the representation-

theoretic content of N evident. Strictly speaking, to get an action of the compact group Tn+2 the

(complex) variables β ,ε1,ε2,a must be taken to obey some reality conditions; we leave it to the

reader to fill in these fairly straightforward details.
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This group action descends to M (k,n). For the matrices (B1,B2, I,J) to represent a fixed point in

the moduli space, the action of Tn+2 on them may be undone by a GL(K) transformation. That is,

for a given fixed point and generic values of ε1,2 and a parameters there exists a ξ ∈ End(K) such

that

[ξ ,B1] = ε1B1

[ξ ,B2] = ε2B2

ξ I = Ia

Jξ = (a− ε1− ε2)J.

(5.26)

Strictly speaking, one should write ξ (a,ε1,ε2) as a linear function of the equivariant parameters,

but since we work at fixed a,ε1,ε2 it is immaterial. The fixed points of Tn+2 acting in the moduli

space are in one-to-one correspondence with isomorphism classes of representations of the above

algebra. These admit the following description.

First, one proves using the stability condition that for any solution to (5.26), J = 0. Then one has

[B1,B2] = 0. The space K splits as K =⊕n
α=1Kα , where Kα = C[B1,B2]I(Nα). The eigenvalues of

ξ on the space Kα are of the form aα +(i−1)ε1+( j−1)ε2 for (i, j) ∈Z2
+. In each subspace Kα ,

starting from the vectors I(Nα) the B’s act as “raising operators" for ξ which shift its eigenvalues

by ε1,2, and for an appropriate reality condition and generic parameters a, ε1,2 each eigenspace

of ξ is orthogonal. By finite-dimensionality, Bi
1B j

2I(Nα) = 0 for i, j large enough, and it is easy

to convince oneself that if one arranges the points labeled by (i, j) in a coordinate grid then the

statement that Kα is an orthogonal sum of one-dimensional subspaces Bi
1B j

2I(Nα) allows one to

interpret each one-dimensional subspace as a box in a Young diagram λ (α). The number of boxes

in the diagram λ (α) is denoted by |λ (α)|.

Thus, the isomorphism classes of representations of the algebra (5.26) are in one-to-one correspon-
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dence with n-tuples of Young diagrams λ = (λ (1), ...,λ (n)) such that

∑
α

|λ (α)|= k. (5.27)

Therefore, fixed points of the Tn+2 action on M (k,n) are labeled by n-tuples of Young diagrams

λ with k boxes in total.

Decomposing K into eigenspaces of the operator eβξ (a,ε1,ε2) gives its content as a Tn+2 represen-

tation at a fixed point. In what follows, it will be useful to identify vector spaces with their Tn+2

characters (really, one should consider these “spaces" as Tn+2 equivariant vector bundles over the

compactified instanton moduli space and consider their classes in equivariant K-theory), so that

N =
n

∑
α=1

eβaα

K =
n

∑
α=1

eβaα ∑
(i, j)∈λ (α)

qi−1
1 q j−1

2 .

We introduce the notation q1 = eβε1 and q2 = eβε2 .

One verifies that for (B1,B2, I,J) representing a fixed point of the Tn+2 action, the following

complex (which is the same as the tangent complex twisted by one-dimensional representations of

T2 in appropriate places) is Tn+2 equivariant with respect to the action (5.25):

0→ q1q2End(K)→ q2End(K)⊕q1End(K)⊕q1q2Hom(N,K)⊕Hom(K,N)→ End(K)→ 0.

(5.28)

The maps are the same as for the ordinary tangent complex. Because this complex is Tn+2 equiv-

ariant, its cohomology furnishes representations of Tn+2, and in particular the weights of H1

correspond to the weights of the Tn+2 action on M (k,n) in the holomorphic tangent space at the

fixed point λ .
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In fact, this setup is typical of a supersymmetric quantum mechanics problem (see Chapter 10 of

[23])–one has a space of supersymmetric ground states given by H∗ of this complex and wants to

understand its decomposition under the relevant symmetry algebra. One may think of the (equiv-

ariant) tangent complex as a finite-dimensional version of the Hilbert space of a supersymmetric

quantum-mechanical system, and the maps as finite-dimensional versions of supercharges. Then

by standard deformation invariance arguments for the (equivariant) Witten index [23], the virtual

character of the complex agrees with the alternating sum of characters of the cohomology groups–

this is just the statement that Tr(−1)Fg receives contributions only from supersymmetric ground

states.

Together with the vanishing theorem H0 = H2 = 0, this gives the character of the tangent space to

the fixed point λ as

Tλ M (k,n) = NK∗+ q1q2KN∗− (1−q1)(1−q2)KK∗. (5.29)

Given the above formulas for the characters of N and K, it is straightforward to write this character

in terms of combinatorial data associated to the Young diagrams λ as [35]

Tλ M (k,n) =
n

∑
α ,β=1

eaα−aβ

(
∑

�∈λ (α)

q`α (�)+1
1 q

−Aβ (�)
2 + ∑

�∈λ (β )

q
−`β (�)
1 qAα (�)+1

2

)
. (5.30)

The quantity `α(�) is known as the leg length of the box � in the diagram λ (α), and likewise

Aα(�) is the arm length. Associated to a partition λ , regarded as a nonincreasing sequence of

integers λi, one defines the conjugate partition by λ t
i = #{i|λ j ≥ i, some j}. Then for � at position

(i, j), `α(�) = λ
t(α)
j − i and Aβ (�) = λ

(β )
i − j. The geometric interpretation of this is given in

Figure 5.1.

In summary, the fixed points of the Tn+2 action on M (k,n) are classified in terms of n-tuples
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Figure 5.1: In the case n = 1, we drop the α label because it is redundant and fixed points are
labeled by a single Young diagram such as the one above, corresponding to the partition λ =
(7,5,4,3,3,2,1,1), with conjugate λ t = (8,6,5,3,2,1,1). Each box in the diagram corresponds
to a one-dimensional subspace of K, and K splits as an orthogonal sum over these subspaces–the
top left box corresponds to I(N) and a box in position (i, j) corresponds to Bi−1

1 B j−1
2 I(N). The

leg and arm length are computed as shown above. Also important is the hook length h(�) =
`(�)+A(�)+ 1, which will return later.

of Young diagrams λ . They are isolated and have weights given by some combinatorial formula

in terms of data associated to the Young diagrams. From this data, it is possible to compute the

partition function of the Ω-deformed theory as a sum over Young diagrams.

Nekrasov Partition Function and Seiberg-Witten Curve

Finally, with all the preliminaries in place we may explain one of the main results, which is the

partition function of the Ω-deformed N = 2 theory. This is known also as the Nekrasov partition

function and was introduced in [39]. In discussions of Nekrasov partition functions, it is useful to
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introduce the following notation known as plethystic exponential. Given a virtual character which

contains terms eAi with positive coefficients and terms eB j with negative coefficients, we define:

E

[
∑

i
eAi−∑

j
eB j

]
:=

∏ j B j

∏i Ai
. (5.31)

Note this essentially computes the “supersymmetric path integral" associated to a virtual representation–

the “fermionic states" with a minus sign contribute a determinant in the numerator, and the “bosonic

states" contribute a determinant in the denominator. The Nekrasov partition function for the pure

N = 2 theory under consideration thus far may be written in this notation as (we replace q with

the dynamical scale Λ that appears since this theory is asymptotically free)

Z(a,ε1,ε2;Λ) = ∑
k≥0

Λ2nk
∑
λ

|λ |=k

E[Tλ M (k,n)]. (5.32)

The limit ε1,2→ 0 of Z recovers the famous Seiberg-Witten solution. In fact, this was Nekrasov’s

original goal of introducing the Ω-deformation and instanton calculus in this setup: to provide a

first-principles derivation of the Seiberg-Witten solution of gauge theory [39]. The main relation

is

F0(a) = lim
ε1,2→0

−ε1ε2 logZ (5.33)

where F0 is a quantity known as the Seiberg-Witten prepotential [51]. For mathematicians, this

is actually the definition of the prepotential. More about this will be discussed below. There are

several ways of understanding the relationship between Z and Seiberg-Witten theory. One way is

to proceed by analogy with matrix models.
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The n = 1 Case in Detail

The case of n = 1, where the gauge group is U(1), is of course somewhat trivial given that the

underlying field theory is actually free, but the mathematical structure that arises is nonetheless

rich and provides a hint for the case of general n.

The fact that we still have interesting mathematical structures reflects the fact that the partially

compactified space M (k,1) is interesting and nontrivial–it is an object known in algebraic geom-

etry as the Hilbert scheme of k points in C2, Hilbk(C
2).

