University of Central Florida

STARS

Retrospective Theses and Dissertations

2001

An Adaptive Integration Architecture for Software Reuse

Denver Robert Edward Williams
University of Central Florida, denverrwilliams@gmail.com

Find similar works at: https://stars.library.ucf.edu/rtd
University of Central Florida Libraries http://library.ucf.edu

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted
for inclusion in Retrospective Theses and Dissertations by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

STARS Citation

Williams, Denver Robert Edward, "An Adaptive Integration Architecture for Software Reuse" (2001).
Retrospective Theses and Dissertations. 1400.

https://stars.library.ucf.edu/rtd/1400

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/rtd
https://stars.library.ucf.edu/rtd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/rtd/1400?utm_source=stars.library.ucf.edu%2Frtd%2F1400&utm_medium=PDF&utm_campaign=PDFCoverPages

ES

U]
S &

(LI
03 01075 635

5

AN ADAPTIVE INTEGRATION ARCHITEC TURE
FOR SOFTWARE REUSE

By
Denver Robert Edward Williams

2001

UCF

AN ADAPTIVE INTEGRATION ARCHITECTURE
FOR SOFTWARE REUSE

DENVER ROBERT EDWARD WILLIAMS
M.S. University of Central Florida, 1993
B.Sc. (Special) University of the West Indies, 1986

A dissertation submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy
in the School of Electrical Engineering and Computer Science
in the College of Engineering and Computer Science
at the University of Central Florida
Orlando, Florida

Summer Term
2001

Major Professor: Dr. Ali Orooji

Copyright © 2001 Denver R. E. Williams

ABSTRACT

The problem of building large, reliable software systems in a controlled, cost-
effective way, the so-called software crisis problem, is one of computer science’s great
challenges. From the very outset of computing as science, software reuse has been touted
as a means to overcome the software crisis issue. Over three decades later, the software
community is still grappling with the problem of building large reliable software systems
in a controlled, cost effective way, the software crisis problem is alive and well. Today,
many computer scientists still regard software reuse as a very powerful vehicle to
improve the practice of software engineering. The advantage of amortizing software
development cost through reuse continues to be a major objective in the art of building
software, even though the tools, methods, languages, and overall understanding of
software engineering have changed significantly over the years,

Our work is primarily focused on the development of an Adaptive Application
Integration Architecture Framework. Without good integration tools and techniques,
reuse is difficult and will probably not happen to any significant degree. In the
development of the adaptive integration architecture framework, the primary enabling
concept is object-oriented design supported by the unified modeling language. The
concepts of software architecture, design patterns, and abstract data views are used in a

structured and disciplined manner to established a generic framework. This framework is

111

applied to solve the Enterprise Application Integration (EAIl) problem in the
telecommunications operations support system (OSS) enterprise marketplace.

The proposed adaptive application integration architecture framework facilitates
application reusability and flexible business process re-engineering. The architecture
addresses the need for modern businesses to continuously redefine themselves to address
changing market conditions in an increasingly competitive environment. We have
developed a number of Enterprise Application Integration design patterns to enable the
implementation of an EAI framework in a definite and repeatable manner. The design
patterns allow for integration of commercial off-the-shelf applications into a unified
enterprise framework facilitating true application portfolio interoperability. The notion of
treating application services as infrastructure services and using business processes to
combine them arbitrarily provides a natural way of thinking about adaptable and reusable
software systems.

We present a mathematical formalism for the specification of design patterns.
This specification constitutes an extension of the basic concepts from many-sorted
algebra. In particular, the notion of signature is extended to that of a vector, consisting of
a set of linearly independent signatures. The approach can be used to reason about
various properties including efforts for component reuse and to facilitate complex large-
scale software development by providing the developer with design alternatives and

support for automatic program verification.

I dedicate this dissertation to my family: my wife, Michelle and sons Nicoli and Stefan.

ACKNOWLEDGEMENTS

I would like to thank my doctoral committee Dr. Ali Orooji, Dr. Charles Hughes,
Dr. Sheau-Dong Lang, Dr. Rebecca Parsons, and Dr. Harley Myler for their help, critical
comments, direction, support, and encouragements during the different phases of my
doctoral study program. 1 appreciate the time, energy, and valuable insights they have
provided so that this work could be accomplished.

Dr. Ali Orooji, my advisor and committee chair, deserves special thanks for
editing the work and the countless hours we spend discussing various issues. His
guidance and tutelage over the years contributed significantly to my academic maturity,
for which I am profoundly grateful and indebted.

Dr. Rebecca Parsons deserves a special thank you for the significant insights she
provided in the areas of algebraic structures and their semantics.

I would like to thank Dr. Charles Hughes and Dr. James Rogers (Dr. Rogers is a
former faculty in the Department of Computer Science) for helping to cultivate in me a
love for theoretical computer science.

My Mom and Dad deserve a very special thank you for their love, support, and
encouragement throughout all my life. I would like to thank them for the discipline and
love of learning that they have instilled in me in my early childhood. Without their
efforts, none of this would have been possible.

Vi

I would like to thank my brother and sisters Lawrence, Jacqueline, Carol, and
Racquel for their love, support, and encouragement throughout these years.

Finally and significantly, I am indebted to my family: my wife Michelle and our
two sons Nicoli and Stefan, for their patience and understanding, their love, support and

encouragement throughout these years. I thank you guys for believing in me.

vil

TABLE OF CONTENTS

LASE Of ACTOMYMIS L. oottt et e e e e Xiil
RASEOTTUBIEGY oorsciosersomummmn e O s PRV R L b SR B¥v s Sy e s FAEE RS L A S LT XVI
Chapter 1z INtroQUCHON ... cummmmmimmmimsiiss s e e s i s T o avenses 1
1.1 Expansive View of Software Reusec..coooiiiiiii 2

1.2 Module Interface and Software Reusec.ccooeiiiiicniiiiiiiiiiiinnnnn, 5

1.3 User Interface and ReUss uinmmsemivssmmssiasiies s aiss s i ity 8

L& OMTCOMIDUEION 1anocyii s sioiiinss 90 v i s s e s s s AT 9

1.5 Outline of DisSertationccccoevoeiiiiiiiueeeeiiiieiieeieiee e 12
Chapter 2: Outline of Previous Work ... 13
2.1 AADSETACIRONE vesessoousericsnsmsnmnsrasiiosssmes b i i B s S N S Se) 13

2.1.1 Abstractions in Software Development 14

2.1.2 Abstractions in Software Reusecooooooviiiniiiinn, ——

2003 Cognitive IDISTINTE <uewommmiiiminis (i i s s rmmasens s sbtn 93 19

2.2 Classification of Reusable Modelscooooiiiii 20

27,1 Software CompPONBNLS .. s i a0 22

2.2.2 Software Components Reuse Model ..., 24

223 Classification Prmciplescossoemsmsmmmivmmssesmmsimimmisie 26

2.2:4 Software ClasSHfICAtION ... usaiiisiniisimissimmm s srmnsmns s tams 28

225 Conceptunl CIOSENESS ... c.ov.ommssormssonmemmsisisresosvassmmssssinisiii 31

228 Domain BnalYEIS s i s s o 32

23 Types of Reusable Software Systems ... 34

2301 PassiVE SYSIEMSE . romumniimos s iminsssss s i s i S iatis 35

2.3.2: ACHVE SYSIEMSE .cnmpinesms s s

2.4 Reuse, Design Pattern and the Object-Oriented Paradigm
2.4.1 Program to an Interface, not an Implementation
24.2 Object Composition .u.smmssmussevsnsimma T SR SR
2R3 DBIEERIOT. i o R S R S
2.5 Current Trends ...
2.5.1 Challenges in System Developmentc.cccoiiiiiiiiiiiinnn,
2.5.2 The Common Request Broker Architecture (CORBA)
Chapter 3: Abstract Data Views, Design Patterns, and Software Architecture .
3.1 ADSHECUDBtA VIBW wovivusamiseinasissim i i
3.1.1 ADYV and Software Reuse ...
3.2 Design Patlerns ...
3.2.1 .Abstraction and Design Pattern ...oineims s mnsai
3.3 Architecture Approach to Software Construction
3.3.1 Software Architecture and Abstraction
3.3.2 Benefits of Architectural Approach to Software Construction ...
Chapter 4: Outline of Our Work ...
4.1 What is the Enterprise Application Integration Problem?
4.2 Solution to the Enterprise Application Integration Problem
43 Generic Adaptive Application Integration Architecture Model
431 PO ABplICatisHs vasnnmsnmnnnnnns s e
43.2 Domain Application Adapters T I

4.3.3 Asynchronous Distributed Object Framework and
Infrastructure Servicesccocoiiiiiiiiiiiieiiei i
43.4 Mediation ServiCes ...

435 Jutomsted MAEPINIE ooanmaannsmsrmanens i st
4.3.6 Presentation SEIVICESooov.ii e

4357 Thin Clisht APPHEEHONS oo mmrmmsmrmmmm st amssmasnsaai

75

78
79

44 Frameworks and Patterns of Interactionccoooocoeiiiiiiiiiinn. 80
4.4.1 Coordination Patternccooceveiiiiiiiiiiiinieniie e, 80
442 ConBpurationPattein ... conusnmnsimmmmmmsasrasinm s i 82
4.4.3 Model PAttErnccccrerrerreresionessorsessssssssssssosssrasssansnnsssssrssssassos 83
Chapter 5: Adaptive Orthogonal N-Tier Integration Architecture ... 86
3.1 The Need for Application Portfolio Integrationcccoooiiiinn 86
5.2 Traditional Approaches to Enterprise Application Integration 88
53 N-Tier Orthogonal Application Integration Architecture 91
54 Implementation and Protocol of the Enterprise Mediation Layers 94
5.4.1 Component ConstruCtioncccooreiiiiiiiiiiiiiiiiiiiii 96
5:4.2 ComponentINtErACHON cuescriasusimmmmmssuiametie s sy s o8
Chapter 6: The Adaptive EAT Framework ... 102
6.1 Distributed Object FramBwWork v wseiaissonsssenssaas s osnsamesmisis 104
62 Domain Application AdApIers) s i i v 109
6.2.1 Domain Application Adapter Design Pattern 110
63 . Application:AdapterMediation ...csuswonomascummsmssemsessnssess 112
6.3.1 Application Adapter Mediation Pattern 113
6.4 Event Mediationooooiiiiiiiieiii i 113
6:4.1 Event Mediation PaIErn .. covaimsmnsemsmissmay smssimiss s ssssosss 114
6.5 Package MEdIBIIONoorsessmmiomsmsissems irems s s i R TR 115
6.6 Flexible Business ProCessocoooiiiiiiiiiiiiiiiiiiiiiiiiiicciiiiie e 115
6.7 | Pultng B T ORREHET soucuaumuuyiss i s s it e s T s SoR s 117
Chapter 7: OSS Integration in the Telecommunications Industry ... 119
7.1 Ky Tndistiy SnAands: oo s s s s 121
7.2 Solution to the Telecom OSS Integration Problem — a business
PIOGESS CBITIC AP Proach . cuccsnusumssmumesmassisis R AR 122
7.3 Information Architecture: Static Domain Model I 130

7.3.1 Customersand OFARE:ooooomememe s cnmmmesmman oo esir i ds vyt 130

7.3.2 Service Enrollment Simplified ... 131

7.3.3 Order Operatons: ;.o U 132

7.3.4 Offerings and Offering Instancesc.cocceeiiiiiiiiiniiinn, 134

T8 TEFETIIES icvscsinsnminsonsksingiosesmssm wsss sammsss 5 S S E TR E Y K Ko e 135

7.3.6 ‘Customer and Service Locations ... iumsiumimemsmasasiig 137

7.3.7 Customers and Service Enrollmentscccociiciiiin, 139

7.3.8 ‘The Order Worldcouvmmmmwimunsmsssmmimssmzseossmvmiess - 140

7.3.9 The Customer World S U R A e AR 142

7.3.10 Simplified Telco Organization Structurecccccoeveiieen. 143

7.3.11 Telco Organization in Detailcccooeeiiiiiiiiiiiieiii, 144

7.3.12 Instances of Business Activity Flows ..., 145

7.3.13 Orders in the Flow of Business ACtivityoccoceeviiiiennn. 147

T:3i V8 WOTKHEIS uscnscosimmsiimossinimnmimusmms momioyswssiassss e 68 s Rmassre 148

7.3.15 Combined Business ACtiVItY FIOW . juniuiissvinmssminssiisis 149

7.4 Example: Get Customer Record for Viewing ... 151

7,3 QUIMMIBEN, 5 o 000 b A S A R M NS SN RO B AT R 155

Chapter 8: UML Model Based Component development Framework 157

8.1 Model Based Software COnStRUCHON ;.. . ssiinsssasmms s 157

8.2 Meta-Object Information Repositoryccccooiiiiiiniiiiiiiiiiiiii 162

Chapter 9: A mathematical Formalism for Specifying Design Pattern 165

9.1 Definitions and Concepts BB R S AP S KA o s 166

9.2 Semantics of Design Patterns and their Specification Constructors ... 188

93 Closure of Design Patterns Under Compositionccccoooiveeiiean, 191

9.4 Examples Illustrating the Use of the Formalism Presented Above 193
9.4.1 The Transformation Process of Building the Document

Framework Patternccccoviiiiiiiiicinn st e ssse e 199

9.5 Applicability 18 REMSErocmsemmmmnnonrtinsis Gas GRS s aibess 201

Xl

Chapter 10: Concluding Remarks and Future Work ... 203

T0.1 SUMMATY oo, 204
10:2 Futire WIOTK vsassmsovs e iss i smmsi b o i s o s e S devaasnsai 206
R O I C S 208

xil

ASL

CORBA

COTS

CRM

DOD

DOM

EAI

ER

EUML

FSA

LIST OF ACRONYMS

Atomicity, Consistency, Isolation, Durability
Abstract Data Object

Abstract Data Type

Abstract Data View

Abstraction-Link View

Application Program Interface

Action Semantic Language

Common Object Request Broker Architecture
Commercial Off The Shelf

Customer Relationship Management
Department of Defense

Distributed Object Management

Enterprise Application Integration

Entity Relationship

Extended UML

Finite State Automaton

High Level Architecture

High-Level Language

Integrated Development Environment

Xiil

IDL Interface Definition Language

1(0) 3 Internet Inter Operable Protocol
ISP Internet Service Provider
IT Information Technology
ITU International Telecommunications Union
LA Lexical Affinities
LIFO Last-In-First-Out
| MBCD Model-Based Component Development
MIR Meta-Object Information Repository
MOF Meta Object Facility
MPP Massively Parallel Processing
MVC Model View Controller
NUI Non-User Interface
OA&D Object Analysis and Design
OMA Object Management Architecture
OMG Object Management Group

OODBMS Object-Oriented Database Management System
ORB Object Request Broker
0SS Operations Support System

RDBMS Relational Database Management System

RMI Remote Method Invocation
SE Service Enrollments
SI Systems Integrators

X1V

SMP

TMN

UID

UIDS

VAR

VHLL

VLSR

Symmetric Multi-Processing
Telecommunications Management Network
Universal Design Language

User Interface

User Interface Design

User Interface Design System

Unified Modeling Language

Value Added Reseller

Very High-Level Language

Very Large-Scale Software Reuse

Extensible Markup Language

XV

2:1

2.2

23

24

3.1

3.2

33

3.4a

3.4b

4.1

4.2

43

44

45

4.6

5:1

2

6.1

6.2

LIST OF FIGURES

Twio-level Abstraction BHETATCHY: <o .cuws v svsiismsimss o issssssdessss 15
Mapping from a variable abstraction specification ... 17
Renise SYStem GENCAIORY -cuv s s o s s s e 40
A Window class delegates its Area operation to a Rectangle instance ... 49
The Abstract Data View Modelooooiiiiiiiiin e 56

The Modularization Theorem of Reuse of ADTs interpreted through ADVs ... 57

Generic two-level abstraction hierarchy for design patterns 60
Structure and participants of the Reactor design pattern SR 60
Structure and participants of the Factory Method design pattern 61
Generic Adaptive EAL Architecture Modelccnsmismmamimsam s 73
Distributed Object Framework c.coasmmannaussarisnsmmmsisssmmssiasesis 75
The Sub-Layers in the Mediation Services Layerccccoiiiiiiiiiiniicinn. 76
Example Coordination INteractioncccoeiiiiiiieeeoiiieiieiie e 81
Example Configuration Interaction ..o 83
Generic Model PAttern ...t 84
Traditional N-Tier Application Integration Architecture Model 90
Mediation Service Layers Implementation and Protocol ... 95
Adaptive EAL Architecture FrameWork .. i asraeis s s s s s 103
Persistent Object Service COMPONENSooooiiiiiiiiiiiiiiiiiiii 105

XVi

6.3

6.4

6.5

6.6

6.7

6.8:

7.1

8

7.3

7.4

73

7.6

17

78

19

7.10

7.11

7.12

7.13

7.14

7.15

7.16

Tl 7

EventServiCEOBIORIE it s ooy r s i s A s e S e T e 106

Domain Application Adapter Design Patternccccocovviiviivinniversasisiimnmssisnns 111
API Specific WIaAPPET ...oooiiiiiiiiiiiie e 112
Application Adapter Mediation Patternocooooiii i 113
Event Mediation Patternoccooiiiiiiiiioiieceeee e 114
ADYV Representation of Business ProCessescooooovveioviieeiieiieiiiiinen 117
ITU Standard TMN Information Model ... 121
Generic OSS Integration Architectureooooiiiiiiiiiiiiiiiii, 125
EAT Context DIagram ...t 126
Application Mediation SEIVET .o s s i nn s srisis 127
Billisig Application AQaPHET .. vwrsamsusmeriis i s s s 128
CBM. ApplicAtiGnAAPTET . cvouexaumisumisi i s s s s R 129
COstomers and OrderS «onssoin smiiis i i s ar s e e MR isFs 130
Service Enrollment Simplified ... 131
Order OPErationSocoiiiiiiiiiii e ... 133
Offering and Offering INStances ..o 134
OITCHINRY. v e e e e e e e 136
Custormer dhit, SBIICE LOBAIONS e s s st R e 138
Customer and SEivice EnrOlIMENES ...cvviiivimiiciiimssesmmmsivassmsoismssmmsnmis s o 139
The Order World ... 141
The Customer World OO 142
Simplified Telco Organization StrUCtUrecccoovvieiiviiieiiecceceeeeee e 143
Detail Telco Organmzition SIicite wunmsnmmsummpaiimsinmrmeis 145

XVvil

7.18

7.19

7.20-

7.21
7.22
7.23
7.24
7.25
7.26
7.27
8.1

9.4

9.2

9.3

9.4

9.5

9.6

9.7

9.8

95

9.10

Instances of Business Activity FIOWS ... 146

Orders in the Flow of Business ACtVIHIESoooiieiiiiiiiiiiiiiiiiiee 147
WOTkIStS ociviwmssummssausuens S—— R SN R AN B RS A SRR S 148
Combinéd Business: ACHvItY FIOWoccansisiussnvmsissmassams 150
Customer Busingss Object ...opupesqumsssi o ssmma s 151
Gel Cistomer ot TRV OPeRaIIoN qus i s it 152
Get Contact Information from CRM State Diagramccooociiiiin 153
Get Contact Action SEmantic LANGUABE .:ie:civer svsvessssnsmmonssssornssosssssoszssinsnss 154
Retrieve Customer Data for Viewing Operationccccoooiiiiieiiiin, 155
Retrieve Customer Data Activity Diagramccooooiiiiiiiiiiiiiiee, 156
Model-Based Component Development Frameworkcccooiiin. 158

Commuting Diagram illustrating the homomorphism condition of the
homomorphism /#: A—B for the operation w = (n:5, x...xs, = 5), k=20 ... 170

Commuting diagram illustrating the vector homomorphism condition 173
A Design Pattern Fragmentoooiiiiii 176
Graphical Representation of a Module Signatureccoooi, 177
Schematic Representation 0f Desigh PAtterns: ... uwsmisissivisvssssansiissssons siass 180

Schematic Derivation Tree for Vector Algebra B being derived from Vector

ALZEDTA A 187
A General Schema forat ADV oo iasssammmssimmi s seesses 189
KiGeneral-Schema foran ADT. ..o smsansmmnnas s 190
A General Schema Showing Inclusion of an ADT inan ADV 191
Generic Structure of the Factory Method Design Pattern ..o, 193

XVviii

9.11 Instance of Factory Method Design Pattern ...

9.12 Factory Method Design Pattern with Interface

X1X

..

...

Chapter 1

Introduction

The problem of building large, reliable software systems in a controlled, cost-
effective way, the so-called software crisis problem, is one of computer science’s great
challenges. From the very outset of computing as science, software reuse has been touted
as a means to overcome the software crisis issue. At the 1968 NATO conference Mcllroy
presented the seminal paper on software reuse, Mass Produced Software Components
[Mcllroy 1968]. In this paper, he proposed the notion of a library of reusable software
components and automated techniques for customizing the components to different
degrees of precision and robustness. Mcllroy envisioned that software component
libraries could be effectively used for numerical computation, I/O conversion, text
processing, and dynamic storage allocation.

Three decades later, the software community is still grappling with the problem of
building large reliable software systems in a controlled, cost effective way; the software
crisis problem is alive and well. Today, many computer scientists still regard software
reuse as a very powerful vehicle to improve the practice of software engineering. The
advantage of amortizing software development cost through reuse continues to be a major
objective in the art of building software, even though the tools, methods, languages, and
overall understanding of software engineering have changed significantly over the years.

1

In spite of its potential benefits, reuse has failed to become a reality in software
development, in that the efficiency of software construction has not improved by an order
of magnitude. In light of this failure, the computer science community has renewed its
interest in understanding how and where reuse can be effective and why it has proven so
difficult to bring the seemingly simple idea of software reuse to the forefront of software

development technologies [Krueger 1992].

1.1 Expansive View of Software Reuse

Software reuse is the reapplication of a variety of existing knowledge during the
construction of a new system to reduce the effort of development and maintenance of the
new system. This reused knowledge includes artifacts such as domain knowledge,
development experience, design decisions, architectural structures, module-level
implementation structures, specifications, transformations, requirements, designs, code,
documentation, etc. This expansive view of reuse is necessary because the more narrowly
defined views of reuse, in general, have shown very little return on investment. The more
narrowly defined views of software reuse include the following: “Reuse is the
reapplication of code,” “Reuse is the use of subroutine or object libraries,” or “Reuse is
the use of C++ classes” [Gamma 1996]. These views are all centered on the reapplication
of code components. Source code languages induce a high degree of specificity on the
reusability of software components and hence, the most highly reusable components tend
to be small. Building systems out of small components leaves a lot of work to be done in

building the architectural superstructure that binds the components into a whole system.

(58]

The cost to build this superstructure is typically much larger than the savings afforded by
reusing a set of small components [Biggerstaff 1989].

One possible improvement is to make the code components larger. Unfortunately,
this approach has a corresponding set of problems. As the software code components
increase in size, the probability of reuse decreases. Their specificity reduces the
likelihood that exactly the same set of requirements will arise again. Therefore, while the
potential payoff for any single reuse may be high, it is mitigated both by the low
likelihood of reuse and the significant effort that may be required to understand and adapt
large components to the new system. This is the crux of what has been dubbed as the
Very Large-Scale Reuse (VLSR) problem.

Thus, code-oriented reuse is not sufficient to unlock the full potential of software
reuse. Code-oriented reuse is expected as a matter of course, but if we are to realize the
full potential of reuse, we must look beyond code-oriented reuse to Very Large Scale
Reuse.

VLSR introduces a whole new set of research problems centered around the issue
of making the component representation sufficiently general to allow reuse over a broad
range of target systems, and possibly across multiple domains. That is, VLSR mandates
that we eliminate some of the specificity necessitated by a source code-oriented
specification, We must determine representations that allow the large-grain components
structure to be described precisely while leaving many of the small, relatively
unimportant details uncommitted. Such representations must allow a broader range of
information to be specified than source code can accommodate, e.g., design structures,

domain knowledge, design decisions, etc.

ed

There is great diversity in the software engineering technologies that involve
some form of software reuse. However, there are commonalties among the techniques
used. For example, software component libraries, application generators, source code
corﬁpi]ers, and generic software templates all involve abstracting, selecting, specializing,
and integrating software artifacts [Krueger 1992]. Software engineering technologies can
be analyzed and contrasted in terms of their idiomatic reuse techniques along four
metrics:

a. Abstraction

All approaches to software reuse use some form of abstraction for software

artifacts. Abstraction is the essential feature in any reuse technique. Without

abstractions, software developers would be forced to sift through a collection of
reusable artifacts trying to figure out what each artifact did, when it could be
reused, and how to reuse it.

b. Selection

Most reuse approaches help developers locate, compare, and select software

artifacts, For example, classification and cataloging schemes can be used to

organize a library of reusable artifacts and to guide software developers as they
search for artifacts in the library.
C. Specialization

With many reuse technologies, similar artifacts are merged into a single

generalized (or generic) artifact. After selecting a generalized artifact for reuse,

the software developer specializes it through parameters, transformations,
constraints, or some other form of refinement. For example, a reusable stack

4

implementation might be parameterized for the maximum stack depth. A

programmer using this generalized stack would specialize or adopt it by providing
a value for this parameter.
d. Integration

Reuse technologies typically have an integration framework. A software
developer uses this framework to combine a collection of selected software
components and specialized artifacts into a complete system. A module
interaction language is an example of an integration framework [Prieto-Diaz
1986]. With a module interaction language, functions are exported from modules
that implement them and imported into modules that use them. Modules are
assembled into a system by interconnecting modules with the appropriate exports

and imports.

1.2 Module Interface and Software Reuse

A major limiting factor to the reuse of designs and implementations of software objects
and modules is the fact that they internalize knowledge about their surrounding
environments. It is customary for a module or object of an application to know about its
user interfaces, specifically details of how its data structures will be displayed, how the
user will interact with the application, or what objects on the screen correspond to
activation of components of the module. In addition, a module may know too much about
the services offered by other modules. For example, a module may know too much about
the naming conventions in a file system, or about the names of modules or functions from

which it acquires services.

Such specific knowledge is counter to the notion of software reuse as well as to
good software engineering practice. For instance, there are many ways that a data
structure can be displayed, and since this is not an intrinsic property it should not be
attached to the data structure. Input has a similar property. There are many ways that a
user can interact with an application and so the application should not be aware of the
mode of interaction. A module should know it requires services and specify that fact, but
it should not specify how those services are supplied. That is, a component should not be
aware of the syntactic or semantic structure of a component from which it acquires
services. It follows that a disciplined approach to naming among components is a
prerequisite to reuse of component specifications or implementations.

A module should be separated from user interactions or from the services supplied
by another module or object. This requirement can be accomplished by using a
specialized interface that isolates a module’s interactions from knowledge of the
interacting entities. The interface should be aware of the requirements of the module or
object, but the module or object should not be aware of the interface. This approach to
defining an interface implies a clear separation of concerns. Such a problem is often
addressed in mechanical systems where a linkage “interface” joins two components, one
of which supplies a service.

The literature is littered with treatises on various architectural models and
programming approaches that have been proposed; these clearly separate the user
interface from its corresponding application [Carneiro 1993; Olsen 1983; Green 1983:
Bass 1991; Coutaz 1991, DEC 1991, Hill 1992; Hartson 1989; Krasner 1988:
McCormack 1988; Hill 1986, Myers 1991]. However, in these architectural models, little

6

guidance is given to designing a program to have a reasonable level of assurance that the
architecture will be followed. The model view controller (MVC) [Krasner 1988] and
abstraction-link view (ALV) [Hill 1992] are specific implementation techniques that rely
on corit_emporary programming models. For example, the MVC was originally introduced
in Smalltalk and ALV used constraint programming in a LISP environment. These are
excellent implementation strategies, but they are very difficult to map into other
programming paradigms.

Windows toolkits such as X Windows [McCormack 1988] or Motif [OSF 1990]
offered another approach to the module interface separation issue. These systems expose
window components as objects that can be accessed by the application. Although it is
possible to use these toolkits and maintain a high degree of separation, there is no well-
defined approach as to how to achieve this goal. In addition, most window toolkits do not
appear to support an appropriate level of abstraction for user interfaces. The toolkits tend
to expose details such as the event dispatcher that places the control with the application
resulting in asynchronous calls to the user interface components or a spaghetti of
callbacks. Cowan, Lucena, and Stepien [Cowan 1993], [Cowan 1993a] espouse the view
that control should reside with the user interface and not the application, and since this
approach simplifies communication the toolkit should support that view. Systems such as
Visual Basic [MSC 1991;WIC 1993] and Tk/Tcl [Ousterhoust 1994] conform very

closely to this view of user interface.

1.3 User Interface and Reuse

Cowan and Lucena performed exhaustive examination of the problem of separation of
concerns and reuse of designs. This led them to propose a new formal design model for
both user interfaces and general module interfaces. There are some key requirements that
they think the model should satisfy. The model should have the structure and operators to
guide the designer into clearly separating the interface from the application and
encourage the programmer to maintain that separation during the implementation. The
model should also allow the designer to reason about the complete design and its various
substructures. Furthermore, the model should be independent of a specific programming
environment. They have created a design model called the abstract data view (ADV)
[Cowan 1993; Cowan 1993a; Cowan 1993b] that makes significant progress in satisfying
the above stated properties.

Using pairs of objects to represent application components and their interfaces in
reusable designs provided the original motivation for the concept of abstract data views
[Cowan 1993; Cowan 1993a]. The specific types of application components and interface
components are called, respectively, abstract data objects (ADO’s) and abstract data
views (ADV’s). An ADV is used as an interface (in a very broad sense) for ADO’s in
designs and provides a “view” of an ADO. Specification constructors are used to
combine ADV’s and ADO’s to produce more complex designs, and this process has been
validated by proof of concept architectures. The approach can be seen as a way of
providing language support for the specification and abstraction of inter-object behavior

[Helm 1990].

The ADV approach has been validated in a number of research prototypes.

ADV’s have been used to support user interface for games and a graph editor [Cowan

1992], to interconnect modules in a user interface design system (UIDS) [Cowan 1992],

and to support concurrency in a cooperative drawing tool. In addition, it has been used to

design and implement both a ray-tracer in a distributed environment [Lucena 1993] and a

scientific visualization system for the Riemann problem.

1.4

Our Contribution

The contributions of this thesis are as follows:

1.

Our work is primarily focused on the development of an Adaptive N-Tier
Orthogonal Enterprise Application Integration (EAI) Architecture Framework
[Linthicum 1999]. Software reuse and software integration are very closely
related concepts since integration is the combination of two or more existing
components. Without good integration tools and techniques, reuse is difficult and
will probably not happen to any significant degree. In the development of the EAI
architecture framework, the primary enabling concept is object-oriented design
support by the unified modeling language (UML) [Harman 1997, Derr 1997]. The
concepts of software architecture, design patterns, and abstract data views are
used in a structured and disciplined manner in establishing a generic EAI
framework. This framework is applied to solve the EAI problem in the
telecommunications operations support system (OSS) marketplace.

We used the concepts of design patterns [Gamma 1996; Fowler 1999],
abstract data views [Cowan 1992; Alencar 1994], and software architecture

9

[Cowan 1993a; Booch 1999; Orfali 1998] to develop the EAI framework. Design
patterns allow us to solve various pieces of the overall problem. For example, we
developed a number of EAI design patterns that are used to integrate legacy third
party applications into the EAI framework. These design patterns allow us to
develop a very definite and repeatable process for integrating legacy as well as
newly developed applications into a unified framework. The abstract data view
approach with its compositional capability is used to aggregate and build up the
overall solution by combining smaller macro components.

In addressing the EAI problem in a generic manner, our architecture
centric approach presents solutions for the following broad problematic areas:
a. Facilitate the integration and interoperability of stove pipe legacy applications

b. Cater for a clear separation between the business models and machine models

o

Facilitate the development of adaptive business process re-engineering
d. Facilitate the use of the Internet as a business platform across the entire
enterprise

The problem areas indicated by (a), (b), and (c) have been around for a long time
and notoriously regarded as almost intractable problems in the sphere of the
business community. Solving these problems will present a whole new way of
looking at how we develop business software systems of the future.

We used the adaptive orthogonal EAI framework to develop a solution to the
opcrations support system (OSS) problem in the telccommunications industry.

The approach presents an adaptive business process integration framework where

business processes acts as collaboration agents between objects from lower levels
of the architecture.

We present a model-based software development approach. This is an approach to
raise the abstraction level at which application developers work and to automate
the process of translation from an application model to its corresponding
distributable runtime component. The basic thesis here is that we can effectively
reverse the effort role in the software development process in which about 80% of
the effort goes into the development of infrastructure services and 20% into the
development of application logic.

We present a mathematical formalism for the specification of design patterns.
This specification constitutes an extension of the basic concepts from many-sorted
algebra [Zilles 1974, Enderton 1972]. In particular, the notion of signature is
extended to that of a vector, consisting of a set of linearly independent signatures.
The linearly independence property is necessary to satisfy non-interference that is
essential for compositional based construction. This is of fundamental concern in
the building of large-scale software systems where we have the composition of
smaller components to form larger components. The approach can be used to
determine efforts for component reuse and facilitate program verification. The
approach has the potential to be able to aid complex software development by
providing the developer with design alternatives and automatic program

verification capabilitics.

11

1.5 Outline of the Dissertation

The remainder of this dissertation is organized as follows. Chapter 2 presents an outline
of the previous work. Chapter 3 extends the discussion on previous work by presenting
an overview of the central concepts of design pattern, abstract data views, and software
architecture. These concepts form the foundation of our work. Chapter 4 presents an
outline of our work. Chapter 5 provides the key concepts of the adaptive orthogonal n-tier
integration framework. Chapter 6 presents the adaptive EAI architecture framework.
Chapter 7 provides the solution to the telecom OSS integration problem. The solution
incorporates a detailed domain analysis of the telecommunications domain. Chapter 8
presents the model based software development framework. Chapter 9 provides a
mathematical formalism for the specification of design patterns. The formalism is an
extension of the relevant many-sorted algebraic concepts. In chapter 10 we present our

conclusion and future work.

12

Chapter 2

QOutline of Previous Work

This chapter provides an outline of the major concepts that have influenced the
general thinking in the area of software reuse. Some fundamental concepts such as
abstraction and classification and the role they play with respect to software reuse are

examined. We also present various models of software reusability.

