
University of Central Florida University of Central Florida 

STARS STARS 

Honors Undergraduate Theses UCF Theses and Dissertations 

2022 

Multicolor Ramsey and List Ramsey Numbers for Double Stars Multicolor Ramsey and List Ramsey Numbers for Double Stars 

Jake Ruotolo 
University of Central Florida 

 Part of the Discrete Mathematics and Combinatorics Commons 

Find similar works at: https://stars.library.ucf.edu/honorstheses 

University of Central Florida Libraries http://library.ucf.edu 

This Open Access is brought to you for free and open access by the UCF Theses and Dissertations at STARS. It has 

been accepted for inclusion in Honors Undergraduate Theses by an authorized administrator of STARS. For more 

information, please contact STARS@ucf.edu. 

Recommended Citation Recommended Citation 
Ruotolo, Jake, "Multicolor Ramsey and List Ramsey Numbers for Double Stars" (2022). Honors 
Undergraduate Theses. 1197. 
https://stars.library.ucf.edu/honorstheses/1197 

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/honorstheses
https://stars.library.ucf.edu/thesesdissertations
https://network.bepress.com/hgg/discipline/178?utm_source=stars.library.ucf.edu%2Fhonorstheses%2F1197&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/honorstheses
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/honorstheses/1197?utm_source=stars.library.ucf.edu%2Fhonorstheses%2F1197&utm_medium=PDF&utm_campaign=PDFCoverPages


MULTICOLOR RAMSEY AND LIST RAMSEY NUMBERS FOR DOUBLE STARS

by

JAKE RUOTOLO

A thesis submitted in partial fulfilment of the requirements
for the Honors Undergraduate Thesis Program in Mathematics

in the College of Sciences
in the College of The Burnett Honors College

at the University of Central Florida

Spring 2022 Term

Thesis Chair: Dr. Zi-Xia Song



ABSTRACT

The core idea of Ramsey theory is that complete disorder is impossible. Given a large

structure, no matter how complex it is, we can always find a smaller substructure that has

some sort of order. For graphs G and H we write G −→ (H; k) if every k-edge-coloring of G

contains a monochromatic copy of H in color i for some i ∈ {1, 2, . . . , k}. Similarly, we write

G 6−→ (H; k) if there exists a k-edge-coloring ofG with no monochromaticH. Such a coloring

c is a critical k-coloring. The k-color Ramsey number of the graph H, denoted r(H; k), is

the smallest integer N such that KN −→ (H; k), where KN is the complete graph on N

vertices. Despite active research for decades, very little is known about Ramsey numbers

of graphs. This is especially true for r(H; k) when k ≥ 3, also known as the multicolor

Ramsey number of H. Let Sn denote the star on n + 1 vertices, the graph with one vertex

of degree n (the center of Sn), and n vertices of degree 1. The double star S(n,m), where

n ≥ m ≥ 1, is the graph consisting of the disjoint union of two stars Sn and Sm together

with an edge joining their centers. In this thesis, we study the multicolor Ramsey number

of double stars. We obtain upper and lower bounds for r(S(n,m); k) when k ≥ 3 and prove

that r(S(n,m); k) = nk + m + 2 when k ≥ 3 is odd and n is sufficiently large. We also

investigate a generalization of the Ramsey number known as the list Ramsey number. Let

L : E(Kn)→
(N
k

)
be an assignment of k-element subsets of N to the edges of Kn. A coloring

c : E(Kn)→ N is said to be an L-coloring if c(e) ∈ L(e) for all e ∈ E(Kn). The k-color list

Ramsey number r`(H; k) of a graph H is defined as the smallest n such that there is some

L : E(Kn)→
(N
k

)
for which every L-coloring of Kn contains a monochromatic copy of H. In

this thesis, we study r`(S(1, 1); p) and r`(Sn; p) where p is an odd prime number.
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CHAPTER 1: INTRODUCTION

We begin this thesis by introducing basic definitions and notation. Let N be the set of natural

numbers. For any n ∈ N, define [n] := {1, 2, . . . , n}. For a finite set V , we use |V | to denote

number of elements in V and [V ]2 to be the set of 2-element subsets of V . A graph is a pair

G = (V,E) of sets where E ⊆ [V ]2. The vertex set of a graph G is denoted V (G), its edge set

E(G). We say that |V (G)| is the order of G and |E(G)| is the size of G. We frequently write

the order and size of G as |G| and e(G) respectively. For convenience, we write the edge

{u, v} ∈ E(G) as uv. We say u, v are adjacent if uv ∈ E(G). If e = uv ∈ E(G), then u and v

are incident with e. The two vertices incident with an edge are the ends of that edge. A graph

G is complete if its vertices are pairwise adjacent. The complement of a graph G, denoted

G, is the graph with vertex set V (G) = V (G) and edge set E(G) = {uv : uv /∈ E(G)}. A

graph H is said to be a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G). For U ⊆ V (G),

G [U ] is the graph with vertex set U and edge set {uv ∈ E(G) : u, v ∈ U}. The neighborhood

of a vertex v ∈ V (G) is the set NG(v) = {u : uv ∈ E(G)}, and the degree of v in G is

dG(v) = |N(v)|. When the context is clear we omit the subscript in NG(v) and dG(v). The

minimum degree, denoted δ(G), is min{d(v) : v ∈ V (G)}. Similarly, the maximum degree,

denoted ∆(G), is max{d(v) : v ∈ V (G)}. For subsets A,B of V (G) an (A,B)-edge is an

edge with one end in A and one end in B.

Now we define some useful graphs. The join of two graphs G and H, written G + H, is

the graph obtained from disjoint copies of G and H by adding an edge between each pair of

vertices u, v where u ∈ V (G) and v ∈ V (H). Given a graph G and positive integer n, the

graph nG is the disjoint union of n copies of G. The complete graph on n vertices is a Kn

and Kn is an independent set. The complete bipartite graph Kn,m is Kn +Km. A path is a

nonempty graph with vertex set V = {v1, v2, . . . , vn}, edge set E = {vivi+1 : i ∈ [n− 1]} and
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is denoted Pn. We often write a path as a sequence of vertices v1v2 . . . vn−1vn, where vivi+1

are adjacent for all i ∈ [n− 1]. A matching of size n is a nK2. The graph Sn is a star on

n+ 1 vertices and is a graph with exactly one vertex with degree n and n vertices of degree

1. The center of a Sn is the vertex of degree n and a leaf is a vertex of degree 1. The double

star S(n,m), where n ≥ m ≥ 1, is the graph consisting of the disjoint union of two stars Sn

and Sm together with an edge joining their centers. A subdivided star St
n where n ≥ t ≥ 1

is the graph obtained from Sn by subdividing t distinct edges exactly once.

Figure 1.1: S4 Figure 1.2: S(3, 2)

Figure 1.3: S2
3

We end this part of the introduction with definitions concerning k-edge colorings and Ramsey

numbers. A k-edge-coloring of a graph G is a function τ : E(G)→ [k] that assigns a number

to each edge in G. A k-edge-coloring is proper if adjacent edges receive different colors.