It is useful to consider a special Ω-background, known as the self-dual Ω-background, for which

ε1 + ε2 = 0, so that ε1 = −ε2 := gs. With this notation, one has

E[Tλ Hilbk(C
2)] = g−2k

s ∏
�∈λ

1
h(�)2 . (5.34)

The quantity h(�) = `(�)+A(�)+ 1 is known as the hook length of the box � in the diagram

λ . By the so-called hook length formula [17],

∏
�∈λ

h(�) =
|λ |!

dimλ
(5.35)

where dimλ is the same number introduced earlier in the present thesis. Thus, the Nekrasov

partition function in this case is given simply in terms of the Plancherel measure on partitions:

Z = ∑
k≥0

1
k!

(Λ2

g2
s

)k
∑
λ
|λ |=k

P(λ ) = e
Λ2

g2
s . (5.36)

As reviewed in chapter 2, this partition function may be expressed as a matrix model which cap-

tures the “limit shape" phenomenon of the random partitions. That is, in the limit gs→ 0 the sum
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over partitions is dominated by a most probable partition of large size described by the Logan-

Schepp-Vershik-Kerov profile [27], [59].

The point of this is that it is a generic feature of the Nekrasov partition function–in the limit

ε1,2 → 0 the sum over partitions is dominated by a limit shape. The “spectral curve" capturing

the limit shape in the matrix model analogy is known as the Seiberg-Witten curve of the gauge

theory–in the next section it will be explained how to obtain this curve without using matrix model

techniques directly (although using techniques inspired by those in matrix models).

The Y -observables

The combinatorial sum over partitions to which the instanton partition function reduces is reminsi-

cent of the kind of combinatorial object that is the matrix model partition function. It is therefore

natural to use similar techniques as in matrix models to understand more about the structure of the

instanton partition function.

Recall that the main tool that was useful in solving the matrix model was the construction of the

resolvent tr(x−Φ)−1, as its singularity structure in x effectively encoded the loop equations for the

matrix model, which can be interpreted as Dyson-Schwinger equations for the gauge theory. It is

therefore natural to look for observables Y (x) in the N = 2 theory that depend on some auxiliary

spectral parameter x ∈ C, that have similarly desirable analytic properties.

A natural candidate for such an observable is the characteristic polynomial of the Higgs field

φ (z, z̄), where z = (z1,z2) ∈ C2. One would like to study

Y (x) ∼ det(x−φ (0)). (5.37)
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Note that the Higgs field must be placed at the origin in order for this observable to preserve

the supersymmetry of the Ω-deformed theory. The expression on the RHS is not well-defined

because of contact term ambiguities–the operator products of φ (z, z̄) at different spacetime points

are singular as the points approach each other. These can be interpreted as quantum effects due to

the instanton background.

To find the appropriate definition of the Y -observable that automatically takes into account the non-

perturbative corrections/quantum effects, it is best to interpret it as a geometric object associated

to M (k,n).

At a point of M (k,n) represented by ADHM data (B1,B2, I,J) there is a complex of vector spaces,

known as the tautological complex

0→ K→ (K⊗C2)⊕N→ K→ 0. (5.38)

The map first map acts by

v 7→


−B1v

B2v

Jv

 (5.39)

for v ∈ K. The second map acts by


ν+

ν−

ξ

 7→ B1ν−+B2ν++ Iξ (5.40)

for ν± ∈ K and ξ ∈ N. Allowing this to vary across all points in M (k,n) gives a complex of

(equivariant) vector bundles, and by abuse of notation we also denote these bundles by K and N.
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After a twist by representations of T2 ⊂ SO(4) this complex becomes Tn+2-equivariant:

0→ q1q2K→ q2K⊕q1K⊕N→ K→ 0. (5.41)

Define the object S to be the virtual equivariant Chern character of this complex:

S = ch(K)+ ch(K⊗Λ2C2)− ch(N)− ch(K⊗C2). (5.42)

This is understood in the usual sense of equivariant Chern character–the object ch is a formal

character valued in H∗
Tn+2(M (k,n)) using the Chern roots of the various bundles together with

their weights as torus representations. The degree zero piece at a fixed point of the Tn+2 action

reduces to the ordinary virtual character of the fiber. The Y -observable, as an element of the

equivariant cohomology ring of M (k,n), is defined to be the plethystic exponential of the virtual

character of the tautological complex: (cx denotes Chern polynomial, in other words the equivariant

top Chern class with respect to the C× symmetry scaling the fiber of the bundle, with equivariant

parameter x):

Y (x) = E[exS∗] =
cx(N∗)cx(K∗⊗C2∗)

cx(K∗)cx(K∗⊗ (Λ2C2)∗)
. (5.43)

At a fixed point, this may be evaluated using the known weights of the representations (we set

β = 1 for simplicity, it may be always reinstated by dimensional analysis):

Y (x)
∣∣∣∣
λ

=
n

∏
α=1

(x−aα) ∏
�∈λ (α)

(x−aα − c(�)− ε1)(x−aα − c(�)− ε2)

(x−aα − c(�))(x−aα − c(�)− ε1− ε2)
. (5.44)

The notation c(�) has been introduced: for a box in the Young diagram λ (α) at position (i, j), it

is defined to be c(�) = (i−1)ε1 +( j−1)ε2–this is referred to as the content of the box �.

In the limit where ε’s vanish, this reduces to the characteristic polynomial evaluated at the vac-
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uum expectation value of φ . The full definition of Y may be thought of as including quantum

corrections, with the inclusion of the vector spaces K in the tautological complex signifying the

presence of fermionic zero modes in the instanton background of charge k that lead to the need to

correct the naive characteristic polynomial. In particular, the corrected version of Y (x) is no longer

a polynomial but is a rational function.

The main interesting feature of Y is that there are several cancellations occurring in the ratio defin-

ing Y above, so that it may be rewritten as follows. Let ∂+λ be the outer boundary of the Young

diagram λ , defined to be the set of boxes which can be added to the Young diagram while keeping

it a Young diagram. Likewise, the inner boundary ∂−λ is the set of boxes which may be removed

from the Young diagram while keeping it a Young diagram (an example is shown in Figure 5.2). It

is straightforward to show that Y may be written as

Y (x)
∣∣∣∣
λ

=
n

∏
α=1

∏�∈∂+λ (α)(x−aα − c(�))

∏�∈∂−λ (α)(x−aα − c(�)− ε1− ε2)
. (5.45)

This allows for further understanding of Y : its analytic properties reflect the possibility of adding

or removing a single instanton from the system. This is again analogous to the resolvent in matrix

models, the poles of which encoded information about the spectrum of the random matrix. There-

fore, Ward identities which constrain the analytic behavior of Y may be understood as organizing

information about the behavior of the field theory under adding or removing instantons. Since this

corresponds to changing the topological sector of field space, this may be understood as describing

a symmetry of the path integral of the theory under a “large" (not continuously connected to the

identity) deformation of the integration contour.
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Figure 5.2: For the partition λ = (7,5,4,3,2,1,1), the blue boxes are those in ∂−λ , and the red are
those in ∂+λ . Importantly, those in ∂+λ do not belong to the original Young diagram, while those
in ∂−λ do.

We employ the notation

〈O〉= 1
Z ∑

k≥0
Λ2nk

∑
λ

|λ |=k

E[Tλ M (k,n)]O
∣∣∣∣
λ

(5.46)

for a normalized expectation value of an observable.

In the pure N = 2 Yang-Mills theory with gauge group U(n), one can prove directly that

〈
Y (x+ ε1 + ε2)+

Λ2n

Y (x)

〉
(5.47)

has no poles in x by noting that those from the first and second terms cancel each other. As

mentioned above, the statement that this object has no poles reflects a transformation property of

the path integral under a “large" deformation of the contour so the above equation is referred to as

a nonperturbative Dyson-Schwinger equation.
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Seiberg-Witten Curve

The nonperturbative Dyson-Schwinger equation immediately leads to a description of the Seiberg-

Witten geometry of the gauge theory. In the limit ε1,2→ 0, as discussed above the sum over parti-

tions localizes on a saddle point configuration known as the limit shape. We let z= limε1,2→0〈Y (x)〉

be the value of Y evaluated on the limit shape. Since Y (x) is a degree n monic polynomial for large

x, the nonperturbative Dyson-Schwinger equation in the limit ε1,2→ 0 leads to

z+
Λ2n

z
= P(x) (5.48)

where P(x) = xn +∑
n−1
i=0 uixn−i, for some constants ui. In the classical limit these constants are

elementary symmetric functions of the aα , but they recieve quantum corrections from instantons.

