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ABSTRACT 

Decisions about Modeling and Simulation (M&S) of Complex Systems (CS) need to be 

evaluated prior to implementation. Discrete Event (DE), System Dynamics (SD), and Agent 

Based (AB) are three different M&S approaches widely applied to enhance decision-making of 

complex systems. However, single type M&S approaches can face serious challenges in 

representing the overall multidimensional nature of CS and may result in the design of 

oversimplified models excluding important factors.  

Conceptual frameworks are necessary to offer useful guidance for combining and/or 

integrating different M&S approaches. Although several hybrid M&S frameworks have been 

described and are currently deployed, there is limited guidance on when, why and how to 

combine, and/or integrate DE, SD, and AB approaches. The existing hybrid frameworks focus 

more on how to deal with specific problems rather than to provide a generic way of applicability 

to various problem situations. 

The main aim of this research is to develop a generic framework for Multi-Method 

Modeling and Simulation of CS, which provides a practical guideline to integrated deployment 

or combination of DE, SD, and AB M&S methods. The key contributions of this dissertation 

include: (1) a meta-analysis literature review that identifies criteria and generic types of 

interaction relationships that are served as a basis for the development of a multi-method 

modeling and simulation framework; (2) a methodology and a framework that guide the user 

through the development of multi-method simulation models to solve CS problems; (3) an 

algorithm that recommends appropriate M&S method(s) based on the user selected criteria for 
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user defined objective(s); (4) the implementation and evaluation of multi method simulation 

models based on the framework's recommendation in diverse domains; and (5) the comparison of 

multi-method simulation models created by following the multi-method modeling and simulation 

framework. 

It is anticipated that this research will inspire and motivate students, researchers, 

practitioners and decision makers engaged in M&S to become aware of the benefits of the cross-

fertilization of the three key M&S methods. 
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CHAPTER 1: INTRODUCTION 

 Modeling and simulation (M&S) can be used as a decision-making tool to provide 

solutions to a plethora of CS problems. Discrete Event (DE), [1], System Dynamics (SD) [2], 

and Agent Based (AB) [3] are three different M&S methods widely applied to enhance decision-

making of CS [4], [5], [6], [7]. However, analytic and traditional single type M&S 

methodologies can face serious challenges in representing the overall multidimensional nature of 

CS [8], [6]. Such CS might be composed of models that exhibit discrete and continuous behavior 

and may compete or collaborate, update, change and/or adapt state during simulation run time. In 

addition, attempts to build holistic models with one M&S method or combination of two (hybrid 

M&S) for CS, may result in the design of oversimplified models excluding important factors.  

 Conceptual frameworks are necessary to offer useful guidance for combining and/or 

integrating different M&S methods. Several hybrid M&S solutions and frameworks have been 

proposed and are currently deployed in various domains, combining and/or integrating DE and 

SD [9], [10], [11], [12], SD and AB [13], [14], [15], [16] DE and AB [17], [18], as well as 

models produced by the three M&S methods together [19], [6], [20], [21], [22], [23]. 

Researching the rational possibilities for combining and/or integrating methods, first requires 

establishing a relevant conceptual framework, justifying the reasons for using a particular M&S 

method(s) and then performing simulation and obtaining results [19], [24], [25], [22]. However, 

in the review of the literature it has been observed that this has followed an alternative order [9], 

[10], [13], [18]. The importance of justifying the need to integrate and/or combine M&S 
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approaches and that it must be conducted prior to the development phase has been mentioned 

before [11], [12], [19] [24], [23], [26]. 

 In order to overcome these challenges and provide practical guidance that will allow 

inclusive M&S of CS, a generic conceptual framework for applying Multi-Method Modeling and 

Simulation (3M&S) has been developed [27]. Currently, no reported theoretical frameworks 

have been identified to provide practical guidance on why, when and how to concurrently deploy 

DE, SD, and AB M&S to form multi-method simulation models of CS problems. The proposed 

3M&S framework aims to fill this gap and provides a practical guideline on how to tackle the 

overall simulation of CS. 

1.1 Research Motivation 

 Given the nascent technological advancements in Modeling and Simulation (M&S) in the 

last decades, there is an increasing demand for a generic multi-method modeling and simulation 

framework and theoretical foundation to address M&S methodologies such as Discrete Event 

(DE), System Dynamics (SD) and Agent Based (AB), that are used to solve problems of 

Complex Systems (CS) in multidisciplinary domains. Decisions about CS need to be carefully 

evaluated prior to implementation [11], [12], [24], [23], [26]. M&S methods, such as DE [28], 

SD [29], and AB [30], are widely applied to enhance decision-making of CS [6], [4], [5] and can 

provide solutions to a plethora of CS problems. 

 CS may contain non-linear relationships, internal structures with diverse interconnected 

and interdependent components (which may compete or cooperate with each other), causal loops, 
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hierarchical heterogeneous subsystems and various domain behavior patterns (as well as other 

CS features), which are usually studied by means of M&S. Analytical solutions and traditional 

single type M&S methodologies face serious challenges representing the overall 

multidimensional nature of complexity that those systems exhibit [6]. For example, CS may be 

subject to both detail and dynamic complexity [2], [7], [33]. Detail complexity is related to the 

high combinatorial complexity among various variables and attributes, while dynamic 

complexity corresponds to the interaction variables of the agents, entities or stocks over time 

(elements of DE, SD, and AB M&S) [3]. 

 Moreover, efforts of M&S community to expand their existing M&S approaches to 

advance reusability, interoperability and composability of CS, are limited to their own technical 

domains, or remain isolated solutions [31]. Therefore, integrating and/or combining different 

M&S methods has been viewed as a response to current challenges in managing, designing, and 

assessing CS in various domains, such as in business [32], [9], [10], and healthcare organizations 

[21], [33], [24].  

 The main aim of this dissertation is the development of a generic conceptual framework 

for Multi-Method Modeling and Simulation of CS, which provides a practical guideline to 

integrated deployment or combination among DE, SD, and AB M&S methods. The term 

"method" in M&S refers to a general architecture for constructing a real world system to its 

model [6]. Accordingly, we use the term “multi-method” to refer to all the possible architectures 

that can be constructed for more than two M&S methods [6], [17], [25], [25] among the three 

M&S methods and we mean the integration and/or combination of terms and conditions 

considering the three M&S methods. For brevity purposes, we define Multi-Method Modeling & 
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Simulation as 3M&S. In this research we use the term Multi-Method Modeling & Simulation, or 

3M&S, to define combination and/or integration of more than two M&S approaches. 

1.2 Research Questions  

 Attempts to build holistic models for CS with analytical solutions, stand-alone M&S 

methods, or combination of two (hybrid M&S) approaches may be impractical, or result in the 

design of oversimplified models, excluding important factors. On the one hand, combining or 

integrating methodologies may provide a more inclusive way of representing and dealing with 

the complexity of real world. The deployment of diverse M&S approaches presents challenges 

due to the different criteria and philosophical approaches that satisfy each M&S method based on 

problem and system perspectives. Therefore, conceptual frameworks, decision support tools and 

theoretical foundations are necessary to offer useful guidance for combining or integrating M&S 

methods within multidisciplinary domains [36], [37].  

 Some of the key issues that problem owners deal with are related to strategic, tactical 

operational levels and consider micro, meso and macro organizational matters. The 3M&S 

framework suggests viable solutions to strategic, tactical, and operational matters, while it 

contributes towards a deeper understanding of CS and multidimensional problems. In addition, 

the 3M&S framework is directed towards building comprehensive multi-method simulation 

models that can accommodate different organizational levels, while identifying the differences 

between them in terms of scope and level of details that are preferred and applied at each level 

(i.e. operational level and strategic level).  
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 Several hybrid M&S solutions and frameworks have been proposed and are currently 

deployed in various domains, combining DE and SD [9], [10], [24], SD and AB [13], [33], [15], 

DE and AB [18], [17], and the three M&S methods together [6], [20], [21]. However, there is a 

lack of a practical guidance to provide an understanding of how, when and why to combine, 

and/or integrate the three M&S approaches. Furthermore, no reported conceptual frameworks 

have been identified to provide practical guidance on when, why, and how to combine DE, SD, 

and AB M&S to form 3M&S models. The proposed 3M&S framework aims to fill this gap and 

provide a generic practical guideline on how to tackle the overall simulation of CS by answering 

the following research questions: 

 Q1. Why and when CS require 3M&S?  

 Q2. What are the interaction points among DE, SD, and AB models?  

 Q3. How AB, DE and SD models interact with each other to exchange information? 

1.3 Research Objectives 

  These research questions are addressed by the following research objectives: 

 Objective 1: Develop in depth comprehension among similar and different aspects 

and features of the three M&S approaches (Identification of Generic Criteria for 

DE, SD, and AB M&S approaches). In order to develop the 3M&S framework, it is 

important to have a good understanding of the appropriateness of each of the three M&S 

approaches to diverse problem, methodology and system perspectives. The in depth 

understanding of differences and similarities among DE, SD, and AB M&S is a 
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precondition for the selection of the appropriate approach to meet particular problem and 

system requirements. The process for selecting appropriate M&S approaches(s) is based 

on a list of identified selection criteria. The recommended criteria aid in the 

conceptualization as well as in the justification of using multi-method modeling and 

simulation or not. Furthermore, the criteria are used for the development of a conceptual 

framework that provides practical guideline for the combination and/or integration of DE, 

SD, and AB approaches. For this reason, a meta-analysis of literature on existing studies 

that compare, combine and integrate DE, SD, and AB models was conducted, followed 

by a review of literature on existing frameworks that deploy M&S approaches.  

 Objective 2: Gain knowledge through existing frameworks composed of DE, SD, 

and AB models. In order to gain in depth understanding and knowledge, we reviewed 

existing frameworks that combine, and/or integrate M&S approaches that have been 

deployed in the past. In the literature, we have detected a considerable amount of 

published reports regarding hybrid simulation that recommend either integrated 

deployment or combination of two M&S approaches to address CS problems. However, 

most of these reports are very domain specific and limited to an integrated deployment or 

combination of only two M&S approaches without providing a practical guidance which 

the user can follow to perform different studies. The knowledge acquired through the 

review of this literature helped us understand different types of relationships that connect 

the interaction points of information exchange between models that have been 

implemented using different M&S approaches. This knowledge served as a basis for the 
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development of generic interaction relationship types that are defined through the 3M&S 

framework and aid in the deployment of DE, SD, and AB M&S approaches.  

 Objective 3: Develop Generic Framework for Multi-Method Modeling & Simulation 

(3M&S). On the basis of understanding and knowledge gained from the reviews of the 

literature, a generic framework capable of providing practical guidance for the 

implementation of multi-method modeling and simulation was proposed and developed. 

The framework helped us to conceptualize, understand and answer the research questions 

of when, why, and how to combine, and/or integrate DE, SD, and AB approaches to form 

multi-method simulation models.  

 Objective 4: Evaluation of the 3M&S framework: Last but not least, one of the 

objectives was to evaluate the effectiveness and limitations of the developed 3M&S 

framework, within a various domain context including real case examples in businesses, 

and other organizations. The evaluation process proceeded as follows: Firstly, the 

framework was evaluated conceptually. This evaluation was acquired in order to address 

limitations. The limitations worked as a fundamental basis to adjust the developed 

3M&Sframework. Then, the 3M&S framework was empirically evaluated by following it 

to conduct and implement real case multi-method simulation studies. The rationale of this 

objective was to test the framework by applying theoretical and empirical evaluation, in 

order to identify the strong and the weak points of it.  
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1.4 Overview of research  

 The key contributions of this dissertation are: (1) a meta-analysis literature review that 

identifies criteria and generic types of interaction relationships that served as a basis for the 

development of a multi-method modeling and simulation framework; (2) a methodology and a 

framework that guide the user through the development of multi-method simulation models to 

solve CS problems; (3) an algorithm that recommends appropriate M&S method(s) based on the 

user selected criteria for user defined objective(s); (4) the implementation and evaluation of 

simulation models (3M&S models) based on the framework's recommendation in diverse 

domains; and (5) the comparison of multi-method simulation models created by following the 

3M&S framework's suggestions with models built based on the user's own selection. 

 This dissertation includes the following chapters. Chapter One contains the introduction 

of this research. Chapter Two provides a literature review on complex systems and M&S 

methods. It also includes the meta-analysis review of the literature to identify various criteria 

which aid in selecting an appropriate M&S approach. Chapter Three describes the research 

methodology and the development of the framework. In this chapter we describe an algorithm 

that helps in selection of appropriate M&S approach based on the established criteria as well as 

the generic types of interactive relationships that take place in multi-method simulation models. 

Chapter four describes the evaluation of the framework using three real case studies and Chapter 

five provides a summary of this dissertation, limitations and future work. 
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CHAPTER 2: REVIEW OF LITERATURE 

The main objective of this chapter is to provide a review on CS and M&S methods 

related research. More specifically, Chapter 2 describes the three M&S approaches (AB, DE, and 

SD), existing frameworks and studies related to comparisons and combination of them in order 

to gain knowledge about similar and different aspects and features which are necessary for the 

development of the 3M&S framework. 

2.1 Complex Systems (CS) 

CS allow fuzzy multi-level and multi-disciplinary representation of a real dynamic 

environmental adaptation within autonomous readjustments, where control and command is 

emergent and not deterministic [38]. Some formal and informal definitions of the term “Complex 

System” are given below: 

 “CS are highly structured systems, which show structure with variations” [39] 

 “ CS are systems whose evolution is very sensitive to initial conditions or to small 

perturbations, on which the number of independent interacting components is 

large, or those by which there are multiple pathways by which the system can 

evolve” [40] 

 “CS are formed from few to many agents and can emerge simple to sophisticated 

behavior” [41] 

 “CS can be adaptive collections of interacting, autonomous, learning decision 

agents embedded in an interactive environment” [30] 
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 “CS consists of many diverse and autonomous but interrelated and 

interdependent components or parts linked through many (dense) 

interconnections” [42] 

 “ CS are systems that by design or function or both is difficult to understand and 

verify” [43] 

 “A CS is one in which there are multiple interactions between many different 

components” [44] 

 “CS are systems in process than constantly evolve and unfold over time” [45] 

For interpretation purposes, the author reviewed attempts to characterize CS from various 

scientific fields [30], [39], [40], [41], [43], [44], [45], and listed some of the most common 

characteristics of CS, which are widely associated with: 

 interdependence of various interacting components 

 nonlinearity 

 emergence, flexible, adaptive, learning and autonomous behaviors (systems have 

memory)  

 sensitive causal relationships (positive and negative feedbacks) 

 open system boundaries (exchange of input/output information) 

 theory of chaos  

Analytical attempts to find solutions for a CS face challenges and serious limitations 

compared to computer based M&S. The decomposition of a CS is even more challenging to be 

achieved with synthetic general laws and the existence of non-linearity which disables stand-

alone analytical models and makes them impractical, or even impossible to be solved [6]. More 

http://www.businessdictionary.com/definition/component.html
http://www.businessdictionary.com/definition/part.html
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specifically, in micro-established models the representation of the dynamics for multiple entities 

may happen concurrently. In this case the analytical approach would have to deal with multiple 

sets of differential equations that would be time consuming and a lapse could force the analyst to 

start the process all over again. Furthermore, non-linear differential equations are hard and 

sometimes even impossible to be solved analytically. Therefore analytical modeling approaches 

should be combined with computer based M&S approaches and particularly with multi-method 

simulation approaches when it comes to tackling CS problems.  

M&S models have become an increasingly frequent approach of representing CS. 

Simulation models can manage non-linearity, and successfully compute numerical functions 

among numerous variables and interactions that take place among various entities, stocks and 

agents. Furthermore, M&S allows in depth understanding and visualization of the produced 

simulation using 2D or 3D animations and statistical visualization (i.e. bar-charts, graphs, and 

pies) of a system’s behavior. Finally, M&S models require less intellectual effort than analytical 

solutions, especially for CS problem solving, and offer flexibility in terms of adding 

measurements and statistical analysis whenever it is needed.  
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2.2 Modeling and Simulation (M&S)  

Modeling and Simulation (M&S) is a highly multidisciplinary and active area across 

numerous scientific domains and research areas. M&S allows the experimentation of real CS 

problems at no risk and low cost. The modeling process is about discovering the pathways from 

the decomposition of CS problems to its solutions through a virtual experimentation lab, where 

mistakes are allowed and one can go back in time, cancel or redo things and try alternatives [6]. 

Modeling can exist without simulation, but a simulation cannot run without a model. During the 

modeling process the user maps a real world system to a virtual world and is called to select level 

the appropriate level of abstraction and modeling methodologies to satisfy modeling questions 

and well defined objectives of a particular problem.  

Simulation of CS is the activity of experimenting with models of CS by reproducing data 

consistent with data produced by a real CS. Over the past decades simulation in general has been 

gaining widespread recognition as a powerful scientific tool. Nowadays, the word “simulation” 

has various meanings and it is used in multidisciplinary domains. In most cases, the definition of 

simulation is associated with a representation of a real existing system, i.e. a CS or a physical 

and socio-economical system of systems. Based on the field of interest, simulation has various 

sub-definitions [46]. 

 M&S is widely accepted and characterized as one of the most significant aspects across 

several scientific fields rising new approaches in the way we learn, design, generate requirements 

and evaluate CS. There is a considerable amount of reported literature as it concerns the use of 

M&S and its impacts on decision management. Examples of reported usage includes: assisting in 
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creative problem solving, predicting outcomes, accounting for system variances, promoting cost-

effective total solutions, helping us quantify performance metrics and serving as a means of 

communication [47] [29], [48]. M&S together allows experimentation with a model of a real 

system in order to better understand and determine the behavior of a system, the processes and 

how the system responds to changes in its structure, environment or underlying assumptions 

[49].  

M&S system models can be categorized as deterministic or stochastic. A deterministic 

model produces the same output in each run considering no randomness (stochastic), while in a 

stochastic model the outputs differ from run to run. In addition, a system can be either static or 

dynamic. In a dynamic system time is considered as variable while in a static system time is not 

considered as variable. A static simulation model is a representation of a system at a particular 

time period, while a dynamic simulation model represents a system as it evolves over time. 

Although in the past it was widely accepted to classify a system as being either discrete or 

continuous based on the type of change that predominates, in this dissertation we classified 

system models in three different types: discrete, continuous and hybrid (continuous and discrete).  
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Figure 1. Deterministic and stochastic types of simulation models 

 

If a model is discrete, the state transition mechanism is event driven. This means that the 

variables change instantaneously at particular discrete points in time and not continuously with 

respect to time as in a continuous state system [50]. In a continuous state system, the continuous 

variables can be assumed any real value (i.e. income, weight, and analog signals), while in a 

discrete state system, the discrete variables are assumed elements of a discrete set (e.g. number 
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of cars or people. digital signals). In a time-driven system, the state can continuously change as 

time changes. On the other hand, in the event driven systems the occurrence of asynchronously 

generated discrete events force instantaneous state transitions, while the state between event 

occurrences remains unchanged. Finally, hybrid models consist of both discrete and continuous 

system state behavior. 

2.3 Discrete Event (DE) Modeling and Simulation (M&S)  

 The first Discrete Event modeling and simulation software tool was introduced in the 

early 60’s by an IBM engineer named Geoffrey Gordon [6]. This general purpose simulation 

system was called the Gordon’s Programmable Simulation System (GPSS). In recent times, DE 

M&S is supported by various software tools, including the updated version of GPSS itself, which 

has been increasingly applied to assist in decision-making and evaluation in multidisciplinary 

domains, such as in healthcare organizations, supply chain management, manufacturing 

planning, and production lines.  

Discrete Event (DE) Modeling and Simulation (M&S) method is a process of 

systematizing the behavior of a system in which its operations are described as an orderly 

discrete sequence of well-defined events in time. DE M&S has the capability to capture CS 

behavior within its interactions and/or between individuals, populations and their environments 

using computational and mathematical practices [51]. In this context, a DE simulation model is a 

computer generated experiment consisting of elements that form a model capable of representing 

and describing a system. Each event occurs at a specific countable number of points in time and 
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involves a particular change in the system’s state at this particular point in time. This means that 

between consecutive events, no change in the system’s state is assumed to occur; therefore the 

simulation directly jumps to a specific point in time from one event to the next one.  

When we observe real world processes, the majority of them consist of continuous 

changes. However, when we examine them from a DE M&S perspective, these continuous 

processes are divided into discrete parts (the variables are discrete and not continuous) and the 

system is being modeled as a sequence of operations being performed across entities [47], [6]. 

DE Modeling approach is more process-centric oriented and the randomness of the 

interconnected variables leads to systems behavior. DE systems are represented by sequences of 

discrete events in a discrete time which jumps from event to event. Some of the most common 

elements of DE modeling include: entities, events, queues, resources and flow charts which 

provide implicit feedback. An "entity" in DE is defined as the active object or object of interest 

within a system. Additionally, the "attribute" of an entity characterizes the property of that 

particular entity and the activity of that entity characterizes a time period of specified length [47]. 

