
University of Central Florida University of Central Florida 

STARS STARS 

Retrospective Theses and Dissertations 

2001 

An Adaptive Integration Architecture for Software Reuse An Adaptive Integration Architecture for Software Reuse 

Denver Robert Edward Williams 
University of Central Florida, denverrwilliams@gmail.com 

Find similar works at: https://stars.library.ucf.edu/rtd 

University of Central Florida Libraries http://library.ucf.edu 

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted 

for inclusion in Retrospective Theses and Dissertations by an authorized administrator of STARS. For more 

information, please contact STARS@ucf.edu. 

STARS Citation STARS Citation 
Williams, Denver Robert Edward, "An Adaptive Integration Architecture for Software Reuse" (2001). 
Retrospective Theses and Dissertations. 1400. 
https://stars.library.ucf.edu/rtd/1400 

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/rtd
https://stars.library.ucf.edu/rtd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/rtd/1400?utm_source=stars.library.ucf.edu%2Frtd%2F1400&utm_medium=PDF&utm_campaign=PDFCoverPages


UNIVERSITY OF CENTRAL FLORIDA LIBRARIES 

3 2103 01075 6355 



AN ADAPTIVE INTEGRATION ARCHITECTURE 
FOR SOFTWARE REUSE 

DENVER ROBERT EDWARD WILLIAMS 
M. S.  University of Central Florida, 1993 

B. Sc. (Special) University of the West Indies, 1986 

A dissertation submitted in partial hlfillment of the requirements 
for the degree of Doctor of Philosophy 

in the School of Electrical Engineering and Computer Science 
in the College of Engineering and Computer Science 

at the University of Central Florida 
Orlando, Florida 

Summer Term 
200 1 

Major Professor: Dr. Ali Orooji 



Copyright O 200 1 Denver R. E. Williams 



ABSTRACT 

The problem of building large, reliable software systems in a controlled, cost- 

effective way, the so-called software crisis problem, is one of computer science's great 

challenges. From the very outset of computing as science, software reuse has been touted 

as a means to overcome the software crisis issue. Over three decades later, the software 

community is still grappling with the probleln of building large reliable software systems 

in a controlled, cost effective way; the software crisis problem is alive and well. Today, 

many computer scientists still regard software reuse as a very powefil vehicle to 

improve the practice of software engineering. The advantage of amortizing software 

development cost through reuse continues to be a major objective in the art of building 

software, even though the tools, methods, languages, and overall understanding of 

software engineering have changed significantly over the years. 

Our work is primarily focused on the development of an Adaptive Application 

Integration Architecture Framework. Without good integration tools and techniques, 

reuse is difficult and will probably not happen to any significant degree. In the 

development of the adaptive integration architecture framework, the primary enabling 

concept is object-oriented design supported by the unified modeling language. The 

concepts of software architecture, design patterns, and abstract data views are used in a 

structured and disciplined manner to established a generic framework. This framework is 



applied to solve the Enterprise Application Integration (EM) problem in the 

telecommunications operations support system (OSS) enterprise marketplace. 

The proposed adaptive application integration architecture framework facilitates 

application reusability and flexible business process re-engineering. The architecture 

addresses the need for modern businesses to continuously redefine theinselves to address 

changing market conditions in an increasingly competitive environment. We have 

developed a number of Enterprise Application Integration design patterns to enable the 

imple~nentation of an EAI framework in a definite and repeatable manner. The design 

patterns allow for integration of commercial off-the-shelf applications into a unified 

enterprise framework facilitating true application portfolio interoperability. The notion of 

treating application services as infrastructure services and using business processes to 

combine them arbitrarily provides a natural way of thinking about adaptable and reusable 

software systems. 

We present a ~nathe~natical formalism for the specification of design patterns. 

This specification constitutes an extension of the basic concepts from many-sorted 

algebra. In particular, the notion of signature is extended to that of a vector, consisting ot 

a set of linearly independent signatures. The approach can be used to reason about 

various properties including efforts for component reuse and to facilitate complex large- 

scale software development by providing the developer with design alternatives and 

support for automatic prograin verification. 



I dedicate this dissertation to my family: my wife, Michelle and sons Nicoli and Stefan. 



ACKNOWLEDGEMENTS 

I would like to thank my doctoral committee Dr. Ali Orooji, Dr. Charles Hughes, 

Dr. Sheau-Dong Lang, Dr. Rebecca Parsons, and Dr. Harley Myler for their help, critical 

comments, direction, support, and encouragements during the different phases of my 

doctoral study program. I appreciate the time, energy, and valuable insights they have 

provided so that this work could be accomplished. 

Dr. Ali Orooji, my advisor and committee chair, deserves special thanks for 

editing the work and the countless hours we spend discussing various issues. His 

guidance and tutelage over the years contributed significantly to my academic maturity, 

for which I am profoundly gratehl and indebted. 

Dr. Rebecca Parsons deserves a special thank you for the significant insights she 

provided in the areas of algebraic structures and their semantics. 

I would like to thank Dr. Charles Hughes and Dr. James Rogers (Dr. Rogers is a 

former faculty in the Department of Computer Science) for helpii~g to cultivate in me a 

love for theoretical coinputer science. 

My Mom and Dad deserve a very special thank you for their love, support, and 

encouragement throughout all my life. I would like to thank them for the discipline and 

love of learning that they have instilled in me in my early childhood. Without their 

efforts, none of this would have been possible. 



I would like to thank my brother and sisters Lawrence, Jacqueline, Carol, and 

Racquel for their love, support, and encouragement throughout these years. 

Finally and significantly, I am indebted to my family: my wife Michelle and our 

two sons Nicoli and Stefan, for their patience and understanding, their love, support and 

encouragement throughout these years. I thank you guys for believing in me. 



TABLE OF CONTENTS 

... 
List of Acro~~yms .................................................................................................... xi11 

List of Figures ......................................................................................... xvi 

Chapter 1: Introductio~l .............................................................................................. 1 

1.1 Expansive View of Software Reuse ........................................................ 2 

1.2 Module Interface and Software Reuse . . .......................................... 5 

1.3 User Interface and Reuse .......................... .................................. 8 

1.4 Our Contribution ................................................................................... 9 

1.5 Outline of Dissertation ........................................... ...................... 12 

....................................................................... Chapter 2: Outline of Previous Work 13 

2.1 Abstractions ...................................................................................... 13 

2.1.1 Abstractions in Software Development ..................................... 14 

2.1.2 Abstractions in Software Reuse ................ 

2.1.3 Cognitive Distance ........................................... 

Classification of Reusable Models ..... 

2.2.1 Software Components .................... 

2.2.2 Software Components Reuse Model . 
2.2.3 Classification Principles . . 

2.2.4 Software Classification ............................................... 

2.2.5 Conceptual Closeness . . 

2.2.6 Doinain Analysis ..... . . . . . . . . . .  

Types of Reusable Software Systems ........ 