This equation describes a hyperelliptic curve of genus g = n− 1 known as the Seiberg-Witten

curve, and one verifies (by making similar arguments as in the case of the matrix model, for a

similar choice of A and B cycles) that

aα =
1

2πi

∮
Aα

x
dz
z

∂F0

∂aα
=
∮

Bα

x
dz
z

.
(5.49)

These are the same special geometry relations encountered previously, and determine the prepoten-

tial F0 in terms of the underlying algebraic curve. In the physical interpretation of N = 2 theories,

the prepotential essentially uniquely characterizes the low-energy effective action of the theory to

lowest order in a derivative expansion. This solution of N = 2 super-Yang-Mills ( the determina-

tion of the exact low-energy effective action to lowest order in derivative expansion) is a famous

result known as the Seiberg-Witten solution of gauge theory. The Ω-deformation and instanton

counting method, while requiring lots of background, gives a direct first-principles derivation of

62



this result (originally, Seiberg and Witten guessed the form of the effective action using ingenious

symmetry arguments).

Aside: Physics of Seiberg-Witten Solution

In order to keep the progression and presentation reasonably brief and self-contained, we have pre-

sented Seiberg-Witten theory only as some limit of nonperturbative Dyson-Schwinger equations,

by analogy to the behavior of matrix models in the planar limit. However, it is of great interest in

physics because it captures the low energy behavior of N = 2 theories, and provided some of the

first evidence for dualities that led to the insights on dualities in string theory. We briefly sketch

the physical interpretation of these results here.

Four-dimensional N = 1 theories have a well-known superspace formalism, and there is an anal-

ogous superspace formalism for four-dimensional N = 2 theories, albeit the details are more

involved. The N = 2 chiral superfield Ψ organizes the vector multiplet (Φ,λ αI ,A) and since the

number of supercharges are doubled, the chiral part of superspace now consists of four fermionic

directions. The full superspace measure would be d4xd8θ , but the action of N = 2 theories con-

sists only of an integral over the chiral piece d4xd4θ : it is given by

S ∝ Im
∫

d4xd4
θF0(Ψ). (5.50)

Ψ is taken to be in the adjoint representation of the gauge group and the usual N = 2 super-

Yang-Mills action is recovered by choosing F0(Ψ) ∝ trΨ2. Vacua of the theory are minima of the

bosonic potential which is essentially
∥∥[φ ,φ †]∥∥2 as discussed before. The Coulomb parameters

a are coordinates on the moduli space of vacua, and their vacuum expectation values give masses

to some of the other fields. By the supersymmetric Higgs mechanism, for generic choice of a the
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gauge group is broken U(n)→U(1)n at low energies, the massive fields may be integrated out

and the Wilsonian effective action is now of type (5.50) but with F0(A (x)) a general function of

the low-energy (super)fields, which in general receives quantum corrections from integrating out

the heavy fields and fast modes.

Supersymmetry restricts the perturbative corrections to F0 to be one-loop exact, so the only pos-

sibility which remains is that of instanton corrections, which themselves are severely constrained

by holomorphy of F0. In their original paper, Seiberg and Witten determined F0 by considering

the BPS spectrum of the SU(2), N = 2 theory, making a certain physically well-motivated ansatz

and imposing consistency conditions [51]. This implicitly determined the form of the instanton

corrections, but it was out of reach of analytic techniques at the time to obtain such corrections by

direct computation. Instanton counting was introduced as a framework to compute these correc-

tions directly, without making any ansatz or assumptions.

The form of the effective action explains the relation between the partition function and prepotential–

in general, for any statistical mechanical system in some volume V one has Z = exp{−V F} where

F is the free energy (density), which in the large volume limit is just the ground state energy

(density).

In the case of an N = 2 theory in the Ω-background, the superspace integral d4xd4θ should be

interpreted as integration in equivariant cohomology of R4 for the the differential d + iV (the su-

percharge preserved by Ω-background is just the lift of this differential to field space, also twisted

by global gauge transformations), and neglecting the variation of a(x) in space from its vacuum ex-

pectation value (valid in the large volume limit) the localization formula gives (by supersymmetry,

the antiholomorphic piece is δ -exact and decouples)

∫
d4xd4

θF0(A (x))→ 1
ε1ε2

F0(a). (5.51)
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Since the equivariant volume of R4 (that is, the equivariant integral of 1) is just 1/ε1ε2 (there is

only one fixed point and these are its weights), the large volume limit is ε1,ε2→ 0 so this is how

one extracts the prepotential.

From knowledge of the Seiberg-Witten prepotential, the low-energy behavior of the theory is com-

pletely determined and in principle any question may be answered by an appropriate analysis of

the effective action. We do not go further into the low energy physics of N = 2 theories (which is

itself fascinating, with connections to the so-called wall-crossing phenomenon, Hitchin systems,

and string theory [18], [19]) because it is well-documented in other places (see for example [54]

and references therein).

Branes and Generalized ADHM Data for Quiver Gauge Theories

It is remarkable that the ADHM construction of instantons can be obtained via string theory [11],

[62]. The key point is that the ADHM description of the moduli space M (k,n) is a hyper-Kähler

quotient, which in turn describes the Higgs branch of some U(k) gauge theory. The gauge theory

in question can be interpreted as living on the worldvolume of the instantons themselves, regarded

as a collection of k D(−1)-branes bound to a stack of n D3 branes in Type IIB string theory (see

[55] for a review of this point of view). Passing to the partially compactified instanton moduli

space corresponds to turning on the B-field in string theory [47].

The gauge theory living on the worldvolume of a stack of D3 branes in flat space is N = 4

supersymmetric Yang-Mills theory, while the above constructions computed the partition function

for N = 2 supersymmetric Yang-Mills. A consequence of [41] is that it is possible to obtain

the instanton contributions of the N = 4 theory from the point of view of the D(−1) branes, by

regarding instanton counting in the N = 4 theory as the problem of enumerating supersymmetric
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bound states of the D(−1)−D3 system in the Ω-background. The main result is that in addition

to the ADHM data (B1,B2, I,J), there are two more k× k matrix fields (B3,B4), which modify the

equations for vacua as

[B1,B2]+ IJ +[B3,B4]
† = 0[

B1,B†
1

]
+
[
B2,B†

2

]
+
[
B3,B†

3

]
+
[
B4,B†

4

]
+ II†− J†J = ζ 1K

[B1,B4]+ [B2,B3]
† = 0

[B1,B3]+ [B4,B2]
† = 0

B3I +B†
4J† = 0

B4I−B†
3J† = 0.

(5.52)

The equation
[
B1,B†

1

]
+ . . . may be replaced with a stability condition, and by adding together the

norm squares of the remaining equations, one notes that the cross terms cancel so that the space

of solutions to the above equations modulo U(K) is equivalent to the space of the solutions to the

holomorphic equations

[B1,B3] = [B1,B4] = [B2,B3] = [B2,B4] = 0

[B1,B2]+ IJ = [B3,B4] = 0

B3I = B4I = 0

JB3 = JB4 = 0

C[B1,B2,B3,B4]I(N) = K

(5.53)

modulo GL(K). It is clear that the stability condition, together with the above equations, implies

B3 = B4 = 0 on any solution so that the space of solutions is once again the instanton moduli

space M (k,n). However, the instanton partition function is different in this case because the

deformation complex for the above equations is modified by the presence of the B3,B4 fields,
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in spite of the fact that they vanish on the solution set. Mathematically, the modified equations

describe the same underlying manifold M (k,n), but define a different virtual fundamental class,

in this case the Euler class of an obstruction bundle. Physically, in the problem of enumeration of

the D(−1)−D3 bound states, the partition function may be reduced to a kind of supersymmetric

matrix model involving the B’s, and in this case there are additional fermion zero modes in the

matrix model.

The supersymmetric partition function of the system can be computed by considering the defor-

mation complex for the modified system of equations. In the spirit of Nekrasov’s calculus, it

is desirable to work equivariantly with respect to all symmetries of the problem. The modified

ADHM equations admit an additional equivariant parameter, which may eventually be identified

with the mass of an adjoint hypermultiplet field. The virtual character of the deformation complex

defines a class in the equivariant K-theory of the moduli space of solutions (which is in this case

once again the compactified instanton moduli space) known as the virtual tangent space.