2.1 Abstraction

Abstraction is an essential part of any software reuse system and as such can be viewed
as a unifying theme for software reuse. This notion reflects the view that successful
application of a reuse technique to a software engineering technology is inexorably tied
to raising the level of abstraction for that technology. Raising the abstraction levels for
software engineering technologies has proven to be extremely difficult, thus the relation
between abstraction and reuse provides us with the first clue as to why there are so few
successful reuse systems.

The relationship between software reuse and abstraction has been noted in the
literature [Booch 1987, Parnas et al. 1989; Wegner 1983]. Wegner states that “abstraction
and reusability are two sides of the same coin.”” He states that every abstraction describes
a related collection of reusable entities and that every related collection of reusable

entities determines an abstraction.

2.1.1 Abstraction in Software Development

Abstraction is a tool that is used by software practitioners and computer scientists to help
manage the intellectual complexity of developing very large software systems [Shaw
1984]. An abstraction for a software artifact is a succinct description that suppresses the
details that are unimportant to the software developer and emphasizes the information
that is important. For example, the abstraction that is provided by a high level
programming language allows a programmer to construct algorithms without having to
worry about the details of hardware register allocation.

Software typically consists of several layers of abstraction built on top of the raw
computer hardware. The lowest level software abstraction is object code, or machine
code. Assembly language is a layer of abstraction above object code. A high-level
programming language, like C, is a layer of abstraction above the assembly language
level. In object-oriented languages such as C++, the class specification can serve as a
layer of abstraction above the implementation details.

These examples demonstrate that every software abstraction has two levels. The
higher of the two levels is referred to as the abstraction specification. The lower, more
detailed level is called the abstraction realization. When abstractions are layered, the
abstraction specification at one layer is the abstraction realization at the next higher layer.
Figure 2.1 shows a hierarchy with two abstractions, L and M. Rep 1, Rep 2, and Rep 3
are three representations of the same software artifacts, where Rep 1 is the most detailed
(lowest level) representation. For abstraction L, Rep 2 is the abstraction specification, and
Rep 1 is the abstraction realization. From the point of view of abstraction M, Rep 3 is the
abstraction specification, and Rep 2 is the abstraction realization.

14

An abstraction is composed of three sections: a hidden part, a variable part, and a
fixed part. The hidden part consists of details in the abstraction realization that are not
visible in the abstraction specification. The variable part and the fixed part are visible in
the abstraction specification. The variable part represents the variant characteristics in the
‘abstraction realization, whereas the fixed part represents the invariant characteristics in
the abstraction realization. Therefore, an abstraction specification with a variable part
corresponds to a collection of alternate realizations. The variable part of an abstraction
specification maps into the collection of possible realizations. Figure 2.2 illustrates the

mapping between abstraction specifications and realizations.

M

Rep & /Specifico’rion M

Redlization M

Specification L

Rep 1

Redlization L

Figure 2.1: Two-level Abstraction Hierarchy

15

To illustrate this notion, consider the canonical stack example. The fixed part of
the abstraction specification expresses the invariant characteristics for all stack
realizations, such as the last-in-first-out (LIFO) semantics. The invariant stack behavior
does not depend on the type of elements stored in the stack. Hence, the element type can
be considered to be a constituent of the variable part of the abstraction specification.
Different element types therefore correspond to different stack realizations.

This view is consistent with the capabilities of traditional high level programming
languages such as C. In this model, support for each element type would have to be
explicitly programmed. This model contrasts significantly with that offered by the
modern object-oriented model in which we have languages such as C++ that offer
support for parameterized classes or generic template classes. In this model, we would
have a single implementation of stack, as a template class, that supports different element
types passed in as a parameter.

The partitioning of an abstraction into variable, fixed, and hidden parts is not an
innate property of the abstraction but rather an arbitrary decision made by the creator of
the abstraction. The creator decides what information will be useful to users of the
abstraction and puts it in the abstraction specification. In addition, the creator may also
decide which properties of the abstraction the user might want to vary and places them in
the variable part of the abstraction specification. Continuing with the stack example, the
value of the maximum stack depth can be placed in either the variable, fixed, or hidden
part of the stack abstraction. If it is placed in the variable part, the user has the ability to
choose the maximum stack depth. If the maximum stack depth is placed in the fixed part,

16

the user knows the predefined value of the maximum stack depth but cannot change it. If

placed in the hidden part, the stack depth is totally removed from the concerns of the

user.

Abstraction Specification

Variable Fixed
Part Part
\\“--___‘
Fixed
| Vn; PGrT
Hidden Part
V2 Fixed Abstraction
Part Realizations
Hidden Part
Fixed
VI part
Hidden Part

Figure 2.2: Mapping from a variable abstraction specification

i

Abstraction specifications and realizations can take on many forms. They can be
formal or informal, explicit or implicit. Once again, consider the stack example written as
a generic C++ template. The abstraction realization corresponds to an instantiation of the
generic package with a particular stack element type. The abstraction specification, on the
other hand, must be a combination of different descriptions due primarily to C++ limited
expressiveness. The generic template class will provide the syntactic specification for
operations of the stack abstraction, but the semantic specification must be expressed
outside of the C++ language. One possibility is to use a formal notation such as Hoare
axioms [Hoare 1969; Sun 1996]. Another is to use an informal description such as
English text.

In summary, an abstraction expresses a high-level, succinct, natural, and useful
specification that corresponds to a less perspicuous realization level of representation.
The abstraction specification describes “what” the abstraction does, whereas the
abstraction realization describes “how” it is done. For an abstraction to be effective, its
specification must express all of the information that is needed by the person who uses it.
This may include space/time complexity characteristics, precision statistics, scalability

limits, and other information not normally associated with specification techniques.

2.1.2 Abstraction in Software Reuse
Abstraction plays a central and often limiting role in each of the other facets of software
reuse:

. Selection

18

Reusable artifacts must have concise abstractions so users can efficiently locate,
understand, compare, and select the appropriate artifacts from a collection.

. Specialization
A generalized reusable artifact is in fact an abstraction with a variable part.

- Specialization of a generalized artifact corresponds to choosing an abstraction

realization from the variable part of an abstraction specification. The object-
oriented paradigm somewhat extends this notion. Inheritance, one of the key ideas
of the object paradigm, allows for the abstraction realization to be implemented as
a specialization derived from a previously defined parent class. This is the
generalization or Is-a relationship between super-class and sub-classes.

. Integration
To effectively integrate a reusable artifact into a software system, the user must
clearly understand the artifact’s interface (i.e., those properties of the artifact that
interact with other artifacts or the integration framework). An artifact interface is

an abstraction in which the internal details of the artifact are suppressed.

2.1.3 Cognitive Distance

Cognitive distance is defined as the amount of intellectual effort that must be expended
by software developers to take a software system from one stage of development to
another [Kruger 1992]. From this definition, it is clear that cognitive distance is not a
formal metric that can be expressed with numbers and units. Rather, it is an informal
notion that relies on intuition about the relative effort required to accomplish various

software development tasks,

19

The effectiveness of abstractions in a software reuse technique can be evaluated in
terms of the intellectual effort required to use them. Better abstractions means that less
effort is required from the user.

The creator of a software reuse technique should strive to minimize cognitive
distance by (1) using fixed and variable abstractions that are both succinct and
expressive, (2) maximizing the hidden part of the abstractions, and (3) using automated
mappings from abstraction specification to abstraction realization (e.g., compilers). This

can be summarized in an important truism about software reuse [Kruger 1992]:

For a software reuse technigue to be effective, it must reduce the cognitive distance

between the initial concepl of a system and ils final execurable implementation.

This truism, along with others in the software reuse literature, are obvious and
seemingly simple requirements on software reuse techniques that have proven very

difficult to satisfy in practice.

2.2 Classification of Reusable Modules
The capability to classify and store as well as to identify and locate software components,
is an increasingly important activity in software development environments where the
notion of reuse is taking on added significance. Classification schemes are essential for
setting up and maintaining a software library. A software library is a changing and
growing collection of modules that have been certified as reusable components.

For code reuse to be attractive, it must require less effort than the creation of new
code. Code reuse involves three steps: (1) accessing the existing code, (2) understanding
it

and (3) adapting it [Kruger 1992]. A classification scheme is central to code

3

20

accessibility. Code understanding depends on both the reuser experience and program
characteristics such as size, complexity, documentation, and programming language.
Code adaptation depends on the differences between requirement and the features offered
by the existing components and on the skills of the reuser.

Classification of a collection is central to making code reusability an attractive
approach to software development. A collection organized by attributes related to
software development will reduce the probability of retrieving non-relevant components.
A search-and-retrieval mechanism is necessary for a classified collection to be of value.
An effective retrieval system must have a well-defined classification structure embedded
within. In addition, the classification and retrieval system must be able to differentiate
between very similar components in the collection, thus allowing the user to select the
component that requires the least adaptation effort. A proper classification must be based
on an integrated solution: a classification scheme embedded in a retrieval system and
supported by an evaluation mechanism.

A classification scheme that caters to reusability must be designed with the
features of expandability, adaptability, and consistency as integral to its operation.
Expandability allows new classes to be added to the collection with minimum
disturbance, i.e., with little or no reclassification of the components. An adaptable
classification scheme can be customized for different environments. Consistency allows
components from different collections in the same class to share the same attributes.

Hence, this feature permits different organizations to share their collections.

21

2.2.1 Software components

This section attempts to shed some light on the creation of software components as a
result of a reclamation process based on the dissection and decomposition of existing
software systems. It also examines the use of software components through interfacing
and decomposition.

Megaprogramming is the term commonly used in reference to the construction
and engineering of software systems from existing components, as contrasted with
software development by coding one instruction at a time. The analogy is obviously to
industrial mass production techniques. The main goal is to reduce time-to-market and
improve the reliability and maintainability of the final product. The economics of scale
indicate, if not dictate, that megaprogramming is indeed the future of the software market
place.

There are two main dimensions to the notion of megaprogramming. First is the
notion of a brokerage that supervises overall development of product line and releases the
product to end users (black-box reuse). Second is a component library system that users
interact with and can extend by using existing components as a template for constructing
new ones.

A conceptual framework is defined that distinguishes among three aspects of
software component [Marciniak 1994]:

e The concept or abstraction specification that the component represents,
e The content or the abstraction realization of the component, and
e The context under which the component is defined or what is needed to complete the

definition of a concept or content within a certain environment.

22

The concept represented by a reusable software component is an abstract
description of “what” the component does. Concepts are identified through requirement
analysis or domain modeling and provide the desired functionality for some aspects of a
system. An interface specification and a description of the semantics associated with each
operation realize a concept. The content represented by a reusable software component is
an implementation of the concept or “how” a component does “what” it is supposed to
do. It assumes that each reusable software component may have several implementations
that obey the semantics of its concept. The context represented by a reusable software
component depends on understanding and expectations based on familiarity with
previous implementations.

With the objective being the development of useful, adaptable, and reliable
software modules from which new applications can be built, the following three

requirements [Marciniak 1994] should be addressed by a component-centered model of a

system:

1. Components must be wseful, i.e., they must meet the high-level requirements
of at least one concept necessary to design and implement a new software
application.

2: Components must be adapitable, i.e., they must provide a mechanism such that

modules can be easily tailored to the unique requirements of an application.
The inheritance principle of object-oriented software design supported by the

C++ language provides an approach to facilitate the adaptability requirement.

[§S)
[F5)

3. Components must be reliable, i.e., they must accurately implement the

concept that they define.

Each component is basically made up of code plus interface specifications. The
problem of code development is generally more tractable than the problem of providing
precise, unambiguous and generalized interface specification. This is an alternative way
of stating the known fact that raising the level of abstraction for a particular domain is a
very hard problem. The software industry is in the process of specifying and developing
some aspects of the requisite technologies to define formalisms for interfaces, so that
software components could inter-operate smoothly. The Common Object Request Broker
Architecture (CORBA) developed by the Object Management Group (OMG) facilitates
distributed object communication [OMG 1997]. The High Level Architecture (HLA)
proposed and sponsored by the Department of Defense (DOD) is another example of an
effort to facilitate distributed object interoperability [Carothers 1997, Dahmann 1997].

HLA is primarily focused on distributed simulation.

2.2.2 A Software Component Reuse Model
Reuse is the use of previously acquired concepts or objects in a new situation. Reusability
is a measure of the ease with which one can use those previous concepts or objects in the
new situation. This very general view assumes that knowledge has been coded at
different levels of abstraction and stored for future reuse [Freeman 1983].

Models of reuse are operational in well-established disciplines such as civil or
electrical engineering. In these domains, the number of alternatives is usually large and

24

several combinations of components may give feasible solutions, thus creating a selection

problem. It is customary to acquire components rather than to create them. Components

are described by standard attributes that capture their functional characteristics.

A model for software component reusability is based on the above observations
and on the assumption that available components usually do not match the requirements
perfectly, making adaptation the rule rather than the exception. The general approach is
to provide an environment that assists in the finding of components and estimates the
adaptation and conversion effort necessary to effect reuse. The process is as follows:

. A set of functional specifications is given. The user then searches a component
library to find the candidates that satisfy the specification. This step can take
several iterations, with each progressively narrowing the search space.

o If a component satisfying all the specification is available, then reusing it
becomes trivial.

s The more typical scenario is one in which several candidates exist, each satisfying
some of the specifications. In this situation, the problem is transformed into one
of selecting and ranking the available candidates based on how well they match
the requirements and on the effort required to adapt the non-matching
specification.

. Once an ordered list of similar candidates is available, the reuser selects the

easiest to reuse and adapts it.

Selecting similar components is a classification problem. The degree of similarity

depends on how the collection is organized. Closely related components may be grouped
25

by carefully selecting relevant attributes and meaningfully organizing them. The

classification scheme is a central component in the software component reuse process.

2.2.3 Classification Principles

A classification principle describes how to classify components so that they can be
located for reuse. Classification makes explicit the relationship among things and among
classes of things. The result of a classification is a structure that details the relationships
between objects and classes of objects. A classification scheme is a tool for the
production of systematic order based on a controlled and structured index vocabulary
called the classification schedule. The classification schedule consists of a set of names
representing concepts or classes, listed in a systematic order to display the relationship
between the classes [Buchanan 1979].

A classification scheme must be able to express both the hierarchical and
syntactical relationships. Hierarchical relations employ the principle of subordination or
inclusion in which a universe is successively divided into its component classes. On the
other hand, syntactical relationships relate two or more classes from different hierarchies.
In practice, classification schemes are hierarchical in nature, with syntactical
relationships being manifested as compound classes. For example, the compound class
“respiration of birds” relates the term respiration from the class “processes” with the
term birds from the class “taxonomy”.

Classification schemes can be either enumerative or faceted. The enumerative
method postulates a universe of knowledge divided into successively narrower classes
that include all the possible compounded classes. These are then arranged to display their

26

hierarchical relationships. The Dewey decimal classification [Dewey 1979] is a typical
example of an enumerative hierarchy, where all possible classes are predefined.

The faceted classification scheme, used in library science, relies on the building
up or synthesizing of compound classes from the subject statements of the particular
documents, as opposed to the decomposition of a universe used in the enumerative
schemes. In this approach, subject statements are analyzed and their component
elemental classes determined. These classes are then listed in the classification schedule.
The generic relationships of the elemental classes are the only relationships displayed.
Compound classes are expressed by assembling their elemental components. This process
of constructing a compound class from its elemental components is called synthesis. The
arranged groups of elemental classes that make up the scheme are the facets. The
elements or classes that make up a facet are called terms [Prieto-Diaz 1985; Prieto-Diaz
1991a].

Facets are considered as perspectives, viewpoints, or dimensions of a particular
domain. This is because the characteristics of the facets are determined by the nature of
the application. Different kinds of applications will have different perspective of a
particular domain and this will in turn determine the existence of relationships (grouping)
between the elemental classes.

Both enumerative and faceted schemes can be used to express the same number of
classes. The difference is that in the enumerative scheme, classes with more than one
elemental component are listed ready-made, while with the faceted scheme the classifier
will have to make multi-element classes by synthesis. A problem typical of enumerative
schemes is traversing the hierarchical tree to find the most appropriate class. Implicit to

2

the use of this scheme is the expertise of the librarian in both the classification scheme
and the subject matter or domain which guide him to determine the most appropriate
class. This is usually a difficult task because more than one class may be applicable.
Cross-references are usually established to compensate for ambiguities in the class
selection process. This is a cumbersome and error-prone process.

In the faceted scheme, both facets and terms are derived from analysis of a
representative sample of the collection to be classified. The synthesis process used in the
construction of compound classes tailors each class to a perfect fit. This makes the
faceted approach very attractive for classifying reusable software components. The
ordering of a facet’s characteristics coupled with the fact that facets can be ordered by
their relevance to the users of the collection is termed citation ordering. Citation ordering
enhances search and retrieval performance when used to organize a database. Terms
within a facet can be arranged based on how closely they relate to each other (conceptual
closeness). This feature provides a way for locating similar components in a collection —

an essential feature for software reusability.

2.2.4 Software Classification

Any reasonable software classification scheme must make the following assumptions
about the collection of reusable software components: (1) that the number of components
are very large and growing continuously and (2) that there are large groups of similar
components — even in very specific classes [Prieto-Diaz 1985]. Software components can
be described by the function they perform, the way they perform it, and their
implementation details, among other things. These descriptors can be mapped directly

28

into facets that may be ordered by their relevance to reusability. A component
specification is thus reduced to a tuple of terms where each term is an attribute value of a
selected facet. Prieto-Diaz and Freeman [Prieto-Diaz 1987] suggested that a
characterization of the functionality (what it does) and the environment (where it does it)
of a software component would suffice for classification.

If the description of a software component is to be used as both a classification
code and a retrieval key, it must be brief, succinct, and semantically rich. That is, it must

LRI

consolidate in a single descriptor the “what,” “where,” and “how” of the component.

With modern object-oriented development approaches and techniques such as
parameterizing or template classes in C++, the impact of the external environment can be
reduced considerably. Template classes can be used to develop generic software
components that can operate on any object type. This could eliminate the need for low
level algorithmic adaptation of software components when moving between domains.
The high-level abstraction specification would truly capture the semantics of the software
component. Under these circumstances the reuser would only have to focus on user
interface issues that are relevant to the particular domain.

A faceted scheme can be developed using the facets from the functional and
environmental characterizations. The citation order is based on relevance to users and
assuming that the typical users of the collection are software engineers designing and
building new systems from components, the following citation order can be adapted:
function, objects, medium, system type, functional area, and setting [Prieto-Diaz 1987].

Classifying a component consists of selecting the sextuple that best describes the

component. Some examples follows:

<add, integers, array, matrix-inverter, modeling, aircraft-manufacturer>
<compress, files, disk, file-header, DB-management, catalog-sales>

<compare, descriptors, stack, assembler, programming, software-shop>

The Prieto-Diaz and Freeman classification method employs a controlled
vocabulary technique for indexing software components. They have used this approach to
avoid duplicate and ambiguous descriptors of software components arising from
synonyms. Describing code using controlled vocabulary is not problem prone for any
audieﬁce, A term thesaurus can be used to gather all synonyms under a single concept.
The term that best expresses the concept would be chosen as the representative term
[Prieto-Diaz 1989]. The thesaurus is used primarily for vocabulary control and for
broadening the index vocabulary. These uses also enhance recall performance. A
thesaurus can also be used to control the size of schedules. This can be done by
increasing the number of terms assigned to a particular group or by breaking up groups
into terms. Ambiguities between the term lists can be resolved be selecting a number of
contexts.

Prieto-Diaz notes that keyword-based retrieval is good for books and journal
articles because of the large amount of free text [Prieto-Diaz 1991a]. Software’s
characteristics make it a candidate of controlled vocabulary retrieval approach. A
predefined set of keywords is used for indexing as described in the faceted approach.
Software is a good candidate for faceted classification. First, software has a low amount
of free text. Second, the programmers establish software keyword conventions. Last what

the components do and how they do it is uncertain from their free text.

Guru parses the natural language documentation of the component source code
for classification [Maarek 1991]. Other library systems only parse the comments or free
text of the component. In addition, Guru uses the concept of lexical affinities (LA), as
opposed to single terms typically used in other reuse libraries. LAs are “lexical affinity,
..., between two units of a language stands for a correlation of their common appearance
in the utterances of the language.” Other research has shown that such word relationships
are separated by at most five words. These LAs are used in the creation of Guru’s
component indices. The indices are used to locate functions that match a user query. The
indices are organized in a hierarchical format with the description and function being
similar between siblings. The format is very similar to the hierarchical organization of

classes in object-oriented languages.

2.2.5 Conceptual Closeness

This is a measure of closeness among terms in a facet [Prieto-Diaz 1985; Prieto-Diaz
1987]. In situations where a reuser cannot find an exact match to his search criteria, any
reasonable software reuse system should present him with list of “likely” components
ordered from most likely to least likely matched. The notion of conceptual closeness is to
present a mechanism for the determination of similarity of software components within a
software reuse system. A conceptual graph can be used to measure closeness among
terms in a facet. It is defined as an acyclic directed graph in which the leaves are terms
and the internal nodes are supertypes that denote general concepts relating two or more
terms [Prieto-Diaz 1987]. The user assigns weights in the edges of the graph. The smaller
the value of the weight, the closer is the perceived relationship of a term to a supertype.

31

N

The concept of closeness measurement could be utilized during the component
retrieval process. In cases where the query for a term cannot match any descriptor, a
retrieval system can check the nearby terms for related items. It is time-consuming to
construct a conceptual graph with more than a few terms. However, the basic graph
structure doesn’t change much during the expansion of the collection of software
components, and it also tends to remain stable. Conceptual graph construction can be
considered a substantial but one-time effort. Regardless, once constructed, a conceptual

graph would need tuning as users provide feedback on retrieval performance.

2.2.6 Domain Analysis
To make the faceted classification scheme a more efficient method for a software
component reusability, the domain analysis methodology is recommended. This section
provides an introduction to domain analysis and its application to classification and
software reuse. According to Arango: “domain analysis is a knowledge intensive activity
for which no methodology or any kind of formalism is yet available™ [Arango 1988].
Domain analysis is an activity that happens even before the system analysis phase
of the software development life cycle, and creates a domain model to support the system
analysis. This information/model can be used in the subsequent phases of the software
development process. In the domain analysis process “information used in developing a
sofiware system is identified, captured, and organized with the purpose of making it
reusable when creating a new system” [Prieto-Diaz 1989]. Domain analysis can play an

active role in the creation and organization of reusable software artifacts. Matsumoto

(¥¥]
[§S]

- =

[Matsumoto 1987] reported the successful application of domain analysis in the
development of software factories.
The domain analysis process can be incorporated into the software development

process. A simplified three-step domain analysis procedure to advance reuse is:

I\ Identification of reusable entities
Z Abstraction or generalization of those entities
3. Classification and cataloging for further reuse

Based on the above procedure, Prieto-Diaz proposed a procedural model for domain
analysis [Prieto-Diaz 1989]. Using the faceted classification schemes, his methodology is
“to create and structure a controlled vocabulary that is standard not only for classifying
but also for describing titles in a domain specific collection” [Prieto-Diaz 1998].

In the context of domain analysis, Arango [Arango 1988] sees reuse as a learning
system. In his proposed model, software development is a self-improving process which
draws from a knowledge source that is named reuse infrastructure, and is integrated with
the software development process. Reuse infrastructure consists of domain-specific
reusable resources (i.e., components in particular and assets in general) and their
descriptions. In Arango’s reuse environment, by employing the reuse infrastructure and
utilizing the specification of the software to be built, an implementation of the desired
software is constructed. Then, the software thus proposed is compared against the input
of the system (i.e., the specification of the system).

There are three particular functions that are crucial for reuse infrastructure These
functions [Prieto-Diaz 1989] are the abstractions of the duties of’

1. A librarian (making assets accessible to potential reusers)

33

- —— =

2 An Asset Manager (controlling asset quality)

3. A reuse manager (facilitating the collection of domain analysis relevant data and
coordinating all reuse operations)

Assets are those entities (documents, deliverables, and components) in the software

development life cycle that is potentially reusable.
The typical process resulting from the integration of conventional software

development and domain analysis is as follows:

1. Reusable resources are identified and added to the system.

2. Reuse data is gathered and fed back to the domain analysis process for tuning the
domain models and updating the resource library.

The newly developed system can then be used to refine the reuse infrastructure [Prieto-

Diaz 1998].

2.3 Types of Reusable Software Systems

There are two main types of reusable software systems: active and passive. Active
systems have components that generate the final system. These systems are tailored to
specific user needs. Passive systems are libraries of components such as the standard C
library. These systems require knowledge of the components and how to use the
components. The advantage of this type of library system is that the existing software can
be easily added to the library. Therefore, the reuse components can be quickly

incorporated into the development cycle.

2.3.1 Passive Systems

Passive libraries, such as the standard C++ or Java Class library, require the user to have
some level of knowledge about their components without direct assistance from the
library. Most passive libraries provide a written manual explaining each of the library’s
components. But, how does a user know which components will match his software
needs without reading the entire manual?

Passive libraries weren’t designed to be easily extendible. Typically,
enhancements are only available with periodic releases of the library. This fosters
numerous similar components to be developed between releases. Developers cannot wait
for the next needed functionality. The relatively long time periods between releases do
not support the responsiveness demand of software producers and consumers. The typical

passive systems [Arnold 1988] are described in the following sections.

High-Level Languages
The reusable artifacts in a high-level language are assembly language patterns. High-level
language constructs serve as abstraction specifications for low-level assembly language
patterns.

High-level languages are often the lowest level of abstraction used by software
developers. However, it is not widely recognized that high-level languages are examples
of software reuse. Nor is it recognized that, in many ways, high-level language
technology is a paragon of software reuse that researchers currently can only hope to

emulate. For example, discovery of a new reuse technology that routinely offered a factor

-

of 5 speedup in software development would be among the most significant software
engineering achievements of the decade.

The primary limitation of high-level languages as a reuse technology is the large
amount of system design effort required prior to coding. Thus, there is a large cognitive
distance between the informal requirements for a software system and its implementation

in a high-level language.

Design and Code Scavenging
The reusable artifacts in scavenging are source code fragments. The abstractions for these
artifacts are informal concepts that a software developer has learned from design and
programming experience. When a programmer recognizes that part of a new application
is similar to one previously written, a search for existing code may lead to code fragments
that can be scavenged.

In ideal cases of scavenging, the software developer is able to find large
fragments of high-quality source code quickly that can be reused without significant
modification. In these cases, the developer goes directly from an informal abstraction of a
design to a fully implemented source code fragment. In this situation, the cognitive
distance between the initial concept of a design and its final executable implementation is
small.

In practice, the overall effectiveness of code scavenging is severely restricted by
its informality. A programmer can only scavenge those code fragments he or she

remembers or knows how to find. In the worst case, a software developer spends more

. -

time locating, understanding, modifying, and debugging a scavenged code fragment than
the time required to develop the equivalent software from scratch.

These limitations lead to another truism of software reuse [Krueger 1992]:

For a software reuse lechnique to be effective, it must be easier to reuse the artifacts

than it is to develop the software fron scratch.

Source Code Components
Mcliroy’s “Mass Produced Software Components” introduced the notion of software
reuse by proposing an industry of off-the-shelf source code components. These
components were to serve as building blocks in the construction of larger systems. Given
a large enough collection of these components, software developers could ask the
question “What mechanism shall we wse?” rather than “What mechanism shall we
build?”

Compared to code scavenging, reusable component libraries can be considerably
more effective since components are written, collected, and organized specifically for the
purpose of reuse. The most successful reusable component systems, such as the IMSL
math library [Betts 1990], rely on concise abstractions from a particular application
domain. One-word abstraction specifications such as sine often allow a software
developer to go directly from an informal requirement to a fully implemented and tested
source code component. Thus, the cognitive distance between the informal concept and

its final executable implementation is very small.

For components that do not have simple abstractions, more general specification
techniques are required. These descriptions can often be as difficult to understand as
source code, thereby increasing the cognitive distance.

Creating a relatively complete and practical library of reusable components is a
formidable challenge. Library implementers must have the theory, foresight, and means
to produce a collection of components from which software developers can select,
specialize, and integrate to satisfy all possible software development requirements. This
is currently possible to a limited degree for specific application domains that have a rich
and thorough theoretical body of knowledge, such as statistical analysis. General-purpose
libraries, however, remain elusive for at least two reasons: (1) the implementation
characteristics and tradeoffs for data structures and computations are widely variable, and

(2) library size grows rapidly with respect to general-purpose component size.

Software Schema
Software schemas are a formal extension to reusable software components. Reusable
components often rely on ad hoc extensions to programming languages to implement
reuse techniques such as specification, parameterization, classification, and verification.
With software schemas, however, these mechanisms are an integral part of the
technology.

Compared to reusable source code components, reusable schemas place a greater
emphasis on the abstract specification of algorithms and data structures and place less
emphasis on the source code implementation. This shift in emphasis helps reduce the
cognitive distance or separation between the informal requirements of a system and its

38

- — ——

P I ————— -

e ——

executable implementation by isolating the software developer from the source-code-
level details.

Unfortunately, with software systems we do not have many universal abstractions
above the stack, list, tree, etc. Therefore, the semantics of higher level abstractions are
often expressed with logic formalisms and specification languages. Formal specification
for schema abstractions can be large and complex. Even with automated tools it can be
difficult for software developers to locate, understand, and use schemas. This complexity
serves to increase the cognitive distance, thereby offsetting some of the advantages of
using higher level abstractions. Hence, the challenge for implementers of a schema

technology is to find abstraction formalisms that are natural, succinct, and expressive.

2.3.2 Active Systems

Since the late 1980s researchers recognized the failings of passive libraries and began
proposing solutions. All solutions share two characteristics in common. The systems
actively assist users in locating components that matched their needs. In addition, these
systems take an active role in promoting the development of reusable software
components. Therefore, these systems include component cataloging and retrieval

functionality.

l Library Systems

: ’__,/‘_/ _“-_‘_\\\
// \-‘\\-_--
Passive Systems Active Systems
"‘\\
‘“"'-..__\‘-‘--
Retneval Generative Transformative
) g
T '/‘I
v
it il =S . O

Semantic Net Keyword Structured Query ‘ LNaluml Language

Figure 2.3: Reuse System Genealogy

Active systems can be grouped into several classes (Figure 2.3). These classifications
include generative, transformative, and retrieval based systems. Within the retrieval
classification, many types of retrieval mechanisms exist. These include semantic net,
keyword, structured query, and natural language. The following sections present various
systems as examples of active library types. In addition, a solution using object-oriented

design is presented.

Application Generators
Application generators operate like programming language compilers; input
specifications are automatically translated into executable programs [Cleaveland 1988],
[Neighbors 1989]. Application generators differ from the traditional compilers in that the

input specifications are typically very high-level, special-purpose abstractions from a

40

very narrow application domain [Levy 1986]. Application generators are appropriate in
application domains where

= Many similar software systems are written,

* One software system is modified or rewritten many times during its lifetime, or

* Many prototypes of a system are necessary to converge on a usable product.

In these cases, the systems have significant source code overlap. Application
generators generalize and embody the commonalities, so they are implemented once
when the application generator is built and then reused each time a software system is
built using the generator.

Application generators are specialized by writing an input specification for the
generator. Due to the diversity in application abstractions, the techniques used for
specialization are also widely varied. Examples include grammars, regular expressions,
finite state machines, graphical languages, templates, interactive dialog, problem-solving

methods, and constraints.

Very High-Level Languages

Very high-level languages (VHLLs) are an attempt at improving on the successes of
conventional high-level languages (HLLs). Developing software with VHLLs 1s very
much like developing software with HLLs. Both VHLLs and HLLs provide a syntax and
semantics for expressing general-purpose computation.

VHLLs use high-level mathematical abstractions suitable for general-purpose
software development. The goal of VHLL implementers is to find abstractions that are
more natural and expressive than the abstractions in HLLs. As a result, VHLL programs

41

can be an order of magnitude more succinct than corresponding HLL programs. VHLLs
are not, however, as powerful as application generators since application generators use
domain-specific abstractions, which can be at a much higher level of abstraction.

The distinction between VHLLs and application generators exemplifies the
tradeoff between generality and leverage in software reuse technologies [Biggerstaff and
Richter 1989]. Typically, the more general a reuse technology is, the more effort is
required to implement systems with it. The goal of VHLL research is to maximize the
leverage offered by higher levels of specification without sacrificing computational

generality.

Transformation Systems

Transformation systems are used to develop software in two phases:

1. Software developers describe the semantic behavior of a software system using a
high-level specification language.

2. Software developers then apply transformations to the high-level specifications.
The transformations are meant to enhance the efficiency of execution without
changing the semantic behavior.

The two phases make a clear distinction between specifying what a software system does

and the implementation issues of how it will be done [Zave 1984].

The first phase is equivalent to using a VHLL. Software developers create an
executable system in a language that has a relatively small cognitive distance from the
developer’s informal requirements for the system [Balzer 1989]. The second phase in the
transformational approach is essentially a human-guided compilation. The goal in this

42

phase is to produce an executable system that satisfies the high-level specification and
that also exhibits performance comparable to an implementation in a conventional HLL.,
The transformation phase can be thought of as an interactive, human-guided compilation.
Human intervention is necessary because issues such as automatic algorithm and data
structure selection are beyond the current computer technology. By involving the
software developer in the compilation process, transformational systems increase the

cognitive distance in order to achieve better run-time performance.

Software Architectures

Reusable software architectures are large-grain software frameworks and subsystems that
capture the global structure of a software system design. This large-scale global structure
represents a significant leverage in the development of software. The leverage offered by
software architectures comes from the small cognitive distance between informal
concepts in an application domain and executable implementations. The mapping from
abstraction specification to abstraction realization is mostly automated and this isolates
the software developer from the hidden and realization parts of the abstraction.

Software architectures are analogous to very large-scale software schemas.
Software architectures, however, focus on subsystems and their interaction rather than
data structures and algorithms. Software architectures are also analogous to application
generators in that large-scale system designs are reused. Application generators, however,
are typically standalone systems with implicit architectures, whereas software
architectures can often be explicitly specialized and integrated with other architectures to
create many different composite architectures.