2.3.1 Passive Systems .... 



2.3.2 Active Systems .............................................................. ..... 39 

. . . . . . . . . . . . . . . . .  Reuse, Design Pattern and the Object-Oriented Paradigm 44 

........................ 2.4.1 Program to an Interface, not an Implementation 45 

2.4.2 Object Composition ................................................................. 46 

................................................................................ 2.4.3 Delegation 48 

Current Trends ......................................................................... ..... 49 

.......................................... 2.5.1 Challenges in System Development 50 

.............. 2.5.2 The Common Request Broker Architecture (CORBA) 51 

..... Chapter 3: Abstract Data Views. Design Patterns. and Software Architecture 53 

3.1 Abstract Data View .......................................................................... 54 

3.1.1 ADV and Software Reuse ...................................................... 56 

Design Patterns ................................................................................. 58 

3.2.1 Abstraction and Design Pattern ................................................. 59 

................................ Architecture Approach to Software Construction 62 

...................................... 3.3.1 Software Architecture and Abstraction 63 

3.3.2 Benefits of Architectural Approach to Software Construction ... 64 

Chapter 4: Outline of Our Work ........................................................ ............ 67 

...................... 4.1 What is the Enterprise Application Integration Problem? 68 

. . . . . . . . . . . . . . .  4.2 Solution to the Enterprise Application Integration Probleln 69 

............. 4.3 Generic Adaptive Application Integration Architecture Model 71 

4.3.1 Domain Applications ................................................................ 74 

4.3.2 Domain Application Adapters ................................................... 74 

4.3.3 Asynchronous Distributed Object Framework and 

Infrastructure Services ............ 75 

4.3.4 Mediation Services ..... ............ 76 

................................................................. 4.3.5 Automated Mapping 78 

4.3.6 Presentation Services ...... .... 79 

4.3.7 Thin Client Applications ......................................................... 79 



................................................ Frameworks and Patterns of Interaction 80 

........................................... ........... 4.4.1 Coordination Pattern .... 80 

.............................................................. 4.4.2 Configuration Pattern 82 

.............................................. .................... 4.4.3 Model Pattern ... 83 

......................... Chapter I: Adaptive Orthogonal N-Tier Integration Architecture 86 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . 5.1 The Need for Application Portfolio Integration 86 

..... 5.2 Traditional Approaches to Enterprise Application Integration ... 88 

. . . . . . . . . . . . . . . . . . . .  5.3 N-Tier Orthogonal Application Integration Architecture 91 

......... 5.4 Implementation and Protocol of the Enterprise Mediation Layers 94 

........................................................ 5.4.1 Component Construction 96 

.............................................................. 5.4.2 Component Interaction 98 

..................... Chapter 6: The Adaptive EAI Framewol*k .......... 102 

... 6.1 Distributed Object Framework .................... 104 

... 6.2 Domain Application Adapters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  109 

................... ... 6.2.1 Domain Application Adapter Design Pattern .. 110 

......................................................... Application Adapter Mediation 112 

................................... 6.3.1 Application Adapter Mediation Pattern 113 

.................. Event Mediation .................................................. 113 

.......................................................... 6.4.1 Event Mediation Pattern 114 

Package Mediation ..... .................................... 115 

... Flexible Business Process ........................................ 115 

............................................... .................... Putting it Together .... 117 

... Chapter 7: OSS Integration in the Telecomn~unicntions Industry ... 119 

..................................................................... 7.1 Key Industry Standards 121 

7.2 Solution to the Telecom OSS Integration Problem - a business 

..................................................................... process centric approach 122 

Information Architecture: Static Domain Model . 130 



.............................. Custo~ners and Order .. ........................ 130 

.......................................... Service Enrollment Simplified 131 

.................................................................... Order Operations 132 

......................................... Offerings and Offering Instances 134 

.............................................................................. Offerings 135 

............................................. Customer and Service Locations 137 

.................... Custoiners and Service Enrollments ............. 139 

................................................................ The Order World 140 

.......................................................... 7.3.9 The Customer World 142 

................................. 7.3.10 Simplified Telco Organization Structure 143 

.............................................. 7.3.11 Telco Organization in Detail 144 

...................................... 7.3.12 Instances of Business Activity Flows 145 

.................... 7.3.13 Orders in the Flow of Business Activity ....... 147 

............................................................ 7.3.14 Worklists .. 148 

........................................ 7.3.15 Combined Business Activity Flow 149 

..................................... Example: Get Customer Record for Viewing 151 

Summary ...... ... ............................................. ........................ 155 

................. Chapter 8: UML Model Based Component development Framework 157 

. . . . . . . . . . . . . . . . . . . . . . .  8.1 Model Based Software Construction ................ 157 

.................................................. 8.2 Meta-Object Information Repository 162 

................. Chapter 9: A mrthemrticrl For~nrlism for Specifying Design Pattern 165 

................................................................... 9.1 Definitions and Concepts 166 

..... 9.2 Semantics of Design Patterns and their Specification Constructors 188 

.............................. 9.3 Closure of Design Patterns Under Composition 191 

...... 9.4 Examples Illustrating the Use of the Formalism Presented Above 193 

9.4.1 The Transformation Process of Building the Document 

...................................... Framework Pattern 

. . .  Applicability to Reuse ................... 



Chapter 10: Concluding Remarks and Future Work .. 

10.1 Summary .............................................................. 

...................... 1.0.2 Future Work ......................... ..... 

............................ References ... .................................................................... 208 



ACID 

ADO 

ADT 

ADV 

ALV 

API 

ASL 

CORBA 

COTS 

CRM 

DOD 

DOM 

EUML 

FS A 

HLA 

HLL 

IDE 

LIST OF ACRONYMS 

Atomicity, Consistency, Isolation, Durability 

Abstract Data Object 

Abstract Data Type 

Abstract Data View 

Abstraction-Link View 

Application Program Interface 

Action Semantic Language 

Common Object Request Broker Architecture 

Co~nmercial Off The Shelf 

Customer Relationship Management 

Department of Defense 

Distributed Object Management 

Enterprise Application Integration 

Entity Relationship 

Extended UML 

Finite State Automaton 

High Level Architecture 

High-Level Language 

Integrated Development Environment 
. . a  

Xlll 



IDL 

IIOP 

ISP 

IT 

ITU 

LA .. 

LIFO 

MBCD 

MrR 

MOF 

MPP 

MVC 

NUI 

OMA 

OMG 

OODBMS 

ORB 

OSS 

RDBMS 

RMI 

Interface Definition Language 

Internet Inter Operable Protocol 

Internet Service Provider 

Information Technology 

Internatior~al Telecoinmunications Union 

Lexical &nities 

Last-In-First-Out 

Model-Based Component Development 

Meta-Object Information Repository 

Meta Object Facility 

Massively Parallel Processing 

Model View Controller 

Non-User Interface 

Object Analysis and Design 

Object Management Architecture 

Object Management Group 

Object-Oriented Database Management System 

Object Request Broker 

Operations Support System 

Relational Database Management System 

Remote Method Invocation 

Service Enroll~nents 

Systelus Integrators 



sm 

TMN 

UDL 

UI 

UID 

UIDS 

UML 

VAR 

VHLL 

VLSR 

XML 

Symmetric Multi-Processing 

Teleco~nrnunications Management Network 

Universal Design Language 

User Interface 

User Interface Design 

User Interface Design System 

Unified Modeling Language 

Value Added Reseller 

Very High-Level Language 

Very Large-Scale Software Reuse 

Extensible Markup Language 



LIST OF FIGURES 

.................................................................. Two-level Abstraction Hierarchy 15 

........................................... Mapping from a variable abstraction specification 17 

Reuse System Genealogy .. . . 40 

A Window class delegates its Area operation to a Rectangle instance .............. 49 

.................................................................... The Abstract Data View Model 56 

The Modularization Theorem of Reuse of ADTs interpreted through ADVs .... 57 

Generic two-level abstraction hierarchy for design patterns .............................. 60 

Structure and participants of the Reactor design pattern ............... 

