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ABSTRACT
Driving technology has progressed significantly since the introduction of anti-lock braking and
cruise control decades ago. Current driver assist features can alert drivers of oncoming vehicles
and even take control to keep the vehicle centered within its lane. The level of trust that people
place in automation can impact how they monitor and accept these automated systems. Previous
research has shown several performance outcomes associated with improper calibrations of trust
in automation. However, there is still a need to examine trust in the context of advanced driving
technologies. Research has yet to sufficiently investigate factors influencing trust in assistive
driving features. The current study was designed to examine whether changes to the driving
environment might influence levels of trust in various driver assist features. In addition, this
study sought to evaluate if individual characteristics might also influence automation trust. A
sample of 166 participants completed a series of hypothetical driving vignettes describing both
high and low complexity environments using five different driver assist features. It was
hypothesized that trust in driving technologies would be related to scenario complexity, and that
trust would vary across driving features (forward collision warning, cruise control, lane centering
assist, adaptive cruise/traffic jam assist, and fully automated driving). Results showed that trust
was significantly higher in low complexity than in high complexity scenarios. Furthermore, trust
significantly varied across the five driver assist features. Findings also revealed that propensity to
trust technology moderated the relationship between trust and driving feature manipulations.
Similarly, dispositional trust in three of the five unique driving feature moderated the
relationship between trust and scenario complexity. These findings have implications for the
design and acceptance of autonomous systems, especially automated/assistive driving

technologies, as well as other remotely operated vehicles.
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CHAPTER 1: INTRODUCTION
Problem Statement

Automated driver assist features have become commonplace in modern automobiles,
becoming advanced to the point of adapting to the environment around them. The proliferation
of driver assist technologies has altered the way drivers interact with their vehicle and the roads
they drive on. Once considered a luxury, features such as forward collision avoidance and blind
spot warnings are considered common and hardly among the more advanced driver assist
features modern vehicles possess. It is for this reason that nearly every vehicle on the road today
can be considered partially automated, and perhaps for good reason. Human error is common in
driving tasks, with as much as 94% of serious crashing being attributed to some form of error
(Singh, 2015). Driver assist features have taken responsibility away from the driver in some tasks
that, theoretically, are better performed by automation. Task allocation in complex human-
machine systems is an engineering challenge that has persisted for decades (Hancock, 1991). To
address this challenge, human factors researchers have studied the capabilities and limitations of
human beings in a variety of complex systems, examining how they interact and deciding how to
assign tasks between parties to optimize overall system performance. This dates back to the
original Fitts’ list, outlining tasks that are better performed by humans or machines (Fitts, 1954),
and is a task that still burdens researchers and systems designers to this day. However, it is how
drivers are able to effectively utilize this technology that determines whether or the allocation of
tasks is successful and the intended safety benefits are realized.

The amount of trust a person places in automated systems can influence how they interact
with, accept, and actually use the systems (Parasuraman & Riley, 1997; Lee & See, 2004,

Mouloua et al., 2019a). Automation is implemented into a system with the intention to relieve



the individuals involved of certain duties, lessening their cognitive and physical workload while
hopefully optimizing their performance in other tasks. A person that does not trust automation to
perform its intended tasks reliably will inevitably underutilize the technology, thus rendering the
system ineffective and not receiving any of the intended benefits (Lee & Moray, 1992; Lee &
See, 2004). Conversely, by placing too much trust in an automated system operators and others
interacting with the system are vulnerable to unexpected failures. Over-trust can result in a kind
of complacency, and a lack of awareness of the state of the system and the surrounding
conditions. A proper calibration of trust is needed to get the most out of an automated system
while maintaining a high level of safety. As driver assist technologies continue to progress
toward a full self-driving vehicle, the world has seen examples of how inappropriate estimations
of the reliability of these systems can have catastrophic results.

Automated vehicles have begun to increase in popularity, with brands that boast such
technologies such as Tesla becoming more recognizable on the street. Public perception of these
vehicles is generally positive, but there are a growing number of examples of individuals being
reckless in how much they trust the underlying technology to navigate them safely from point A
to point B. An example from May of 2021 describes “a San Fransisco man who was arrested for
riding in the back seat of his tesla as it drove on the highway,” (Levin, 2021). Allowing yourself
to be driven entirely by automation, with no opportunity for user intervention, requires a certain
amount of trust that nothing will go wrong. In this example, the consequence was two counts of
reckless driving and an impounded Tesla. The man even stated he would be willing to purchase
another Tesla and repeat the act again, a clear showing of the trust he has in Tesla’s self-driving
technology. Earlier in 2021 two passengers in a Tesla that appeared to be in self-driving mode

were not quite as lucky (Tangermann, 2021). The Tesla Model S crashed into a tree and both



occupants were killed in the accident. Accident investigators on the scene were certain that
neither of the occupants were in the driver’s seat at the time of the accident and believe the
vehicle did not make a turn at a high speed before hitting the tree. These represent two clear
examples of a miscalibration of trust in the automated vehicle, which put the occupants of the
vehicles in a position that would not allow them to compensate for or correct any action on the
part of the vehicle.

The incidents described above and the role that drivers’ trust may have played in them,
considered with the increase in automation in vehicles on the road today, begins to raise the
question — what about an individual makes the more or less likely to trust and effectively use
driver assist technologies? What information can be used to predict who is susceptible to
inappropriate calibrations of trust in driving automation? Does trust in driver assist features vary
depending on the driving context? It is important to answer these questions as researchers and
engineers continue to try and solve problems related to task allocation and user-centered design
in automated vehicles.

Purpose of the Current Study

Improper calibrations of trust in automated vehicles and their capabilities have led to a
number of accidents. Researchers, consumers, and manufacturers may benefit from a more
complete model of factors that influence driver trust. This knowledge can help inform methods
to compensate when a driver’s trust does not match the reliability of the vehicle or specific
automated feature (e.g., dynamic task allocation, adaptive automation). It can also be used to
inform decisions regarding what tasks can be automated with minimal risk of consequences

related to user acceptance and trust (e.g., complacency, misuse).



The purpose of this study was to examine how various factors contribute to an
individual’s level of trust in several automated driver assist features. Manipulations to driving
conditions and the level of autonomy in the technology can help provided a clearer picture of the
contexts in which automated driving is likely to be trusted. Despite the fact that there is no
current fully autonomous vehicle on the road today (SAE 2021), research into automated driving
has focused very little on the discrete features that are truly prevalent in most vehicles
(Tenhundfeld et al., 2020). Additionally, research investigating interactions between the various
factors known to impact operator trust and acceptance of automated systems (Hancock et al.,
2011; Hoff & Bashir, 2015; Schaefer et al., 2016) is lacking as it relates to driver assist features.
This study will begin to fill this existing gap in the literature by evaluating a range of
dispositional, situational, and system-related factors that may influence the level of trust a driver
has in various driver assist features. To address questions about how these factors impact driver
trust, participants reviewed a series of vignette driving scenarios that described using different
driver assist features under different road conditions. It was generally hypothesized that road
condition and the level of autonomy associated with the driver assist feature would significantly

impact participants’ trust in the technology.



CHAPTER 2: REVIEWING THE LITERATURE
Current Driver Assist and Automated Driving Features
Vehicles now possess a potentially full complement of automated elements that are
designed to make roads safer and lessen prospects for human error. With advancements in
technologies such as computer vision, more sophisticated systems have been incorporated into
vehicles that can help drivers maintain overall situation awareness at all times. The timeline of

driver assist feature development is provided below (Figure 1; NHTSA, 2022a).

Timeline of Automated Driver
Assist Features

Rearview Video Systems
Auto Cmergency Braking
Electronic Stability Control Pedestrian Auto Emergency Braking Lane Keeping Assist
Blind Spot Detection Rear Auto Emergency Braking Adaptive Cruise Control
Cruise Control Forward Collision Warning Rear Cross Traffic Alert Traffic Jam Assist Fully automated safety features

Anti-Lock Brakes Lane Departure Warning Lane Centering Assist Self-Park Highway Autopilot
—_— _ . 'g v . e
Up until 2000 2000- 2010 2000 - 2016 2016 - 2025 (future) 2025+

FIGURE 1: TIMELINE OF DRIVER ASSIST TECHNOLOGY DEVELOPMENT

Early driver assist systems include cruise control and anti-lock braking, true accomplishments in
driving automation at their conception. However, a vehicle’s ability to sense, interpret, and react
to the environment has grown and given way to a long list of more dynamic features. This
progression began with systems to alert users of sudden or hazardous events surrounding the
vehicle (e.g., blind spot detection, forward collision warning). These were rather passive systems
that aimed to raise drivers’ awareness of their surroundings, while being granted to level of
control over whether or not any action was taken in response to an alert. It was not until features
such as emergency braking and lane centering assist were made available that the vehicle could

supersede the actions of the driver and maneuver the vehicle for the sake of avoiding an accident



or dangerous situation. New, advanced sensors were capable of detecting objects and movement
around the vehicle, attempting to create a full awareness of the environment beyond what a
driver is capable of — one free of a vigilance decrement or risk of distraction. With the
introduction of each new feature, the industry moved closer to what some see as an inevitability
in the self-driving car. This would represent a drastic shift in the role of the driver, contributing
to a trend seen in many human-machine systems and effectively taking the driver’s hands off the
wheel.

Automated features that are beginning to replace or compliment tasks previously
performed by human drivers are one example of the larger change in the responsibilities of
humans in complex systems. Modern human-machine systems include some balance of function
or tasking between the human and the machine components, and the prevailing position assigned
to the human is that of a supervisor in charge of ensuring tasks are accomplished and procedures
followed without obstruction or error (Parasuraman et al., 1996; Parasuraman & Riley, 1997;
Ebnali et al., 2019; Mouloua et al., 2019b). This position remains essential as there are still
notable limitations present in the driver assist features available, even in the more common ones.
In fact, despite their popularity and apparent ubiquity across all vehicles produced in recent
years, only a handful of the available driver assist features are considered to be recommended
safety technology by the National Highway Traffic Safety Administration (NHTSA, 2022b).
This includes forward collision warning, lane departure warning, and automatic emergency
braking. It is notable that two of these NHTSA recommended safety features only include
warnings, taking no responsibility for the movement of the vehicle. There remain questions

related to the safety and reliability of the technology underlying each of the features mentioned



thus far. For this reason, ensuring drivers are vigilant in monitoring for hazards or automation
failures is critical to maximizing the safety benefits of any single automated driving system.
Monitoring Automated Systems

Advancements in driver assist technologies, such as those described above, have
transformed pedestrian vehicles into incredibly complex human-machine systems wherein the
machine is receiving more and more say in how the system performs. Not only have certain
driver assist systems made maintaining situation awareness easier for the driver (i.e., back up
camera), but they are now making situation awareness possible for the vehicle itself through
artificial intelligence (Al) and computer vision. Sophisticated computer vision systems have
made it possible for cars to detect pedestrians in its path or to determine if drivers are straying
from the center of their lane using markings on the road. It is certainly an impressive human
achievement, granting computers the ability to detect and identify objects and act accordingly to
maintain system safety. However, maintaining this desired high level of safety is dependent on
various complex systems operating and communicating simultaneously and without error. At
Tesla’s Artificial Intelligence Day in 2021, company CEO Elon Musk stated that the company
was “effectively building a synthetic animal from the ground up,” when discussing their full self-
driving technology (CNET Highlights, 2021). This is hardly an understatement, as developing
reliable driver assist systems is easier said than done.

There does not exist today a truly infallible automated device. It is for this reason that
contingency planning and recovery procedures are so necessary for the effective use and
handling of tasks that involve automated systems. Therein lies the need for the human operator,
occupying the supervisory role and stepping in when needed for what could be any of a number

of reasons (Parasuraman & Riley, 1997; Mouloua et al., 2019b). The need of a human



monitoring component to the system is essential when using driver assist technologies, as even
those at the forefront of autonomous driving state plainly that even a vehicle utilizing an
autopilot feature needs constant monitoring by a driver (Tesla, 2022a). Many driver assist
features come with certain disclaimers designed to temper expectations and ensure drivers
properly use these features to optimize safety. For example, the suite of automated driving
features known as Honda Sensing is equipped with a lane keeping assist feature. This feature
comes with the following disclaimer:

“LKAS only assists driver in maintaining proper lane position when lane

markings are identified without a turn signal in use and can only apply mild

steering torque to assist. LKAS may not detect all lane markings; accuracy will

vary based on weather, speed, and road condition. System operation affected by

extreme interior heat. Driver remains responsible for safety operating vehicle and

avoiding collisions,” (Honda, 2021).

This demonstrates the lack of a perfectly reliable system, re-emphasizing the need of an attentive
operator. There should not, however, be any misconception that the inclusion of a human to
monitor the system provides a truly flawless fail-safe in an otherwise flawed system. Human
factors research into human monitoring of automated systems has found it to be a task for which
they “are magnificently disqualified,” (Hancock, 1991).

Despite the noted limitations in human performance from a supervisory role within a
human-machine system, more and more drivers are placed in this supervisory position (De
winter & Hancock, 2021). In the description of the Tesla Model S autopilot feature, it insists that
autopilot will perform tasks such as steering, acceleration, and braking under driver supervision,

claiming these to be “the most burdensome parts of driving,” (Tesla, 2022b). However, it may be



the supervising that the driver is now expected to do that may be the most burdensome part of
driving. Presenting a variety of attentional challenges (distraction, complacency, etc.) monitoring
automation and surrounding conditions may actually be as taxing to a driver as manual driving
(Stapel et al., 2019). In critical signal detection tasks, operators have been found to struggle
monitoring complex environments (Bailey & Scerbo, 2007). Cognitive limitations related to
vigilance and fatigue will also impact how effectively a driver can attentively monitor a system
and detect errors or anomalies when they inevitably occur (Mouloua et al., 2019b).