43

Draco is an example software architecture technology [Freeman 1987; Neighbors
1984, 1989]. Draco encapsulates software architectures in application generators. The
output from the architecture generators can be used as building blocks for higher-level
architecture generators, making Draco an architecture generator geieralor,

In Draco, each software architecture has a domain language and a set of
components that implement the domain language. The domain language corresponds to
the abstraction specification for an architecture. It captures the relevant abstractions for a

software architecture in a particular domain.

2.4 Reuse, Design Patterns and the Object-Oriented Paradigm
The object-oriented approach to software development has emerged as one of the primary
vehicles for the realization of software reuse. The features of inheritance, dynamic
binding, and polymorphism offered by this paradigm provide an extremely powerful and
elegant approach to software reuse, which differs fundamentally from other mechanisms.
There are a number of design methodologies that exploit its basic structuring concepts to
impose a discipline on the use of languages such as C++ and Java. These languages fully
support the object-oriented approach to developing reusable software.

This section examines some of the more important principles and techniques that
design patterns employ in solving design problems. Some of these are well-entrenched
practices in the object-oriented software development community and are expressed as

principles of reusable object-oriented design.

RE}

R e 1 2

2.4.1 Program to an Interface, Not to an Implementation

An object’s class defines how the object is implemented. The class defines the object’s
internal states and the implementation of its operations. In contrast, an object’s type only
refers to its interface (set of signatures) — the set of requests to which it can respond. An
object can have many types, and objects of different classes can have the same type.
Class inheritance defines an object’s implementation in terms of another object’s
implementation. Hence, it’s just a mechanism for code and representation sharing. In
contrast, interface inheritance (or sub-typing) describes when an object can be used in
place of another. In languages such as C++, inheritance means both interface and
implementation inheritance. Pure interface inheritance can be approximated in C++ by
inheriting publicly from pure abstract classes. Pure implementation or class inheritance
can be approximated with private inheritance.

Although most programming languages don’t support the distinction between
interface and implementation inheritance, many of the design patterns depend on this
distinction. For example, objects in a Chain of Responsibility must have a common type,
but usually they don’t share a common implementation. In the Composite pattern
[Gamma 1996], Component defines a common interface, but Composite often defines a
common implementation. Command, Observer, State, and Strategy are often
implemented with abstract classes that are pure interfaces.

Class inheritance is basically a mechanism for extending an application’s
functionality by reusing functionality in parent classes. It lets you define a new kind of
object rapidly in terms of an old one. It lets you get new implementations almost for free,
inheriting most of what you want for free, inheriting most of what you need from exiting

45

classes. However, implementation reuse is not the end. Inheritance’s ability to define
families of objects with identical interfaces (by inheriting from an abstract class) is very
important. This is because polymorphism depends on it.
There are two benefits to manipulating objects solely in terms of the interface
defined by abstract classes:
1. Clients remain unaware of the specific types of objects they use, as long as the
objects adhere to the interface that clients expect.
2. Clients remain unaware of the classes that implement these objects. Clients only
know about the abstract class(es) defining the interface.
This greatly reduces implementation dependencies between subsystems that leads to the
following principle of reusable object-oriented design [Gamma 1996]:
Program to an interface, not an implementation
The Creational patterns Abstract factory, Builder, Factory Method, Prototype, and
Singleton let you instantiate concrete classes [Gamma 1996, Schmidt 1999]. By
abstracting the process of object creation, these patterns give you different ways to
associate an interface with its implementation transparently at instantiation. Creational

patterns ensure that your system is written in terms of interfaces, not implementations.

2.4.2 Object Composition

Class inheritance and object composition are the two most common techniques for
reusing functionality in object-oriented systems [Biggerstaff 1989, Blair 1989, Gamma
1996; Fowler 1999] With the class inheritance approach, you define the implementation
of subclasses in terms of parent or super classes. This is normally referred to as “white-

46

box” reuse because the internals of the super classes are often visible to the subclasses.
With composition, new functionality is obtained by assembling or composing objects to
get more complex functionality. This approach to reuse is called “black-box” reuse,
because no internal details of objects are visible.

Class inheritance has the distinct advantage of being defined statically at compile-
time and is therefore straightforward to use. This also makes it easier to modify the
implementation being reused. On the other hand, class inheritance has some
disadvantages. First, you cannot change the implementations inherited from parent
classes at run-time. Second, and more limiting, parent classes often define at least part of
their subclasses’ physical representation and inheritance exposes a subclass to the details
of its parent’s implementation. Thus, the notion of “inheritance breaking encapsulation”
[Sny86]. The implementation of a subclass becomes so bound up with the
implementation of its parent class that any change in the parent’s implementation will
force the subclass to change.

Object composition, on the other hand, is defined dynamically at run-time through
objects acquiring references to other objects. Composition requires objects to respect
each other’s interface, which in turn requires carefully designed interfaces. This approach
has the very powerful benefit of not breaking encapsulation, because objects are accessed
solely through their interfaces.

A design based on object composition has the following advantages: (a) it helps
you keep each class encapsulated and focus on one task and (b) the classes and class
hierarchies will remain small and will be less likely to grow into an unmanageable
conundrum. This leads to another principle of object-oriented design [Gamma 1996]:

47

Favor object composition over class inheritance.

In practice, the set of reusable components is never rich enough to facilitate a
purely compositional approach to software construction. Reuse by inheritance makes it
easier to make new components that can be composed with old ones. Inheritance and

composition thus complement each other.

2.4.3 Delegation

Delegation is a way of making composition as powerful for reuse as inheritance
[Lieberman 1986; Johnson 1991]. In delegation, two objects are involved in handling a
request: a receiving object that delegates operations to its delegate. This is analogous to
subclasses deferring requests to parent classes. But with inheritance, an inherited
operation can always refer to the receiving object, “this member” variable in C++ and
“self” in Smalltalk. To achieve the same effect with delegation, the receiver passes itself
to the delegate to let the delegated operation refer to the receiver.

For example, instead of making class Window a subclass of Rectangle, the
Window class could reuse the behavior of Rectangle by keeping a Rectangle instance
variable and delegating Rectangle-specific behavior to it. Figure 2.4 depicts a Window
class delegating its Area operation to a Rectangle instance.

Delegation has a disadvantage it shares with other techniques that makes software
more flexible through object composition: dynamic, highly parameterized software is
harder to understand than more static software. There are also run-time inefficiencies, but
the human inefficiencies are more important in the long run Because of these
disadvantages, delegation works best when it’s used in highly stylized ways such as

48

standard patterns. The State, Strategy, and Visitor design patterns [Gamma 1996] make
extensive use of delegation, Delegation is an extreme example of object composition. It
shows that you can always replace inheritance with object composition as a mechanism

for code reuse.

Window » Rectangle
*hreal O fifgﬁt

+AreaQ Q |

return rectangle->Area return width * he;gin [

Figure 2.4: A Window class delegating its Area operation to a Rectangle instance

2.5 Current Trends

This section briefly examines some of the recent trends in the software development
industry. The analysis was performed with the intention of determining how the object-
oriented phenomena have been influencing the evolution of software construction and

what role reuse has played in this process.

49

2.5.1 Challenges in System Development

System development today is about rapid change and responding to the realities of the
business environment [Bigus 1998]. The key to successful system development is how
well an enterprise can (1) perform system integration, (2) manage the future, and (3) find
suitable supporting technology [Mowbray 1997].

Information systems development has changed from a reliance on unconstrained
design and development to an increasing reliance on software integration methods in
which new systems or applications are created by connecting components [OMG 1997].
Traditionally, integration has been viewed as simpler than new software development.
However, this notion has proven to be incorrect within the current context of the software
industry. Integration has not resulted in the deployment of new capabilities at either a
faster or cheaper rate. This is due primarily to customization efforts to achieve
interoperability among components that were not originally designed to work together.
The investment to develop the interface can easily exceed the effort required to develop
the code for the functions themselves.

Traditionally, software system development has been primarily focused on the
development of monolithic single-ended software systems. The client server software
paradigm is a notable exception to this theme. However, it still falls within a broader
definition of monolithic systems with de-coupled client and server components. The
focus on systems integration brings to light a void in the software development process, a

model of developing truly distributed software.

50

2.5.2 The Common Object Request Broker Architecture (CORBA)

In recognition of this technology vacuum, the Object Management Group (OMG) was
created in 1989 [DEC 1990; Mowbray 1998; OMG 1995]. The primary mandate was to
develop a specification for defining interoperability of software components [OMG
1997]. The CORBA specification addresses two of the most prominent problems faced in
the software industry: (1) the difficulty of developing client server applications and (2)
how to rapidly integrate legacy systems, off-the-shelf applications, and new development.

CORBA is a specification for an emerging technology known as distributed
object management (DOM) [OMG 1995; OMG 1997; Orfali 1998]. DOM technolog
provides a higher-level, object-oriented interface on top of the basic distributed
computing services. At the most basic, CORBA defines a standard framework from
which a software developer can easily and quickly integrate network-resident software
modules and applications to create new, more-powerful applications. It combines object
technology with a client server model to provide a uniform view of an enterprise's
computing system - everything on the network is an object.

The twin concepts of software reuse and software integration are closely related
since integration is the combination of two or more existing components. Without good
integration tools and techniques, reuse is difficult and will probably not happen to any
significant degree because, without a back plane or broker, custom interfaces must be
defined for each interaction between components. With a broker, however, each interface
is defined just once and the broker handles subsequent interactions. The CORBA

Interface Definition Language (IDL) [Orfali 1998; OMG 1995] is used to define

51

interfaces in a standardized, platform-independent fashion. This offers a significant

reduction in complexity to the software developer.

Summary
Software reuse is the process of creating software systems from existing software
artifacts rather than redeveloping every facet of the new software system from scratch.
This simple but powerful vision has failed to become a standard software engineering
practice. This chapter surveyed the different approaches to software reuse found in the
literature. Abstraction plays a central role in software reuse. Concise and expressive
abstractions are essential if software artifacts are to be effectively reused. The
effectiveness of a reuse technique can be evaluated in terms of cognitive distance — an
intuitive gauge of the intellectual effort required to use the technique. Cognitive distance
is reduced in two ways: (1) higher level abstractions and (2) automation. We have
proposed design patterns as a way of raising the abstraction level.

The next chapter gives an overview of the important concepts of design patterns,
abstract data views, and software architecture. The concepts are fundamental to the

adaptive application integration architecture framework that we have developed.

32

Chapter 3

Abstract Data Views, Design Patterns, and Software
Architecture

This chapter gives an overview of the central concepts of abstract data views
(ADVs) [Cowan 1992, Alencar 1994], design patterns [Gamma 1996; Fowler 1999], and
software architecture [Cowan 1993a; Booch 1999, Orfali 1998]. These concepts form the
foundation of our work by providing a platform from which we developed a new
approach to building large-scale reusable software systems. The abstract data view and its
companion abstract data object (ADO) concepts are design constructs created with the
notions of separation of concerns and reuse as important considerations. The term
abstract data object (ADO) is very similar to that of an abstract data type (ADT), but is
distinguished from an ADT by having the property of state. Design patterns are macro
software design artifacts that express the static and dynamic structures and collaborations
of components in a software architecture. An architectural approach to software
development enables the imposition of an overarching structure that rationalizes,
arranges, and connects components to produce the desired functionality.

These three concepts provide a very powerful approach to addressing the very
large-scale software reuse (VLSR) problem from both a development and integration
perspective. As pointed out in Chapter 2, any reasonable approach to the VLSR problem
must provide an inherent mechanism for raising abstraction. The architectural approach

53

enforces a disciplined approach to decomposition, specification, and separation of
functional modules or layers within a software system. Thus, software architecture
searches to uncover abstractions and make them explicit. Design patterns are macro
constructs that facilitate the reuse of various kinds of knowledge in the software
construction process. The knowledge being reused is independent of the implementation
technology. ADV allows us to partition a module or layer in the architecture by explicitly
separating the specification part from the realization part of the module. The ADV
concept also facilitates the building of new components or extensions of module
functionality from existing ones using composition. Hence, these three conceptual
approaches focus heavily on the use of the principle of abstraction in realizing their core

functionality.

3.1 Abstract Data View

Abstract data views and abstract data objects are design constructs that divide the
specification of software modules into two distinct types of components: the inrerface
that is represented by the ADV and the implementation that is represented by the ADO.
Both ADV and ADO are instances of abstract data types (ADTs). An ADV can be used
to provide an interface between two ADTs or between an ADT and another medium such
as a user or a network. In addition, the ADV concept facilitates the construction of larger
component from smaller components using the principle of composition. Thus, an ADV
is both a specification of an ADO and a method of interacting with the ADO. The ADV
approach has been used in a number of prototype applications [Cowan 1992; Lucena

1992; Potengy 1993].

—— o — =

The formulation of the ADV model was motivated by work in composition
technology [Fiadeiro 1993], and as a method of separating the specification of the user
interface (UI) from the non-user-interface (NUI) components of an interactive system
[Cowan 92] and was intended to promote design reuse. In the ADV concept, ADOs or
ADTs are completely independent of the interface and have their requirements for data
translated by one or more ADVs. In the context of user interfaces this implies that ADTs
or ADOs do not have direct access to input or output. An ADV approach to software
design describes all design decisions that relate to information exchange between the user
and the Ul application, among other ADVs, and between the NUI and Ul applications.
Figure 3.1 shows the relationship between input and output devices, ADVs, and ADTs.
The relationship between ADV and ADT, shown by an arrow, associates the public
interface of the ADT with the corresponding specification in the ADV. The name of the
corresponding ADT in the ADV specification is represented by a variable called owner,
which provides the connection between the Ul and NUI parts of the system. The
relationship between an ADV and an ADT is not symmetric.

In the abstract data view approach to software design, a consistency property
needs to be satisfied. This is due to the fact that several ADV instances could be
associated with the same ADT instance in order to provide different views or different

control functionality for the same ADT.

wh
wn

User Input
Sensor

ADV

Control

Owner /

g

Consistency

Display
Qutput

Figure 3.1: The Abstract Data View Model

3.1.1 ADV and Software Reuse

ADV design concept promotes reuse of interface specification through the principle of
composition because it allows a complex interface to be built from simpler interface
components. A composite module specification must guarantee syntactic non-
interference and semantic context independence [Dennis 1973] among the different
modules. Specification constructors are used to perform the combination of specifications

and these include simple composition with locality, set and sequences of component

types, and inheritance of specification [Jones 1990] that are used for both ADV and ADO

specifications.

Sior hovio: »8. e S.or - ADT Specificati
ALH St - ¢ Specification
Sy - ADV Specifi cation
1 - Interpretation of A 57 in terms of S,z
E.o I" - Intepretation of A%,y in terms of 8”.py
fpe=s E.pr - Extension of S,p; by means of rensable
| ADTs usng gpecification constructors
Y 'i E ;.- Extension of S, by means of reugable
g’ e [; --------- »3’;‘0’, ADVs aggociated with ADTR using
SOTaLs, specification constructors

Eaor

Figure 3.2: The Modularization Theorem of Reuse of ADTs interpreted through ADVs

Within the context of ADV, the central property of very large-scale software
reuse can be phrased in a style similar to that adopted by Gaudel [Gaudel 1986]: “An
ADT specification extended by other reusable ADT specifications through the use of a
given set of specification constructors can be interpreted (or viewed) as an equivalent
ADV specification provided that the original ADT can be interpreted (or viewed) by an
associated ADV that is extended by the application of the same given set of specification
constructors applied to the ADVs associated with the reused ADTs” [Alencar 94]. That
1s, we need to show that the operators in Figure 3.2 commute. Using a suitable
terminology [Turski 1987], we can say that we have a “modularization theorem” for the

reuse-in-the-large of ADTs interpreted as ADVs.

57

3.2 Design Patterns

Design patterns [Gamma 1996] are a promising technique for capturing and articulating
proven techniques for developing extensible large-scale software systems, which are
invariably distributed in nature. Design patterns express the static and dynamic structures
and collaborations of components in software architectures. Patterns aid the development
of extensible distributed system components and frameworks by expressing the structure
and collaboration of participants in software architectures at a level higher than (1) source
code components or (2) object-oriented design models that focus on individual objects
and classes [Schmidt 1996].

Experienced object-oriented designers do not solve every problem from first
principles. Rather, they reuse solutions that have worked for them in the past. When they
find a good solution, it becomes a component in their arsenal of tools for reuse.
Consequently, you will find recurring patterns of classes and communicating objects in
many object-oriented systems. These patterns solve specific design problems and make
object-oriented design more flexible, elegant, and ultimately reusable. They help
designers reuse successful designs by basing new designs on prior experience.

The unified modeling language (UML) graphical-based notation is an important
and useful aspect of describing design patterns [Booch 1999; Derr 1995]. However, it is
not sufficient because it simply captures the end product of the design process as
relationship between classes and objects. To reuse the design, we must record the
decisions, alternatives, and trade-off that led to it. In addition, concrete examples are a
very important dimension to describing design patterns, because they help you see the

designs in action.

Design patterns can be classified along two dimensions so that we can refer to
families of patterns [Gamma 1996]. The first criterion, called purpose, reflects what a
pattern does. Patterns can have either creational, structural, or behavioral purpose. The
second criterion, called scope, specifies whether the pattern applies primarily to classes or
objects. Class patterns have static relationships that are established through inheritance
and fixed at compile time. Object patterns have more dynamic relationships that can be

changed at run-time.

3.2.1 Abstraction and Design Pattern

The general structure of a design pattern can be modeled into a two-level abstraction
hierarchy. The top level represents application independent structure, while the lower
level represents application specific structure. Figure 3.3 illustrates the general
abstraction hierarchy in design patterns. The structure and participants in the Reactor
[Schmidt 1995b] and Factory Method [Gamma 1996] design patterns (Figures 3.4a and

3.4b) illustrate this notion.

59

Other
Participant
Classes
Association Association
Other
?:tl,:;r:e? Participant Application Independent Layer
. Classes
Inhertance Inheritance

Concrete Realize Concrete Application Specific Layer
Subclass Subclass

Figure 3.3: Generic two-level abstraction hierarchy for design patterns

! Handles i—— Reactor
| I—
1 RN . select (handles) K
= —————
: ,“a“."iz;"h:mﬂiu for gacn F in handles laop
hy rRgIstEr_ table(h]-=hangle_events(lype)
+remove_handler() enet loop
EventHandier

+handle_event()
el _handle|)

Py

Agplication Independent Laywr

Application Specihc Layer

| ConcreteEventHandler |

Structure and Participants in the Reactar Pattemn
UML Nutation

Figure 3 .4a: Structure and participants of the Reactor design pattern

60

B Creator
Frrneluiet —3 -prod: Product *
Q +FactoryMethod()
+AnOperation() F--------- prod = FactoryMethod
ConcreteProduct L ------------- ConcreteCreator
+FactoryMethod() |- - return new CnncreteF'm%j

Structure and Participants in the Factory Method
UML Notation

Figure 3.4b: Structure and participants of the Factory Method design pattern

The application independent layer of a design pattern can be defined in such a
way as to capture the majority of the behavioral functionality being implemented by the
pattern. The application specific layer implements the concrete behavioral functionality.
In other words, the application independent layer captures the requisite interface and
relationships while the application specific layer implements the concrete methods and
classes to effect the required functionality.

A natural progress follows in which the super-structure of an application can be

designed within the context of the application independent layer using structural design

patterns and the corresponding constructs. The concrete classes can be implemented in

61

from the business model. This architectural separation allows business strategies to drive

technology decisions, and isolates the business application from evolving technology.

3.3.1 Software Architecture and Abstraction

Software architecture is akin to general systems theory in the natural sciences. On this
topic, Gerald Weinberg quotes James G. Miller: “At each level there are scientists who
apply systems theory in their investigations. They are systems theorists but not
necessarily general systems theorists. They are general systems theorists only if they
accept the more daring and controversial position that — though every living system and
every level is obviously unique — there are important formal identities of large generality
across levels” [Weinberg 1988]. The realm of software architecture is to find these formal
generalizations, or abstractions, and apply them in solving the programming problems
encountered in applications development. Again, according to Weinberg: “The more
general problem is often easier to solve and, in programming, the more general design
may be easier to implement, may operate faster on the machine, and can actually be
better understood by the user. In addition, it will almost certainly be easier to maintain,
for often we won’t have to change anything at all to meet changing circumstances that
fall within its range of generality” [Weinberg 1988].

After decades of building and delivery of distributed, client/server, and object
systems with unpredictable results, a critical success factor has become apparent. That
factor is a complete, consistent, and well-understood architecture. Grady Booth observes:
“Two traits that are common to virtually all of the successful object-oriented systems we
have encountered, and noticeably absent from the ones that we count as failures. These

63

traits are: (1) The existence of a strong architectural vision, and (2) The application of a

well-managed iterative and incremental development cycle” [Booch 1996].

3.3.2 Benefits of Architectural Approach to Software Construction
A complete architecture is the first step in successfully building large-scale software
systems. The benefits of a complete architecture include:

e Architecture enables embedded reuse through the implementation of frameworks
that encapsulate shared functionality. It also enables service reuse through well-
defined interfaces between applications that encapsulate business functions.

e Architecture allows improved time to market of applications because of parallel
development opportunities, The architecture will facilitate partitioning of the
problem into self-contained levels of abstraction and business services.

e Partitioning the levels of the architecture with clear specifications allows the
selection of commercial off-the-shelf (COTS) products. This is because
architecture modularizes the solution, providing modules with clearly defined
interfaces.

e A complete and robust architecture forces the separation of the business model
from the machine model. This separation will allow both models to evolve
independently to support business and technology changes. Model separation will
lead to an adaptive architecture system that will quickly satisfy the business
objectives of the future.

e Proper technical isolation will allow the ability to separate and change the

implementation. Proper levels of abstraction in the technical and software

64

architectures provide isolation from specific technologies, reducing the cost of
changing the implementation and maximizing the flexibility of the solution.

The architecture ensures consistency and integrity of information. Well-defined
interfaces between the semantic boundaries of the architecture will allow
encapsulation of functionality and ensure the consistency and integrity of
information in the layers. Building the elements of the architecture as context-
insensitive components that maintain their own state, will allow the components
to be reused without losing consistency and integrity.

The implementation of the architecture will allow for operational performance
improvements through parallelism and asynchronous processing while reducing
the developers’ need to understand the technical details associated with the
implementation. Partitioning the architecture into fine grained objects and using
asynchronous messaging between components will position the system to take
advantage of mulit-threaded operating systems, symmetric multi-processing
(SMP), and massively parallel processing (MPP) hardware. The modular software
will also allow performance optimization to occur at multiple levels of the

architecture.

Summary

Software-based architecture is currently a vaporous silver bullet. Reuse, the Holy Grail of

software engineering, can only be predictable and reliably achieved with an architectural

foundation. The ability to drive reuse to higher levels of abstraction such as design

patterns and artifacts, analysis artifacts, business models, frameworks, and requirements

65

requires a solid architectural underpinning. Software development processes and
lifecycles are frustrating and ultimately ineffective exercises in managing the
unmanageable, if implemented without an architecture. Metrics, software quality
assurance, software process improvement, and even quantitative and qualitative
estimation and project management are ineffective abstractions without an architectural
framework within which one can analyze, compare, and reason about them. It is apparent
that unlocking the mystery of software architecture is essential to gaining insight into the
issues of raising the abstraction levels for a software developer to be most productive.

The need for and the goal of an architecture framework is to manage complexity,
minimize the impact of change, incorporate and leverage existing components and,
maintain an overall perspective of the system. If accomplished, the framework
accelerates the systems development process, reduces system costs, and improves
systems quality.

It is our belief that software architecture, absiraction, and sofiware reuse are
orthogonal views of the same concept. However, software architecture provides a natural
approach to gain insight into uncovering abstractions in the software system. In addition,
it has the added benefit of being able to be mapped to a methodology and is therefore
repeatable. In the next chapter, we present a detailed outline of our contribution with

major focus on the adaptive enterprise application integration framework.

66

Chapter 4

Outline of Our Work

This chapter presents a detailed outline of our contribution. Our work is primarily
focused on the development of an Adaptive Application Integration Architecture
Framework. Software reuse and software integration are very closely related concepts
since integration is the combination of two or more existing components. Without good
integration tools and techniques, reuse is difficult and will probably not happen to any
significant degree. In the development of the adaptive architecture framework, the
primary enabling concept is object-oriented design support by the unified modeling
language (UML). The concepts of software architecture, design patterns, and abstract
data views are used in a structured and disciplined manner in establishing a generic
adaptive integration framework. To illustrate our approach, the proposed framework is
applied to solve the Enterprise Application Integration (EAI) problem in the
telecommunications operations support system (OSS) marketplace (Chapter 7).

The need for and the goal of an architecture framework is to manage complexity,
minimize the impact of change, incorporate and leverage existing components, and
maintain an overall perspective of the system. Design patterns allow us to solve various
pieces of the overall problem. For example, we have developed a number of EAI design

patterns that are used to integrate legacy third party applications into the architecture

67

framework. These design patterns allow us to develop a very definite and repeatable
process for integrating legacy as well as newly developed applications into a unified
framework. The abstract data view approach with its compositional capability is used to
aggregate and build up the overall solution by combining smaller macro components.
4.1 What is the Enterprise Application Integration Problem?
The enterprise application integration (EAI) problem is the inability of an enterprise to
leverage its enterprise domain silo software applications from a unified platform and to
use these software systems to gain advantages in an intensely competitive marketplace.
Businesses in general are in a process of continuous re-definition. Any reasonable
solution to addressing large-scale software development must facilitate the notion of
continuous business process re-definition or re-engineering. That is, the software system
must be adaptive allowing the enterprise to adjust its business models to address
changing market conditions. The problems associated with an enterprise inability to
perform application integration, adaptation, and business function interoperability at the
enterprise level are further exacerbated in the telecommunications industry where
introduction of new frame breaking technologies and services are the norm. The
telecommunications industry is therefore in a heightened state of awareness with respect
to the problem of enterprise application integration.

In addressing the EAL problem in a generic manner, our architecture centric
approach presents solutions for the following broad problematic areas:
1. Facilitate the integration and interoperability of stove pipe legacy applications
2. Cater for a clear separation between the business models and machine models
3. Facilitate the development of adaptive business process re-engineering

68

4. Facilitate the use of the Internet as a business platform across the entire enterprise

The problem areas indicated by (1), (2), and (3) have been around for a long time and
notoriously regarded as almost intractable problems in the sphere of the business
community. Solving these problems will present a whole new way of looking at how we

develop business software systems of the future.

4.2 Solution to the Enterprise Application Integration Problem

Our approach to the enterprise application integration (EAI) problem is to develop an
overarching view of the entire enterprise integration problem using software architecture.
To this end, we developed the n-tier orthogonal application integration architecture model
that is based on our proposed n-tier orthogonal architecture model. The n-tier orthogonal
architecture model examines adaptive business centric software development from a
single application context. The n-tier orthogonal application integration architecture
model looks at the notion of adaptive business centric software systems from an
enterprise perspective, which results in a close examination of the problem of integration
at the enterprise level. The principle of architectural layering is applied in the
development of the adaptive application architecture model. The subsequent paragraphs
outline this approach.

The object-oriented approach provides useful levels of abstraction for addressing
the complexity of modern business problems. Problems are decomposed recursively. At
each level of decomposition, the prevalent vocabulary and concepts are used to describe
that part of the domain. At the highest level, concepts are centered on overall enterprise
procedures and workflows. Following these are the business objects supporting the

69

enterprise-level procedures and workflows. Finally, key concepts that are not particularly
business or industry-specific are described.

The application architecture deals specifically with the business problems and
functionality. It describes the visible portion of the application — the presentation. The
application architecture is also distinct from the technical implementation details. With
object orientation, technology-based details can be suppressed, allowing more focus on
the problem to solve and on the business process to engineer. This results in the
description of at least three layers of system architecture — the presentation, the
application layers, and the technology-based details.

Each of the layers can be further refined to contain sub-layers or components.
Each layer and sub-layer is designed so that it arranges and connects layers and
components to produce the desired functionality. The sub-layers within the application
map to the levels of the problem domain described above, and the components of the
application should represent processes and concepts that exist in the problem domain.
This structure provides the following benefits:

e Integrity is enhanced because components share a common conceptual structure.

o The system is extensible because components and connections interact through
well-defined interfaces. Also, the implementation details become hidden from the
rest of the system, allowing components to change to take advantage of new

technology or to address new business needs without affecting other system parts.

70

e

4.3 Generic Adaptive Application Integration Architecture Model

The object management group’s (OMG) object management architecture (OMA) [OMG
1997] goes a long way in addressing the core requirements of a distributed object-
oriented application framework. OMA is the canonical n-tier architecture model.
However, it does not address the concerns of integrating enterprise silo applications into a
unified ﬁ_‘amework that allows the enterprise to leverage its data across the different
domain applications. It has been estimated that in excess of 95% of all enterprise data
resides in legacy applications. These applications were not developed to facilitate
interoperability and play nicely in a unified distributed framework. Hence, there is
tremendous need to provide a framework for integrating legacy applications in large
enterprise.

The generic adaptive application integration architecture model describes a highly
modular approach to integrating enterprise domain silo applications using standard
client/server relationships. While this model is built on traditional concepts of clients and
servers, the distinction between client and server is of a logical nature, resulting in peer-
to-peer relationships among components. The components are small and functionally
specialized so they can be easily reused.

Figure 4.1 shows a schematic representation of the generic adaptive enterprise
application integration (EAI) architecture model. This model contributed significantly to
the development of the adaptive EAl framework pattern presented in Chapter 6. The
adaptive EAI architecture model can be defined as a layered model, with each layer

providing a specific function in the overall scope of the resultant software system. This

71

architecture model enables the overall software system to be partitioned into small-
grained services. The major layers of this architecture model are as follows:

1. Domain Applications

2. Domain Application Adapters

Asynchronous Distributed Object Framework and Infrastructure Services

L

4. Médiation Services, equivalent to the Application Architecture in the n-tier
Architecture model and consisting of the following layers:
i. Package Mediation
1. Intrinsic Objects
iii. Domain Objects
iv. Business Objects and Business Object Managers
v. Business Processes
5. Presentation Services

6. Thin Client Application

‘)

I\

EAl Architecture
Model

Legend

Stnuciue Relatonsinps
and Data Pathe

—® Communcatun Palin

Infrastructure
Services

Exernakzancn
Secunty
Transactonakly
Cencurigncy
Persistance
Application Managoment

Asynchaoronous Distributed Object Framework and Infrastructure Services

%.l ==

|
*—_PL% v

-

Presentation Services

vBusiness Processes [Automated Workflow Processes)

a

Figure 4.1: Generic Adaptive EAL Architecture Model

The benefits of using the EAI architecture model,

partitioning, are:

applications

mechanisms

Adaptable business process, continuous business process re-engineering

73

= e Yy
] - i
| G Business Objects & Business Objecls Managers j
11
.
e—by] ‘Jvl' et Domain Objects \ |
.. — ‘:l " . e ‘J
(-]J
|
|
4—--(S =7 Package Mediation (Automated Mapping) j
- .
ZAS ﬁ. e 7
i] $—F—
e Al s T Ot Ao
-— (-:u;-?:w } K\ Adsgron) (Adaphain > |
—_— - o PR - |
-—[’ '——1 [] 1[4 is /
I
| f . 20 3 NE =N
:-q- p! f/ Dorionn \) ‘D«mn:\‘\. Dur--:- \\ .’/ Dorain \]
| e Mz g NG e N e

| Enterprise
+ Mediation
| Services

Damain
Application
Adapters

Domain

Applications

which enables application

Framework facilitating plug-and-play capability for best of breed domain

Framework for integrating the domain silo applications into a unified view

Separation of business rules from presentation services and data access

e Increased application performance

e Increased application scalability

e [solate security and critical business processes

e Reuse of not just software but entire applications (service reuse)
e Macro software component reuse

e Macro software pattern reuse

The following sections describe the layers of the adaptive EAI architecture model.

4.3.1 Domain Applications

These are the enterprise silo applications that form the core of the information technology
(IT) and enterprise business automation that companies rely upon for management and
successful execution of day-to-day operations to satisfy their customers’ needs. Legacy
applications are a special class of domain applications specifically when it comes to
integration and business function interoperability. These applications were not developed
with the intention to facilitate integration and business function interoperation. There are
a host of interesting problems associated with the integration of legacy applications.
These include problems relating to differences in technology, design methodology,

implementation strategies, etc.

4.3.2 Domain Application Adapters
These serve to externalize the information model, application services, and data models
of the respective enterprise silo applications. By so doing the domain application adapter

principle facilitates wholesale reuse of specific classes of domain applications. Domain

74

applications can be plugged and played without impacting the enterprise information
model. Likewise the enterprise information model can be modified without impacting the

domain silo applications.

4.3.3 Asynchronous Distributed Object Framework and Infrastructure Services

In the adaptive EAI architecture model, application services are available on the network
and are accessed through an object-oriented programming interface. The application
services are distributed on machines throughout the network. The Object Request Broker
(ORB) technology [DEC1991] is used to facilitate the transparent cooperation of remote
objects. The ORB provides a very rich set of distributed middleware services. The ORB
lets objects discover each other at run time and invoke each other’s services whether

remotely or locally located. Figure 4.2 shows a sample distributed object framework.

Oedar Entry
Sorece
—— —

o /’\'/ﬁ\ _/-\.I‘_\ /’/ Mersisience ‘\\

(’;;1 ‘\) ?(C'RB L Machine B (s \4/ K Suren //
Frocess 1 it G
o Vg \'\‘_ A (!:—"] &Y
— | \oaS p—— == Machine D
(' Order M:r.;;-:mem\\ /
i Sereze
Machine A /

S =]
Machine C

Figure 4.2: Distributed Object Framework

75

Execution

/ Enviranment
-

Business Processes Process ob]-c:z

Process Object1

Process ObjnckD

EY
Business
Business Objects Business Object 1 Object 1 Business Object 2
Manager
BT S S
\ 1‘ \n \\ —= //
- o~ m - w1 w - |
] v T k] T T k]
3 : : 3 % 3 s
Domain Objects g 3 o (=] o a =]
c 1= c c c c c
‘u]] = wu "]
E E E E E E E |
o o o o o o o
a a a [=] (=] (=] (=] i
. IS Fa P A — "
| 1
/| ‘
_ .;,f R [y /
Intrinslc Objects | | lntrlrlc Objects ;’ fl /
| 1 } L
i1 [/s Ir.f f i ;.' i
i
\ |’ / | / ;‘I /
| | ! ! /
v v 4 ¢ r v y o
'ﬁ:‘t:pr:::;d (Enterprise to Domain Application Mapping and Translation 1
o

Figure 4 3: The Sub-Layers in the Mediation Services Layer

4.3.4 Mediation Services

The mediation services layer is a distinct layer in the adaptive EAI architecture. This
layer has a number of sub-layers that combine to realize an orthogonal integration
framework for integrating legacy and newly developed software applications. Figure 4.3
provides a description of the mediation services sub-layers. The sub-layers form the

framework for building a unified enterprise information model, application services, and

data models.