Structure and participants of the Factory Method design pattern ... 

Generic Adaptive EAI Architecture Model .................................. 

Distributed Object Framework ................................................................... 75 

The Sub-Layers in the Mediation Services Layer ............................................. 76 

Example Coordination Interaction 

Example Configuration Interaction 

Generic Model Pattern . . 

Traditional N-Tier Application Integration Architecture Model ... 

Mediation Service Layers Implementation and Protocol .............. 

Adaptive EAI Architecture Framework ... 

........................................................... Persistent Object Service Cocnponents 105 

xvi 



.......................... Event Service Objects .. ................................................. 106 

Domain Application Adapter Design Pattern . . .... 11 I 

API Specific Wrapper ................................................................................... 112 

6.6 ' Application Adapter Mediation Pattern .......................................................... 113 

Event Mediation Pattern ............................................................................. 114 

ADV Representation of Business Processes ................................................... 117 

ITU Standard TMN Information Model ....................................... 

....................... Generic OSS Integration Architecture 

............................. EAI Context Diagram 

Application Mediation Server ... 

Billing Application Adapter .......................................................................... 128 

CRM Application Adapter ......................................................................... 129 

........ Customers and Orders .... 130 

............................. .................................... Service Enrollment Simplified .. 131 

Order Operations ........................................................................................ 133 

Offering and Offering Instances ..................................................................... 134 

................................................................... Offerings .... 136 

......................... Customer and Service Locations 

.......... Customer and Service Enrollments 

The Order World .... 

The Customer World ............................................................................... 142 

Simplified Telco Organization Structure ..... .... 143 

..... Detail Telco Organization Structure 

xvii 



7.18 Instances of Business Activity Flows .......................................................... 146 

7.19 Orders in the Flow of Business Activities .............................. .. .................... 147 

7.201 Worklists 

7.21 Combined Business Activity Flow ............ 

............................................................................. 7.22 Customer Business Object 151 

7.23 Get Customer from CRM Operation ............................................................ 152 

7.24 Get Contact Information from CRM State Diagram .... 

....................................................... 7.25 Get Contact Action Semantic Language 154 

7.26 Retrieve Customer Data for Viewing Operation ................................ 

7.27 Retrieve Customer Data Activity Diagram ........... 

8.1 Model-Based Component Development Framework ... 

Commuting Diagram illustrating the homomorphism condition of the 
homomorphism h: A+B for the operation I,V = ( n  : s. x ... x sk -+ s) . k r 0 

9.2 Commuting diagram illustrating the vector homomorphism condition ............ 173 

............................................................................ 9.3 A Design Pattern Fragment 176 

9.4 Graphical Representation of a Module Signature ......................................... 177 

Schematic Representation of Design Patterns ............................................... 180 

9.6 Schematic Derivation Tree for Vector Algebra B being derived from Vector 
Algebra A ...................................................................................................... 187 

.................................................................... 9.7 A General Scl~en~a for an ADV 189 

...................................................................... 9.8 A General Schema for an ADT 190 

9.9 A General Schema Showing Inclusion of an ADT in an ADV ........................ 191 

9.10 Generic Structure of the Factory Method Design Pattern ................... 

xviii 



9.11 Instance of Factory Method Design Pattern .................................................. 194 

9.12 Factory Method Design Pattern with Interface ............................................... 196 

xix 



Chapter 1 

Introduction 

The problem of building large, reliable software systems in a controlled, cost- 

effective way, the so-called software crisis problem, is one of computer science's great 

challenges. From the very outset of computing as science, software reuse has been touted 

as a means to overcome the software crisis issue. At the 1968 NATO conference McIlroy 

presented the seminal paper on software reuse, Mass Produced Software Components 

[McIlroy 19681. In this paper, he proposed the notion of a library of reusable software 

components and automated techniques for custoinizing the components to different 

degrees of precision and robustness. McIlroy envisioned that software co~nponent 

libraries could be effectively used for numerical computation, I 1 0  conversion, text 

processing, and dynamic storage allocation. 

Three decades later, the software community is still grappling with the problem of 

building large reliable software systems in a controlled, cost effective way; the software 

crisis problem is alive and well. Today, many computer scientists still regard software 

reuse as a very powerful vehicle to improve the practice of software engineering. The 

advantage of amortizing software develop~nent cost through reuse continues to be a major 

objective in the art of building software, even though the tools, methods, languages, and 

overall understanding of software engineering have changed significantly over the years. 



In spite of its potential benefits, reuse has failed to become a reality in software 

development, in that the efficiency of software construction has not improved by an order 

of magnitude. In light of this failure, the computer science community has renewed its 

interest in u-nderstanding how and where reuse can be effective and why it has proven so 

difficult to bring the seemingly simple idea of software reuse to the forefront of software 

development technologies [Krueger 19921. 

1.1 Expansive View of Software Reuse 

Software reuse is the reapplicatioil of a variety of existing knowledge during the 

construction of a new system to reduce the effort of development and maintenance of the 

new system. This reused knowledge includes artifacts such as domain knowledge, 

development experience, design decisions, architectural structures, module-level 

implementation structures, specifications, transformations, requirements, designs, code, 

documentation, etc. This expansive view of reuse is necessary because the Inore narrowly 

defined views of reuse, in general, have shown very little return on investment. The more 

narrowly defined views of software reuse include the following: "Reuse is the 

reapplication of code," "Reuse is the use of subroutine or object libraries," or "Reuse is 

the use of C++ classes" [Gamma 19961. These views are all centered on the reapplication 

of code components. Source code languages induce a high degree of specificity on the 

reusability of software components and hence, the most highly reusable components tend 

to be small. Building systems out of small components leaves a lot of work to be done in 

building the architectural superstructure that binds the compollents into a whole system. 



The cost to build this superstructure is typically much larger than the savings afforded by 

reusing a set of small components [Biggerstaff 19891. 

One possible ilnprove~nent is to make the code components larger. Unfortunately, 

this approach has a corresponding set of problems. As the software code components 

increase in size, the probability of reuse decreases. Their specificity reduces the 

likelihood that exactly the same set of requirements will arise again. Therefore, while the 

potential payoff for any single reuse may be high, it is mitigated both by the low 

likelihood of reuse and the significant effort that may be required to understand and adapt 

large components to the new system. This is the crux of what has been dubbed as the 

Very Large-Scale Reuse (VLSR) problem. 