As an "event" we describe a prompt occurrence that may alter the state of the system [47]. The 

"state" of a system is defined as a set of particular variables that are essential to describe a 

system at a specific time, in regards to the defined objective(s) of a simulation study [47].  

DE models can be either deterministic or stochastic, but in this dissertation we are most 

interested in stochastic M&S. The data sources in DE M&S are usually historical data, numerical 

and/or actual data that consider informational elements such as arrival times, departure times, 

service times, waiting times etc. In DE stochastic models, randomness can be explicitly modeled 
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with the appropriate statistical analysis, while the complexity increases exponentially based on 

the size and the requirements of the model.  

DE systems focus more on modeling processes for tactical and operational organizational 

levels [6], [52]. The analyst seeks to understand and estimate the impact of randomness on a 

system with a relative precise prediction. DE models usually demonstrate High-Level of 

predictive ability. An understanding of the problem lies in the analysis of the randomness, which 

is related to interconnected processes and events. DE simulation has been widely used in a 

variety of domains, including manufacturing, logistics, and business process modeling, to 

represent how entities move through a system [55]. This M&S method is particularly useful for 

identifying process bottlenecks and collecting statistics on process performance measurements. 

The main drawback is that entities are described as passive objects with no autonomy, which 

results in limited ability to adapt the structure at runtime.  

In order to develop a DE M&S experiment, the user (i.e. analyst, modeler) needs first to 

define the overall objective(s) such as the scope and purpose of the simulation study. Then, the 

user is called to construct a conceptual model. The conceptual model can be used as a guide to 

convert the collected system requirements using building blocks into a CG computational model.  

Some activities of the conceptual phase are: defining boundaries (input/output), level of details, 

Measurements of Performance (MoPs), parameters and important dynamic ad state variables that 

may take place.  
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2.4 System Dynamic (SD) Modeling and Simulation (M&S) 

System dynamics (SD) is an analytical M&S method which was originally developed by 

Jay Forrester at MIT in the early 60’s to assist managers in improving industrial processes [53], 

[29]. This method is based on Euler’s approximation to solve a differential equation as discrete 

sub-sections of a continuous time interval [54].  

 SD method is designed to model the behavior of changing system states over time [54]. 

In SD, instead of independent and identically distributed (IID) entities, the user deals with 

homogenized entities, stocks (accumulations) and flows, which continually interact over time to 

form a unified whole [6]. SD is a toolset of learning and understanding how a system’s behavior, 

policy or strategy changes over time. The system’s behavior is affected by internal feedback 

loops and time delays. The main advantage of this method is its ability to focus on the aggregate 

effect, rather than the individual effect of individual entities. It allows for modeling the 

mathematics, the relationships, and each of the causal dependencies in a dynamic system. Thus, 

the impact of various policies on the system can be examined [29].  

SD M&S method focuses more on modeling processes for strategic organizational levels 

[6], [52]. In addition, SD method deals effectively with parallel synchronization challenges by 

updating all variables and increments with positive and negative feedbacks, and time delays that 

compose the interactions in short amount of time. These key elements illustrate a nonlinear 

relationship, which aid the user in detecting the elements that considered important to the system 

and those that are expected to generate an impact to a specific problem situation [29]. 



  

19 

 

In addition, SD method combines qualitative and quantitative information in order to 

enhance the comprehension of a recognized problem, as well as to improve the understanding of 

the structure of the problem and the relationships present among relevant variables. It is 

contingent on quantitative data to generate feedback models, usually deterministic, unless 

stochastic elements are explicitly included [29]. Often, randomness in SD is subsumed into 

delays or noise [29]. The modelers consider decisions and events under a continuous endogenous 

aspect of view, usually build on causally closed structures that can define its behavior. The 

analyst can determine the feedback loops within a system’s circular causality to detect stocks and 

flows that influence the feedback loops. These stocks sometimes can be the memory of the 

system as well as the source of disequilibrium [29]. 

There is no standard way to manage and construct SD models [6]. SD M&S mehtod is 

characterized by a top-down systems level approach, in which a system is represented by 

building blocks of stocks (in which the accumulations characterize the state of the system), flows 

(or rates of change), causal loops (positive-negative feedback loops), delays, rates and constant 

or continuous parameters [6]. Stocks may represent people, money, experience, capacity etc. 

Flows can be rates per unit, i.e. people per day, money per second, experience per year, capacity 

per month. In SD, the current system’s state condition is defined by a level variable that can only 

be affected by a rate. Additionally, a rate cannot influence directly another rate variable if a level 

variable doesn't exist [6]. In SD, the world can be modeled in causally closed structure capable 

of self revealing its behavior [6], [29].  
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2.4.1 Stock and Flow Diagrams. One of the most commonly used techniques for the 

representation of a SD models is the stock and flow diagrammatic technique which is used to 

describe the causal relationships of various state levels, rates, and constant parameters in a given 

system. Stock and flow diagrams allow us to recognize the type rate, flow and constants that are 

deployed. Figure 2 describes a simple stock and flow diagram, where rectangles describe “stock” 

and “stock1” respectively, the double arrow with the rate in the middle describes the “flow” and 

the cloud describes the “decision-making” rules based on differential equations of dynamic and 

constant parameters.  

 

Figure 2. Simple stock and flow dynamics 

 

2.4.2 Positive and Negative Feedback loops. Stocks and flows are both important and 

necessary modeling building blocks for CS. They can produce realistic dynamic behavior when 

components of feedback loops are regularly connected by nonlinear sets that frequently cause 

erratic behavior. 
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From a SD perspective, a system can be categorized as "open" or "closed." On one hand, 

open systems are characterized by outputs that respond to, but have no impact on, their inputs. 

On the other hand, closed systems are characterized by outputs that can do both, respond to, and 

impact their inputs. Closed systems perceive their own performance and are affected by their 

past behavior, while open systems are not. This fact brings closed systems to the center of 

attention. Based on the essential role of feedback in the control of closed systems, it is 

recommended that every feedback loop in a SD model should include at least one stock. 

There are two kinds of feedback loop control: the positive and the negative feedback 

loop. Positive feedback loops or reinforcing feedback loops represent self-reinforcing procedures 

in which part of the output of a system is returned to its input in order to produce more of its 

input, and therefore more of its further output. Positive feedback loops have a tendency to 

destabilize a system from its current situation with the ability to expand or decline a system. 

However, they can periodically cause stabilization of the system. 

On the other hand,negative feedback loops or balancing feedback loops illustrate goal-

seeking procedures in which part of the output that is produced is returned to its input in order to 

stabilize the system to a desired situation. In general, negative feedback loops stabilize a system 

to a desired state, but periodically can cause destabilization of the system and oscillations.  

2.4.3 Causal Loop Diagrams. In the world of SD M&S, the causal loop diagram 

technique is usually applied to describe positive and negative feedback procedures of cause and 

effect relationships between individual system variables connected in a closed loop. For 

example, Figure 3 illustrates two causal loop diagrams: a causal loop diagram of positive 

feedback loop structure and a causal loop diagram of a negative feedback structure. The arrows 
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that connect each variable show a cause and effect relationship. The variable at the back of the 

arrow affects the variable at the front of the arrow in a positive or negative direction. The overall 

polarity of a causal loop diagram is depicted with a “+” or a “-” symbol at its center (sometimes 

instead of “+”, or “-” symbols, are used “s” for the same direction and “o” for the opposite 

direction). 

 

Figure 3. Positive and negative feedback loop diagrams 

 

In the SD community, managers and decision makers classified the generic feedback 

loops in archetypes, applicable in various domains, in an attempt to detect precise system 

structures that cause particular cause–effect relationships.  

However, the success of the loop diagrams and archetypes in helping decision makers 

solve problems in their organizations may be further supported by a 3M&S concept where micro, 

meso and macro perspectives are taken in consideration to gain a complete understanding of the 

details and dynamics of a CS. 
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2.5 Agent Based (AB) Modeling & Simulation (M&S) 

 There is no universal agreement on the exact definition of the term “agent”, although 

definitions tend to agree on more points than they disagree on. The Agent Based (AB) simulation 

models, known as “multi-AB” systems are models that can execute a simulation of one 

heterogeneous population or more (multi-AB), clusters or networks of agents, and their 

interactions among them and their environments. The agent’s heterogeneity may be initiated in 

terms of a different agent: location, level of experience, level of knowledge, and other identified 

attributes within an interactive environment. The global behavior of a system emerges out of 

many concurrent individual behaviors and/or clusters of agent behaviors (multi-AB). The 

simulated outcome of micro-level interactions among the agents can form a global macro-level 

behavior. Such examples could be: the culture in an organization, understanding phenomena of 

emergent situation, and aid in decision-making. The agents are capable of representing various 

aspects depending on what is the interest of the M&S study such as: individuals, (human task 

operators, machines, customers, pedestrians, biological organisms etc), clusters, networks, 

organizations, companies etc.  

Initially, AB history started by two friends, Von Neumann and Stanislaw Ulam, who 

created a machine capable of replicating itself as a collection of cells on a grid [154]. Later, this 

theory which was termed cellular automata advanced to AB by introducing rules such as the 

“Game of Life” by the mathematician John Conway [154]. In 70’s and 80’s AB M&S adapted 

mostly in academia when in 90’s the interest exploded as more software’s released and more 

practitioners start adopting this method [6], [55]. The adoption of AB M&S method increased 
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due to the desire of the modelers community for more information and details into systems that 

were not well-captured by the other two M&S methods (DE and SD) [6]. In addition, AB M&S 

attracted more attention because of the continuous progress of computer science (CPU power 

and memory, software availability), and modeling advancements such as the Unified Modeling 

Language (UML), and the state charts were introduced. Nowadays there are a lot of software 

tools that not only can create AB models, but they can also combine them with SD and DE 

models. 

Agent Based (AB) is a more recent M&S method than DE or SD and can be applied for 

strategic, tactical and operational organizational levels unless the user, analyst or modeler 

explicitly defines the modeling question(s). Such modeling questions could be to define the types 

of emergent processes or simple rules of behavior among the agents to learn and understand a 

global behavior. However, in some cases AB is justified as more appropriate M&S metod, 

because of its capability to describe a lot of details of CS, where the users may focus more on 

details, rather than in M&S, for understating an emerging behavior. For example, when we have 

randomly interconnected agents that form differential mathematical relationships, then SD 

models, may be a more appropriate M&S approach. AB M&S is very practical when the agents 

interact in non-random ways based on rules, terms, and conditions that we meet in explicitly 

defined networks, cluster of agents and other AB systems. Furthermore, AB M&S is often 

applied to assess various processes (cognitive or physical processes), in which the heterogeneity 

of a decision-making behavior contributes to the understanding of the overall system’s behavior.  

From the viewpoint of M&S of practical applications, AB is more decentralized 

individual-centric level approach, or bottom-up level approach and does not assume a particular 
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level of abstraction, neither considers standard modeling structures; it is possible to link the 

mathematics in order to simulate micro to macro level of perspectives [6], [55], [56], [57]. 

AB M&S method allows analysts to understand and present data driven efforts on 

patterns of symbiotic or competitive relationships [58]. The behavior and the interactions 

between the agents can be formalized by state-charts, UML, mathematical modeling, decision 

rules, and logical operators. 

The system is usually modeled as a compilation of agents, where the analyst can study 

how the system’s global behavior emerges as a result of the interactions among a lot of 

individual agent behaviors. The individual agent may have a nonlinear behavior characterized by 

state-charts, thresholds, if-then rules, or nonlinear coupling. The agents may have decision-

making heuristics based on a set of predefined rules and they can exhibit various behaviors in 

regards to the system or state they represent. The majority of AB models in the literature consists 

of Agents that exhibit behavior and properties such as: adaptive ability, pro- and re-activeness, 

spatial awareness, learning ability, social ability, autonomy, interactive topology, 

anthropomorphity, continuity, and specific purpose [59], [5], [60], [61], [62], [63], [64], [65]. AB 

models can integrate neural networks, progressive algorithms, and other machine learning 

techniques to represent realistic properties such as the learning and adaption ability. Based on the 

software that is used, the agents may be surrounded by continuous or discrete two or three 

dimensional space coordinates, when some software can also integrate geographic information 

system space [66]. The randomness in AB is associated with variables and the dependencies of 

their active objects (agents). It may be synchronous with probabilistic delays or asynchronous 

with stochastic delays. Therefore, AB models are flexible in avoiding synchronization problems, 
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but selecting the interpretation of their outputs is often challenging and requires statistical 

knowledge. AB can deal with qualitative and quantitative type of models and it can well capture 

more CS structures and dynamics than DE and SD M&S approaches.  

2.6 Multi-Method Modeling and Simulation (3M&S) 

Multi-Method Modeling and Simulation (3M&S) considers the combination and/or 

integration of M&S models that may consist of both discrete and continuous system state 

behavior. A multi-method simulation model results from the combination and/or integration of 

DE, AB, and SD M&S approaches. A multi-method simulation model must be able to update, 

change, and adapt during execution time and exchange of information. When we say "method" in 

M&S, we refer to a general architecture for constructing a real world system to its model.  

Accordingly, we call it “multi-method” due to all of the possible architectures, terms, and 

conditions that can be constructed among the three M&S methods (DE, SD, and AB) [6]. 

2.7 Meta-interpretive review of literature of comparisons, existing combinations, and/or 

integrations of M&S Methodologies  

The scope of this section is to identify similarities and differences that characterize DE, 

SD, and AB M&S methodologies. The review of literature focuses more on the justification and 

achievement of two main objectives. The first objective is to develop in depth understanding 

among the different aspects and features of the three M&S methods (DE, SD, and AB), and the 
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second objective is to obtain knowledge of meta-interpretive literature on existing frameworks 

that combine or integrate DE, SD, and AB models.  

 Problem owners deal with strategic, tactical, and operational levels; micro, meso, and 

macro perspectives; and detail and dynamic complexity [7], [33]. In this research, we are 

strongly confident that such factors can be considered and managed using the 3M&S framework. 

 The importance to justify the need to integrate and/or combine M&S methods to form 

multi-method simulation models prior to the development has been mentioned before [12], [26]. 

Additionally, it has been argued that before combining M&S methodologies (i.e. SD and AB), 

first requires to compare the methods in terms of output on similar problems in order to verify 

the methods and establish active and mutually influential collaboration between the models [15]. 

All the three M&S methodologies have strong explanatory capabilities and, although they differ 

in their philosophical approaches, they can be integrated and/or combined [6]. The process-

centric approach of DE, the bottom-up approach of AB, and the top-down approach of 

aggregated feedbacks of SD may complement each other in a multi-method simulation format 

capable of offering realistic perspectives and useful insights of CS problems.  

 2.7.1 Meta-interpretive review of literature of comparisons, existing combinations, 

and/or integrations between AB and SD M&S. Interpretations of combination or integration 

between SD and AB M&S methods were detected in various domains including: Bimolecular 

Networks [67], supply chain systems [13], [68], [69], [70], expert systems [26], manufacturing 

systems [71], [72], healthcare systems [73], [74], transportation systems [75], air traffic control 

system [76], and web technologies [77]. Moreover, SD and AB M&S have a variety of different 

applications in different domains such as socio-topo-ecological simulations of regional, [78] 
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agricultural [79], and governmental development [80]. In this section, we briefly describe a 

selected list of studies that helped define the list of criteria for the 3M&S framework.  

 The first study concerns a conceptual combination of SD and AB methods proposed by 

Pourdehnad et al. [81] in an attempt to explore and support group learning, in an organizational 

context. More specifically, Pourdehnad et al. suggest that the appropriate use of both methods 

can contribute to support group learning (i.e., management team) and enable the group to 

experiment with different actions, policies and strategies, “see” the consequences and understand 

the complexity of the organization. [81]. Pourdehnad et al. also detected main differences 

between the two approaches which are related to the behavior of the modeled system. The SD 

approach is applied for pre-defined model relationships in which the behavior of the system 

depends on the structure of the model, while the AB approach considers an “emergent” system 

behavior as the outcome of individual agent interactions [82], [81]. Other differences described 

by Pourdehnad et al. are [81] categorized in terms of: 

 System scope. SD is more appropriate for business thinking and physical 

processes, while AB for human thinking and social processes  

 Applicability. SD is recommended more for CS understanding while AB for 

learning a behavior 

 Validity. AB model scored higher than the SD model 

 Besides, all the aforementioned differences in the way AB and SD approach CS 

problems, it was noticed that strong interactions between AB and SD can coexist and can be 

deployed in a synergetic way [15], [81].  
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 Another study, which was conducted by Wakeland et al. [83] in the field of biomedical 

research, showed that the understanding of the aggregate behavior of a SD model and the state 

changes of agents are relevant and can be combined. Wakeland et al. did not conclude to a clear 

differentiation of when each approach over the other should be preferred. However, they 

recommend SD for examining systems at a high aggregation and abstraction level, and AB for 

studying emergent phenomena of diverse structure which can be broadly classified in individual 

levels (i.e receptors and molecules) [83].  

 Furthermore, Figueredo et al. support that both M&S approaches (SD and AB) can be 

helpful especially for simulating parts of the immune system. In order to achieve a clear 

understanding of how to acquire information from one method to the other, they compared SD 

and AB for different biological problems. Figueredo et al. identified differences between the two 

M&S methods in terms of output for similar spatial and non-spatial CS scenarios, by converting 

AB into SD and vice versa [84]. They concluded that both methods can capture the process of 

transforming the information to knowledge and understanding, but this transparency may not be 

so obvious [88]. Moreover, they observed that SD is more appropriate for static agents that do 

not involve interactions, because it is less complex approach and takes up less computational 

power by generating similar outputs than those acquired by AB approach. They also noticed a 

research gap of theoretical guidelines and frameworks to aid in selecting the most appropriate 

method(s) [88]. Figueredo and Aickelin [85] conducted more experiments to compare SD with 

AB output in regards to immune system-related problems, but this time with agents that could 

involve interactions (tumor growth that interacts with effector cells). They noticed that, in some 

simulation cases, the outputs of the models were different because of the modeling nature of each 
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simulation approach; SD deals with continuous stocks, while AB deals with discrete number of 

agents [85]. 

In addition, Swinerd, and McNaught, suggest three architectures for combination and/or 

integration of simulation between SD and AB and they called them hybrid design classes. The 

three main different system designs detected when combining or integrating SD and AB M&S 

methods are: the integrated, the interfaced and the sequential system design [16]. These different 

system architectures are described in regards to the combination or integration between SD and 

AB methods and the output of the composed hybrid model.  

According to Swinerd et al. [16], in the integrated hybrid design of AB and SD, models can 

interact and provide separate outputs in three different ways:  

 a SD model is integrated within Agents (Agents with internal SD structure) 

  a SD model is applied to bound aggregate measures of an AB model (i.e stocked 

agents) and 

  SD aggregate measures, observations, and statistics of an AB model can be applied 

to impact parameters that are evolved within this particular SD model which can 

exhibit emerging behavior 

 The constraints of the feedback process when combining and/or integrating SD and AB 

models are not limited to these interpretations [16].  

 More simulation studies that compare SD and AB approaches reached similar 

conclusions for a bass diffusion model, a susceptible infected recovered (SIR) model and a 

predator-prey model [6], [55]. These studies also conclude that AB models are harder to develop, 

verify, validate and document [6], [55]. In addition, AB models require more computational 



  

31 

 

resources for M&S and the produced outputs are more difficult to be understood and explained 

[6], [55]. 

 However, the appropriateness of selecting between M&S methods depends more on the 

objectives of the study, the modeling questions, and the level of abstraction, rather than in the 

application that is being modeled [55], [86]. For example, when the objective is to capture and 

illustrate the behavior and the interactions that take place among living organisms, then AB is 

recommended, while SD would be better, if the quantification of whole populations is required. 

 Schieritz and Milling conducted another useful comparison between AB and SD methods 

for non-linear socio-economical systems [60]. This study describes how an analyst would model 

the forest and how the tree, by approaching the modeling problem either with SD, or with AB 

modeling. In this comparison study between SD and AB [60], it is recommended that SD would 

be more appropriate for macroscopic modeling levels, while AB would fit better in microscopic 

modeling levels, because the behavior of the system is analyzed differently. With this 

astonishing example, Schieritz and Milling illustrate the differences between top-down (SD) and 

bottom-up (AB) approach and alternative ways to analyze the behavior of a system [60]. 

Schieritz, and Milling conclude that in a SD model the system is analyzed based on the structure, 

while in an AB model based on rules [60]. When both objectives become important for a 

particular study, the integration or combination between SD and AB could provide potential aid 

to decision makers to expand their thinking considering both, macro and micro perspectives (the 

forest and the tree). A summary of the studies described above is depicted in Table 1. 
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Table 1. Summary of findings from meta-interpretive review for AB and SD comparisons 

Criteria SD AB Reference 

Modeling 

Philosophy 

(Methodology 

Perspective) 

Overall behavior of the 

system depends on the 

structure of the model and 

pre-defined model 

relationships 

Overall “emergent” 

system behavior of 

interdependencies 

among individual 

agents 

Pourdehnad et al. 