Given a graph G, the smallest positive integer k such that there exists a proper k-edge-color

of G is the chromatic index of G, written χ′(G). A subgraph H of a k-edge-colored graph G

is monochromatic if τ(e) = i for all e ∈ E(H) where i ∈ [k]. For graphs G,H1, H2, . . . , Hk we

write G −→ (H1, H2, . . . , Hk) if every k-edge-coloring of G contains a monochromatic copy

of Hi in color i for some i ∈ [k]. Similarly, we write G 6−→ (H1, H2, . . . , Hk) if there exists
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a k-edge-coloring of G with no monochromatic Hi in color i for all i ∈ [k]. Such a coloring

c is a critical k-coloring. When H = H1 = H2 = . . . = Hk we write G −→ (H; k) and

G 6−→ (H; k) respectively. The k-color Ramsey number of the graphs H1, H2, . . . Hk is the

smallest integer N such that KN −→ (H1, H2, . . . , Hk) and is denoted by r(H1, H2, . . . , Hk).

When H = H1 = H2 = . . . = Hk we write r(H; k) instead of r(H1, H2, . . . , Hk).

The main focus of this thesis is an area of mathematics called Ramsey theory. Ramsey

theory is a subfield of combinatorics that is primarily concerned with finding or estimating

the smallest size of a collection of objects that guarantees the existence of a specific ordered

pattern. In this thesis we focus on graph Ramsey theory which grew from the following

theorem known as Ramsey’s theorem.

Theorem 1.0.1 (Ramsey [15]). For a given positive integer k, and any positive integers

n1, n2, . . . , nk, there exists a number r(n1, n2, . . . , nk) such that if the edges of a complete

graph G on r(n1, n2, . . . , nk) vertices are colored with k distinct colors, then for some i ∈ [k],

G has Kni
as a subgraph, with all edges of Kni

colored by color i. That is, r(n1, n2, . . . , nk)

is the minimum number of vertices r such that Kr −→ (Kn1 , Kn2 , . . . , Knk
).

Ramsey theory is a notoriously difficult field of mathematics. Despite being very active,

Ramsey numbers are known for very few classes of graphs. To illustrate the idea behind

Ramsey theory, we look at a simple example.

Example 1. r(S(2, 1); 2) = 6.

Proof. In order to prove that r(S(2, 1); 2) = 6, we must show that 6 ≤ r(S(2, 1); 2) and

r(S(2, 1); 2) ≤ 6. First we show 6 ≤ r(S(2, 1); 2). To do this we show K5 6−→ (S(2, 1); 2).

We can partition K5 into edge-disjoint C5 and C5. Note C5 is also a C5. Color the edges of one

C5 using blue and the other red. Under this coloring K5 does not contain a monochromatic
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Figure 1.4: A 2-edge-coloring of K5 with no monochromatic S(2, 1).

copy of S(2, 1), as desired. This coloring is shown in the figure above. Now we show that

r(S(2, 1); 2) ≤ 6. We must show that K5 −→ (S(2, 1); 2). Let G be a 2-edge-colored K6 and

label the vertices of G as v1, v2, . . . , v6. By the pigeonhole principle, v6 is incident with at

least three edges of the same color, say red. We may assume v6vi is red for all i ∈ [3]. If

there exists i ∈ [3] and j ∈ {4, 5} such that vivj is red, then we have a red S(2, 1). We may

assume that for all i ∈ [3] and j ∈ {4, 5}, vivj is blue. Then we have a blue S(2, 1) where v4

is the center of a blue S2 with leaves {v1, v2} and v3 is the center of a blue S1 with {v5} as

a leaf. This completes the proof.

While this example is simple, very little is known about Ramsey numbers. The prominent

mathematician Paul Erdős once said if aliens demanded that we find r(K6; 2) in a year

we would have no choice but to launch a preemptive attack, suggesting the difficulty of

computing Ramsey numbers.

In Chapter 2 we introduce Ramsey theory as a field of study and discuss previous work
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related to this thesis. We discuss the history, classical problems, and its interaction with

other fields of mathematics.

In Chapter 3 we introduce the list Ramsey number, a recent variation on the Ramsey number.

We discuss the previous work on list Ramsey numbers, and open questions.

In Chapter 4 we begin presenting our original research. The focus in this section is our

results on Ramsey numbers of double stars and subdivided stars.

In Chapter 5 we prove original results for the list Ramsey numbers of stars, double stars,

and subdivided stars.

In Chapter 6 we discuss future work.
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CHAPTER 2: RAMSEY THEORY AND KNOWN RESULTS

Background

While our focus is on graph Ramsey theory, problems in Ramsey theory deal with many

types of mathematical structures. Ramsey’s original theorem said, in essence, that complete

disorder is impossible; every large enough collection of objects contains an ordered pattern.

One of the earliest results in Ramsey theory is Van Der Waerden’s Theorem in 1927, which

studied patterns in subsets of the positive integers. A k-term arithmetic progression is a

sequence of positive integers of the form a+ id, where a, d ∈ N and i ∈ {0, 1, . . . , k − 1}.

Theorem 2.0.1 (Van Der Waerden). Every finite coloring of the positive integers contains

arbitrarily long monochromatic arithmetic progressions.

This theorem was later generalized by Szemeredi and played a vital role in the proof of what

is now known as the Green-Tao theorem. Other interesting applications of Ramsey theory

are Schur’s theorem and the Ramsey-theoretic proof that Fermat’s last theorem is false over

finite fields. For more information on applications of Ramsey theory, ranging from Ergodic

theory to automated theorem proving see [16].

The legendary mathematician Paul Erdős is responsible for the rapid development of Ramsey

theory, and combinatorics during the twentieth century. Erdős’ first exposure to Ramsey

theory was due to Esther Klein who proposed the question: “Is it true that for all n, there

is a least integer K(n) so that any set of K(n) points in the plane in general position must

alwyas contain the vertices of a convex n-gon?” [12]. Erdős and Szekeres answered this

question in the paper ”A combinatorial problem in geometry ”[6]. In this paper they proved

the following theorem.
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Theorem 2.0.2 (Erdős and Szekeres[6]). Let s, l be positive integers. Then

r(Ks, Kl) ≤
(
k+l
2

)
.

This bound was best for over 50 years. Trying to improve the bounds for the Ramsey numbers

of cliques, r(Ks, Kl), has received considerable attention and lead to the development of

many new mathematical tools. For example, the development of the probabilistic method

and random graphs by Paul Erdős was largely influenced by his desire to bound r(Ks, Kt).

These tools have come to revolutionize combinatorics, theoretical computer science and

numerous other fields.

Known results

In this section, we discuss results in Ramsey that are useful to this thesis. In 1973, Burr and

Roberts in [3] completely determined r(Sn1 , . . . , Snk
) for all positive integers n1, . . . nk.

Theorem 2.0.3 (Burr and Roberts [3]). Let n1, . . . nk be positive integers and t be the number

of these that are even. Then

r(Sn1 , . . . , Snk
) =

k∑
i=1

ni − k + εt,

where εt = 1 if t is even and εt = 2 otherwise.

By letting n1 = . . . = nk we obtain a useful corollary.
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Corollary 2.0.4 (Burr and Roberts [3]). Let n and k be positive integers. Then

r(Sn; k) =


(n− 1)k + 1 if n and k are even,

(n− 1)k + 2 otherwise.