Another explanation for the poor monitoring performance of humans within complex
human-machine systems is a phenomenon referred to in human factors research as automation-
induced complacency (Parasuraman et al., 1993; Wiener, 1981). Complacency occurs when a
human operator’s focus wanes and they lose awareness of the status of the system and/or
surrounding conditions. Researchers have found there is a tendency for operators monitoring
static, reliable systems to become complacent (Bagheri & Jamieson, 2004; Bailey & Scerbo,
2007) which can make them vulnerable to automation failures and loss of situation awareness.
The low workload that elicited by highly reliable systems requires less effort on the part of the
operator, and during extended periods of monitoring for failures the ability to step in and correct
an error degrades (Parasuraman, Molloy, & Singh, 1993; Mouloua et al., 2019; Ferraro &
Mouloua, 2021).

Complacency has been previously referred to as a “psychological state characterized by a
low index of suspicion,” (Weiner, 1981, p 117). A likely contributor to complacency exhibited in
operators of multiple automated systems is a bias (Bahner et al., 2008; Parasuraman & Manzey,
2010) toward the reliability and misunderstanding of the limitations of the system. The amount

of trust an operator places in an automated system is viewed as an indicator of a likelihood to



become complacent during period of prolonged monitoring (Parasuraman, Molloy, & Singh,
1993; Lee, 2008; Hergeth et al., 2016; Korber et al., 2018). Similarly, whether or not a person
chooses to execute a task manually or allow an automated system to perform the task may be due
to how much trust they have in that system (Muir, 1994).

A Matter of Trust

Examinations of human-automation interaction have revealed a multitude of factors that
contribute to the success and efficacy of any human-machine system. Much like interpersonal
relationships, the relationship between a human and an automated agent is based largely on the
construct of trust (Lee & See, 2004). Trust is a concept that influences and drives many of our
daily interactions. Commuters’ trust in the weather forecast determines when they leave the
house and what they wear each day. Consumers’ trust in the expiration dates on milk carton
influences decisions whether to have cereal each morning. Similar to the trust we place in
individuals, we have begun to trust automation (often with some fairly important tasks). Trust in
automated systems can often be equated with a likelihood to use and accept a system, impacting
a person’s reliance on and compliance with actions or recommendations of a system.

Trust shapes the way people treat and interact with technology. A commonplace example
of technology that is only effectively utilized with the proper calibration of trust is the Roomba.
This is an automated vacuum; a small robot that traverses the floors of your home and gathers up
dust and small debris that it can reach. Equipped with a system of sensors that create 360 degrees
of awareness, the Roomba is designed to avoid furniture and cliffs (stairs, for example) and
return to its charging station when it has finished its job, or its battery is depleted. This is a
technology designed to help humans avoid the simple, tedious, and occasionally time-consuming

task of vacuuming, allowing the owner of the Roomba to do other things while it takes care of

10



whatever may reach its automated, sweeping bristles. A tool to maximize human productivity in
the household. However, this tool is not nearly as effective if not treated with an appropriate
level of trust.

In a situation where the owner of a Roomba does not place enough trust in the machine to
do its job, the technology becomes less effective in achieving its ultimate purpose. This lack of
trust can manifest in multiple ways. A person may decide to follow the Roomba from room to
room, ensuring it gets to all the spaces it should. A person may also decide to take a vacuum of
their own and do the job themselves after the Roomba has finished, perhaps as a way to ensure
the job is done. The ultimate purpose of the Roomba is to vacuum, so the human does not have
to. If a person purchases an automated vacuum but chooses to either spend their time monitoring
the vacuum or repeating its tasks manually, they are no longer seeing the benefits of automation.
Should, however, a person place too much trust in the Roomba to flawlessly perform its job they
may find it caught on a rug and out of battery hours later. A failure to attend to the technology,
entrusting it to operate flawlessly and without intervention, leaves one unable to recover in case
of malfunction. This can result in lost time as automation waits for its correction in order to
finish accomplishing the task. The consequences demonstrated here as a result of inappropriate
levels of trust are amplified in magnitude and risk when considering more safety-critical features
that are implemented into complex systems, such as partially automated vehicles.

In the context of all human-machine systems, a proper calibration of trust is critical when
attempting to see the full benefit of automation (Parasuraman & Riley, 1997). A lack of trust, as
demonstrated in the example above, can lead to automation misuse (Muir, 1994; Parasuraman &
Riley, 1997). This occurs when an operator does not believe in the capabilities of an automated

system, providing additional oversight at the potential compromising of their own task
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performance. This may result in a higher rate of error detection on the part of the operator, as
their persistent allocation of attentional resources to the task performed by the automation puts
them in position to step in should the automation fail or be compromised in any way. For
example, in tasks involving automated driving systems, research has found lower levels of trust
to be associated with faster reaction times (Payre et al., 2016) and more time spent monitoring
the road (Korber, Baseler, & Bengler, 2018). However, this is likely to compromises the
performance of the system as a whole (Lee & Moray, 1992). Misuse, or the underutilization of
driver assist features is already an issue for manufacturers. Previous research has found that
drivers are inclined to turn their driver assist systems off, and the frequency of use and apparent
acceptance of these systems seems to vary depending on the system itself (Eichelberger &
McCartt, 2014; 2016; Kidd et al., 2017). A 2016 study found that nearly all Honda vehicles
surveyed at service centers had their forward collision warning systems activated (Reagan &
McCartt, 2016). That same study found that less than one third of these same vehicles had their
lane departure warning system activated. By not activating or underutilizing these systems, they
can be rendered unintentionally useless.

There are, however, notable consequences for placing too much trust in an automated
system. Similar to interpersonal relationships, more trust does not equate to the correct amount of
trust (Ebnali et al., 2019). Automation-induced complacency is often considered a consequence
of overtrust in automated systems (Parasuraman et al., 1993; Mouloua et al., 1993; Parasuraman
& Manzey, 2010; Mouloua et al., 2019b). Operators that trust automation beyond the capabilities
of the system are susceptible to lapses in situation awareness due to complacency. A study
examining the role of trust in the operation of autonomous vehicles found that participants

appeared to “accept to fall asleep due to high trust in automation,” (Kundinger et al., 2019). This
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study found a positive relationship between trust and levels of drowsiness. There is also an
apparent impact on human monitoring performance based on levels of trust in a system (Bailey
& Scerbo, 2007; Lee, 2008). A longer reaction time during emergency manual recovery
scenarios was associated with higher levels of trust in a study looking at performance and trust in
operating fully autonomous vehicles (Payre et al., 2016). The attitude accompanying these
behaviors appears to be, ‘if I trust the system to be reliable, I do not need to monitor its
behavior.’

Unfortunately, examples of consumers placing an inappropriate amount of trust in
automated vehicles have already begun to accumulate. Some, despite the best efforts of the
individuals involved, do not end in disaster. In May of 2021, a man in San Francisco was pulled
over and arrested while riding alone in the back passenger seat of his Tesla (Levin, 2021). This
particular individual placed enough trust in the vehicle and the underlying technology that he did
not feel it was necessary to put himself in a position to take the wheel in case of an emergency.
Fortunately for this individual, the ticket was the only consequence of his reckless behavior.
However, in the month prior to this incident in April of 2021, two individuals were Killed in a
single-vehicle accident involving a Tesla Model S (Tangermann, 2021). Investigators at the
scene were “100 percent certain” that neither of the passengers were in the driver seat at the
moment of the accident. The vehicle appeared to have failed to make a turn and impacted a tree
not far off the road. This is a tragic example of how placing too much trust in an automated
system can have devastating consequences, especially in potentially dangerous tasks such as
driving.

Manufacturers should be interested in what factors contribute to these decisions made by

drivers. Is it related to the quality of the system in place? The underlying systems and computer
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vision technologies that support features such as forward collision warning and lane departure
warning are far from perfect. Could it be due to the environment these vehicles are driven in? It
is possible these features provide an unneeded benefit for this segment of drivers, who may drive
in residential neighborhoods with minimal complexity to their environment. Or perhaps it is
related to the individuals themselves, being distrusting in nature or feeling more comfortable
with the systems they are familiar with. Human factors research has identified a multitude of
factors that may contribute to how much trust an individual has in an automated system
(Hancock et al., 2011; Schaefer et al., 2014; Hoff & Bashir, 2015). These include dispositional
factors, or those related to the individual, environmental factors, or those related to the scenario
or context in which the system is being used, and those related to the system itself.

A goal of this current study was to examine these factors and see how they contribute to
the amount of trust a person places in automated driving systems.

Factors Influencing Trust in Automation

Dispositional Factors

Dispositional factors are the aspects of an individual that make them more or less likely
to trust an automated system. While trust calibration is typically acknowledged as a dynamic
process, research has found that certain characteristics and abilities of an individual will
significantly impact how likely they are to trust automation. A primary example of this is a
person’s predisposition to trust in general (Merritt & llgen, 2008, Schaefer et al., 2016), a trait
that has been shown to make them more likely to trust automation. Trust assessed prior to
experience with driving in a driving simulator was found to lead to differences in trust
construction in participants (Manchon et al., 2021). It has also been found that those who are less

likely to trust automation may be more accurate when it comes to calibrating a proper level of

14



trust. However, findings from Merritt and Ilgen (2008) suggest that, with experience, trust in
automation is less impacted by a propensity to trust the system and more by characteristics
related to the machine.

Trust calibration may closely follow laws of learning, wherein the more a person learns
about a system and its capabilities and limitations, the better they can calibrate an appropriate
level of trust (Ebnali et al., 2019). To that end, experience with automated driving systems has
shown to strongly effect operator trust (Gold et al., 2015; Azevedo-Sa et al., 2020). Some
research has found that more exposure to a system results in increased trust (Kundinger,
Wintersberger, & Riener, 2019), but this may also depend on the performance of the system in
those experiences (Tenhundfeld et al., 2020). Additional dispositional factors include a person’s
own confidence in their ability to perform the automated task. If an operator is not confident in
their ability to perform the task, they tend to rely more heavily on the automation (De Vrise et
al., 2003). There appears to be a relationship between self-efficacy and trust in lower levels of
automation in studies of automated driving systems (Miele et al., 2021). Differences in levels of
trust in automation between genders and education level, and even based on age (Donmez et al.,
2006; Abraham et al., 2016; Hillesheim et al., 2017). Newer drivers might display different
levels of trust in driving technologies when compared to older drivers (Shahini et al., 2021).
These characteristics, many unique to each individual, may ultimately influence how likely a
person is to trust automated driving features and how much trust they initially place in the
features.

Environmental Factors
In addition to the dispositional factors that may impact how much trust an individual

places in an automated system, the environment in which they system is operating will also play
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a role in determining trust. Examples of these environmental are represented in the model for
environmental conditions that influence the relationship between trust and reliance developed by
Hoff and Bashir (2015). They suggest that the strength of the relationship between trust and
reliance is determined by:

e Complexity of the automation

e Novelty of the situation

e Operator’s ability to compare automated performance to manual

e Operator’s degree of decisional freedom
Higher levels of these characteristics are believed to result in a stronger relationship between
trust and reliance.

The amount of trust a person places in automation in a particular situation (situational
trust; Balfe, Sharples, & Wilson, 2018) can also vary based on the complexity of the situation
and the workload imposed on the operator (Hancock et al., 2011; Hoff & Bashir, 2015).
Increased in workload have been found to elicit an increase in reliance behaviors (Hillesheim et
al., 2017). Additional situational or environmental factors that may impact trust and reliance are
the time pressure associated with accomplishing a certain task (Lee & See, 2004) and the amount
of risk perceived by the individual (Li et al., 2019).

System Related Factors

A final set of factors that researchers have found can significantly contribute to the
calibration of trust in automated systems pertain to the characteristics of the system itself. It
appears to be true that user experience with a system will impact their trust in that system, but
the behaviors of the system also will influence trust calibration. One characteristic of an

automated system that has consistently shaped trust is the reliability or competence of the system
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(Miller & Parasuraman, 2007; Balfe et al., 2018). Research has shown that highly reliable
systems tend to increase trust (Bailey & Scerbo, 2007). The types of errors committed by an
automated system will have unique impacts for how users trust and interact with that technology.
For example, in aviation the ‘Cry Wolf Effect” was so named as pilots began to ignore alerts that
they had learned are not always reliable and were often false alarms (Bliss, 1993). This is a
learned response by pilots who experience the incompetence of the automation (some researchers
also refer to system-related factors ‘learned factors”) and choose not to comply with its
instructions. A miss, or failure to detect or act upon a stimulus when expected, on the part of
automation has shown to uniquely impact reliance behaviors (Rice, 2009). This is demonstrated
in studies of human monitoring performance that have found error detection to be far better in
conditions of low automation reliability, indicating users of low reliability systems are less likely
to rely on that system to perform its job well (Oakley et al., 2003; Ferraro et al., 2018). Related
to system reliability, if a user finds they are able to perform an action before the system they are
less likely to trust and rely upon that system. Examples of this can be found in research that
observed a driver less likely to use an emergency braking system if they noticed themselves
hitting the break earlier than the system would engage (Lees & Lee, 2007).