[81] [82], Wakeland 

et al., Figueredo et 

al. [84]., Borshchev 

[6], [86] 

Problem 

Resolution 

(Problem 

Perspective) 

 

Aggregated level, 

Quantification of whole 

populations 

More detailed Level, 

individual levels, 

Interactions that take 

place among 

individuals 

 

Pourdehnad et al. 

[81] [82], Wakeland 

et al. [83], 

Figueredo et al. 

[84]. Borshchev [6], 

Siebers et al. [86] 

System 

Representation 

(System 

Perspective) 

 

Stocks and Flows Individual agents 

Pourdehnad et al. 

[81] [82], Wakeland 

et al. [83], 

Figueredo et al. 

[84]. Borshchev [6], 

Siebers et al. [86] 

Abstraction Level 

(System 

Perspective) 

High-Level of abstraction 

Any Level of 

abstraction 

Pourdehnad et al. 

[81], Wakeland et 

al. [83], Figueredo 



  

33 

 

Criteria SD AB Reference 

et al. [84], 

Borshchev [6], 

Siebers et al. [86] 

Time, 

(Methodology 

Perspective) 

Continuous Discrete, 

Schieritz and 

Milling [60], 

Figueredo and 

Aickelin [82] 

Object 

(Methodology 

Perspective) 

Stocks and Flows, 

Feedback 

Number of agents 

Schieritz and 

Milling [60], 

Figueredo and 

Aickelin [82] 

Situation 

(Problem 

Perspective), 

Analysis based on structure 

and flows 

Analysis based on rules 

Schieritz and 

Milling [60], 

Figueredo and 

Aickelin [82] 

Modeling 

Approach 

Top-down Bottom-up 

Schieritz and 

Milling [60] 
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 2.7.2 Meta-interpretive review of literature of comparisons, existing combinations, 

and/or integrations between DE and SD M&S. The combination and/or integration between 

SD and DE M&S has been used to answer questions in various domains of CS that neither SD 

nor DE could support in a stand-alone M&S format. Different M&S combinations have been 

applied based on the different technical and philosophical aspects of each method. Each M&S 

method acts differently in capturing and interpreting CS problems and systems perspectives [87]. 

In this section, we describe a selected list of existing hybrid SD and DE studies and comparisons 

that helped in defining the list of criteria for the 3M&S framework.  

 Coyle approached the integration of DE and SD M&S methods in his attempt to find 

alternative ways to integrate DE M&S in a SD environment [88]. Coyle identified two main 

points in the comparison between DE and SD M&S: (1) both M&S approaches can be applied in 

the modeling structure of open and closed loop systems and (2) the majority of DE models are 

stochastic using more random variables and statistical distributions, while the SD models are 

usually deterministic; analysts focus more on training and understanding rather than on 

randomness.  

 In the context of business processes, Sweetser provides an interesting comparison 

between DE and SD approaches. Sweetser [89] concludes that both approaches can model and 

generate similar outputs for some particular problems. However, the appropriateness of each 

method is characterized by different perspectives in the conceptualization process based on the 

objectives and the system that is taken under consideration. Sweetser recommends SD for 

problems related to continuous processes, where feedback considerably influences the behavior 

of a system by generating dynamic changes in its behavior [89]. On the other hand, DE is 
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recommended when detailed examination of a system exhibits’ linear processes and discrete 

changes in its behavior [89]. Moreover, DE is recommended when the user is more interested in 

accurate and statistically valid assessments of a system’s MoPs, while SD as a decision support 

tool for learning and training [89].  

Another comparison between DE and SD worth noting is presented by Brailsford and 

Hilton in the context of health care organizations [87]. Brailsford and Hilton [87] establish the 

first technical criteria that suggest when each M&S method is more appropriate than the other. 

Some of the selection criteria between DE and SD were also adapted by Morecroft and Robinson 

[90]. More specifically, DE is recommended as a more suitable approach for systems that operate 

like networks of queues and activities. In this case, independent and identically distributed (IID) 

objects (entities) exhibit changes to their state when an event occurs at discrete points of time. 

On the other hand, SD is mostly recommended for deterministic systems that operate as groups 

of stocks and flows. In this case, all objects are considered as a continuous quantity, in which the 

time is modeled as a delay in equal duration time steps and the state changes occur continuously 

[87], [90]. 

 Additionally, DE and SD approaches have been compared in terms of organizational 

level of abstraction, in which SD applies at a strategic organizational level, while DE applies at 

the tactical and operational organizational level of abstraction [89], [91], [55]. In terms of 

feedback impact on a system, SD uses closed loop structures in which causal interactions and 

feedback effects are very important, while DE models are usually open loop structures that are 

less interested in feedback effects [88], [89], [87]. In terms of system’s modeling representation 

and complexity, DE M&S adapts more analytic perspectives (meso to micro aspect of view) with 
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a narrow focus (more details), while SD adapts a holistic system’s perspective by applying a 

wider focus approach (macro aspect of view) [91], [92].  

 Furthermore, Tako and Robinson conducted a quantitative verbal protocol analysis 

(VPA) to compare DE and SD methodologies based on the user perception, using Subject Matter 

Experts (SMEs) from both M&S communities [93]. Tako and Robinson asked modelers to think 

out loud during the modeling and development process of simulation models for particular 

problem scenarios [94]. They compared DE and SD methodologies using VPA in terms of: 

problem structure, conceptual modeling, data inputs, model coding, V&V, output, and 

experimentation. The conclusions from this comparison study describe that all SME’s switch 

between modeling topics, although the DE SMEs follow a further linear progression compared to 

SD SMEs. In addition, Tako and Robinson noticed that DE SMEs paid more attention on model 

coding and the process of V&V, while SD SMEs focused more on the conceptualization of the 

modeling process [94]. 

 Additionally, Lane’s comparison between SD and DE describes three modes of discourse 

[91]. The first mode focuses on the differences between the two M&S methods, the second 

implies that both methods are similar, and the third mode presents how to link the two methods 

while acknowledging and respecting the differences between them [91]. Lane strongly supports 

the third mode as it involves a wide area of applications for which he proposed a three 

dimensional model that includes various parameters for organizational, dynamic, and detail 

complexity [91]. According to Lane, organizational complexity occurs because of the numerous 

perspectives and the antagonistic attitudes between the different groups of interest. Detail 

complexity occurs from the various variables and attributes and dynamic complexity is related to 



  

37 

 

the interaction variables producing non–linear behavior [91]. Lane concludes that DE and SD 

M&S methods work better for different types of complexity, where SD is better applied to 

capture dynamic complexity for homogenized entities, continuous policies, and emergent 

behaviors, while DE captures better detail complexity, IID entities, individual attributes, 

decisions, and events [91]. In addition, DE is recommended for operational problems while SD 

for strategic problems [91]. Most of the criteria recommended by Lane’s [91] DE-SD 

comparison agree with the conclusions made by Brailsford and Hilton [87] and Morecroft and 

Robinson [90].  

 Morecroft and Robinson [90], similarly to Schiertz and Milling [60], focused on similar 

problem scenarios considering both DE and SD M&S methodologies. Morecroft and Robinson 

conducted a comparison study [90] which focuses more on the system representation and 

interpretation. Some of the most important differences that they pointed out, regarding the 

fishery model example, are similar to the conclusions of the comparison conducted by Brailsford 

and Hilton [87]. They noticed that SD is more suitable for capturing and understanding the 

performance of interconnected system components over long time scale based on the internal 

system feedback structure. Morecroft and Robinson underline that SD modeling feedback 

structure is mostly described explicitly by a set of non-linear equations, where randomness is 

rarely considered, or assumed as noise. On the other hand, for the DE approach, they noticed that 

the modeling feedback is mostly described implicitly by a linear relationship [90]. Finally, 

Morecroft and Robinson [90] similarly to Brailsford and Hilton [87], recommend that DE 

satisfies better objectives related to decision support in terms of optimization, prediction, and 
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comparison of alternative scenarios, while SD is more appropriate for objectives of policy 

making and assessment, training, and understanding. 

  Furthermore, in the concept of combining M&S methods, it was pointed out that, when 

combining more methodologies, it is possible to represent a more inclusive way of dealing with 

the complexity of a real world system, but this may present challenges due to the diverse 

philosophical aspects of each M&S methods [55], [19]. Although combining or integrating DE 

and SD present challenges due to the different characteristics that each method exhibits, several 

studies that combine, and/or integrate discrete and continuous aspects have been proposed.  

 The works of Petroulakis [95], Lee et al. [96], and Helal [10] focus on combining 

continuous and discrete aspects into supply-chain systems, while Rabelo et al. [97] propose a 

theoretical framework for integrated deployment of SD and DE to study local production 

decisions in regards to the global market. In these studies, SD is applied to assist decision-

making for strategic levels, while DE to assist in operational levels.  

  Venkateswaran and Son applied SD to model the management of a facility inventory and 

DE for the shop-floor operations [98]. This discrete-continuous framework captures the necessity 

of using two-level Hierarchical Production Planning (HPP) architecture to simulate alternative 

types of decision-making by applying SD for high-level aggregate functions and DE for lower-

level individualized functions [98]. Venkateswaran and Son suggested that High-Level 

Architecture (HLA) for modeling multiple hybrid and complex environments [9] allows to 

coordinate and interface with multiple simulations, model types, protocols, algorithms, and 

communication requirements into a hybrid framework.  
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 Martin and Raffo applied hybrid DE-SD M&S to evaluate concurrent changes to the 

process and project environment of a software development company [99]. This hybrid M&S 

approach improved software development process in terms of time, quality, and project 

performance [99]. Martin and Raffo suggest that more inclusive process modeling enables 

problem owners and especially managers to explain hypothetical process changes, as well as to 

build up financial analyses of the impact of particular changes that need to be tacked in business 

[99]. Therefore, Martin and Raffo used SD for project environment, as a set of differential 

equations, and DE for the process activities [99]. By combining discrete processes and 

differential equations over time they were able to depict the performance of project variables 

such as motivation, staff levels, and quantity of detected errors. Martin and Raffo noticed that 

these models capture the effects of feedback loops that may be present in the project 

environment but are restricted in their ability to correspond to a discrete event process. 

 Moreno-Lizaranzu et al. conducted another research study that combines discrete and 

continuous aspects in the control of manufacturing systems [100]. Moreno-Lizaranzu et al. 

developed on RapidCIM a message-based process control system, which was extended to 

support real time communication by accessing databases remotely and sending messages. These 

messages were used to manage hardware equipment which performs both continuous and 

discrete processing activities. This hybrid control system prototype integrates unit processes and 

operational decisions by combining continuous and discrete event simulation into a message-

based process control system. One of the main problems in the area of computer control of 

manufacturing systems, which was pointed out by Moreno-Lizaranzu, is that existing software 

and hardware needs to be compatible in order to plug in and run. One way to deal with this 
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challenge is to equip the shop floor control system developers with software that automatically 

generates code. The ability to automatically generate code can significantly decrease the cost of 

developing and integrating manufacturing systems, while it allows a more detail simulation to be 

used for analyses and control. Thus, Moreno-Lizaranzu et al. developed a DE queuing network at 

a higher abstraction level capable to capture and correspond to component activities, their 

interactions, and the exchanged artifacts. At the lower abstraction level, they applied continuous 

modeling and analytical techniques in order to explain the behavior of the introduced activities 

[100]. This hybrid DE-SD modeling approach applied in a waterfall-based software process to 

examine and learn the effects of the requirements when the lack of stability causes various 

process quality attributes in time of delivery, effort of productivity, percentage of revision, and 

quality of product [100]. Moreno-Lizaranzu et al., demonstrated that the simulation outcomes of 

this hybrid model can present both quantitative and qualitative recommendations according to 

what software process improvement needs to be done to meet organizational requirements [100].  

 Furthermore, Brailsford, and Hilton support that the answer to the question of when to 

select between DE and SD M&S methods is based more on the rationale of the model instead of 

the system that is being modeled [87]. On the other hand, it is argued that there is a strong fit 

among M&S approaches based on the system, problem, and methodology perspectives that 

should be considered prior to the M&S process when it comes to deciding for integration and/or 

combination between SD and DE methods [101], [102], [51], [11]. 

 In the literature, Brailsford and Hilton presented guidance as it concerns the selection 

criteria for combination and/or integration between SD and DE based on the problem and 

methodology perspectives [87], but not including system perspectives. On the other hand, Chahal 
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et al. [11] modified and expanded the selection criteria to also incorporate system perspective 

criteria [102], but not considering the AB approach [24]. The methodology perspective describes 

philosophical assumptions, technical characteristics, capabilities, and limitations of each M&S 

method [102]. The system perspective corresponds to potential features and naturalness of the 

system that is being modeled and simulated. The problem perspective refers to different aspects 

of the problem [102].  

 In situations where more M&S models get involved, M&S criteria consider that the 

problem objective is influenced by both detail and dynamic complexity [7], [33]. However, it is 

necessary to prioritize which methodology tackles the most significant issues based on the higher 

importance [24], [87].  

 Table 2 summarizes the findings from the meta-interpretive review for SD and DE 

comparisons. 

Table 2. Summary of findings from meta-interpretive review for SD and DE comparisons 

Criteria SD DE Reference 

Randomness 

(Methodology 

Perspective) 

SD are usually deterministic 
The majority of DE 

models are stochastic 
Coyle [88] 

System Focus, 

System Process; 

System 

Representation; 

(System 

SD is recommended for 

systems related to continuous 

processes; Holistic system 

view; Stocks, and flows 

DE is recommended for 

detailed examination of a 

system; Queues and 

activities; Analytic 

perspective 

Sweetser [89]; 

Brailsford and Hilton 

[87]; Morecroft and 

Robinson [90]; 

 [91], [92] 
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Criteria SD DE Reference 

Perspective) 

 

Problem Scope 

Level (Problem 

Perspective) 

SD applies at a strategic 

organizational level 

DE applies at the tactical 

and operational 

organizational 

[89], [91], [55]. 

Petroulakis [95], Lee 

et al. [96], and Helal 

[10] 

Modeling 

Philosophy 

(Methodology 

Perspective) 

SD uses closed loop 

structures in which causal 

interactions and feedback 

effects are very important 

DE models are usually 

open loop structures that 

are less interested in 

feedback effects 

[88], [89], [87]. 

Complexity 

(System 

Perspective) 

SD is better applied to 

capture dynamic complexity 

DE captures better detail 

complexity 
Lane [91] 

Organizational 

Decision Support 

(Problem 

Perspective) 

SD is more appropriate for 

objectives of policy making 

and assessment, training and 

understanding 

 

DE satisfies better 

objectives related to 

decision support in terms 

of optimization, 

prediction and 

comparison of alternative 

scenarios 

Morecroft and 

Robinson [90], Lane 

[91], Brailsford and 

Hilton [87]; 
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Criteria SD DE Reference 

Problem 

Resolution 

(Problem 

Perspective) 

SD for high-level aggregate 

functions 

DE for lower-level 

individualized functions 

[98] 

 

 2.7.3 Meta-interpretive review of literature of comparisons, existing combinations, 

and/or integrations between DE and AB M&S. Each M&S approach has its own academic 

community and its supporters. Analysts or modelers who have a strong background in a 

particular M&S method, sometimes show little appreciation for the other methods by allowing 

intellectual and institutional divisions [89], [91]. An example of this contradiction is detected in 

panel discussions presented between Siebers et al. [86] and Tjahjono [103]. In the literature it has 

been observed that some modelers or analysts may favor to select a particular M&S method due 

to the directed expertise of having a strong background, or because they feel more confident and 

familiar with a particular approach [87] [90].  

 In spite of this antagonistic attitude [17], [86], [103], other studies support the 

collaboration of the approaches and show more appreciation and respect for different M&S 

approaches, by seeking common ground for their combination and/or integration. In the literature 

we identify existing frameworks that combine or integrate DE-AB M&S across multidisciplinary 

research domains such as: in the healthcare domain [104], [105], in urban dynamics and logistics 

[106], [107], [108] in management, information and simulation systems [18], [109], in robotics 
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in CIM production [110], as well as in militarily research [111], [112], and real time applications 

[113]. 

 Some examples between DE and AB combination and/or integration in supply chain and 

health care systems are presented by Borschev [6]. In the first case, Borschev shows how a user 

can integrate a DE business process inside agents that represent supply chain elements [6]. In the 

second case, Borschev demonstrates how a user can model agents who temporally transformed to 

entities in order to request treatment from a health care center, captured by a DE method [6]. 

 Furthermore, Majid et al. conducted a comparison study between AB and DE to examine 

which approach is more appropriate to capture and represent a human centric system considering 

human reactive behavior by developing two separate models [17]. The authors concluded that 

both M&S methods could provide very similar results for one MoP (“waiting time”) with minor 

differences (AB scores slightly better). Analyzing the measures of central tendency of these 

human reactive behavior experiments revealed some advantages and disadvantages between AB 

and DE approaches. For example, by observing the variability between the two methods, the DE 

model could not reproduce the actual variability exhibited in the observed system as the AB 

model could. Although, AB approach could score slightly more accurate results, DE is more 

frequently used approach especially in this particular industry. In addition, Majid et al. noticed 

that the design, the development and the V&V of such models seems to require less effort and 

time with DE approach rather than with AB. On the other hand, Majid et al. underlined that DE 

may face limitations (i.e. it cannot capture proactive human centric behavior that AB can) that 

usually are considered as constraints or assumptions during the design, development and V&V 

phase. In contrast, AB M&S requires more attention during the design and development phases 
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[17]. The users that apply AB M&S must pay attention to both micro and macro levels of a 

system. This is important because if one focuses only in modeling individual entities and ignores 

the macro behavior of a system, a macro level validation may be impossible to achieve [17].  

 Dubiel, and Tsimhoni proposed another type of hybrid simulation that deploys AB and 

DE M&S in order to capture realistic human traveling in a theme park [18]. The visitors of the 

theme park were modeled as intelligent agents with “human-like” behavior and abilities such as: 

visual memory, perception of the environment (visual ability), navigation to objectives (ie, I 

want to go to rollercoaster X) and meta-knowledge ability (meaning that agents know when to 

ask information or use maps to follow directions) [18]. The AB model was integrated into a DE 

queuing theory model. This AB-DE deployment process allows agents to make real time 

decisions such as to avoid obstacles, or change route direction because of their hybrid modeling 

mobility and existence as “entity/agents”. 

 Finally, Uhrmacher and Gugler developed JAMES, which allows deployment of DE-AB 

M&S in a java based environment [114]. The authors presented how JAMES can execute a 

moderately optimistic strategy which separates simulation and external deliberation into different 

threads, by allowing simulation and deliberation to proceed in parallel, by utilizing DE 

simulation events as points of synchronization. 

 2.7.4 Meta-interpretive review of literature of comparisons, existing combinations, 

and/or integrations among DE, SD, and AB M&S. Existing frameworks that combine or 

integrate DE, SD, and AB M&S approaches have been applied across multidisciplinary research 

domains such as: task analysis [115], energy systems [116], supply chain management and 

logistics [117], healthcare organizations [21] and System of Systems (SoS) [20]. In this section, 
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we review a selected list of multi-method studies that helped in the identification of criteria for 

the M&S framework.  

 Lynch et al. proposed a Multi Paradigm Modeling Framework (MPMF) for M&S of 

problems whose specification are constituted by stipulatory obligations that allow for a set of 

alternative questions to be handled from a problem situation apart from the use of only one 

modeling approach [22]. The MPMF framework recognizes macro, meso, and micro levels of 

resolution from what is noted and assumed in regards to the problem situation [22]. Lynch et al. 

mapped the different levels of granularity separately from different modeling approaches and 

combined them to provide an inclusive model for the spread of obesity and equivalent simulation 

of the problem situation [22]. Lynch et al. conclude that the MPMF framework could manage 

interactions of elements at different resolution levels while only one modeling approach could 

not. However, they recommend applying the minimum number of possible M&S approaches in 

order to best answer the desired modeling questions. Lynch et al. mention that when only one 

modeling approach is adequate to answer the question, then the framework must be skipped [22]. 

In Table 3 we summarize the recommendations of Lynch et al. in regards to the appropriateness 

of each method. 

 

Table 3. Criteria for appropriate M&S selection obtained by Lynch et al. [22] 

Criteria SD DE AB 

Level of Resolution 

High-Level focus on 

system level changes 

 

Low resolution and 

sometimes also high 

resolution 

In depth at any level 

(Low to High-Level) 
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Answering Modeling 

questions and problem 

objectives that need 

continuous time 

Time is evolved 

based on important 

events 

 

Agent based can 

contain both 

continuous and 

discrete elements 

Interactions that focus 

on 

cause and effect 

relationships 

Event driven 

changes 

Object to object or 

object to environment 

Type of entities 

homogenized at the 

level of the entire 

population 

 

Independent and 

identical entities or 

groups (batches) 

 

Individual level 

Type of Data Equation based 

empirical data 

 

Represent theory or 

rules and empirical 

data 

 

  

Prukner and German [118] deploy the three M&S approaches together in order to explore 

alternative scenarios of electricity generation systems and detect risks and miscalculations under 

politico-economic constraints. Prukner and German [118] applied DE and AB for discrete events 

and state changes of a gas power plant and SD to capture continuously changing processes such 

as the electricity demand, the charging or discharging of electricity storages, and other dynamic 

variables [118]. 
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 Djanatliev and German [21] deployed the three M&S methods together, in order to 

provide decision-support of health technology assessments. Djanatliev and German recommend 

SD for macroscopic level of abstraction to capture population and disease dynamics following 

top-down modeling approach, and AB with DE in a common hospital environment. DE applied 

for meso levels of abstraction, to capture workflow aspects by following a process-oriented 

modeling approach, and AB applied for micro levels of abstraction to capture more details of 

interactions on individual level by following a bottom-up approach [21].  