Thus, code-oriented reuse is not sufficient to unlock the full potential of software 

reuse. Code-oriented reuse is expected as a matter of course, but if we are to realize the 

hll potential of reuse, we must look beyond code-oriented reuse to Very Large Scale 

Reuse. 

VLSR introduces a whole new set of research proble~ns centered around the issue 

of making the component representation sufficiently general to allow reuse over a broad 

range of target systems, and possibly across multiple domains. That is, VLSR mandates 

that we eliminate some of the specificity necessitated by a source code-oriented 

specification. We must determine representations that allow the large-grain co~nponents 

structure to be described precisely while leaving many of the small, relatively 

unimportant details uncommitted. Such representations must allow a broader range of 

information to be specified than source code can accommodate, e.g., design structures, 

domain knowledge, design decisions, etc. 



There is great diversity in the software engineering technologies that involve 

some form of software reuse. However, there are commonalties among the techniques 

used. For example, software component libraries, application generators, source code 
. 

compilers, and generic software templates all involve abstracting, selecting, specializing, 

and integrating software artifacts [Krueger 19921. Software engineering technologies can 

be analyzed and contrasted in terms of their idiomatic reuse techniques along four 

metrics: 

Abstraction 

All approaches to software reuse use some form of abstraction for software 

artifacts. Abstraction is the essential feature in any reuse technique. Without 

abstractions, software developers would be forced to sift through a collection of 

reusable artifacts trying to figure out what each artifact did, when it could be 

reused, and how to reuse it. 

Selection 

Most reuse approaches help developers locate, compare, and select software 

artifacts. For example, classification and cataloging schemes can be used to 

organize a library of reusable artifacts and to guide software developers as they 

search for artifacts in the library. 

Specialization 

With many reuse technologies, similar artifacts are merged into a single 

generalized (or generic) artifact. After selecting a generalized artifact for reuse, 

the software developer specializes it through parameters, transformations, 

constraints, or some other form of refinement. For example, a reusable stack 



implementation might be parameterized for the maximum stack depth. A 

programmer using this generalized stack would specialize or adopt it by providing 

- a value for this parameter. 

Integration 

Reuse technologies typically have an integration framework. A software 

developer uses this framework to combine a collection of selected software 

components and specialized artifacts into a complete system. A module 

interaction language is an example of an integration framework [Prieto-Diaz 

19861. With a module interaction language, functions are exported from modules 

that implement them and imported into modules that use them. Modules are 

assembled into a system by interconnecting modules with the appropriate exports 

and imports. 

1.2 Module Inte~Tace and Software Reuse 

A major limiting factor to the reuse of designs and implementations of software objects 

and modules is the fact that they internalize knowledge about their surrounding 

environments. It is customary for a module or object of an application to know about its 

user interfaces, specifically details of how its data structures will be displayed, how the 

user will interact with the application, or what objects on the screen correspond to 

activation of components of the module. In addition, a module inay know too much about 

the services offered by other modules. For example, a module may know too much about 

the naming conventions in a file system, or about the names of modules or functions from 

which it acquires services. 



Such specific knowledge is counter to the notion of software reuse as well as to 

good software engineering practice. For instance, there are many ways that a data 

structure can be displayed, and since this is not an intrinsic property it should not be . 
attached to the data structure. Input has a similar property. There are many ways that a 

user can interact with an application and so the application should not be aware of the 

mode of interaction. A module should know it requires services and specify that fact, but 

it should not specify how those services are supplied. That is, a component should not be 

aware of the syntactic or semantic structure of a component from which it acquires 

services. It follows that a disciplined approach to naming among coinponents is a 

prerequisite to reuse of coinponent specifications or iinpleinentations. 

A module should be separated from user interactions or from the services supplied 

by another module or object. This requirement can be accomplished by using a 

specialized interface that isolates a module's interactions from knowledge of the 

interacting entities. The interface should be aware of the requirements of the module or 

object, but the module or object should not be aware of the interface. This approach to 

defining an interface implies a clear separation of concerns. Such a proble~n is often 

addressed in mechanical systems where a linkage "interface" joins two components, one 

of which supplies a service. 

The literature is littered with treatises on various architectural models and 

programming approaches that have been proposed; these clearly separate the user 

interface froin its corresponding application [Carneiro 1993; Olsen 1983; Green 1983; 

Bass 1991; Coutaz 1991; DEC 1991; Hill 1992; Hartson 1989; Krasner 1988; 

McCormack 1988; Hill 1986; Myers 199 11. However, in these architectural models, little 

6 



guidance is given to designing a prograin to have a reasonable level of assurance that the 

architecture will be followed. The model view controller (MVC) [Krasner 19881 and 

abstraction-link view (ALV) [Hill 19921 are specific implementation techniques that rely 

on coitemporary programming models. For example, the MVC was originally introduced 

in Smalltalk and ALV used constraint programming in a LISP environment. These are 

excellent implementation strategies, but they are very difficult to map into other 

programming paradigms. 

Windows toolkits such as X Windows [McCormack 19881 or Motif [OSF 19901 

offered another approach to the module interface separation issue. These systems expose 

window components as objects that can be accessed by the application. Although it is 

possible to use these toolkits and maintain a high degree of separation, there is no well- 

defined approach as to how to achieve this goal. In addition, most window toolkits do not 

appear to support an appropriate level of abstraction for user interfaces. The toolkits tend 

to expose details such as the event dispatcher that places the control with the application 

resulting in asynchronous calls to the user interface components or a spaghetti of 

callbacks. Cowan, Lucena, and Stepien [Cowan 19931, [Cowan 1993al espouse the view 

that control should reside with the user interface and not the application, and since this 

approach simplifies communication the toolkit should support that view. Systems such as 

Visual Basic [MSC 199 1 ;WIC 19931 and Tk/Tc! [Ousterhoust 19941 conforln very 

closely to this view of user interface. 



1.3 User Interface and Reuse 

Cowan and Lucena performed exhaustive examination of the problem of separation of 

concerns and reuse of designs. This led them to propose a new formal design model for 

both user interfaces and general module interfaces. There are some key requirements that . 
they think the model should satisfy. The model should have the structure and operators to 

guide the designer into clearly separating the interface from the application and 

encourage the programiner to maintain that separation during the implementation. The 

model should also allow the designer to reason about the complete design and its various 

substructures. Furthermore, the model should be independent of a specific programming 

environment. They have created a design model called the abstract data view (ADV) 

[Cowan 1993; Cowan 1993 a; Cowan 1993b3 that makes significant progress in satisfying 

the above stated properties. 

Using pairs of objects to represent application components and their interfaces in 

reusable designs provided the original   no ti vat ion for the concept of abstract data views 

[Cowan 1993; Cowan 1993aI. The specific types of application components and interface 

components are called, respectively, abstract data objects (ADO's) and abstract data 

views (ADV's). An ADV is used as an interface (in a very broad sense) for ADO's in 

designs and provides a "view" of an ADO. Specification constructors are used to 

combine ADV's and ADO's to produce more complex designs, and this process has been 

validated by proof of concept architectures. The approach can be seen as a way of 

providing language support for the specification and abstraction of inter-object behavior 

[Helm 19901. 