Consider multiplying each Bα by a phase factor, Bα → qαBα . Scaling J→ q1q2J, it is evident that

this is a symmetry of the equations provided q1q2q3q4 = 1–in terms of equivariant parameters for

the rotations, one must have ε1 + ε2 + ε3 + ε4 = 0. This equation means that there is a Tn+3 worth

of symmetries acting on these equations.

The tangent space to the moduli space can be modeled, as a real vector space, as H1 of the following

complex:

0→ LieU(K)→ Hom(K,K⊗C2
12)⊕Hom(N,K)⊕Hom(K,N)⊕Hom(K,K⊗C2

34)

→ (End(K)⊗C3)⊕LieU(K)⊕ (Hom(N,K)⊗C2)→ 0.
(5.54)

One once again proves that the degree zero cohomology of this complex is trivial. Since B3 =

B4 = 0 on all solutions, degree one cohomology is the tangent space to instanton moduli space.
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The degree two cohomology of this complex forms a real vector bundle of rank 4kn over the

instanton moduli space. This is known as the obstruction bundle. It turns out in this case that the

obstruction bundle is isomorphic to the cotangent bundle of the instanton moduli space–this is a

consequence of the extended supersymmetry of N = 4 super-Yang-Mills (see [57] for more on

this). The virtual tangent space is then defined (in equivariant K-theory) to be the formal difference

H1−H2 of the nontrivial cohomologies of the above complex, and is denoted T vir.

An equivariant version of this complex is (in hopefully obvious notation)

0→ LieU(K)→ (
4

∑
α=1

q−1
α )End(K)⊕Hom(N,K)⊕q−1

1 q−1
2 Hom(K,N)

→ q−1
1 q−1

2 End(K)⊕q−1
1 q−1

3 End(K)⊕q−1
1 q−1

4 End(K)⊕LieU(K)⊕q−1
3 Hom(N,K)⊕q−1

4 Hom(N,K)→ 0.

(5.55)

The virtual character of this complex may be computed, but requires some care. It is not suitable for

localization formulas due to arbitrary choices we have made in assigning signs to the weights of the

equations, since they are non-holomorphic. Geometrically, it reflects the fact that the obstruction

bundle is a real vector bundle and requires a choice of orientation1. See also [41], [42].

What is well-defined and free of choices is the real virtual character. If T is the virtual character of

the above complex, this is given by T +T ∗–since it includes both signs on every weight, it is inde-

pendent of the choice of orientation. The instanton measure can then be defined by
√

E[T +T ∗].

The choice of sign in the square root should be handled with care, and is related to the choice of

orientation mentioned above, but we suppress these details and merely present a result which is

consistent.

With these preliminaries, we may compute the real virtual character. In what follows c.c. denotes

1I am grateful to Nikita Nekrasov for a clarifying explanation of this point.

68



“complex conjugate", or dual character–if one restricts to the compact subgroup of the complex

torus acting it is naturally the complex conjugate (note the two copies of LieU(K) fit together to

make End(K) = K⊗K∗):

(q1 + q2 + q3 + q1q2q3)KK∗+ c.c.+NK∗+ c.c.+ q1q2KN∗+ c.c.

−q1q2KK∗− c.c.−q1q3KK∗−q2q3KK∗− c.c.−q3NK∗− c.c.−q1q2q3KN∗−KK∗− c.c.

=(1−q3)(NK∗+ q1q2KN∗− (1−q1)(1−q2)KK∗)+ c.c.

=(1−q3)Tλ M (k,n)+ c.c.

(5.56)

In the last line we have assumed we are considering the tangent space to a fixed point λ . The

natural candidate for the holomorphic square root is then (1− q3)Tλ M (k,n). If one writes w j,

j = 1, ...,2kn for the weights in the holomorphic tangent to space M (k,n), the instanton partition

function is

Z = ∑
k≥0

qk
∑
λ

|λ |=k

∏
2nk
j=1(ε3 +w j)

∏
2nk
j=1 w j

. (5.57)

If one identifies ε3 = −m, then this is the partition function for the theory with a hypermultiplet

of mass m in the adjoint representation. The reason for this is that the instanton measure can be

interpreted as the localization computation of (if m is chosen as the weight in the fiber)

∑
λ

|λ |=k

∏
2nk
j=1(m−w j)

∏
2nk
j=1 w j

=
∫
M (k,n)

eTn+3(T ∗M (k,n)). (5.58)

This is the k-instanton contribution to the partition function of a theory with matter in the adjoint

representation (see for example [39]). Note that the Dirac zero modes for a hypermultiplet in the

adjoint representation can be identified with the cotangent bundle of instanton moduli space itself.
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When m = 0, the instanton partition function becomes that of N = 4 super-Yang-Mills theory

in the Ω-background. One has (the sum over λ , no underline, is just the sum over all Young

diagrams)

ZN =4(q) = ∑
k≥0

qk
∑
λ

|λ |=k

1 =
(
∑
λ

q|λ |
)n

=
( ∞

∑
k=0

qk p(k)
)n

=
qn/24

η(τ)n . (5.59)

p(k) is the number of partitions of the integer k. In the final equality, we have used a standard

result for the generating function of partitions of integers and recalled that q= e2πiτ , where τ is the

complexified gauge theory coupling constant. η(τ) is the Dedekind eta function. It is well-known

to transform nicely under τ 7→ −1/τ:

η(−1/τ) =
√
−iτη(τ). (5.60)

This is the famous S-duality of N = 4 supersymmetric Yang-Mills theory [32], [57].

This construction of generalized ADHM data can be used to compute the partition function of an

arbitrary ADE quiver gauge theory. The reason is that the equations for (B1,B2,B3,B4, I,J) have

a symmetry group SU(2)×U(1)× SU(2), where (B1,B2) transform as a doublet under the first

SU(2) and (B3,B4) transform as a doublet under the second SU(2). Choosing a discrete subgroup

Γ ⊂ SU(2) of the group acting on the B3,4 matrices and implementing the orbifold projection on

the ADHM data produces the instanton partition function for the N = 2 supersymmetric quiver

gauge theory of the same ADE type as Γ. Physically, this is a result of a construction of Douglas

and Moore [12] that identifies the low-energy effective theory on the worldvolume of D-branes

located at the tip of a C2/Γ orbifold singularity as a quiver gauge theory of the same ADE type as

Γ.

An illustrative case is Γ = Z3, corresponding to the N = 2 quiver gauge theory of type Â2. At
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the level of ADHM data, the vector spaces K and N decompose with respect to the Z3 action–

K splits into K0,K1, K2 and N splits into N0 and N1, N2. The subscripts label the irreducible

representation of Z3 that these spaces carry. The lowercase versions of these letters will be used for

the dimensions of the vector spaces. The B1,2 matrices split into three copies of themselves which

map Ki→Ki for i = 0,1,2. Likewise, the I,J matrices split into maps Ii : Ni→Ki, Ji : Ki→Ni. The

B3,4 matrices map the different K spaces into one another, specifically B3 sends Ki→ Ki+1 and B4

maps Ki→ Ki−1.

The full N = 4 theory in the Ω-background2 has instanton measure determined by the virtual

character (1− q3)Tλ M (k,n). To obtain the instanton measure for the quiver gauge theory, one

wishes to take the Z3-invariant part of this. The term Tλ M (k,n)Z3 just splits as the sum of the

three vector multiplet contributions for gauge groups U(ni), i = 0,1,2 (in the setup of the previous

chapter, where N is chosen to be a multiple of the regular representation, n0 = n1 = n2 = n, but

we continue to use the subscripts to distinguish the vertices). This is the same as a single vector

multiplet for the gauge group U(n0)×U(n1)×U(n2). In this theory there are three instanton

counting parameters, one for each U(ni) factor of the gauge group, called q0,q1,q2.

q3 carries the defining representation of Z3, due to the transformation rule for the matrices B3,4.

This term becomes (the index i is understood mod 3):

(q3Tλ M (k,n))Z3 = q3

2

∑
i=0

[NiK∗i+1 + q1q2KiN∗i+1− (1−q1)(1−q2)KiK∗i+1]. (5.61)

This represents the contribution of a matter field coupled to both gauge groups U(ni)×U(ni+1). To

understand this more, we decouple two of them, say U(n0) and U(n2) by sending their couplings

to zero. This kills all the instanton contributions, so that one sets K0 = K2 = 0. The contribution

2With the mass of the adjoint hypermultiplet turned on, the appropriate name for it is the N = 2∗ theory since the
Ω-background in the 34 directions breaks the N = 4 supersymmetry to N = 2.
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which remains is (for simplicity we also take the massless limit back to N = 4 so that q3 = 1):

N0K∗1 + q1q2K1N∗2 . (5.62)

This is exactly the contribution of n0 hypermultiplets in the antifundamental representation of

U(n1), and n2 hypermultiplets in the fundamental representation. The mass parameters are identi-

fied with the Coulomb moduli for the frozen gauge groups. The flavor symmetry can be thought of

as the global part of a non-dynamical gauge group. The extra factor q1q2 can be absorbed by shift-

ing the mass parameter by an amount ε1 + ε2–the convention for whether or not the fundamental

contribution includes Λ2C2 differs in various places in the literature.