 Kremers et al. also combined the three M&S methods to create a flexible multi-method 

simulation model for the output of a wind power system [119]. This multi-method simulation 

model deploys continuous models for the wind speed generation and the power of the turbines, 

DE for capturing the changing mean speeds per hour and the states of the turbines, and AB for 

capturing the failure behavior of a heterogeneous set of turbines [119]. The combination of 

multiple M&S methods allowed Kremers et al. to develop a more realistic and flexible model 

that can benefit from the different advantages of each approach [119].  

 Borshchev and Filippov present differences and similarities of the three M&S methods 

[55]. For in-depth understanding they place the three M&S approaches based on the level of 

abstraction and based on the different applications that each M&S method would be more 

appropriate [55], [6]. DE is placed on meso to micro level (more details) of abstraction, SD on 

meso to macro level (less details) of abstraction and AB on any level of abstraction. In general, 

the three M&S methods have fundamental similarities in their main involved stages of 

implementing a simulation study such as problem definition and objectives, conceptual 

modeling, CG development, V&V, learning, and understanding of the results [6], [93]. 
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Borshchev and Filippov also discuss the correspondence between DE, SD, and AB models and 

presented in detail how an AB model can be developed from an existing SD or DE model and 

how it can be advanced to represent and capture CS behavior, dependencies, and interactions 

[55]. Furthermore, in the literature, Borshchev mentions that the number of 3M&S architectures 

is endless. Therefore, he describes some of the most commonly used architectures for 

combination and/or integration among DE, SD, and AB models [6] as follows: 

 Agents within a SD environment 

 Agents interact with DE process model 

 Agents that for a short time period behave as entities in a DE process model 

  A DE process model connected to a SD model 

 A DE process model within Agents 

 SD within agents 

Borschev recommends that one can deploy 3M&S to develop a simple, complex, flat, 

hierarchical, replicated, static or dynamically changing architecture, but the appropriate structure 

selection should be based on the fundamental criterion of the “naturalness” of the model [6]. 

Subsequently, when a user combines and/or integrates M&S approaches, the produced model 

must be clear and easy to interpret and explain [6].  

 Furthermore, Lonz and Jost conducted a comparison study among all the M&S 

approaches [120]. This study reveals differences and similarities among the three M&S methods 

in regards to the purpose, the object, and the methodology of a 3M&S study, considering also 

other system’s perspectives, important assumptions, and technical differences [120]. The study 

concludes with some criteria for selecting adequate M&S methods. AB approach is 
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recommended as more suitable for strategic CS problems and in situations that involve 

interacting entities, spatial distributions, and heterogeneity. SD is recommended for strategic CS 

problems, macroscopic policy development, and aggregated perspectives, as well as in situations 

where feedbacks and nonlinearities take place. Finally, DE M&S is suggested as more 

appropriate for solving Logistic problems and quantitative optimization. DE is better applied in 

situations where stochastic variations and linear relationships take place within a CS. 

 Furthermore, Sumari et al. compared the three M&S approaches using taxonomy to 

detect features, advantages, and disadvantages [121]. As it concerns SD, Sumari et al. conclude 

that it is better applied to gain in-depth understanding and learning of CS behavior in long term 

aspects. Additionally, they conclude that SD focuses more on the flow and dynamic feedback 

behavior of a specific CS scenario and it is usually applied in policy making at strategic levels 

[121]. An advantage of SD compared to DE and AB is the ability to reveal relevant factors that 

cause impacts within a CS. SD as well as AB and DE models can be used to test and adjust 

alternative scenarios to gain different results and knowledge. One of the weak points of SD is 

that complexity increases linearly with the size of the CS model. Similarly, in DE M&S the 

complexity increases exponentially based on the size of the CS model and in AB complexity 

increases as more details are added in the model. Sumari et al. [121] conclude that DE is more 

suitable for queuing systems or to assess and compare alternative scenarios and is described as a 

process-centric approach, usually applied to assist in decision and prediction making in 

operational and tactical organizational levels. As far as the AB approach is concerned, the 

authors recommended that it is more suitable for capturing emergent phenomena and identifying 

interactions and operations of agents capable of adding more details and realism. A strong point 
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of AB is its flexibility and appropriateness to study emergency and behavioral models, but it 

requires strong programming and computational skills.  

 In the field of supply chain modeling, Owen et al. [122] proposed another framework for 

selecting among DE, SD, and AB based on matching characteristics of each technique to capture 

specific simulation aspects based on the problem perspective such as: modeling elements, 

individual entities, time treatment, structure of system, spatial relationships, delays, feedback, 

decision-making, randomness and uncertainty, state changes, human agents, adaptation, and 

mathematical formulation. 

  In the same context of supply chain, another comparison among DE, SD, and AB is 

conducted by Behadani [123], who evaluated the three methodologies for modeling supply 

chains as complex socio-technical systems.  

 A meta-interpretative review between differences and similarities among the three M&S 

methods has been conducted. Different technical and philosophical aspects of each method has 

been discussed in the way they illustrate and capture CS problems and systems perspectives, as 

well as the difference in the way they have been combined, integrated, and applied.  

 In Table 4, Table 5, and Table 6, we attempt to summarize the most important features 

and differences among the three main M&S methods (DE, SD, and AB), by establishing criteria 

based on three perspectives: methodology (Table 4), problem (Table 6), and system (Table 5).  
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Table 4. Methodology Perspective Criteria for DE, SD, and AB M&S  

Methodology Perspective 

Criteria 

   

Modeling Approach Process-Centric Top-Down Bottom-Up 

Modeling 

Philosophy 

Randomness related 

to interconnected 

variables leads to 

system behavior 

Causal closed 

structures causes and 

defines system’s 

behavior 

Global behavior 

emerges out of 

concurrent agent 

behaviors 

Object Entity Feedback Agent 

Object characteristic Passive Indistinct Active 

Time Discrete Continuous Discrete 

Space Discrete 2D/3D Continuous 2D/3D 
Discrete/Continuous 

2D/3D 

Relationships 
Non-Linear/Linear 

Focus more on Linear 

Non-Linear/Linear 

Focus more on non-

linear 

Non-Linear/Linear 

Focus more on non-

linear 

Feedback 
Mostly Implicit 

Flow-Charts 

Mostly Explicit 

Causal Loops 

Mostly Implicit 

State-Charts 
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Methodology Perspective 

Criteria 

   

Randomness 
Mostly stochastic 

High Importance 

Mostly deterministic 

Low Importance 

Mostly Stochastic 

High-Low Importance 

Predictive Level Scores High Scores Lower Scores Higher 

Numerical Data Highly dependent 
Not-Highly 

dependent 
Highly dependent 

Input Data Sources 
Historical, Empirical, 

Numerical Data 

Historical, Subjective 

Judgmental data 

Historical, Empirical, 

Numerical data 

Output Data 

Analysis 

Strong Statistical 

Knowledge Required 

No Strong Statistical 

Knowledge Required 

(Easier Interpretation) 

Strong Statistical 

Knowledge Required 

(Challenging) 
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Table 5. System Perspective Criteria of DE, SD, and AB M&S 

System Perspective 

Criteria 

   

System Focus Narrow, Analytic View 
Broad, Holistic View 

Analysis of structure 

Narrow/Broad View 

Analysis of Rules 

Abstraction Level Meso -Micro Level Meso-Macro Level 

Any Level of 

Abstraction 

(Micro-Meso-Macro) 

System Process Discrete Continuous Discrete/Continuous 

Control of the 

system process flow 
Holding Rates 

Transaction 

Mechanisms 

System 

Representation 

Sequence of Discrete 

Events, Activities, 

dynamic events 

Continuous flows and 

Stocks, 

Environmental 

dynamic parameters 

Individual agents, 

clusters or networks 

of Agents, state 

Complexity Detail Dynamic Detail/Dynamic 

Complex System 

Understanding 

Based on Randomness 

of interconnected 

events 

Based on parameter 

estimation of dynamic 

causal-effects 

relationships 

Based on overall 

behavior of 

interdependencies 

Visualization Advanced Limited Advanced 
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System Perspective 

Criteria 

   

Interaction with 

External 

Environment 

Mostly Isolated 

No interactions 

Mostly Accessible 

cross boundary 

interactions 

Mostly Accessible 

Periodic boundary 

interactions 

 

Table 6. Problem Perspective Criteria of DE, SD, and AB M&S 

Problem Perspective 

Criteria 

   

Problem Scope 

Level 
Operational –Tactical Strategic Any Level 

Situation Queues Flows Rules 

Problem Resolution Detailed Level Aggregated Level 

More detailed 

Level/Aggregated 

Level 

Level of 

Randomness 
High Low Low-High 

Level of Accuracy 
Precise Prediction 

Meso-Micro 

Not restricted to 

prediction 

Meso-Macro 

Precise Prediction 

Micro (with more 

details)-Meso-Macro 
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Problem Perspective 

Criteria 

   

Data Type Quantitative Data Qualitative Data Quantitative/Qualitative 

Organizational 

Decision Support 

Mostly used for: 

Optimization, 

Prediction, 

Bottlenecks, 

Comparison of 

Alternatives 

Mostly used for: 

Policy-Making, 

Learning & 

Understanding Reveal 

of dynamically factors 

and cause and effect 

relationships 

Mostly used for: 

Optimization, 

Understanding of 

emergent 

phenomena/situations, 

Learning and adapting 

mechanisms, Reactive 

and proactive 

behaviors. 

 

 To summarize, in this section, we provided a review of literature of existing frameworks 

and studies that compare, combine, and/or integrate the three M&S approaches. We summarized 

the most important features, similarities and differences among the three M&S approaches based 

on system, problem and methodology perspectives. In the next sections, we summarize 

limitations of existing hybrid frameworks and research gaps that we identified in the review of 

the literature. 
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2.8 Limitations of existing frameworks  

 Several hybrid M&S approaches, frameworks, and studies that compare, combine, and/or 

integrate DE, SD, and AB models have been described. The author of this dissertation noticed 

that there is limited guidance on when, why, and how to combine, and/or integrate DE, SD, and 

AB approaches, as well as in the way the models interact and formulate relationships to 

exchange information. The existing hybrid frameworks focus more on how to deal with specific 

problems rather than on how to provide a broader way of applicability to various problem 

situations. For example, Venkateswaran et al. [9] mentions that aggregate production released 

orders from SD can be passed down to DE as operational performance indicators such as work in 

process, lead time, throughput etc which can pass from DE to SD. As it can be observed, the 

language used by Venkateswaran et al. is very domain specific to hierarchical production 

planning and it cannot be applied to describe other CS or different problem scenarios.  

Furthermore, in the review of the literature, authors have applied various hybrid 

simulation studies with respect to interaction and information exchange; however, they do not 

provide guidelines with regards to the relationships that can be formed between the interaction 

points. For instance, Chachal et al. [11] proposed a generic conceptual framework for hybrid 

simulation in healthcare, but is limited to only a combination between DE and SD and does not 

include AB. In this dissertation we argue with frameworks [24] that suggest starting the 

development and implementation of the models before the identification of the interaction points 

and then to map and formulate their interaction relationships. In contrast, the 3M&S framework 

suggests first to conceptualize the identification of interaction points, justify and define the types 
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of relationships for information exchange of the proposed models and then to develop and 

implement the actual models. The reason for following this order is that the author of this 

dissertation found more practical to justify and conceptualize first how and for what objective the 

models will be connected and then to start the implementation of them.  

 In addition, existing hybrid frameworks such as those provided by Venkateswaran et al. 

[9] and Helal et al. [124] are forced by the author‘s particular problem solution assuming a 

problem-centric approach. Their approach starts by defining a problem which is assumed to 

require a hybrid solution and then they analyze technical aspects of interactions between SD and 

DE, rather than providing instructions to identify when and why this particular problem indeed 

requires multi-method modeling and simulation, as well as what and how is the information 

exchanged among SD, DE and AB models. On the other hand, Mingers and Brocklesby [19] 

argues that theoretical framework should be established prior to the investigation of the logical 

possibilities to technically combine M&S approaches.  

Existing hybrid simulation studies such as Venkateswaran et al. [9], Helal et al. [124], 

Martin and Raffo [99], Alvanchi et al. [125], Matsopoulos [111], Lektauers [107], Shengnan 

[126], Schieritz [68], Größler et al. [70], focus more on addressing the technical interoperability 

and synchronization mechanisms between the models rather than in a generic guidance that 

could aid in different problem situation of CS. None of the existing frameworks have attempted 

to provide a generic guideline and methodology on CS aspects including all three M&S methods 

(DE.SD.AB). Therefore, another limitation that was detected compared to other existing 

frameworks [9], [124] is that they have been developed based on the assumption that their 

problem requires combination/integration of DE, SD, and AB deployment.  
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 There is no methodology or guidance to identify selection criteria based on problem, 

system and methodology perspectives, as well as to justify whether, or not, a problem requires 

multi-method modeling and simulation among DE, SD, and AB. Moreover, the literature of the 

multi-method modeling and simulation architectures and approaches does not clearly illustrate 

the context of how information is exchanged among DE, SD, and AB models and what are the 

relationships between the interaction points. Therefore, there is a need for a generic 3M&S 

(DE.SD.AB) framework for CS capable of providing generic guideline on the following aspects: 

 Identify criteria for aiding in selection among DE, SD, and AB approaches 

 Identify and justify why and when a problem requires multi-method modeling and 

simulation (3M&S) 

 Identify how the DE, SD, and AB models interact with each other in order to exchange 

information (generic types of relationships for the information exchange) 

2.9 Research Gap Identified  

 It has been argued that the assignment to research the rational possibilities for combining 

and/or integrating approaches first requires the establishment of a relevant conceptual framework 

and then perform results [19]. However, from the reported literature it has been observed that 

this has followed an alternative order. 

 Conceptual frameworks are necessary to offer useful guidance for combining and/or 

integrating M&S methods [36], [37]. The existing conceptual frameworks have been limited 

between the combination and/or integration of two methods without providing guidance on 
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when, why, and how to deploy DE, SD, and AB M&S to form 3M&S models to solve CS 

problems. More specifically: 

 In the literature, it has been argued that the use of hybrid simulation can be justified if 

there are strong interactions between elements represented between these two M&S 

methods (DE, SD), but not including AB.  

 The literature did not provide multi-method modeling and simulation framework or 

guideline for integration or combination of the three M&S methods (DE, SD, and AB). 

 In this research we investigated the interactions among elements represented by the three 

M&S approaches by developing a list of generic criteria based on the different 

perspectives of each method (system, problem and methodology).  

 The 3M&S Framework is an attempt to fill these gaps and the proposed methodology 

(Chapter 3) provides a guideline to achieve this. The 3M&S framework aims to offer a guideline 

to combine, and/or integrate the three main M&S approaches (DE, SD, and AB), along with the 

capability to provide instructions for integrated deployment or combination of DE, SD, and AB 

M&S to form 3M&S models.  

The 3M&S framework should also be able to provide guidelines on identifying that the 

problem actually requires 3M&S. The 3M&S framework is not restricted to the M&S process of 

AB, SD, and DE approaches neither suggests that all three of these approaches must always be 

deployed simultaneously for a simulation implementation.  



  

61 

 

CHAPTER 3: OVERVIEW OF 3M&S FRAMEWORK  

 The purpose of this chapter is to provide an overview of a generic conceptual framework, 

termed 3M&S framework [27], for applying Multi-Method Modeling and Simulation (3M&S). 

The framework offers useful guidance for combining and/or integrating different M&S methods.   

The term “multi-method” is used to refer to all the possible architectures that can be constructed 

with more than two M&S methods [6], [17], [25]. Furthermore, we use the term 3M&S to refer 

to a model implemented following the 3M&S framework.  

 The two major contributions of this section include: (1) a methodology and a framework 

that guide the user through the development of 3M&S model(s) to solve CS problems and (2) an 

algorithm that recommends appropriate M&S method(s) based on the user selected criteria for 

user defined objective(s). 

3.1 Overview of 3M&S Framework 

 This section provides a brief overview of the conceptual 3M&S framework. The Unified 

Modeling Language (UML) was used to describe different levels of abstraction of the 

framework, modeling concepts and constructs to illustrate the actions that a user performs in 

order to implement a goal, while interacting with a CS [127]. The framework is examined from 

both a high-level view as well as from an internal view. The latter approach offers a guideline of 

the 3M&S architecture, an understanding of different model components and how they interact.  

Figure 4 depicts a high-level activity diagram of the 3M&S framework divided in four main 

phases.  
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Figure 4. High-Level view of 3M&S Framework. 

 

 Phase 1 includes the conceptual modeling, where the user has to define the problem, 

decompose objectives to sub-objectives, define the scope, the constraints and select M&S 

method(s). Additionally, we examine Q1, Q2 and Q3. Phase 2 describes the development process 

of the actual model construction. This phase includes the development activities of the produced 

algorithms from Phase 1, as well as calibration of the Computer Generated (CG) model(s). Phase 

3 consists of the Verification and Validation (V&V) process. This phase takes place after the 

execution of the simulation and before the documentation of results to ensure credibility of the 

simulation study and the produced results. The relationship between Phase 2 and 3 is iterative 

and frequent updates to the model may occur. Finally, Phase 4 includes the preparation of the 

simulation report, the documentation of the results as well as examination of future 

improvements.  
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 This chapter describes Phase 1 in detail, while Chapter 4 provides a further description of 

phases 2, 3 and 4 and evaluates the 3M&S framework with real case studies.  

3.2 Phase 1: Conceptual Modeling of 3M&S 

 This section describes the conceptual modeling steps of the 3M&S framework, which is 

composed of the activities illustrated in Figure 5. The framework incorporates steps from typical 

M&S methodologies followed for the implementation of a single type M&S method [1], [49] as 

well as for combining DE and SD models [24]. The 3M&S framework also includes the 

following unique elements: steps for integration of AB models, an algorithm that helps the user 

select appropriate M&S methods, steps for the identification of interaction points and types of 

relationships among interaction points for all three methods. 
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Figure 5. Activity diagram of internal view of 3M&S Framework 



  

65 

 

 3.2.1 Define Problem. The first step the user needs to perform is to explicitly define the 

main problem and its surrounding environment. Appropriate time and effort must be invested on 

the understanding of the problem and on clearly defining the problem's objectives and sub-

objectives before starting to seek solutions. 

 3.2.2 Identify objective(s) “O” and decompose them into sub-objectives "oi". The 

next step is to identify the objectives of the simulation study. This is a critical stage, where the 

user is called to follow the third principle of modeling, known as “Divide and conquer” [128] or 

as decomposition of the main purpose [129]. According to Pidd’s modeling principle [128], 

[130] the user has to decompose the overall objective of the study into sub-objectives. The 

decomposition of the overall objective into smaller objectives reduces the complexity of the 

modeling process, as well as the V&V process [131], [132], [49]. In addition, it assists in 

selecting the appropriate M&S method within a CS context that may require 3M&S approach to 

analysis.  

 The main concept of decomposition to sub-objectives is to examine the existence of 

possible fluctuating variables that have a significant impact on the overall objective [131], [12]. 

Then the user follows three parallel activities (Figure 6): “Identify Assumptions & Constraints”, 

“Identify M&S Scope”, and “Select M&S Method(s)”. If the overall objective “O” cannot be 

decomposed to smaller sub-objectives “oi”, the user continues with the three parallel activities. 

Otherwise, the user decomposes “O” into “oi” sub-objectives and conducts the three parallel 

activities for each “oi”. The objectives and sub-objective are defined prior to the selection of 

M&S method or prior to possible revisions of current deployed simulations [131], [132]. 
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Figure 6. High-Level view of Phase 1 of 3M&S framework. 

 

 As we mentioned earlier, identification of constraints and assumptions, M&S scope and 

M&S method should be conducted concurrently. 

 3.2.2.1 Identify constraints and assumptions. Once the user finishes with the 

decomposition of the main objective into sub- objectives, he/she is directed to the identification 

of the assumptions and constraints under which the 3M&S study is performed. The defined 

assumptions and constraints play an essential role for the successful V&V of the simulation 

model. 