76

Process Objects

Process objects represent business processes, sequence of events, business rules
knowledge, and concepts that span specific business objects. These objects manage
runtime coordination and cross-validation of business objects. For example, the order
entry process is not tied to a specific business object. Instead, it involves customers, the
location of customers, and the details of what has been ordered. A detailed pattern of
interaction among business objects constitutes the correct way to describe the placement
of an order and the appropriate information on an order. To put this knowledge in a
business object would violate the object-oriented principle of encapsulation. Instead, this
knowledge should be encoded in an order entry process object. Behavioral rules should
be contained within process objects.

Process objects are fundamental to the notion of adaptive business process re-
engineering. The process objects decouple the specification of the business functions

from the business objects that are used in the implementation of the business functions.

Business Objects
Business objects represent business concepts. This includes items such as
information about an organization, customers, and orders. A business object marries the
basic object with specific behavior, information, and structural business rules. A business
object should not bind to other business objects — this is the responsibility of the process

objects. Any cross-business object functionality should be pushed up to a process object.

77

.. . e »onkl
L ST T

8 |

Domain Objects
Domain objects represent key business and industry concepts and are independent
of a particular application. They may include basic information regarding a customer or

order, but they may also include items such as products and contacts.

Intrinsic Objects
Intrinsic objects are foundation objects. These objects are not tied to an industry
or domain. They include items such as addresses, names, dates, and times. Intrinsic
objects are primarily used in the construction/specification of domain objects. The
primary relationship between intrinsic and domain objects is of a structural nature.

Intrinsic objects are normally aggregated into domain objects.

4.3.5 Automated Mapping

The automated mapping layer is responsible for performing enterprise to domain
application mapping and translation. The mapping is needed because domain silo
applications are developed by different corporations and the fact that there is no universal
domain application standards to specify in an unambiguous manner things such as
component interfaces, information models, data models, collaboration sequences, and
other issues that are critical to the development of a software system. Invariably we have
the situation in which individual software vendors specify their own information models,
data models, and interfaces. This is further exacerbated by each enterprise developing its

own enterprise information and data models, etc. All this coupled with the need to have

78

interoperation between the various domain applications mandates the need to have some
form of mapping and translation mechanism.

In our adaptive application integration architecture model, mapping and
translation is restricted to occur between the enterprise business and domain objects and
the domain applications and between the intrinsic objects and the domain applications.
This mapping mechanism is key to decoupling the enterprise view from the domain
application view and is the core technological framework in giving this architecture its
best-of-breed plug-and-play capability. This module is transparently invoked whenever
there is any data transfer between the enterprise view and any of the domain silo

applications.

4.3.6 Presentation Services

Presentation services are server components that give a client application access to the
enterprise services from the mediation services layer. This layer is inherently distributed
in nature and the components are deployable across different machines. This layer can be
implemented using the model pattern or the typical peer-to-peer client server model.
Models are usually stateless and therefore a model may interact simultaneously with

many clients.

4.3.7 Thin Client Applications
This layer’s primary responsibility is to give a visual presentation of the information
and/or data models projected from the presentation services. This implementation

approach creates a clear separation between the enterprise services provided by the

79

mediation layer and presentation or view provided by the client layer. The client should
not be aware of the semantics of the information or data models of the enterprise
mediation layer. Implementation technologies such as XML over RMI or ITOP can be
used to further isolate the client application from the presentation and mediation layers.
The clients are called thin clients because they implement very little or no business

function capabilities.

4.4 Frameworks and Patterns of Interaction

The components of a distributed system interact to fulfill the overall requirements. These
interactions are termed collaborations and represent requests from one component to
another. By collaborating, seemingly disparate sub-systems and components can be
connected to perform the system responsibilities. Components can collaborate between
layers or across the same layer depending on the type of function being performed. Rules
of visibility must be established for each component to maintain consistency for the types
of collaboration allowed across layers and between layers. Typical collaboration patterns
include the coordination pattern and the configuration pattern. These Patterns are

described below.

4.4.1 Coordination Pattern

The coordination pattern of interaction represents tasks such as propose and confirm or
validation of data items. A client might enter data into a field on the screen. Validation
would be performed on the data and errors would be sent back to the client. Figure 4.4

shows one example.

80

To accomplish data validation, values entered by the client are sent from the order

user interface to the order server application service. A policy component may be

responsible for enforcing the business rules associated with the data item. The order
server would request the order policy server to validate the data item. The status of the

validation is sent back through the reverse path.

Client A

Crder User

Presentation Interface
Services
\\
\'\
\‘-\
Application 6 ot ‘;; o™ s ey \\
Services SASEOITS Order Server (Order Policy }
Server /
—— \-‘______
— —) “4.\
T TSy Concurrenc) e
E)derna!izab'on/\ (g C Permsten@
Object s e
Services <R
{ Security) (’ Application ™, W
- SO \Manageme,

Figure 4.4: Example Coordination Interaction

81

4.4.2 Configuration Pattern

The configuration pattern is another common type of server collaboration. Figure 4.5
shows an example of a configuration interaction. The client can alter application behavior
by setting configuration parameters or properties. This pattern of interaction traverses all
the layers of the architecture. An application server would receive the configuration
request from a presentation server and validate it with a policy server. The policy server
would enforce rules such as range checking, user privileges, and conflicts with other
settings. Once validated, all of the data storage servers associated with this change would
be updated. This pattern gives the user control over presentation layer components. In
addition, system behavior such as workflow steps and error message routing should be
controllable by the user. In the application of this framework some tradeoffs must be
considered along the dimensions of Time to Code (time to market), Execution speed, and

Level of Effort to adapt.

Client A

—

Presentation User Interface
Services

B

—

Application
Seevicap @echanism

I

AN
<F'er5|5ten (Persistence F’ersastence)
"""*‘1

& 5

Figure 4.5: Example Configuration Interaction

Object
Services

4.4.3 Model Pattern
The model pattern is an object interaction framework that implements the collaborations
between the presentation and application layers. Figure 4.6 shows a generic example of a

model pattern,

Process x Process

R P AL ST TR, N

Machine A Machine B

Figure 4.6: Generic Model Pattern

In the model pattern, clients access the business objects through a common model
object. This object hides the details of the business objects by receiving requests for
business activity or data, and coordinating the actions that must occur to meet those
requests. A model object is normally focused around one specific domain or activity,
such as order taking. Multiple models may exist throughout the system, each
accomplishing a different task. Models should be stateless, letting multiple clients access
them simultaneously.

In the following three chapters (Chapters 5-7) we will describe our proposed
approach in detail along with a complete example.

In Chapter 8 we will present the model based software development approach.
This is an approach to raise the abstraction level at which application developers work

and to automate the process of translation from an application model to its corresponding

84

i —

distributable runtime component. The basic thesis here is that we can effectively
transform the effort deployment in the software development process in which about 80%
of the development effort goes into the development of infrastructure services and 20%
into the development of application logic [Eeles 1998].

I;m Chapter 9 we will present a mathematical formalism for the specification of
design patterns. The formalism is the basis of a general-purpose approach for the
specification of software systems and components. This formalism is based on many-
sorted algebra. The approach thus provides a solid theoretical foundation for describing

and reasoning about software artifacts.

il IO

Ry —

85

Chapter 5§

Adaptive Orthogonal N-Tier Integration Architecture

Traditional legacy applications have been developed along a synchronous push-
oriented transaction model. In this architecture, the client initiates a transaction on the
server by posting a request; the client blocks and waits for the server to service the
request, and the server eventually delivers a response to the client. At this point, the client
receives the response and continues with its tasks, possibly posting another request to the
server. Because of the inherent lack of asynchronous capability in this type of application
architecture, integrating it into a bus framework such as CORBA is fairly difficult. Most
attempts at integration result in a peer-to-peer integration model over the communication
bus. In addition, these kinds of applications suffer from a lack of clear demarcation of
functionality between the application sub-layers and therefore embedding aspects of the

business processes into the exposed application program interface (API).

- | The Need for Application Portfolio Integration

The intensely competitive nature of today’s business market place mandates that
businesses must have the ability to perform very flexible business process reengineering.
Modern businesses, in general, are continually redefining their business models in an
effort to differentiate themselves from their competitors and to ward off competition.

86

In this market environment, high availability and customer care management is
essential to establishing market acceptability and high customer retention. These are
essential ingredients to successfully operate a business in the Internet driven economy.
These requirements coupled with the necessity of flexible business process reengineering
have driven us to reevaluate the approaches that have been taken to address the large-
scale (or enterprise) application integration (EAI) problem. The above requirements
mandate a business process driven integration framework that allows individual business
processes to be represented, monitored, and integrated with existing systems and users
across the enterprise. It also requires the ability to dynamically reconfigure active
business processes (software fault tolerant and hot swappable capabilities), allowing
users to continuously adapt to rapidly changing market conditions. This process-driven
infrastructure provides businesses the ability to adjust and alter their operational systems
to changing market conditions without any down time.

Application portfolio integration is mandatory in order to support larger
enterprises’ organizational goals. These goals include operational efficiency via process
flow-through and customer intimacy to enhance customer satisfaction. Examples of this
include knowing what a customer has ordered across multiple products, what problems
he or she has experienced, and his or her billing and payment history. Addressing this
integration challenge requires a comprehensive application portfolio assembly approach
that can exchange information among multiple application architectures each with
different data and process models and with different data exchange models.

The challenge is to create a means of integration at the business process level. An
information broker can create generalized event and object models to normalize the flow

87

of information between domain silo applications. We can create adapters to the various
domain applications. This serves the purpose of migrating the architecture from a multi-
point, spaghetti architecture into a much more manageable hub-and-spoke arrangement.
However, the adapter approach is just the starting point because it does not allow for a
flexible business architecture. To create an architecture that enables best-of-breed third
party application selection, while not sacrificing integration and data sharing, requires
another layer of “business aware” software that runs above the information broker.

With such a layer in place the business processes can change without affecting the
underlying applications. And conversely, IT should be able to change applications

without affecting the business processes.

§5.2 Traditional Approaches to Enterprise Application Integration

Typical approaches to address the need for enterprise application integration involve
building point-to-point interfaces between applications [OMG 1997; Linthicum 1999,
Mowbray 1998]. This is an order n-squared problem and is therefore very expensive. In
addition, it does nothing to address the adaptive requirements of most modern businesses.
The business models and corresponding business processes are constantly undergoing
changes to address the competitive nature of today’s marketplaces.

The next prevalent approach to addressing the EAI problem is to use a hub-and-
spoke architecture in which an application is chosen as the master and all the other
applications are logically integrated through this master application [Mowbray 1998].
Normally, a bus framework is used and thus the n-square interface problem is eliminated.
This type of integration architecture is very application specific. 1t does not facilitate

88

plug-and-play of best-of-breed or commercial off-the-shelf (COTS) software products.
This kind of application integration continues to suffer from shortcomings resulting from
the push transaction model. The new enterprise business processes are tightly coupled
within the APIs of the master application and are therefore not adaptable. Figure 5.1
depicts such an application integration architecture model.

The mediation layer makes an attempt to capture the definition of business
concepts independent of the different applications being integrated. However, the
business rules and business processes are defined fully within the context of the master
application. The master application also serves as the entry point of the system and
therefore drives the overall system interaction.

The close coupling of the business processes with the inherent limitations of the
master application architectural model severely limits the ability of such a system to
adapt to changing market conditions. The rapid delivery of new products and services is a
mandatory requirement in today’s business environment for an enterprise to remain a
viable entity. Hence, applications must have, as a core requirement, the ability to be
rapidly adaptive to changing market conditions. A business analysis should be able to
create an enhanced version of a product or service offering and deploy it in the runtime
environment in hours or days, but certainly not weeks or months. Time to market
responsiveness is absolutely critical for the survival of business in industries such as
telecommunications that experience intense competition to acquire and retain customers

through differentiated services

89

Problem @ .i Clients E
Most applicabons are [- o

synchronous with & push
B o (- _;;esantatlan Services
model

This approach favours a 2N &
hierarchical information

modal architecturs in — . J Master

A

which one of the Master Application Services

applications act as a b Application
mastar, directing the o - @ Execution
intercation with the other Environment
applications L Business Processes/Automated Workflow Processes

e N
Vary close couphng
betwaen the masler 57 R
applicaton and the (Business Objects / Business Object Managers J Foiy
biisiness processes -I/E l\;edl?hon
The master application ol 1 ervices

1s the entry point into the Domain Objects

system The tight 23 J
coupling hmils this /I < {7) [\
applicabion Massage Oriented Dlstrlbutsd Object Framework B
architectura's ability to B

be adaplive

f

/

i %

11 <
s
o.m.u np.n 4 """‘" ::" a Damain
"""" ek Adapters
; /"ﬁ Cur Y| sl
\\ appld \\ epin

L n
ey

ﬂ;ur apsl 1 B-llu nAgpl 2
Azacter Arlaher
": I.
Sbmain Plnom
e i\nrl]

Figure 5.1: Traditional N-Tier Application Integration Architecture Model

The domain adapters are used to expose the enterprise silo application data model
and application services. They may also be used to perform data mapping to and from the
application domain. The domain applications often have application specific data and
information models, making it necessary to have some form of data mapping. This
functionality of the domain adapters further limits their reusability because they are
closely tied to object specification in the master application. The master application,

which is the entry point for the enterprise, hosts the enterprise object models. The

90

Enterprise object models vary from organization to organization and hence the adapter
must be modified to reflect this in the functionality of the data mapping.
To address the shortcomings of the above-mentioned approach, we propose a new

adaptive orthogonal integration architecture framework.

3.3 N-Tier Orthogonal Application Integration Architecture
Modern business is by definition evolutionary. An enterprise must continuously redefine
itself to remain competitive and thus a viable business entity. To accomplish this
fundamental business requirement, the business processes representing enterprises’
business models must be evolutionary by nature. That is, the business processes must be
adaptable and thus give the enterprise the ability to be responsive to changing market
conditions and competitive market pressures. Inherent in the adaptability requirement is
the fact that business processes must be elevated to the status of first class entities,
complete with their own execution environments. From a distributed computing
perspective, business processes can be viewed as deployable distributed components.
These components should be developed as complete software agents with respect to their
ability to interact, acquire, and use the services provided by the run-time distributed
object framework and infrastructure services.

The Generic Adaptive Integration Application Architecture Model of Figure 4.1
(presented in Section 4.3) forms the basis of the Adaptive N-Tier Orthogonal Application
Integration Architecture that we propose. The concept of the Adaptive N-Tier Orthogonal

Integration Application framework is explored in Chapter 6. There we take a distinct

91

implementation perspective, identifying the major component and technologies required
for the approach.

From a business perspective, a business process represents a business function.
That is, a functional wse-case of the application that is used to represent a business’s
functional requirement. Thus, in the finest granularity, there is a one-to-one
correspondence between business processes and business functions. A change in business
model is manifested as a change in business function. This should be ultimately reflected
as a modification or enhancement to the business processes implementing the business
functions. In the runtime environment, this could be achieved by deploying a new
business process component that implements the new requirements.

The orthogonality of this architectural approach is accomplished by removal of
the master application concept. Each application has the same level of importance with
respect to peer relationship. This approach effectively destroys the hierarchical master-
slave relationship between the master application and the other subordinate applications.
In addition, this approach also addresses a more sinister and difficult problem. The
hierarchical master-slave relationship imposes a hierarchical information model in the
integration architecture. This is reminiscent of the problems resulting from strict
functional decomposition that typifies the traditional software construction process.
Inherent to software constructed using functional decomposition is the fact that the higher
layers require knowledge of the lower layers. Knowledge percolates or flows upward in
this kind of architecture and makes it inflexible and therefore resistant to change. Within
the context of this kind of architecture, business functions or business models are also
knowledge and have to be encoded. Thus, it is fair to state that, the traditional software

92

architecture and implementation approaches result in business models being encoded in
the APIs of these kinds of applications.

The fact that the business models and resulting business processes are embedded
in the APIs in traditional software applications is reinforced by the fact that these
applications are extremely resistant to change. Changing them to address new business
directives means reprogramming the application. To address this problem, most large
enterprises have substantial Information Technology (IT) resources dedicated to address
this problem. Again, it is fair to assume, for example, that banks are in the banking
business and not information technology. If the software they use allows them to adapt to
changing market conditions and facilitate growth, then they would not have to invest the
current level of resources into their in-house IT departments. Thus, in order to tackle the
problem of developing flexible business process objects to facilitate adaptable software
systems, we must effectively develop a new architecture, one that destroys the notion of a
hierarchical information model to handle interfacing between the layers of the application
architecture. Hence, the adaptive orthogonal integration architecture.

Domain application orthogonality results in a simplification that can be
characterized by the application services being viewed as extension of the infrastructure
services. This is consistent with the work of the OMG in their effort to develop domain
specific standard services. The logical extension is that these services become evolvable
distributed components that can be deployed directly into the execution run-time
environments.

The enterprise application architecture can now be developed using an object-
oriented n-tier architecture model. The application and infrastructure services are the

93

foundations on which the intrinsic and domain objects are built. The process objects
implement the enterprise business processes. Process objects are deployable distributed
components. Process objects implement logic to facilitate collaboration between two or
more business objects in addressing a business function. Integration between the various
domain silo applications is manifested as collaborations between the business objects
within the context of a process object.

This is a form of dynamic integration. This kind of integration is expressed as the
collaboration logic between business objects within the context of a process object. The
business objects represent domain application services. These services are implemented

within the domain silo applications.

5.4 Implementation and Protocol of the Enterprise Mediation Layers

As described in Chapter 4, the mediation services layer is a distinct layer of the adaptive
enterprise application integration (EAI) architecture model and is composed of several
conceptual layers. This section describes the implementation of the mediation’s sub-
layers and the protocol between those layers. Figure 5.2 provides a graphical description

of the implementation layers and protocols between the layers.

94

8

(D

1 — Bu“;:::ﬁ?’.“1 Eusmus‘: Object F'wsmlv:l Obyject
A
4
4 a g - :/ ¢
= Fal 5
/ e /12
Frocass i o ! /
Object . J_/ ; 11 /
SN P
1 Dusingss Chject ¥ :
- Manager — i
B
6 _ | Gusiness Object
g wmarean B 8
,
II -
2 o 10 \
Wi
B Sy Persistent Object
SR 7 o R B
R s e s e s s e S s s e e s]
3

Figure 5.2: Mediation Services Layer Implementation and Protocol

Figure 5.2 shows the three major components in the mediation layer. The first is
the process object. As described in Section 4.3.4, the process object can span a particular
business object or concept. The second and third components are application
components. These two components are represented by A and B in Figure 5.2. Either
component could represent order, customer, affiliate, or any other component of an
integrated telecommunication management application; however, the particular
components should be viewed as patterns of interaction between components rather than

details of a particular component. Each application component comprises a Business

95

Object Manager, a Business Object, and a Persistent Object. Whereas Section 4.3
describes the basic capabilities and function of each layer of the application, Section 5.2
describes some aspects of implementation relating to how the layers are constructed and

how they interact.

5.4.1 Component Construction

This section describes the structural aspects of the mediation layer components.

Process Objects

A process object contains functionality that spans business object components.
Process objects contain no state. Instead, they contain only functions that require a
particular sequencing or cross-reference between other objects. These functions contain
the procedural/behavioral knowledge of the application. Process objects may therefore be
replicated for performance and scalability as needed. Process objects should be used to:
e Coalesce lists and queries that cross class boundaries
e Provide convenience functions for a user interface client
e Gather a subset of Business Objects to invoke the same function on each
e Provide validation of state at the model level (cross-object)

e Force a sequence of activities.

Business Object Managers
The Business object managers provide lifecycle and location services for a

particular class of business object. Unlike process objects, the business objects managers

96

contain state. Each business object manager contains a transient list of business objects
for the class it represents. The lists may be separated for performance reasons within a
particular business object manager to contain, for instance, a list of those business objects
that are active and those that are inactive, determined by the state of the business object
itself. Other separation schemes may also be possible.

A business object manager can be designed to handle some larger-grained read-
only queries. When such requests are made, the business object manager initiates a
transaction and makes calls directly to private methods of the business object (the
business object manager of a particular class can be implemented as a C++ friend of the
same class of business object or in the same Java package). This implementation
approach could be done to increase performance by handling the query in one transaction.

Because this layer of the application contains state, replication is not simple. To
replicate this layer, an event mechanism must be implemented so that multiple business
objects managers will be aware of the changes to the transient lists of business objects

that other managers are making.

Business Objects
The business objects contain no state. They serve as gatekeeper to the persistent
objects. A business object contains the transaction logic to access the persistent layer of
the application for write transactions. Although this layer contains no state, the business
objects may not be replicated because there is a distinct tie between an instance of a

business object and its corresponding persistent object. In other words, the business

97

Some interactions are considered illegal within the context of this architecture and
are not allowed. They are represented in Figure 5.2 by dash directed lines. These
interactions primarily violate encapsulation and include, but are not limited, to the
following: Process Object to Persistent Object of any class, Business Object Manager to
Business Object Manager of different class, Business Object Manager to Business Object
of different class, Business Object Manager to Persistent Object of different class, and

Business Object Manager to Persistent Object of same class.

Process Object to Business Object Manager of Any Class
Process object to business object manager of any class invocations (Line 1 in Figure 5.2)
may be performed to get a subset of the list of business objects contained in the business
object manager. This is not completed in a transaction. To the extent possible, the
business object manager provides convenience functions to narrow the list of business
objects returned in a query, thus reducing the internal knowledge of a business object that
a process object must contain.

When the process object receives a transient list of business objects, a question
arises as to the integrity of the process object’s function that may be addressed by the
process object subscribing temporarily to event notification of update to the transient list
of business objects. This will call for a case-by-case analysis of the process object
function to determine how the event will be handled, and may include updating the
transient list, breaking a transaction lock (if one was initiated) and forcing the process

object to retry, or ignoring the event.

99

Process Object to Business Object of Any Class
Process object to business object of any class invocations (Line 2 in Figure 5.2) are
performed when the process object has already invoked a function on the business object
manager to get a subset of the particular business objects (narrowing the list of business
objects through a query). The process object then either returns the list of business
objects to the client that invoked a function on the process object or invoked a specific

function on each of the returned business objects.

Business Object Manager to Business Object Manager of Same Class
Business object manager to business object manager of same class invocations (Line 5 in
Figure 5.2) are required because of the transient list that exist in the business object
manager. This is not a business object manager invocation of a function on itself, but
rather is the invocation of a function on other instances of the same business object
manager class. This could be a simple event notification mechanism to update the

transient list.

Business Object Manager to Business Object of Same Class
Business object manager to business object of same class (Line 6 in Figure 5.2) supports
create, read, update, and delete functions. Write transactions are done on a transaction-
per-object basis to ensure persistent object integrity. The read transactions are done on a
transaction-per-business object manager basis, so that one transaction may be used to

collect the entire list of business objects.

100

Business Object to Persistent Object of Same Class
Business object to persistent object of same class (Line 10 in Figure 5.2) are performed
for create, read, update, and delete functions. The business object public functions always
access the persistent object through a transaction. The business object contains private
functions that do not have a transaction that make the actual call to the persistent object.
The business object public function (with the transaction) calls its own private function to

carry out the public function.

Summary
In this chapter we compared and contrasted our proposed adaptive orthogonal integration
architecture with the traditional integration approaches and showed how our approach
avoids the issues relating to hierarchical information models and related problems
resulting from functional decomposition. In addition, we showed how our architecture
lends itself to the concept of adaptive business process by taking advantage of dynamic
integration This is essential to facilitate application portfolio interoperability.

The next chapter presents the adaptive application integration architecture. The

presentation in that chapter is from an implementation perspective.

101

Chapter 6

The Adaptive EAI Architecture Framework

The central theme of the adaptive enterprise application integration (EAI)
architecture framework is to provide an enterprise infrastructure for sharing objects and
processes, making them accessible to applications at the enterprise level and thus
facilitating application integration. Figure 6.1 gives an illustration of the adaptive EAI
architecture framework. This is effectively a high level pattern corresponding to the
Adaptive Orthogonal Integration architecture model presented in Chapter 4. The core
component is the distributed object framework, such as CORBA, that acts as the essential
glue for distributed object interoperability and fault-tolerant architecture. The major
components in the adaptive EAI architecture are as follows:

e Distributed object framework

¢ Domain application adapters

e Application Mediation core

* Event mediation module

e Event Handlers

e Enterprise application architecture
e Business processes

e Package mediation

<<Entity>>
Process Object (Enterprise _<l
Business Services)

1

O..n

<<Enlity>>
Business Objects

1

O.n
<<Entity>>
Domain Objects

<<Entity>>
Package Mediation
(Automated mapping)

O.n

1

<<Enlity>>
Distribulea Object Framework (Domain Services, Infrastiucture Services)

/’//I \\1\
o1 e 4
<<Entity>> SR .
R ¥ <<Entity>> <<Entity>> 1
Appllcah%r:::\:edlahan Event Mediation Event Channel
1 O.n
1 1
O O.n
<<Entity>> Eﬂ(En}i{ily;?
; . nt Han
Domain Application L =
Adapter
1
1
<<Entity>>
Domain Application (Damain | 2. 0

Application Services)

Figure 6.1: Adaptive EAI Architecture Framework

The EALI architecture framework facilitates object as well as design reuse. Object
reuse results from the domain and infrastructure services being incorporated into the

solution. Design reuse is a consequence of the design patterns and architecture principles

103

employed. A UML model-based translation development process can support the overall
software component creation process. The component being developed can be specified
as a UML model, complete with behavioral specification done using UML extended with

an action semantic language (ASL) [Mosses 1992; Mosses 1996; Doh 1994; Even 1990].

6.1 Distributed Object Framework
The distributed object framework is the infrastructure mechanisms standardized by
CORBA and can be implemented using a standard off-the-shelf object request broker
(ORB) such as IONA Orbix [Iona 1999]. The role of the ORB is to unify access to
application services, which it does by providing a common object-oriented, remote
procedure call mechanism. The CORBA Interface Definition Language (IDL), an
essential component of the family of standards that define the CORBA architecture,
provides a language-neutral and location-neutral messaging interface for component
interaction. CORBA provides a number of standard infrastructure services inclusive of
the following:
e [Externalization Service
Externalization is the process of taking program data structure and other object states
and converting that information into a form that can be stored or transmitted. This
process involves removing pointers and converting binary data into flat
representations so that the information can be considered to be a stream of bytes
without additional internal structure. Externalization plays a very crucial role in
object location transparency. We can think of this as representing an object graph as a

flat stream by doing a graph traversal.

104

e Persistent Object Service
The Persistent object service provides the ability to store the state information and
data of objects into a relational database management system (RDBMS) or an object-
oriented database management system (OODBMS). The Persistent object service
provides for the replacement of the persistence protocols used within the service. A
persistence protocol is a particular set of interfaces used by a persistent object to store

its persistent state. Figure 6.2 provides the components of the persistent object

service.
. » Persistent ID
Client Persistent
Object
~+——OMG IDL connect
disconnect
A store
restore
Persistent delete
Persistence Object
Protocol Manager
y
Persistent
Data -+——OMG IDL
Service
A
]
Data
Store

Figure 6.2: Persistent Object Service Components

105

Event Service

The Event service defines generic interfaces for passing event information among
multiple sources and multiple event consumers. It allows for decoupling of the
generators and receivers of events and for a large number of receivers that are

managed by the service and not by the event sources. Event notification is one way of

using this service. This service can also be used as a multicast capability. The service

provides a general set of mechanisms for allowing recipients of event information to

register their interest in events. This also allows the source of a multicast message to

post the message once and have it conveyed to multiple recipients without direct
knowledge between the event’s source and the recipients or direct connections

between the supplier and consumer objects. Figure 6.3 provides the components of

the event service.

~ Supplier

‘Application
Object

Event Channel Interface

~_ Supplier Admin Interface

Supplier/Consumer

Consumer Admin
Event i Inteface
Channel
Object Supplier/Consumer

Interface

Event Channel

+y

A

Factory Interface

Y

Figure 6.3: Event Service Objects

106

Interfaces

Factory/Object Interface

+y

Consumer
Application
Object

The Concurrency Service

The Concurrency Service is a general-purpose service for ensuring atomic access to
distributed objects. The Concurrency Service provides synchronization across
distributed environments and allows the locking of individual objects or several
objects to provide atomic access when changing state information. This allows
applications an enabling capability for assuring coherent state information in
distributed systems. Previous capabilities for concurrency control, which are
operating system and language dependent, do not extend easily to distributed systems.
The Concurrency Service provides the advantage of portability and the effective use
of concurrency across multiple operating system platforms and languages in a
distributed environment.

The Concurrency Service works with the Transaction Service in a closely
coordinated manner. Regardless, it is likely that the Concurrency Service would be
one of the key services used during transaction processing. When the Concurrency
Service completes a transaction, either by committing the transaction or aborting the
transaction, the combined services are responsible for releasing any concurrency
locks that were put in place during the transaction. The locks are reset to their
unlocked state. This is an important part of the clean-up on termination of
transactions
The Transaction Service
The Transaction Service is a general-purpose set of interfaces that can be used to
encapsulate a variety of existing technologies and provide standard interfaces across

all implementations of transaction monitors. For example, the Transaction Service is

107

designed to be layered over monitors that are compliant with the X/Open distributed
transaction protocol [OG 1994]: monitors that use the Tuxedo protocols, and object-
oriented database conformant with the OBMG-93 standards. The Transaction Service
is a general capability that allows the manipulation of the state of multiple objects in a
distributed environment. It builds on the capability of the Concurrency Service for
controlling access to individual objects. The Transaction Service allows modification
of the state of multiple objects to be viewed in a reliable and highly consistent way.
The Transaction Service supports the ACID properties of transactions (atomicity,
consistency, isolation, and durability).

Transparent Transactionality

All processing can be performed within the context of a transaction that ensures
application consistency and full transparent recoverability.

Asynchronous Processing Model

This processing model minimizes synchronization points within the application for
high throughput and traffic peak absorption.

Application Recoverability

The CORBA architecture provides recovery services for applications that are both
transactional and non-transactional, enabling customers to integrate legacy data and
process sources into the recoverable application model.

Reliable Queuing

Application developers can build models on different nodes and communicate via

distributed asynchronous transactions.

108

e Kernel Level Threading
Kernel threads are lightweight processes. The CORBA architecture is designed to
take advantage of kernel mode threads, which minimizes context-switching overhead
that reduces latency and improves performance.

e Transparent Scalability
The CORBA architecture framework scales transparently by supporting single and
distributed scaling mechanisms, providing flexibility for the application designer to
make trade-offs among cost, manageability, and redundancy — as required by existing

application and business models.

6.2 Domain Application Adapters

The domain adapters form a very powerful framework for incorporating domain
applications into the overall enterprise framework. The adapter framework can be
extended to include interfaces for integrating protocols such as SNMP, and provide
support for CORBA, persistent resource managers, etc. We have developed a generic
design pattern that can be used to implement this capability. This pattern is part of the set
of EAI design pattern that we present in Chapter 8.

The domain adapters are used to expose the information and data models of the
legacy applications. This exposition allows us to look at the application services provided
by the legacy application as extension of the infrastructure services provided by the
distributed object framework. Again, this approach is consistent with the work of the

OMG in their specification of domain services.

109

6.2.1 Domain Application Adapter Design Pattern

The domain application adapter pattern provides a consistent and repeatable manner for
thinking about and integrating domain silo applications into a unified framework. Figure
6.4 presents schematics of the adapter pattern. The pattern provides three main functional
areas: (1) the communication transport, (2) the application interface, and (3) the adaptor,
which is a container for the application functionality. The
ConcreteApplicationTransaction class is the main class interacting with the application
functionality via the application program interface (API). The APl may have to be
enveloped in a special purpose wrapper to handle platform specific data type conversion.
This is shown in Figure 6.5.

The ConcreteAdapter class acts as a container for the concrete application
transaction object. It effectively overrides the Get7ransaction method to return the
relevant transaction object. This is an instance of the Factory Method design pattern at
work. The TransactionMgr object associates an Appllransaction object with a
communication object and returns it to the Adapter. Thus, we can have multiple
concurrent transactions occurring at the same time. Hence, this pattern is inherently
scalable and therefore imposes no limit on the performance of the legacy application it is

adapting.

110

Adapterinterace

<<interfaces»

*cin

*initAdapted

G etTransactionO biect
GSetadaptaiNamen
®GatAdaptarName)

gadapter)

ConcieteAdapteriniedace

s<inledace>s

<<Enlity>»
Aapl Trangaztion

S Create TansachonCly) |0

<<Entity»>
Adapter

Sinitadapte) o.*

<cEnlity»>
CoreMudiation

$GwtTransactionObject)
5eladapleiNamen)
$GetAdapleiNamel)
®PingAdaping

<<Enlity>2
ConereteAdapter

Sinitadapten)

BAesisterAdapted
SfemoveAdapten)
VG etidante L9]

WG etTiansactionObjec| 1

0.1

<<Enfity>>
TranzaclionMgs

0.

<<Entity>»
Communicationhgr

<<interface»>

'<]._ ---4 Mediationinterface

<<Enlity>»
Comm Fransport

CreateConnection))
G eiConnectian)
Sinic annhgeQ

W Setdiiccalion Status()
GetAlacation Status)
Sapplicationiaging

QS Aaplicationlagout)

<<intedaces»
Transactioninteface

LD

<<Enlify>>
CenctetaApp!Tr ot

®CieateTiansactionObi0)
VG etTransactionObj
BinitTrankgQ

% SerrbstName ()

% Set Serveciiane)

S SelPAdd ()

% SetCanmection Status()
SGetConnection Status)
A Setalloealion Status))
SGetAlacation Status(
Sconnect

Slestroy)

weEnlity»>
CencreteComm Transpont

Figure 6.4: Domain Application Adapter Design Pattern

111

®CieateConnaction?)