Another aspect of an automated system that has been shown to impact trust and reliance
is the amount of transparency and feedback provided by the system (Sheridan, 1999; Beck et al.,
2007; Azevedo-Sa et al., 2020). This could be feedback regarding the system’s intentions,
reasons for previous actions, and overall operational status of its components. Researchers have
found that a drivers’ trust in automated features within a vehicle is better calibrated when the
system communicated its reasoning for making a maneuver or its level of certainty when making

a decision (Manchon et al., 2021). During a series of partially automated trials utilizing a Tesla
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Model X’s automated parking feature, participants reported a greater likelihood to trust the
feature once they were able to understand what the system was doing (Tenhundfeld et al., 2020).
Additionally, the level or degree of automation in use can often have an impact on the
trust a user places in that system. Levels of automation describe the amount of responsibility the
automated system has in performing a task, relative to that of the human (Parasuraman et al.,
2000; Kaber & Endsley, 2004; Endsley, 2018). When introduced into a broader system the
automation does not have to serve an “all or none” function (Onnasch et al., 2014), and can be
assigned to performing part of a task or components of a task only at certain times. While there
are a variety of models for levels of automation, they follow a general pattern with lower levels
involving more human participation and higher levels delegating more work to the automation.
Below is one example, developed by Parasuraman, Sheridan, and Wickens (2000), of a model for

levels of automation of decision action and selection.
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TABLE 1: LEVELS OF AUTOMATION OF DECISION ACTION AND SELECTION (PARASURAMAN ET AL.,

2000)
HIGH | 10 | The computer decides everything, acts autonomously, ignoring the human
9 ...informs the human only if it, the computer, decides to
8 ...informs the human only if asked, or
7 ...executes automatically, then necessarily informs the human and
6 ...allows the human a restricted time to veto before automatic execution, or
5 ...executes that suggestion if the human approves, or
4 ...suggests one alternative
3 ...narrows the selection down to a few, or
2 | The computer offers a complete set of decision/action alternatives, or
LOW |1 | The computer offers no assistance, human must take all decisions and actions

Higher levels of automation are implemented with the goal of lessening the burden on the
operator, while lower levels allow the operator to maintain more manual control over the
system’s performance. It is believed the routine task performance can be optimized at lower
levels of automation (Onnasch et al., 2014). Among the multiple models for levels of automation
is the Society of Automotive Engineers (SAE) Levels of Driving Automation (SAE, 2021),
which refers to the level of responsibility a driver and automated driver assist technologies have
in modern vehicles. The SAE levels have been iterated on multiple times, refined as advanced

driving technologies increase in their overall capabilities.
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TABLE 2: SAE LEVELS OF DRIVING AUTOMATION (SAE, 2021)

SAE Level Description Example Features
Level 0 Provide warnings and brief support Blindspot Warning
Level 1 Handle steering OR brake/acceleration assistance Lane (}entenryg OR

Adaptive Cruise Control
Handle steering AND brake/acceleration Lane Centering AND
Level 2 . ) .
assistance Adaptive Cruise Control
Level 3 Drive vehicle in certain conditions but driver Traffic Jam Chauffeur

must drive when the feature requests

Level 4 Drive vehicle in certain conditions Local driverless taxi

Same as Lvl 4 but in call

Level 5 Drive vehicle regardless of conditions i
conditions

While each model is different and no model is perfect (see Hancock, 2020), each
highlights the utility of such a measurement for a level of autonomy within a human-machine
system. There is currently no consistently established relationship between levels of automation
and operator trust in a system (Rani et al., 2000; Schaefer et al., 2016). Much research in the
driving domain have been limited to vehicles at a single level of automation (Kundinger et al.
2019; Cardenas et al., 2020). Additional research has produced conflicting results, with some
believing that autonomous vehicles with higher levels of capability are trusted less than lower-

level automation (Miele et al., 2021).
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CHAPTER 3: CURRENT STUDY RATIONALE
Addressing Gaps in the Literature

The current study intended to address current gaps in human factors literature related to
factors that influence trust in driver assist technologies. More specifically, it aimed to resolve
previously unanswered questions related to how environmental and system-related factors may
interact to effect driver trust, and how individual differences may impact the strength or direction
these effects. While it is clear that trust can be a driving factor in the human-automation
relationship, having strong implications for system effectiveness, the impact of different levels of
trust on human behavior must be understood. Proper calibrations of trust have been identified as
those that correspond accurately with the capabilities and limitations of the system they are
applied to (Lee & Moray 1994; Muir, 1994). It has been demonstrated throughout the literature
that human monitoring performance, the task that, as mentioned above, is becoming essential in
human-machine systems, is especially impacted by overtrust and undertrust (Bailey & Scerbo,
2007; Lee, 2008). By placing too much trust in automation, operators are more likely to
experience automation-induced complacency (Parasuraman et al., 1993; Mouloua et al., 1993)
and a lack of trust fails to see the full benefits of the automation. This is of particular concern
when considering the expanding role of driver assist technologies.

Trust and acceptance of automotive technologies represents only a small percentage of
driving research (Ayoub et al., 2019), despite the evidence supporting its impact. A review of
papers from the International ACM Conference on Automotive User Interface and Interactive
Vehicular Applications (AutoUl) dated from 2009 to 2018 found trust and acceptance to be a
topic in 4.3% of all articles. While this sample represents but a small segment of all driving

research, it helps to highlight a need and a gap in the literature related to automated driving.
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Previous research has suggested that there may be a tendency for drivers to show increased
reliance in simple, lower-level automated features while reducing reliance for highly complex
automated features (Hoff & Bashir, 2015). However, these researchers suggested that “research
is needed to confirm [this] trend.” Additionally, more data is needed to determine how features
related to the automation, such as degree/level of automation, interact with situational factors
such as task complexity or risk to influence how trust is formed.

The goal of this project was to empirically examine factors (e.g., dispositional,
situational, system) that may influence the amount of trust a driver places in automated driver
assist technologies. This project set out to answer questions related to the use of automated driver
assist features performing different functions and in different types of driving scenarios. This
project also helped address questions related to interactions between situational and system
related factors that impact driver trust in automated driving features.

Hypotheses
The specific anticipated results, based on prior research and theory, are described in the

hypotheses below.

Hq: It was expected that participant trust would vary based on the level of autonomy given to the

driver assist feature.

H2: It was expected that participant trust in the driver assist features would be impacted by the

complexity of the driving scenario, defined based on traffic density and driving environment.

Ha: It was expected that individual differences in driving (self-confidence, years of experience,
etc.) and demographics would influence the effect of our independent variables (scenario

complexity, driver assist feature) on participants’ trust in driver assist features.
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Ha: 1t was expected that a propensity to trust in technology would influence the effect of our

independent variables on participants’ trust in driver assist features.

Hs: It was expected that individual differences (age, etc.) would influence the effect of our

independent variables on participants’ trust in driver assist features.

Hs: It was expected that participants predisposition to trust certain automated driving features
would influence the effect of the driving scenario complexity on participants’ trust in that

particular feature.
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CHAPTER 4: METHODOLOGY
Participants

A total of 259 participants were recruited to participate in the study. Following data
cleaning, which included the removal of outliers, those who failed the attention check, those
missing data, the final sample was reduced to 166 participants. This included a total of 76 males,
89 females, and 1 who did not identify their gender. Participants were recruited through the
University of Central Florida’s SONA System. Through this system students were given course
credit for participating in a research study. Additionally, in an effort to gather a broader sample
from different populations, participants were recruited via social media (e.g., Facebook,
LinkedIn) to participate. Participants in the final sample were aged between 18 and 60 years old
(M= 22.87, SD=10.64). All participants were briefed on the goals of the research prior to
beginning the study and were told they were free to withdraw from the study at any time. Upon
reading the briefing information, participants provided their consent by advancing to the
experimental portion of the study.

Study Design

The study consisted of a 5x2 within-subjects design, wherein all participants experienced
the same automated driving features (5) and the same driving scenarios (2) across 10 total
vignette driving situations. The automated driving features described in the vignette driving
scenarios included Forward Collision Warning, Cruise Control, Lane Centering Assist, Adaptive
Cruise Control/Traffic Jam Assist, and Fully Autonomous Driving. Additionally, the driving
scenarios described in the study vary between two levels of driving task complexity. Complexity
was operationalized based on the traffic density and maneuvering requirements of the driver

(Paxion et al., 2014; Fastenmeier & Gstalter, 2007; Teh et al., 2013; Stapel et al., 2019). In a
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‘high complexity’ situation, participants were asked to imagine they were operating in a high-
density traffic situation in a city setting with many turns. In a ‘low complexity’ situation,
participants were asked to imagine they were operating in a low-density traffic situation on a
straight country road.
Materials

Driving Vignettes

A series of vignette driving scenarios were provided to participants (see Appendix E).
The driving scenarios described the purpose and use of the automated driving features at the five
levels of automation before asking participants to imagine using each of these features in two
unique driving contexts. In one scenario participants were in the ‘high complexity’ situation
described previously, and in the other they are in the ‘low complexity’ situation. The sum of the
five driving features in each driving context created a total of 10 vignette driving scenarios for
participants.
Questionnaires
Demographics

A demographic survey was provided to gather general information about participants.
This included information such as age, gender, and level of education.
Trust in Technology

A questionnaire was provided to participants in order to assess their general trust in
technology and automated systems. The Propensity to Trust Technology Scale (Schneider et al.,
2017) was used for this purpose. This is a six-item scale used to assess how likely a person is to
trust technology based on their attitudes toward it and tendencies to use technology for a variety

of purposes. The scale contains six statements, and participants are asked to rate on a five-point
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scale how much they agree with the statement. Options range from Completely Agree to
Completely Disagree, with a single reverse-scored item.
Driver Experience Questionnaire

A questionnaire was created to gather background information on participants history of
driving in their lifetime. A total of 16 items asked participants about experiences both as a driver
and a passenger on the road. Examples of these items included ‘How long have you had your
driver’s license?’, ‘Does the vehicle you currently drive have any automated driving assist
features?’, and ‘How many major/minor car accidents have you been in as a passenger?’
Adelaide Driving Self-Efficacy Scale (ADSES)

The ADSES (George et al., 2007) is a scale designed to assess participants’ confidence in
their ability to perform several driving maneuvers or drive in certain scenarios. Examples of
these scenarios include ‘Driving in heavy traffic’ and ‘Responding to road signs/traffic signals’.
The scale includes a total of 12 items, with participants rating their confidence on a scale of 0 to
10 where 0 is no confidence and 10 is completely confident.

Checklist for Trust between People and Automation (Jian et al., 2000)

The Checklist for Trust between People and Automation is an assessment of how much
trust an individual places in a particular automated system. It presents 12 items that are
comprised of short statements about the system in question. Examples include, “I am wary of the
system,” or “The system is dependable.” These items are scored on a Likert scale from 1 to 7 as
participants indicate how much they agree with the statement. A 1 would mean “Not at all” while
a 7 would mean “Extremely.”

Situational Trust Scale for Automated Driving (STS-AD)
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The STS-AD (Holthausen, 2020) was created to assess an individual’s trust in automated
driving systems following exposure to a certain driving scenario. The scale was adapted for each
of the unique driving features described in the vignettes used in this study. Example items for
some of the driving features include, I trust the forward collision warning system in this
situation’ and ‘The lane centering assist system is likely to make an unsafe judgment in this
situation’. There are a total of six items, scored on Likert scale of 1 to 7 where 1 is strongly
disagree and 7 is strongly agree. Two items from the scale were reverse scored.

Within the STS-AD, multiple attention checks were included as a means to assess
whether or not participants were reading the materials throughout or answering without
consideration (Berinsky et al., 2014). First, a single vignette scenario was presented that asked
participants to provide a specific answer. The vignette began as the others did, describing a
driving scenario, but then asked participants to answer ‘Strongly Agree’ to all the STS-AD
questions that followed. With many believing that a single attention check may be insufficient to
achieve its goal of revealing inattentive participants, an additional item was included with the
STS-AD for one scenario as a means to determine if participants were properly reading through
the items. This item simply stated, ‘The scenario describes driving on a country road,” placed
within the STS-AD scale for one of the vignette scenarios that did take place on a country road.
Participants were expected to respond ‘7 — Strongly Agree’ to this statement to indicate they read
the items properly.

Procedure

Participants were first provided with a brief overview of the study in the form of an

Informed Consent document. This document described the goal of the study, assured participants

that they were free to withdraw at any time and informed them that compensation would only be
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provided in cases of university students seeking extra course credit. By advancing to the pages
beyond this document, participants were providing their consent to participate in the study.

Participants began the study by completing the Demographics survey, followed by the
Driver Experience survey. After these surveys were completed, participants were asked to
complete the ADSES as a means to assess their confidence in their driving abilities. All
participants completed these initial surveys in this manner.