  Constraints may include environmental conditions that can restrict the possibilities of 

particular actions occurrence, or specific attributes that may need to be satisfied for the execution 

of specific actions [49]. If some of the objectives cannot be adequately achieved and/or 

constraints are violated while developing the scope, then the expectations of the study can be 

reduced and/or constraints may need to be turned off. Therefore, we strongly recommend that the 

user considers frequent feedback from the problem owners in regards to the modeling 

assumptions and rational of the model, timeline of the 3M&S study, access to applicable data, 

cost constraints and other constrains associated with activities that depend on time, available 

resources and/or conditions. 
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 3.2.2.2 Identify M&S scope. The identification of the M&S scope is very significant as it 

builds a strong bridge of communication between the problem owner and the solver 

(user/modeler/simulationist/ analyst) and it provides all the necessary information, clarifications 

and expectations of both parties.  

In addition, the M&S scope is what helps achieve the individual objectives without 

violating the given constrains and assumptions. Therefore, we need to clearly define the aspects 

that will be considered in the simulation for each sub-objective. Those aspects are detailed 

described in the following sub-sections (3.2.2.1-3.2.2.5). Figure 7 presents the activity “Identify 

Scope”, which is composed of five parallel activities that the user has to define for each of the 

DE, SD, and AB model(s).  

 

Figure 7. Identify scope activity 

 

 3.2.2.2.1 Define content and form of results. The activity of defining the content and 

form of results may vary from low (basic statistics) to high detail. For example, if an inclusive 

animation or very detailed statistics are expected for the simulation study, the time and effort 

engaged to implement a project may be considerably affected [49].  
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 3.2.2.2.2 Define boundaries. The activity of defining the beginning, ending, upper, and 

lower boundaries is depicted in Figure 8. The beginning boundary specifies where the simulated 

model starts and it is associated with the inputs which activate the model to begin. The ending 

boundary specifies where the simulation terminates and it is associated with the outputs of the 

simulated model. The upper boundary specifies where and when other inputs enter the model 

during the simulation execution time. The lower boundary specifies what outputs leave the 

model during the simulation run time.  

 

Figure 8. The four boundaries (Beginning, Ending, Upper and Lower) 

 

 3.2.2.2.3 Define level of details. The level of detail is defined by the level of precision 

that is needed in the output and it is associated with factors such as: detail and dynamic 

complexity, size of the model, as well as time to develop and validate the model [7], [33], [49]. 

Finding the appropriate level of detail is also significant in order to meet the objectives of the 

simulation study. If the user considers too many details, the M&S development as well as the 

V&V of the model requires more effort and time. On the other hand, by considering few details 

and excluding important factors may result in an unrealistic and insufficient model. Therefore, 
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the user needs to define appropriate level of detail by considering an adequate amount of detail in 

order to meet the given objectives of a simulation study. Figure 9 depicts how the level of detail 

affects the M&S development time. The more detail one adds, the more the M&S development 

time increases.  

 

Figure 9. Impact of level of detail on M&S development time 

 

 3.2.2.2.4 Define degree of accuracy. The degree of accuracy corresponds to the validity 

of data being employed. At this point, the user collects, prepares and validates the input data 

before starts development (input data analysis). Data collected for M&S consist of two types: 

numeric and logic [49]. Numeric data define quantitative information according to the elements 

being modeled such as costs, batch sizes, inter-arrival times, waiting times, and service times. 

Logic data describe the work-flow of a model, and capture information such as: model objects 

and their behaviors, policy rules, prioritization of processes, assignment of resources.  

 3.2.2.2.5 Define type of experimentation. Finally, type of experimentation specifies the 

type of analysis that will be conducted [49]. For example, the user may conduct the analysis of: 

capacity, sensitivity, decision response, comparison, optimization, visualization. 
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 3.2.2.3 Selection of M&S method(s). In this activity, the user is prompted to select the 

M&S method(s) that best satisfy the decomposed objectives oi. At this point, the framework aims 

to guide the user to select among the j most appropriate M&S method(s) based on the provided 

user input, where j = 1, 2, 3. This activity consists of a set of criteria ℂ for each M&S method.  

 Definition 1: A criterion ci ∈ℂ is a reference point for the selection among the three M&S 

methods. Each criterion may be satisfied by up to three relevant Variables of Interest (VoI ij). 

Each criterion is defined as in (1). 

(1) 

 Definition 2: A Variable of Interest (VoIij) represents the value associated with a criterion 

ci and a j M&S method. Each VoI is defined as in (2). 

 

 (2) 

 

 Definition 3: A weight wij is a numerical value assigned to a VoIij for a selected criterion 

ci and a j M&S method. The value of a weight can range from 0 to 10.  
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In particular, the method selection is based on (3), where: 

(3) 

 

1. The user selects k number of criteria ci ∈ ℂ that best fit the problem, system and 

methodology perspectives of a particular objective oi. The list of criteria can be found in 

Tables 4, 5, and 6 in Chapter 2. 

2. The user is called to assign numerical weights wij for each VoIij of k selected criteria ci. 

This needs to be done in order to quantify the relative importance of each VoIij and 

provide a rational basis for the decisions being made.  

3. The additive functions are ranked from best to worst.  

4. The framework returns the higher-scored method for each sub-objective oi based on (3). 

 An example of how the user interacts with a 3M&S framework for the selected criteria c i 

of an individual objective “oi” is described by the UML sequence diagram of Figure 10.  
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Figure 10. Selection of M&S Method 
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 Once the M&S methods are selected for each sub-objective, if all “oi” are described by a 

single type M&S method, then there is no need to apply multi-method modeling and simulation 

(3M&S is not required) and the framework continues with Phases 2, 3 and 4. On the other hand, 

if the sub-objectives are satisfied by different M&S methods, then 3M&S is required and the user 

is called to identify the interaction points for all “oi”. In this case, investigation of Q.1 (”When 

and Why 3M&S is required?”) takes place, while Q.2 (“What are the interaction points?”) and 

Q.3 (“How AB, DE and SD formulate relationships between interaction points to exchange 

information?”) will be investigated following the activities of sections 3.3 and 3.4. In contrast to 

Chahal’s hybrid framework [24], which suggests starting the development of the models before 

the identification of the interaction points and the mapping of their relationships, we first 

conceptualize the identification of interaction points and the type of information exchange 

between inputs/outputs of the proposed models and then we start developing the actual models. 

The reason for altering this order is that we found more useful to justify and conceptualize first 

how the models are connected and then implement them.  

 3.2.3 Identify Interaction Points. We define the data of I/O information exchange 

among the different models as "interaction points". The mapping among DE, SD, and AB takes 

place prior to the development of a 3M&S model (answering Q.2). The user is called to identify 

the interaction points, which consist of input and output data of DE, SD, and AB M&S models 

and their corresponding variables which are properly “captured by” or “influenced by” M&S 

models (Figure 11). The same process applies to models that are either hybrid (combination of 

two methods) or deployment of three methods. 
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Figure 11. Identification of interaction points among DE, SD, and AB models 

  

 3.2.4 Formulate Relationships among DE, SD, and AB interaction points. In this 

activity, the user has to identify the type of interaction for each pair of mapped interaction points 

(answering Q.3). In order to identify how AB, DE and SD objectives-models interact with each 

other to exchange information, all the relationships among pair of interaction points need be well 

defined. Table 7 summarizes the different types of interactive relationships that can be formed 

between DE, SD, and AB models. 

 We conducted a review of related literature and an evaluation (theoretical and empirical) 

of a hybrid framework that is presented by Chahal for combining DE with SD [24]. Our review 

showed that frameworks must provide a guideline to potential users in regards to the 

relationships between the interaction points that exchange information.  

 Chahal identified and proposed three generic types of relationships that can be formed 

between DE and SD interaction points: “direct replacement of variables”, 
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“aggregation/disaggregation” and “causal” relationships [24]. We further expanded the 

relationships between the interaction points of information exchange to include AB because the 

number of relationships increases as the AB is included. 

 More specifically, AB interactions can involve state changes, inject, adding or removing 

objects or entities, transfer entities, control flow statements, trigger event and state chart control 

relationships. Therefore we define two main categories and their subcategories to describe 

relationships of interaction points that involve exchange of information among DE, SD, and AB. 

These two categories consist of the value assignment relationships and impact statements 

relationships. 

 As Value Assignment Relationships we define the relationships which include 

mathematical formulations and replacement of values between equivalent variables. This 

category consists of the tree subcategories adapted by Chahal [24].  

o The “direct replacement of values of variables” corresponds to interaction points 

that represent equivalent variables of information exchange in both models.  

o The “aggregation/disaggregation” corresponds to interaction points that seize 

values of information exchange that need to be aggregated (accumulated) or 

disaggregated from the one model to equivalent values of the other model. 

o “Causal relationships” corresponds to interaction points that are described by 

explicitly mathematical relationships.  

 As Impact Statements relationships we define relationships that cannot be expressed 

using value assignment relationships, but they are related to more abstract concepts. Each 
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of the impact statements relationships may contain one or more, or combination of value 

assignment relationships. Such impact statements relationships can be: 

o  “Add/Remove/Inject/Transfer agents or entities” 

o “Control Flow relationships” which corresponds to “if”, “for”, “while” statements 

and define the flow of a particular logic.  

o “Trigger Event relationships” which can be of different type such as: timeout, 

message, condition, rate, and arrival. 

o “State chart control” corresponds to the state that may control the flow among two 

models, update variables from other models or trigger any other type of 

relationship. 

 Table 7 describes the two main relationship categories, the different types of relationships 

as well as an expression example for each type. 

 

Table 7. Types of relationships for interaction points 

Category 

Types of 

relationship 

Expressions Examples 

A. Value 

Assignment 

A.1 Direct 

replacement 

Value of AB variable = 

Value of SD or DE 

variable and vice versa of 

or all possible 

combinations. 

value of SD variable 

“number_of_not_treated_pati

ents_per_day”= value of DE 

variable 

“number_of_not_treated_pati

ents” (Figure 13) 

A.2 

Aggregation/ 

disaggregati

on 

1. VarAB = 

Aggregated 

(equivalent 

variables or 

the SD rate of 

“arrivals_per_day” is 

disaggregated and passed to 

the DE entry point variable 
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Category 

Types of 

relationship 

Expressions Examples 

vectors in SD or 

DE) 

2. VarAB = 

Diseggregated 

(equivalent 

variables or 

vectors in SD or 

DE) 

The same expressions 

apply for all pair 

combinations 

in the form of inter-arrival 

time (Figure 14) 

A.3 Causal 

relationships 

1. VarAB= Math_ 

Function(VarDE or 

SD) 

The same expressions 

apply for all pair 

combinations 

LossDueToLongWaitingTim

e” 

=“number_of_not_treated_pa

tents_per_day” * 

“lost_profit_per_patient_not

_treated” (Figure 17) 

 

B. Impact 

Statements 

B.1 

Add/Remove/

inject agents 

or entities 

1. objectDE.inject(ob

jectAB); 

2. objectAB.remove_

objects(objectDE/S

D); 

3. objectAB.add_obje

cts(objectDE/SD); 

The same expressions 

apply for all pair 

combinations 

 the DE model adds 

entities to the AB 

population (patients) 

(Figure 15) 

 the AB model removes 

entities from the DE 

process (Figure 16) 

B.2 Control 

Flow 
If, for, while statements 

the interaction between AB 

and DE is controlled by an if 

statement (Figure 16) 

B.3 Trigger 

Event 

The trigger type of the 

event can be: message, 

timeout, condition, rate, 

Recurring event of timeout 

trigger type called 

“Update_not_treated_numbe
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Category 

Types of 

relationship 

Expressions Examples 

and arrival. 

 

r “(Figure 13) 

B.4 

Statechart 

control 

(combined 

with any of 

the previous 

types of 

relationship) 

1. VarDE or SD = 

function 

(statechart.isState

Active( stateAB) ) 

the AB state-chart state 

“LeaveClinic” is activated 

and executes a function 

(Figure 17) 

 

 In order to provide a better understanding of how these relationships work in practice we 

developed a healthcare multi-method modeling and simulation example using AnyLogic [66] 

simulation software. In this example, we have combined the three M&S methods for a clinic in 

which patients arrive and wait to receive treatment. If the waiting time is greater than a specific 

threshold (i.e two hours) then the patient leaves the clinic and tries another healthcare provider. 

In this example the DE model captures the patient flow of the treatment process, where a patient 

enters the clinic, waits in the queue for his/her turn to receive treatment or not and then exits the 

clinic. The AB model captures the decision-making logic of each patient to wait for treatment or 

leave the clinic, and the SD model captures cost and profitability loss for those patients that 

abandoned the clinic due to long waiting times. Figure 12 illustrates the deployment of all the 

three M&S methods together. 
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Figure 12. Example that combines different types of relationships 

 

In Figure 13 we illustrate two types of relationship for interaction between DE and SD 

models. During the simulation run time the DE model triggers an event of a timeout trigger type 

(B.3 relationship type), which, in turn, directly replaces (A.1 relationship type) the value of SD 

variable “number_of_not_treated_patients_per_day” with its equivalent variable that is 

calculated by the DE model (“number_of_not_treated_patients”). In both DE and SD models the 
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related interaction points represent variables whose values are equivalent to each other. 

 

Figure 13. Combination of A.1 and B.3 type of relationships during SD-DE interaction 

 

In Figure 14 we illustrate a disaggregated type of relationship (A.2 type) for interaction between 

SD and DE models. During the simulation run time the SD rate of “arrivals_per_day” is 

disaggregated and passed to the DE entry point variable in the form of inter-arrival time. This 

type of relationship is type of disaggregation because the arrivals per day break down to smaller 

time intervals between each arrival. 

 

Figure 14. A.2 Type of relationship during SD-DE interaction 
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 In Figure 15 we illustrate an “add entity type” (B.1 type) of relationship for interaction 

between AB and DE models. During the simulation run time the DE model adds entities to the 

AB population (patients). 

 

Figure 15. B.1 Type of relationship during AB-DE interaction 

 

 In figure 16 we illustrate two types of relationship for interaction between AB and DE 

models. During the simulation run time the AB Control flow (B.2 type) changes the process flow 

for the corresponding entity. More specifically the AB transition removes (B.1 type) the 

corresponding entities which can be either in the “WaitingInLine” or in the 

“Normal__Treatment” stage of the DE process and then transfers it into the “enter” object to exit 

the clinic. 

 

Figure 16. Combination of B.1 and B.2 type of relationships during AB-DE interaction 
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 In Figure 17 we illustrate two types of relationship for interaction between AB and SD 

models. During the simulation run time the SD variable “LossDueToLongWaitingTime” is 

controlled (B.4 type) by the AB state of “LeaveClinic”. When the AB state-chart state 

“LeaveClinic” is activated, the SD variable “LossDueToLongWaitingTime” is explicitly 

described by the mathematical expression (A.3 type) “number_of_not_treated_patents_per_day” 

multiplied by “lost_profit_per_patient_not_treated”. 

 

Figure 17. Combination of A.3 and B.4 type of relationship during SD-AB interaction 

 

 Phases 2, 3 and 4 are related to the actual model implementation. The next Chapter 

describes examples that evaluate all four phases of the 3M&S framework. 
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CHAPTER 4: EVALUATION OF 3M&S FRAMEWORK 

 In this chapter, we present examples that show how the 3M&S Framework can be applied 

to form 3M&S models capable of dealing with CS problems in multiple domains. The first case 

study concerns the application of the 3M&S framework for optimizing the waiting times in 

concession queues for a movie theater. The second case study applies the framework to assist in 

the development of a multi-method simulation application for task analysis tool. Finally, the 

framework is also applied to design a robotic simulation application to run experiments prior to 

actual robot implementation.  

 In all three cases, the following phases and steps have been followed: 

 In Phase 1, we conduct the conceptual modeling steps: define the overall problem, 

decompose objectives to sub-objectives, define scope, constraints and select M&S 

method(s). Additionally, the user investigates and answers the research questions Q1, 

Q2 and Q3. 

 In Phase 2, we describe the development process of the actual multi-method 

simulation model construction. This phase includes the development activities of 

multi-method simulation study, programming, implementation of the produced 

algorithms from Phase 1. The user continues with calibration of the Computer 

Generated (CG) model(s) and V&V of Phase. 

 Phase 3 consists of the Verification and Validation (V&V) process of the multi-

method simulation model. This phase takes place after the execution of the simulation 

and before the documentation of results to ensure credibility of the simulation study 
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and the produced results. The relationship between Phase 2 and 3 is iterative and 

frequent updates to the 3M&S model may occur.  

 Finally, Phase 4 includes the preparation of the simulation report, the documentation 

of the results as well as examination of future improvements.  

4.1 Case 1: 3M&S study in Entertainment Industry - Multi-Theater Unit (MTU) 

 In this section, we present a case study for a Multi-Theater Movie Complex Unit 

(MMCU) showing how the 3M&S Framework can be applied to provide a solution for a problem 

within the entertainment industry. Based on the user-defined objectives, assumptions and 

selection of criteria, the framework suggested the development of a model consisting of three 

M&S methods. We will refer to the model implemented using the framework as 3M&S model. 

The developed 3M&S model combines and integrates the three M&S approaches (DE, SD, and 

AB), and defines terms and conditions to fit each problem objective using M&S method(s).  

 

Define Problem 

 

 The movie theater industry has a tendency to build large complexes that project several 

movies simultaneously [133]. Consider a particular Multi-Theater Movie Complex Unit, which 

is referred to as MMCU system. This MMCU currently occupies 4 ticket sellers, 6 concessions 

and 1 ticket collector. Figure 18 illustrates the MMCU General System given the six concession 
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stand lines, the ticket selling queue, the ticket sellers (TS), the ticket collection queue and the 

ticket collector.  

 

Figure 18. MMCU General System 

 

 After several informal visits and interviews with the management, we observed a process 

performance gap during the MMCU operational hours. More specifically, the specific MMCU 

can become very crowded during specific peak times of the day and of the week, while being 

nearly empty at others. The problem was detected on the system processes involving the 

concessions. The ordinary high activity times were detected on Friday and Saturday nights 

between 7 PM and 10 PM causing bottlenecks in the concession stands due to long waiting lines. 
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At this time, the MMCU has been losing concession stand sales due to customers either reneging 

while waiting too long in line, or balking by walking away from the concession stand, resulting 

in profitability loss for the company.  

 

Identify Overall Objective “O” and decompose it into sub-objectives "oi" 

 

 The overall Objective “O” is to improve the movie theater product consumption and 

customer service and lead to increased customer satisfaction and MMCU profits. In other words, 

we need to simulate different system designs and compare them to identify the best alternative 

design among the simulated ones to reduce total waiting time, reneging and balking. 

 Then, we decompose “O” to the following objectives “oi”: 

 o1: Investigate alternative configurations of MMCU to reduce waiting time and total time 

in system 

 o2: Investigate balking behavior 

 o3: Investigate reneging behavior 

 

Identify Constraints and Assumptions 

 

 As we mentioned earlier, assumptions are essential when creating a simulation model as 

it is not feasible to include all the possible events that will occur in reality. Therefore, during this 

system analysis, the following modeling constraints and assumptions are taken into 

consideration:  
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 There are only six concessions to fulfill all the orders  

 The period of the study is between 7pm to 10pm 

 Customers do not leave the MMCU immediately after entering 

 Employees do not take breaks during the high-activity periods of interest 

 Customers can visit the concession as many times as they want 

 All cashiers were considered to work at the same speed and perform identical tasks. 

(Therefore, the same Service Times distribution was used for all the cashiers) 

 Customers do not jockey to another line due to actual queue boundaries and fair queuing 

system. 

 The Customers' travel time to be served is 0 

 Each waiting queue has initial capacity up to ten customers. The line is determined to be 

long if the queue capacity is exceeded 

 Customers arrive as batches/groups of one, two, three, four or more customers, who 

processed individually and leave the concessions again as batches/groups, when all the 

members of the batch have been processed 

 

Identify M&S Scope for all sub-objectives 

 

 The M&S scope is what helps achieve the objectives without violating the given 

constrains. Therefore, we need to clearly define the aspects that will be included in the 

simulation for each sub-objective. Those aspects are described in the following sections.  
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Define content and form of results 

 

 The content and form of results of this study requires High-Level of detail including 

statistical input and output (I/O) data analysis, as well as visualization of the process through 

animation. For sub-objective o1, the content and form of results require detailed statistics for 

waiting times, total time in system and queue size, as well as animation of the process. For sub-

objectives o2 and o3, the content and form of results require detailed statistics regarding the 

number of balkers and renegers, respectively. 

 

Define boundaries  

 

 The next step is to define the boundaries and, more specifically, the beginning, ending, 

upper and lower boundaries that involve I/O data of information exchange, as well as the 

performance measures that considered for V&V of alternative MMCU system designs. Table 8 

illustrates the beginning boundary data, and the ending boundary data (outputs) as the 

performance measures. The beginning boundary data were used as input to calculate the defined 

measurements of performance (outputs). The performance measures were used for evaluation of 

the MMCU alternative designs.  
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Table 8. Boundaries 

Type Name Description 

Input Data
 a
 

Customer Number Number of customers entering the system 

Current Queue Size 

Number of customers in concession queue after 

a new arrival at a particular time. 