<<Entity>>
Adapter
(from Adapler Design Fatiein)

®initadapte
$GeiTransactionObject)
$sethdapterNamen

S GetAdapteMamel)
®PingAdapter)

<<Enlity>>
ConcreteAdapter
(from Adapier Design Pattern)

<<Entity>> ’Inibﬂdxplanj .
Appl Traasaction Q®GetTransactionObject)
(from Adapter Design Patlern)]

Application API

¥Create TransactionObj()

®api1Q ¥setallocationStatus) o-* 0.1
®api20 ¥GelallgcationStatus) Entitys
®:pi30 $applicationloging \ TransactionMgr
®applicationLogout) k 0
1 (trom Adapler Design Patten)
% ®CreateTransactionDbjd
L aoe] %G eiTransaction0bjQ
<<Entity>> 1n_shntiat§s ®nitTranhigr
1 ConcreteApplTransaction |~
Application AP| Wrapper (from Adapter Design Patlern)
SNewMethod) ; Shethod10
iethod20
Vhtethod3)

Figure 6.5: API Specific Wrapper

6.3 Application Adapter Mediation

The application adapter mediation is a central component that provides the actual hooks
to anchor the domain application via the domain adapters to the core distributed object
framework. We have developed a design pattern to accomplish this functionality. This
pattern is part of the set of EAI design patterns. The application adapter mediation pattern

is presented in the next section.

—

6.3.1 Application Adapter Mediation Pattern
The mediation pattern, Figure 6.6, provides the framework for the adapters to register
themselves and make their functionality available. It uses the principle of delegation to

present the functionality of the respective application via the adapter to interested parties.

<<Inteface>>
intAdapterMediation

®$RegisterAdapter(Adapter : intAdapter) : void
$GetAdapter(AdapterName : String) intAdapter
*initAdapterMediation() : void
$unRegisterAdapter{AdapterName : String) : void

AdaplerMediationManager

' ‘Monilumdaptem’slcname).uoid
Y 1

AdapterMediation

E&m_AdapterCount : Integer

$RegisterAdapter(Adapter : intAdapter) | void
$GetAdapter(AdapterName : String) : intAdapter | '
%nitAdapterMediation() : vaid

BnRegisterAdapter(AdapterName © String) : void

<<Inteface>>

+registered | 1 inlAdapter

adapters ®nitAdapter() © void

$GetAdapterName() - String
$PingAdapter() : Long
$SetAdapter(AdapterName : String) - void

1

+registe [0.7
Adapter

_&m_AdapterName : String
Eom_Adapterinterface : intAdapter

*GetAdapterName() : String 1
$SetAdapternterface(Adapter intAdapter) : intAdapter
¥GetAdapternterface() - intAdapter

Figure 6.6: Application Adapter Mediation Pattern

6.4 Event Mediation
Most legacy applications have no concept of asynchronous processing. This is a

consequence of the push oriented transaction model that typifies software applications

113

]
3
3
L
-

developed using a functional decomposition methodology. The event mediation module
provides a mechanism to retrofit legacy applications with asynchronous notification
capability. This is in effect a standardized layer that is wrapped around other rudimentary

mechanisms (such as polling) that can be retrofitted into the legacy applications

6.4.1 Event Mediation Pattern

AdapterMediation
(from Mediation Core)
%m_ﬂ-\dapterc ount : Integer

‘Registe rAdapten)
Qcetad apten)
RnitAdapterMedistion)
QunRegisterAdapte)

4

EventManger
@ m_Handles : list <Handles'>

@®HandleEvents)

1 [2 b
EventHandler 1

1
$GetHandle) EventMediation

®HandleEvents)

‘Regis{erEuentH andlen)
$UnregisterEventHandler)
‘HandleEvenIsO

0= D,/ 1

ConcreteEventHandler

a..*

EveniChannel

cubscribeT oEvents()
®UnsubscribeFramEvents)

Figure 6.7: Event Mediation Pattern

114

The event mediation pattern, Figure 6.7, is an extension of the Subject Observer pattern.
Concrete event handlers are registered with the event mediation object to receive specific
event notifications. The respective event manager will invoke the event handler to
process the delivered event. The event handler is able to activate process objects via the

event mediation and adapter mediation objects.

6.5 Package Mediation

This module performs data mapping between the enterprise domain, enterprise business
objects, and the silo domain application object representation. This module is
transparently invoked whenever there is any data transfer between the enterprise view

and any of the domain silo applications.

6.6 Flexible Business Processes

Business processes are the mechanism by which an enterprise implements its business
models. Thus, these act as mini-workflow processes that coordinate and collaborate the
interaction between business objects and business object managers in the N-Tier
Orthogonal architecture. The business model, the critical intellectual property of the
enterprise, is programmed into the business processes. Depending on the technology
employed in the implementation, business process objects can be developed as
deployable runtime executable components. Since business process objects are ohjects in
the object-oriented sense, all the properties inherent to the OO paradigm apply to them.
Thus, one can use the principle of inheritance to form a new business process that can be
further refined to address changes in market conditions. The new business object is

115

effectively a new version. This is the manner in which this architecture achieves its
adaptable capability.

An interesting consequence of the collaboration mechanism employed by the
business process objects is that it presents a new way of looking at integration. A finite
state automaton (FSA) can be used to represent the collaboration sequence of the
business process objects. This coupled with the notion of versioning mentioned above
forms a very powerful way of looking at integration. Integration is effectively dynamic in
nature. This Dynamic Integration can be envisioned as a business process traversing a
specified path through a set of nodes. The nodes represent the business objects. Hence,
for a given set of nodes, the execution of different business processes result in different
outputs.

The abstract data view (ADV) concept is central to the notion of adaptive
business process being presented. The ADV design concept promotes reuse of interface
specification through the principle of composition since it allows complex interfaces to
be built from simpler interface components. In addition, the specification constructors
have the ability to extend the capability of the module components being combined. The
business models represented as automated workflows are, in fact, the extension capability
provided by the ADV or business process components. In so doing, the ADV mechanism
provides the capability for specification of the collaboration logic between the enterprise
business objects as well as the enterprise workflows that define the business models of
the respective organizations. In principle, the ADV approach for business processes is an
extension of the basic delegation mechanism. Figure 6.8 provides a schematic
representation of the concept.

116

Business Process

_Ownerinterfacet|

Business Object Inferface

@

_Ownerinterface2
SWoddlond)
% “-. .| Business Object Intertacet
H m_Chwunerd BaseClas
A m_Owenesd
\ Epm_Owned
.; $ClassiOperation1Q ?
b NClass10peration2Q T
| * L] Ty Derived Classt I
Y by Derived Class2
WiakFlond N *0paiationtQ
{ R T T ®Operation20
m_Dwnerinterface1->Class10peration1) *~ L
1o = ChedkRasult1() . N bt
i cond1) . . T B D Detived Class
{ . M
m_Dwnernlerfaced.>Clas20peraliond. A ¥
m_Ownerintertace2 > ClassdDgeration7() e L
m_DwnednlerfaceZ-*Clan3Dperation2(), " TEReseans
] € e

else

{
m_Dwnernledace2->Clae2Cperationd(),
m_OwneilnteaceZ->ClassiOperation2()
m_Dwneilnledace2->Clasd30prrations(,
m_Dwnetinlerface2 >ClasstOparationi,
m_Dwnerinterface1->Ciass1 Operation3g),

Class10peration1]
i

m_DOwnenl->Operation1)
)

Derived Class3

m_Ownetintetace 1.2 Class30perationB(.
1

}

Figure 6.8: ADV Representation of Business Processes
6.7 Putting It Together

The Adaptive EAl Architecture Framework presented in Figure 5.1 lends itself to
significant automation. In Chapter 8, we present a UML based component development
approach using model-based development to automate much of the coding. There is
significant scope for reuse in this approach. The domain application, domain adapters,
and mediation core facilitate wholesale reuse. As long as the domain application has the
functionality, no coding is needed for reuse. It is the business process objects that will
have to undergo the most modification to implement the enterprise business models. This

is understandable since this is what affords an enterprise the ability to differentiate itself.

117

In Chapter 8, we also propose a translation process that can take a UML model of the

business process and generate the deployable runtime component.

118

e dend s kbaat b S . kb

Chapter 7

OSS Integration in the Telecommunications Industry

Operations support systems (OSS) are the mission-critical enterprise hardware
and software systems that telecommunications service providers use to implement,
manage, and support the complex transmission and delivery systems of the
communications environment. OSS software systems can be segmented into three very
broad categories: (1) Customer care, customer support, and billing, (2) provisioning and
order management, and (3) network management. The deregulation of the
telecommunications industry has resulted in significant structural changes in the
telecommunications market, causing major modifications of the business models for
telecom providers. The changes in the business models have direct impact on telecom
companies’ OSSs and interoperability of the OSSs.

The deregulation of the telecommunications industry has resulted in the
proliferation of new service providers and technology offerings, such as wireless, long
distance, Internet service providers (ISPs), and cable. The new players have fueled a
robust market for telecom OSSs, as they position themselves for battle with the
incumbent service providers. As these providers jostle for market position, convergent
service offerings and other valued-added services are used to differentiate and attempt to
gain customer lock-in.

119

The solutions offered by OSS vendors are highly fragmented. Most vendors offer
solutions that can be categorized in one of the three segments mentioned above. These
solutions have little or no integration or interoperability between the various categories.
Thus, integration of OSS systems, as a general rule, is non-existent, resulting in severe
inefficiencies in the back office. This situation is exacerbated by the fact that each of the
domain-specific OSS software application is developed using diverse software
technologies and architectural frameworks, resulting in very disparate solutions that are
very difficult to integrate and interoperate. Swivel-chair integration is the order of the
day.

The business processes are normally integrated into the OSS applications’ APIs.
This results in service providers not being able to be responsive to market pressure
arising from competition, consolidations, and technological innovations. In addition,
because of the complexities of these systems, traditional peer-to-peer integration
approaches are not a viable solution. More innovative solutions must be adopted.

We need an architecture that takes the business processes out of the APIs and
elevates them to a higher level of abstraction — such as a business process management
layer. This layer should be integrated to the service management layer using configurable
soft-edge domain adapter frameworks. The impact of such an orthogonal architecture is
that the service provides can adapt rapidly to changes in their business models and these
changes do not percolate to the lower-level core OSS applications. Hence, the adaptive

EALI architecture model and framework.

7.1 Key Industry Standards

Experience with telecommunications in the deregulated market has proven the utility of
the ITU Telecommunications Management Network (TMN) information model as the
organizing principle for the information/data architecture (ITU-T M.3100, Generic
Network Model). The information model of TMN is distinct from its corresponding
implementation model. The TMN information model defines layers of abstraction that are
appropriate to different aspects of the overall telecommunication enterprise. TMN also
specifies an agent-based implementation model for the network management software.
The information model, as specified by 1TU, is illustrated in Figure 7.1. A brief summary

of the main components and associated features of the TMN model is presented below.

, Lavers Abstractions
! ey
~| i[Bumnzss Laver ! Busin=ss

wervica Laver SALICE

f) Techneology Independant
- Mabworl: Layer i stacart
| 1) ¥ 2
I O SO S
T e o e Vender Indep 2ndent

Elemeut Llmag=ment Laver i
= 1Tt sl

{ Elzmzat Laver f Elemisnt Cpeatis
Figure 7.1: ITU Standard TMN Information Model

The TMN model has five layers of abstraction, namely:

121

Element Layer

This is the least abstract view of the total system, consisting of the software interface
to the hardware components that comprise the network.

Element Management Layer

This layer abstracts the differences among similar components, hiding the differences
between different products of equivalent type. This abstraction allows management of
technology types by the upper layers.

Network Management Layer

At this layer, we can abstract the difference between technologies to transform the
network configuration management problem into a graph problem.

Service Layer

At this layer, applications are constructed to provide services to the customer of the
communications firm. This layer provides service software developer with a service-
based, rather than a hardware-based, view of the network.

Business Layer

This layer consists of business applications such as billing, rate control, and customer
care. This layer provides the business software developer with business-model based,

rather than hardware-based, view of the network.

Solution to the Telecom OSS Integration Problem — A Business Process

Centric Approach

Traditional application development approaches often embed the business process logic

within the application APls. Any attempt to modify the business model result in

122

programming changes to the applications that have corresponding down time to the
application availability when installing a new version that embeds updated business
processes. The corresponding business implications are many folds: application down
time resulting in lost revenues, dissatisfied customers, and difficulty in the specification
and implementation of business process. Most OSS applications were developed with
little or no concern for interoperability and as such, resulted in enterprise stovepipes. The
competitive market pressure in the telecommunications industry has propelled service
providers to demand fully integrated operational functionality from all the OSS
applications that they have to operate in the commission of their business. A number of
approaches to integration have emerged to address the OSS interoperability problem. The
most notables are the peer-to-peer and hub and spoke (broker) models.

The intensely competitive nature of the telecommunications business market
place mandates that a telecom service provider must have the ability to perform very
flexible business process reengineering. Telecom service providers are continually
redefining their business models in an effort to differentiate themselves from their
competitors and to ward off competition.

In this environment, high availability and customer care management is essential
to establishing market acceptability and high customer retention. These are essential
ingredients to successfully operate a business in the Internet driven economy. These
requirements coupled with the necessity of flexible business process reengineering have
driven us to reevaluate the approaches that have been taken to address the enterprise
application integration (EIA) problem. The above requirements mandate a business
process driven integration framework that allows individual business processes to be

123

represented, monitored, and integrated with existing systems and users across the
enterprise. With the ability to dynamically reconfigure active business processes
(software fault tolerant and hot swappable capabilities), allowing users to continuously
adapt to rapidly changing business conditions. This process-driven infrastructure provides
businesses the ability to adjust and alter their operational systems to changing market
conditions without any down time.

Application portfolio integration is mandatory in order to support many carriers’
organizational goals. These goals include operational efficiency via process flow through
and customer intimacy to enhance customer satisfaction. Examples of this include
knowing what a customer has ordered across multiple products, what problems he or she
has experienced, and his or her billing and payment history. Addressing this integration
challenge requires a comprehensive application portfolio assembly approach that can
exchange information among multiple application architectures each with different data
and process models and with different data exchange models.

The challenge is to create a means of integration at the business process level. An
information broker can create generalized event and object models to normalize the flow
of information between OSSs. We can create adapters to the various OSS applications.
This serves the purpose of migrating the architecture from a multi-point, spaghetti
architecture into a much more manageable hub-and-spoke arrangement. However, the
adapter approach is just the starting point because it does not allow for a flexible business
architecture. To create an architecture that enables best-of-breed OSS selection, while not
sacrificing integration and data sharing, requires another layer of “business aware”
software that runs above the information broker. With such a layer in place the business

124

process can change without affecting the underlying applications. And conversely, IT

should be able to change applications without affecting the business processes.

- Elecelronic
. WEB Bonding Trouble
WEB) Application Galieg OM/QE CRM MR EBPD WEM
Server E
'y

3 .‘h 4 [3 L 3

. 1
Fir¢ Wall l Adapter Framework

A Y / \ Y

@ Porcess Mediation Framework

1\ '\ 'y

Adapter Framework

Y 4 J A | Y A
Billin Network Performance Fault Proviitailia Inventory
g Munagement Munuagemnent Maunagement HODY e Myt
t
Y
Data o
] Tr— <P Network Element Mediation
N N o
J'/_f
- = »
Network Netwark Netwark Network
Element Element Element Element

Figure 7.2: Generic OSS Integration Architecture

The architectural approach outlined in Chapters 4-6 are used to build the
schematics of integrating the typical OSS domain applications that the Telecom Service
Providers will use in the commission of telecom services to their customer. Figure 7.2
shows a logical OSS Integration architecture. This diagram has most of the applications a

telecom service provider will need.

Business
Processes

Distnibuted Object Onented Framework (CORBA)

Application Event

Madiation Server Meadiation Server Event
Handies
Asynchronous
Event
Domain Processor
Adapter
|
Domain)
Adapter Domain | | Envet
Application Interface
Damain = Envel
Application Interface

Figure 7.3: EAI Context Diagram

Figure 7.3 presents a simplified context diagram for the EAIl problem. Domain
silo applications are plugged into an application mediation server via their respective
domain adapters. These applications can be retrofitted with asynchronous event delivery
mechanisms that can be interfaced to an event mediation server via event handlers. Event
processors (event handlers) can be registered to the event mediation server. The event
processors respond to event notifications and can trigger operations in the business
processes. This provides an automated mechanism for legacy applications to trigger

business processes.

<<Interface=»
intMediationCore

WReqisterAdapter(Adapter : intAdapter) : vaid
WGetAdapter(AdapterName : String) ¢ intAdapter
®InitAdapterMediation() : void
®urRegisterAdapter(AdapterName : String) : void

v
AdapterMediationCore
@n_AdapterCuunl + Integer

QeqisterAdapter{Adapter : intAdapter) | void
$GetAdapter(AdapterName ¢ String) ¢ intAdapter
®lnitadapterMediation() ¢ void
®unRegisteradapter(AdapterName : String) 1 void

+registered to | 1

<<Interface=»
intAdapter
adlapters
Vinitadapter() : void
etAdapterName() : String
®oingadapter() : Long
+registars | 0.* ®setAdapter(AdapterName | String) ¢ void
Adapter

1= _AdapterMame : Slring
_AdapterInterface : intAdapter

WGetAdaptertiame() : String
etAdapler Interface(Adapler : intAdapter) : intAdapter
WGetadapterInterface() | intAdapter

Figure 7.4: Application Mediation Server

Figure 7.4 presents the main components of the application mediation server. Its
primary function is to provide for registration and use of the application domain adapters.

Adapters as fitted with interfaces corresponding to abstract data view classes.

Ceinterioes s i

Faoapter '|
o 7 2
wsEnlityrn <<Lwcal*?
| ey - aitadasted) i
»
%m_‘:mmmnn tECammTraraped L] ame} |
: P e b
B _AltocationStatus - leng :!lnw“llo I g
S5 ptannestiond ciAdaptaiNameQ | £Cuma Nengsud 1
G alAlis satisnE tatus) | |___ o Commschkondari |
s atassation Slatu) \ EeEnLiy> > | Fpm_HestName siving |
A mpter i ‘Rom_iPaddies enng }
<sEnmtyre Prow newllibing Adacter) | {Zpm_Pan wing :
ESiskaiWiapper IE; A e NIme - o ,m,,_! for_Senvadiame siing |
e budoded i “SEnbty3r sttt Ml IM_:onnsmﬂ tong 1
= IFBinbelAdaptes . = i | Ram_Allszationdtatus - larg -
. iy b -=1 S outhdaptemamed | ,—'_—_—-,
. Bty :.mE:enl-e :m?nnn:u ; ! ::::::;’I"‘";?
Ediebn Lardaso VpinghdapteO ‘nlo\uvlulsmﬁ i i SrtPoi0
Bpn_BinbaiApp Objuet . Slubeiagplivaiion_vai Pladtin? | | WaetSarveamed
Sorim_SiebulBusObject . Siwbn'BaDyjert_sar = | ®Conneet)
Sy _SiabelDusCorp - SiebelGusComp_var :nu.n!m.?um;a.ﬂ ‘Q I. WDastionD
| | FanCennacuonStatue)
S5l snnaction] . | Syatalinnation Statie) ¢
S CimateSianelApplDbe s ' e | R RS \
SSulectBusd o0 ; | ®SaiCannestion Slatud)
TyalViewhg ded) v ESisheladaptes i E!-‘:l‘:’:::ﬁ’p-r
SacnvateFinia] ' Gm_Conaldgr: EGlabe ConnactinnMgr R e
ol aiTaDueng e '£‘> G _Tiankgr - ESrabal Transastionkig A
SastSeachSpea)
*ExeruleOuen S atSisteiTaANOE] eck] IF SieheiTian
5ol R e card() Sinadaple) waid
o etf el alue - e e o= = ——
satactlulempl bl { 1 =
=gedams_iegquesl_lat | R afEnbinyre i
d : a ECemaTranspen i
“- ey Bom_Siwhelppl adtury Sivheiappf artany
. 0. a ETrarsastionkig SConnort) i
scinteriaces s y Gori_Tiamadion : Vector <ETinsectiun> {
B midsistod ([fom TianPaetSie - leng \ e
i Tom_tiumActive Tran - long P
e 7
A\ K SoauthiancastienOe g A
i ol s ate TranCing) «eEnutysr
. *oeiTianPooiSized ES atsi annestarie g
I WoatumActiveTiand R \ «CCommTiansed>
5 e e
ceintaracass \
WSiahe!Tiancactinn 4\ - o ple
b *H_tornaces by | Woe e Cenanction)
i | WindCanaMge]
::clnalubtiun J i *GaiCannPealBize
Vw4 €40 | ol i [-
Wactivatefieia0) | EinheiTiammadianiig) ko S
3:"‘:;"’0 ?Em_'l’uﬂnﬂioq : Veeter <ETnmactiane !
rty V| S Tankestize :lang
SEmodnuind L Bom_WumActiveTran : long ot]
:u.b‘ia.nun Sl *pan_ipniset_in
CatFialdvalva) H 2
®5electButComp ! :g.:'.‘:;..‘:::.:;.m
| %GamumAveTianQ

Figure 7.5: Billing Application Adapter

Figure 7.5 provides the major classes in the adapter for the billing application.

This adapter was developed around the Portal Billing system.

128

|Browss Class Diagram|

| s<Enlin>>
| ESimbaWiappar

ceintemane sy
£ Adwoter
1(‘!“""5’ e d<Lesal>» |
e Snidanied i ihiayiritunen |
Em_Cannestion CCommTianspor *aaihd 1
B _AllecatinnBlatus lang ainpAdapte Sinitiatize |
i e uaintarait €00 - CEEMIYS
*5elCennecliond Syptadaptaamed ECoww fmnapad
*0 etaliocation Gtatusd o Comaseponint)
T2 etiliseananSiatued <<Entity>s S _Hasttiame - sang
Eadaptes Rom_|Paddres anrg
cEntiyss jr'l:\‘ Prow nemilding dgapher) E‘m_:el wing .
ESiesaiazper) s Gom_Adaplatiams i ming :-_E-m;:.lm Kol
<Enl m_Conndlalus leng
S ! I SiaBaiadipial intAdapten fpm_AllscstionGistes tang
N ! — Fystadapletaned e
'1 c<Enlitys> Finividaple] SyingAdupled) SyeiHindMamel)
ESisbeiTiansaction Sgeiadaptaame] Susinteresteding SaetiP A dinsx)
%) 7 - Fpingadaptvd SralaapteHamel ::"::2“”‘.0
B _siebaibimD et vun:.;::ﬂ ” x *Cannect)
Gem_Siete/BusComp SietelBusTump_sd SqutsisraiTianOtjecs T :ﬂ::ouc. P
annectianhita
*EeCennastion] b »
SCraataSisbelAppDbject) ' |
¥5eieeiB Objesi ’ | CeEntitya
S iWianidade] ; ESisnatadaptar
activaeFiedd i ~ (Bpm_CannMg - ESmbeiConnastanbipr
YCiraiTalueng) T I e TranMge : ESiabal Tranes canMge
Sysifussch el [Sl e
®CunnuleDuend)
ha TUECTT | Sinithdapted) vaid
o aifieiaval e L T
SSeiedBuComs 1.¥ \1
. : spetorms_ivquest_for | | huloncs_to <«Enlity>»
{ a L)
x) «<Enbilyr»
7 — . AL ETramactisnbgi
fishdasany. i | Tom_Ttamachan Vasar <ETiansasinns \
g Timeantion } oin_TianPaulSice luny]
e [: Fom HywActiweTian : lang | ¥
. | . 1 1
. f GatTiamastionCing)
iy 1 Shatieale Tranlibg \ eEnItyr e
. | SoetTianlesiSized | E SiabnlCuminctlantdys
! | SoethumAdmTur) a3 B _Cannasion VadtortEC smm Tiarspen
: L oRe Roen_ConnboeiSian larg
ukilerlagsd 3 \ 0.1 |Sm_NamAcieeCann fang
T GtabaiTrag { 1 -
— = | sis_sannested Ly | %G ethiawtC snnesliong
R t Wnitannkg)
* 50 lwatflun e o) I &
Dt] ccEntityr> | ' ::.:5"::::::‘?0
FActvatefinid) EFiab sl Tianractionsigs i “‘: e
| ®CiaarToCuang) - mateConnecion)
| WretSeanhSondd Boen_Tiamaclion . Vecls: *ETiamadion®
| SN0 ! [Som_TianlosiSixe © long n .i
! il N acord) '_"_'E'."‘_-'f'ﬂ"_“_“'_"""_ m:. = - --I'_p;':ﬂ_“l‘ t3
C WGt eVl uad) = - -
5 eiSiebel TianDbjact) i
SSelectinCani) ®5 i TranFealSize])
*oamumBehve T and

Figure 7.6: CRM Application Adapter

Figure 7.6 provides the major classes in the adapter for the customer relationship

management (CRM) application. This adapter was developed around the Siebel CRM

system.

129

7.3 Information Architecture: Static Domain Model

This section presents the information architecture corresponding to the enterprise
mediation layers (domain objects, business objects, and business processes) for the
adaptive orthogonal EAI architecture model presented in Chapters 4 and 5. The material
provides a gradient walk through the logical architecture from a domain analysis

viewpoint.

7.3.1 Customers and Orders
Figure 7.7 shows the simple and obvious relationship between customers and their orders.
An entity (company or individual) who has ordered service(s) from a telecommunication

service provider is called a customer.

Customer

+1

Order

Figure 7.7: Customers and Orders
Customers can place any number of orders for service. There is a one-to-many
relationship between a customer and its orders. The system should remember all orders a

customer has placed, even after the entity ceases to be a customer. If the entity becomes a

130

customer again, all past order history is restored. The navigation between customers and
orders should be two-way. Users should be able to access all past and present order
information from the customer information and reference customer information, such as

billing address, from the order information.

7.3.2 Service Enrollment Simplified

ServiceEnrolment

Order
(from Customers and Orders <>

=

1 0.

Figure 7.8: Service Enrollment Simplified

Figure 7.8 presents a simplified diagram of the details of a service enrollment. We will
elaborate in Section 7.3.4 to make it represent a more realistic real world model, but this
view will suffice for now. A service enrollment is a specific instance of some telecom
service ordered by a customer. The term enrollment is used to represent the customer’s

use of, or enrollment onto, a service that can potentially be disconnected later.

131

An order can have several service enrollments, and each enrollment is associated
with a particular product and an optional list of features. Examples of products are a
business line or a combo trunk. Examples of features are call waiting or call forwarding.
Features are dependent on products and are not inventoried. Products are independent and
are inventoried or allocated, and thus there are individual instances of products. Features
have instances so as to be associated with products in orders.

A specific product can be allocated to a customer via an order; later it can be de-
allocated (i.e., returned to the catalog of available products) and allocated to a different
customer. Line can be moved and telephone numbers changed. Thus, enroliment signifies
the changeable relationship between products and customers (via their orders). The
customer enrolls in the service. The service is added to the customer’s service portfolio

(list of services the customer has).

7.3.3 Order Operations

A more complete picture of the relationship between orders and their service enrollments,
Figure 7.9, introduces the concept of order operations. In addition to requests to acquire
and turn on service, orders are actually the primary medium of exchange between a
customer and a telecom service provider, and embody all requests for modifying the
customer’s status. Orders include requests to change some aspect of service (Change
orders) and requests to discontinue part or all service (Disconnect orders) as well as
requests for new service and several miscellaneous kinds of orders. The subtypes of order

operation shown in Figure 7.9 are not complete; however the list is easy to expand. Other

operations include From and To operations, which are two sides of a customer move, and

Records orders, which make a change to customer or service data in some small way.

Crder
(From Customers and Orders)

OrderOperation

W
ServiceEnroliment
(from Service Enralment Simalifisd)

NewOperation ChangeCperation DisconnectOperation

Figure 7.9: Order Operations

The order operation is conceived to be an association between an order and its
service enrollments (SEs), as the operation describes what will be done to the
enrollments. For example, for a disconnect order, the list of SEs represents the lines that
will be disconnected.

Order operations are commonly thought of as being associated with orders rather
than with individual items. This means that normally an operation applies to all SEs on
the order. However, the structure presented in Figure 7.9 is more flexible and makes way
for an ordering system where different items can be handled differently on the same
order. For example, a single order could specify a disconnect of three lines while adding

four lines of some other kind. If a single order rype for each order was required, then

users or the system would have to create an order type at the order level and have rules to

force all order operations to the same kind.

7.3.4 Offerings and Offering Instances

The diagram in Figure 7.10 completes and corrects Figure 7.8 and introduces the concept
of offerings. An offering is a template for describing a product or feature. Each different
kind of product (i.e., a product type) has a unique set of attributes that are relevant to it.
For example, a business line has a telephone number, whereas a trunk does not. A trunk
has a circuit ID, which may be considered irrelevant for a business line. Some types of

features, which are also offerings, have attributes; some do not.

Offering

ProductType FeatureType

1
L Offeringlnstances

1

| -

Feature 0.+

ServiceEnrollment

[0
Product 1

Figure 7.10: Oftering and Offering Instances

An offering instance is a specific item being sold and provisioned for the
customer. The two main kinds of offerings are product types and feature types. Each has
an associated instance class, product and feature, respectively. Products can be allocated
and inventoried. If you sell a customer a telephone number, nobody else can have it.
Features simply serve to further enhance and modify products. A service enrollment can

have only one product, but many features can modify the product.

7.3.5 Offerings

The diagram in Figure 7.11 expands the offering world. From the top, the
OfferingCatalogHolder and its subclasses indicate that different kinds of enterprises can
hold catalogs of offering, among which are service providers, offering vendors, and
market organizations. This list is by no means complete and could vary in many ways.

Offering catalogs are simple collections of offerings.

OfferingCatalogHolder

A

OfferingCatalog
ServiceProvider OfferingVendor Market Offering
(from Sftering and Offering Instances)
0.*
D‘ - -
Offering
OfferingSpecification (from Offering and Offering Irslances)
<
1 0:*
ProductType FeatureType OfferngGroup
(from Offering and Offering Instances) (from Offwring and Offering Instances)
UH -

Figure 7.11: Offerings

The recursive or nesting structure of offering makes it interesting. An offering can
contain other offering in offering groups. Product types and feature types retain their
identity as leaf nodes of an offering tree.

This structure is the “implementation” view of products and features. That is, it
addresses the problem of specifying complex configuration of products and feature
definitions and their dependencies when defining the offering in the catalog, not when
putting an order together. This structure can be used to manage complex rules for
inclusion of products and features.

The offering class lists and describes the unique attributes of a certain offering.

Example implementation of this could be a collection of (name, type, length) tuples for a

136

DDL definition. Each offering has an optional specification, which manages the rules of
combination and exclusion between offering and their component offering (groups,
products, and features). It represents a placeholder for constraints such as allowed
features and nested products.

The contains relationship between product type and feature type is not structural
in nature; it merely represents the rule that features are subordinate to products.

Implicit, but not shown, in the diagram in Figure 7.11 is the relationship between
an offering and its offering instances, which relates this diagram closely with Figure 7.10.

In Figure 7.10, offerings are seen as related to one or more offering instances.

7.3.6 Customer and Service Locations

Figure 7.12 provides the relationship between a customer and its service locations.
Customers can have many service locations, which are specific places that they receive
service and where circuits terminate. However, locations exist independently of
customers — customers can move in and out of locations, but many of the facts about a

location remain constant (or change independently of who is occupying the location).

137

Customer ServicelLocation
(from Customers and Orders)

U - -
CustomerlLocation SiteSurvey

Figure 7.12: Customer and Service Locations

A many-to-many relationship exists between customers and locations. A customer
can have many offices, and a location can serve several customers. The complexity of
this relationship and the fact that the connection between a customer and its location is
transient call for an object to manage and track the relationship. This is the customer
location object, which signifies a customer at a location.

A site survey is an event in which an engineer from a service provider visits the
service location and inspects the facilities. A report or form describing what was found is
called a site survey, and may be printed at the time of the visit. Thus, conceptually, a site
survey is a complete collection of information about a site as prepared at a certain time. A
service location can be surveyed any number of times. Site surveys apply to locations, not
customers, even though some of the data on the form pertains to the customer, as

theoretically a site survey could be taken on a location unoccupied by any customer.

138

e e e e N

7.3.7 Customers and Service Enrollments

Customer ServicelLocation
(from Customers and Orders) (from Customers and Service Locations)

CustomerlLocation
(from Customers and Service Locations)

0

ServiePortiodo

D“'ll

ServiceEnroliment
(From New Offering and Offering Instances)

Figure 7.13: Customer and Service Enrollments

The diagram in Figure 7.13 introduces the concept of service portfolio. A customer’s
portfolio is the collection of all telecommunication products to which the customer is
currently subscribed. Service portfolios are grouped by location, as the facilities at
different locations determine many constraints about the possible service. Also,
customers usually keep their locations separate from an accounting viewpoint. For

example, bills are prepared for different locations.
139

Note that the service enrollment is the same object used to specify an individual
product in an order. Thus, an order can be considered to be a delta (i.e., an incremental
change) to the customer’s service portfolio. A new customer has an empty service
portfolio. The enrollments of the completed order are copied to the service portfolio,
resulting in a portfolio that looks just like the first order’s contents. A subsequent order to
disconnect a line would result in a removal of that line from the portfolio, a New or
Change order would affect an addition to the service portfolio, and so on.

An interesting way to view orders and service portfolios is from a configuration
management viewpoint. The customer’s portfolio is the aggregation of all the orders and
could be reconstructed by starting from an empty portfolio and simulating the installation

of each of the customer’s past orders in sequence.

7.3.8 The Order World
The diagram in Figure 7.14 completes the picture of the concepts surrounding the order.
In addition to the key relationships previously discussed, some more details are
mentioned in this section.

Orders are related to other orders. There are various reasons for this. For example,
an order can be related to an earlier incompletely fulfilled order or to an order for
facilities (such as a T-1 line) on which it is dependent.