Thus, in the full orbifold theory (without decoupling the other gauge groups), the matter content

consists of fields in the fundamental representation for U(ni) and the antifundamental of U(ni+1).

This reproduces what was found in the previous chapter using the explicit Lagrangian description

of the theories.
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CHAPTER 6: CROSSED INSTANTONS AND qq-CHARACTER

With the preliminaries finally in place, in the present chapter we exposit the theory of qq-characters.

We begin with their geometric origin from moduli spaces describing intersecting branes in string

theory, generalizing the ADHM construction discussed in the previous chapter. We then present

the formula for the characters in a number of theories, and explain their relation to Nakajima

quiver varieties. We briefly discuss the relation of the qq-characters to quantum integrable systems,

specifically the illustrative case of Toda chain and N = 2 pure supersymmetric Yang-Mills theory.

qq-characters from Intersecting Branes

In the previous chapter, it was observed that instanton calculus in quiver gauge theories is most

conveniently organized via a set of generalized ADHM data (B1,B2,B3,B4, I,J) describing D(−1)-

branes moving in the background of a stack of D3 branes in string theory (for nontrivial ADE quiver

gauge theories, one must additionally consider the geometry transverse to the D3 branes to be a

C2/Γ orbifold singularity). The Ba matrices, for a = 1,2,3,4, describe the coordinates of C4 as

seen by the D(−1) branes. To preserve symmetry between the 12 and 34 directions, it is tempting

to introduce another stack of D3 branes along the 34 directions, which intersect the original stack

transversely at the origin of C4. If the number of D3 branes along the 34 directions is w, then one

augments the generalized ADHM data with yet another vector space W ∼= Cw, and two more maps
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Ĩ : W → K, J̃ : K→W . Then one imposes the following set of equations on these matrices:

[B1,B2]+ IJ +([B3,B4]+ ĨJ̃)† = 0

[B1,B4]+ [B2,B3]
† = 0

[B1,B3]+ [B4,B2]
† = 0

B3I +B†
4J† = 0

B4I−B†
3J† = 0

B1Ĩ +B†
2J̃† = 0

B2Ĩ−B†
1J̃† = 0

J̃I− Ĩ†J† = 0[
B1,B†

1

]
+
[
B2,B†

2

]
+
[
B3,B†

3

]
+
[
B4,B†

4

]
+ II† + Ĩ Ĩ†− J†J− J̃†J̃ = ζ 1K .

(6.1)

The solutions are considered modulo the action of U(K). It is useful for later purposes to relabel the

vector space K and K′, and write its dimension correspondingly as k′. Then the space of solutions to

the above equations is denoted M (k′,n,w), and it is called the moduli space of crossed instantons

[41], “crossed" referring to the configuration of D3 branes. By examining these equations one sees

that the virtual or expected dimension of the space is−2nw, a negative number. It will be important

later that this is independent of k′.

A similar argument as in the case of the generalized ADHM construction for the N = 4 theory
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yields the following holomorphic description of the space of crossed instantons:

[B1,B3] = [B1,B4] = [B2,B3] = [B2,B4] = 0

[B1,B2]+ IJ = [B3,B4]+ ĨJ̃ = 0

B3I = B4I = 0

JB3 = JB4 = 0

B1Ĩ = B2Ĩ = 0

J̃B1 = J̃B2 = 0

C[B1,B2]I(N)+C[B3,B4]Ĩ(W ) = K′

(6.2)

modulo GL(K′). The space M (k′,n,w) is in general a complex variety which is singular and

consists of various components of distinct dimensions. In this way, its smoothness properties

resemble the moduli space of stable maps [25]. The group GL(N)×GL(W )× (C×)3 acts on this

space, and one can work equivariantly with respect to this action to define integration over this

space, by taking the equations above to define a particular virtual fundamental cycle against which

one can integrate using equivariant localization. The most succinct definition of the qq character

is then the equivariant integral of 1, in the sense defined in the previous chapter:

〈Xw〉= ∑
k′≥0

qk′
∫
[M (k′,n,w)]vir

1. (6.3)

This is referred to as a qq-character of type Â0. Since no orbifold is performed along the 34

directions, this computes a quantity relevant to the N = 2∗ theory. Since the second stack of branes

transversely interesects the original stack of branes, by integrating out the degrees of freedom

coming from the second stack one obtains a local observable in the gauge theory on the stack of

D3 branes spanning the 12 directions, which is why the above quantity is written as an expectation

value of the qq-character observable. What follows will be dedicated to unraveling this definition to
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obtain more useful information, by integrating out the second stack of branes directly. Performing

an orbifold along the 34 directions produces the qq-characters relevant for quiver gauge theories.

A special C× action

The group GL(N)×GL(W ) acts on the moduli space of crossed instantons, in particular its sub-

group C××C× ⊂GL(N)×GL(W ) acts on this space. It is easy to see that the diagonal C× group

acts trivially on the moduli space, while the anti-diagonal C× acts nontrivially and reflects the

coupling of the instantons on each worldvolume to the other. To make better sense of the definition

of the qq-character, it is useful to first localize the integral (6.3) with respect to this C× action, and

then analyze the rest of the symmetries of the problem. The variable x ∈ C is introduced as the

equivariant parameter for this C× action.

The fixed points of the anti-diagonal C× action have the following structure, as is readily verified.

The vector space K′ splits as a direct sum, K′ = K ⊕V , and one can choose K to be a trivial

representation of C×, and V to carry the defining one-dimensional representation (with multiplicity

dimV ), so that the elements of V are scaled uniformly by ex. Likewise, N transforms trivially and

W is scaled by ex under the C× action. The quotient is taken with respect to the subgroup of GL(K′)

preserving the decomposition K′ = K ⊕V , which is GL(K)×GL(V ). Then the holomorphic

crossed instanton equations (6.2), with this decompositon of K′ and quotiented by GL(K)×GL(V ),

imply that the matrices (B1,B2, I,J) define a U(n) instanton of charge k = dimK, and the matrices

(B3,B4, Ĩ, J̃) define a U(w) instanton of charge v = dimV . The fixed point set of this C× action

sits inside of the crossed instanton moduli space as

M (k′,n,w) ⊃
⊔

k′=k+v

M (k,n)×M (v,w). (6.4)
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Localization allows the integral (6.3) to be reduced to a sum of integrals over products of two

instanton moduli spaces, and the qq-character observable itself X (x) is defined by integrating

the class 1 along the fiber of the projection to M (k,n), in the equivariant sense. This is the

precise mathematical statement corresponding to “integrating out the other stack of branes". Note

in particular that the qq-character depends on the complex parameter x, and will eventually depend

on the rest of the equivariant parameters associated to the maximal torus of symmetries acting on

the moduli space M (v,w).

Partial Localization

We now carry out this localization explicitly. The result is an expression for the qq-character of

type Â0. First, the Atiyah-Bott theorem yields

∫
[M (k′,n,w)]vir

1 = ∑
k′=k+v

∫
M (k,n)×M (v,w)

1
eT(Nvir)

(6.5)

Here, T denotes the maximal torus of symmetries, and Nvir ∈ KT(M (k,n)×M (v,w)) is a class

in the equivariant K-theory of the fixed locus known as the virtual normal bundle. It is defined by

the relation (once again in equivariant K-theory):

T vir = TM (k,n)+TM (v,w)+Nvir (6.6)

where T vir is the virtual tangent space, defined as the alternating sum of the cohomologies of the

deformation complex associated to the equations (6.1). Once again, because the equations are non-

holomorphic and carry a nontrivial obstruction bundle, the obstruction bundle requires a choice of

orientation which leads to difficulties with signs, which we again suppress. By a computation
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identical to those of the previous chapter, one computes, for the real virtual tangent space,

T vir
R =(q−1

1 + q−1
2 + q−1

3 + q−1
4 )K′K′∗+K′N∗+ q−1

1 q−1
2 NK′∗+K′W ∗

+ q−1
3 q−1

4 WK′∗− (q−1
1 q−1

2 + q−1
1 q−1

3 + q−1
1 q−1

4 )K′K′∗− (q−1
3 + q−1

4 )K′N∗

− (q−1
1 + q−1

2 )K′W ∗−q−1
1 q−1

2 NW ∗−K′K′∗+ c.c.

(6.7)

Inserting K′ = K + exV to extract Nvir, one finds after some calculation (and fixing an orientation

for the obstruction bundle)

T vir = (1−q3)TM (k,n)+ (1−q2)TM (v,w)−q1q2exS∗C (6.8)

where we have defined

TM (k,n) = NK∗+ q1q2KN∗− (1−q1)(1−q2)KK∗

TM (v,w) =WV ∗+ q3q4VW ∗− (1−q3)(1−q4)VV ∗

S = (1−q1)(1−q2)K−N

C = (1−q3)(1−q4)V −W .