The ADV approach has been validated in a number of research prototypes. 

ADV7s have been used to support user interface for games and a graph editor [Cowan 

19921, to interconnect modules in a user interface design system (UIDS) [Cowan 19921, 

and to support concurrency in a cooperative drawing tool. In addition, it has been used to 

design and implement both a ray-tracer in a distributed environment [Lucena 19931 and a 

scientific visualization system for the Riemann problem. 

1.4 Our Contribution 

The contributions of this thesis are as follows: 

1. Our work is primarily focused on the development of an Adaptive N-Tier 

Orthogonal Enterprise Application Integration (EAI) Architecture Framework 

[Linthicum 19991. Software reuse and software integration are very closely 

related concepts since integration is the combination of two or more existing 

components. Without good integration tools and techniques, reuse is difficult and 

will probably not happen to any significant degree. In the develop~nent of the EAI 

architecture framework, the primary enabling concept is object-oriented design 

support by the unified modeling language (UML) [Harman 1997; Derr 19971. The 

concepts of software architecture, design patterns, and abstract data views are 

used in a structured and disciplined manner in establishing a generic EAI 

framework. This framework is applied to solve the EAI problem in the 

telecom~nunications operations support system (OSS) marketplace. 

We used the concepts of design patterns [Gamma 1996; Fowler 19991, 

abstract data views [Cowan 1992; Alencar 19941, and software architecture 



[Cowan 1993 a; Booch 1999; Orfali 19981 to develop the EAI framework. Design 

patterns allow us to solve various pieces of the overall problem. For example, we 

developed a number of EAI design patterns that are used to integrate legacy third 

party applications into the EAI framework. These design patterns allow us to 

develop a very definite and repeatable process for integrating legacy as well as 

newly developed applications into a unified framework. The abstract data view 

approach with its compositional capability is used to aggregate and build up the 

overall solution by combining smaller inacro components. 

In addressing the EAI problem in a generic manner, our architecture 

centric approach presents solutions for the following broad problematic areas: 

a. Facilitate the integration and interoperability of stove pipe legacy applications 

b. Cater for a clear separation between the business models and machine models 

c. Facilitate the development of adaptive business process re-engineering 

d. Facilitate the use of the Internet as a business platform across the entire 

enterprise 

The problem areas indicated by (a), (b), and (c) have been around for a long time 

and notoriously regarded as almost intractable proble~ns in the sphere of the 

business community. Solving these problems will present a whole new way of 

looking at how we develop business software systems of the future. 

2. We used the adaptive orthogonal EAI framework to develop a solution to the 

opcrations support systcm (OSS) problem in thc tclccornmunications industry. 

The approach presents an adaptive business process integration framework where 



business processes acts as collaboration agents between objects from lower levels 

of the architecture. 

. We present a model-based software development approach. This is an approach to 

raise the abstraction level at which application developers work and to automate 

the process of translation from an application model to its corresponding 

distributable runtime component. The basic thesis here is that we can effectively 

reverse the effort role in the software development process in which about 80% of 

the effort goes into the development of infrastructure services and 20% into the 

development of application logic. 

4. We present a mathematical formalism for the specification of design patterns. 

This specification constitutes an extension of the basic concepts from many-sorted 

algebra [Zilles 1974; Enderton 19721. In particular, the notion of signature is 

extended to that of a vector, consisting of a set of linearly independent signatures. 

The linearly independence property is necessary to satisfy non-interference that is 

essential for compositional based construction. This is of hndamental concern in 

the building of large-scale software systems where we have the co~nposition of 

smaller components to form larger components. The approach can be used to 

determine efforts for component reuse and facilitate program verification. The 

approach has the potential to be able to aid complex software development by 

providing the developer with design alternatives and automatic program 

verification capabilities. 



1.5 Outline of the Dissertation 

The remainder of this dissertation is organized as follows. Chapter 2 presents an outline 

of the previous work. Chapter 3 extends the discussion on previous work by presenting 

an overview of the central concepts of design pattern, abstract data views, and software 

architecture. These concepts form the foundation of our work. Chapter 4 presents an 

outline of our work. Chapter 5 provides the key concepts of the adaptive orthogonal n-tier 

integration framework. Chapter 6 presents the adaptive EAI architecture framework. 

Chapter 7 provides the solution to the telecom OSS integration problem. The solution 

incorporates a detailed domain analysis of the telecommunications domain. Chapter 8 

presents the model based software development framework. Chapter 9 provides a 

mathematical formalisln for the specification of design patterns. The formalism is an 

extension of the relevant many-sorted algebraic concepts. In chapter 10 we present our 

conclusion and fbture work. 



Chapter 2 

Outline of Previous Work 

This chapter provides an outline of the major concepts that have influenced the 

general thinking in the area of software reuse. Sorne hnda~nental concepts such as 

abstmciioll and clczssrjkafio~~ and the role they play with respect to software reuse are 

examined. We also present various models of software reusability. 

Abstraction 

Abstraction is an essential part of any software reuse systeln and as such can be viewed 

as a unifying theine for software reuse. This notion reflects the view that successful 

application of a reuse technique to a software engineering technology is inexorably tied 

to raising the level of abstraction for that technology. Raising the abstraction levels for 

software engineering techi~ologies has proveil to be extremely difficult, thus the relation 

between abstraction and reuse provides us with the first clue as to why there are so few 

successfbl reuse systems. 

The relationship between software reuse and abstraction has been noted in the 

literature [Booch 1987; Parnas et al. 1989; Wegner 19831. Wegner states that "abstraction 

and reusability are two sides of the same coin." He states that every abstraction describes 

a related collection of reusable entities and that every related collection of reusable 

entities determines an abstraction. 



2.1.1 Abstraction in Software Development 

Abstraction is a tool that is used by software practitioners and co~nyuter scientists to help 

manage the intellectual complexity of developing very large software systems [Shaw 

19841. An abstraction for a software artifact is a succinct description that suppresses the 

details that are unimportant to the software developer and emphasizes the information 

that is important. For example, the abstraction that is provided by a high level 

programming language allows a programmer to construct algorithms without having to 

worry about the details of hardware register allocation 

Software typically co~~sists of several layers of abstraction built on top of the raw 

computer hardware. The lowest level software abstraction is object code, or machine 

code. Assembly language is a layer of abstraction above object code. A high-level 

programining language, like C, is a layer of abstraction above the assembly language 

level. In object-oriented languages such as C++, the class specification can serve as a 

layer of abstraction above the iinpleine~>tation details. 

These exalnples demonstrate that every software abstraction has two levels. The 

higher of the two levels is referred to as the abstraction specification. The lower, more 

detailed level is called the abstraction realization. When abstractions are layered, the 

abstraction specification at one layer is the abstraction realization at the next higher layer. 

Figure 2.1 shows a hierarchy with two abstractions, L and M. Rep 1, Rep 2, and Rep 3 

are three representations of the same software artifacts, where Rep 1 is the most detailed 

(lowest level) representation. For abstraction L, Rep 2 is the abstraction specification, and 

Rep 1 is the abstraction realization. Froin the point of view of abstraction M, Rep 3 is the 

abstraction specification, and Rep 2 is the abstraction realization. 