Stars are one of two classes of graphs whose Ramsey number is completely determined. The

other class of graphs whose k-color Ramsey number is known for all k ≥ 2 are matchings.

The k-color Ramsey number for matchings was determined by Cockayne and Lorimer in [4].

Theorem 2.0.5 (Cockayne and Lorimer [4]). For all positive integers n and k,

r(nK2; k) = nk + n− k + 1.

The Ramsey number for P4 is well-studied and is known for all k not congruent to 0 modulo

3 due to Irving in [11]. Note P4 = S(1, 1).

Theorem 2.0.6 (Irving [11]).

r(P4; k) =


2k + 2 if k ≡ 1 (mod 3),

2k + 1 if k ≡ 2 (mod 3),

2k or 2k + 1 if k ≡ 0(mod 3).

Now we look at bounds for the Ramsey numbers of more general families of graphs. Erdős

and Graham proved bounds for the Ramsey numbers of trees and forests in [5].

Theorem 2.0.7 (Erdős and Graham [5]). Let T be a tree on n vertices. Then,

(k − 1)n−1
2
< r(T ; k) ≤ 2kn+ 1.
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In [2] Burr notes it is likely that r(T ; k) ∼ kn as k → ∞. The situation for forests seems

more complicated.

Theorem 2.0.8 (Erdős and Graham [5]). If F is a forest on n edges, then

k
√
n−1
2

< r(F ; k) < 4kn.

Moreover, if k ≤ n2, then

A
√
kn < r(F ; k),

where A is a positive universal constant.

Interestingly, when the number of colors is small compared to the number of vertices there

is the possibility that r(F ; k) grows in
√
k. This is confirmed for the disjoint union of stars,

mSm.

Theorem 2.0.9 (Erdős and Graham [5]). There is a constant A1 such that, if k ≤ m, then

r(mSm; k) < A1

√
km2.

Also, if k ≥ 3m2, then

r(mSm; k) ≤ 3km.

This phenomena where the Ramsey number behaves differently depending on the relationship

between the parameters is very common. It occurs for double stars below and in a number of

other results in this paper. See [2] for more information on the above results and multicolor

Ramsey numbers.
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In this paper we are interested in Ramsey numbers for double stars, r(S(n,m); k). For k = 2,

there are two main results.

Theorem 2.0.10 (Grossman, Harary and Klawe [10]).

r(S(n,m); 2) =


max(2n+ 1, n+ 2m+ 2) if n is odd and m ≤ 2,

max(2n+ 2, n+ 2m+ 2) if n is even or m ≥ 3, and n ≤
√

2m or n ≥ 3m.

In [10] the authors also conjecture the following:

Conjecture 2.0.11 (Grossman, Harary and Klawe [10]).

r(S(n,m); 2) =


max(2n+ 1, n+ 2m+ 2) if n is odd and m ≤ 2,

max(2n+ 2, n+ 2m+ 2) otherwise.

In 2016, Norin, Sun and Zhao in [14] disproved the conjecture of Grossman, Harary, and

Klawe and extended their result.

Theorem 2.0.12 (Norin, Sun and Zhao [14]).

r(S(n,m); 2) ≥


5
6
m+ 5

3
n+ o(m) for all n ≥ m ≥ 1,

21
23
m+ 189

115
n+ o(m) for all n ≥ 2m.

Furthermore, for 1 ≤ m ≤ n ≤ 1.699(m+ 1), we have

r(S(n,m); 2) = max(2n+ 2, n+ 2m+ 2).

This disproves Conjecture 2.0.11 for 7
4
m+ o(m) ≤ n ≤ 105

41
m− o(m).
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In general, computing Ramsey numbers is very difficult, for k = 2 little is known and even less

is known for k ≥ 3. Due to the difficulty, the field has been concerned with determining the

asymptotic behavior of the Ramsey function. There are also many variants of the classical

Ramsey number. These variants may consider parameters other than the size of the graph to

guarantee the existence of an ordered substructure. Some example of well-studied variants

of the classical Ramsey number are the size Ramsey number, induced Ramsey number, and

degree Ramsey number. The next chapter of this paper is devoted to a new variant of the

classical Ramsey number defined by Alon, Bucić, Kalvari, Kuperwasser, and Szabó [1].
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CHAPTER 3: LIST RAMSEY NUMBERS

Recently, Alon, Bucić, Kalvari, Kuperwasser, and Szabó [1] developed a generalization of

the Ramsey number known as the list Ramsey number. This generalization is motivated by

analogous generalizations in the field of graph coloring, which is central to graph theory. Let

L : E(Kn)→
(N
k

)
be an assignment of k-element subsets of N to the edges of Kn. A coloring

c : E(Kn) → N is said to be an L-coloring if c(e) ∈ L(e) for all e ∈ E(Kn). A graph G is

k-edge-choosable if for every L : E(G)→
(N
k

)
, there exists a proper L-coloring of E(G). The

list chromatic index of G, χ′`(G), is the smallest k such that G is k-edge-choosable.

The k-color list Ramsey number r`(H; k) of a graph H is defined as the smallest n such that

there is some L : E(Kn)→
(N
k

)
for which every L-coloring of Kn contains a monochromatic

copy of H.

By choosing L to assign each edge the same list, we see that r`(H; k) ≤ r(H; k). The two

primary papers on list Ramsey numbers are [1] and [7]. In [1] the authors introduce the

notion of list Ramsey numbers and prove several results. One of the main questions is to

find graphs for which the two Ramsey numbers agree.

Question 3.0.1. Find graphs H such that for all k ≥ 2, r`(H; k) = r(H; k).

Little is known for Problem 3.0.1. The authors of [1] proved the following results. First they

proved a lemma that relates the list Ramsey number of stars to the list chromatic index of

graphs. This lemma is crucial to their lower bound constructions.

Lemma 3.0.2 (Alon, Bucić, Kalvari, Kuperwasser, and Szabó [1]). Let G1, . . . , Gs be graphs

that partition the edge set of Kn. If χ′`(Gi) ≤ k for all i and each vertex of Kn belongs to at

most t− 1 of Gi’s, then

12



r`(St; k) > n.

Theorem 3.0.3 (Alon, Bucić, Kalvari, Kuperwasser, and Szabó [1]). For any n, k ∈ N,

except possibly finite integers n for each odd k, we have r`(Sn; k) = r(Sn; k). More precisely,

(a) For every n, k ∈ N, we have (n − 1)k + 1 ≤ r`(Sn; k). In particular, r`(Sn; k) = (n −

1)k + 1 = r(Sn; k) whenever n and k are both even.

(b) For every k ∈ N there exists w(k) ∈ N such that the following holds. For every k and

n ≥ w(k) that are not both even, we have r`(Sn; k) = (n− 1)k + 2 = r(Sn; k).

They conjecture the two Ramsey numbers are always equal for stars.

Conjecture 3.0.4. For any r, k ∈ N

r`(Sn; k) = r(Sn; k).