Interarrival Batch Time 

Time between the arrivals of batches of 

customers to the concession stand 

Batch size 

Number of individual customers who arrive 

together as a batch. 

Concession Seller Service 

Time 

Time required for the concession seller to serve 

the customer. 

Renege Time 

Time a customer is willing to wait for the 

concession seller to service him before he leaves 

the queue. 

Output 

Data 

Average Customer Waiting 

Time at Concession Stand 

Average time a customer may spend in 

concession stand queue waiting to be served. 

Reneging Counter 

Number of people that abandon the queue 

because it is too long. 

Balking Counter 

Number of people that never commit to the 

queue because it is too long. 

Total Time in System Interval of time beginning when the customer 
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Type Name Description 

arrives at Concession Stand queue and ending 

when the customer exits the system and 

proceeds to the theater room. 

Average Queue Length 

Average queue length in concession while 

waiting to be served 

Units for all times are in minutes. 

a
Input data collection was based on observation and interviews with the manager of the MMCU.  

 

Table 9 illustrates the upper and lower I/O data information exchange among the three 

sub-objectives. 

 

Table 9. Upper and Lower Boundaries I/O Data 

 Sub-objective o1 Sub-objective o2 Sub-objective o3 

Upper Boundary 

Data Inputs 

Customer ID, Server 

ID 

Customer ID, Server 

ID 

queue size 

Customer ID, Server 

ID 

“Patience
a
 Starts” 

Lower Boundary 

Data Outputs 

Update queue size, 

Served state 

Balk state, Update 

queue size 

“Patience
a
 Ends”, 

Renege State, 

Update queue size 

a
Patience is used to define the average time a customer is willing to wait in a concession stand 

(in minutes). Patience starts when a customer starts waiting and ends when a defined threshold is 
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reached and the customer decides to abandon the line and exit the system without performing a 

purchase. 

 

Level of detail, degree of accuracy and type of experimentation  

 

 The level of detail is determined by the level of accuracy of the results and the output. 

For all sub-objectives the level of accuracy of the results (confidence interval) is specified at 

95%. The experimentation type of this study includes the visualization of the system and 

comparison with alternative scenarios to achieve the specified objectives. The degree of accuracy 

includes the identification of logic and numeric data, which are illustrated in Table 10. A detailed 

data analysis can be found in Appendix A. 

 

Table 10. Degree of Accuracy - Logic and Numeric Data 

Data Name Data Type Data Value 

Interarrival Times Numeric Data 0.37 + Erlang(0.123, 3) 

Service times Numeric Data 1 + Gamma(1.71, 1.17) 

Batch Size Numeric Data 

Empirical Distribution 

Cumulative Fraction / Discrete 

(0.339, 1, 0.816, 2, 0.934, 3, 

0.934, 4,1,5) 

Patience Numeric Data Triangular(10,15,20) 

Balking Behavior Logic Data If the queue has reached the 
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Data Name Data Type Data Value 

maximum capacity, the 

customer decides to balk and 

exits the system 

Reneging Behavior Logic Data 

If the customers patience 

expires, the customer decides 

to leave the queue (decides to 

renege) and exits the system 

  

Selection of M&S Method(s) 

 

 In this section, we run the 3M&S framework with the manager of the MMCU system by 

selecting criteria that fit the problem, system and methodology perspective of each sub-objective 

and assign their numerical weights based on their relevant importance. The 3M&S framework 

returned the higher-scored M&S method for each sub-objective. Table 11 illustrates a partial list 

of selected criteria for each objective and summarizes the returned higher-scored M&S method 

for each of the three defined sub-objectives.  

 More specifically, for sub-objective o1, the framework recommended DE M&S to 

capture alternative line configurations, eliminate bottlenecks and improve MMCU system. For 

sub-objective o2, the framework recommended AB M&S to capture the balking logic of the 

customers and for sub-objective o3, the framework recommended SD to capture the reneging 

logic of the customers.  
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Table 11. Sample list for Selection of M&S methods 

Criterion VoIs 

Selection 

for Sub-

objective 

o1 

Weigh

t w1 

Selection 

for Sub-

objective 

o2 

Weight 

w2 

Selection 

for Sub-

objective 

o3 

Weight 

w3 

Scope 

Level 

Operational X 9   

 

 

Strategic     X 5 

Any   X 2 

 

 

Situation 

Queues X 10   

 

 

Flows     X 7 

Rules   X 8 

 

 

System 

Process 

Discrete X 9   

 

 

Continuous     X 8 

Discrete/Cont

inuous 

  X 5 

 

 

Modeling 

Approach 

Process 

Centric 

X 7   

 

 

Top-Down     X 5 

Bottom-Up   X 7 

 

 

Object 

Entity X 7   

 

 

Feedback     X 8 
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Criterion VoIs 

Selection 

for Sub-

objective 

o1 

Weigh

t w1 

Selection 

for Sub-

objective 

o2 

Weight 

w2 

Selection 

for Sub-

objective 

o3 

Weight 

w3 

Agent   X 10 

 

 

Control 

Holdings X 6   

 

 

Stocks     X 10 

Transaction 

Mechanisms 

  X 8 

 

 

Time 

Discrete X 8 X 5 

 

 

Continuous     X 8 

 

    

 

 

M&S 

Method 

Selection 

 

Discrete 

Event 

 

Agent 

Based 

 

System 

Dynamics 

 

 

 Identify Interaction points 

 

 Interaction points describe variables of I/O information exchange among the different 

objectives. In this case, we have three sub-objectives that are captured and influenced by three 

sub-models. The mapping among DE, SD, and AB sub-models consists of input and output data 
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of information exchange. For the MMCU 3M&S model, we identify the following interaction 

points of information exchange:  

 Customer ID (DE) - Customer ID (AB) 

 balking counter (DE) –balking counter (AB) 

 reneging counter (DE) – counter reneging (AB) 

 WaitInLine (DE) – Patience (SD) 

 Patience Expired (SD) - Reneging State (AB) 

 

Formulate Relationships among DE, SD, and AB interaction points 

 

 In table 12 we illustrate the interaction points and type of relationship for each pair of 

interaction points. 

Table 12. Relationships for each pair of interaction points 

 Interaction Points Type of Relationship 

Interaction points between 

AB and DE Models  

Customer EnityID (DE) - 

Customer AgentID (AB) 

A.1 Direct replacement 

Customer balking counter (DE) 

- Customer balking counter 

(AB) 

A.1 Direct replacement 

Customer reneging counter 

(DE) – Customer reneging 

A.1 Direct replacement 
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counter (AB) 

Interaction points between 

AB and SD Models  

Agent in state Waiting in Line 

(AB) – Patience Counter Clock 

starts (SD) 

B.4 Statechart control which 

transfers the flow to the SD 

model 

Patience Expired (SD) – sent 

Agent in Reneged state (AB) 

 B.3. Trigger of Condition Type 

(if patience <= 0)  

 

Phase 2: M&S Development Process 

 

 In this section, we describe the development process of the aforementioned simulation 

objectives (o1, o2 and o3) for three alternative scenarios of the MMCU system. The developed 

3M&S model consisted of three sub-models that interact with each other: a DE, a SD and an AB 

sub-model. 

  A DE sub-model was developed to describe alternative line configurations of the 

MMCU concession process system. In addition, the DE module was responsible for collecting 

statistics of the performance measures to reduce customers waiting time and total time in system, 

renegers and balkers.  

 Balking and reneging are queue-related behaviors demonstrated in the 3M&S model to 

better represent the overall behavior of the observed real-world MMCU system. Upon arrival, 

the customers are represented by DE entities. When they enter the waiting queue, the customers 

are represented by agents that exhibit internal decision-making based on the reneging and 

balking logic of the SD and AB sub-models, respectively.  
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 An AB sub-model was developed to capture the balking decision-making logic of 

customers. This balking logic was developed by integrating the AB sub-model within the DE 

module to describe a deterministic logic of customer’s decision-making. Upon arrival, customers 

observe the operation of the queuing system and decide if they want to enter the 

“WaitingInLine” state, or the “Balked” state. If all queues have reached their maximum capacity 

a customer decides to balk and exits the system. Otherwise, a customer enters the waiting state 

and selects one of the concessions queues to wait for purchase. The AB sub-model is also 

responsible for updating the DE reneging and balking counters. 

 A SD sub-model was developed to capture the reneging logic. Reneging logic considered 

to be customer’s subjective probabilistic decision-making logic on an observed queuing 

behavior. We used a SD stock described by a triangular distribution with an average of 15 

minutes to represent customer’s “patience” or willingness to wait.  

 When a customer enters the AB state of “WaitingInLine” the reneging logic of the SD 

sub-model is activated and the “patience counter clock” starts counting. The AB transaction 

mechanism that connects the “WaitingInLine” state with the “Reneged” state checks every 

second if the condition of patience stock is equal or less than 0 and if the customer is not among 

the next three customers to be served, he/she decides to enter the “Reneged” state and abandon 

the line without receiving service. However, if the customer is among the three next customers 

that are about to be served, he/she remains in the “WaitingInLine” state until he/she is being 

served and moved to the “served” state, where batches exit the system after each member of the 

group receives service. Figure 19 depicts the reneging logic.  



  

98 

 

 

Figure 19. Reneging Sub-Model 

 

 Phase 2.1 Scenario 1: MMCU Base System (max capacity per queue 10) 

 

 Scenario 1 describes the current line configuration of MMCU Base System developed to 

represent the current operation of the concessions. MMCU Base Model consists of six servers, 

six queues and maximum queue length equal to ten (Figures 20 and 21).  
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Figure 20. Scenario 1: MMCU Base Model 

 

 

Figure 21. DE sub-model of MMCU Base Model  
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Phase 2.2 Scenario 2: Different Number of Queue Capacity (max capacity 13) 

 

 Scenario 2 describes an alternative line reconfiguration of the MMCU Base Model by 

increasing each queue capacity to fit three more customers. More specifically, it was observed 

that the maximum number of people that could enter the line was around ten, while the queue 

could be extended to fit thirteen. If more customers than thirteen want to enter the concessions 

lines, the lines exceeded the concession waiting area. Therefore, the capacity of each concession 

queue was increased up to thirteen, in order to fit the maximum possible number of customers 

(Figure 22). This model design (Figure 22) is similar to the MMCU Base System (Figure 21). 

However, the internal logic of the model has changed for the queue capacity which is modified 

to fit thirteen customers, and the balking logic which is activated for queue length greater than 

10. 

 

Figure 22. Scenario 2 with max capacity per queue 13 
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Phase 2.3 Scenario 3: Reconfiguration of the Main waiting queue (Alternative line configuration) 

 

 Scenario 3 describes an alternative line configuration considering one main waiting 

queue with maximum capacity of 60 customers that ends to six concession servers (CS). Figure 

23 illustrates the customer’s processes flow using the alternative line configuration of Scenario 3. 

The applied balking and reneging logics differ from scenarios 1 and 2 only in terms of the 

balking condition, that now is true when the number of customers in the waiting line is greater 

than 54 (Figures 23 and 24).  

 

Figure 23. Scenario 3 Queue Capacity 60 balking >54 
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Figure 24. DE-sub model for scenario 2 

 

Phase 3: Verification and Validation (V&V) of 3M&S model  

 

 Phase 3 provides information concerning the design, as well as the Verification and 

Validation (V&V) of the 3M&S Base Model of scenario 1, using real-world data. More 

specifically, the input data values from Table 10 were used to initialize the model. The data 

collection was based on observation and interviews with the manager of the MMCU. 

Distributions were fitted to each datum and statistics, such as mean and standard deviation, were 

calculated. 

  In order to accomplish the objectives stated in Section 4.2, a Base Model that represents 

the current operation of the concessions was developed, simulated, verified and validated 

through comparison with the real world observed system. 

 

 Warm-up Period of the Simulation 

 

 All the scenarios of the 3M&S model were run for 80 replications with a warm-up period 

of 75 minutes. Until that time the system had achieved steady-state. Since the period of interest is 

3 hours, the total length of each replication was set to 4 hours and 15 minutes (255 minutes).  
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 Verification and Validation (V&V) 

 

 Various techniques were used for verification and validation of the base model. First, the 

model was successfully tested for one customer in order to verify the total time in system. The 

3M&S model was also verified by observing the animation of the simulation output. Moreover, 

the sample mean and sample variance for each simulation input probability distribution was 

computed, and compared with the desired mean and variance. 

 Validation included scheduled meetings with the movie theater’s management, where the 

details of the simulated model were discussed and compared with the behavior of the real 

system. Quantitative measures were also examined for validity. The number of replications was 

set to 80 based on the approximation n≈ n0(h0
2
/h

2
), where h0 is the half-width from “initial” 

number n of replications and h is the desired level of precision. Table 13 summarizes the 

performance measures comparison between the data collected from the real-world system and 

the simulation output of MMCU Base Model Scenario 1 after 80 replications.  
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Table 13. Comparison of Real-world and Multi-Method Simulation output of Base Model 

Scenario 1 

 Real Data Simulation Output 

Measure 

Name 

Mean 

Standard 

Deviation 

C.I. Mean 

Standard 

Deviation 

C.I 

Mean Wait 

Time 

3.175 2.405 

[2.72, 

3.63] 

2.812 5.204 [1.654, 3.97] 

Renege 

Counter 

20 N/A N/A 24 N/A 

[13.625, 

32.999] 

Balking 

Counter 

21 N/A N/A 19 N/A 

[10.342, 

25.882] 

Total Time 

in System 

6.066 2.474 

[5.35, 

6.77] 

5.446 6.153 

[4.077, 

6.815] 

Total 

Number 

Out 

300-500 N/A N/A 388 N/A 

[285.165, 

490.585] 

 

 

We set-up two-sample t-tests to determine if there is statistical difference between the actual 

data and the 3M&S output of the Base Model for both the mean waiting time in queue and the 

total time in system.  

The hypothesis test for the mean waiting time in queue is 
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 H0: difference between means of 3M&S Simulated Output and Real Data = 0 

 H1: difference between means of 3M&S Simulated Output and Read Data ≠ 0 

And the hypothesis test for the Total Time in System is 

 H0: difference between means of 3M&S Simulated Output and Real Data = 0 

 H1: difference between means of 3M&S Simulated Output and Read Data ≠ 0 

The level of significance is a = 0.05. Table 14 summarizes the results of the two-sample t-

tests. Since the p-value for both tests is greater than the level of significance, there is no 

significant difference between the observed data and the simulation output of the MMCU Base 

Model. Therefore, the simulated MMCU Base Model Scenario 1 was considered valid.  

 

Table 14. Two-sample t-test Results 

 Real Data 

3M&S Simulation 

Output 

t-Test results 

Measure 

Name 

Mean Std
a
 Mean Std

a
 p-value T-value 95% C.I. diff. 

Mean Wait 

Time 

 

3.175 2.405 2.812 5.204 0.559 -0.59 (-1.592, 0.866) 

Total Time 

in System 

6.066 2.474 5.446 6.153 0.431 -0.79 (-2.174, 0.934) 

a
Std refers to Standard Deviation 
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 Validating the Base Model of scenario 1 allowed us the development, V&V of alternative 

scenarios, and gives sufficient evidence to show that implementing them in real world can 

improve the system.  

 

Phase 4: Discussion of Results and Recommendations 

 

  The overall objective of this study was to simulate the concession process in the MMCU 

system in an attempt to reduce the average customer’s wait time, total time in system as well as 

the number of customers that leave the concession lines or do not enter the lines, resulting in loss 

of profit for the movie theater. 

  The simulation output of each simulation scenario was used to determine which of the 

three alternative scenarios produce the lowest waiting time, Total Time in System, renegers and 

balkers. A comparison of means also determined if any significant difference exists between the 

performance measures of each scenario. Figure 25 illustrates a comparison of means that 

determined significant differences between the performance measures of each alternative 

scenario. 
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(a)  

(b)  

(c)  

(d)  

Figure 25. Comparison of means for alternative scenarios of MMCU system in terms of (a) 

number of balkers, (b) number of renegers, (c) average waiting time in queue, and (d) total time 

in system. 

 

 Based on the comparison of performance measures, the alternative scenario 3 produces 

the less balkers and renegers in the system, which could indicate reduced profitability loss since 

fewer customers abandon the system. In addition, this scenario was statistically and visually 

better than the Base model of scenario l and scenario 2 with respect to the total time in system 

and wait time at the concession stand. Table 15 summarizes the results of each scenario and 

suggests the best scenario for each performance measure. 
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Table 15. Comparison of Base Model and alternative Scenarios 

Measure 

Name 

Statistics Scenario 1 Scenario 2 Scenario 3 Best Result 

Mean Wait 

Time 

Mean 2.812 2.281 1.943 

Scenario 3 STD 5.204 5.785 4.68 

Half-Width 1.158 1.287 1.041 

Renege 

Counter 

Mean 24 22 22 Scenario 3 

& 2 Half-Width 9.687 7.635 7.744 

Balking 

Counter 

Mean 19 6.925 4.162 

Scenario 3 

Half-Width 7.77 3.468 2.256 

Total Time 

in System 

 

Mean 5.446 4.745 4.428 

Scenario 3 STD 6.153 6.763 5.409 

Half-Width 1.369 1.505 1.204 

Total 

Numb. Out 

Mean 387.875 484.025 486.4 

N/A 

Half-Width 102.71 106 111.79 

 

 Recommendations 

 

 According to the discussion of the results, the concessions would present lower total time 

in system, as well as reduced number of people that abandon the lines, which can be achieved by 

reconfiguring the MMCU system to the alternative described by scenario 3. In addition, the 
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number of people that abandon the lines could be reduced by reconfiguring the concessions’ 

waiting area to have only one line that ends to the concession sellers. Another suggestion could 

be that cashiers should encourage customers to approach their concession stand as soon as they 

are available. 

However, due to the various limitations, approximations and assumptions involved in this 

multi-method modeling and simulation study, a more detailed study would be beneficial in order 

to better guarantee that the results obtained in the simulations will be replicated if these changes 

were made to the real system. 

 

Comparison of 3M&S model with the user's own selection 

 

In this section, we compare the model proposed by the 3M&S framework with a model 

implemented based on the user's own selection without following the framework. In this case, we 

assume that the user is more familiar with DE simulation. Therefore, he/she decides to model the 

system using only DE for the same objectives, assumptions and constraints without using the 

suggestion of the 3M&S framework. The implementation of the DE model is described in the 

next section. 

 

Implementation of DE model 

 

The flow of the MMCU model, the reneging and balking logic were developed using only 

DE M&S. The customers were considered passive entities that do not exhibit any internal 
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decision-making when they enter the waiting queue based on the reneging and balking logic of 

SD and AB sub-models described earlier. Upon arrival, if all the queues have reached maximum 

capacity the entities balk and exit the system, otherwise the customers wait in line until they 

receive service. However, if the waiting time exceeds a threshold and the customer is not among 

the next three in line to be served, he/she reneges and abandons the waiting line. The input data 

from Table 10 were also used for the initialization of the DE model.  

 

 Verification and Validation (V&V) of DE model 

 

In order to evaluate the MMCU DE model, we set up two-sample t-tests to determine if 

there is statistical difference between the actual data and the simulation output for both the 

waiting time and total time in system.  

We set-up two-sample t-tests to determine if there is statistical difference between the actual data 

and the DE simulation output for both the mean waiting time and total time in system.  

The hypothesis test for the mean waiting time in queue is 

 H0: difference between means of Simulated MMCU DE Output and Real Data = 0 

 H1: difference between means of Simulated MMCU DE Output and Read Data ≠ 0 

And the hypothesis test for the Total Time in System is 

 H0: difference between means of Simulated MMCU DE Output and Real Data = 0 

 H1: difference between means of Simulated MMCU DE Output and Read Data ≠ 0 

The level of significance is a = 0.05. Table 16 summarizes the results of the two-sample 

t-tests. Since the p-value for both tests is greater that the level of significance, there is no 
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significant difference between the observed data and the simulation output for the base model. 

Therefore, the simulated MMCU DE Model was considered valid. 

 

Table 16. Two-sample t-test results 

 Real Data 

DE Simulation 

Output 

t-Test results 

Measure 

Name 

Mean Std
a
 Mean Std

a
 p-value T-value 95% C.I. diff. 

Mean 

Wait Time 

 

3.175 2.405 4.04 4.57 0.122 1.56 (-0.234, 1.960) 

Total 

Time in 

System 

6.066 2.474 7.49 6.14 0.071 1.82 (-0.124, 2.980) 

a
Std refers to Standard Deviation 

 

 Comparison of output for DE and 3M&S models 

 

In this section, we compare the outputs of the 3M&S and the DE simulation models with 

the observed data of the actual system to determine which model is more accurate representation 

of the real system. The mean waiting time and total time in system (TTIS) were used for a 

preliminary evaluation of accuracy. Table 17 shows that the mean waiting time and TTIS for the 
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3M&S model are 'closer' to the real system output. More specifically, the percentage difference 

between the 3M&S model outputs and the actual data are 12.9% and 11.38% for the waiting time 

and TTIS, while the percentage difference between the DE model outputs and the actual data are 

21.3% and 19.055%, respectively.  