14 



An abstraction is composed of three sections: a hidden part, a variable part, and a 

fixed part. The hidden part consists of details in the abstraction realization that are not 

visible in the abstractiol~ specification. The variable part and the fixed part are visible in 

. the abstraction specification. The variable part represents the variant characteristics in the 
Y 

abstraction realization, whereas the fixed part represents the invariant characteristics in 

the abstraction realization. Therefore, an abstraction specification with a variable part 

corresponds to a collection of alternate realizations. The variable part of an abstraction 

specification maps into the collection of possible realizations. Figure 2.2 illustrates the 

mapping between abstraction specifications and realizations. 

Rep 2 

Realization M 

a% 
Rep 1 

Specification L 

\ 
Realization L 

Figure 2.1 : Two-level Abstraction Hierarchy 



To illustrate this notion, consider the canonical stack example. The fixed part of 

the abstraction specification expresses the invariant characteristics for all stack 

realizations, such as the last-in-first-out (LIFO) semantics. The invariant stack behavior 

does not depend on the type of elements stored in the stack. Hence, the element type can 

be considered to be a constituent of the variable part of the abstraction specification. 

Different element types therefore correspond to different stack realizations. 

This view is consistent with the capabilities of traditional high level progra~nming 

languages such as C. In this model, support for each element type would have to be 

explicitly programmed. This model contrasts significantly with that offered by the 

modern object-oriented model in which we have languages such as C++ that offer 

support for parameterized classes or generic template classes. In this model, we would 

have a single imple~nentation of stack, as a template class, that supports different element 

types passed in as a parameter. 

The partitioning of an abstraction into variable, fixed, and hidden parts is not an 

innate property of the abstraction but rather an arbitrary decision made by the creator of 

the abstraction. The creator decides what information will be useful to users of the 

abstraction and puts it in the abstraction specification. In addition, the creator may also 

decide which properties of the abstraction the user might want to vary and places thein in 

the variable part of the abstraction specification. Continuing with the stack example, the 

value of the maximum stack depth can be placed in either the variable, fixed, or hidden 

part of the stack abstraction. If it is placed in the variable part, the user has the ability to 

choose the maxi~nurn stack depth. If the rnaxi~num stack depth is placed in the fixed part, 

16 



the user knows the predefined value of the maximum stack depth but cannot change it. If 

placed in the hidden part, the stack depth is totally removed from the concerns of the 

user. 

Abstraction Specification 

Fixed 
Part 

Hidden Part 

Hidden Part 

Abstraction 
Realizations 

Hidden Part E l  
Figure 2.2: Mapping from a variable abstraction specification 



Abstraction specifications and realizations can take on many forms. They can be 

formal or informal, explicit or implicit. Once again, consider the stack example written as 

a generic C++ template. The abstraction realization corresponds to an instantiation of the 

generic package with a particular stack element type. The abstraction specification, on the 

other hand, must be a combination of differe~lt descriptions due primarily to C++ limited 

expressiveness. The generic template class will provide the syntactic specification for 

operations of the stack abstraction, but the semantic specification must be expressed 

outside of the C++ language. One possibility is to use a formal notation such as Hoare 

axioms [Hoare 1969; Sun 19961. Another is to use an informal description such as 

English text. 

In summary, an abstraction expresses a high-level, succinct, natural, and useful 

specification that corresponds to a less perspicuous realization level of representation. 

The abstraction specification describes "what" the abstraction does, whereas the 

abstraction realization describes "how" it is done. For an abstraction to be effective, its 

specification  nus st express all of the infoi-matioil that is needed by the person who uses it. 

This may include spaceltime complexity characteristics, precision statistics, scalability 

limits, and other inforination not normally associated with specification techniques. 

2.1.2 Abstl-action in Software Reuse 

Abstraction plays a central and often limiting role in each of the other facets of software 

reuse: 

Selection 



Reusable artifacts must have concise abstractions so users can efficiently locate, 

understand, compare, and select the appropriate artifacts from a collection. 

Specialization 

A generalized reusable artifact is in fact an abstraction with a variable part. 

Specialization of a generalized artifact corresponds to choosing an abstraction 

realization from the variable part of an abstraction specification. The object- 

oriented paradigm somewhat extends this notion. Inheritance, one of the key ideas 

of the object paradigm, allows for the abstraction realization to be implemented as 

a specialization derived from a previously defined parent class. This is the 

generalization or Is-a relationship between super-class and sub-classes. 

Integration 

To effectively integrate a reusable artifact into a software system, the user must 

clearly understand the artifact's interface (i.e., those properties of the artifact that 

interact with other artifacts or the integration framework). An artifact interface is 

an abstraction in which the internal details of the artifact are suppressed. 

2.1.3 Cog~litive Distance 

Cognitive distance is defined as the amount of intellectual effort that must be expended 

by software developers to take a software system from one stage of developlnel~t to 

another [Kruger 19921. From this definition, it is clear that cognitive distance is not a 

formal metric that can be expressed with numbers and units. Rather, it is an inforinal 

notion that relies on intuition about the relative effort required to accomplish various 

software developrnent tasks. 



The effectiveness of abstractions in a software reuse technique can be evaluated in 

terms of the il~tellectual effort required to use them. Better abstractions means that less 

effort is required from the user. 

The creator of a software reuse technique should strive to minimize cognitive 

distance by (1) using fixed and variable abstractions that are both succinct and 

expressive, (2) maximizing the hidden part of the abstractions, and (3) using automated 

mappings from abstraction specification to abstraction realization (e-g., compilers). This 

can be summarized in an important truism about software reuse [Kruger 19921: 

For a soSfvnre reuse tecli~iiqt~e to be eflective, i f  rlrlrst r'etlt~ce file cogi~ifise clisla~~ce 

betwee11 the iliitinl concept ofa system nr~d itsJinnl execu~ahle inrplenre~~talion. 

This truism, along with others in the software reuse literature, are obvious and 

seemingly simple requirements on software reuse techniques that have proven very 

difficult to satisfy in practice. 

2.2 Classification of Reusable Modules 

The capability to classify and store as well as to identify and locate software components, 

is an increasingly important activity in software developlnent environments where the 

notion of reuse is taking on added significance. Classification schemes are essential for 

setting up and maintaining a software library. A software library is a changing and 

growing collection of modules that have been certified as reusable components. 

For code reuse to be attractive, it inust require less effort than the creation of riew 

code. Code reuse involves three steps: ( I )  accessing the existing code, (2) understanding 

it, and (3) adapting it [Kruger 19921. A classification scheme is central to code 



accessibility. Code understanding depends on both the reuser experience and program 

characteristics such as size, complexity, documentation, and programming language. 

Code adaptation depends on the differences between requirement and the features offered 

by the existing co~nponents and on the skills of the reuser. 

Classification of a collection is central to making code reusability an attractive 

approach to software development. A collection organized by attributes related to 

software development will reduce the probability of retrieving non-relevant components. 