An order can have any number of remarks entered for it during the process of
installing the service. An order is assigned to a sales representative for commission
purposes. The sales representative can be a person, a team, or even an external
organization.

140

An order is also assigned to a customer care person who acts as the single point of
contact where applicable and also acts as the assurance person, making sure all tasks are

completed to turn up service.

Customer
(from Customers and Orders)
D- I -
8 g
Order ServiceEnroiment
Order Ralatecdxders |(From Customers and Orders) ServicePortfodo
o.* D.:®
77N
0..* } CustomerLocation
Remark Saeskep OrderOperation fleatures
CustCareRep 0:*
Jprogict
SiteSurvay ServiceLocation
0.
\1 /
OfferingType

Figure 7.14: The Order World

Note that offerings are illustrated differently than in the previous diagrams. This
diagram has hidden the inheritance relationship between products and features and the
offering instance. Both products and features are shown here as offering instances (which
they are) and the fact that they are products and features is derived (the slash before the

label in the line).

141

7.3.9 The Customer World

CreditPlan
CustBlinfo
1
1
ExlernCutManager
Contact Jeontacts
g
L EalernalSystemCustomar
Customer
(From Customers and Crders) A
TelcaServProviderOrg | 1 [

0.*
/ CCSSCustomer SavilleCustomer
Remark

?
[I]

s CARE Customer
InternalCustomer ResidentialCustomer BusinessCustomer | +parent
<
1| +chid
) or NiorRoke Astocition
Individual
1
BusinessOrganization 4}
MarkelingAssocialion Affinity Association

Figure 7.15: The Customer World

The diagram presented in Figure 7.15 completes the picture surrounding the customer,
beyond its association with orders. This diagram shows details not covered in the earlier
diagrams which discussed only the essential concepts.

A customer does business with a single service provider organization, usually an
affiliate or a market office. A single point of contact, usually the Customer Care Rep,

manages the relationship between the customer and the service provider.

The individual customer class is an association between customer and individual
that can assume many other roles than simply the customer role. The same is true for the
business customer, which is an association between business organization and customer.

Note that business customer can nest in an organizational pattern.

7.3.10 Simplified Telco Organization Structure

OrgRule
+subQrganizations
TelcoOrganization
0.
|
| Affiliate Markat LocalOffice

Figure 7.16: Simplified Telco Organization Structure

Figure 7.16 provides a simplified organizational structure for a typical telecom service

provider. A service provider is composed of affiliates, which are semi-autonomous

operating organizations with their own presidents, staff, local policies, and business
activity flow.

Affiliates often are divided into markets, which are also called branch offices.
Markets also have their own staff and management but report their business statistics
(number of orders and lines connected) to the affiliate.

The structure presented in Figure 7.16 is very flexible and represents the fact that
new companies are constantly entering the telecom market space. Young companies do
not have solidified organizational lines and need to be modeled with a structure that can
facilitate change.

In order to control this structure and not allow, for example, markets to certain
affiliates, an organization rule is needed. This class is needed to enforce the company’s

organization rules.

7.3.11 Telco Organization in Detail

Figure 7.17 illustrates the details of a telecom service provider organization and the
things that are closely related to them. A structure like the one shown in Figure 7.17 will
help manage the future as the organization grows and discovers new organizational
relationships. Task management capabilities are assigned to the top-level organization.

In this structure, the Telco organizations can contain other Telco organizations,
without any predefined labeling hierarchy for the subdivision or containment. The
affiliates and their branches actually provide service to customers. Consequently,
affiliates do business with customers and LECS and have local business practices, often
enforced by the processes of the local BELL operating companies that they must interact

144

with. The column of classes on the right side on the model shows the different unique

collections that the affiliates maintain (this list is not complete).

contacts Contact
fecs LEC
TelcoServiceOrganization
fCarrmrs LDCarrier
subOrganirations toMEreeCarrmer TollFreeCarrier
% OragRule
0.* rotelan RatePlan
ResourceAfiliate ProvidingQrg //
- contactTyoes ContactType
g
A defverpiechansms SDOM
l oulputForms QulpulForm
Affiliate Markat LocalOffice
workfows WorkAowDef
reports Report

Figure 7.17: Detail Telco Organization Structure

7.3.12 Instances of Business Activity Flows

Figure 7.18 illustrates the basic process and activity flows as it applies to a typical Telco
service provider. Each affiliate organization has a collection of business process

definitions (ProcessDef). The individual steps of a process definition are called activities

145

and are defined by activity definitions (ActivityDef). A process definition may contain
many activity definitions along with the relationships between them, which can be
complex. There are different process definitions for different order operations. For
example, starting a new service for a customer is different from disconnecting service and

so has a different process definition.

TelcoOrganization
(from Simplified Telco Organization Structure)

0. *
ProcessDef ProcessInstances
a. +defines +defined by
| D.*
0%
ActivityDef ActivityInstance
+defines +defiined by

Figure 7.18: Instances of Business Activity Flows

Process instances are the individual, currently running processes defined by

process definitions. Likewise, activity definitions serve as templates for individual,

currently executing activity instances. An alternative term for activity instance is 7ask.

146

7.3.13 Orders in the Flow of Business Activity

TelcoOrganization +3ubOrganizaians
(from Simplified Telco Organization Structure)

=

0.
ProcessDef Processinstances
(from Instances of Business Activity Flows) +defines +defined by (fram Instances of Business Aclivity Flows)
By L 0.- 1
]
WorkItem
-
0./ =
AclivityDef Activitylnstance
(From Instances of Busness Activity Flows) | +defines +defined by |(from Indances of Business Activity Flows)

! 0.* i

Crder

Figure 7.19: Orders in the Flow of Business Activities

Figure 7.19 presents the relationship of a typical business activity flow and an order.
Service activation is accomplished through a sequence of business activities. The
individual business activities are represented in the diagram as a work item. The work
item is the basic thing that is passed from step to step as work proceeds. The work item
can accumulate many attachments — related documents and artifacts — as work proceeds.
The premiere work item attachment is the order.

Every instance of a process is related to one and only one order, via the work
item. (Orders can relate to other orders, which can be somewhere in the execution of a

business process themselves.) Likewise, every activity instance pertains to one and only

147

one order. The line between an activity instance and an order is probably a derived

association, from the fact that an activity is related to a process.

7.3.14 Worklists

ActivityDef ActivityInstance
1 0.»
+who can doit| 0.* o.*
assoed Tacks
+can do that 0.* 1
WworkAowRale Worklist

+assumes | 0%

+assigned to | g #

Participant

7

|]

SoftwareProces:s Assaciate

Figure 7.20: Worklists

The diagram in Figure 7.20 introduces the concepts of roles and Worklists. A
business activity role is a kind of participant who is capable or authorized to perform a
certain kind of activity. A participant can be many different kinds of entities, including
but not limited to software processes and human employees (associates). The most

148

common participant is an associate. A participant is defined as some person or thing that
is assigned to a business activity role.

Whereas the business activity role describes who is authorized to do what kind of
activity, the worklist defines who is actually assigned to do a specific task in real time.
All assigned tasks for all of associates’ roles appear on their worklists. An assigned task
is one which has been assigned to a participant but has not been completed (it may not
have been started). If one associate acts as both a salesperson and as a customer care rep,

all assigned salesperson and customer care rep tasks will appear in that person’s worklist.

7.3.15 Combined Business Activity Flow

Figure 7.21 presents a comprehensive view on typical business activity flow. There is a
slight modeling twist. Here, business activity role and worklist are seen as association
classes between the participants and their activity definitions and activity instances. The
sense of the previous diagram is retained.

As an association class, the business activity role manages the assignment of
participants to kinds of activities. It keeps the list of who can do what activity. Likewise,
the worklist maintains the list of who is currently assigned to what task in real time.

One point that is not shown in Figure 7.26 is that the business process can branch
conditionally. In most cases, the data to be tested in the branch decision is in the order.

The business activity flow is usually modeled using the UML activity or state

diagrams.

149

Bt

TelcoServiceOrganization

+kinds of aclivilies can be done by | 0.*

WorkfowRole

0.
ProcessDef Processinstance
+defires +cefined by
L 0. h
O 1
Workitemn
0.*
b F ActivityInst 1
Activit ¢ stance
vyt +defines +defined by
i g 1
o Order
0.%| swhat tasks are asigred to
Worklist
Daﬂicganl e —
0. i

Figure 7.21: Combined Business Activity Flow

150

+who is assigned to this tack.

7.4 Example: Get Customer Data for Viewing

This section provides details pertaining to the retrieval and presentation of the customer
data for viewing. The customer data resides in the customer relationship manager (CRM)
application and the billing application. Figure 7.22 provides some details of the customer

business object.

EMallnfo
_Type : Long
_Address : Slring EMaillnfe
_Type t Leng
0.* _Address 1 String
Phorelnfo
_Type : Lang
_Number : Slring Phonelnfo
Customer i Tyoe s Long
_CuntlD : Long “Number Stri
_CustNum : String Canrlacts - £ Sty
Addressinfo | _CustType : Long 0.~
treet : Slri 3
i 1 S SadeEmai0 S
_State : Siring SselEMail) %addrhonelnfol) Adoreninfo
“Zip | String < #AddPhonelnfc() = Phonelnfo) |1 o« Strast : String
“Country 1 String :G‘l”‘ﬂ"ﬂ“’"(] “T 1 SaddAddressinfo() || Ghm _City : String
“Type : Long AdcAddressInfo() SGalAddressinfo() _State 1 String
:WM ;f*““"““() SaddHamelnfol) 2ip 1 String
amalnfo() GelNamelnfol) 1 Cauntry : String
SGelNamelnfol) Type i Long
®addsillingInfo() -
Namelnfo SGetsillingInfo()
_Salutation : Slring
_FirstName : String i
rbdaimam s: Flrm oy -
L — . s.::::n String
T % + 5lr
CustBillinglnfo _Firsiame : Slring
_AccountID : Long Invoice _MiddieMame ¢ String
_AccounyMum @ String _Lastame : String
_AccountType : Lang |1 D.*

L

Invoicellem

Figure 7.22: Customer Business Object

The contact information resides in the Siebel CRM application. Figures 7.23 and
7.24 show the entities and associated state diagram for retrieving the customer contact

information from the CRM application.

151

<<Entity>>
GetCostomerF romSiebel

Epm_Customer . IFCustomer

*GalCustomer()

T
"
[
'
]
[
(]
'
'

Ny
<<Entity>>
GetAccountFramSishel

- -1

]
1

- Open Specification... |
Sub Diagrams New Statechart Diagram

.,-.. arm— --_... — e P y Ad "
‘New Aftribute 7 Ngf M‘x D:l}gram. s

~New Operation 1 GetContactFromSiebel

<<Entity>>
GetContaciFromSiebel

- Salectin Browsar

Balnen il

Options ; »
- Format i L

Figure 7.23: Get Customer from CRM Operation

152

. Start
GetContact(string inCustid)

- b A

(GetContact

L ——
- -

. End

Figure 7.24: Get Contact Information from CRM State Diagram

Figure 7.25 shows the state specification for the GetContact state operation. The
specification uses a high-level action semantic like language for defining the operation.
This layer also inherently specifies the mapping and translation between the application

domain model exposed via the domain adapter and the enterprise business objects.

. SN State Spemhcalmn for GelContact EIEd

_-GBHEfﬁi]Acﬂnns [Transmunsl Swlm!anasl

- Name: I
Stereotype’ 1 ~]
Owner GlecntachromSue ol '

Context: Lnglml View: BusOhjZAu:nIOb;Mappmg

- Documentation.

.- |declare |[FSiebelAdapter |S|abebﬁ.dapier -
|declare MediationCorePkg:IFMediationCore iMediationCore:
create singleton iMediationCore;

/{ retrieve a Siebel adepler from the medietion core
|iISiebelAdapter = iMediaticnCore. GetAdapter("SiebelAdapter”).

//retieve Siebel Transaction Objectirom Siebel adapter
declare IFSiebelTran iSiebel Tran;
liSiebelTran = iISiebelAdapter GetSiebelTranObject().

[/Select Account Business Camp
iSiebelTran.SelectBusComp("Account"):
iSiebelTran ActvateField("ld");
iSiebelTran.ClearToQuery().

iSiebelTran SetSearchSpec('ld", AccntiD):
iSiebelTran.ExecuteQuery(0);

Boolean FirstRecord = iSiebelTran. GetFirstRecord().

if(IFirstRecord)
{

}

//SetView Model
iSiebelTran.SetvViewMode(3):

{/ throw exceplion

//Select Account Business Component Fields

iSiebelTran ActivateField("id"):

iSiebelTran ActvateField("Name"):

iSiebelTran ActvateField(" Type").

iSiebelTran ActvateField('Main Phane Num");

1Siebel TranActivateField("'Main Fax Number"}).

ISiebelTran ActivateField("Street Address"):

iSiebelTranActivateField(" City").

iSiebelTranActivateField("State"): _,,J

[~ State/activity history I Sag

OK Cancel | . ' | Browse v| Help |

Figure 7.25: Get Contact Action Semantic Language

154

=
<<Entily>>]

RetrieveCustDataAndPresantForVi Cpen Speciﬁculion.,,. l

Sub Diagrams

New Statechart Diagram
New Activity Diagr

New Atribute S AREWALIVY Dogn

 New Operation 1 RetieveCustData

Select|n Browser

Options >
Format Al

Figure 7.26: Retrieve Customer Data for Viewing Operation

Figures 7.26 and 7.27 capture the overall business process for retrieval and
presentation of the customer data to the viewing application. Figure 7.27 is a typical
activity diagram with swimlanes. Each swimlane specifies operations for a domain silo

operation. The horizontal lines indicate synchronization points.

7.5 Summary

The proposed adaptive architecture approach and techniques have been used to develop a
natural solution for the telecom OSS integration problems. Telecom OSS integration is at
the extreme end of the spectrum of application integration problems. Using our approach
to address this problem is a testament to its capability. The generic nature of the proposed
adaptive architecture approach makes it applicable to any customer centric business

software application that is transactional by nature. Thus, the approach can be used to

155

address integration concerns in any enterprise that has a need for application portfolio

interoperability.

CRM NewSwimiane2 Biller

"
('f ReceveCustomerNumber Y

e

< RetrieveCusiDataF ramCRM ‘)

——a
-

RelrieveCusiDataFromBiller

~ 2 e e -

~ g

Y
s AssemblyCuslomerB0 ™,
\ /

-

N

f"" PresentCustomerBOF arViewing
\ /

A s

®

Figure 7.27: Retrieve Customer Data Activity Diagram

156

R R

Chapter 8

UML Model-Based Component Development Framework

Dramatic and rapid changes in the computer industry make it impossible for
application developers to stay current with technological advances. Developers are
expected not only to create the applications solutions, but also to design the recovery,
scaling, distribution, and other infrastructure services needed to support the mission
critical business solutions of today’s enterprises. This is an unrealistic expectation and
results in the software application landscape being littered with failed projects.

To address this mismatch in expectations between what is currently achievable
and what the business enterprises desire, we put forward the concept of model based

software construction. This is explained in the following sections.

8.1 Model-Based Software Construction

The objective of the Model-Based Component Development Framework is to isolate core
application logic specifications from infrastructure services that the software components
will use. This will enable developers to create complex, robust, operation-critical
software solutions without embedding infrastructure services into the core application
logic. However, this is only the first step. What we really want is to have programming
language, infrastructure services, and execution environment neutrally in the

157

specification of software components. That is, what we would like is to be able to specify
the component object model, complete with behavioral specification, all in a meta-
formalism such as some extended version of UML (EUML) [OMG 2000b] or some other
Universal Design Language (UDL) [OMG 2000]. Figure 8.1 gives a schematic

representation of a model-based component development framework.

Language independent Language Centric

B - . UML Model-Based Integrated
e S ; ‘Development Environment oot celTibhe
Sl g AT g ranslation Rules

Language

Meta-Object
Information Specilic Code
= Repository : Generator
: A N (MOIR) A Model Compiler
et L ST Software ol :
s e LU AR . u| Component 1
CompilerTranslater /. : X0 High level Language
; ' 3 Code Generation | = - s Generated Code
Tk i and System Build (C++ Java,CORBAIDL)

Compiler/Translator /.

m%- Plugins

Imponers
; E) 3 = Language
3 i ' ; Run Tirne Specific Compiler
: . Exporers Libraries and System Build
é{_L /
T Model Coda
EUML GUl Based Aelion Samaniic Aschitecture Run Time
Application i /' e
Design Tool ; Generated
Distribbutable implementation Platierm
Run Time
Compenent

Figure 8.1: Model-Based Component Development Framework

CORBA architecture framework goes a long way to accomplish some of these

goals [OMG 1997, OMG 2001}. With such an approach we could provide the complete

158

specification of a software component (object model) using a meta specification
formalism that is independent of any imperative high level programming language
specificity, independent of any execution environment, and independent of the runtime
infrastructure services that it will be using. Such components would lend themselves to
significant reusability since they could be looked at as higher-level abstract design
artifacts. An Integrated Development Environment (IDE) can be used during program
creation time to translate the meta model into a specified high level programming
language equivalent specification and link in all the runtime infrastructure services that
the generated component will use.

The application developer would thus work exclusively within a high-level
programming language independent meta-specification to determine the component
functionality. Infrastructure services and runtime binding can be specified in the IDE and
automatically generated into the resulting executable component.

Implementation induces programming language, infrastructure services, and
runtime environment specificity. If these issues are taken into consideration and
addressed during the application design then they will ultimately impose limits on the
reusability of the resulting software components. The only reasonable way to address
these issues is to have complete separation of the application business functionality from
imperative programming language, infrastructure services, and runtime environment
specificity. This requirement mandates that the application must be specified using a
meta-object formalism from which the resulting deployable software component can be

generated.

159

BT A e A il

This approach provides an effective mechanism for raising the level of abstraction
at which an application developer works. The application developer effectively works
within a graphical environment using some extended form of the UML meta-metamodel
formalism derived from the Meta Object Facility (MOF) [OMG 2000].

A great deal of the efforts, maybe up to 80%, expended during the traditional
software development process, goes into the development of the application
infrastructure. This may be even more for highly distributed applications. Only about
20% of the effort goes into the design of the application logic. If we can change this
process to be one in which the application developer specifies, using a metamodel, the
infrastructure service he/she wishes to use and the manner of use, and then allow the
integrated development environment to generate the specified software component and
associate it with all the infrastructure services it requires, we could have the developer
working at a higher level of abstraction. This approach will fundamentally change the
software development process to be that of “model and generate” as opposed to “model
and code”. Model based software construction will be the new paradigm in which we
develop software systems.

The Integrated Development Environment should let the developer perform the
following functions:

e Load a component metamodel specification into the Meta-Object Information
Repository.

e Specify target implementations (colorings), such as database type, caching, CORBA
Services, etc., without corrupting the business processes defined in the model.

e Audit models to verify correctness.

160

Generate server components from the models.

Raising the abstraction level of the software developer should result in a number

of tangible advantages that we should be able to associate with metrics. These include the

following:

Faster time to market for new products and services being offered by the enterprise.
Since. applications would be define using a high-level meta-metamodel, the enterprise
needs to recruit technocrats who are skilled using this technology to define the
enterprise business model in the relevant domains. People who are skilled in
middleware technologies such as CORBA and high-level programming languages
such as C++ and Java would not be required to develop high performance business
applications. The enterprise would put greater emphasis on employing business and
domain analysts.

The enterprise could have business analysts performing the majority of the
application enhancement and refinement during the maintenance cycle. Since this is
the phase during which most of the cost for an application is incurred, the enterprise
should be able to significantly reduce its application maintenance expenditure.

Since infrastructure services such as externalization, transactionality, concurrency,
persistence, and synchronization can be specified in a high level meta formalism and
language and environment specificity associated with these services generated during
the build process, there is a distinct possibility that we could reverse the effort role.
The developer or modeler could now spent 80% or more of his or her time designing
the application functionality as opposed to programming infrastructure services in

some high level language.

161

e Applications developed along this model will be high-level programming language

and runtime environment independent allowing for easy migration and

interoperability across different computing platforms.

Some of the major components of such an integrated development environment

include the following:

8.2

A UML based modeling tool

UML Extended with Action Semantic Language
Meta-Object Information Repository

UML based Model Compiler/Translator
Language specific code generators

Importers

Exporters

Auditors

Plug-Ins

Meta-Object Information Repository

In their efforts to advance the development of distributed software systems, the Object

Management Group (OMG) proposed two standard specifications for modeling

distributed software architecture and systems [OMG 2000, OMG 2000b] that are

consistent with the CORBA Object Management Architecture (OMA). The two

complementary specifications are as follows:

Unified Modeling Language Specification

Meta-Object Facility Specification
162

The Unified Modeling Language (UML) Specification defines a graphical
language for visualizing, specifying, constructing, and documenting the artifacts of
distributed object systems. The specification includes the formal definition of a common
Object Analysis and Design (OA&D) metamodel, a graphical notation, and a CORBA
IDL facility that supports model interchange between OA&D tools and metadata
repositories. The UML provides the foundation for specifying and sharing CORBA-based
distributed object models.

The Meta-Object Facility (MOF) Specification defines a set of CORBA IDL
interfaces that can be used to define and manipulate a set of interoperable metamodels
and their corresponding models. These interoperable metamodels include the UML
metamodel, the MOF meta-metamodel, as well as future OMG adopted technologies that
will be specified using metamodels. The MOF provides the infrastructure for
implementing CORBA-based design and reuse repositories. The MOF specifies precise
mapping rules that enable the CORBA interfaces for metamodels to be automatically
generated, thus encouraging consistency in manipulating metadata in all phases of the
distributed application development cycle.

The MOF and OA&D metamodels are architecturally aligned to use the MOF
IDL mapping for generating CORBA IDL for both the MOF and UML models. This was
accomplished by defining the MOF and UML models using the MOF and by generating
the IDL interfaces based on the MOF specification. Alignment of UML, MOF, and
CORBA paves the way for future extensibility of CORBA in key areas such as richer

semantics, relationships, and constraints. Likewise the longer-term benefits to UML and

MOF include better recognition and addressing of distributed computing issues in
developing CORBA-compliant systems.

The extension of UML with Action Semantic Language (ASL) behavioral
specification can be accomplished by extending the UML meta-metamodel with the new
ASL constructs using the MOF. The Meta-Object Information Repository (MIR) service
would be an implementation of the extended UML MOF metamodel interfaces. This
service would be accompanied by tools (e.g., compilers or graphical editors) that allow
the designer to input information models using a human readable notation for the MOF

model.

164

Chapter 9

A Mathematical Formalism for Specifying Design Patterns

Within the context of software engineering the nomenclature pertaining to object-
oriented methodologies depicts an object as an instance of a class. An object is a self-
contained entity that is complete with its sets of data and associated operations. A class is
a specification of an abstract data type. Many-sorted algebra is the mathematical
formalism used for the specification of abstract data types and represents a
straightforward generalization of classical (i.e., single-sorted) algebras [Loeckx 1996].

In this chapter we present a mathematical formalism for the specification of
design patterns. This specification constitutes an extension of the basic concepts from
many-sorted algebra. In particular, the notion of signature is extended to that of a vector,
consisting of a set of linearly independent signatures. The linearly independence property
is necessary to satisfy non-interference that is essential for compositional based
construction [Cowan 1993a; Loeckx 1996; Enderton 1972]. This is of fundamental
concern in the building of large-scale software systems where we have the composition
of smaller components to form larger components. In what follows, the major concepts
for the specification of design patterns are developed using successive extensions of the

relevant many-sorted algebraic concepts.

165

21 Definitions and Concepts
This section outlines the definitions and concepts relevant to the formal specification of

the design patterns.

Signatures
A many-sorted algebra consists of sets and functions. A signature may be viewed as the

syntax of an algebra for fixing the names of the sorts and functions.

Definition 1: Signature
A signature T is a pair £=(S,F) of sets, the elements of which are called sorts and
operations respectively. Each operation consists of a (k+2)-tuple
N=58 X8 X...X§, —>§
T o twithT s s, o s 5eSand & >70; 7 is tatled the operation nanre of the operation and - —
8y, 5,,...,5, — § its arity; the sorts s,,s,,...,5, are called argument sorts of the operation

and the sort s its target sort. In the case k = 0 the operation 7:—s is called a constant of
sort s.

Informally, a sort denotes (i.e., is a name of) a type and an operation denotes a
function. Note that different operations may have the same operation name. In particular,
the equality of two operations implies the equality of their names and the equality of their

arities. One may write » instead of (17 : s, x...x s, — s) if no ambiguities arise.

166

The operations and relations defined on sets are lifted to signatures by applying

them componentwise. For example, if £=(S,F) and X'=(S8"I") are signatures,

T c ¥ stands for S 8’ and F < F'; similarly, ZUZX’ stands for (SUS', FuUF").0

Definition 2: Vector Signature, extension of signature
A vector signature Z, is an n-tuple of linearly independent (Z-) signatures represented as
Z, =(Z;245.-55,), such that ¥, =(S,,F,) and

S, represents the set of sorts for Z;

I, represents the set of operations for £,

The linearly independent property states that

TSNS, =Qforizjand FFNF; =0
An operation of X, is a vector. For example the vector w is defined as
w = (w,,w,,...,w,) such that w; € I, with
w, =8/ x5 x..x§] = §’
with

S/,84,..,8.,8 €S, and k>0 and 1<i j<n. 0

Algebras
A many-sorted algebra assigns a meaning to a signature by associating a set of data to

each sort and a function to each operation.
167

Definition 3: Total Algebra (Algebra)
Let £ =(§,F)be a signature. A total algebra for X assigns the following:
1. A set ;;1,(3) to each sort seS, called a carrier set of the sort s; the elements of a carrier

set are called carriers;

2. A total function
A@n: s Xooax 8y —»8) LA(S) %o X A(s,) —-A(S)
to each operation (1:s, x...xs, > 8)€FF k>0, when £k = 0, A(n:—s) denotes an

element of the carrier set A(s). 0

Definition 4: Vector Algebra, extension of algebra

Let £, =(£,,Z,,...,Z,) be a vector signature. A total vector algebra for I, (Z,—algebra)

is a vector of Z-algebras. A X,-algebra A is depicted as the vector 4 =(4,,4,,...,4,)
where 4,-) , are Z,-algebras corresponding to £, =(S§,,F;) and 1<i<n. A total vector

algebra (Z,-algebra) assigns the following:

1. Aset A(Z,) to each algebra 4;; Alg(Z,) is the class of Z-algebra corresponding to Z;.
A(Z,)=UA(s;) withs; € §..

2. A total function A4, that is the union of the total functions of the X-algebra
corresponding to the individual Z, in the vector signature £ =(Z,,Z,,....Z,). 4. is
represented as

A, (w)=UA(s))

168

=UA(n, : 8] x8) x...x S} = 8'): 4,(5]) x 4,(S3) x...x 4,(S,) = A,(S")

O

such that each operation n; € F is covered.

I-Iomoniorphism
Homomorhpisms constitute mappings between the carrier sets of algebras that respect the

functions.

Definition S: Homomorphism
Let A, B be two Z-algebras, Z=(S, F). A X-homomorphism #: A—>B from 4 to B is a

family 4 = (h,),.s of functions
h, A(s)—> B(s)=h, A, > B,
-—-—— —- —such- that for- any- operation- w € J<, _say- W= (.S X8, X~ %8, —>5), -k 20 the .
following condition holds:
h (A(w)(a,,a;,....a,)) = Bw)(h, (a,),....h, (a,)) (1)
for all (aj,..., a) € A(s)x...xA(s,). The above equation, equation (1), is called the

homomorphism condition of the homomorphism /4 for the operation w. Note that in the
case k = 0 the condition simply states:

h (A(w)) = B(w) O

169

F__ —— ___ __ ____ homomorphism A A—B for the operation w

Figure 9.1 shows the commuting diagram that graphically illustrates the
homomorphism condition of the homomorphism #4:4— Bfor the operation

W=(.85X..X8, —>35), k20.

A(w)

A(s)) XA(s,) X ... XA(s,) P A(s)
h h
\ B(w) \J
B(5)XB(s,)X ... XB(s,) - B(s)

Figure 9.1: Commuting Diagram illustrating the homomorphism condition of the

1
T
%
:
=
X
]
E o
il
&
P
>~
v
=]

Vector homomorhpisms constitute mappings between the carrier sets of vector algebras.

The mappings respect the functions of the corresponding vector signature.

Definition 6: Vector Homomorphism, extension of homomorphism

Let A=(4,,4,,...,4,), B=(B,,B,,...,B,) be two Z,~algebras, Z,6 =(Z,,Z,,....Z,).

A Z,~homomorhpism H: A—B is a vector of Z-homomorhpisms represented as

= {h“,) — (h.\-' ,hf hy,,)

where 4, is a homomorphism from A4, to B, over Z, given by the mapping h.: 4, = B..

170

For any operationw € £ =(Z,,Z,,...,Z,), say w=(w,,W2,...,w,), such that w, € [, with
w, =8| 8} x...x8; = S'and §},8%,...,5;,5 €8,and I, =(S,,F)
and k>0 and 1</ < n the following conditions hold:

H(A)(w)(@, a,....a,) = Bw)H (a.a,,...,a,))

= B(w)(H(a),H(a,),...,H(a,)) (2)

where @, = (a,,8,,...,a;) € S| xSy %...x S, and -S|, 85,...,S} € S;.
The linearly independent property mandates that the application of w over a must be
done on a pair-wise basis. That is,

w(a,a,,....a,)=w(a,a,,....a)w,(a,a,,...,a,),...w,(a,a,,...,a,)

=w,(@), W2(@,), .., W, (,)

where w, xa, =gfori# j

~ Thus, we have,
H(A)w)@,.a,,....a,) = Bw)(H (@),H(a,),....H(a,))
= H(A4)(w) @), H(4,)(%,)(@,),....H(4,)(w,)a,)
= B,(w)(H(@)),B,(w,)H @,)).....B,(w,)(H(a,)) (3)
Again, the linearly independent property mandates that the homomorphisms must be

applied on a pair-wise component basis. Hence,
h_,‘ (Al)(”’I)(a'l)‘h_,‘- (Al)(“12)(53)! vhiay h_,n (An)(lwn)(an)
= B,(w)(h, (@), B,(w.)(h: (@)).....B,(w,)(h.(@,))

= B, (w,), (a,),...,hl‘} (a,)),B,(w,)(h:f €@, Yissns hsﬁ (@) B (e,)(h..." (% hﬁ. (a,))

171

Yi(d,, 50050,) € A(s] Y A(s]) Koo ¢ A(SL)

The above equation, equation (3), is called the homomorphism condition for the vector
homomorphism H for the operation w. In the case when k& = 0, the condition simply
states:

H(A)w,),H(A,)W,),... H(A,)(w,) = B (W), B,(W,),....B,(W,)

=h,(4,(w)).h.(4,(W,)),....h.(4,w,) = B,(w,),B,(w,),....B,(w,) [

Figure 9.2 shows the commuting diagram for the homomorphism condition for

the vector homomorphism H for the operation w,

A A (w,)
Alw) i .
| | R '
A (SEYXA ()X . XA (S AN ST - XA (). A (STX . A(SE) —ATD o A(S)4(S7).. 4, (5")
hy hy ﬁ. By b A,
JI’ Y Y b J Jr

. v B(¥)
BU(SXB, (S1)X ... X3, (SE)By (S)X .. XBy(SD)... B (STYX .. XB(S])——————

RS =" - ——,

B,(5')3,(5%)...3,(S")
T A
&(w) '

—
|

By(w;)

a,(w,)

Figure 9.2: Commuting diagram illustrating the vector homomorphism condition

In our discussion of software components we have seen that the application of the
principle of abstraction partitions a software component into a specification part and a
realization part. The specification part corresponds to the interface of the software
component. The Abstract Data View (ADV) concept further extends this notion. ADV
corresponds to interfaces that are extensible. Hence, we can think of extending the

functionality of a software module by extending the ADV interface. This approach

173

preserves encapsulation and enhances reusability by effectively applying the principle of

composition to the existing module functionality.

Design Patterns
Informally, a design pattern or micro-architecture software artifact is an aggregate of
abstract data types (ADTs). The class of objects corresponding to each of the ADTs is
represented by a Z-algebra. Assuming that the components are linearly independent and
thus satisfy the non-interference proof obligation, then we can represent a design pattern
as a vector of Z—algebras. One of the major attributes of design patterns is that it captures
knowledge from past experience. Thus, relationship between the component ADTs must
be made explicit in any reasonable representation of design pattern. Hence, the vector of
Z-algebras is not sufficient to represent a design pattern.

One reasonable representation is to extend the n-tuple of Z—algebras by including
a relation that is capable of encoding the requisite knowledge. That is, the relation must
be able to encode relationship, associations, roles, and multiplicity between entities in a
design pattern. The relation depicted below is capable of encoding the requisite

knowledge in a design pattern

R c L(Alpha) x L(Alpha) x Alg(Z) x Alg(Z,) x L(Alpha) x L(Alpha) x Nait x Nat
where

174

L(Alpha): depicts a set of alphabetic strings representing the name of relationship
between entities
Alg(Zy): s the class of Z-algebra corresponding to the vector signature X,

Nat: is the set of natural number.

The components for the relation R are defined as follows: the first component of
R depicts the name of the relationship or association between two entities. The second
component depicts the type of relationship. The third and forth components depict the
entities that the relation is defined between. Components five and six define the roles of
the relationship. Components seven and eight define the multiplicity of the relationship.

More formally, a design pattern can be defined as an (#+ /)-tuple containing 7 -
algebras and R. The n X-algebras corresponds to the various object entities in the design
pattern while R is used to encode the relationships between the entities. Thus, the design

pattern DP can be represented as DP = (A,45,...,Ap, R).

Example
The design pattern fragment given in Figure 9.3 shows a number of object entities and

their associations. D/ is an (n+ /)-vector representation of the design pattern fragment.