Interestingly, authors of [1] proved that unlike for stars, the ordinary Ramsey number

r(tK2; k) = tk + t − k + 1 is significantly larger than the list Ramsey number r`(tK2; k)

for most values of the parameters. This shows how the relationship between the list Ramsey

number and Ramsey number can differ drastically depending on the class of graphs being

studied.

Theorem 3.0.5 (Alon, Bucić, Kalvari, Kuperwasser, and Szabó [1]). Let r, k ∈ N. If

2(k + 1) ≤ log r, then

2r ≤ r`(rK2; k) ≤ 2r + 42r
k

k+1 .

If 2(k + 1) > log r > 0, then

13



rk
4 log rk

≤ r`(rK2; k) ≤ 34rk
log rk

.

Theorem 3.0.6 (Alon, Bucić, Kalvari, Kuperwasser, and Szabó [1]). For any fixed k ≥ 2

and r tending to infinity, we have r`(rK2; k) = 2r + o(r). In particular,

r(rK2;k)
r`(rK2;k)

= (k + 1)/2 + o(1).

For any fixed r ≥ 1 and k tending to infinity, we have r`(rK2; k) = Θ(k/ log(k)). In

particular,

r(rK2;k)
r`(rK2;k)

= Θ(log(k)).

The list chromatic index of graphs plays a key role in determining the values of list Ramsey

numbers of graphs. In particular, the result of Galvin [9], that χ′`(G) = χ′(G) = ∆(G) if

G is a bipartite graph, in the proofs in [1]. Also, Lemma 3.0.2 is key in constructing the

lower bound for r`(Sn; k). It is likely that lower bound constructions for other graphs will

similarly depend on list chromatic indexes.

In [7] Fox, He, Luo and Xu investigate the growth rate of list Ramsey numbers. In [1] the

authors ask if r`(H; k) grows exponentially in k for a fixed graph H with π(H) > 0. Fox, He,

Luo and Xu answer this in the positive. For a set V define [V ]r to be the set of r-element

subsets of V where 2 ≤ r ≤ |V |. An r-graph is a pair G = (V,E) of sets where E ⊆ [V ]r.

For an r-graph H, the Turán density is defined as π(H) = limn→∞ ex(n,H)
(
n
r

)−1
, where

ex(n,H) is the largest number of edges in an n-vertex graph that does not contain H as a

subgraph.

Theorem 3.0.7 (Fox, He, Luo and Xu [7], 2021). If H is an r-graph which is not r-partite

then, for any k ≥ 1
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r`(H; k) ≥ cr(1− π(H))−k/(r−1),

where cr = ((r − 2)!/e)1/(r−1).

This along with theorem 5 and 6 in [1] implies that r`(H; k) grows exponentially if and only if

H is not r-partite. Otherwise, r`(H; k) grows polynomially. The special case when H = K3

has special significance. Determining if r(K3; k) grows exponentially or superexponentially

is one of the oldest and most famous problems in Ramsey theory.

Theorem 3.0.8 (Fox, He, Luo and Xu [7], 2021). For all k ≥ 1, r`(K3; k) ≥ 1
e
· 2k.

Together with the upper bound obtained in [1], Theorem 3.0.8 implies that

1

e
· 2k ≤ r`(K3; k) ≤ (4 + o(1))k.

It remains unknown whether r`(K3; k) < r(K3; k), as the current best lower bound for

r(K3; k) > 3.199k is not large enough.
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CHAPTER 4: MULTICOLOR RAMSEY NUMBERS OF

DOUBLE STARS AND SUBDIVIDED STARS

In this chapter we prove results for the Ramsey numbers of double stars and subdivided

stars. Our research was motivated by the conjecture of Alon, Bucić, Kalvari, Kuperwasser,

and Szabó, that r`(Sn; k) = r(Sn; k). We prove non-trivial upper and lower bounds for

r(S(n,m); k). Using these bounds, we explicitly determine the value of r(S(n,m); k) for n

sufficiently large. We believe the techniques used will be helpful for determining multicolor

Ramsey numbers for other cases of S(n,m) and subdivided stars, St
n.

Double stars

We start with the Ramsey number of S(n, 1) for k = 2 and k = 3.

Proposition 4.0.1. For all n ≥ 2

r(S(n, 1); 2) = r(Sn+1; 2) =


2n+ 2 if r is even

2n+ 1 if r is odd

.

Proof. Since Sn+1 ⊆ S(n, 1), it suffices to show r(S(n, 1); 2) ≤ r(Sn+1; 2). Let n ≥ 2 and

N = r(Sn+1; 2). Let G be a 2-edge-colored complete graph on N vertices. By definition of

r(Sn+1; 2), every 2-edge-coloring of KN contains a monochromatic copy of Sn+1. Let S denote

the monochromatic Sn+1 subgraph of G. Let v be the center and L = {v1, v2 . . . , vn+1} be the

leaves of S. Assume n is odd and S is monochromatic in color 1. Then |G \ S| = n ≥ 2. If
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any edge between the leaves of G to G\S is colored using color 1, we have a monochromatic

S(n, 1). We may assume that all the edges between L and G \ S are colored using 2. Let

u,w ∈ G \V (S). We have a monochromatic Sn+1, say S ′, in color 2 with center u and leaves

{v1, . . . , vn+1}. We obtain a monochromatic S(n, 1) in color 2 by adding the vertex w and

edge v1w to S ′. For n ≥ 2 even this same proof works since, |G \ S| = n+ 1 ≥ 2. Therefore,

r(S(n, 1); 2) = r(Sn+1; 2).

Now we compute the exact value of r(S(r, 1); 3).

Proposition 4.0.2. For r ≥ 2,

r(S(r, 1); 3) = 3r + 3.

Proof. First we show that r(S(r, 1); 3) > 3r+2. Let n = 3r+2 and G1, G2, G3 be a partition

of V (Kn) with |G1| = r + 2, |G2| = |G3| = r. Color all the edges within Gi using color i.

Each Gi is a monochromatic clique of size |Gi| in color i. Fix two vertices u,w ∈ G1. Color

all the edges between {u,w} and G2 using color 2 and the all edges between {u,w} and G3

using color 3. Now color all the edges between G1 \ {u,w} and G2 using color 3 and the

edges between G1 \ {u,w} and G3 using color 2. Color the edges between G2 and G3 using

color 1. This has no monochromatic S(r, 1), and so r(S(r, 1); 3) ≥ 3r + 3.

It remains to show that r(S(r, 1); 3) ≤ 3r + 3. Let n = 3r + 3 and G a 3-edge-colored Kn.

Let H denote a monochromatic copy of Sr+1 in G. We may assume H is monochromatic in

color 1. Let x, v ∈ H be the center and a leaf in H respectively. If v is incident with an edge

in color 1 with end in G\H, then we have a monochromatic S(r, 1). So we may assume that

the edges between H \ x and G \H are in color 2 or 3. Note, |G \H| = 2r + 1 and so each

v ∈ H \ x is the center of a monochromatic Sr+1 with leaves in G \ H, say in color 2. Let
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X ⊆ G \H be the leaves of this monochromatic Sr+1. Then if there is any (X,G \H)-edge

in color 2 we are done. Thus, they form a monochromatic Kr+1,r in color 3. Since r ≥ 2,

this gives us a monochromatic S(r, 1).