(6.9)

C is the equivariant K-theory class associated to the tautological complex on M (v,w). From the

above, the virtual normal bundle is calculated as

Nvir = −q3TM (k,n)−q2TM (v,w)−q1q2exS∗C . (6.10)

This allows one to write

〈Xw(x)〉= ∑
k′≥0

qk′
∫
[M (k′,n,w)]vir

1= ∑
k+v≥0

qk+v
∫
M (k,n)×M (v,w)

cε3(TM (k,n))cε2(TM (v,w))cx+ε(S∗C ).

(6.11)
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We have defined ε := ε1 + ε2. By noting that the Chern polynomial of TM (k,n) defines the

instanton measure in the theory, pulling out this factor one arrives at

Xw(x) = ∑
v≥0

qv
∫
M (v,w)

cε2(TM (v,w))cx+ε(S∗C ). (6.12)

Note that this has reduced the somewhat formal equivariant integral against [M (k′,n,w)]vir to a

tractable object. Note also that S∗ is the K-theory class defining the Y -observable upon taking the

Chern polynomial, so this object can be interpreted as a certain Laurent series in Y (x), and defines

a special x-dependent equivariant cohomology class of the instanton moduli space. It can then be

integrated over the space M (v,w) by a further localization computation, an issue to which we

return later.

Compactness Theorem

The main result of [41] is that as the parameter x ∈ C is varied, the fixed point set in the moduli

space of crossed instantons of the torus action remains compact. This implies that the expectation

value 〈Xw(x)〉 has no poles as a function of the parameter x. This is, at last, the counterpart of

the loop equation in the matrix model. Xw(x) is a combination of Y -observables which has no

poles as a function of x, which allows one to fix its analytic behavior by considering limits as

x→ ∞. This is the source of essentially all interesting applications of the qq-characters, as will be

explained shortly. We turn presently to the generalization of this construction to arbitrary quiver

gauge theories.
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qq-characters in Quiver Gauge Theories

Because of the ability to construct quiver gauge theories by considering D-branes at a singular

locus C2/Γ, the qq-characters for the quiver theories (of type ADE) can be obtained via orbifold

projection of the moduli space of crossed instantons, by restricting to the fixed locus of the Γ

action. The virtual tangent space T vir must be replaced by its Γ-invariant piece. For the term

(1−q3)TM (k,n), this simply defines the instanton measure of the associated quiver gauge theory.

The Γ-fixed part of the moduli space M (v,w) describes the moduli space of instantons on an ALE

space of the same ADE type as Γ, as explained in [26], [12]. This space may be given a quiver

description, as a so-called Nakajima quiver variety [34]. Denote the quiver variety by Mγ(v,w),

where v and w “fractionalize" into vectors v, w, with Vertγ components where γ is the graph

underlying the quiver, which is the affine Dynkin graph of corresponding ADE type. Then the

qq-character in the corresponding ADE quiver gauge theory is

Xw(x) = ∑
v

∏
i∈Vertγ

qvi
i

∫
Mγ (v,w)

cε2(T Mγ(v,w))cx+ε

( ⊕
i∈Vertγ

S∗i Ci

)
. (6.13)

Si and Ci denote the pieces of S and C valued in each irreducible representation i ∈ Vertγ which

correspond to vertices of γ via the McKay correspondence, but they admit a definition purely in

terms of the underlying quiver γ and its path algebra. With this in mind, it becomes clear that

this formula does not depend on the fact that γ is an affine Dynkin graph of type ADE, so it can

be generalized to arbitrary quivers. It is Nekrasov’s eq. 194 in [40], in the case where there are

only bifundamental hypermultiplets and no fundamental hypermultiplets at nodes (these can be

engineered if desired by starting with bifundamental hypermultiplets and decoupling some gauge

group nodes, so that the decoupled nodes become flavor symmetries).

We now turn to the explicit computation of qq-characters in examples. We consider the case of
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qq-characters for arbitrary w in quiver gauge theories of type A1 and the fundamental qq-characters

(a name to be explained below) of type Ar. The explicit formulas will illustrate the nomenclature

attached to these observables. The qq-characters are usually infinite sums in Y -observables that

define Laurent series, but for simplicity in the examples we consider they will always reduce to

finite sums.

qq-characters of Type A1

To obtain the A1 quiver variety, we can take the Z3 orbifold projection of M (v′,w′) and set two

of the three V -spaces to zero. The resulting space is the space of pairs (Ĩ, J̃) ∈ Hom(W ,V )⊕

Hom(V ,W ) such that ĨJ̃ = 0, subject to the stability condition that Ĩ is surjective. This space is

isomorphic to T ∗Gr(v,w), and thus is nonempty only for 0≤ v≤ w.

Denote the equivariant parameters for the GL(W ) action in the vector space W by (ν1, . . . ,νw), and

write ν := diag(ν1, . . . ,νw). Since J̃ also scales under (C×)3 as J̃→ q−1
3 q−1

4 J̃ = q1q2J̃, the fixed

points of the torus action on this space are characterized by the existence of a g ∈GL(V ) such that

gĨe−ν = Ĩ

q1q2eν J̃g−1 = J̃.
(6.14)

These equations imply that J̃ = 0, and that V admits a decomposition V = ⊕ j∈JVj, where each

Vj has eigenvalue ν j under ν , and J ⊂ {1,2, . . . ,w} is a subset of cardinality v. It is convenient to

introduce the notation [w] for the set {1,2, . . . ,w}. Thus the fixed points of the torus action on this

space are labeled by subsets of size v of a set of size w. If we write M(v,w) = T ∗Gr(v,w) for the
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quiver variety, the character of the tangent space at a fixed point may be easily computed as

T M(v,w) =WV ∗+ q−1
1 q−1

2 VW ∗−VV ∗−q−1
1 q−1

2 VV ∗ = ∑
i∈I
j∈J

(eνi−ν j + q−1
1 q−1

2 eν j−νi). (6.15)

In this sum, I denotes the complementary subset to J, such that It J = [w].

Likewise, for the tautological complex in this case one finds

C = V + q−1
1 q−1

2 V −W = ∑
j∈J

q−1
1 q−1

2 eν j −∑
i∈I

eνi . (6.16)

Taking into account carefully the contributions of the decoupled nodes to⊕i∈Vertγ S∗i Ci, and shifting

the mass parameters appropriately, one has in the limit Â2→ A1,

⊕
i∈Vertγ

S∗i Ci→ S∗C + q−1
1 q−1

2 V M∗ (6.17)

where M is the multiplicity space, which decomposes with respect to the maximal torus of fla-

vor symmetry into eigenspaces with eigenvalues emi , i = 1, . . . ,2n (in other words, one has 2n

fundamental hypermultiplets), and C (no subscript) is as above.

With these preliminaries in place, one can easily compute the following integral by localization:

∫
M(v,w)

cε2(T M(v,w))cx+ε(S∗C + e−εV M∗)

= ∑
J⊂[w]
|J|=v

∏
i∈I
j∈J

(νi−ν j + ε2)(ν j−νi− ε1)

(νi−ν j)(ν j−νi− ε) ∏
i∈I

Y (x+ ε +νi)∏
j∈J

P(x+ν j)

Y (x+ν j)
.