175

c:Enhty:-»:-
A

<<|nterface=> <<Enlity=>>
D B
| %adcE() ~SaddE() a1 <<Entity>>
¥gaE() W pradeeesesass =] *gelE() C
:"df'p':d’ :gggf‘;) 0on
ge
*operation() *operation1() On
*operation2() *operation2()
-
=
l"//
Y e
<<Entity=>=> <=<Entity>> [~
E F . S
= +parent
e 1.n
+child
o

Figure 9.3: A Design Pattern Fragment

The relation R is enumerated by the following set of relationships:
R=1{ (nil, Aggregation, E, B, nil, nil, nil, nil),

(nil, Aggregation, F, B, nil, nil, nil, nil),

(R1, Association, B, C, nil, nil, I, n),

(R2, Association, F, C, nil, nil, 1, n),

(R3, Association, F, F, parent, child, 1, 1..n),

(nil, Inheritance, A, B, nil, nil, nil, nil,),

(nil, Interface, D, B, nil, nil, nil, nil) }
176

(=T T

Thus, the vector DP1 = ((A, B, C, D, I, I), R) can be used to represent the design

pattern fragment shown above.

Definition 7: Module Signature
A module signature is a pair (Z;, Z.) of signatures; 2, and X, are called import signature
and export signature respectively. A sort or operation from the signature Z,, . or LnE,

is respectively called imported, exported or inherited. 0

Figure 9.4 gives a graphical representation of the module signature (Z,, £.) with
Z=({s, r}, {wi, w2}), Z~({s},{wl, w3}). In this representation the inherited sorts and
operations are shown by broken lines. Informally, the module signature fixes the

signatures of the argument and of the value of a modularized abstract data type.

1 Ws

LT
i
|

l

w

(7 T, S S —— - "

W

4

3

Figure 9.4: Graphical Representation of a Module Signature

177

It is now possible to introduce a formal notion of the syntactic specification for
design pattern. Three dimensions of design pattern are characterized: the major classes
forming the body or realization of the pattern, the interface or specification of the pattern,

and the relationship between the classes in the body and interface of the pattern.

Definition 8: Module Vector Signature, extension of Module Signature
A module vector signature is a 3-tuple consisting of a pair of signatures and the
knowledge relation discussed above. This is represented as follows:
(T2 R)
where I represents the vector signature corresponding to abstract data types depicting

the main classes in the body or realization of the design pattern. . represents the vector

signature corresponding to the abstract data views (ADVs) depicting the main classes in

the interface or specification of the design pattern. R is the relation that captures the inter-

relationship between the classesin £ and X, . O

Definition 8a: Expanded Version of Module Vector Signature

A module vector signature is a 3-tuple consisting of three pairs. The first component of
each pair is a vector signature representing the classes of the corresponding abstract data
types and the second component represents the knowledge relation that define the actual
binary relationship between the instances of the abstract data types and between abstract

data types and binary relationships. This is represented as follows:
LLELR)=(E]R), (LR WEL),)

178

where R, € R"and R= UR.

1513

and

R =R =(Alg(E") U R) XAlg(E"). 0

R is defined to be a set of binary relationships between the entities in a design
pattern. The binary relationships can be defined between abstract data types (or classes)
in the design pattern or between an abstract data type and a binary relation that has been
defined in the design pattern. As a result there are at least two kinds of binary
relationships to be considered in the specification of design pattern: (1) The primitive
binary relationship between abstract data types and (2) A higher order binary
relationships between abstract data types and primitive binary relationships. Conceivably,
this process of defining higher order relationship can be continued, defining tertiary and
quaternary relationship similar to the concepts in the entity relationship (ER) model.

The schematic design pattern shown in Figure 9.5 shows a relationship in the
specification that does not explicitly exist in the realization. The binary relationship
between A and C, (4,C)eR, in the specification is preserved via transitivity of 4 to
B,(A,B)eR, and B to C, (B,C)eR, in the realization. The relationship between A and B is
that of inheritance. Hence, B is a fype of A. Therefore the set defining relationships
between B and C can be extended to include relationships between C and 4. This

accounts for the inclusion of the transitive closure condition in the above definition.

179

Realization

Specification

e

R
N —

Figure 9.5: Schematic Representation of Design Patterns

Claim 1: Definition 8 is consistent

An important observation of definition 7 is that implicit in the definition is the fact that
there is a structural relationship existing between the two signatures. This relationship is
effectively the inheritance relationship. Therefore the basic module signature definition
can be extended to explicitly include the inheritance relationship. This form is shown
below:

E,2.)=02,.2,,1)

If the signatures in the vector export and import signatures are all empty except for one in
each vector signature then the vector module signature reduces to the module signature.

Consider

(Z:I! 2;! ‘R‘) = ((2:)l§|5u! (E!)].SESJN’ R+) = (Zlﬂt" Ee:-“ ;e* =])

=((Z, =0.¢.....20,....2,=0),(Z, =0, 4,.... ... 0). R = 1)
=@ =)
=, L. 1)

180

with 1<i<n, X =¢, forizkand 1<e<m, I, = ¢, for e#l.

and £, =(4,6)=¢ and I =(Z, =@,....8,%, #6.0,....4,.5, =¢)=Z, .

Thus, the more general vector module signature reduces to the simpler module signature.

Definition 9: Modularized Abstract Data Type

i

1.

A modularized abstract data type for the module signature (2, Z.) or, briefly, a (X,
e)-module is a total function

M Alg(Z,) - p(Alg(X,))
such that for each algebra 4 e A/g(Z,) the class M (A4)c Alg(Z,)is an abstract

data type.

A (Z,,Z,)-module M is called persistent for an algebra Ae Alg(X)), if:
for each B € M(A):
(A|1Z,nZ,)=(B|Z,NL,).
It is called persistent if it is persistent for all 4 € A/g(Z,).
A (Z, X.)-module M is called consistent for an algebra Ae Alg(Z,), if M(A)# ¢.
It is called consistent if it is consistent for all Ae Alg(X)).

A (2, X.)-module M is called monomorphic for an algebra A e Alg(X,), if M(A) is

monomorphic. It is called monomorphic if it is monomorphic for all 4 € Alg(X,).

181

Informally, persistency means that the inherited sorts and operations have the
same meaning in A and M(4) up to isomorphism. Consistency expresses the fact that the
mapping M is “effective”.

Clearly, an abstract data type may be viewed as a “constant” module, ie., a

module with-an empty import signature.

Definition 10: Modularized Vector Abstract Data Type, extension of modularized ADT

A modularized vector abstract data type for the module signature (£),X) R") is a family
of total functions that define the relationships between the various classes in a design
pattern. £ =(Z,Z,,...,2,) and Z} =(Z,,%,,...,Z,) are vector signatures representing

abstract data types corresponding to classes in the main body (realization part) and
interface (specification part) of a design pattern respectively.

i. The realization part of the modularized vector abstract data type for the module
signature (Z},Z), ") is defined by the following function:
M, Alg(X,) — p(Alg(Z,))
where the following conditions hold: 1<k,/<m and k# /and £,,%, € £ and for

each algebra A € Alg(Z,) the class M,(A4) < Alg(Z,) is an abstract data type.
it. The specification part of the modularized vector abstract data iype for the module

signature (Z),Z), R) is defined by the following function:

M, | 4D - | pgE)

l<k<m Isi<n

where the following conditions hold: 1<k <m, £, €X] and 1</<n, £, € X and

for A€ p(Alg(Z,))the class M, (A4) < (Alg(Z,) is an abstract data view.]

The function M, effectively defines the use of object-oriented design principles
such as inheritance, composition, and aggregation in the progressive build up of the
realization part of design patterns.

The mapping allows subsets of the component ADTs of the design pattern to
present their interfaces through a combined abstract data view. The ADV can be used to
specialized or extend the functionality provided by the component ADTs comprising the

realization part of the design pattern.

Definition 11: Loose Module Specification

Let L be a logic.

i. Abstract Syntax: A loose module specification in L is a pair msp=((Z,,Z,),P)
where (Z,,Z,)is a module signature with ¥, <X, and ®cL(Z,)is a set of
formulas.

ii. Semanticss: The meaning M(msp) of the loose module specification
msp=((Z,,Z,),®)is the(Z,,Z,) — module defined by:
M(msp)(A)={BeAlg(X,)|Bl=® and (B|Z,) = A4}

for each A€ Alg(X,). tl

Clearly, a loose module specification defines a persistent but not necessarily consistent

module.

Definition 12: Design Pattern Specification, Extension of Loose Module Specification

Let L bea logic.

1.

il.

Abstract Syntax

A design pattern specification in L is a pair dpsp=((Z],L),R"), D) where

(Z/,Z,,R")is a vector module signature with R = UR,' and (R,modifiest)),

i*» el

l<i<3
(R modifies¥,), (Rymodifies(Z] UX.))and ®=D oD, with &, cL(X)and
O, cL(Z)). ® is a set of formulas that defines the derivation sequence to

establish a relationship between two instances (entities) of the abstract data types
corresponding to the vector signatures. R is the resultant static relationship that is
determined by @.

Semantics
The meaning M(dpsp) of the design pattern specification dpsp = ((Z,Z!,R"),®)is

the (Z,Z), R")-module defined by the following set of mappings:

1. The meaning of the relationships in the realization part of the design pattern
specification is given by:
M (dpsp)(A4) = {B € Alg(Z))| A|=, B,iff foreach op, €D,
A |=,, A..,implies (4,4,)eR and op,(4)=4,,}

Top i+l

184

for each algebra Ae Alg(X,)and 1<k, /<mand k#/and %, ,Z,€Z and

AL A, e AlgZ)).
Note: A=y B=B|=D,.
2. The meaning of the relationships in the interface part of the design pattern
specification is given by:
M (dpsp)(A)={B € g(Alg(Z,)) | A|=¢, B,iff for each op, € D,,
A |=,, A, ,implies (4,4,

i+l 2

:opl 141) € R; and Opn (Ar) = A.:-o-l }

for each Ae@(Alg(Z,))and 1<k<m,1<l<n,Z e€Xl’and Z, €] [

The set of formulas represented by @, characterizes the nature of the relationship
between abstract data types constituting the realization part of the design pattern that is

consistent with the mapping defined by M, of definition 10. @ is depicted as follows:

®, c L(Z)=(JLE)

isl<m
The set of formulas represented by @, characterizes the nature of the relationship
between the specification part and realization part of the design pattern that is consistent

with the mapping defined by M, of definition 10. @, is depicted as follows:

o, c L(Z)=(|JLE))

12l<n

We can think of 4|=, Bas having the meaning of abstract data type B derived

from abstract data type 4 through a sequence of formulas or operations belonging to® .

In addition, an operation is only permissible if the resulting relationships between the

185

abstract data types for each of the derivation steps are contained in the transitive closure

of R. That is, if the following relationship holds:
4 =, A ifE(4,4,,)eR?
and op, e ® and 4., 4,,, € (Alg(Z})w o(Alg(E))

This process of deriving abstract data type B from abstract data type A can be interpreted

using a derivation tree for the operations in @ . The process of building the derivation

tree is constrained by the relationship set depicted by R" . Figure 9.6 gives the schematics

of the derivation tree for deriving B from 4.

186

p, € Qiff (A4,A)eR?
A
op, € Oiff (4,4)€ R
A

ops € Qiff (4, A4;) € R*

op, € Qiff (4,,B)e R*
B

Figure 9.6: Schematic Derivation Tree for Vector Algebra B being derived from Vector
Algebra A

It is conceivable to have more than one derivation tree for a design pattern. Each

derivation tree will result in a difference structural version of the pattern. This variation

could account for differences in implementation approaches. For example, one

implementation may favor delegation over an inheritance-based strategy.

187

The concept of derivation tree presented above can be used to give some insight
into the effort required to reuse a component. Algebra 4 represents the component to be
reused and algebra B represents the desired component. The derivation tree gives the
sequence of transformations that can be used to go from A4 to B. The sequence of

transformations is a quantitative measure of the effort to reuse a particular component.

9.2 Semantics of Design Patterns and their Specification Constructors
A reasonable representation for the Semantics of Design Patterns and their Specification
Constructors is presented based on the concept of Abstract Data Views (ADV) that was
proposed by Donald Cowan and his associates [Cowan 92, Cowan 93, Cowan 93a]. The
ADV specification is consistent with the theoretical model put forward in this work and is
based on the general principle of term writing system.

The semantics of the specification constructor for composition is given in terms of
the representation of both ADVs and ADTs. The interpretation of the relationship
between ADTs and ADVs is done using the variable owner (see Chapter 3). A general

schema for an ADV is shown in Figure 9.7.

ADV_Type = ADV [is ADV] [for ADT]

declaration X id =11

invariant Inv

component ADI" Tvpe = ADV [for ADV'] [for ADT']

component '..s;:.i.ﬁll“ ADV_Typel = ADV [for ADV'| [for ADT'|

component s.c(i‘rlnl“ ADV _Type2 = ADV |[for ADV'| [for ADT'|

function fila,, U k=1 .K)a, U, (=1..J)
declaration y, , ¥, ,(/=1,..,L)

external status,, -z, . ,(m=1,.,M)

188

where status, . € {'w",'rd '}

m,j
pre_condition pre _ADV _ f,
post_condition post _ADV _ f,
event e,(b,,:R,,;0=1.,0,)n=1..,N)

declaration v, , : S, ,,(p =1,...,P)

a.n

external status,, :w,,,(q=1,...,0),

R ool B
where status,,, € {w: S }

pre_condition pre _ADV _e,
post_condition post _ADV _e,
end ADV

Figure 9.7: A General Schema for an ADV

In the schema of Figure 9.7, the declaration "ADV Type = ADV[is ADV][for ADT]"
expresses the definition of a type ADV. The symbol "[..]" encloses optional syntactic
items, i.e., the declaration "is ADV" and "for ADT" are optional. The declaration "is
ADV" represents the inheritance relationship, i.e., the ADV Type is being defined as a
specialization or extension of another ADV Type. The declaration "for ADT" represents

the association of an ADV_Type with an ADT Type.

189

ADT Type = ADT
declaration Yio Lo =1,...1)

invariant Inv
component ADT Twpe= ADT
function 7, 5;,,,- :a,,-;k = l,...,E;)c_u+1,; U i (J=],..‘,j)

declaration ;,_J IF;,; (= 1,.,.,5)

external status,, , : zm;,(m=1,.,M)

Ry e af
where status,, . € {wr') rd }

pre_condition pre ADT _ f

post_condition post _ ADV _ f
end ADT

Figure 9.8: A General Schema for an ADT

An ADV Type is composed of a declaration part, invariant, components, functions, and
events. The declaration part represents the private variables of the ADV Type. The
invariant part describes the constraints on variables that compose the ADV Type. The
components represent the structural composition of the ADV Type. Finally, the functions

and events describe the behavior of the ADV_Type.

A general schema for an ADT is presented in Figure 9.8. The symbols and constructs
used in this schema are the same ones used in the ADV representation. The variable
owner represents the association of an ADV with an ADT. This association is illustrated

by the representation in Figure 9.9.

ADV_Type = ADV for ADT

declaration - T o (.)
ovwner : ADT Tyvpe
invariant Inv

component ...
190

function fi@; U pik=1..K)a,,; :Upy,(G=1...7)
declaration y, . :V, (I =1,...,L)

external status,, :z, ,(m=1,..M)

T B TH

where status,, . € {wr' rd'}

pre_condition pre ADV _ f,
post_condition post _ADV _ f,
event e (0.t Byt 02)0 =1 N)

declaration v, : S, . (p=1,...,P)

external status, . w, ,,(q=1,...,0),

\ TR]
where sialus, , € {wr' rd'}

pre_condition pre _ADV e,
post_condition post _ADV e,
end ADV

Figure 9.9: A General Schema Showing Inclusion of an ADT in an ADV

9.3 Closure of Design Pattern under Composition

Let X =(X,Z,,....,) be a vector signature. The composition of two X -
homomorphisms, say H:4—>B and G:B—>C, yields a X, -homomorphism

G oH : A— C thatis a family of functions of the form G H = (g.°h,)

i=l.n-

Theorem

For any vector signature I the composition of two I -homomorphisms yields a X -

homomorphism.

191

Proof:
Given a vector signature X =(Z.X,,....Z)and the two £, -homomorphisms

H:A—> B and G:B— C, we want to show that GoH : 4 — C satisfies the vector

homomorphism condition, thus,
G o H(A(W)@,,a,,....a,)= C(w)G - H(@),G H(@,),...,G > H(@,)).
That is,
goh (A)w)@), g h.(A4,)(w,)(@,),....g o h.(4,)(w,)@,)
= Ci(w)(g 2 h,(@)).Ci(w,)g o . (a)),....C,(w, g e h.(@,))
Therefore, we have
G(H(A(w)@,a,,...,a,) = G(B(w)(H (&),H(@,),....H (a,))
= G(B,(w)(h,(@)),B,(w,)("+(@,)),..., B,(w,)(h,.(@,)))
- Applying vector homomorphism condition
= g, (Bw)(h, (@))).g,: (B, (w,)(h:(@))),....&,.(B,(w,)(h,(@,)))
- Applying G component wise
= G, 2h,(a)),.Co(w, g 2 © 12 (@,),....C.(W,)8, b, (a@,))
= GG e H(a)),C,(w, (G = H(@,)),...,C,(w,)(G > H(a,))

=C(WXG o H(@),G o H(@,),....G H@,))

9.4 Examples Illustrating the Use of the Formalism Presented Above

The Factory Method design pattern primary intent is to define an interface for creating an
object, but let subclasses decide which class to instantiate [Gammal995]. Thus, the
Factory Method lets a class defer instantiation to subclasses. Figure 9.10 provides a

generic structure of the Factory Method design pattern.

[<<Entit>>
<<Enlity>> Creator AnOperation() B
Hrogbete, =4 0 [el i
*FactoryMethod() . - -
. *AnGperation() Product *product = FacinyMethod
.“n\ 1
i
<<Enlitys> <<Enbty:=>

ConcrataProduct ConcreteCraalor

SactoryMethod() |

==---[return new ConcrateProduct bl

Figure 9.10: Generic Structure of the Factory Method Design Pattern

Use of the Factory Method design pattern is applicable when either of the
following conditions apply: (1) a class can’t anticipate the class of objects it must create,
(2) a class wants its subclasses to specify the objects it creates, or (3) classes delegate
responsibility to one of several helper subclasses, and you want to localize the knowledge
of which helper subclass is the delegate [Gamma 1995]. The Factory Method is ideal for
use in frameworks that use abstract classes to define and maintain relationships between

objects. Frameworks are often responsible for creating the objects as well.

193

Figure 9.11 gives an instance of the Factory Method design pattern that can be

used in a multiple document framework. The key abstractions are Document and

Application. The Factory Method pattern encapsulates the knowledge of which

Document subclass to create and moves this knowledge out of the framework.

Application subclasses redefine an abstract CreateDocument operation on Application to

return the appropriate Document subclass. Once an Application subclass is instantiated,

the application subclass can then instantiate application-specific Documents without

knowing their classes.

<<Entity>> <<Enlity>>
Document Application
R1 &docs - List<Document™>
0.n))
$0pan() NewDocument() &S
*Cigse() |+has +belongs *CreateDocument() [
*Save() *NewDocument())
*Rever(*0penDocument() Docement *doc = CreateDocument
docs Add(doc)
doc->0Opeen
}
<<Enlity>>
<<Entity>> MyAaplicalion
MyDocument << --- instantiates - -- - -
“CreateDocument() [~~~ -~
77| return new MyDocument Ij

Figure 9.11: Instance of Factory Method Design Pattern

The Factory Method design pattern for the document framework is represented by

FM ,,, using the formalism presented above. Thus,

FM p, = ((A1g(Z)), R), (Alg(27). R,), ((AIg(Z7) w AIg(Z))), R,))

194

The realization part of the factory method design pattern is represented by the tuple
(Alg(Z}),R,) . These components are explained below.
Y = ((Z pocumen: = ({void,...},{Open : void — void ,Close : void — void,
Save : void — void , Revert : void —» void, .. })),

(2 pspocumen: = ({Document void.,...},{Open : void — void,Close : void — void,

Save : void — void , Revert : void — void, .. .})),

(Z 1 piicanon = ({Document,void int,.. .},
{CreateDocument : void — Document,
NewDocument : void — int ,
OpenDocument : string — int,...})),

(Z s pappiicanon = ({Application, Document, void,int, ...},

{CreateDocument : void — Document,

NewDocument : void — int ,

OpenDocument : string — int,...})))

The class of ¥ -algebras corresponding to X is represented by A/g(X)),
Alg(Z}) = (Document, MyDocument, Application, MyApplication) .

The relationships between the algebraic entities is represented by R,
R, ={ (R1, Aggregation, Document, Application, belongs, has, 1, 0..n),

(nil, Inheritance, MyDocument, Document, nil, nil, nil, nil),

(nil, Inheritance, MyApplication, Application, nil, nil, nil, nil),

195

(mil, Instantiates, MyApplication, MyDocumnet, nil, nil, nil, nil) }

The Specification part or interface of the Factory Method design pattern is
represented by the tuple (4/g(Z)),R,). There is no explicit specification part or interface
corresponding to this design pattern. However, the Application and the set of
ConcreteApplication classes can be combined to form the interface specification for this

pattern. In addition, it is quite easy to extend this pattern with an interface. Figure 9.12

shows an expanded example that has an interface.

«<Entity»> <<Enlity>>
Document Aaglication <clnterdface>>
frow Doc Exampie) o Vow Doc Exawple) htAaplication
a) 10Qp¢'m:£idmw"
SCoeng +has +belongs R # -4 %newlocument(
SClose() SCreateCocument) VCpenlocument()
®53m(Sive wlocument() % SaveDocument ()
Shevod() SCpentocument() S e vedOocunent()
<<intedfacer>
IntApplicationY
<<Entity>> ACreateDocument) einteracess
<<Entity>> Applicationy o RFeeT $HewDocumeni) IntApplicationX
Documenty | . --4(fem Doe Example) d“ $0pendocumenty
(tram Doc Example) :Swlbowmlnﬂ WCreatebocument)
WCreateDocument() fevesoumenty $HewDocument
”,.‘-"' $0penDocument)
R4 $SaveDozument
<<Entity>» €<Enlity> Pk $AeverdDocument)
DocumentX hef--ccuo oo o o R R R RS i S ApplicationX,

SLreateDocument)

Figure 9.12; Factory Method Design Pattern with Interface

The interface corresponding to Figure 9.11 is given by (A4/g(Z!),R,) where we
have the following:

Z, = (., icanon = ({Document void,int,.. .},

196

{CreateDocument : void — Document,

NewDocument : void — int ,

OpenDocument : string — int,...})),

(Z gappiicann = ({Application, Document void, int, ...},
{CreateDocument : void — Document,

NewDocument : void — int ,

OpenDocument : string —» int,...})))

The class of I -algebras corresponding to X! is represented by A/g(Z),

Alg(XE)) = (Application, MyApplicationX)

The relationships between the algebraic entities in the interface is represented by R,,

R, = { (nil, Inheritance, MyApplication, Application, nil, nil, nil, nil) }

The relationship between interface and the realization is represented by R,,

R, = { (nil, Instantiates, MyApplication, MyDocumnet, nil, nil, nil, nil) }

The interface corresponding to Figure 9.12 is given by (A/g(Z)),R,) where we

have the following:

e =% = ({Application, Document void int,...},

intd pplication
{CreateDocument : void — Document,

197

NewDocument : void — int ,

OpenDocument : string — int,...})),

(X appicarions = ({intApplication, Document, Document X ,void,int,...},
{CreateDocument : void — Document
NewDocument : void — int ,
OpenDocument : string — int,...})),

(2, uipptican oy = ({Applicatio n, Document , DocumentY ,void ,int,...

{CreateDocument : void — DocumentX ,
NewDocument : void — int ,

OpenDocument : string —> int,...})))

The class of T -algebras corresponding to X is represented by A/g(Z)),

Alg(Z)) = (intApplication,intApplicationX ,intApplicationY’)
The relationships between the algebraic entities in the interface is represented by &,

R, = { (nil, Inheritance, intApplicationX, intApplication, nil, nil, nil, nil),

(nil, Inheritance, intApplicationY, intApplication, nil, nil, nil, nil) }

The relationship between interface and the realization is represented by R,

R, = { (R2, Realizes, intApplication, Application, nil, nil, nil, nil),

(R4, Realizes, intApplicationX, ApplicationX, nil, nil, nil, nil),

(R3, Realizes, intApplicationY, ApplicationY, nil, nil, nil, nil) }

Realize is a special form of inheritance. It allows you to inherit a subset of a signature.

198

9.4.1 The Transformation Process of Building the Document Framework Pattern
The document framework version of the Factory Method design pattern shown in Figure
9.12 can be built using a sequence of elemental transformations that are consistent with

the permissible relationships.

The set of transformation operations include the following:
e Inheritance of operation

e Inheritance of sorts or types

e Addition of sort to the signature

e Addition of operation to the signature
¢ Rename of operation

e Rename of sort

e Addition of variable

e Rename of variable

e Aggregate a class to another

e Instantiate

e Realize a class by another

¢ Duplication of a design pattern

The sequence of transformation is as follows:
1. Duplicate the pattern in Figure 9.10
2. Rename Product to Document

3. Rename Creator to Application
199

4. Rename ConcreteProduct algebra to DocumentX

5. Rename ConcreteCreator algebra to ApplicationX

6. Aggregate (Document, Application)

7. Add operation Open to Document

8. Add operation Close to Document

9. Add operation Save to Document

10. Add operation Revert to Document

11. Inherit operation Open (DocumentX, Document)

12. Inherit operation Close (DocumentX, Document)

13. Inherit operation Save (DocumentX, Document)

14. Inherit operation Revert (DocumentX, Document)

15. Rename operation (FactoryMethod, CreateDocument) Application
16. Update operation signature CreateDocument (void—Document) Application
17. Rename operation (AnOperation, NewDocument) Application

18. Add operation OpenDocument to Application

The resulting vector module signature after the above sequence of operations is given

below:
L= ((Z pooumen: = ({void,...},{Open : void — void ,Close : void — void,
Save : void = void , Revert : void — void,...})),
(Z pocumens = ({Document, void, ...}, {Open : void — void,Close : void — void
Save - void — void , Revert . void — void,...})),
(Z . phcaon = ({Document, void, int,...},

{CreateDocument : void — Document
200

NewDocument : void — int ,
OpenDocument : string — int,...})),
z

appticanon = ({Application, Document, void int,.. .},

{CreateDocument : void — Document,

NewDocument - void — int ,

OpenDocument : string —» int,...})))

The relationships between the algebraic entities is represented by R, ,
R, ={ (R, Aggregation, Document, Application, belongs, has, 1, 0..n),
(nil, Inheritance, MyDocument, Document, nil, nil, nil, nil),
(nil, Inheritance, MyApplication, Application, nil, nil, nil, nil),

(nil, Instantiates, MyApplication, MyDocumnet, nil, nil, nil, nil) }

9.5 Applicability to Reuse
With the exception of the duplicate pattern operation, the operations presented above are
all elemental. Since the set of elemental operations needed to build a component is finite
then we can use the aggregate of the sequence of operations as a quantitative measure of
the effort to reuse a component. The operations can be fitted with a differential-weighting
scheme based on relative weights of the operations.

The prevailing conclusion of the collective wisdom of building complex
distributed software over the past decade or so is that the software construction process

must be iterative and incremental. The software practitioner must have a very good

201

understanding of what he wants to build and must be able to give a reasonable
specification of it, albeit incomplete. A tool environment that takes advantage of the
above mentioned formal principles will give the practitioner the ability to play scenario
games with very complex modules specification and therefore help to guide the
development process-.

The formal principle explored above can be incorporated into the very large-scale
software construction process to facilitate automatic program verification. Given the
beginning and ending specifications, a tool could use the principles above to verify that
the resulting component is consistent. In fact, it would be able to identify the offending
code giving developers the ability to zero in on supposedly suspected code.

The applicability of the formal principles explored in this thesis to automatic
program verification can be put into the format of a theorem prover based on the
principle of interpretation between theories [Enderton 1972]. The vector signature
concept can be incorporated into a logic based on predicate calculus. This can then be
used to represent a design pattern as a theory, to which the principle of interpretation
between theories can be applied. Thus, we can develop a formal mathematical basis for

the theorem prover.

202

Chapter 10

Conclusions and Future Work

Software reuse is the reapplication of a variety of existing knowledge during the
construction of a software system in order to reduce the effort of development and
maintenance of the new system. This reused knowledge includes artifacts such as domain
knowledge, development experience, design decisions, architectural structures, module-
level implementation structures, specification, design, code, etc. Different reuse
techniques may emphasize or de-emphasize certain of these artifacts.

Creating a complex software system with a smaller amount of effort and less
cognitive burden on the part of the software developer implies a higher level of
abstraction. For a developer to effectively select, specialize, and integrate reusable
artifacts, the reuse technology must provide natural, succinct, high-level abstractions in
which the abstraction specifications describe the artifacts in terms of what they do. The
ability of a developer to practice software reuse is primarily limited by the abstraction
mechanism employed by the reuse technology. That is, there must be a small cognitive
distance between informal reasoning and the abstract concepts defined by the reuse
technology.

Why is software reuse so difficult? The answer is simply that raising the level of
abstraction of an artifact is extremely difficult. For example, early reuse required the

203

development of the entire body of knowledge of Formal Language Theory before
unlocking the secrets of compiler construction.

The object-oriented approach to software development has emerged as one of the
primary vehicles for the realization of software reuse. The features of inheritance,
dynamic binding, and polymorphism offered by this paradigm provide an extremely
powerful and elegant approach to software reuse, which differs fundamentally from other
mechanisms.

Design patterns express the static and dynamic structures and collaborations of
components in software architectures. Patterns aid the development of extensible
distributed system components and frameworks by expressing the structure and
collaboration of participants in software architecture at a level higher than (1) source
code and (2) object-oriented design models that focus on individual objects and classes.

Design patterns are an effective mechanism for capturing successful designs and
micro-architectures. Expressing proven techniques as design patterns makes them more
accessible to new systems and thus facilitates greater reuse. The ability to reuse a
successful pattern without any modification is highly desirable. However, this is hardly a
realistic expectation because the interface exported may not be an exact match. Hence,
the next best thing is to be able to superimpose on the design pattern the requisite

interface. The abstract data view (ADV) concept performs this task perfectly.

10.1 Summary
We have shown how to use the concepts of ADV, design pattern, and software
architecture to create a very powerful software architecture framework for developing

204

new applications and integrating existing applications into a unified adaptive business
centric solution. To illustrate the approach, we have applied this framework to solving the
OSS integration problem in the telecommunications industry.

We have presented a model-based software development approach. This is an
approach to raise the abstraction level at which application developers work and to
automate the process of translation from an application model to its corresponding
distributable runtime component. The basic thesis here is that we can effectively reverse
the effort role in the software development process in which about 80% of the
development effort goes into the development of infrastructure services and 20% into the
development of application logic.

We have presented a mathematical formalism for the specification of design
patterns. This specification constitutes an extension of the basic concepts from many-
sorted algebra. In particular, the notion of signature is extended to that of a vector,
consisting of a set of linearly independent signatures. The linearly independence property
is necessary to satisfy non-interference that is essential for compositional based
construction. This is of fundamental concern in the building of large-scale software
systems where we have the composition of smaller components to form larger
components. The approach can be used to determine efforts for component reuse and
facilitate program verification. The approach has the potential to be able to aid complex

software development by providing the developer with different design alternatives.

205

10.2 Future Work

The material from Chapters 8 and 9 present opportunities for the construction of various
tools to explore the concepts proposed by this research effort. The algebraic specification
formalism presented illustrates an approach to determine the effort to reuse a software
artifact. This concept can also be applied to automatic program verification and other
related concepts.

The applicability of the formal principles explored in this thesis to automatic
program verification can be put into the format of a theorem prover based on the
principle of interpretation between theories [Enderton 1972]. The vector signature
concept can be incorporated into a logic based on predicate calculus. This can then be
used to represent a design pattern as a theory, to which the principle of interpretation
between theories can be applied. Thus, we can develop a formal mathematical basis for
the theorem prover.

The proposed adaptive integration architecture can be combined with the model-
based software development approach presented in Chapter 8 to provide a very powerful
IDE. The architecture framework could be transparently provided by the IDE along with
all the relevant infrastructure services. Such an environment would definitely facilitate
raising the abstraction level at which application developers work by allowing them to
focus on pure application model specification using a meta-metamodel formalism. The
application model is independent of infrastructure and imperative programming language
specificities.

The adaptive architecture technique explored in this research undertaking is of a

generic nature and applicable to any customer centric business software application that

206

is transactional by nature. Some of the relevant application domains include financial
services, telecommunication OSSs, item tracking, energy and water utilities, back-office
item processing, and office automation. Applying the proposed approach to such systems

will provide further experiments in supporting the findings of this research effort.

207

[Alencar 1994]

[Alencar 1994a]

[Arango 1988]

[Arnold 1988]

[Atkinson 1991]

[Balzer 1989]

[Bass 1991]

[Betts 1990]

REFERENCES

The semantics of abstracts data views: A design concept to support
reuse-in-the-large, A. Alencar, L. Carneiro, D. D. Cowan, and C.
Lucena, Proc. Colloquium Object-Orientation in Database and
Software Engineering. Kluwer Press, May 1994.

Towards a formal theory of abstract data views, A. Alencar, L.
Carneiro, D. D. Cowan, and C. Lucena, Technical Report 94-18,
Computer Science Department, University of Waterloo, Waterloo,
Ontario, Canada, April 1994.

Domain Engineering for Software Reuse, Ph.D. Thesis, G. Arango,
Computer Science Department, University of California, Irvine,
CA, 1988.

The REUSE System: Cataloging and Retrieval of Reusable
Software, S. P. Arnold and S. L. Stepoway, Editor: W. Tracz,
Software Reuse: Emerging Technologies, IEEE Computer Society,
1988, pp. 138-141.

Object-Oriented Reuse, Concurrency and Distribution: An Ada-
based approach, Colin Atkinson, ACM Press, New York, NY,
1991.

A 15 year perspective on automatic programming, Frontier Series:
Software Reusability: Application and Experience, Volume II, Ted
J. Biggerstaff and Alan J. Perlis (editors), ACM Press, New York,
NY, 1989, pp. 289-311, Chapter 14.

Developing Software for the User Interface, L. Bass and J. Coutaz,
Reading, MA: Addison-Wesley, 1991.

Math packages multiply, Kellyn S. Betts, Mechanical Engincering,
Volume 112, Number 8, August 1990, pp. 32-38.