Once the initial three surveys were completed, participants advanced to the experimental
portion of the study. The 10 vignette scenarios and 1 attentional check scenario were presented to
participants at random. At the beginning of each vignette scenario was a brief description of the
function and proper use of the automated driving feature described in the vignette. Following
each vignette scenario, participants completed a modified version of the STS-AD. The STS-AD
was modified to specifically describe the use of each unique driving feature. After answering all
questions for each of the 11 vignette driving scenarios, participants were thanked for their
participation and the survey concluded. The total duration of the surveys was, on average under

30 minutes.
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CHAPTER 5: RESULTS
Primary Manipulations
The initial analysis performed was a 5x2 repeated measures ANOVA, intending to assess
main effects and interactions in trust between automated driver assist features (5) and driving
scenario complexity (2). Results indicated a significant main effect for driver assist feature, F(4,
660)= 28.56, p< .01, 2= .15. The forward collision warning (M= 3.91, SD= 0.76) and lane
centering assist (M= 3.92, SD= 0.75) were rated the highest we nearly identical mean trust
scores. The fully automated driving feature was rated the lowest (M= 3.38, SD=0.95). An
examination of pairwise comparisons found that trust in the forward collision warning system, on
average, was higher than that of the cruise control, adaptive cruise/traffic jam assist, and fully
automated driving features (p< .01). Trust in the cruise control feature was also significantly
lower than trust in the lane centering assist and adaptive cruise/traffic jam assist features (p< .01.
Cruise control was rated significantly higher than the fully automated driving feature (p< .05).
The lane centering assist feature’s trust score, while not significantly different from the forward
collision warning system, was significantly higher than the cruise control, adaptive cruise/traffic
jam assist, and fully automated driving feature (p< .01). Trust in the adaptive cruise/traffic jam
assist feature was rated significantly higher than the fully automated driving feature and cruise
control (p< .01). However, this same feature was rated lower than the forward collision warning

and the lane centering assist (p< .01).
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FIGURE 2: SITUATIONAL TRUST BETWEEN DIFFERENT DRIVER ASSIST FEATURES

There was also a very strong main effect for driving scenario complexity, F(1, 165)=
216.32, p< .01, np%= .57. Participants generally reported lower levels of trust in driver assist
features under in high complexity driving scenarios (M= 3.25, SD=0.12) compared to the low

complexity scenarios (M= 4.14, SD= 0.14).
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FIGURE 3: SITUATIONAL TRUST BETWEEN HIGH AND LOW COMPLEXITY DRIVING SCENARIOS

Finally, there was a significant interaction effect as well, F(4, 660)= 54.21, p< .01, 7%=
.25. This effect was most pronounced in the features exhibiting lower levels of automation
control. Reported levels of trust seemed to demonstrate a clear pattern among features under
higher levels of automation (i.e., lane centering assist, adaptive cruise/traffic jam control, fully
automated). Participants’ trust in these systems was consistently lower in the high complexity
(M= 3.25, SD= 0.74) driving scenarios compared to the low complexity scenarios (M= 4.14, SD=
0.68). Additionally, trust in these systems appeared to decrease with an increase in the autonomy
of the system. That is, trust was highest in the lane centering assist feature (M= 3.92, SD=0.87)
and lowest in the fully automated driving feature (M= 3.38, SD= 1.13). However, trust in the first

two driver assist features did not follow this pattern. Participants’ trust in the forward collision
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warning system appeared to be lower in the low complexity scenario (M= 4.10, SD= 0.84)
compared to the cruise control system in the low complexity scenario (M= 4.34, SD=0.82). In
the high complexity driving scenarios, trust in the forward collision warning system was higher
(M= 3.72, SD=0.89) than that of the cruise control system (M= 2.71, SD= 1.12). The main

effects and interaction described here can be seen in Figure 3 below.
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FIGURE 4: SITUATIONAL TRUST SCORES ACROSS DRIVING SCENARIOS AND DRIVER ASSIST FEATURES

Covariate Analyses
A series of 5x2 repeated measures analysis of covariance (ANCOVA) were performed to
test the influence of multiple variables on the previously observed effects on trust in the driver

assist features. ANCOVA was chosen as it would effectively reveal any interactions between
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continuous covariates and independent variables on situational trust. Significant interaction
effects between the covariate and the independent variables would suggest the covariate
moderates the relationship between trust and that manipulation, impacting the direction or
strength of that relationship. Should the significant effects observed in the previous repeated
measures ANOVA be found non-significant in the presence of a covariate, this would indicate
that covariate shares some variance with the dependent variable across levels of the independent
variable.
Driving Self-Efficacy

The first ANCOVA included participants’ driving self-efficacy as a covariate. The
previously observed main effect for situation complexity was still present, F(1, 164)= 15.35, p<
.01, 7p?=.09. However, the main effect for the driver assist features was no longer there, F(4,
656)= 1.52, p= .20, np>= .01. Additionally, the significant interaction between the independent
variables found in the prior ANOVA was not present with the covariate, F(4, 656)= 1.25, p= .29,

I’lpzz .01.

Moderating effects of the covariate were assessed by examining the interaction between
the covariate and the independent variables. No significant interaction between the situation
complexity and driving self-efficacy was found, F(1, 164)= .21, p= .65, 5,?>= .001, or with the
driver assist features and driving self-efficacy, F(4, 656)= 1.10, p= .35, 5p?= .01. No interaction

effects were found.

Propensity to Trust Technology
The next ANCOVA used participants’ scores on the Propensity to Trust Technology
scale as a covariate. The main effect of driver assist feature was still significant, despite the

covariate, F(4, 656)= 6.23, p< .01, 5p>= .04. There was, however, only a moderately significant
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main effect for situation complexity, F(1, 164)= 3.21, p= .08, 7°>= .02. Also, there was no
significant interaction between the independent variables in the ANCOVA, F(4, 656)=0.90, p=

45, 2= 01.

Interaction effects between the propensity to trust technology score and the IVs were
again assessed in this analysis. No significant interaction was found between the situation
complexity manipulation and the propensity to trust technology score, F(1, 164)= .99, p= .32,
np>=.01. However, a significant interaction between the driver assist features and the covariate
was found, F(4, 656)= 3.31, p< .05, 7p>= .02. This result suggested a moderating effect of the

covariate on situational trust between the driver assistance features.

To model this interaction, linear regression was performed on each of the five different
driver assist features with the Propensity to Trust Technology score as the sole predictor.
Regression models were not significant for the forward collision warning system, F(1, 164)=
2.69, p=.10, R?=0.02, = .12, or for the cruise control feature, F(1, 164)= 1.56, p= .23, R?>=
0.01, p=.09. The model for the lane centering feature was significant, F(1, 164)= 4.71, p< .05,
R?=0.03, = .15, as were those for the adaptive cruise control/traffic jam assist feature, F(1,
164)=9.29, p< .01, R?= 0.05, 5= .21, and the fully automated driving, F(1, 164)= 14.50, p< .01,

R?=0.08, = .34. Regression equations are provided in the table below and graphed in Figure 4.
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TABLE 3: REGRESSION EQUATIONS PREDICTING AVERAGE SITUATIONAL TRUST IN DRIVER ASSIST
FEATURES AS A FUNCTION OF PARTICIPANTS " PROPENSITY TO TRUST TECHNOLOGY SCORE

Forward Collision Warning 3.41 + 0.12*(Propensity to Trust Tech)
Cruise Control 3.17 + 0.09*(Propensity to Trust Tech)
Lane Centering Assist 3.30 + 0.15*(Propensity to Trust Tech)
Adaptive Cruise/Traffic Jam Assist 2.83 + 0.21*(Propensity to Trust Tech)
Fully Automated Driving 1.97 + 0.34*(Propensity to Trust Tech)

Driver Assist Features, Technology Trust, and Situational Trust
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FIGURE 5: INTERACTION OF DRIVER ASSIST FEATURE AND PROPENSITY TO TRUST TECHNOLOGY ON
SITUATIONAL TRUST

Age
Both age and driving experience were considered as covariates that might impact trust

between high and low complexity and between driver assist features. However, due to the highly
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significant correlation between the age and driving experience variables (p< .01), only driving
experience was used as a covariate in the analysis.
Driving Experience

The next covariate included in the analyses was driving experience, measured as the
length of time participants reported possessing a valid driver’s license. Both main effects found
for situation complexity, F(1, 164)= 104.06, p< .01, 7p>= .39, and for driving feature, F(4, 656)=
7.63, p< .01, 7p?= .04, in the initial ANOVA were still present when license duration was
included as a covariate. The interaction effect was also still present, F(4, 656)= 20.59, p< .01,
np?=.11. These results suggest that, even when the amount of time a person has been driving is
statistically controlled for, the main effects for scenario complexity and driver assist features still

exist and the interaction between these two factors still exists.

Interaction effects between the independent variables and driving experienced were also
assessed in the ANCOVA. No significant interaction was found between the driver assist
technologies and driving experience, F(4, 656)= .58, p= .65, 1p>= .004. Interestingly, there was a
marginally significant interaction, trending toward significance, between the scenario complexity
and driving experience, F(1, 164)= 3.20, p< .10, 7p?>= .02. This result indicates there may be a
moderating effect for driving experience on trust between high and low complexity driving
scenarios. Linear regression was performed on the two levels of the scenario complexity variable
with driving experience as the predictor. The regression model was not significant for the high
complexity scenario, F(1, 164)= .07, p= .79, R?>= 0.01, = -.01. The resulting model was
significant for the low complexity scenario, F(1, 164)= 5.70, p< .05, R?>= 0.03, = -.08.
Regression equations for the two models are provided in the table below and graphed in Figure

5.
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TABLE 4: REGRESSION EQUATIONS PREDICTING SITUATIONAL TRUST AS A FUNCTION OF DRIVING

EXPERIENCE
High Complexity 3.27 - 0.01*(Driving Experience)
Low Complexity 4.31 - 0.08*(Driving Experience)

Situation Complexity, Driving Experience, and Situational Trust

_5
(%)
2
Fa
[a+]
[
j= . .
§ 3 i 1 1 i e High Complexity
5 ) T Low Complexity
1
0

1 2 3 4 5 6 7 8 9 10

Driving Experience (yrs)
Error bars = +/- 2 SE

FIGURE 6: INTERACTION OF SITUATION COMPLEXITY AND DRIVING EXPERIENCE ON SITUATIONAL TRUST

Accident History

The next covariate included was the accident history of participants, defined as the total
number of minor and major accidents they reported having experienced as either a passenger or a
driver in a motor vehicle. The main effect for situation complexity, F(1, 164)= 115.86, p< .01,

ne’= .41, and for driver assist feature, F(4, 656)= 10.36, p< .01, 55°>= .06, found in the initial

ANOVA were still present when accident history was included as a covariate. The interaction

effect was also still significant, F(4, 656)= 23.96, p< .01, ;%= .13.
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Dispositional Trust in Individual Features

A series of one-way repeated measures ANCOVAs were run to assess the influence of
dispositional trust, or participants’ initial levels of trust free of any context, in each of the driver
assist features on differences in situational trust between high and low complexity scenarios.
Scores from the Checklist for Trust between Humans and Automation was used as a covariate in
these analyses. There was no interaction between scenario complexity and dispositional trust in
the forward collision warning system, F(1, 164)= 2.23, p= .14, ,>= .01, or between complexity
and dispositional trust in cruise control, F(1, 164)= .55, p= .46, 7,°= .003. However, there was a
significant interaction between situation complexity and dispositional trust in the lane centering
assist feature, F(1, 164)= 14.21, p< .01, 7,°>= .08. This same interaction was found for the
adaptive cruise control/traffic jam assist feature, F(1, 164)= 4.76, p< .05, 7p?= .03, as well as the

fully automated driving feature, F(1, 164)= 13.35, p< .01, 7p>= .08.

Linear regression was then performed on each level of the scenario complexity variable
for the lane centering assist, adaptive cruise control/traffic jam assist, and fully automated
driving features. The initial regression model, for the lane centering assist feature in the high
complexity scenario, was significant, F(1, 164)= 19.92, p< .01, R?= .11, = .45, while the model
was not significant for the same feature in the low complexity scenario, F(1, 164)= .23, p= .63,
R2=.001, = .05. This indicated that dispositional trust predicted situational trust in the high
complexity scenario, but not in the low complexity scenario. The regression equations for these

two models are presented and graphed below.
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TABLE 5: REGRESSION EQUATIONS PREDICTING SITUATIONAL TRUST AS A FUNCTION OF DISPOSITIONAL
TRUST IN LANE CENTERING ASSIST FEATURES

Lane Centering Assist - High Complexity 1.70 + 0.45*(Dispositional Trust in LCA)

Lane Centering Assist - Low Complexity 4.00 + 0.05*(Dispositional Trust in LCA)

Situation Complexity, Dispositional Trust, and Situational Trust:
Lane Centering Assist
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FIGURE 7: INTERACTION OF SITUATION COMPLEXITY AND DISPOSITIONAL TRUST IN LANE CENTERING
ASSIST ON SITUATIONAL TRUST

The regression model for the adaptive cruise control/traffic jam assist feature in the high
complexity condition was significant, F(1, 164)= 25.01, p< .01, R?= .13, = .52. The model for
the adaptive cruise control/traffic jam assist feature was also significant in the low complexity
scenario, F(1, 164)= 6.62, p< .01, R?= .04, = .26, indicating dispositional trust in the feature

significantly predicted situational trust in both driving scenarios.
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TABLE 6: REGRESSION EQUATIONS PREDICTING SITUATIONAL TRUST AS A FUNCTION OF DISPOSITIONAL
TRUST IN ADAPTIVE CRUISE CONTROL/TRAFFIC JAM ASSIST FEATURES

ACC/TJA - High Complexity 1.15 + 0.52*(Dispositional Trust in ACC/TJA)

ACC/TJA - Low Complexity 3.10 + 0.26*(Dispositional Trust in ACC/TJA)

Situation Complexity, Dispositional Trust, and Situational Trust:
Adaptive Cruise/Traffic Jam Assist
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FIGURE 8: INTERACTION OF SITUATION COMPLEXITY AND DISPOSITIONAL TRUST IN ADAPTIVE
CRUISE/TRAFFIC JAM ASSIST ON SITUATIONAL TRUST

Finally, the regression models for the fully automated driving feature were calculated. The model
in the high complexity condition was significant, F(1, 164)= 48.82, p< .01, R?>= .23, = .78.
Additionally, the model for the low complexity condition was also significant, F(1, 164)= 5.59,

p< .01, R%= .03, fi=.30.
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TABLE 7: REGRESSION EQUATIONS PREDICTING SITUATIONAL TRUST AS A FUNCTION OF DISPOSITIONAL
TRUST IN FULLY AUTOMATED DRIVING SYSTEMS

Fully Automated Driving - High Complexity -0.17 + 0.78*(Dispositional Trust in FAD)

Fully Automated Driving - Low Complexity 2.74 + 0.30*(Dispositional Trust in FAD)

Situation Complexity, Dispositional Trust, and Situational Trust:
Fully Automated Driving
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FIGURE 9: INTERACTION OF SITUATION COMPLEXITY AND DISPOSITIONAL TRUST IN FULLY AUTOMATED
DRIVING ON SITUATIONAL TRUST

Group Differences
The final analyses performed included a series of mixed ANOVA to assess differences
between subsets of the overall sample in their trust across the driver assist features. The first of
these ANOVAs was a 5x2x2 mixed ANOVA involving driver assist features, situation

complexity, and gender to assess differences across all experimental conditions. Results showed

the significant main effect of situation complexity on situational trust, F(1, 163)=211.33, p< .01,
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ne’= .57 and of driver assist features, F(4, 652)= 28.27, p< .01, 5,°= .15, were again found. The
interaction effect between these variables was also found, F(4, 652)= 53.97, p< .01, 7p°= .25.
There was also a significant difference found between genders, F(4, 652)= 12.06, p< .01, 7p>=
.07. Males reported higher levels of trust overall, (M= 3.85, SD= 0.65) than females (M= 3.54,

SD=0.50). Differences can be seen in Figure 8 below.