(6.18)

In this equation, P(x) = ∏
2n
i=1(x−mi) is a polynomial encoding the mass parameters. Introducing
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the function

S(x) =
(x+ ε1)(x+ ε2)

x(x+ ε)
(6.19)

the qq-character of type A1 may be written

Xw(x) = ∑
ItJ=[w]

q|J|∏
i∈I

Y (x+ ε +νi)∏
j∈J

P(x+ν j)

Y (x+ν j)
∏
i∈I
j∈J

S(νi−ν j). (6.20)

In the case w = 1, one obtains the so-called fundamental qq-character of type A1:

X1(x) = Y (x+ ε)+ q
P(x)
Y (x)

(6.21)

and the compactness theorem mentioned above implies 〈X1(x)〉 has no singularities in x. Com-

bined with the asymptotics of Y (x) for x→ ∞, one concludes this expectation value is a degree

n polynomial in x. In the limit of vanishing Ω-background parameters, this encodes the Seiberg-

Witten curve of N = 2 supersymmetric Yang-Mills theory with gauge group U(n) coupled to 2n

hypermultiplets in the fundamental representation (that is, the A1 quiver gauge theory). To recover

the pure Yang-Mills theory, one can decouple the hypermultiplets by sending their mass to infinity,

while sending q→ 0 keeping fixed the quantity Λ2n = q∏
2n
i=1(−mi). In this way, one reproduces

the Seiberg-Witten curve for pure Yang-Mills obtained in the previous section.

Note that the qq-character (6.20) provides an answer to the question posed in the introduction, as it

may be expressed in terms of the geometry of the quiver variety via the integration formula (6.13).

The qq-characters resemble characters of representations of sl2, but are deformed by the various

parameters ε ,m,ν .
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Fundamental qq-characters of Type Ar

Let us generalize from the case A1 to the case of Ar quiver theories, but consider only the funda-

mental qq-characters. These are the characters associated with quiver varieties M(v,w) of type Ar,

where w has only one nonzero component, which is 1. Note that v, w are r-component vectors. The

quiver variety can be obtained by taking a Zr+2 orbifold projection of M (v′,1) and decoupling

the vertices associated to the 0 and r+1 representation of Zr+2. In fact, these quiver varieties turn

out to be merely points, but nonetheless the qq-characters are nontrivial. V decomposes into vector

spaces Vi, i = 1, . . . ,r labeled by the nodes of the Ar quiver, and there is a one-dimensional vector

space W`
∼= C at the `-th node, for some 1≤ `≤ r; the corresponding dimension vector is denoted

w`.

Consider the torus fixed points on M (v′,1), that is to say, Young diagrams. Because the matrices

B3,4 map the Vi spaces into one another, it is easy to see that the fixed points on the quiver varieties

M(v,w`) correspond to partitions of length at most `, that is, λ1 ≥ λ2 ≥ ·· · ≥ λ` ≥ 0, with λ1 ≤

r+ 1− `. The map from the partition λi to the sequence of numbers ai given by

ai = λi− i+ ` (6.22)

maps the set of partitions of length ≤ ` and λ1 ≤ r+1−` to sequences (ai)i=1,...,` of integers such

that r ≥ a1 > a2 > · · ·> a` ≥ 0. These can be equivalently identified with subsets I ⊂ {0,1, . . . ,r}

with |I|= `.

Because of the Zr+2 orbifold procedure, the objects S and C split as Si, Ci, for i = 1, . . .r. One

can write Y0(x) = P1(x) and Yr+1(x) = Pr(x) for the polynomials P1,r(x) encoding the masses of

the fundamental hypermultiplets attached to the first and r-th nodes. The other Si produce the

observables Yi(x) associated with each U(n) gauge group attached to a node of the Ar Dynkin
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diagram. One has the formula

Ci = Vi−q3Vi−1−q4Vi+1 + q3q4Vi−δi`W`. (6.23)

It is convenient to change notation and use the index α ∈ Vertγ to label the objects Sα and Cα

associated to the vertices. Then one has, upon setting q4 = q−1
1 q−1

2 , q3 = 1 (which can always be

assumed up to a shift of some hypermultiplet mass):

⊕
α∈Vertγ

S∗αCα =
⊕

α∈Vertγ

−S∗α(Vα−1−Vα)+ q−1
1 q−1

2 S∗α(Vα −Vα+1)−S∗`W`. (6.24)

With this choice of q3,q4 parameters, introducing the shorthand q12 := q1q2, one has

Vα = ∑
(i, j)∈λ

`+ j−i=α

q1− j
12 . (6.25)

Vα is expressed as a sum over boxes in the Young diagram, and in the above equation, `+ j− i = α

is understood as holding mod r+ 2. One has the following elementary combinatorial identity:

Vα −Vα+1 =
`

∑
i=1

(q1−i
12 δai,α −q1−i

12 δ`−i,α). (6.26)

Substituting this into the above equation, one finds

⊕
α∈Vertγ

S∗αCα =
⊕̀
i=1

(q1−i
12 S∗`+1−i−q1−i

12 S∗ai+1 + q−i
12S∗ai

−q−i
12S∗`−i)−S∗`

=
⊕̀
i=1

(q−i
12S∗ai

−q1−i
12 S∗ai+1)−q−`12 S∗0

(6.27)

This expression is desirable because it clarifies the way the expression on the left hand side decom-

poses into classes of the Y -observables, which enables one to find the qq-character as an explicit
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Laurent series in Y ’s.

What remains to determine is the class of the tangent space T M(v,w`), which can be obtained as

the Zr+2-invariant part of the tangent space TM (v′,1). From the combinatorial formula (5.30),

one has, at the fixed point corresponding to the Young diagram λ

TM (v′,1) = ∑
�∈λ

(q`(�)+1
4 q−A(�)

3 + q−`(�)
4 qA(�)+1

3 ). (6.28)

Taking the Zr+2-invariant piece means that the only boxes which may contribute are those with

hook length h(�) = 0 mod r+ 2. However, because the partitions λ are of length ≤ ` and have

λ1 ≤ r + 1− `, the hook length of every box satisfies the bounds 1 ≤ h(�) ≤ r, so no boxes

contribute. From this, one concludes that the quiver variety M(v,w`) must be of dimension

zero. Since it is known that Nakajima quiver varieties are smooth and connected, it follows that

M(v,w`) = {pt}.

Since the quiver varieties are just single points, the integral in (6.13) becomes rather trivial and the

main objective is to compute the virtual Chern polynomial of⊕α∈Vertγ S∗αCα . If the fixed points are

indexed by the sequences r ≥ a1 > a2 > · · ·> a` ≥ 0, then one has for the qq-character

Xw`
(x) = Y0(x+(1− `)ε) ∑

(ai)
∏

α∈Vertγ

qvα

α

`

∏
i=1

Yai+1(x+(2− i)ε)
Yai(x+(1− i)ε)

. (6.29)

Now one observes that

∏
α∈Vertγ

qvα

α = (qa1qa1−1 . . .q`)(qa2 . . .q`−1) . . . (qa` . . .q1) =
`

∏
i=1

(q1q2 . . .qai)×
1

∏
`−1
i=1 q

`−i
i

. (6.30)

It is thus natural to introduce r+ 1 (redundant) variables zi, i = 0,1, . . . ,r via

zi = z0q1q2 . . .qi. (6.31)
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In terms of these variables, the qq-character becomes

Xw`
(x) =

Y0(x+(1− `)ε)

z0z1 . . .z`−1
∑
(ai)

`

∏
i=1

zai

Yai+1(x+(1− i)ε + ε)

Yai(x+(1− i)ε)
. (6.32)

To complete the simplification of the expression, define the functions (for i = 0, . . . ,r)

Λi(x) = zi
Yi+1(x+ ε)

Yi(x)
(6.33)

and for a finite set I, define the height function hI : I→Z by hI(i) = #{ j| j < i}, so that in particular

for I = {a1,a2, . . . ,a`}, hI(ai) = `− i. Then one has

Xw`
(x) =

Y0(x+(1− `)ε)

z0z1 . . .z`−1
∑

I⊂{0,1,...,r}
|I|=`

∏
i∈I

Λi(x+(hI(i)− `+ 1)ε). (6.34)

This is exactly the formula presented in [40], see eq. 160-161. It is a deformed version of an

elementary symmetric polynomial in the Λi variables, which is the same thing as a character of the

representation ∧`Cr+1 of SL(r+ 1,C).