A search-and-retrieval mechanism is necessary for a classified collection to be of value. 

An effective retrieval system must have a well-defined classification structure embedded 

within. In addition, the classification and retrieval system must be able to differentiate 

between vely si~nilar co~nponents in the collection, thus allowing the user to select the 

component that requires the least adaptation effort. A proper classification must be based 

on an integrated solution: a classification scheme embedded in a retrieval system and 

supported by an evaluatio~~ mechanism. 

A classification scheme that caters to reusability ~nust be designed with the 

features of expandability, adaptability, and consistency as integral to its operation. 

Expandability allows new classes to be added to the collectiol~ with n ~ i n i m u m  

disturbance, i.e., with little or no reclassification of the components. An adaptable 

classification scheme can be custoinized for different environments. Consistency allows 

components from different collections in the same class to share the same attributes. 

Hence, this feature permits different organizations to share their collections. 



2.2.1 Software co~nponents 

This section attempts to shed some light on the creation of software co~nponents as a 

result of a reclamation process based oil the dissection and decomposition of existing 

software systems. It also examines the use of software components through interfacing 

and decomposition. 

Megaprogramming is the term commonly used in reference to the construction 

and engineering of software systems from existing components, as contrasted with 

software developlnent by coding one instruction at a time. The analogy is obviously to 

industrial Inass production techniques. The main goal is to reduce time-to-market and 

improve the reliability and maintainability of the final product. The economics of scale 

indicate, if not dictate, that megaprogralnrning is indeed the future of the software market 

place. 

There are two main dimensions to the notion of megaprogramming. First is the 

notion of a brokerage that supervises overall development of product line and releases the 

product to end users (black-box reuse). Second is a component library system that users 

interact with and can extend by using existing components as a template for constructing 

new ones. 

A conceptual framework is defined that distinguishes among three aspects of 

software component [Marciniak 19941: 

The concept or abstraction specification that the component represents. 

The content or the abstraction realization of the component, and 

The context under which the component is defined or what is needed to complete the 

definition of a concept or content within a certain environment 



The concept represented by a reusable software component is an abstract 

description of "what" the component does. Concepts are identified through requirement 

analysis or domain modeling and provide the desired functionality for some aspects of a 

system. An iqterface specification and a description of the semantics associated with each 

operation realize a concept. The content represented by a reusable software component is 

an impleinentation of the concept or "how" a component does "what" it is supposed to 

do. It assumes that each reusable software component may have several implementations 

that obey the semantics of its concept. The context represented by a reusable software 

component depends on understanding and expectations based on familiarity with 

previous implementations. 

With the objective being the development of useful, adaptable, and reliable 

software lnodules from which new applications can be built, the following three 

requirements [Marciniak 19941 should be addressed by a component-centered model of a 

system : 

Components must be 11.~efi11, i.e., they inust meet the high-level requirements 

of at least one concept necessary to design and i~npleinent a new software 

application. 

Components must be ndaplnhle, i.e., they must provide a mechanism such that 

 nodules can be easily tailored to the unique requirements of an application. 

The inheritance pritlciple of object-oriented software design supported by the 

C++ language provides an approach to facilitate the adaptability requirement. 



Components must be reliable, i.e., they must accurately implement the 

concept that they define. 

Each component is basically made up of code plus interface specifications. The 

problem of code development is generally more tractable than the problem of providing 

precise, unambiguous and generalized interface specification. This is an alternative way 

of stating the known fact that raising the level of abstraction for a particular domain is a 

very ltnrrl problem. The software industry is in the process of specifying and developing 

some aspects of the requisite technologies to define formalisms for interfaces, so that 

software components could inter-operate smoothly. The Common Object Request Broker 

Architecture (CORB A) developed by the Object Mana~ement Group (OMG) facilitates 

distributed object comlnunicat ion [OMG 1 9971. The High Level Architecture (HLA) 

proposed and sponsored by the Department of Defense (DOD) is another example of an 

effort to facilitate distributed object interoperability [Carothers 1997; Dah~nann 19971. 

HLA is primarily focused on distributed simulation. 

2.2.2 A Software C o o ~ p o ~ i e ~ i t  Reuse Model 

Reuse is the use of previously acquired concepts or objects in a new situation. Reusability 

is a measure of the ease with which one can use those previous concepts or objects in the 

new situation. This very general view assumes that knowledge has been coded at 

different levels of abstraction and stored for hture reuse [Freeman 19831. 

Models of reuse are operational in well-established disciplines such as civil or 

electrical engineering. 111 these domains, the number of alternatives is usually large and 

24 



several co~nbinations of co~nponents may give feasible solutions, thus creating a selection 

problem. It is customary to acquire colnponents rather than to create them. Coillponents 

are described by standard attributes that capture their fbnctional characteristics. 

A model for software colnponent reusability is based on the above observations 

and on the assumption that available components usually do not match the requirements 

perfectly, making adaptation the rule rather than the exception. The general approach is 

to provide an environment that assists in the finding of co~nponents and esti~nates the 

adaptation and conversion effort necessary to effect reuse. The process is as follows: 

A set of functional specifications is given. The user then searches a co~nponent 

library to find the candidates that satisfy the specification. This step can take 

several iterations, with each progressively narrowing the search space. 

If a component satisfying all the specification is available, then reusing it 

becomes trivial. 

The more typical scenario is one in which several candidates exist, each satisfying 

some of the specifications. In this situation, the problem is transformed into one 

of selecting and ranking the available candidates based on how well they match 

the requirements and on the effort required to adapt the non-matching 

specification. 

Once an ordered list of similar candidates is available, the reuser selects the 

easiest to reuse and adapts it. 

Selecting similar components is a classification problem. The degree of similarity 

depends on how the collection is organized. Closely related components rnay be grouped 



by carehlly selecting relevant attributes and lneaninghlly organizing them. The 

classification scheme is a central component in the software component reuse process. 

2.2.3 Classification Pri~lciples 

A classificatio~~ principle describes how to classify components so that they can be 

located for reuse. Classification makes explicit the relationship among things and among 

c l a s s e s ~ f  things. The result of a classification is a structure that details the relationships 

between objects and classes of objects. A classificatio~~ scheme is a tool for the 

production of systematic order based on a controlled and structured index vocabulary 

called the classification schedule. The classification schedule consists of a set of names 

representing concepts or classes, listed in a systematic order to display the relationship 

between the classes [Buchanan 19791. 

A classification scheme must be able to express both the hierarchical and 

syntactical relationships. Hierarchical relations employ the principle of subordination or 

inclusion in which a universe is successively divided into its component classes. Oil the 

other hand, sy~~tactical relatiol~ships relate two or Inore classes from different hierarchies. 

In practice, classification schemes are hierarchical in nature, with syntactical 

relationships being manifested as compound classes. For example, the colnpound class 

"respiration of birds" relates the term r*e.y~i~nfiorr from the class "processes" with the 

term birds from the class "taxonomy". 