To prove our next result, we need what is known as Petersen’s two factor theorem. A graph

G is d-regular if d(v) = d for all v ∈ V (G). Furthermore, a subgraph H of G is spanning if

V (H) = V (G).

Theorem 4.0.3 (Petersen). For every positive integer k, every 2k-regular graph can be

decomposed into k 2-regular spanning subgraphs.

We use Petersen’s two factor theorem to prove a lower bound for r(S(2, 1); k) when k is

odd. Observe that this agrees with the lower bound in Theorem 4.0.5, but is a very different

construction.

Proposition 4.0.4. For all odd k ≥ 3,

r(S(2, 1); k) ≥ 2k + 3.

Proof. Let j be a nonnegative integer, k = 2j + 1, and n = 2k + 2. Let G = Kn and

G1, G2, . . . , Gj+1 be a partition of G into disjoint graphs on 4 vertices. For each i ∈ [j + 1],

color all the edges of Gi using color 2j + 1. Now consider the graph H = G \
⋃j+1

i=1 E(Gi)

and note that it is 4j-regular. By Petersen’s 2-factor-theorem we can partition H into 2j

edge-disjoint 2-factors, H1, H2, . . . , H2j. For i ∈ [2j] color all the edges of Hi using color i.

For i ∈ [2j], Hi is 2-regular, so it cannot contain a S(2, 1). The color class for color 2j + 1

is
⋃j+1

i=1 Gi. This graph is disconnected and each component has 4 vertices. Thus, it cannot

contain S(2, 1) as a subgraph. Hence, this is a k-coloring of E(Kn) with no monochromatic

S(2, 1), as desired.
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Figure 4.1: K5n+m+1 6−→ (S(n,m); k)

Now we prove our main results.

Theorem 4.0.5. For n ≥ m ≥ 1 and odd k ≥ 3,

r(S(n,m); k) ≥ nk +m+ 2.

Proof. We show that r(S(n,m); k) > nk+m+1. First we present a critical k-coloring of Knk

and then extend that to a critical k-coloring of Knk+m+1. Let G = Knk and V1, V2, . . . , Vk be

a partition of V (G) where each part contains exactly n vertices. Now let H = Kk be obtained

from G by contracting each part Vi into a single vertex vi. Then the largest independent set

of edges in H is at most (k − 1)/2 and χ′(H) = k. This implies that in a proper coloring of

E(H) each color class consists of exactly (k − 1)/2 edges. Let c : E(H) → [k] be a proper

coloring. Let d : V (H) → [k] be a coloring of V (H) such that d(vi) is colored using the
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coloring missing from its edges. Note that d is a bijection. For each pair of distinct i, j ∈ [k]

color all the edges between Vi and Vj using color c(vivj). For each i ∈ [k] color all the edges

with both ends in Vi using d(vi). Under this coloring of E(G) each color class consists of

(k − 1)/2 disjoint Kn,n and one Kn. To extend this to a critical k-coloring of Knk+m+1 add

m + 1 vertices, S = {u1, u2, . . . , um+1} and color E(G [S]) using d(v1). For each i ∈ [k]

color all the edges between S and Vi using d(vi). Figure 4.1 illustrates a critical k-coloring

of Knk+m+1 when k = 5. Observe that the color class of d(v1) consists of a Kn+m+1 and

(k− 1)/2 disjoint copies of Kn,n and all other color classes consist of a (m+ 1)K1 +Kn and

(k − 1)/2 disjoint copies of Kn,n. Thus, there is no monochromatic copy of S(n, 1).

We now show that the lower bound given by Theorem 4.0.5 is sharp for all k ≥ 3 odd and n

sufficiently large. In order to do this, we need Lemma 4.0.6. Its proof follows from a double

counting argument and can be found in [13, Proposition 1.7].

Lemma 4.0.6. Let F be a family of subsets of some set X. For each x ∈ X, we define p(x)

to be the number of members of F containing x. Then

∑
x∈X

p(x) =
∑
F∈F

|F |.

Observe that Lemma 4.0.6 is a generalization of the handshaking lemma; for any graph G,∑
v∈V (G) d(v) = 2 |E(G)|.

Theorem 4.0.7. Let k ≥ 2 and n ≥ m ≥ 1 be integers. If (n+1) ·
⌈
n+1
k−1

⌉
> m((k−1)n+m),

then

r(S(n,m); k) ≤ kn+m+ 2.
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Figure 4.2: How the existence of an x with p(x) ≥ m+ 1 implies a monochromatic S(n,m).

Proof. Let G be a complete, k-edge-colored Kkn+m+2 using colors [k]. Then G contains a

monochromatic Sn+1, say in color k. We use H to represent this monochromatic Sn+1 in

color k. Let A be the leaves of H and B = G \ H. If any v ∈ A is incident with m edges

with ends in B colored using k we are done. This implies each v ∈ A is incident to at least

(k− 1)n+m− (m− 1) = (k− 1)n+ 1 edges colored using colors [k − 1] with ends in B. By

the pigeonhole principle, each v ∈ A is the center of a monochromatic Sn+1, with leaves in

B, in some color in [k − 1]. Furthermore, there are at least (n+ 1)/(k − 1) monochromatic

stars H1, H2, . . . Hd(n+1)/(k−1)e, say in color k−1, with centers in A and leaves in B. For each

i ∈ [d(n+ 1)/(k − 1)e], let Li be the leaves of Hi. Without loss of generality, suppose vi is the

center of Hi for each i ∈ [d(n+ 1)/(k − 1)e]. Now we view F = {L1, L2, . . . , Ld(n+1)/(k−1)e}

as a family of subsets of B. For x ∈ B let p(x) be the number of members of F containing

x. Suppose some x ∈ B has p(x) ≥ m+ 1. We may assume x lies in L1, L2, . . . , Lm+1. Then

we obtain a monochromatic S(n,m) where v1 is the center of an Sn and x is the center of
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an Sm. This is illustrated by Figure 4.2.This implies that p(x) ≤ m for all x ∈ B. By choice

of n we have,

∑
x∈B

p(x) = m((k − 1)n+m)

< (n+ 1) · d(n+ 1)/(k − 1)e

=
∑
L∈F

|L| ,

a contradiction.

Combining Theorem 4.0.5 and Theorem 4.0.7 results in the following corollary.

Corollary 4.0.8. Let n ≥ m ≥ 1 be integers. If k ≥ 3 is odd and (n + 1) ·
⌈
n+1
k−1

⌉
>

m((k − 1)n+m), then

r(S(n,m); k) = kn+m+ 2.

Thus, we have computed the exact value for r(S(n,m); k) provided that n is large enough

compared to m and k. Now using a different technique, we obtain a similar result for S(n, 1).

Lemma 4.0.9. Let n, k ≥ 2 be positive integers. Then every k-edge-coloring of Kk(k−1)+1,k(n+1)

contains a monochromatic S(n, 1).