Trust Between Genders

5.00
* %

4.00

t
2

Situational Trust Score
g
=

1.00

0.00
Male Female

Gender **p<.01, * p< .05

FIGURE 10: DIFFERENCES IN TRUST FOUND BETWEEN MALES AND FEMALES

There was also a significant interaction between gender and the driver assist features,
F(4, 652)= 4.57, p< .05, 7p>= .03. Means and standard deviations are displayed in the table

below.
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TABLE 8: MEAN SITUATIONAL TRUST SCORES BETWEEN GENDERS, STANDARD DEVIATIONS IN

PARENTHESES

Male Female
Forward Collision Warning 3.97 (0.86) 3.84 (0.66)
Cruise Control* 3.65 (0.78) 3.43 (0.63)
Lane Centering Assist 4.01 (0.78) 3.83 (0.65)
Adaptive Cruise/Traffic Jam Assist** 3.97 (0.80) 3.52 (0.63)
Fully Automated Driving** 3.67 (0.92) 3.11 (0.88)

Tests of simple effects indicated that males reported significantly higher levels of trust in
the cruise control feature (p< .05) compared to females, as well as the adaptive cruise
control/traffic jam assist and the fully automated driving (p< .01). However, there were no
significant differences between genders in the forward collision warning and the lane centering
assist features. No significant three-way interaction between scenario complexity, driver assist

feature, and gender was found, F(4, 652)= .86, p= .48, np>= .01.
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FIGURE 11: INTERACTION OF DRIVER ASSIST FEATURES AND GENDER ON SITUATIONAL TRUST

The next mixed ANOVA performed was a 5x2x5 repeated measures ANOVA with level

of education as the grouping variable. Level of education was measured over five levels: high

school diploma, some college no degree, associate degree, bachelor’s degree, and graduate

degree. Main effects for situation complexity, F(1, 161)= 89.20, p< .01, 5y>= .36, and for driver

assist feature, F(4, 644)= 16.03, p< .01, 5p>= .09, were significant. There was also a main effect

for level of education, F(4, 161)= 6.88, p< .01, 7,?>= .15. Post hoc comparisons indicated that the

group with a bachelor’s degree provided the highest overall trust score (M= 4.05, SD= 0.64),

significantly higher than those with some college experience but no degree, an associate degree,

or a graduate degree (p< .01) The lowest scores came from those with a graduate degree (M=

2.82, SD= 0.80), which was significantly lower than all other scores (p< .01). None of the other
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comparisons were significant at .05 level. Examinations of interaction effects found the same

interaction between situation complexity and driver assist feature, F(4, 644)= 54.21, p< .01, p>=

.25. However, there were no interactions found between the independent variables and level of

education. There was also no significant three-way interaction between situation complexity,

driver assist features, and level of education, F(16, 644)= 1.18, p= .29, 7p°= .03.
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FIGURE 12: AVERAGE SITUATIONAL TRUST SCORES BETWEEN GROUPS BASED ON LEVEL OF EDUCATION
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TABLE 9: AVERAGE SITUATIONAL TRUST SCORES BETWEEN PARTICIPANTS AT DIFFERENT LEVELS OF

EDUCATION
Education Level Total N Mean (SD)
High School Diploma 56 3.77 (0.54)
Some College but No Degree 67 3.71 (0.54)
Associate Degree 22 3.47 (0.48)
Bachelor’s Degree 14 4.05 (0.64)
Graduate Degree 7 2.82 (0.59)

The final ANOVA performed was a 5x2x4 repeated measures ANOVA, this time using
participants’ reported most common driving environment as a grouping variable. Different
environments were identified as cities, highways, rural areas, or suburban areas, while those that
do not drive were excluded from the analyses. There were again main effects for the situation
complexity, F(1, 158)= 79.91, p< .01, #p?>= .33, and for the driver assist features, F(4, 632)=
9.14, p< .01, ;zpzz .05. There was no significant main effect, however, for the participants’

common driving environment, F(3, 158)= 1.41, p= .24, ny>= .03.

TABLE 10: AVERAGE SITUATIONAL TRUST SCORES BETWEEN PARTICIPANTS THAT TYPICALLY DRIVE IN
DIFFERENT ENVIRONMENTS

Driving Environment Total N M (SD)
Cities 21 3.80 (0.59)
Rural Areas 56 3.64 (0.64)
Highways 39 3.57 (0.48)
Suburban Areas 46 3.80 (0.61)
Don’t Drive 4 -
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There was similarly not any significant interaction between any of the independent variables and
the grouping variable. The significant interaction for complexity and driver assist feature was

again present, F(4, 632)= 17.77, p< .01, 7,?>= .10.
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CHAPTER 6: DISCUSSION
General Discussion

The goal of this study was to examine how different factors related to the environment
and an automated system would impact how much trust a person places in automated driver
assist technologies. Additionally, it sought to answer questions related to individual differences
that may influence the strength or direction of the effect these environmental and system-related
factors have on trust. The study empirically examined the impact that driving scenario
complexity and level of automation have on trust, while considering a moderating effect of a
series of demographic and experience-related variables. It was expected that both environmental
and system-related factors would significantly impact participants’ trust in driver assist features.
It was also expected that individual differences would impact these relationships.

Results strongly support the hypothesis that scenario complexity would impact
participants’ trust. Participants, on average, reported significantly greater trust in the driver assist
features when they were placed in a low complexity driving scenario. Under conditions of low
traffic density on a straight, country road participants indicated a willingness to trust and use all
driver assist features far greater than in the high complexity scenario. The noted strength of this
relationship supports research suggesting that the complexity of the environment or task will
play a significant role in how users trust certain types of technology. This relationship was
consistent across all driver assist features, with more trust being placed in each individual feature
in the low complexity scenario. The greatest difference between high and low complexity score
was found with the cruise control feature.

A strong main effect for the different driver assist feature was also found, supporting the

hypothesis about differences in automation impacting trust and indicating that participants’ trust
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differed between the five features mentioned in the vignette driving scenarios. Trust, overall, was
highest for the forward collision warning and lane centering assist features, with average
situational trust scores being nearly equal between the two features. Trust was lowest for the
fully automated driving feature, described as handling all driving tasks without driver
intervention. In addition to these main effects, a significant interaction was found between the
situation complexity and the driver assist feature in use. This interaction was most apparent when
examining differences in the cruise control feature. In the low complexity scenario, the cruise
control feature received the highest score on the situational trust scale, rated even higher than the
forward collision warning and lane centering assists that received the highest average trust score.
However, the same cruise control feature received the lowest overall situational trust score in the
high complexity scenario. This feature received a trust score even lower than the fully automated
driving feature in the high complexity scenario.

Analyses also revealed several variables that may interact with the independent variables
and situational trust scores, supporting the hypothesis that trust between conditions may be
influenced by individual differences. One covariate, accident history, was not related in any way
to the dependent variable. Interactions with the independent variables were both found to not be
statistically significant, while controlling for accident history did not change any relationships
between the independent variables and the dependent variable. Participants’ self-efficacy when
driving was considered as a variable that may influence these relationships and was used as a
covariate when running the same repeated measures ANOVA as was performed to assess main
effects and interactions of the independent variables. No significant interactions were found
between the primary manipulations and self-efficacy. However, the main effect for the driver

assist features was no longer present with the self-efficacy covariate included in the analysis.
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This result suggests that, while self-efficacy may not moderate the effect of the independent
variables, it shares some variance with the driver assist feature manipulation on the dependent
variable of situational trust. It is possible this is due to the individual tasks delegated to the driver
assist features, and how differences in self-efficacy performing those tasks influenced that main
effect. Participants higher in their confidence to handle emergency braking tasks, for example,
may trust the forward collision warning less than other features. This may have contributed to
differences in trust between different driver assist features.

An additional variable considered as a covariate in the series of ANCOVASs was
participants’ propensity to trust technology and automation. This analysis found an interaction
between the propensity to trust technology and the automated driver assist feature manipulation.
Regression models showed that the propensity to trust technology score was able to predict
situational trust in the lane centering assist, adaptive cruise/traffic jam assist, and fully automated
driving features. A propensity to trust technology was not predictive of situational trust in the
cruise control or forward collision warning systems.

An examination of beta weights indicates that there is a stronger relationship between the
propensity to trust technology and situational trust in driver assist features as the level of control
the feature has over driving increases. Beta weights for the propensity to trust technology score
were highest for fully automated driving and adaptive cruise control/traffic jam assist features,
demonstrated in Figure 4. They were the lowest for the cruise control and forward collision
warning features. This relationship indicates that, the higher a person’s likelihood to trust
technology in general, the more likely they are to trust certain driver assist features. A possible
explanation for this relationship is the advancement of driver assist technologies over time. The

forward collision warning and cruise control features debuted prior to the lane centering assist
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and other, more advanced features. A propensity to trust technology would indicate a willingness
to accept and adopt new or emerging technologies. More specifically, increases in propensity to
trust technology are most strongly related to higher-level automation rather than lower-level
automation.

The next ANCOVA included driving experience, measured as the total number of years a
person has had their driver’s license, as a covariate. A moderately significant interaction was
found between participants’ driving experience and the complexity of the driving scenario, . This
indicates that driving experience may moderate any differences in trust between high and low
complexity driving scenarios. Though this effect was not particularly strong, the relationship can
be seen in Figure 5. Driving experience was able to effectively predict situational trust only in
the low complexity scenario. Regression models for the high and low complexity trust scores
produced negative beta weights, indicating a decrease in trust as driving experience increased
across both driving scenarios. Trust in the high complexity scenario did not vary much as years
of driving experience increased, declining only slightly. However, trust in the low complexity
scenario saw a moderately strong decline as years of driving experience increased. The
situational trust scores in the low complexity scenario approached that of the high complexity as
driving experience increased, an indication of the interaction between driving experience and
situation complexity. This relationship may be attributable to the nature of trust as it relates to
suspicion and vulnerability (Hoff & Bashir, 2015; Deutsch, 1960). Lee and See (2004) define
trust as “the attitude that an agent will help achieve an individual’s goals in a situation
characterized by uncertainty and vulnerability,” (p. 54). Low complexity scenarios are inherently
low in uncertainty and vulnerability, particularly as described in this study. Early on in a

person’s time as a licensed driver, they may be more likely to trust driving technologies in low
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complexity situations because of this low level of uncertainty and perceived vulnerability relative
to the high complexity scenario. In time, drivers may learn that the complexity of the
environment may not be influencing the reliability of the system, and the lane centering assist
feature is just as likely to make a mistake on the straight country road as it is in the city. With
experience comes the realization that, even in low complexity driving scenarios, driver assist
features are not infallible.

A series of ANCOVA aimed to determine if participants initial, dispositional trust toward
the individual driving features would influence the effect of situation complexity on their
situational trust scores. Significant interactions were found primarily in the higher levels of
automation, the lane centering assist, adaptive cruise control/traffic jam assist, and the fully
automated driving. These relationships again indicate a moderating effect for dispositional trust
on situational trust in high and low complexity scenarios for these features. The other features,
forward collision warning and cruise control, did not see significant interactions between
dispositional trust and situation complexity. A closer look at the regression models, wherein
dispositional trust scores predicted situational trust in high and low complexity, showed stronger
beta weights in high complexity scenarios than in low complexity. Interactions consistently
showed situational trust increasing at a higher rate with increases in dispositional trust within the
high complexity scenario, starting lower than the scores in the low complexity and overtaking
them with time. The relationship between dispositional trust and situational trust, in both the high
and low complexity scenarios, was strongest for the fully automated driving feature.

The final series of analyses examined differences between different groups, beginning
with an assessment of gender differences. Results supported the initial hypothesis predicting

differences between genders and indicated that males, on average, placed more trust in driver
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assist features across all conditions than females. The interaction between gender and the
different driver assist features can be seen in the trust scores of the fully automated driving and
cruise control features. Cruise control provided the lowest trust rating among males between all
other driver assist features. However, females rated the fully automated driving feature the
lowest by a wide margin. As expected, there was also a noted main effect for level of education.
Differences in levels of education saw participants that reported having a bachelor’s degree
reporting the highest level of trust overall, while those with a graduate degree reported the lowest
levels of trust. Trust appeared to progressively decline with each increase in level of education,
with the group with a bachelor’s degree going against this trend. Interestingly, the driving
environment in which participants reported driving in most frequently was not a significant
factor. No differences were found between groups of participants driving most frequently in
different driving environments. Overall, results supported the hypothesis that driving
environment complexity and differences in driver assist features would impact differences in
situational trust. Results also support the hypothesis that there are multiple factors related to the
participant and their driving experience that may moderate these relationships.
Theoretical Implications

This study and its results have implications for the way trust in automation is formed and
influenced by factors related to the environment, the system, and the individual. These are each
broad categories of factors that previous research has identified as impactful when determining
how likely a person is to trust, rely upon, or comply with automated systems and technology
(Schaefer et al., 2016; Hoff & Bashir, 2015). The results of this study help to establish potential
predictors of trust in automation, and in driving technology in particular. Researchers suggest

that the ability to identify key factors impacting trust in automation is an essential step in finding
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and creating optimal methods of designing trusted systems (Perkins et al., 2010). The main effect
of situation complexity is consistent with previous research that suggests task complexity or
workload may impact likelihood to trust technology (Hillesheim et al., 2017; Hancock et al.,
2011). High complexity scenarios and those that increase workload for the operator tend to
decrease trust in the automated system, as was the case for participants when responding to the
high complexity driving scenarios above. The strength and consistency of this effect, in spite of
the lack of a physical driving environment to test experimental manipulations, provides support
for the use of verbal, vignette scenarios for driving research. It is believed that, particularly in
driving research, that putting drivers behind the wheel is the most effective way to assess
behavioral tendencies (such as reliance or compliance with automated driving technologies) and
performance (Tenhundfeld et al., 2020). However, if results previously found in applied driving
research is replicated using descriptive or even visual representations of driving tasks, it presents
opportunities for researchers and those aiming to predict how a person may interact with the
environment while driving.