Table 17. Comparison of 3M&S and DE models with real system 

 Mean Waiting Time Mean TTIS 

Real Observed System 3.175 6.066 

3M&S Base Model 2.812 5.446 

DE Model 4.038 7.494 

3M&S difference with Real 12.9% 11.38% 

DE difference with Real 21.3% 19.055% 

 

Based on the previous comparisons, we concluded that the 3M&S model implemented 

following the steps of the 3M&S framework is a more accurate representation of the real system 

than the DE model implemented based on the user's own selection. Moreover, the 3M&S model 

provides the capability to incorporate factors in the model that cannot be considered if the system 

is modeled using only DE simulation. Such factors include server behavior, interaction with 

friends, and service quality, among others. For example, the SD reneging logic of the 3M&S 

model could be modified and further expanded to incorporate more interactions for patience as 

depicted in Figure 26 [134]. The positive feedback loops demonstrate how customer’s 

willingness to wait (patience) can be positively affected by various factors (i.e. interaction with 

friends, atmosphere, and queuing comfort level). 
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Figure 26. SD model that explores the interactions of reneging and patience adapted and 

modified by Yang et al. [134]. 

 

Moreover, the individual sub-models used for particular objectives to form the 3M&S 

model could be reused to design new models that satisfy similar objectives by saving developing 

time and cost. Therefore, following the 3M&S framework can improve model accuracy, and help 

the analysts save time and effort, particularly when they deal with CS problems or when multi-

method M&S is required. 
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Conclusions and Future Work  

 

In this case a novel Multi-Method Modeling and Simulation Framework termed 3M&S 

has been described. The steps of the framework were explained in detail and were applied to a 

case study for a movie-theater complex using the 3M&S framework. We also showed an 

alternative solution for the same problem when the user does not use the suggestion offered by 

the framework, but he/she decides to model the system using his/her own selection of method. 

Two different simulation models were implemented with and without following the 3M&S 

framework. The one was a 3M&S model, which showed how the process-centric approach of 

DE, the bottom-up approach of AB and the top-down approach of aggregated feedbacks of SD 

can be deployed symbiotically to offer more realistic perspective and useful insights of CS 

problems. The other model was implemented using only DE simulation. The comparison of the 

two models showed that the 3M&S model provides more accurate representation of the real 

system and could allows for incorporation of other dynamical factors, such as interaction with 

friends, which cannot be captured using only the DE method (see Figure 26 “patience”). 

 Additionally, the 3M&S model may also be found more suitable than the DE simulation 

model in terms of future reusability. For example, if one wants to conduct another simulation 

study in the future, one can enhance, reconfigure and apply a pre-existing verified and valid 

module that has been used in a past 3M&S study since these models have been developed to 

communicate and interact with other models In the future, our work will focus on applying the 

3M&S framework in different domains that require 3M&S approach as well as in the 

development of a decision support tool based on the 3M&S framework. 
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4.2 Case 2: Following the 3M&S framework for a Universal Task analysis Tool  

The 3M&S framework was followed to aid in the design, development and evaluation of 

a Universal Task Analysis Simulation Modeling tool named “UTASiMo” [115], [135], [153]. 

The tool is capable of automating the modeling process and simulating individuals performing 

tasks in any domain in order to estimate task execution times, workload and error probabilities.  

 

Phase 1: Conceptual Modeling 

 

Define Problem 

 

Task Analysis is a time consuming and static process, usually conducted using pen and 

paper. Existing task analysis tools require training or even programming skills to produce results, 

thereby requiring time and effort. Moreover, current task analysis tools do not always model the 

heterogeneity of agents across a population or they lack built-in modules for estimating human 

error and workload. Therefore, a more widely accessible and universally applicable simulation 

tool needs to be developed in order to perform a more comprehensive task analysis. 
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Identify Overall Objective “O” and decompose it into sub-objectives 

 

The overall Objective was to develop a Universal Task Analysis (UTA) model capable of 

simulating tasks and scenarios performed by human operators, considering task execution times 

and workload for operators with different skills/characteristics and assessment of human error 

based on the skills of the operator and the dynamics of the task within a dynamic environment. 

Next, we decomposed the overall objective to the following three sub-objectives: 

 o1: Provide quantitative prediction of human error over time influenced by the dynamics 

of the task and the properties of the operator 

 o2: Analyze a task network based on the task sequence, priorities, human skills and events 

to estimate task execution times 

 o3: Create a human operator model to capture variability of operator characteristics, 

indicate how the operators perform the tasks and estimate workload 

 

Identify Constraints and Assumptions 

 

 Each primary task can be performed by a single human operator 

 Each human operator performs assigned primary tasks in a sequence 

 All task execution times are assumed to follow triangular distribution 

 Human error is influenced by six main factors  

 The default walking speed for a human operator is 1.5 m/sec 
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Identify M&S Scope 

 

The M&S scope is what helps achieve the objectives without violating the given 

constrains and assumptions. Therefore, we need to clearly define the aspects that will be included 

in the simulation for each sub-objective. Those aspects are described in the following sections.  

 

Define Content and form of Results 

 

The content and form of results is characterized by high detail as it includes animations, 

graphs and detail statistics such as: average task execution time and average workload of human 

operators.  

 

Define Boundaries 

 

The I/O boundaries for each oi are illustrated in Table 18. As it has been noticed by 

Robinson, the detection of output boundaries is a standard process since it reflects a particular 

objective [131]. 
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Table 18. Boundaries for each oi 

oi 
Sub-objective 

o1 

Sub-objective 

o2 

Sub-objective  

o3 

Beginning 

Boundary 

Inputs 

Nominal Human Error 

Probability, Working 

Conditions, Quality of 

procedures 

Task name, Task 

ID, Task location, 

Number of sub-

tasks, Task 

complexity, Task 

Frequency, Skills, 

Priority, Critical 

time 

Agent ID, Speed, 

Skills 

Ending 

boundary 

Outputs 

Total probability of 

human error 

Total time in 

system, Mean time 

to perform task, 

Percentage of total 

time allocated to 

each task 

Total Workload 

Upper 

boundary 

Inputs 

Agent ID, Workload, 

Skill, Task complexity 

Agent ID, Skills 

(Agent) 

Task location, 

Probability of 

human error  

Lower 

boundary 

outputs 

 Probability of human 

error 

Task duration, Task 

complexity, Task 

location 

 Workload, Skills 

(Agent) 
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Level of detail, degree of accuracy and type of experimentation 

 

Parallel to the previous activities for each “oi” we defined the level of detail, degree of 

accuracy for numeric and logical data and type of experimentation. 

The experimentation type of this study includes the visualization of the system, the 

evaluation of a base model and experimentation with alternative scenarios.  

The degree of accuracy includes the identification of logic and numeric data, which are 

illustrated in Tables 19 and 20. 

 

Table 19. Numeric Data 

Numeric Data 

Task ID 

AgentID 

AgentLocation 

Speed 

Task location 

Number of Subtasks 

Skills 

Priority 

Critical Time 

Duration 
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Numeric Data 

Workload 

Task Frequency 

Task Complexity 

Nominal Human Error 

Probability 

Human Error 

 

 

Table 20. Logic DATA 

Logic Data 

Task Name 

 Agent Name 

 Agent's internal 

model for 

executing tasks and 

adapting to events 

in the environment 

Agent's State 
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Selection of M&S Method(s): 

 

During this activity, the user selected from the list of criteria (Table 4 -6), those criteria 

that fit in each sub-objective and assigned numerical weight to each VoI. Then, the additive 

functions were ranked from best to worst and the framework returned the higher-scored method 

for each sub-objective, as illustrated in Table 21. 

 

Table 21. Selected M&S Methods for each “oi” 

M&S Method 

Selection
a 

o1.For sub-objective 1, SD was selected 

o2.For sub-objective 2, DE was selected 

o3.For sub-objective 3, AB was selected 

 

Identify Interaction points 

 

The internal and external interactions among o1, o2, and o3 are listed as follows:  

 Variation in task and operator characteristics, (interaction between o2 and o3)  

 Human Error affected by task and operator dynamics, (o1 is influenced by o2 and o3) 

 Flow of the agents in the task network - Interaction between o2 and o3 

 

 In Table 22 we define the interaction points for all the models. 
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Table 22. Interaction Points 

Identify 

Interaction 

Points 

 Agent ID 

 Agent Location 

 Task Location 

 Workload 

 Task Complexity 

 Task Completion Time 

 Human Error 

 

Formulate Relationships among DE, SD, and AB interaction points: 

 

In Table 23 we describe the interaction points and the types of relationships that occurred 

between pairs of interaction points. 

 

Table 23. Interaction Points and Type of Relationships 

 Interaction Point Type of Relationship 

Interaction points between 

AB and DE Models  

AgentID (AB) - AgentID (DE) 

 
A.1 Direct replacement 

Task Completion Time (DE) - 

Skills (AB) 

A.3 Causal relationship 

The task completion time in the 

DE model is calculated based 

on a function that takes into 

account the skills of each agent 

in the AB model 
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 Interaction Point Type of Relationship 

Workload (AB) - Task 

Duration (DE) 

A.3 Causal relationship 

The workload in the AB model 

is calculated based on a 

function that takes into account 

the Duration of each task in the 

DE model 

Task Location (DE) - Task 

Location (AB)  

 

A.1 Direct replacement 

 Interaction points 

between AB and SD 

Models 

Workload_(AB) – Workload 

(SD) 
A.1 Direct replacement 

Skills (AB) - Skills (SD) A.1 Direct replacement 

Human Error (SD) – Agent 

(AB) 

 

 

B.4. Statechart control  

The AB statechart transfers 

control to SD model to 

calculate error.  

Interaction points between 

SD and DE Models 

Task Complexity_(DE) - Task 

Complexity_(SD) 
A.1 Direct replacement 

 

Phase 2: M&S Development Process 

 

The hybrid SD-AB model is composed of Agents with a SD model inside. The SD inputs 

are guided by AB outputs and dynamic environmental factors. The human operators and their 

behavior were implemented with AB terms and conditions. The DE model is responsible for 

collecting statistics in regards to the defined measurements of performance. This multi-method 
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simulation model exchange information through the DE-SD and DE-AB interaction variables. 

The detail description of the M&S development process of the task analysis tool is not within the 

scope of this dissertation. More information about the development process can be found in [115, 

135], [153]. Figures 27, 28 and 29 illustrate the architecture of the tool, which was developed in 

AnyLogic. 

 

Figure 27. AB model of UTASiMo 
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Figure 28. SD model of UTASiMo 

 

Figure 29. DE model of UTASiMo 

 

Phase 3 and 4: V&V and Documentation of results 

 

A 3M&S model of a power plant was produced using the UTASiMo tool to determine 

which system design produces the lowest average total time, workload and human errors. The 

model was verified and validated using various techniques. First, the model was successfully 

tested for one human operator in order to verify the total task execution time. The model was 

verified and validated by observing the animation of the simulation output. Validation also 



  

126 

 

included comparison of the simulated system behavior with the behavior of the system. Figures 

30 and 31 show the animation of the model and the simulation results accordingly. More 

information about the V&V process and documentation of results can be found in [115], [135] 

and [153].  

 

 

Figure 30. Animation of UTASiMo automatically constructed model  

 

Figure 31. Simulation results of UTASiMo produced model 
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In this case study the 3M&S framework provided guidelines focused in the development 

of the conceptual modeling process. The framework was found helpful because it offers the 

option to combine, and/or integrate three M&S methods, while other frameworks provide 

guidelines for one or combination of two M&S methods. The problem, system and methodology 

perspective criteria (Table 4, 5 and 6) of the framework aided the user to understand when and 

why each M&S method is more suitable. The criteria assisted the user to conceptualize and 

include aspects that would be impractical or even impossible to be captured by one or two M&S 

methods. Finally, the 3M&S framework helped the user on how to connect the different models 

and formulate relationships between the interaction points using table 7 (Types of relationships 

for interaction points).  

4.3 Case 3: Following the 3M&S Framework for Multi-Method Modeling and Simulation 

of face detection robotic system 

Introduction 

 

The 3M&S framework was applied in the field of robotics for modeling and simulating a 

face detection robotic system, named Cerberus [136], which was a part of a bigger effort, named 

ARTeMIS (Autonomous Robotic Technology Multitasking Intelligent System) [137]. In this 

case study, we focused on the multi-method modeling and simulation of a robotic system design 

with face detection capabilities . Figure 32 illustrates the main functionalities of the robotic 

system. 
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Figure 32. Overview of robotic system 

 

Phase 1.  

 

 Define Problem 

 

Constructing and setting up experiments with real robots is costly and time consuming. 

On the other hand, simulated robotic experiments are more convenient and cost effective. Thus, 

it is often useful to perform simulation prior to investigation with real robots. In addition, 

simulation is often faster than experiments with real robots, while all the parameters can be 

easily adjusted and displayed on screen. Simulation also allows for a better design investigation.  

In this case study the main problem was that there are factors that cannot be captured 

during the actual experimentation. More specifically, we would like to investigate the effect of 
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oscillation caused by the velocity and the acceleration on the face detection time of a robotic 

application. More information in regards with the activities of the robotic system and its 

architecture can be found in Appendix B. 

 

Identify Overall Objective and Decompose to Sub-objectives 

 

The overall objective of this study is to evaluate a robotic application of face detection by 

illustrating the behaviors of a robotic system and providing feedback in regards to the system’s 

performance prior to the construction of the actual robot. Following the 3M&S framework, we 

decomposed the main objective to three sub-objectives.  

 o1. Define the robot rules and behavior that are required to perform face detection and to 

passively interact with the human.  

 o2. Determine the number of successful face detection events as well as the average time 

of the face detection process.  

 o3. Examine the effects of oscillation dynamics of the Kinect Sensor on the system 

performance. 

 

Identify Constraints and Assumptions 

 

For this simulation study we considered the following constraints and assumptions:  

 The robot moves only forward and backward in a straight line until a face is detected. 

 The robot approaches one person at a time. 
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 The Kinect sensor is massless 

 The simulated human is assumed to be known, with his/her image stored in the database 

 The human is assumed to be stable and still 

 

Identify M&S Scope 

 

The M&S scope is what helps achieve the objectives without violating the given 

constrains. Therefore, we need to clearly define the aspects that will be included in the 

simulation for each sub-objective.  

 

Define Content and form of Results 

 

During the design phase of the simulation experiment we define content and form of 

results. The form of results is characterized by high detail as it includes animations, graphs and 

detail statistics such as: average face detection time, average distance from the human and 

variation of oscillation periods of the pendulum-system. 

 

Define Boundaries for Multi-method Simulation Model 

The definitions of the input and output data are the following: 

 Human location is defined as the coordinates of the human in a 2D space 

 Control precision is defined as the exact distance that the robot moves forward and 

backward in order to detect a face 
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 Velocity is defined as the speed of the robot measured in meters per second 

 Acceleration is defined as the rate of change of velocity in meters per second squared 

 Resistance factor is defined as the sum of the environmental resistance factors such as air 

resistance and ground friction 

 Gravity is defined as the force which is applied to the kinect-pendulum system by 

attracting its mass towards the centre of the earth 

 Length of the pole is defined as the measure of the greatest dimension of the pole on 

which is mounted the kinect sensor 

 x,y coordinates of the sensor are defined as the orientation of the sensor in a 2D space 

 iRobot location is defined as the location of the robot after a successful face detection 

 Face detection variable is defined as a successful face detection performed by the robot 

 Oscillation movement is defined as as the variation of the pendulum-system position 

about a central point 

 Average Face detection time is defined as the average time that takes for the robot to 

detect a face 
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Next, we describe the I/O data exchanged through the boundaries for each sub-objective. 

 

Table 24. Boundaries for face detection Simulation Model 

oi 
Sub-objective 

o1 

Sub-objective 

o2 

Sub-objective  

o3 

 

Beginning 

Boundary 

Inputs 

 

Human Location, 

 Control Precision  

DE face detection 

timer 

Velocity, Resistance 

factor, Gravity, Length 

of the pole, x,y 

coordinates of the 

sensor, initial angle of 

the pole 

Ending 

boundary 

Outputs 

iRobot Location, 

Face detection 

variable  

Average Face 

detection time, 

Average distance 

from the human, 

Number of 

successful face 

detections 

Oscillation movement  

Upper 

boundary 

Inputs 

iRobot Location 
FaceID 

 

Acceleration  

Lower 

boundary 

outputs 

FaceID - Oscillation movement 
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Level of detail, degree of accuracy and type of experimentation 

 

Parallel to the previous activities for each “oi” we defined the level of detail, degree of 

accuracy for numeric and logical data and type of experimentation. The level of detail was set up 

to 95% confidence interval for the average face detection time. The experimentation type of this 

study includes: the visualization of the system, and evaluation of the effect of oscillation on the 

face detection time. The degree of accuracy includes the identification of logic and numeric data. 

The logic data include: the navigation behavior of the robot (moving forward and backward) and 

the face detection information (face detection logic). The Numeric Data include all the input and 

output data such as: velocity, resistance factor, human location, gravity, angle and length of the 

pole, x and y coordinates of the sensor, average time of successful face detection and average 

distance from the human. 

 

Selection of M&S Method 

 

In this section, we describe the selection of M&S Methods. Table 4, 5 and 6 of Chapter 2 

helped us justify which M&S method was more appropriate for each of these defined sub-

objectives [27]. In table 25 we summarize the M&S selection for each sub-objective. 

Table 25. M&S Method Selection for each objective 

M&S Method 

Selection
a 

o1.For sub-objective 1, AB was selected 

o2.For sub-objective 2, DE was selected 

o3.For sub-objective 3, SD was selected 
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Identify Interaction Points 

 

Interaction points describe variables of I/O information exchange among the different 

objectives. The mapping among DE, SD, and AB sub-models consists of input and output data 

information exchange. For the robotic face detection application model, we identify the 

following interaction points of information exchange:  

 FaceID(AB) – FaceID counter (DE)  

 x, y location of sensor (SD) – iRobotLocation (AB) 

 state “RIdle” (AB) – DE face detection timer 

 

Formulate Relationships among DE, SD, and AB interaction points 

 

In Table 26 we demonstrate the interaction points among DE, SD, and AB models, as 

well as the type of relationship that occurs. 

Table 26. Interaction Points and Type of Relationships 

 Interaction Point Type of Relationship 

Interaction points between 

AB and DE Models 

FaceID(AB)- FaceID counter 

(DE) (Total number of 

successful detections) 

A.2 Aggregation/ 

Disaggregation 

When AB state “RIdle” is 

active, the DE face detection 

timer is 

B.4 Statechart control 

combined with 

B.3 Trigger Event (arrival-



  

135 

 

 Interaction Point Type of Relationship 

triggered by the simulated 

person's appearance 

agent arrives at the destination 

point) 

Interaction points between 

SD and AB Models 

x, y location of sensor (SD) – 

iRobotLocation (AB) 

(irobot.get(x), irobot.get(y)) 

A.1 Direct replacement 

 

 

Phase 2: Development of the models 

 

In this section we describe the implementation of DE, SD, and AB models for the three 

defined sub-objectives. Anylogic [66] was selected as the software tool used in our subsequent 

modeling efforts.  

 Discrete Event (DE) Model 

In the present simulation study, the DE model was developed for collecting statistics on 

face detection performance, counting each successful face-detection event and calculating the 

average detection time. 

 Agent Based (AB) Model 

In this simulation study we used an agent to represent the scenario that occurs in the 

system using state-charts to understand the system's process. The use of state-charts helped us in 

the observation of the differences that occurred at each state, the transitions among the states, 

and the events that emerged during each transition state. 
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More specifically, in this simulation study a robot was implemented as an agent with a 

state-chart inside. The state-chart was responsible for the higher level controller of the robot's 

behavior and actions during the face detection process. A Systems Modeling Language (SysML) 

diagram (see Appendix B) was used to design the flow of the state-chart. The relations among 

each action (state) are established using conditional loops.  

The robotic system was designed as closed-loop architecture (Figure 33): the initial state 

of the robot was assigned as idle (RIdle) and a transition was set to return to the same state after 

each successful face-detection. The conditional loops enable the simulated robot (agent) to 

evaluate its conditions and act accordingly. The High-Level interaction with the human (Person) 

was also captured.  

 

 

Figure 33. The state-chart describe r the robot's behavior and actions, while the robot attempts to 

detect the human's face 

 

 System Dynamics (SD) Model 

The multi-method simulation model also examined the effect of oscillation caused by the 

velocity and the acceleration of the robot. The capabilities of SD have here been used to capture 

the oscillation dynamics of the Kinect sensor. In order to analyze the effect of oscillation, we 
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applied constraint control to the simulated robot in order to move on a particular straight line and 

to rotate at a constant angular velocity. The movement of the Kinect mounted on the robot 

follows a linear inverted pendulum model and is described using x and y coordinates [139]. 

Moreover, we assume that the Kinect sensor is massless (attached at the edge of the pole l). 

Figure 34 shows such robot model. A simplified SD model of oscillation was constructed in our 

case, as depicted in Figure 35.  