Proof. First we show that every 2-edge-coloring of K3,2(n+1) contains a monochromatic copy

of S(n, 1). Let G be a 2-edge-colored K3,2(n+1) and A and B be the partite sets of size 3 and

2(n + 1) respectively. Clearly, G must contain a monochromatic Sn+1. Let v be the center

of this monochromatic star and L = {v1, v2, . . . , vn+1} be the leaves. We may assume this

star is colored using color 1. If there is a (A \ {v}), L-edge colored using 1, we are done. So

we may assume all of the edges between A \ {v} and L must be colored using color 2. Since

|A \ {v}| ≥ 2, this gives us a monochromatic S(n, 1). Now suppose the statement in this
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lemma holds for some k − 1 ≥ 2 and let G be a k edge colored of Kk(k−1)+1,k(n+1). Let A

and B be the partite sets of size k(k − 1) + 1 and k(n+ 1) respectively. Clearly, G contains

k − 1 monochromatic copies of Sn+1 in the same color, say k. Let U be the set containing

the leaves of these k − 1 monochromatic copies of Sn+1 and V be the set containing their

centers. If there exists a (A \ V, U)-edge colored using k, then we are done. So, all the edges

between A \ V and U must be colored using the colors [k − 1]. Observe that

|A \ V | = k(k − 1) + 1− (k − 1)

= (k − 1)(k − 1) + 1

≥ (k − 1)(k − 2) + 1,

and |U | = (k − 1)(n + 1). By our inductive assumption, every k − 1 edge coloring of

K(k−1)(k−2)+1,(k−1)(n+1) contains a monochromatic S(n, 1). Thus, there exists a monochro-

matic copy of S(n, 1) between A \ V and U .

Theorem 4.0.10. Let k ≥ 4 and n ≥ (k − 1)(k − 3) + 1. Then r(S(n, 1); k) ≤ nk + 3.

Proof. Let k ≥ 4 and n ≥ (k − 1)(k − 3) + 1. Let G be a k edge colored Knk+3. We show

G contains a monochromatic copy of S(n, 1). Since r(Sn+1; k) ≤ nk + 2, G must contain

a monochromatic Sn+1. Let v0 be the center and Lk = {v1, v2, . . . , vn+1} be the leaves

of a monochromatic Sn+1 in G. Without loss of generality, suppose this Sn+1 is colored

using k. Let H = G \ {v0, v1, . . . vn+1}. If there are any edges colored using k between

H and Lk we are done. So we may assume all (H,Lk)-edges are colored using the colors

[k − 1]. Observe that |H| = n(k − 1) + 1. This implies that each u ∈ S is the center of

a monochromatic Sn+1. By choosing n ≥ (k − 1)(k − 3) + 1 we have that there are k − 2

monochromatic copies of Sn+1 in the same color, say k − 1. Let Lk−1 be the leaves and X
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contain the centers of these k − 2 monochromatic copies of Sn+1 in color k − 1 between H

and Lk. If they are not disjoint, then we are done. Furthermore, if there are any edges

in colors k or k − 1 between Lk−1 and Lk \ X we are done. Thus, all the edges between

Lk−1 and Lk \ X must be colored using [k − 2]. Observe, |Lk−1| = (k − 2)(n + 1) and

|Lk \X| = n+ 1− (k− 2) ≥ (k− 1)(k− 3) + 1− (k− 3) = (k− 2)(k− 3) + 1. By the above

lemma, we have a monochromatic S(n, 1), as desired.

Combining Theorem 4.0.10 and Theorem 4.0.5 we obtain the following corollary.

Corollary 4.0.11. Let k ≥ 5 be odd and n ≥ (k−1)(k−3)+1. Then r(S(n, 1); k) = nk+3.

Note that for for even k and n we have a gap of 1 between the upper and lower bounds for

r(S(n, 1); k) when n is sufficiently large.

Corollary 4.0.12. Let k ≥ 4 and n ≥ (k − 1)(k − 3) + 1 be even. Then

nk + 2 ≤ r(S(n, 1); k) ≤ nk + 3.

Proof. If n is even, then n + 1 is odd. Observe, nk + 2 ≤ r(Sn+1; k) ≤ r(S(n, 1); k) ≤

nk + 3.

Remark 4.0.13. If we show that nk + 2 < r(S(n, 1); k) for n, k even then we prove the

above theorem but for n, k even.

In the next section we look at the Ramsey number for a new class of graphs that we call

subdivided stars.

Subdivided stars

By Proposition 4.0.1, it follows that r(S1
n; 2) = r(Sn; 2) for all n ≥ 3.
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Proposition 4.0.14. For n ≥ 5, r(S2
n; 2) = r(Sn; 2)

Proof. It suffices to show r(S2
n; 2) ≤ r(Sn; 2). Let n ≥ 5 be odd and G be a 2-edge-colored

K2n using colors red and blue. Given two sets A,B we say they are red (blue) complete

if all (A,B)-edges are colored using red (blue). Then G contains a monochromatic copy

of S1
n, say S. Let V (S) = {v0, v1, . . . , vn, u1} such that S [{v0, v1, . . . , vn}] forms a Sn with

center v0, and v1u1 ∈ E(S). We may assume S is colored using red. Now let B = G \ S

and A = {v2, v3, . . . , vn}. If there are any red edges between A and B, then we have an

S2
n. So we may assume that all (A,B) edges are blue. Suppose b0 ∈ B has blue neighbor

u ∈ G \B ∪A. Then b0, c, v2, . . . , vn forms a blue Sn. Since n ≥ 5, |B \ b| ≥ 2, we can form

a blue S2
n with b0, c, v2, . . . , vn, b1, b2 where b1, b2 ∈ B. Now we may assume that each b ∈ B

has all red edges outside of B. Now we can form a red S2
n with v0, v1, . . . , vn, b0, b1, u1 where

v0 is the center of a Sn with leaves b0, v1, . . . , vn−1 and pendant vertices u1 and b1 (u1b0, v1b1

are red). The proof where n ≥ 5 even is the same.

Proposition 4.0.15. Let n ≥ 10 − ε where ε = 1 if n is odd and ε = 0 otherwise. Then

r(S3
n; 2) = r(Sn; 2).

Proof. It suffices to show r(S3
n; 2) ≤ r(Sn; 2). Let n ≥ 9 be odd and G be a 2-edge-colored

K2n using colors red and blue. We use dr(x) and db(x) to denote the number of red and blue

edges incident to x respectively. Then G contains a monochromatic subgraph H = S2
n. We

may assume H is colored using red. Let v be the vertex of degree n in H and v1, v2, . . . , vn

be the neighbors of v in H where NH(vi) = {v, ui} for all i ∈ [2]. Let A = {v3, . . . , vn} and

B = G\H. Then |A| = n−2 and |B| = 2n− (n+3) = n−3. If there is any red (A,B)-edge

we are done. So, all (A,B)-edges are blue.

Claim 4.0.15.1. For each x ∈ A ∪B, db(x) < n.
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Proof. Let x ∈ A ∪ B satisfy db(x) ≥ n. If x ∈ B, then we can form a blue Sn by taking

n− 2 leaves from A and at most 2 leaves from B. There are still at least |B| − 3 ≥ 3 other

vertices in B. Since every (A,B)-edge is colored blue, we can choose any 3 of the |B|−3 ≥ 3

remaining vertices in B and this along with x and its n blue neighbors form a monochromatic

S3
n. The proof for when x ∈ A is the same.