Additionally, the main effect for driver assist features further supports research finding
that factors related to the automation in question will influence trust (Bailey & Scerbo, 2007,
Manchon et al., 2021; Schaefer et al., 2016). To further break down this effect, the differences in
the driver assist features must be considered. For example, the forward collision warning system
provides just that, a warning. The other features either take momentary control of the vehicle
(lane centering assist) or constant control of the vehicle (cruise control, fully automated driving).
The SAE level of automation for each feature differs as well (SAE, 2021). The forward collision
warning would be considered SAE Level 0, as the SAE lists features such as lane departure

warning and blind spot warning in that level. The lane centering and adaptive cruise control
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features are classified, when considered independently, as SAE Level 1. The full automated
driving, as described in this study, would be SAE Level 5 (the SAE does not classify the cruise
control feature). Another difference, perhaps a factor considered in the SAE levels of automation
classifications, is that the fully automated driving claims full awareness of the environment and
the ability to consistently act within it without driver intervention. Conversely, the cruise control
feature claims no awareness or ability to adapt to the environment, and the forward collision
warning system maintains awareness but acts only under specific conditions (i.e., a forward
collision is imminent). Previous research into driver assist technologies has found a similar
relationship with trust (Miele, et al., 2021).

The significant interaction between manipulations provides support for previous findings
suggesting that trust is uniquely influenced by a multitude of different factors (Schaefer et al.,
2016; Hoff & Bashir, 2015). Trust, on average, appeared to be highest for features with
conditional awareness of the environment, such as the forward collision warning system and lane
centering assist feature. This trend was particularly apparent in the high complexity scenario,
however, as a closer examination of the interaction between the variables revealed. Cruise
control received the lowest trust rating in the high complexity scenario, while the fully
automated driving was also much lower than the other three features. Figure 10 shows this
relationship as a generalized model for how trust in driving technology is trusted in high
complexity situations is related to the level of awareness the system claims to have of the

environment.
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Trust in Driving Automation in High Complexity Driving Environments

Partial or Conditional Situation Awareness

.

Situational Trust

No Situation Awareness Total Situation Awareness

Level of Automation Situation Awareness
FIGURE 13: A PROPOSED MODEL REPRESENTING THE RELATIONSHIP BETWEEN TRUST IN A DRIVING

SYSTEM AND THAT SYSTEM 'S AWARENESS OF THE ENVIRONMENT IN HIGH COMPLEXITY DRIVING
SCENARIOS

In this model, trust in a high complexity scenario is very low for a driver assist feature
that claims no awareness of the environment, and thus has no adaptive capabilities. This includes
features such as cruise control. Driving features that have limited or partial awareness of the
environment are seemingly trusted the most, with features such as lane centering assist and
forward collision warning being rated fairly equally in this study. These features assist in only
one aspect of driving (e.g., braking, steering) and act only when certain conditions are met (e.g.,
lane deviation, oncoming obstruction in the road). Fully automated driving received similarly
low scores compared to the cruise control feature in the high complexity scenario, suggesting
that the implication of total situation awareness on the part of the driver assist feature would also

not be as trusted in this environment. This model closely aligns with the belief that performance
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consequences of automation are most likely to occur when the automation advances from
information analysis to action selection (Onnasch et al., 2014).

Trends in the low complexity scenarios followed a similar pattern, however the cruise
control feature was the highest rated of all features rather than the lowest. Each of the remaining
features appeared to rate similarly relative to the others. A closer look at other participant data
shed light on why this relationship may exist. The cruise control feature was reported by the
most participants as a feature they currently have in their vehicle (62%), and this was likely an
underestimation as the cruise control feature was introduced decades ago as a feature expected in
all vehicles on the road. Interestingly, the forward collision warning feature (24%) and lane
centering assist (18%) were the next two most common of the five features used in this study.
Adaptive cruise control/traffic jam assist was next (10%), and no participants reported having
access to fully automated driving. Trust ratings between the five features in the low complexity
scenario appeared to decrease as fewer participants had access to the feature. This would indicate
that trust in the feature is closely related to the amount of experience the person has with the
technology (Gold et al., 2015; Azevedo-Sa et al., 2020). Differences found in the interaction
between situation complexity and driver assist feature indicate that trust in driving features in
high complexity scenarios may be dependent on the level of awareness the feature has of the
environment, while in low complexity scenarios it may be more dependent on driver experience
with the feature.

The analyses that included a covariate were able to identify a few characteristics of the
driver that might influence the relationships found through the primary manipulations of scenario
complexity and driver assist feature. Each ANCOVA would help to reveal any possible existing

relationships between variables that would impact the strength or the direction of the
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relationships. A propensity to trust technology in general appeared to moderate any relationships
between the average situational trust score and the different driver assist features examined. This
is consistent with previous research that suggests that individuals that differences in the tendency
to trust technology in general will contribute to how likely an individual is to trust specific kinds
of technology or automation (Merritt & Ilgen, 2008). The 2008 article from Merritt and Ilgen
proposes that differences in trust in automation with which a person may have some experience
(in the article, this was considered post-task trust) “may be related to the interaction between
propensity to trust machines and machine characteristics,” (p. 198). Our results suggest this may
be the case.

A propensity to trust technology was highly predictive of trust in three of the five driver
assist features. These included the features that take some part reacting to the environment, such
as the lane centering assist and fully automated driving. As stated previously, this may suggest
that a propensity to trust technology in general makes an individual more likely to trust and
accept newer technologies. The interaction between the propensity to trust technology score and
the driver assist features suggest that, at lower levels of propensity to trust technology, the cruise
control and forward collision warning features are more trusted than the adaptive cruise
control/traffic jam assist and fully automated driving features. However, as the propensity to
trust technology score increases, the average situational trust in fully automated driving
overtakes that of the cruise control and the adaptive cruise/traffic jam assist feature reaches the
level of the forward collision warning. This is due to the steep slope associated with the model
for those two features. Looking at Figure 4, it appears that an increase in the propensity to trust

technology will eventually indicate a similar level of trust for all driving features, while a lower
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propensity to trust technology would indicate lower situational trust for adaptive and reactive
driving features.

As stated earlier, a portion of participants reported having four of the five driver assist
features included in the study in their current vehicle. Additionally, this sample included a large
number of college students, who likely learned to drive using vehicles equipped with many of
these features. With driving being such an essential task for the transportation of goods and
services, it is highly likely that all participants began the study with some level of familiarity
with each of the driver assist features. However, each feature will be perceived differently by
drivers, creating a dispositional trust level based on their perceptions and experiences that will
impact how different features are trusted (Merritt & Ilgen, 2008; Balfe et al., 2018).
Dispositional trust, or trust in the system outside of any given context, was measured using the
Checklist for Trust Between Humans and Automation (Jian et al., 2000) and used in the
ANCOVA to assess how it might interact with differences between high and low complexity
driving scenarios across each unique driving assist feature. The results support the hypothesis
that dispositional trust in a specific driving technology may influence the relationship between
trust and situation complexity (Merritts & llgen, 2008; Manchon et al., 2021). Dispositional trust
scores interacted with the manipulations in scenario complexity for the lane centering assist,
adaptive cruise/traffic jam assist, and fully automated driving features. The ability of
dispositional trust to predict situational trust in both high and low complexity scenarios for the
adaptive cruise/traffic jam assist and fully automated driving Higher dispositional trust scores
appear related to higher situational trust scores in both high and low complexity driving
environments. However, regression models show the low complexity scores increasing at a much

slower rate than the high complexity trust scores. This trend was strongest for the fully
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automated driving, though high complexity trust scores became higher than low complexity trust
scores as dispositional trust increased for the lane centering assist, adaptive cruise control/traffic
jam assist, and fully automated driving features.

Driving experience did not have quite the strong effect that was expected, though it did
appear to moderate the relationship between trust in high and low complexity scenarios. This
effect was not particularly strong, and regression models show no true significant interaction
between driving experience and scenario complexity. However, this effect did approach
significance (p< .10), and Figure 5 shows a clear trend in the low complexity scores. This would
be consistent with previous research suggesting that experience with an automated system may
impact trust (Gold et al., 2015; Azevedo-Sa et al., 2020). Trust did not appear to change in the
high complexity scenario as a function of driving experience, measured in terms of years having
a valid driver’s license. However, trust appeared to decline in the low complexity scenario as
driving experienced increase. While this never reached the level of the high complexity scenario,
results suggest that as a person gains more experience with a driving system or the task of
driving, they may be less likely to trust it. This would appear to contradict some previous
research that has found increased exposure to an automated system tends to increase overall trust
(Kundinger et al., 2019; Tenhundfeld et al., 2020). A variable expected to result in lower trust
was participants’ driving self-efficacy (De Vrise et al., 2003; Miele et al., 2021). However, there
was no significant interaction between the level of confidence participants had in their driving
abilities and the primary manipulations. The overall results of the series of ANCOVA suggest
that there are, indeed, factors related to the individual that could influence how much trust they

place in different driving technologies in different driving environments.
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This study also as implications for the way different groups of individuals accept and
trust automated driving systems. A few of the group differences found were consistent with the
hypothesis that individual differences, such as gender and level of education, would result in
differences in situational trust. Differences between males and females were also consistent with
previous research (Hillesheim et al., 2017). Males, on average, reported higher levels of
situational trust. This difference appear to have been replicated multiple times, and while no
clear explanation has been provided for this difference, the repeated effect must be noted for
future research. Males appeared to report consistent levels of trust for the forward collision
warning, lane centering assist, and adaptive cruise control/traffic jam assist features, while also
reporting similar scores for the cruise control and fully automated driving features. Females also
reported the lowest situational trust scores for the cruise control and fully automated driving
features, however the trend in the results suggest a clear loss of trust in higher-level automation,
with the fully automated driving receiving the lowest average trust score. The driving features
that females appeared to rate higher than the others were those that did not claim responsibility
for controlling speed of the vehicle (e.g., forward collision warning and lane centering assist). It
is possible that certain populations may be more trusting of a feature that is designed to manage a
specific aspect of driving, such as acceleration/braking or control within lanes.

The results of this study and others intending to assess how driver assist features are
trusted and used are particularly important as highly automated driving becomes more readily
available. Currently, companies such as Tesla are working on fully autonomous driving systems
that include each of the driving features used in this study working in tandem to transport an
operator (because they are no longer driving) to their destination. The trust a person places in the

single driver assist features included in this study has implications for system-wide trust (SWT).
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SWT theory suggests that when trust in a single automated device within a grander system
degrades, trust in the system as a whole is reduced (Geels-Blair et al., 2013; Rice et al., 2016). In
hypothetical scenarios such as those described in this study, participants have reported lower
trust in transportation systems when a single component of the system fails. For example, Winter
and colleagues (2014) found trust in all aircraft systems (autopilot, landing gear, etc.) was
significantly reduced in a condition where participants were told that the oxygen mask
deployment mechanism was unreliable. A lack of trust in a particular component of autonomous
driving technology could have implications for overall system-wide trust. The information
obtained through this study can assist in the development of future autonomous vehicles and
systems that are designed to optimize trust at an appropriate level.
Practical Implications

Results from this study suggest that there may be a means to predict how likely a person
is to trust, and by extension accept and use, driving technologies. Specifically, these results
provide insight into how driver assist features are likely to be trusted in different driving
environments. Vehicles absent of any advanced driving technology are becoming increasingly
scarce on the market today, and drivers are now working in tandem with these systems in an
effort to increase traffic safety and reduce accidents. The real-world applications of this research
and projects like it extend to the design, development, and implementation of current and future
driver assistance technologies.

This has a litany of applications as driver assistance technologies continue to proliferate
modern vehicles, and companies progress toward a fully realized self-driving car. Individuals
who may report significantly higher levels of trust might become targets for manufacturing

companies who aim to get their advanced driving technologies on the road. Increasing trust is a
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way to increase acceptance of new technologies (Manchon et al., 2021), so car companies can
learn from this research and make decisions about how they will expose potential customers to
driver assist features. For example, test driving these features in a low complexity environment
may be an opportunity to increase consumer trust and acceptance. It may also be effective in
identifying segments of the population likely to be receptive to purchasing a vehicle equipped
with these features. This includes those of a certain gender, education level, or age. Driving
experience appeared to moderate differences in trust between high and low complexity scenarios,
and additional research has suggested that age may be a factor in how likely a person is to trust
and use certain driving features (Donmez et al., 2006). Surveys from 2016 suggest that 61% of
drivers aged 25 to 34 indicated they would be willing to use driver assist features that
temporarily and periodically take control of the vehicle (Abraham et al., 2016). That number
dropped to 38.1% for drivers aged 65 to 74. The ability to predict trust based on situational
factors or individual differences can change the way the automated vehicle industry approaches
marketing and system design.