 

 

Figure 34. Robot Model 

 

The variables and parameters of the robot model are displayed in Table 27. 

 

Table 27. Variables of System Dynamics Model 

Variable Description Value 

x 

The x coordinate of the 

Kinect – dependent 

variable  

l*cos(alpha) 

y The y coordinate of the l*sin(alpha) 
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Variable Description Value 

Kinect – dependent 

variable 

r 

Resistance of the 

environment  

[0,1] 

l Length of the pole  16.5 cm
a
 

g Gravity  9.81 Newtons 

alpha0 Initial angle of the pole 180
 o
 

a
cm = centimeter, and 

o
 = degree. 

The SD model includes two time dependent variables alpha and omega which represent 

the angle of the pendulum and the angular velocity, respectively. These variables are expressed 

using (4) and (5): 

Dα/dt = ω                                                               (4) 

dω/dt = (-g*sin(alpha)-(r*omega)/(0.01*l))                                     (5) 

 

In order to be able to represent the movement of oscillation visually, gravity was assumed 

to be positive (as a force in the negative direction). This was specifically employed in order to 

test the evaluation graphs and the validity of the conditions embedded within the state diagrams.  
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Figure 35. Systems Dynamics Model of Oscillation 

 

 

Phase 3and 4: V&V of 3M&S model of robotic face detection system 

 

We were able to design and run a multi-method simulation model of a face detection 

robotic system. As a result, we were able to test the capabilities of the software with respect to 

the oscillation effect. In order to test the analysis capabilities of the software, three performance 

variables were selected which are as follows: 

 y – Coordinate location change of the Kinect. It is used for illustrating the oscillating 

motion of the Kinect along the vertical axis 

 x – Coordinate location change of the Kinect and the robot. It is used for calculating the 

distance from human 

 Average time to detect a face after a human body is detected. 
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The performance variables are displayed on time plots in order to check for any possible 

inconsistencies in the model, as depicted in Figure 36. 

 

Figure 36. Simulation results of the robotic system 

The model was tested by observing the animation of the simulation, as well as the 

average time for the face detection process. The simulation output for the average face detection 

time is 6.955                after 30 replications. The average face detection of the real 

system is 3.577   0.509 seconds. As it can be observed, the confidence intervals of the simulated 

average face detection and the real average face detection do not overlap. Therefore, we can 

conclude that there is a statistical difference between the two means. This result is due to the 

oscillation effect which increases the average face detection time.  

In this case study, the 3M&S framework provided guidelines focused in the development 

of the conceptual modeling process of a face detection robotic application. We designed an 

interface for testing a face detection algorithm and collected the appropriate data for the 

simulation study. The3M&S framework was found helpful mostly because it assisted the user to 



  

141 

 

connect the three different models and identify the relationships of interaction points. Using DE, 

SD, and AB models, we included aspects that would be impractical or even impossible to be 

captured by one or two M&S methods. For example, the oscillation dynamics would not be 

practical to be captured by AB or DE and the robotic behavior could be better represented by 

using AB states and rules.  
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CHAPTER 5: SUMMARY OF DISSERTATION 

This research describes the need for a generic multi-method modeling and simulation 

(3M&S) framework capable of addressing DE, SD, and AB M&S methodologies in order to 

assist in solving CS problems that may occur in different domains. Chapter 1 highlights the 

research needed for a 3M&S framework to offer useful guidance for combining and/or 

integrating M&S methods to deal with CS. In this research, it is claimed that attempts to model 

and simulate CS with stand-alone M&S methods or combination of two (hybrid M&S) may end 

in designing oversimplified models that exclude important factors. There is a realization that 

combining and/or integrating DE, SD, and AB methodologies can provide an inclusive way of 

representing and dealing with CS. Although the combination and/or integration of M&S methods 

has been reported in various domains in the past, there is an absence of a conceptual 3M&S 

framework to provide guidance to the potential users on when, why, and how to combine, and/or 

integrate DE, SD, and AB M&S to form 3M&S models. In addition, this research provides 

answers of what are the interaction points among DE, SD, and AB simulation models and how 

AB, DE and SD interact with each other to exchange information. This dissertation has 

attempted to fill these gaps by providing a generic guideline on how to tackle the overall 

simulation of CS by deploying the three M&S methods together. 

The purpose of this research is to develop a generic 3M&S framework, to provide a 

guideline on the deployment of DE,SD and AB M&S methods in solving CS problems in various 

domains, such as in business and healthcare organizations. In order to achieve this goal and 

answer when, why, and how to form multi-method simulation models four main objectives are 
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outlined. The first objective of this dissertation emphasizes the comprehension of similarities and 

differences among DE, SD, and AB methodologies. The second objective focuses on acquiring 

knowledge and understanding through existing M&S studies and frameworks that have been 

deployed in the past among DE, SD, and AB methods. These two objectives are described in 

detail in Chapter 2, where we provide a brief background of DE, SD, and AB M&S 

methodologies as well as a review of the literature for the combination and/or the integration of 

M&S methods across various industries. The review of literature served as the basis for the 

development of selection criteria for the appropriateness of each of the M&S methods based on 

problem, system and methodology perspectives. Chapter 2 continues with the establishment of 

different types of relationships of interaction points that can be applied among DE, SD, and AB 

models. Finally, Chapter 2 underlines the limitations of existing frameworks that combine, 

and/or integrate DE, SD, and AB M&S methods driving towards the concern of a research gap 

for the combination and/or integration of all the three M&S methods together. On the basis of the 

understanding and knowledge acquired from the review of the literature, a generic 3M&S 

framework capable of providing guidance of when, why, and how to combine, and/or integrate 

DE, SD, and AB M&S methods was proposed. 

The third objective of the dissertation is the development of a generic framework for 

3M&S. Therefore, Chapter 3 describes the framework that provides guidance as it concerns the 

research questions of when, why, and how to deploy DE, SD, and AB M&S methods.  

Finally, the fourth objective of this dissertation is to evaluate the developed 3M&S 

framework. Chapter 4 provides the evaluation of the 3M&S framework by following its guidance 

for three different case studies.  
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Future work will include the development of a decision support tool based on the 3M&S 

framework. The decision support tool will address optimal selection of M&S method(s) based on 

given user requirements considering development time and accuracy of the simulation output 

under uncertainty. Furthermore, we will evaluate the 3M&S framework using existing studies 

that have been conducted with one or two M&S methods. We will compare these M&S studies 

with the framework’s recommendations in terms of selection of M&S methods and simulation 

output accuracy. 
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APPENDIX A: DATA ANALYSIS FOR MMCU SYSTEM 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

146 

 

Data were collected manually over a 2-day period (Friday and Saturday) for 3 weeks. 

Digital stopwatches were used to measure interarrival, travel, reneging, and service times. Digital 

counters were used to count the number of customers waiting in or entering each queue, as well 

as the number of people balking or reneging. All time measurements are expressed in minutes. 

The collected data were analyzed using Minitab, Microsoft Excel, Matlab and Arena Input 

Analyzer. Data were determined to be independent. Correlation assessment and raw data were 

tested to assure independence. Figures 37, 38, 39 and 40 illustrate the scatter plots and 

autocorrelation plots for interarrival and service times for two different days, Friday and 

Saturday. 

Interarrival Times Fridays - Saturdays 

     

Figure 37. Inter-arrival times Fridays 

 

      

Figure 38. Inter-arrival times Saturdays 
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Service times for Fridays and Saturdays 

    

Figure 39. Service times Fridays 

 

   

Figure 40. Service times Saturdays 

 

 Statistical tests (two-sample t-test and two-sample Kolmogorov-Smirvov test) were 

performed to statistically prove that data from Friday and Saturday come from the same 

population. 

After assessing independence, MATLAB Statistical Toolbox functions ttest2() and 

kstest2() were used to perform the statistical tests for uniting the two datasets.  

 Two-sample Test: 

The function h=ttest2(x,y) performs a t-test of the null hypothesis H0 that data in x and y are 

independent random samples from normal distributions with equal means and equal but 
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unknown variances, against the alternative H1 that the means are not equal. The result of the test 

is returned in h. If the result is h = 1, a rejection of the null hypothesis at the 5% significance 

level is indicated. If the result is h = 0, a failure to reject the null hypothesis at the 5% 

significance level is indicated.  

 Two-sample Kolmogorov-Smirnov (K-S) Test: 

The function h = kstest2(x1,x2) performs a two-sample K-S test to compare the 

distributions of the values in the two datasets x1 and x2. The null hypothesis is that x1 and x2 are 

from the same continuous distribution. The alternative hypothesis is that they are from different 

continuous distributions. The result h is 1 if the test rejects the null hypothesis at the 5% 

significance level; 0 otherwise. 

 The two tests were performed for two samples (Friday and Saturday) for interarrival, and 

service times. All the results were h=0, which means that data from Friday and Saturday come 

from the same population and the same continuous distributions. Therefore, the data from Friday 

and Saturday can be united into a single dataset. Table 28 summarizes the statistics for the 

Interarrival and Service Times for Friday and Saturday.  
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Table 28. Data Statistics for the two samples 

 Data for Fridays Data for Saturdays  

Name Mean 

Standard 

Deviation 

Mean 

Standard 

Deviation 

Unit 

Inter-arrival 

Times of 

Batches 

0.2219 0.2137 0.2788 0.2424 minutes 

Service Time 

of 

Concession 

Seller  

2.8678 2.1247 3.0987 1.7641 minutes 

 

  Since the tests failed to reject the null hypothesis that the data come from the same 

population, the two datasets were combined into one. 

 The input system characteristics include customer interarrival times and service times and 

were further analyzed to three alternative system designs. The fitting of distributions to each 

datum and the statistics, such as mean and standard deviation were calculated as follows.  

Arena Input Analyzer was used to fit continuous probability distributions to inter-arrival and 

service times. Figures 41-44 depict the fitted distributions.  
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 Interarrival Times 

 

Figure 41. Interarrival times Histogram (6 bin intervals by default) 

 

The Descriptive Statistics that Arena Input Analyzer provides are the following: 

 

Table 29. Descriptive Statistics 

 Summary of Data 

Number of Data Points= 43 

Min Data Value      = 0.462 

Max Data Value      = 1.35 

Sample Mean       = 0.712 

Sample Std Dev      = 0.214 

 

Table 30. Erlang distribution 

 

 

 

Distribution: Erlang     

Expression: 0.37 + ERLA(0.123, 3) 

Square Error: 0.021115 
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The Chi-Square and K-S tests were performed for this distribution by defining the 

following null and alternative hypothesis: 

H0= the distribution of the data follows an Erlang distribution 

H1= the distribution of the data does not follow an Erlang distribution 

 

Table 31. Chi Square and Kolmogorov-Smirnov Test 

Chi Square Test Kolmogorov-Smirnov Test 

 Number of intervals = 4  Test Statistic = 0.168 

 Degrees of freedom = 1  Corresponding p-value> 0.15 

 Test Statistic = 3.19  

 Corresponding p-value = 0.0786  

 

Since the p-values in both cases are greater than the level of significance α=0.05, H0 

cannot be rejected. The two tests cannot reject the null hypothesis, so Erlang distribution with 

parameters ExpMean=0.123 and k=3 can be used. 

For validation, the interarrival distribution was calibrated. Erlang distribution was adjusted to 

0.739 + ERLA(0.123, 3) in order for the simulation results to be statistically similar to the real 

world. 
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 Service Times 

 

Figure 42. Service time histogram (11 bin intervals by default) 

 

The Descriptive Statistics that Arena Input Analyzer provides are the following: 

 

Table 32. Descriptive Statistics 

 Data Summary 

Number of Data Points = 131 

Min Data Value = 1.02 

Max Data Value = 10.8 

Sample Mean = 3 

Sample Std Dev = 1.94 

 

Table 33. Gamma distribution 

 

 

 

Distribution: Gamma     

Expression: 1 + GAMM(1.71, 1.17) 

Square Error: 0.008441  
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The Chi-Square and K-S tests were performed for this distribution by defining the 

following null and alternative hypothesis: 

H0= the distribution of the data follows a Gamma distribution 

H1= the distribution of the data does not follow a Gamma distribution 

 

Table 34. Chi Square and Kolmogorov-Smirnov Test 

Chi Square Test Kolmogorov-Smirnov Test 

 Number of intervals = 5  Test Statistic = 0.0739 

 Degrees of freedom  = 2  Corresponding p-value> 0.15 

 Test Statistic = 5.8  

 Corresponding p-value = 0.057  

 

Since the p-values in both cases are greater than the level of significance α=0.05, H0 

cannot be rejected. The two tests cannot reject the null hypothesis. However, the p-values need to 

be improved. Therefore, the number of intervals changed to 15 (Figure 43) 

 

Figure 43. Service time histogram (15 bin intervals) 
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Both, Chi-Square and K-S tests were performed again for the same distribution by 

defining the following null and alternative hypothesis: 

H0= the distribution of the data follows a Gamma distribution 

H1= the distribution of the data does not follow a Gamma distribution 

 

Table 35. Chi Square and Kolmogorov-Smirnov Test 

Chi Square Test Kolmogorov-Smirnov Test 

 Number of intervals = 7  Test Statistic = 0.0739 

 Degrees of freedom = 4  Corresponding p-value> 0.15 

 Test Statistic = 3.52  

 Corresponding p-value = 0.48  

 

Since the p-values in both cases are greater than the level of significance α=0.05, H0 cannot 

be rejected. The two tests cannot reject the null hypothesis and the p-values are improved, so 

Gamma with parameters α=1.71 and β=1.17 can be used. 

 Batch Size 

 

Figure 44. Batch size histogram 
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The Descriptive Statistics that Arena Input Analyzer provides are the following: 

 

Table 36. Descriptive Statistics 

 Data Summary 

Number of Data Points= 304 

Min Data Value      = 1 

Max Data Value      = 4 

Sample Mean       = 1.91 

Sample Std Dev      = 0.844 

  

Table 37. Empirical distribution 

 

 

 

 

Common random number streams (CRNS) were implemented with the input distributions 

to reduce variance within the simulation output. Table 38 summarizes the results obtained by the 

input data analysis.  

 

 

 

 

Distribution: Empirical   

Expression: 

DISC (0.339, 1, 0.816, 2, 0.934, 3, 0.934, 

4,1,5) 
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Table 38. Input Data Statistics 

Name Mean 

Standard 

Deviation 

Unit Distribution 

Inter-arrival Times 

of Batches 

0.712 0.214 Minutes 

0.739 + ERLA(0.123, 

3) 

Service Time of 

Concession Seller 

3 1.94 Minutes 1 + GAMM(1.71, 1.17) 

 

In addition, Batch Size, Renege Time and Concession Queue Choice were analyzed. The 

Batch Size is defined as the number of individual customers who arrive together at the same time 

as a group of one, two, three, four or more customers. Although batches arrive at the same time 

in the system, each customer in a batch is processed individually as agent. A data fit for the batch 

size was attempted. The only discrete distribution offered is Poisson, which gives a very poor 

chi-square test fit. Consequently, empirical data were used to generate batch sizes. 

Moreover, it was noticed that the arriving customers prefer the concession stands that 

they first see when they enter the movie theater (Concessions 3, 4 and 5), which are located in 

the middle of the concession area. Table 39 depicts the decision of customers to select a 

concession line.  
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Table 39. Queue Choice 

Queue Choice 1 2 3 4 5 6 

Cumulative 

Fraction for 

180 minutes 

period 

0.13

9 

0.306 0.456 0.634 0.814 1 
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APPENDIX B: FACE DETECTION ROBOTIC SYSTEM 
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I. SysML Activity diagram of robotic system 

 

The simulation process is illustrated in more detail in the SysML activity diagram of 

figure 45. The robot moves forward and backward in the environment until it detects a human 

through the skeletonization process. If the skeleton detection is successful, then the robot 

attempts to locate the user’s face. In order to do this, the robot moves forward and backward 

until the face is successfully detected. If the face is successfully detected, the robot searches in 

the database for a matching face. Following successful detection, the user can receives visual 

information about the face detection and the robot returns to its initial position. The SysML 

activity diagram provided the foundation for the development of the state-chart in the simulation 

model. 

 

Figure 45. SysML diagram of robotic system 
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II. High-Level Architecture of Robotic Face Detection System 

In this section, the robotic system architecture is presented. Figure 46 describes the 

components, relationships, and interactions between the different elements of the system. The 

developed application is based on Microsoft Kinect SDK and Biometric SDK. The bottom level 

of the system architecture is composed of the Kinect device and its driver. The Microsoft Kinect 

SD provides a set of API and interfaces to be used for the sensor data acquisition and the 

interaction with the face detection application. Biometric SDK provides another set of API used 

for face detection and interaction with the Kinect sensor. The top level includes the Microsoft 

Robotic Developer Studio (MRDS) Service and the iRobot. MRDS allows for communication 

with the robot in order to perform certain tasks. Finally, iRobot receives the commands/signals to 

move forward and backward until the face is detected. 

 

Figure 46. High-Level architecture of the robotic system 
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III. Skeleton and Face Detection Interface 

The created interface for gathering the required simulation data of the face detection 

application is illustrated in Figure 47. The interface provides visual information about number of 

humans detected, skeleton and depth information, detected faces, and distance from the robot.  

Human detection is achieved through a process termed “skeletonization” [152]. The 

Kinect depth sensor, in combination with the RGB camera, is used to provide a way for 

extracting the human silhouette for skeletal processing and to apply the information for facial 

detection. The skeleton tracking algorithm gives accurate information about joint positions. 

However, challenges arise due to various issues such as: background complexity, various human-

body ergonomic parameters, lighting conditions, and higher dimensions of the search space. 

The face detection algorithm works as follows: Once the skeleton of the human is 

detected, the algorithm stores in a database the pictures taken from the Kinect. Every time a new 

picture is taken, the algorithm checks for the presence of a face. If the face is found, a positive 

message appears on the interface. If the face is not found, the appropriate, message is displayed, 

as depicted in Figure 47. 

 

 
Figure 47. Face Detectionn Interface that provides visual information about number of humans 

detected, skeleton and depth information, detected faces, and distance from the robot.  
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IV. Data Collection and Analysis prior to simulation study 

The present simulation study included the data collection and analysis of the robot 

component properties. These properties include the height of the pole, which is the distance 

between the robot and sensor, the angle of the Kinect, and the distance between the human and 

the robot.  

An experiment was designed to understand the effect of each component on the 

performance of the face detection algorithm and to define the values of the relevant parameters. 

The Kinect angle and pole height were identified as the independent variables (Figure 48), while 

the distance from the human and the face detection duration were the dependent variables. For 

the purpose of measuring the performance, a temporary construction was mounted on the robot. 

The construction included an adjustable pole to change the height of the sensor. 

Following the verification of the face detection algorithm, the behavior of the robot was 

tested using two decision criteria: 

 “Average face detection time” 

 “Robot’s distance from the human subject” 

 

 

Figure 48. Variables considered for data collection and analysis. 
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Measurements were collected for each variable by keeping the other two variables 

constant. The collected results were then analyzed. The collected data were plotted in three 

graphs grouped according to their associated height values, 15.5 cm, 16.5 cm and 17.5 cm 

(Figure 49). In each graph, the duration performance was studied for different angles values of 

the Kinect sensor ranging from 19
○
 to 27

○
. 

 

(a)  

(b)  

(c)  

Figure 49. Facial detection durations in seconds associated height values (a) 15.5 cm (b) 16.5 cm 

and (c) 17.5 cm 
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Two cases were found to be really close to each other (Figure 49b, 49c). However, 

considering the impact of height on the inertia, it was decided to select the combination which 

had the lower height and average of face detection time. Thus, height was set at 16.5 cm. Based 

on the collected data the minimum face detection time would be achieved by setting the angle of 

the Kinect sensor to 22
o 

for height=16.5 cm and distance equal to140cm. The estimated height, 

angle and distance values were then set as the default properties in the robotic simulation (Table 

40). 

 

Table 40. Properties of Robotic Simulation 

Height Angle Distance 

16.5cm 22
o 

140cm 

9a
cm = centimeter, and 

o
 = degree. 

 

 

 During the experimentation, since the robot was assumed to be stable and still, some of 

the critical variables were not included in the tests. The effect of oscillation caused by the 

velocity and the acceleration was one such variable. Even though it was assumed to have no 

effect, for the actual experimentation, it would be wrong to design a system and a simulation 

without considering the impact of oscillation on the face detection time. Therefore, in the 

simulation study we considered the oscillation effect and investigated how it impacts the average 

time of detection. 
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Data were collected manually using digital to measure the actual face detection time of 

the robotic application. The distance between the robot and the human was constant and equal to 

140cm, the height of the pole that the sensor was attached was 16.5 cm and the kinect angle was 

22
o
. Data were determined to be independent. Correlation assessment and raw data were tested to 

assure independence. Figures 50, 51 illustrate the scatter plots and autocorrelation plots of the 

face detection times for 30 observations. 

 

Figure 50. Scatter plot of face detection time data 

 

 

Figure 51. Autocorrelation plot of face detection time data 
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