Thus, each x ∈ A ∪B has db(x) ≤ n− 1 and dr(x) ≥ n.

Claim 4.0.15.2. G [B] is a monochromatic complete graph in color red.

Proof. Assume G [B] is not a monochromatic complete graph. Then there is a blue edge,

xy with x, y ∈ B. If either x or y has blue-degree of at least n we are done. This implies

that they have red edges to the rest of the graph. Now we can form a monochromatic

red H ′ = S3
n where v is the vertex of degree n with neighbors x, v1, v2, . . . , vn−1 in H ′ and

NH′(v1) = {v, u1}, NH′(v2) = {v, y}, and NH′(x) = {v, u1}.

This implies that G [B] is a red monochromatic Kn−3 and v is blue complete to B. Now each

x ∈ B has db(x) ≤ n− 1. Thus, each x ∈ B must be red complete to the rest of the graph.

If there is a red edge between A and {u1, u2}, then we have a red S3
n we the same Sn as H,

but with an extra subdivided edge with end in B. Thus, all edges between A and {u1, u2}

are blue. We may assume each x ∈ A has db(x) ≤ n− 1, and so G [A] is a red Kn−3 and all

(A, {v1, v2})-edges are red. Now we obtain a red S3
n with center v1, whose neighbors are all

of B, {v3, v4, v5}, and v3v6, v4v7, v5v8 are the subdivided edges.

Now let n ≥ 9 be even. Let G be a 2-edge-colored K2n−1 using colors red and blue. Then

G contains a monochromatic subgraph H = S2
n. We may assume H is colored using red.

Let v be the vertex of degree n in H and v1, v2, . . . , vn be the neighbors of v in H where

NH(vi) = {v, ui} for all i ∈ [2]. Let A = {v3, . . . , vn} and B = G \ H. Then |A| = n − 2
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and |B| = 2n − 1 − (n + 3) = n − 4. If there is any red (A,B)-edge we are done. So, all

(A,B)-edges are blue. Now observe that the proofs above claims only rely on the fact that

|B| − 3 ≥ 3. Since n ≥ 10, |B| − 3 = n− 7 ≥ 3.

Now we can apply the above claims to get that for each x ∈ A ∪ B has db(x) ≤ n − 1 and

dr(x) ≥ n and G [B] is a monochromatic Kn−4 or else we have a monochromatic S3
n. If there

is any red edge between v and B, then we obtain a monochromatic S3
n. So, v is blue-complete

to B. Now each x ∈ B has db(x) ≥ n−1, and so B is red-complete to {v1, v2, u1, u2}. Suppose

there is a red edge between v and {u1, u2}, say vu1. Now we have a monochromatic S3
n with

center v neighbors u1, v1, v2, . . . , vn−1, and u1b1, v1b2, v2u2 are red for some distinct b1, b2 ∈ B.

Now we have v is blue complete to {u1, u2}. If there is any red ({u1, u2}, A)-edge, say u1v3

we have a monochromatic S3
n with center v has neighbors v1, v2, . . . , vn, and v1b1, v2u2, v3u1

are red for some b1 ∈ B. Thus, {u2, u2} and B are blue complete. Observe, that {u1, u2}

are interchangeable with the vertices in B, and so we can assume db(u1), db(u2) ≤ n − 1.

This implies {u1, u2} and {v1, v2} are red complete, and G [B ∪ {u1, u2}] is a red Kn−2. If

there is a red ({v1, v2}, A)-edge, say v1v3 we have a monochromatic Sn, H ′ with center v1

has neighbors v, u1, u2, v3, and all the vertices in B. Recall, db(v3) ≤ n − 1, and so v3 has

some red neighbor in A, say v4. So we obtain a monochromatic S3
n by adding v3v4, vv5, u2v2

to H ′. So, {v1, v2} is blue complete to A. Now each x ∈ A has db(x) ≥ n. By Claim 4.0.15.1,

this gives us a blue S3
n and completes the proof.

The lower bound below motivates our conjecture that r(St
n; 2) will have two regimes of

behavior depending on whether n ≤ 2t or n > 2t.

Lemma 4.0.16. For n ≤ 2t,

r(St
n; 2) ≥ n+ 2t+ 1.
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Proof. Let G be a complete graph on n + 2t vertices and A,B ⊆ V (G) with |A| = n + t

and |B| = t. Color all edges in G [A] and G [B] using color blue. Now color all (A,B)-edges

using red. Since |A| , |B| < n + t + 1, G [A] and G [B] do not contain a monochromatic St
n.

Since |B| < t+ 1, there cannot be a monochromatic St
n between A and B. Thus, G contains

no monochromatic St
n. This proves the result.

Conjecture 4.0.17.

r(St
n; 2) =


max(2n− 1, n+ 2t+ 1) if n is even,

max(2n, n+ 2t+ 1) if n is odd.

We can apply 4.0.5 to obtain a lower bound for r(St
n; k) where k is odd.

Remark 4.0.18. For n ≥ 3, t ≥ 1, k ≥ 2, r(St
n; k) ≥ r(S(n − 1, 1); k). In particular,

r(St
n; k) ≥ (n− 1)k + 3 for k odd.
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CHAPTER 5: LIST RAMSEY NUMBERS OF DOUBLE STARS

AND SUBDIVIDED STARS

In this section we prove results for the list Ramsey numbers for double stars. We begin by

stating some results that will be used throughout this section. These results are necessary

for our lower bound constructions.

Theorem 5.0.1 (Galvin [9]). Every bipartite graph G satisfies χ′`(G) = χ′(G) = ∆(G).

Theorem 5.0.2 (Schauz [17]). χ′`(Kp+1) = p for every odd prime p.

Theorem 5.0.3 (Häggkvist, Janssen [8]). χ′`(K2n+1) = 2n+ 1 for every n ≥ 1.

First we prove three results for S(1, 1).

Proposition 5.0.4. r`(S(1, 1); 2) = r(S(1, 1); 2) = 5.

Proof. We show r`(S(1, 1); 2) > 4. Let L : E(K4) →
(N
2

)
be an assignment of lists to

the edges of K4. We show that there exists an L-coloring c : E(K4) → N such that K4

contains no monochromatic S(1, 1) under the coloring c. Partition K4 into K1 and K3.

Suppose
⋂

e∈E(K3)
L(e) 6= ∅. Then color E(K3) monochromatically by i ∈

⋂
e∈E(K3)

L(e).

Now color the edges between K1 and K3 any color except for i. This graph contains no

S(1, 1). Similarly, if the lists of the edges incident with K1 have a common color, say i, color

them using i and the remaining edges any color but i. This graph contains no S(1, 1). Now

we may assume
⋂

e∈E(K3)
L(e) = ∅ and

⋂
e∈E(K4)\E(K3)

L(e) = ∅. This implies that we can

color all the edges in E(K3) differently and all the edges between K1 and K3 differently. In

this case, a fixed color is used on at most two edges, so there cannot be a monochromatic

S(1, 1). This shows r`(S(1, 1); 2) = r(S(1, 1); 2) = 5.
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Proposition 5.0.5. r`(S(1, 1); 3) = r(S(1, 1); 3) = 6.