This approach would certainly benefit those who wish to profit off of the development of
these advanced driver assist features, though it may ultimately result in a population of
automated vehicle operators who would report very high levels of trust in the system. Thus, this
would mean creating a population of drivers highly susceptible to automation-induced
complacency (Parasuraman et al., 1993). A more responsible application of these results would
be to develop a means of assessing who has the proper level of trust in the driver assist features,
not the highest level of trust. More trust does not equate to the right amount of trust, and it is
reasonable to propose that the most advanced driving technologies be afforded to those who will

use it responsibly rather than those who believe in its infallibility. This relates to the full self-
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driving feature that Tesla released in recent years. It was reported that, upon initial release of the
feature in 2021, that the FSD beta would only be released to drivers who have been deemed
“good” drivers based on Tesla telemetry data (Lambert, 2021). This was to be the company’s
indicator of who might use the technology properly. However, driver performance data may not
be sufficient in predicting all reliance and compliance behaviors, particularly with novel
technologies that are still imperfect in their own unique ways (see example from Chapter 1).
The results of this study suggest that other information related to the driver may be
effective in predicting their likelihood to trust different driver assist features across different
driving environments. Identifying a level of trust using self-report measures that corresponds to
responsible use of the driving technology could be the most sensible way of releasing advanced
driving features to consumers. This method can also be used to create a personalized suite of
driver assist features when consumers purchase vehicles. Car companies, provided with some
quantifiable indication of a customer’s level of trust in the available driver assist features, can
make informed recommendations about which features might be used effectively by the driver.
Exposing driver’s to the driving technology that they place more trust in will create an effective
method for avoiding what is referred to as ‘future shock’ (Townsend, 2020). Future shock can
occur when there is too much change or advancement, particularly in technology, in a short
period of time (p. 120). If researchers or car companies can identify driving features that are
commonly trusted or accepted, as compared to those that are not, it can create opportunities to
introduce features to consumers in a more effective way. The information and methods derived
from this project could be used to introduce consumers to automated vehicle technology (Payre

etal., 2016).

64



This study can also inform the way automated driving features are designed. The strength
of the effect observed between high and low complexity driving scenarios as it related to trust
can inform adaptive assistance that accounts for the complexity of the environment. Adaptive
automation is designed to account for the capabilities and limitations of the user, providing
timely assistance in otherwise manually performed tasks (Parasuraman et al., 1996). This can be
based on real-time assessments of the user’s performance, noting when thresholds for effective
performance have been achieved or not. This can also be model-based, using previous
knowledge and research on human performance to make informed decisions about when to
allocate tasks to automation. The specific results from this study that show the differences in
trust between high and low complexity situations can inform adaptive automation that accounts
for the traffic density surrounding the vehicle. Using knowledge obtained from prior research
into how inappropriate levels of trust manifest in driving behaviors, automakers can create
adaptive systems that compensate for negative behaviors. Current advanced driving systems have
adaptive measures in place, likely informed by human factors research, that is intended to keep
the driver engaged. For example, in many vehicles that possess driving features that allow the
driver to take their hands off the wheel, there is a system in place that calls on the driver to make
contact with the steering wheel. This is a form of feedback from the driver to the automated
system to let them know that they are attentive and engaged.

Ultimately, this study is practically relevant because the past, present, and future of the
field of human factors as a principle of engineering lies largely in determining, in any human-
machine system, who does what task and when (Hancock, 2009). This research is one step
toward answering these questions with empirical data that also provide answers to the question

of why we automate certain tasks. Certain additional, practical questions should be asked as
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automated vehicles continue to progress toward full autonomy. There should be many additional
steps between now and then, with automation slowly beginning to take control of a vehicle away
from the driver. For example, research suggests that trust in an automated support system, such
as driver assistance technologies, decreases when the level of control the automation has in a task
crosses over from providing decision support to making the decision on behalf of the operator
(Onnasch et al., 2014). Which driving tasks are drivers willing to delegate to automation? For
which tasks would they prefer or trust automation to only help them make decisions for
themselves? These are the questions that should be answered before any fully self-driving

vehicle is made widely available.
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CHAPTER 7: LIMITATIONS AND CONCLUSIONS
Limitations and Directions for Future Research

Several challenges created limitations for this research and the methods through which
the data were collected. The largest limitation facing this project was that the experiment was
designed, and data were collected during the COVID-19 pandemic. This was at a time when the
University was shut down for all human subjects research. Human factors is an applied field of
psychology, and transportation research is largely dependent on bringing participants into a
controlled setting to conduct human performance research with the use of driving or flight
simulators. With this limitation, the study lacks a real-world setting in which to test participants’
trust in the driver assist features. The results are reliant on participants’ reporting of their levels
of trust, and self-report measures can be subject to biases and consequences of attention.
Attention checks were included in the surveys to allow the filtering of data from participants that
were not truly reading the questions. However, the issue of lacking any objective, behavioral
indicator of trust remained. This also made it impossible to assess how seriously participants
were taking each question as they were removed from any supervised lab setting.

Putting participants behind the wheel in a real or simulated environment could provide an
indication of reliance and compliance behaviors, considered to be behavioral signs of trust (Lee
& See, 2004). The self-report measures in particular are unable to assess levels of trust in real
time (Azevedo-Sa et al., 2020) and separate the individual even further from the actual driving
environment than a simulator would, making it difficult to see how these results might translate
to driver performance (Tenhundfeld et al., 2020). Future research should aim to replicate the
study in a practical environment. Certain interactions with the vehicle and driving technologies

can be indicators of trust and reliance. Levels of operator trust in these features can be assessed
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using gaze behaviors and recovery time during manual takeover scenarios (Abe et al., 2017,
Hergeth et al., 2016). A slower reaction during manual take over scenarios would suggest higher
levels of distraction or complacency, likely corresponding to the level of trust placed in the
vehicle. The examples described previously, including the individual pulled over for riding the
back seat of his Tesla, represent behaviors indicative of high levels of trust in the self-driving
technology in the vehicle. These behaviors show levels of trust that do not correspond to the
capabilities of the system. It is critical that researchers continue to explore how trust in driving
technologies manifests in an applied setting, putting this technology in the hands of the drivers,
so to speak. Adding these behavioral indicators of trust to a study that also has participants self-
report their levels of trust might be a step toward predicting the proper level of trust using survey
scores that correspond to behaviors.

An additional limiting factor was the sample population surveyed for this study. While
attempts were made to create a diverse sample with a broad range of ages, much of the sample
consisted of undergraduate college students. This presents multiple limitations that should be
mentioned as these results are considered for future research. Much of the sample was recruited
from a university, and therefore are rather inexperienced when it comes to driving relative to
much of the drivers on the road. Additionally, there is existing literature that suggest different
generations may have different attitudes toward technology in general (Schaefer et al., 2016;
Hoff & Bashir, 2015). The younger demographics have been brought up using technology and
To potentially provide further support for those results it would be beneficial to have a more age-
diverse sample for future studies investigating trust in driving technologies. Of course, with the
limitation related to age comes one related to overall driving experience. Age was not included

as a covariate due to its strong, positive correlation with driving experience. Much of the sample
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that completed this study had been driving for fewer than 5 years. This meant that they likely
began driving using vehicles that have multiple assistive driving features. Older drivers would
have learned to drive without the use of driver assist features such as those described in this
study. A sample with a wider range of driving experiences could also benefit future research.
The ANCOVA involving driving experience as a covariate was only marginally significant, but
it is possible that a sample with a wider range of ages would strengthen that effect. To further
expand the sample population and explore more specialized groups, a comparison of commercial
and non-commercial drivers would be practically relevant as autonomous, commercial vehicles
responsible for shipping goods are already on the road. This is only one group that could be
examined in comparison to other drivers.

Future areas of research can aim to not only fill in the gaps that remain in the literature,
build on the results obtained through this study. For example, the strength of the effect found
when looking at differences in trust between high and low complexity driving scenarios likely
warrants further investigation. A simulated or on-road experiment, placing drivers in the
environments described above, could provide further evidence for this manipulation as a
predictor of trust in automated driving. The trend observed in the high complexity scenario also
should be investigated further. The model presented in Figure 10, based on patterns in the data,
shows that trust in driving technologies in high complexity scenarios may be a function of the
awareness the vehicle or feature claims to have of the surrounding environment. Additional
driving features should be explored to test this theory, looking specifically at features performing
the same driving task (e.g., braking, accelerating, steering) at different levels of responsiveness
to the environment. Considering the implications these results have for how current and future

driver assist systems are likely to be used, this relationship merits more research.
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The results of this study strongly suggest that various individual differences related to the
driver may impact the way they trust driving technologies in different environments. Future
research may expand the factors explored in this study and incorporate additional traits or skills
that could have a similar impact. Differences in key personality traits has been shown to impact
how different individuals interact with automation (Szalma & Taylor, 2011; Hoff & Bashir,
2015). This includes examinations of the Big Five (McCrae & Costa, 2008), agreeableness,
conscientiousness, extraversion, neuroticism, and openness that have found traits effectively
associated with performance and workload. Conscientiousness and neuroticism have been
associated with performance outcomes in unmanned vehicle operations, while openness and
agreeableness predictive of subjective workload. These traits, among others that may be
contextualized to the task of operating a motor vehicle (Matthews, 2018), should be examined in
a similar context to the variables used in this study (e.g., driving experience, self-efficacy).

An additional trait of interest in the study of autonomous vehicles is locus of control, or a
tendency to believe outcomes of a situation are within their own control (You et al., 2013;
Rotter, 1954). Locus of control has been a character trait of interest in human factors research as
it relates to the safe operations of motor vehicles and aircraft (You et al., 2013). Locus of control
has been tied to risk perception and risk-taking behaviors, with internal locus of control scores
being linked to specific hazardous actions by pilots (Hunter, 2002). This is of particular interest
in the context of an increasingly autonomous system, which creates opportunities where manual
takeover from the pilot/operator is required at a moment’s notice. Relationships between locus of
control and distraction and the management of multiple tasks lead to questions related to how
internal or external locus of control might impact compliance and reliance behaviors tied to trust

in automated vehicles. These areas of research represent only a few examples of how this study
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can be expanded. Continuing this research will be critical to answering questions related to the
use of automation in driving, both those that are currently available and those that could be in the
near future.

Conclusions and Recommendations

The present study was designed to assess the impact of manipulations to the complexity
of a driving environment on trust in various driver assist features. Conclusions can be drawn
from this study regarding how situational trust in driving technologies varies based on the
driving environment and several factors related to the individual driving the car. Several
significant effects that have been found in simulated driving research was also found in this
study, despite the lack of any practical driving task (Hillesheim et al., 2017). Overlap in the
results from self-report studies such as this one and research conducted in a lab setting could help
inform a model of predicting driving reliance and compliance behaviors as they related to driving
technologies using self-report assessments of trust. If we are able to find strong enough
relationship between scores on certain measurements of trust (dispositional, situational, etc.) and
certain dangerous driving behaviors, we may be able to effectively predict who is likely to
properly use both old and novel driver assist features.

Measurements of trust, such as those used in this study, can give insight into how likely a
person is to accept and use technology. This study and its results show how certain
environmental or individual differences might predict differences in trust. However, what these
results do not do is make any claim about what a proper level of trust in the driver assist features
might be. In order to make any practical recommendations about how to leverage trust scores
into predictions of driver behavior, it will be critical to establish what an appropriate level of

trust is. This value will likely vary between the different driving features.
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Truly unmanned vehicles have been a target of transportation engineers for decades. So,
while there is not currently an automated car that satisfies the criteria of full self-driving (SAE,
2021), there is hope that we may soon be able to reliably, and comfortably, let automation take
the wheel. Unmanned systems provide significant benefits as they can compensate for many
human physical limitations (Hancock, 2009). However, the results of this study show that there
is still significant variation between who trusts advanced driving technologies and in what
context they are most likely to be trusted, suggesting significant variance in how the technology
will be used. The future of automated vehicles is largely dependent on the consumers’
willingness to trust and accept this highly advanced form of driving technology. As the research
and technology moves forward, this study helps answer whether or not these efforts are going to
be worth the time and effort. Results show that even the more common driver assist features are
not trusted at the same level by all individuals and understanding why these differences exist will
help reveal how, and if, the automated driving future that has been dreamt of will become reality
any time soon. In light of the results in this study, the following recommendations are proposed
for researchers, engineers, and unmanned vehicle operators as they consider the way automation
is implemented in future automobiles.

1. Increase transparency for how automated driving systems make decisions, finding
intuitive and creative ways to generate this transparency. Proper forms of feedback are
essential to safety-critical human-machine systems.

2. Research behavioral indicators of trust in automated driving technology that may

correlate with quantifiable measures of trust.
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3. Develop adaptive technology to keep operators attentive during automated driving by
effectively reducing underload, complacency, and distraction while still providing
benefits to cognitive and physical workload.

4. Create systems for dynamic task allocation based on driving scenario complexity defined
by traffic density and setting.

5. Provide more education on Al in driver assist features and how other driving
technologies work.

6. Identify differences in driving technology (level of automated control, driving task, etc.)
that contribute to behaviors related to trust, such as compliance and reliance.

These recommendations provide a way forward toward answering critical questions related to
human performance in conjunction with highly advanced automated systems. By following the
results of this study and the recommendations provided above, researchers and those leading the
charge toward autonomous driving can begin to account for individual differences related to
trust. A final, perhaps most critical recommendation would be to human factors researchers,
encouraging them to continue empirical research that can answer questions about how trust is
formed and how it manifests in potentially detrimental driving behaviors. The goal of applied
research in transportation systems is to improve the safety and efficiency of current and future
vehicles, and it is important that this research continues as these vehicles become increasingly

complex human-machine systems.
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human research, please submit a modification request to the IRB. Guidance on
submitting Modifications and Administrative Check-in are detailed in the
Investigator Manual (HRP-103), which can be found by navigating to the IRB
Library within the IRB system. When you have completed your research, please
submit a Study Closure request so that IRB records will be accurate.
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1. What is your age?

18-25

26-35

36-45

46-55

56-65

65+

2. What is your gender?

Male
Female
Other

Prefer not to say

3. What is the highest level of education you have achieved?

e.

High School Diploma
Some college but no degree
Associate Degree
Bachelor’s Degree

Graduate Degree

4. Are you currently employed?

a.

b.