208

[Biggerstaff 1989]

[Biggerstaff 1989b]

[Bigus 1998]

[Blair 1989]

[Booch 1987]

[Booch 1994]

[Booch 1999]

[Breu 1991]

[Breymann 1998]

[Buchanan 1979]

Reusability Framework, Assessment, and Directions, Frontier
Series: Software Reusability: Concepts and Models, Volume 1, Ted
J. Biggerstaff and Alan J. Perlis (editors), ACM Press, New York,
NY, 1989, pp. 1-17.

Reusability Framework, Assessment, and Directions, Frontier
Series: Software Reusability: Application Experience, Volume II,
Ted J. Biggerstaff and Alan J. Perlis (editors), ACM Press, New
York, NY, 1989.

Constructing intelligent agents with Java: A programmer’s guide to
smarter applications, Joseph P. Bigus and Jennifer Bigus, John
Wiley & Sons, Inc., New York, NY, 1998.

Genericity vs. Inheritance vs. Delegation vs. Conformance vs. ...,
S. G. Blair, J.J. Gallagher, and J. Malik, Journal of Object-Oriented
Programming, Volume 2, Number 3, September/October 1989, pp.
11-17.

Software Components with Ada: Structure, Tools, and Subsystems,
G. Booch, Benjamin/Cummings Publishing Company, Inc., Menlo
Park, CA, 1987.

Object-Oriented Analysis and Design with Applications, Second
Edition, G. Booch, Benjamin/Cummings Publishing Company,
Inc., Redwood City, CA, 1994,

The Unified Modeling Language User Guide, Grady Booch, James
Rumbaugh, and Ivar Jacobson, Addison Wesley Longman, Inc.,
Reading Massachusetts, 1999.

Algebraic Specification Techniques in Object Oriented
Programming Environments, R. Breu, Springer-Verlag, Berlin,
Heidelberg, 1991.

Designing Components with the C++ STL: A new approach to
programming, Ulrich Breymann, Addison Wesley Longman

Limited, Edinburgh Gate, Harlow, England, 1998.

Theory of Library Classification, B. Buchanan, Clive Bingley,
London, UK, 1979.

209

[Buschmann 1998]

[Carneiro 1993]

[Carneiro 1994]

[Carneiro 1995]

[Carothers 1997]

[Cleaveland 1988]

[Cleeland 1996]

[Coplien 1995]

[Coutaz 1991]

Pattern-Oriented Software Architecture: A System of Patterns:
Volume 1, Frank Buschmann, Regine Meunier, Michael Stal, Hans
Rohnert, and Peter Sommerlad, John Wiley & Sons, Inc., New
York, NY, July 1998.

User interface higher-order architectural models, L. M. F.
Carneiro, M. H. Coffin, D. D. Cowan, C. J. P. Lucena, Technical
Report 93-14, Computer Science Department, University of
Waterloo, Waterloo, Ontario, Canada, 1993.

ADVcharts: A visual formalism for interactive systems, L. M. F.
Carneiro, D. D. Cowan, and C. J. P. Lucena, SIGCHI Bulletin,
1993, pp. 74-77.

ADVcharts: A Visual Formalism for Highly Interactive Systems,
L. M. F. Carneiro-Caffin, D. D. Cowan, and C. J. P. Lucena,
Software Engineering in Human-Computer Interaction, eds. M. D.
Harrison and C. W. Johnson, Cambridge University Press,
Cambridge, 1995.

Design and Implementation of HLA time management in the RTI
version F.0, Christopher D. Carothers, Winter Simulation
Conference Proceeding, 1997. I1EEE, Piscataway, NIJ, USA
97CB36141, pp. 373-380.

Building application generators, J. C. Cleaveland, IEEE Software,
Volume 5, Number 4, July 1988, pp. 25-33.

External Polymorphism: An Object Structural Pattern for
Transparently Extending C++ Concrete Data Types, Chris
Cleeland, Douglas C. Schmidt, and Timothy H. Harrison,

Proceedings of the 3™ Pattern Languages of Programming
Conference, Allerton Park, Illinois, September 4-6, 1996.

Pattern languages of program design, edited by James O. Coplien
and Douglas C. Schmidt, Addison-Wesley Publishing Company,
Inc., Reading, Massachusetts, 1995.

Applications: A dimension space for user interface management
systems, J. Coutaz and S. Balbo, Reaching Through Technology,
CHI 1991 Conference Proceedings, Editors: S. P. Robertson, G. M.
Olson, and J. S. Olson, New Orleans, LA, April 27-May 2, 1991,
pp. 27-32.

210

[Cowan 1992]

[Cowan 1993]

[Cowan 1993a]

[Cowan 1993b]

[Cowan 1995]

[Dahmann 1997]

[DEC 1991]

[Dewey 1979]

[Dennis 1973]

[DeRemer 1972]

Program design using abstract data views — An illustrative
example, D. D. Cowan et al, Technical Report 92-54, Computer
Science Department, University of Waterloo, Waterloo, Ontario,
Canada, December 1992.

Abstract Data Views, D. D. Cowan, R. lerusalimschy, C. J. P.
Lucena, and T. M. Stepien, Structured Programming, Volume 14,
January 1993, pp. 1-13.

Application Integration: Constructing composite applications from
interactive components, D. D. Cowan, Software Practice and
Experience, Volume 23, March 1993, pp. 255-276.

Abstract Data Views: A module interconnection concept to
enhance design for reusability, D. D. Cowan and C. J. P. Lucena,
Technical Report 93-52, Computer Science Department and
Computer Systems Group, University of Waterloo, Waterloo,
Ontario, Canada, November 1993.

Abstract Data Views: An interface specification concept to
enhance design for reuse, Donald D. Cowan and Carlos J. P.
Lucena, IEEE Transactions on Software Engineering, Volume 21,
Number 3, March 1995, pp. 229-242.

Department of Defense High Level Architecture, Judith S.
Dahmann, Winter Simulation Conference Proceeding, 1997. 1EEE,
Piscataway, NJ, USA 97CB36141, pp. 142-149.

The common object request broker: Architecture and specification,
Digital Equipment Corporation, Hewlett-Packard Company,
HyperDesk Corporation, NCR Corporation, Object Design Inc.,
and SunSoft Inc., OMG 91.12.1, December 1991.

Decimal Classification and Relative Index, M. Dewey, 19t ed.,
Forest Press Inc., Albany, N.Y., 1979.

Modularity, Advanced Course on Software Engineering, J. Dennis,
Springer-Verlag, New York, 1973.

Programming-in-the-large versus programming-in-the-small, F.

DeRemer and H. Kron, IEEE Transactions on Software
Engineering, Volume 2, 1976.

211

[Derr 1995]

[Dick 2000]

[Dodd 1999]

[Doh 1994]

[Eeles 1998]

[Even 1990]

[Fiadeiro 1993]

[Enderton 1972]

[Fowler 1999]

[Freeman 1983)

[Freeman 1987]

[Frichman 1992]

Applying OMT: a practical step-by-step guide to using the object
modeling technique, Kurt W, Derr, SIGS Books, New York, NY,
1995.

XML: a manager’s guide, Kevin Dick, Addison Wesley Longman,
Inc., Reading, Massachusetts, 2000.

The essential guide to telecommunications, Annabel Z. Dodd,
Prentice Hall, Inc., Upper Saddle River, NJ, 1999.

The facets of action semantics: Some principles and applications,
Kyung-Goo Doh and David A. Schmidt, Proceedings 1%
International Workshop on Action Semantics, Edinburg, 1994, pp.
1-15.

Building business objects, Peter Eeles and Oliver Sims, John
Wiley & Sons Inc., New York, NY, 1998.

Category sorted algebra-based action semantics, Susan Even and
David A. Schmidt, Theoretical Computer Science, Volume 77,
1990, pp. 73-96.

Verifying for Reuse: Foundations of Onbject-Oriented System
Verification, J. Fiadeiro and T. Maibaum, Technical Report,
Imperial College of Science and Technology, University of
London, London, 1993,

A mathematical Introduction to Logic, H. B. Enderton, Academic
Press, New York, NY, 1972,

Analysis patterns: reusable object models, Martin Fowler, Addison
Wesley Longman, Inc., Reading, Massachusetts, October 1999.

Reusable software engineering: Concepts and research directions,
P. Freeman, Workshop on Reusability in Programming (Newport,
R 1, Sept. 1983), ITT Programming, Stratford, Conn., pp. 2-16.

A conceptual analysis of the Draco approach to constructing
software systems, P. Freeman, IEEE Transactions on Software
Engineering, SE-13, 7, July 1987, pp. 830-844.

The Assimilation of Software Process Innovations: An
Organizational Learning Perspective, R. Frichman and C.
Kemerer, MIT Center for Information Systems Research WP 281,
Management Science, 1992.

212

[Gamma 1996]

[Gaudel 1986]

[Green 1983]

[Hartson 1989]

[Harmon 1997]

[Helm 1990]

[Henning 1999]

[Henry 1995]

[Hill 1986]

[Hill 1992]

[Hoare 1969]

Design Patterns: Elements of Reusable Object-Oriented Software,
Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides,
Addison-Wesley Publishing Company, Inc., Reading, MA,
December 1996.

Towards Structured Algebraic Specifications, M. C. Gaudel,
ESPRIT 85 Status Report, North-Holland, Brussels, 1986, pp. 493-
510.

Design notations and user interface management systems, M.
Green, User Interface Management System, Proceedings on
Workshop User Interface Management System, Seeheim, FRG,
November 1-3, 1983.

User-interface management control and communication, R.
Hartson, IEEE Software, volume 26, January 1989, pp. 62-70.

Understanding UML: the developer’s guide: with a web-based
application in Java, Paul Harmon and Mark Watson, Morgan
Kaufmann Publishers, Inc., San Francisco, CA, 1997.

Contracts: Specifying behavioral composition in object-oriented
systems, R. Helm, I. M. Holland, and D. Gangopadhyay,
OOPSLA, 1990, pp. 169-180.

Advanced CORBA Programming with C++, Michi Henning and
Steve Vinoski, Addison Wesley Longman, Inc., Reading,
Massachusetts, April 1999.

Large-scale industrial reuse to reduce cost and cycle time,
Emmanuel Henry and Benoit Faller, IEEE Software, September
1995.

Supporting concurrency, communication, and synchronization in
human-computer interaction — The Sassafras UIMS, R. D. Hill,
ACM Transactions on Graphics, Volume 5, July 1986, pp. 179-
210.

The abstraction-link view paradigm: using constraints to connect
user interface to applications, R. D. Hill, CHL 1992, ACM, May
1992, pp. 335-342.

An axiomatic approach to computer programming, C. A. R. Hoare,
Communications of the ACM, Volume 12, 1969, pp. 576-580, 583.

213

[Tona 1999]

[Jacobson 1992]

[Johnson 1991]

[Jones 1990]

[Krasner 1988]

[Krueger 1992]

[Levy 1986]

[Lieberman 1986]

[Linthicum 1999]

[Loeckx 1996]

[Lucena 1992]

Orbix Programmers’ Manual, lona Technologies, Inc, January
1999.

Object-Oriented Software Engineering — A Use Case Driven
Approach, Ivar Jacobson, Magnus Christerson, Patrik Johnson, and
Gunnar Overgaard, Addison-Wesley, Wokingham, England, 1992.

Delegation in C++, Ralph E. Johnson and Jonathan Zweig, Journal
of Object-Oriented Programming, Volume 4, Number 11, pp. 22-
35, November 1991,

Systematic Software Development Using VDM, C. B. Jones,
Prentice-Hall, New York, NY, 1990.

A cookbook for using the model-view-controller user interface
paradigm in smalltalk-80, G. E. Krasner, JOOP, August-September
1988, pp. 26-49.

Software Reuse, Charles W. Krueger, ACM Computing Surveys,
Volume 24, Number 2, June 1992.

A metaprogramming method and its economic justification, L. S.
Levy, IEEE Transaction on Software Engineering, SE-12, Number
2, February 1986, pp.272-277.

Using Prototypical Objects to Implement Shared Behavior in
Object-Oriented Systems, H. Lieberman, OOPSLA’86 Conference
Proceeding, SIGPLAN Notices, Volume 21, Number 11, pp. 214-
223, 1986.

Enterprise application integration, David S. Linthicum, Addison
Wesley Longman, Inc., Reading, Massachusetts, November 1999.

Specification of Abstract Data Types, Jacques Loeckx, Hans-
Dieter Ehrich, and Markus Wolf, John Wiley & Sons, Inc., New
York, NY, 1996,

A programming Model for User Interface Compositions, C. J. P.
Lucena, D. D. Cowan, and A. B. Potengy, Technical Report 92-61,
Computer Science Department and Computer Systems Group,
University of Waterloo, Waterloo, Ontario, Canada, March 1992,

214

[Lucena 1993]

[Maarek 1991]

[Marciniak 1994]

[Martin 1997]

[Maruyama 2000]

[Matsumoto 1987]

[McDysan 1999]

[McCormack 1988]

[Mcllory 1968]

[Meyer 1988]

[Mosses 1992]

A programming approach for parallel rendering applications, C. J.
P. Lucena, D. D. Cowan, and A. B. Potengy, Technical Report 93-
62, Computer Science Department and Computer Systems Group,
University of Waterloo, Waterloo, Ontario, Canada, March 1993.

An information retrieval approach for automatically constructing
software libraries, Y. S. Maarek, D. M. Berry, and G. E. Kaiser,
IEEE Transactions on Software Engineering, Volume 17, No. 8,
August 1991, pp. 800-813.

Encyclopedia of Software Engineering, J.J. Marciniak, John Wiley
& Sons, Inc., New York, NY, 1994.

Object-oriented methods: a foundation, James Martin and James
Odell, Prentice-Hall, Inc., Upper Saddle River, NJ, 1997.

XML and Java: developing web applications, Hiroshi Maruyama,
Kent Tamura, and Naohiko Uramoto, Addison Wesley Longman,
Inc., Reading, Massachusetts, January 2000.

A Software Factory: An overall approach to software production,
IEEE Tutorial on Software Reusability, P. Freeman (editor), IEEE
Computer Society Press, Los Alamitos, CA, 1987, pp. 155-178.

ATM theory and applications, David E. McDysan and Darren L.
Spohn, McGraw-Hill, New York, NY, 1999.

An overview of the X toolkit, J. McCormack and P. Asente,
Proceedings of the ACM SIGGRAPH Symposium on User
Interface Software, October 1988, pp. 46-55.

Mass Produced Software Components, M.D. Mcllory, Software
Engineering Concepts and Techniques, Brussels 39, Belgium:
Pertrocelli/Charter, 1968, pp. 88-98. Paper presented at the 1968
NATO Conference on Software Engineering.

Object-oriented software construction, B. Meyer, Prentice-Hall,
1988.

Action Semantics, Peter D. Mosses, Cambridge Tracts in
Theoretical Computer Science, Number 26, Cambridge University
Press, 1992.

215

[Mosses 1996]

[Mowbray 1997]

[Mowbray 1998]

[MSC 1991]

[Myers 1991]

[Neighbors 1983]

[Neighbors 1989]

[Nierstrasz 1992]

[OG 1994]

[Orfali 1998]

[Olsen 1983]

Theory and practice of action semantics, Peter D. Mosses, MFCS:
Proceedings of the 21% International Symposium on Mathematical
Foundations of Computer Science, Lecture Notes in Computer
Science: Volume 1113, Springer-Verlag, Cracow, Poland,
September 1996, pp. 37-61.

Corba design patterns, Thomas J. Mowbray and Raphael Malveau,
John Wiley & Sons, Inc., New York, NY, 1997.

Inside CORBA: Distributed object standards and applications,
Thomas J. Mowbray and Willam A. Ruh, Addison Wesley
Longman, Inc., Reading, MA, February 1998.

Guide, Microsoft

Microsoft Visual Basic

Corporation, 1991.

Programmer’s

Separating application code from toolkits: Eliminating the
spaghetti of call-backs, B. A. Myers, UIST-4" Annual Symposium
on User Interface Software Technology, 1991, pp. 211-220.

The Draco approach to constructing software from reusable
components, J. M. Neighbors, Workshop on reusability in
programming (Newport, R.1., September 1983), ITT Programming,
Conn., pp. 167-178.

Draco: A method for engineering reusable software systems,
Frontier Series: Software Reusability: Concepts and Models,
Volume 1, Ted J. Biggerstaff and Alan J. Perlis (editors), ACM
Press, New York, NY, 1989, pp. 295-319, Chapter 12.

Component-oriented software development, O Nierstrasz, S.
Gibbs, and D. Tsichritzis, Communications of the ACM, Volume
35, September 1992, pp. 160-165.

Distributed Computing Services (XDCS) Framework: X/Open
Framework and Models, The Open Group, October 1994,

Client/server programming with Java and CORBA, Robert Orfali
and Dan Harkey, John Wiley & Sons, Inc., New York, NY, 1998.

Presentational, syntactic, and semantic components of interactive
dialogue specifications, D. R. Jr. Olsen, User Interface
Management System, Proceedings on Workshop User Interface
Management System, Seeheim, FRG, November 1-3, 1983.

216

[OMG 1997]

[OMG 1998]

[OMG 1998a]

[OMG 2000]

[OMG 2000a]

[OMG 2000b]

[OMG 2001]

[OSF 1990]

[Ousterhoust 1994]

[Parnas 1989]

[Potengy 1993]

[Poulin 1995]

[Prieto-Diaz 1985]

A Discussion of the Object Management Architecture, OMG,
January 1997.

CORBA Finance: Financial Domain Specifications: Version 1.0,
OMG, December 1998,

CORBA Telecoms: Telecommunications Domain Specifications:
Version 1.0, OMG, June 1998.

Meta Object Facility (MOF) Specification: Version 1.3, OMG,
March 2000.

OMG XML Metadata Interchange (XMI) Specification: Version
1.1, OMG, November 2000.

OMG Unified Modeling Language (UML) Specification: Version
1.3, OMG, March 2000.

The Common Object Request Broker Architecture: Architecture
and Specification: Version 2.4.2, OMG, February 2001.

Application Environment Specification (AES) User Environment
Volume, Open Software Foundation, 1990.

Tcl and Tk Toolkit, J. K. Ousterhoust, Reading, MA: Addison-
Wesley, 1994.

Enhancing Reusability with Information Hiding, Frontier Series:
Software Reusability: Concepts and Models, Volume 1, D.L.
Parnas, P.C. Clements, and D. M. Weiss, Ted J. Biggerstaff and
Alan J. Perlis (editors), ACM Press, New York, NY, 1989, pp.
141-157.

A Programming Approach for Parallel Rendering Applications, A.
B. Potengy, C. J. P. Lucena, and D. D. Cowan, Technical Report
93-62, Computer Science Department, University of Waterloo,
Waterloo, Ontario, Canada, March 1993.

Populating software repositories: incentives and domain-specific
software, J. S. Poulin, Journal of Systems and Software, Volume
30, Number 3, September 1995, pp. 187-199.

A software classification scheme: Ph.D. thesis, R. Prieto-Diaz,
Department of Information and Computer Science, University of

California, Irvine, 1985.

217

[Prieto-Diaz 1986]

[Prieto-Diaz 1987]

[Prieto-Diaz 1989]

[Prieto-Diaz 1991]

[Prieto-Diaz 1991a]

[Rising 1998]

[Rumbaugh 1991]

[Schmidt 1995a]

[Schmidt 1995b]

[Schmidt 1995¢]

Module Interconnection Languages, R. Prieto-Diaz and J M.
neighbors, Journal of System Software, Volume 6, Number 4,
November 1986, pp. 307-334.

Classifying Software for Reusability, R. Prieto-Diaz and P.
Freeman, IEEE Software, Volume 4, Number 1, January 1987, pp.
6-16.

Classification of Reusable Modules, Software Reusability:
Concepts and Models, Volume 1, Ted J. Biggerstaff and Alan J.
Perlis (editors), ACM Press, New York, NY, 1989, pp. 99-123.

Domain Analysis and Software System Modeling, R. Prieto-Diaz
and G. Arango, IEEE Computer Society Press, Los Alamitos,
1991,

Implementing Faceted Classification for Software Reuse, R.
Prieto-Diaz, Communications of the ACM, Volume 34, Number 5,
May 1991, pp. 89-97.

The Patterns Handbook: Techniques, Strategies, and Applications,
collected by Linda Rising, Cambridge University Press,
Cambridge, UK, 1998,

Object-Oriented Modeling and Design, J. Rumbaugh et al,
Prentice Hall, Englewood Cliffs, NJ, 1991, pp. 156-161.

An Object-Oriented Framework for Dynamically Configuring
Extensible Distributed Systems, Douglas C. Schmidt and Tatsuya
Suda, BCS/IEE Distibuted Systems Engineering Journal, 1995.

Reactor: An Object Behavioral Pattern for Concurrent Event
Demultiplexing and Event Handler Dispatching, Douglas C.
Schmidt, Pattern Languages of Program design, Addison-Wesley
Publishing Company, Inc., Reading, Massachusetts, 1995.

Object-Oriented Components for High Speed Network
Programming, D. C. Schmidt, T. H. Harrison, and E. Al-Shaer,
Proceedings of the Conference on Object-Oriented Technologies,
(Monterey, CA), USENIX, June 1995.

218

[Schmidt 1996]

[Schmidt 1996a]

[Schmidt 2000] -

[Shaw 1984]

[Shaw 1989]

[Shaw 1991]

[Shepard 2000]

[Shlaer 1988]

[Shlaer 1992]

[Sikkel 1992]

[Stroustrup 1986]

A Family of Design Patterns for Flexibly Configuring Network
Services in Distributed Systems, Douglas C. Schmidt, International
Conference on Configurable Distributed Systems, Annapolis,
Maryland, May 6-8, 1996.

A Family of Design Patterns for Application-Level Gateways,
Douglas C. Schmidt, Theory and Practice of Object Systems,
Wiley & Sons, Volume 2, Number 1, December 1996.

Pattern-Oriented Software Architecture: Patterns for Concurrent
and Network Objects: Volume 2, Douglas Schmidt, Michael Stal,
Hans Rohnert, and Frank Buschmann, John Wiley & Sons, Inc,,
New York, NY, 2000.

Abstraction techniques in modern programming languages, M.
Shaw, IEEE Software, Volume 1, Number 4, October 1984, pp.
10-26.

Larger scale systems require higher-level abstractions, M. Shaw, In
Proceedings of the 5" International Workshop on Software
Specification and Design, IEEE Computer Society Press, Los
Alamitos, Calif, May 1989, pp.143-146.

Heterogeneous design idioms for software architecture, M. Shaw,
In Proceedings of the 6™ International Workshop on Software
Specification and Design (Como, Italy), IEEE Computer Society
Press, Los Alamitos, Calif., October 1991, pp.143-146.

Telecommunications Convergence, Steven Shepard, McGraw-Hill,
New York, NY, 2000.

Object-oriented systems analysis: modeling the world in data,
Sally Shlaer and Stephen J. Mellor, Prentice-Hall, Inc., Englewood
Cliffs, NJ, 1992

Object lifecycles: modeling the world in states, Sally Shlaer and
Stephen J. Mellor, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1992

Abstract data types as reusable software components: the case for
twin ADTs, K. Sikkel and J. C. van Vliet, Software Engineering
Journal, May 1992, pp. 177-183

The C++ Programming Language, B. Stroustrup, Addison-Wesley
Publishing Company, 1986.

219

[Szyperski 1998]

[Summerville 1989]

[Sun 1996]

[Texel 1997]

[TMF 1999]

[TMF 1999a]

[Tracz 1987]

[Turski 1987]

[Udupa 1999]

[Vogel 1998]

[Wang 1999]

[Wegner 1983]

[Wegner 1987]

Component Software: Beyond Object-Oriented Programming,
Clemens Szyperski, ACM Press, New York, NY, 1998.

Software Design with Reuse, 1. Summerville, J. Mariani, N,
Haddley, and R. Thomson, Internal Report, Department of
Computing, Lancaster University, Bailrigg, lancaster, 1989.

Term rewriting and Hoare logic — coded rewriting, Yong Sun,
Information Processing Letters, Volume 60, Number 5, December
9, 1996, pp. 237-242.

Use cases combined with BOOCH/OMT/UML: process and
products, Tutnam Texel and Charles Williams, Prentice-Hall, Inc.,
Upper Saddle River, NJ, 1997.

Telecom Operations Map: Evaluation Version 1.1,
TeleManagement Forum, Morristown, NJ, April 1999,

Network Management Detailed Operations Map: Evaluation
Version 1.1, TeleManagement Forum, Morristown, NJ, March
1999.

Software Reuse: motivators and inhibitors, W. J. Tracz,
Proceedings of COMPCON, San Francisco, CA, February 1987,
pp. 358-363.

The Specification of Computer Programs, W. M. Turski and T. S.
E. Maibaum, Addison-Wesley, New York, 1987.

TMN: Telecommunications Management Network, Divakara K.
Udupa, McGraw-Hill, New York, NY, 1999.

Java programming with CORBA, Andreas Vogel and Keith
Duddy, John Wiley & Sons, Inc., New York, NY, 1998.

Telecommunications Network Management,
McGraw-Hill, New York, NY, 1999.

Haojin Wang,

Varieties of Reusability, P. Wegner, Workshop on reusability in
programming, 1TT programming, Stratford, Conn., 1983, pp. 30-
44.

Dimensions of Object-Based Language Design, P. Wegner,
OOPSLA’87 Conference Proceedings, SIGPLAN Notices (Special
Issue), Volume 22, Number 12, 1987, pp. 168-182.

220

[WIC 1993]

[Zahavi 1999]

[Zave 1984]

[Zilles 1974]

Watcom VX-REXX for OS/2 Programmer’s Guide and Reference,
Watcom Int. Corporation, Waterloo, Ontario, Canada, 1993.

Enterprise Application Integration with CORBA, Ron Zahavi,
John Wiley & Sons, Inc., New York, NY, 1999.

The operational versus the conventional approach to software
development, P. Zave, Communications of the ACM, Volume 27,
Number 2, February 1984, pp. 104-118.

Algebraic Specification of Data Types, S. Zilles, Project MAC
Progress Report 11, MIT, 1974.

DATE DUE

APR % 5 2002

82002

VMAR P9 2007

. St
e e e e
o T ~v-

e A T e e e o S it
et .
AR .,....—....v.wm-..ﬂ"""_ e e e e

B e T

e

o o P

S22 '.,.,-ﬁ:‘ A

e
R

o

Y:-.g—u-‘.. J'vﬁ

R ey

P o
e e
P

SIS
s
=
o s
L e
S
==
et

St >

iy “a

ik

AE.'.—..r—:-_.‘a..-'
o

i

i
|1

e . i -

{

i
-

e e At

"

i

e
oS e

- W e S g T T iy T -
P e 3 -’.F,"-.‘.J..m. Py P ——

i

e e e il

— gy #
S e

=
SR

i T o e,
e

il

B e
B o

i

e e

e e

e e —
T e P e e ——

T e e
e S

o e e

e e e P

2 e -
e ==
o A S -
e

Lt

=

HHE

byt

1)

i
1

TRTITI

s

il

i

i

EEEts [eien e LR T

A e e

s =

i e e e

==

BN R

o

il

13

}
.

e

i

iy

i

=

L

iy

	An Adaptive Integration Architecture for Software Reuse
	STARS Citation

	FRONT COVER

	Front Cover

	TITLE PAGE

	Title Page

	COPYRIGHT

	Copyright

	ABSTRACT

	iii

	iv

	DEDICATION

	v

	ACKNOWLEDGEMENTS

	vi

	vii

	TABLE OF CONTENTS

	viii

	ix

	x

	xi

	xii

	LIST OF ACRONYMS�
	xiii

	xiv

	xv

	LIST OF FIGURES

	xvi

	xvii

	xviii

	xix

	CHAPTER ONE: INTRODUCTION

	001

	1.1 Expansive View of Software Reuse

	002

	003

	004

	1.2 Module Interface and Software Reuse

	005

	006

	007

	1.3 User Interface and Reuse

	008

	1.4 Our Contribution

	009

	010

	011

	1.5 Outline of the Dissteration

	012

	CHAPTER TWO: OUTLINE OF PREVIOUS WORK

	2.1 Abstraction

	013

	2.1.1 Abstraction in Software Development

	014

	015

	016

	017

	2.1.2 Abstraction in Software Reuse

	018

	2.1.3 Cognitive Distance

	019

	2.2 Classification of Reuseable Modules

	020

	021

	2.2.1 Software Components

	022

	023

	2.2.2 A Software Component Reuse Model

	024

	025

	2.2.3 Classification Principles

	026

	027

	2.2.4 Software Classification

	028

	029

	030

	2.2.5 Conceptual Closeness

	031

	2.2.6 Domain Analysis

	032

	033

	2.3 Types of Reusable Software Systems

	034

	2.3.1 Passive Systems

	035

	036

	037

	038

	2.3.2 Active Systems

	039

	040

	041

	042

	043

	2.4 Reuse, Design Patterns and the Object-Oriented Paradign

	044

	2.4.1 Program to an Interface, Not to an Implementation

	045

	2.4.2 Object Composition

	046

	047

	2.4.3 Delegation

	048

	2.5 Current Trends

	049

	2.5.1 Challenges in System Development

	050

	2.5.2 The Common Object Request Broker Architecture (CORBA)�
	051

	052

	CHAPTER THREE: ABSTRACT DATA VIEWS, DESIGN PATTERNS, AND SOFTWARE ARCHITECTURE

	053

	3.1 Abstract Data View

	054

	055

	3.1.1 ADV and Software Reuse

	056

	057

	3.2 Design Patterns

	058

	3.2.1 Abstraction and Design Pattern

	059

	060

	061

	3.3.1 Software Architecture and Abstraction

	063

	3.3.2 Benefits of Architectural Approach to Software Construction

	064

	065

	066

	CHAPTER FOUR: OUTLINE OF OUR WORK

	067

	4.1 What is the Enterprise Application Intergration Problem?
	068

	4.2 Solution to the Enterprise Application Integration Problem

	069

	070

	4.3 Generic Adaptive Application Intergration Architecture Model

	071

	072

	073

	4.3.1 Domain Applications

	4.3.2 Domain Application Adapters

	074

	4.3.3 Asynchronous Distributed Object Framework and Infrastructure Services

	075

	4.3.4 Mediation Services

	076

	077

	4.3.5 Automated Mapping

	078

	4.3.6 Presentation Services

	4.3.7 Thin Client Applications

	079

	4.4 Frameworks and Patterns of Interaction

	4.4.1 Coordination Pattern

	080

	081

	4.4.2 Configuration Pattern

	082

	4.4.3 Model Pattern

	083

	084

	085

	CHAPTER FIVE: ADAPTIVE ORTHOGONAL N-TIER INTEGRATION ARCHITECTURE

	5.1 The Need for Application Portfolio Integration

	086

	087

	5.2 Traditional Approaches to Enterprise Application Integration

	088

	089

	090

	5.3 N-TIER ORTHOGONAL APPLICATION INTEGRATION ARCHITECTURE

	091

	092

	093

	5.4 Implementation and Protocol of the Enterprise Mediation Layers

	094

	095

	5.4.1 Component Construction

	096

	097

	118_099.tif
	119_100.tif
	120_101.tif

	CHAPTER SIX: THE ADAPTIVE EAI ARCHITECTURE FRAMEWORK

	102

	103

	6.1 Distributed Object Framework

	104

	105

	106

	107

	108

	6.2 Domain Application Adapters

	109

	6.2.1 Domain Application Adapter Design Pattern

	110

	111

	6.3 Application Adapter Mediation

	112

	6.3.1 Application Adapter Mediation Pattern

	6.4 Event Mediation

	113

	6.4.1 Event Mediation Pattern

	114

	6.5 Package Mediation

	6.6 Flexible Business Processes

	115

	116

	6.7 Putting It Together

	117

	118

	CHAPTER SEVEN: OSS INTEGRATION IN THE TELECOMMUNICATIONS INDUSTRY

	119

	120

	7.1 Key Industry Standards

	121

	7.2 Solution to the Telecom OSS Integration Problem - A Business Process Centric Approach

	122

	123

	124

	125

	126

	127

	128

	129

	7.3 Information Architecture: Static Domain Model

	7.3.1 Customers and Orders

	130

	7.3.2 Service Enrollment Simplified

	131

	7.3.3 Order Operations

	132

	133

	7.3.4 Offerings and Offering Instances

	134

	7.3.5 Offerings

	135

	136

	7.3.6 Customer and Service Locations

	137

	138

	7.3.7 Customers and Service Enrollments

	139

	7.3.8 The Order World

	140

	141

	7.3.9 The Customer World

	142

	7.3.10 Simplified Telco Orgranization Structure

	143

	7.3.11 Telco Organization in Detail

	144

	7.3.12 Instances of Business Activity Flows

	145

	146

	7.3.13 Orders in the Flow of Business Activity

	147

	7.3.14 Worklists

	148

	7.3.15 Combined Business Activity Flow

	149

	150

	7.4 Example: Get Customer Data for Viewing

	151

	152

	153

	154

	7.5 Summary

	155

	156

	CHAPTER EIGHT: UML MODEL-BASED COMPONENT DEVELOPMENT FRAMEWORK

	8.1 Model-Based Software Construction

	157

	158

	159

	160

	161

	8.2 Meta-Object Information Repository

	162

	163

	164

	CHAPTER NINE: A MATHEMATICAL FORMALISM FOR SPECIFYING DESIGN PATTERNS

	165

	9.1 Definitions and Concepts

	166

	167

	168

	169

	170

	171

	172

	173

	174

	175

	176

	177

	178

	179

	180

	181

	182

	183

	184

	185

	186

	187

	9.2 Semantics of Design Patterns and their Specification Constructors

	188

	189

	190

	9.3 Closure of Design Pattern Under Composition

	191

	192

	9.4 Examples Illsutrating the Use of the Formalism Presented Above

	193

	194

	195

	196

	197

	198

	9.4.1 The Transformation Process of Building the Document Framework Pattern

	199

	200

	9.5 Applicability to Reuse

	201

	202

	CHAPTER TEN: CONCLUSIONS AND FUTURE WORK

	203

	10.1 Summary

	204

	205

	10.2 Future Work

	206

	207

	REFERENCES

	208

	209

	210

	211

	212

	213

	214

	215

	216

	217

	218

	219

	220

	221

	BACK MATTER

	Back Matter

	BACK COVER

	Back Cover