Proof. It suffices to show that r`(S(1, 1); 3) > 5. We show that there exists an L-coloring

c : E(K5) → N such that (K5, c) contains no monochromatic S(1, 1). Let L : E(K5) →
(N
3

)
be an assignment of lists to the edges of K5. If L is constant, then we are done. So we may

assume that there exists a vertex, say v5, in K5 such that
∣∣∣⋃i∈[4] L(viv5)

∣∣∣ ≥ 4. Now color

the edges incident with v5 differently. Since χ′`(K4) = 3 we can color the K4 induced by

{v1, v2, v3, v4} such that it has no K1,2. Under this coloring K5 cannot have a monochromatic

copy of S(1, 1).

Lemma 5.0.6. r`(S(1, 1); k) ≥ k + 3 for every odd prime k.

Proof. Let G := Kk+2. Let L : E(G) →
(N
k

)
be an assignment of lists to the edges of G.

If L is constant, then we are done by 2.0.6. We may assume that there exists a vertex, say

u, in G such that
∣∣∣⋃v∈N(u) L(uv)

∣∣∣ ≥ k + 1. Now color the edges incident with u differently.

Since χ′`(Kk+1) = k by 5.0.2, we can color the edges of G \ u from L such that it has no

monochromatic K1,2. It follows that G has no monochromatic copy of S(1, 1) under such a

coloring. Thus r`(S(1, 1); k) ≥ k + 3.

Now we look at some results for double stars.

Proposition 5.0.7. For all k ≥ 2 and n ≥ m ≥ 1,

r(S(n,m); k) ≥ r(Sn+1; k) and r`(S(n,m); k) ≥ r`(Sn+1; k).

Proof. Both inequalities hold because Sn+1 ⊆ S(n,m).

Proposition 5.0.8. Let r ≥ 3. Then r`(S(r, 1); 2) = r(S(r, 1); 2).

30



Proof. Let r ≥ 3 and n = r`(Sr+1; 2). Then for any L : E(Kn−1) →
(N
2

)
, there exists

an L-coloring c : E(Kn−1) → N such that Kn−1 contains no monochromatic Sr+1 sub-

graph. Clearly, Kn−1 contains no monochromatic S(r, 1) subgraph, and so r`(S(r, 1); 2) ≥

r`(Sr+1; 2). By Theorem 3.0.3, r`(Sr+1; 2) = r(Sr+1; 2). Applying Proposition 5.0.7 we have

r`(S(r, 1); 2) ≥ r(Sr+1; 2) = r(Sr+1; 2). We know that r`(S(r, 1); 2) ≤ r(S(r, 1); 2), so the

result follows.

Proposition 5.0.9. For all n ≥ 3m such that n is even or n is odd and m ≤ 2,

r`(S(n,m); 2) = r(S(n,m); 2).

Proof. If n is even and n ≥ 3m, then 2n + 1 ≥ 3m, then 2n + 2 > 2 + 2m + 2. Hence,

r(S(n,m); 2) = 2n + 2. Note 2n + 2 = r`(Sn+1; 2) ≥ r`(S(n,m); 2). Thus, r`(S(n,m); 2) =

r(S(n,m); 2). Now suppose n is odd and m ≤ 2. If 2n+1 ≥ n+2m+2, then r`(S(n,m); 2) ≤

r(S(n,m); 2) = 2n+ 1. Since, 2n+ 1 = r`(Sn+1; 2) ≤ r`(S(n,m); 2) we are done.

Now we add to the evidence that r`(Sn; k) = r(Sn; k). Our proof relies on the fact that the

list edge coloring conjecture is true for complete graphs of prime degree.

Theorem 5.0.10. For all t ≥ 3 and every odd prime p,

r`(St; p) = r(St; p) = (t− 1)p+ 2.

Proof. By 2.0.4 and the fact that r`(St; k) ≤ r(St; k), we have r`(St, p) ≤ (t − 1)p + 2. It

remains to show that r`(St, p) > (t− 1)p+ 1. Let G = K(t−1)p+1. Let x be a vertex of G and

let A1, . . . , At−1 be a partition of V (G \ x) with |A1| = · · · = |At−1| = p. Furthermore, let

Gi = G[Ai∪{x}] and for i 6= j, let Gi,j be the complete bipartite subgraph of G with parts Ai

and Aj. Then every vertex of G belongs to exactly t− 1 of these subgraphs which partition
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E(G). By Theorem 5.0.1, χ′`(Gi,j) = p. Since p is an odd prime, by 5.0.2, χ′`(Gi) = p. By

Lemma 3.0.2, r`(St, p) > (t− 1)p+ 1, as desired.

Remark 5.0.11. If χ′`(Kp+1) = p for every odd p, then the above proof shows that r`(St; p) =

(t− 1)p+ 2 for all t ≥ 3.

To end this section we look at the list Ramsey numbers for subdivided stars. Since S1
n =

S(n− 1, 1), we have r`(S
1
n; 2) = r(S1

n; 2) for n ≥ 2

Proposition 5.0.12. For n ≥ 5, r`(S
2
n; 2) = r(S2

n; 2)

Proof. Let n ≥ 5. Then by Proposition 4.0.14, r(S2
n; 2) = r(Sn; 2). We know r`(Sn; 2) =

r(Sn; 2). This implies, r`(S
2
n; 2) ≤ r`(Sn; 2). Since Sn ⊆ S2

n, r`(Sn; 2) ≤ r`(S
2
n; 2). Thus,

r`(Sn; 2) = r`(S
2
n; 2), and so r`(S

2
n; 2) = r(S2

n; 2).

Proposition 5.0.13. Let n ≥ 10 − ε where ε = 1 if n is odd and ε = 0 otherwise. Then

r`(S
3
n; 2) = r(S3

n; 2)

Proof. Let n ≥ 10− ε where ε by defined as above. Then by Proposition 4.0.15, r(S3
n; 2) =

r(Sn; 2). We know r`(Sn; 2) = r(Sn; 2). This implies, r`(S
3
n; 2) ≤ r`(Sn; 2). Since Sn ⊆ S3

n,

r`(Sn; 2) ≤ r`(S
3
n; 2). Thus, r`(Sn; 2) = r`(S

3
n; 2), and so r`(S

3
n; 2) = r(S3

n; 2).
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CHAPTER 6: FUTURE WORK

I plan on continuing to work on Conjecture 3.0.4 and the following problems.

Question 6.0.1. For even k ≥ 2, determine r(S(n,m); k) for all sufficiently large n.

The above question is analogous to Corollary 4.0.8 but for k even. The lower bounds given

in this paper rely on the properties of Kk where k is odd, so constructions for even k require

new ideas.

Question 6.0.2. Can the bound given by Theorem 4.0.5 be improved?

When m = f(n) is where f(n) ≤ n is an increasing function, it is conjectured that

r(S(n,m); k) ∼ (n+ f(n) + 2)k as k →∞.

Now we discuss problems about subdivided stars. The family of graphs we call subdivided

stars is currently nonexistent in the literature. Other than resolving Conjecture 4.0.17, I

plan to study subdivided stars in the multicolor Ramsey and list Ramsey number setting.
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