First Application: Seiberg-Witten Geometry of Quiver Gauge Theories

Equipped with the fundamental qq-characters of type Ar, it is simple to characterize the Seiberg-

Witten geometry of these gauge theories. Let X`(x) denote the `-th fundamental qq-character of

type Ar. The compactness theorem implies that 〈X`(x)〉 is nonsingular in x, and by considering

the growth at large x one concludes that it is a polynomial. Introduce the expectation values yi =

〈Yi(x)〉 of the Y -observables, where i = 1, . . . ,r. In the limit ε1,2 → 0, the expecation values of

qq-characters become Laurent series in yi variables, and the nonperturbative Dyson-Schwinger
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equations become

χ`(x,yi) = T`(x) (6.35)

for 1≤ `≤ r, for some polynomials T`(x). This is a set of r independent algebraic equations on the

r+ 1 variables (x,y1, . . . ,yr), and therefore defines an algebraic curve. This is the Seiberg-Witten

curve of the quiver gauge theory, in the description of Nekrasov and Pestun [46]. This is in fact a

general phenomenon: for a quiver gauge theory of type ADE, finite or affine, the Seiberg-Witten

geometry is determined by the fundamental characters of the corresponding ADE group, in the

same manner as above. The qq-characters provide a general context for this phenomenon, as they

are constructed at arbitrary values of the Ω-deformation parameters, while the ordinary characters

and Seiberg-Witten geometry emerge only in the flat space limit. See the paper [46] for a very

detailed analysis of the geometry and physics of these Seiberg-Witten curves.

Application: Wavefunctions of Quantum Integrable Systems

It is also possible to use the theory of qq-characters to make contact with quantum integrable

systems. In [48], the authors showed that if one considers N = 2 supersymmetric gauge theories in

the special Ω-background where ε1 is fixed but ε2→ 0, then the Seiberg-Witten geometry becomes

quantized, with the parameter ε1 playing the role of Planck’s constant. Using the well-known link

between Seiberg-Witten theory and integrable systems [21], this provides a mechanism for the

quantization of integrable systems using instanton calculus in four-dimensional gauge theory. By

introducing a defect supported along a surface into the gauge theory, one is able to produce a

wavefunction of the quantum integrable system. The qq-characters in the presence of these defect

operators allow one to concretely realize these statements. For this section, consider pure N = 2

super-Yang-Mills with gauge group U(n) for simplicity.

One way to generate a surface defect in gauge theory is to place the theory on an orbifold [44].
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For z = (z1,z2) ∈ C2, consider a surface defect placed along z2 = 0, so that the worldvolume of

the defect is the z1 plane. We consider placing the theory on a Zp orbifold for some p: we identify

z2 ∼ ωz2 for ω a primitive p-th root of unity.

On the orbifold, which has fundamental group Zp, there is now room for an instanton gauge field

to approach a nontrivial flat connection at infinity, so there is a decomposition

N =
⊕

j

N j⊗R j (6.36)

where R j, j = 0, ..., p−1 are the irreducible representations of Zp, and N j is a multiplicity space.

The index j is considered mod p. In the representation R j, the generator ω is sent to ω j. Likewise,

there is a decomposition

K =
⊕

j

K j⊗R j. (6.37)

The choice of flat connection (decomposition of N) specifies the surface defect. The case of interest

to is when p = n and N is the regular representation, so that dimN j = 1 for each j. For this reason,

the surface defect is known as the regular defect. The partition function in the presence of the

defect is denoted by Ψ. Due to the above decomposition of the vector space K, the instanton

counting parameter q also fractionalizes into parametrs qi, which are interpreted as moduli of the

surface defect, and on which the surface defect partition function depends.

Since Y = E[exS∗], the decomposition S =⊕ j(S j⊗R j) allows one to introduce Yj(x) = E[exS∗j ]–

thus, the Y observable fractionalizes in the presence of the defect. The original Y -observable is

given by Y (x) = ∏ j Y j(x). It is possible to go back through the derivation of the qq-character

observable in the presence of a defect, and one finds for the pure N = 2 theory that the expression

〈
Y`+1(x+ ε)+ q`

1
Y`(x)

〉
S

(6.38)
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has no poles for any x ∈ C, where the index ` runs from 1 to n and is considered modulo n. The

subscript signifies that we take the expectation value in the background of a defect; in other words

using the orbifolded instanton measure.

The change of variables q` = Λ2ex`−x`−1 is convenient. Taking the coefficient of x−1 of the equation

above says that the quantity

ε1(σ`−σ`+1 + ε2k`)+
ε2

1
2
[(k`− k`+1)

2 + k`− k`+1]−a`+1ε1(k`− k`+1)+ q` (6.39)

has vanishing expectation value. The variables k` are the instanton charges associated with each

representation of Zn, in other words the instanton contributions are weighted as ∏` q
k`
` . σ` is a

complicated object, the details of which we suppress. Summing over ` (recalling that it is consid-

ered modulo n) one has

ε1ε2 ∑
`

〈k`〉S +
ε2

1
2 ∑

`

〈(k`− k`+1)
2〉S − ε1 ∑

`

a`+1〈(k`− k`+1)〉S +∑
`

q`〈1〉S = 0. (6.40)

The surface defect partition function is a function Ψ(Λ,x1, . . . ,xn,a1, . . . ,an,ε1,ε2). In terms of

these variables one has, as is easily verified by considering the orbifolded instanton measure,

〈
∑
`

k`
〉

S
=

1
2

Λ
∂ Ψ
∂ Λ

〈(k`− k`+1)〉S =
∂ Ψ
∂x`

(6.41)

so that one is left with

(
1
2

ε1ε2Λ
∂

∂ Λ
+

ε2
1
2 ∑

`

(
∂

∂x`
− a`+1

ε1

)2
− 1

2 ∑
`

a2
` +Λ2

∑
`

ex`−x`−1

)
Ψ = 0. (6.42)
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Now we take the limit ε2→ 0 and substitute in the expected asymptotics

Ψ ∼∏
`

e
a`+1

ε1
x`e

1
ε2

W̃
(ψ +O(ε2)) (6.43)

to find (
1
2

ε1Λ
∂W̃
∂ Λ

+
ε2

1
2 ∑

`

∂ 2

∂x2
`

− 1
2 ∑

`

a2
` +Λ2

∑
`

ex`−x`−1

)
ψ = 0. (6.44)

Rearranging, this says that

(
ε2

1
2 ∑

`

∂ 2

∂x2
`

+Λ2
∑
`

ex`−x`−1

)
ψ = Eψ (6.45)

where

E =
1
2 ∑

`

a2
` −

ε1

2
Λ

∂W̃
∂ Λ

. (6.46)

This establishes that the function ψ is a wavefunction of periodic Toda chain. The quantity W̃ is

the effective twisted superpotential introduced in [48], and it determines the exact energy levels of

the quantized integrable system. These manipulations illustrate the utility of qq-characters, as the

qq-characters in the presence of surface defects are able to allow one to construct wavefunctions

of nontrivial quantum integrable systems.

The applications of the qq-characters that we have presented only scratch the surface of the theory.

Readers are directed to [43], [49] for more, in particular in connection with the so-called BPS/CFT

correspondence relating the BPS sector of N = 2 gauge theories to two-dimensional conformal

field theories.
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CHAPTER 7: CONCLUSION

In this thesis we have reviewed some of the modern developments in instanton calculus in N = 2

supersymmetric gauge theories. We surveyed the background material, both the results from matrix

models which helped to inspire these developments as well as the basics of modern instanton

calculus, including the ADHM construction, partial compactification of instanton moduli spaces,

and the Ω-deformation. We then explained, using motivation from string theory, the moduli space

of crossed instantons and provided first-principles calculations of the qq-character observables in

gauge theory. These techniques allowed us to give short and direct derivations of the Seiberg-

Witten geometry of all theories under consideration, in a manner that paralleled the large N limit

of matrix models. We also briefly sketched a relation to the theory of quantum integrable systems.

It would be interesting to attempt to extend the philosophy of nonperturbative Dyson-Schwinger

equations beyond the realm of supersymmetric theories, as a way to study symmetries of more

interesting quantum field theories such as pure Yang-Mills. However, this is likely to be extraordi-

narily challenging. It would also be interesting to consider in more detail the Yangian symmetries

which underlie the qq-characters; as explained in an early chapter, these symmetries can arise in

geometric representation theory and one has an explicit description of the action of the algebra on

the cohomologies of quiver varieties. While the gauge theory calculations hint at their presence

via the qq-characters, there is (at least as far as the author knows) no direct construction of the ac-

tion of these algebras on the quantum field theory in question. It could be rewarding to attempt to

pursue this direct construction. Nekrasov’s localization technique can also be generalized beyond

the realm of four dimensional instantons, to consider counting supersymmetric configurations in

various theories of various dimensions (the localization calculations in Donaldson-Thomas theory

[30], [31] can be interpreted as a six-dimensional version of instanton counting, for example). Per-

haps there is an analog of qq-characters in all of these “BPS state counting" theories that organizes
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non-obvious symmetries hiding behind the partition functions.
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