Yes
No
Retired

Disabled, unable to work
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5. How much total combined money did all members of your household earn in 2020?
a. $0-$9,999
b. $10,000 — $19,999
c. $20,000 - $29,999
d. $30,000 - $39,999
e. $40,000 - $49,999
f. $50,000 - $59,999
g. $60,000 - $69,999
h. $70,000 - $79,999
i. $80,000 - $89,999
j. $90,000 - $99,999
k. $100,000 or more
6. Have you served or are you currently serving in the United States military?
a. Yes
b. No
7. If you are a student at the University of Central Florida, please provide your SONA

Number to receive credit for your participation.
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1. Do you currently have a valid US driver’s license?
a. Yes
b. No
2. If yes, for how long have you had your driver’s license?
a. 0-2years
b. 2-5years
c. 6-10 years
d. 11-20 years
e. 21-30 years
f. 31+ years
g. N/A
3. How long have you been driving your current vehicle?
a. Lessthan 1 year
b. 1-2 years
c. 3-5years
d. 6-10 years
e. 11+ years
f. Tdon’t own a vehicle

4. Does the vehicle you currently drive have any automated driving assist features?

a. Yes
b. No
c. Notsure
d. N/A
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5. If yes, select all that apply:
a. Forward collision warning
b. Cruise control
c. Adaptive cruise/traffic jam control
d. Auto-brake/Forward collision avoidance
e. Auto-lane change
f. Lane centering assist
g. Blindspot detector
h. Back-up camera
i. Auto-park
j. Sign recognition
k. Full autopilot
. N/A
6. In what type of environment would you say you most often drive?
a. Cities
b. Rural areas
c. Highways
d. Idon’tdrive
7. How many miles would you estimate you drive on the highway in a usual week?
a. 0-10 miles
b. 11-20 miles
C. 21-40 miles

d. 41-60 miles
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e.

f.

61-100 miles

100+ miles

8. How many miles would you estimate you drive NOT on the highway in a usual week?

e.

f.

0-10 miles

11-20 miles

21-40 miles

41-60 miles

61-100 miles

100+ miles

9. Do you commute for work/school (or did you prior to the COVID-19 pandemic)?

a.

b.

Yes

No

10. If yes, how far would you estimate is/was your commute? (if no, answer N/A)

e.

0-5 miles

6-10 miles

11-20 miles

21+ miles

N/A

11. How many minor car accidents (small amount of damage to the vehicle that does not

prevent the vehicle from running or cause significant injuries) have you been in as the

driver?

12. How many minor car accidents have you been in as a passenger?
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13. How many major (large amount of damage to the vehicle that prevents it from running
and/or causes significant injuries) car accidents have you been in as the driver?
14. How many major car accidents have you been in as a passenger?
15. Have you ever received a traffic citation for speeding?
a. Yes
b. No
16. How often are you driving with a passenger in the car?
a. Never
b. Rarely
c. Sometimes
d. Usually

e. Always
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How confident do you feel doing the following activities?
Please allocate a number from 0-10, where 0 is not confident and 10 is completely confident, for
the

12 questions below.

1) Driving in your local area

2) Driving in heavy traffic

3) Driving in unfamiliar areas

4) Driving at night

5) Driving with people in the car

6) Responding to road signs/traffic signals

7) Driving around a roundabout

8) Attempting to merge with traffic

9) Turning right across oncoming traffic

10) Planning travel to a new destination

11) Driving in high-speed areas

12) Parallel parking
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To use the STS-AD, present the items in the table below in the order that is presented here after
participants experience an automated driving system.

Items should be collected with a 7-point Likert scale ranging from (1 —strongly disagree; 2 —
disagree; 3 — somewhat disagree; 4 — neither agree or disagree; 5 — somewhat agree; 6 — agree; 7
— strongly agree).

After the data is collected, reverse score items 2,4, and5(1=7;2=6;3=5;5=3;6=2;7=
1). Then, compute an average agreement score for the six items. This average score is then the

total for the STS-AD

Vignettes 1 and 2: each scored 1 (strongly disagree) to 7 (strongly agree).

1. | trust the forward collision warning system in this situation.

2. 1 would perform better than the forward collision warning system in this situation.
(Reverse scored)

3. In this situation, the forward collision warning system performs good enough for me to
engage in other activities (such as reading).

4. The situation is risky.

5. The forward collision warning system is likely to make an unsafe judgement in this
situation. (Reverse scored.)

6. The forward collision warning system is likely to react appropriately to the environment.

Vignettes 3 and 4: each scored 1 (strongly disagree) to 7 (strongly agree).
1. | trust the cruise control system in this situation.

2. 1 would perform better than the cruise control system in this situation. (Reverse scored)
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3. In this situation, the cruise control system performs good enough for me to engage in
other activities (such as reading).

4. The situation is risky.

5. The scenario describes driving on a country road

a. This question will only be used for Vignette 4, with the correct answer being
Strongly Agree

6. The cruise control system is likely to make an unsafe judgement in this situation.

(Reverse scored.)

7. The cruise control system is likely to react appropriately to the environment.

Vignettes 5 and 6: each scored 1 (strongly disagree) to 7 (strongly agree).

1. | trust the lane centering assist system in this situation.

N

| would perform better than the lane centering assist system in this situation. (Reverse

scored)

3. Inthis situation, the lane centering assist system performs good enough for me to engage
in other activities (such as reading).

4. The situation is risky.

5. The lane centering assist system is likely to make an unsafe judgement in this situation.

(Reverse scored.)

6. The lane centering assist system is likely to react appropriately to the environment.

Vignettes 7 and 8: each scored 1 (strongly disagree) to 7 (strongly agree).

1. | trust the adaptive cruise/traffic jam control system in this situation.
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| would perform better than the adaptive cruise/traffic jam control system in this
situation. (Reverse scored)

In this situation, the adaptive cruise/traffic jam control system performs good enough for
me to engage in other activities (such as reading).

The situation is risky.

The adaptive cruise/traffic jam control system is likely to make an unsafe judgement in
this situation. (Reverse scored.)

The adaptive cruise/traffic jam control system is likely to react appropriately to the

environment.

Vignettes 9 and 10: each scored 1 (strongly disagree) to 7 (strongly agree).

1.

N

| trust the fully automated driving system in this situation.

| would perform better than the fully automated driving system in this situation. (Reverse
scored)

In this situation, the fully automated driving system performs good enough for me to
engage in other activities (such as reading).

The situation is risky.

The fully automated driving system is likely to make an unsafe judgement in this
situation. (Reverse scored.)

The fully automated driving system is likely to react appropriately to the environment.
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Presented five times in relation to each of the five automated driving features. That is, the

‘system’ in each item was referred to as Forward Collision Warning, Cruise Control, Lane

Centering Assist, Adaptive Cruise/Traffic Jam Control, and Fully Autonomous driving.

Items rated 1-7 from ‘Not at All’ to ‘Extremely’

1.

2.

10.

11.

12.

The system is deceptive.

The system behaves in an underhanded manner.

I am suspicious of the system’s intent, actions, or outputs.
| am wary of the system.

The system’s actions will have a harmful or injurious outcome.
| am confident in the system.

The system provides security.

The system has integrity.

The system is dependable.

The system is reliable.

| can trust the system.

| am familiar with the system.
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Level 1 — Forward Collision Warning Description

You recently purchased a new vehicle equipped with some automated driver-assist
features. This particular vehicle possesses a Forward Collision Warning function. The purpose of
the Forward Collision Warning is to notify a driver when a collision is imminent with an object
in front of the vehicle. Based on the scenario described here, please answer the following

questions about your perception and use of the Forward Collision Warning feature.

Scenario 1: Level 1 — High — Forward Collision Warning

Imagine you are driving in a high-density traffic situation on city streets with many turns.
Your Forward Collision Warning feature is present in the vehicle to alert you if you are about to
collide with a vehicle or pedestrian in front of you. Based on the scenario described here, please
answer the following questions about your perception and use of the Forward Collision Warning

feature.

Scenario 2: Level 1 — Low — Forward Collision Warning

Imagine you are driving in a low-density traffic situation on a straight country road. Your
Forward Collision Warning feature is present in the vehicle to alert you if you are about to
collide with a vehicle or pedestrian in front of you. Based on the scenario described here, please
answer the following questions about your perception and use of the Forward Collision Warning

feature.

Level 2 — Cruise Control Description
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You recently purchased a new vehicle equipped with some automated driver-assist
features. This particular vehicle possesses a Cruise Control function. The purpose of Cruise

Control is to keep the vehicle traveling at a consistent speed without the assistance of the driver.

Scenario 3: Level 2 — High — Cruise Control

Imagine you are driving in a high-density traffic situation on city streets with many turns.
Your Cruise Control feature is present in the vehicle to help keep your vehicle at a constant
speed and relieving the need to accelerate. Based on the scenario described here, please answer

the following questions about your perception and use of the Cruise Control feature.

Scenario 4: Level 2 — Low — Cruise Control

Imagine you are driving in a low-density traffic situation on a straight country road. Your
Cruise Control feature is present in the vehicle to help keep your vehicle at a constant speed and
relieving the need to accelerate. Based on the scenario described here, please answer the

following questions about your perception and use of the Cruise Control feature.

Level 3 — Lane Centering Assist Description

You recently purchased a new vehicle equipped with some automated driver-assist
features. This particular vehicle possesses a Lane Centering Assist function. The purpose of the
Lane Centering Assist is to recognize when the vehicle is deviating from the center of the lane

and automatically adjust steering to direct the vehicle back to the center of the lane.

Scenario 5: Level 3 — High — Lane Centering Assist
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Imagine you are driving in a high-density traffic situation on city streets with many turns.
Your Lane Centering Assist feature is present in the vehicle to help keep your vehicle centered
within its current lane. Based on the scenario described here, please answer the following

questions about your perception and use of the Lane Centering Assist feature.

Scenario 6: Level 3 — Low — Lane Centering Assist

Imagine you are driving in a low-density traffic situation on a straight country road. Your
Lane Centering Assist feature is present in the vehicle to help keep your vehicle centered within
its current lane. Based on the scenario described here, please answer the following questions

about your perception and use of the Lane Centering Assist feature.

Level 4 — Adaptive Cruise/Traffic Jam Control Description

You recently purchased a new vehicle equipped with some automated driver-assist
features. This particular vehicle possesses an Adaptive Cruise/Traffic Jam Control function. The
purpose of the Adaptive Cruise/Traffic Jam Control function is to keep your vehicle moving
forward at your desired speed when possible but adjust speed to maintain a safe distance from

any vehicle in front of you.

Scenario 7: Level 4 — High — Adaptive Cruise/Traffic Jam Control
Imagine you are driving in a high-density traffic situation on city streets with many turns.
Your Adaptive Cruise/Traffic Jam Control feature is present in the vehicle to help keep your

vehicle traveling ahead at your desired speed while maintaining a safe distance from vehicles in
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front of you. Based on the scenario described here, please answer the following questions about

your perception and use of the Adaptive Cruise/Traffic Jam Control feature.

Scenario 8: Level 4 — Low — Adaptive Cruise/Traffic Jam Control

Imagine you are driving in a low-density traffic situation on a straight country road. Your
Adaptive Cruise/Traffic Jam Control feature is present in the vehicle to help keep your vehicle
traveling ahead at your desired speed while maintaining a safe distance from vehicles in front of
you. Based on the scenario described here, please answer the following questions about your

perception and use of the Adaptive Cruise/Traffic Jam Control feature.

Level 5 — Fully Automated Driving

You recently purchased a new vehicle equipped with some automated driver-assist
features. This particular vehicle possesses a Fully Automated Driving function. The purpose of
the Fully Automated Driving function is to take the responsibility of operating the vehicle away
from the individual in the vehicle, transporting them to their destination with no effort or

intervention.

Scenario 9: Level 5 — High — Fully Automated Driving

Imagine you are driving in a high-density traffic situation on city streets with many turns.
Your Fully Automated Driving feature is present in the vehicle to transport you to your chosen
destination without your assistance. Based on the scenario described here, please answer the

following questions about your perception and use of the Fully Automated Driving feature.
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Scenario 10: Level 5 — Low — Fully Automated Driving

Imagine you are driving in a low-density traffic situation on a straight country road. Your
Fully Automated Driving feature is present in the vehicle to transport you to your chosen
destination without your assistance. Based on the scenario described here, please answer the

following questions about your perception and use of the Fully Automated Driving feature.

Scenario 11: Attention Check — Level 3 — Low — Lane Centering Assist

Imagine you are driving in a low-density traffic situation on a straight country road. Your
Lane Centering Assist feature is present in the vehicle to help keep your vehicle centered within
its current lane. Based on the scenario described here, please answer ‘Strongly Agree’ for all the

questions listed below.
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Variable M SD N
License Duration 2.04 1.50 166
Total Accidents 1.83 1.90 166
Forward Collision Warning Dispositional Trust 4.37 0.66 166
Cruise Control Dispositional Trust 4.35 0.75 166
Lane Centering Assist Dispositional Trust 4.26 0.65 166
Adaptive Cruise/Traffic Jam Assist Dispositional 411 0.67 166

Trust

Fully Automated Driving Dispositional Trust 3.87 0.69 166
Driving Self-Efficacy 7.11 1.74 166
Propensity to Trust Technology 4.21 0.81 166
Sit Trust in High Complexity 3.25 0.74 166
Sit Trust in Low Complexity 4.14 0.68 166
Forward Collision Warning Situational Trust 3.91 0.76 166
Cruise Control Situational Trust 3.53 0.71 166
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Lane Centering Assist Situational Trust 3.92 0.72 166

Adaptive Cruise/Traffic Jam Assist Situational 373 0.75 166
Trust

Fully Automated Driving Situational Trust 3.38 0.95 166

Average Situational Trust 3.69 0.59 166
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