Classification schemes can be either enumerative or faceted. The enumerative 

method postulates a universe of knowledge divided into successively narrower classes 

that include all the possible coinpounded classes. These are then arranged to display their 

26 



hierarchical relationships. The Dewey decimal classification [Dewey 19791 is a typical 

example of an enumerative hierarchy, where all possible classes are predefined. 

The faceted classificatio~~ scheme, used in library science, relies on the building 

up or synthesizing of compound classes from the subject statements of the particular 

documents, as opposed to the decomposition of a universe used in the enumerative 

schemes. In this approach, subject statements are analyzed and their component 

elei~~ental classes determined. These classes are then listed in the classification schedule. 

The generic relatioi~ships of the ele~~iental classes are the only relationships displayed. 

Compound classes are expressed by assembling their elemental components. This process 

of constructing a compound class froin its elemental components is called synthesis. The 

arranged groups of elemental classes that make up the scheme are the facets. The 

elements or classes that make up a facet are called ter~ns [Prieto-Diaz 1985; Prieto-Diaz 

1991aI. 

Facets are considered as perspectives, viewpoints, or dimensions of a particular 

domain. This is because the characteristics of the facets are determined by the nature of 

the application. Different kinds of applications will have different perspective of a 

particular domain and this will in turn determine the existence of relatio~~ships (grouping) 

between the ele111enta1 classes. 

Both enumerative and faceted schemes can be used to express the same number of 

classes. The difference is that in the enumerative scheme, classes with rnore than one 

elemental component are listed ready-made, while with the faceted scheme the classifier 

will have to make multi-element classes by synthesis. A problern typical of enumerative 

schemes is traversing the hierarchical tree to find the most appropriate class. 1111plicit to 



the use of this scheme is the expertise of the librarian in both the classification scheme 

and the subject matter or doinain which guide hiin to determine the most appropriate 

class. This is usually a difticult task because more than one class inay be applicable. 

Cross-references are usually established to compensate for ambiguities in the class 

selection process. This is a cu~nbersome and error-prone process. 

In the' faceted scheme, both facets and terms are derived from analysis of a 

representative sample of the collection to be classified. The synthesis process used in the 

construction of c o ~ n p o u ~ ~ d  classes tailors each class to a perfect fit. This makes the 

faceted approach very attractive for classifying reusable software components. The 

ordering of a facet's characteristics coupled with the fact that facets can be ordered by 

their relevance to the users of the collection is termed citnfiorl ordering. Citation ordering 

enhances search and retrieval performance when used to organize a database. Terms 

within a facet can be arranged based on how closely they relate to each other (conceptual 

closeness). This feature provides a way for locating si~uilar components in a collection - 

an essential feature for software reusability 

2.2.4 Software Classification 

Any reasonable software classification scheme must make the following assumptions 

about the collection of reusable software components: ( 1 )  that the nu~nber of co~nponents 

are very large and growing continuously and (2) that there are large groups of similar 

components - even in very specific classes [Prieto-Diaz 19851. Software components can 

be described by the function they perform, the way they perform it, and their 

implement at ion details, among other things. These descriptors can be mapped directly 

28 



into facets that may be ordered by their relevance to reusability. A co~nponent 

specification is thus reduced to a tuple of terms where each term is an attribute value of a 

selected facet. Priet o-Diaz and Freeman [Prieto-Diaz 19871 suggested that a 

characterization of the functionality (what it does) and the environment (where it does it) 

of a software component would suffice for classification. 

If the description of a software component is to be used as both a classification 

code and a retrieval key, it must be brief, succinct, and semantically rich. That is, it must 

consolidate in a single descriptor the "what," "where," and "how" of the component. 

With modern object-oriented development approaches and techniques such as 

parameterizing or template classes in C++, the impact of the external environment can be 

reduced considerably. Template classes can be used to develop generic software 

components that can operate on any object type. This could eliminate the need for low 

level algorithmic adaptation of software components when moving between domains. 

The high-level abstraction specification would truly capture the semantics of the software 

component. Under these circu~nstances the reuser would only have to focus on user 

interface issues that are relevant to the particular domain. 

A faceted scheme can be developed using the facets from the knctional and 

environn~ental characterizations. The citation order is based on relevance to users and 

assuming that the typical users of the collection are software engineers designing and 

building new systems from components, the following citation order can be adapted: 

function, objects, medium, system type, functional area, and setting [Prieto-Diaz 19871. 

Classifying a component consists of selecting the sextuple that best describes the 

component. Some exa~nples follows: 



<add, integers, array, matrix-inverter, modeling, aircraft-manufacturer> 

<compress, files, disk, file-header, DB-management, catalog-sales> 

<compare, descriptors, stack, assembler, programming, software-shop> 

The Prieto-Diaz and Freeinan classification method elmploys a co~r/~~olled 

~~occzbz~lniy technique for indexing software components. They have used this approach to 

avoid duplicate and ambiguous descriptors of software components arising from 

synonyms. Describing code using controlled vocabulary is not problem prone for any 

audience. A term thesaurus can be used to gather all synonyms under a single concept. 

The term that best expresses the concept would be chosen as the representative term 

[Prieto-Diaz 19891. The thesaurus is used primarily for vocabula~y control and for 

broadening the index vocabulary. These uses also enhance recall performance. A 

thesaurus can also be used to control the size of schedules. This can be done by 

increasing the number of terms assigned to a particular group or by breaking up groups 

into terms. Ambiguities between the tern1 lists can be resolved be selectiilg a number of 

contexts. 

Prieto-Diaz notes that keyword-based retrieval is good for books and journal 

articles because of the large arnount of free text [Prieto-Diaz 1991aI. Software's 

characteristics make it a candidate of controlled vocabulary retrieval approach. A 

predefined set of keywords is used for indexing as described in the faceted approach. 

Software is a good candidate for faceted classification. First, sofiware has a low amount 

of free text. Second, the programmers establish software keyword conventions. Last what 

the compone~lts do and how they do it is uncertain from their free text. 



Guru parses the natural language documentation of the component source code 

for classification [Maarek 19911. Other library systems only parse the comments or free 

text of the component. I11 addition, Guru uses the concept of lexical affinities (LA), as 

opposed to single terms typically used in other reuse libraries. LAs are "lexical affinity, 

. . ., between two units of a language stands for a correlation of their common appearance 

in the utterances of the language." Other research has shown that such word relationships 

are separated by at most five words. These LAs are used in the creation of Guru's 

component indices. The indices are used to locate hnctions that match a user query. The 

indices are organized in a hierarchical format with the description and function being 

similar between siblings. The format is very similar to the hierarchical organization of 

classes in object-oriented languages. 

2.2.5 Conceptual Closeness 

This is a measure of closeness among terms in a facet [Prieto-Diaz 1985; Prieto-Diaz 

19871. In situations where a reuser cannot find an exact ~natch to his search criteria, any 

reasonable software reuse system should present him with list of "likely" co~nponents 

ordered from most likely to least likely matched. The notion of conceptual closeness is to 

present a mechanism for the determination of similarity of software colnponents within a 

software reuse system. A conceptual graph can be used to measure closeness among 

terms in a facet. It is defined as an acyclic directed graph in which the leaves are terms 

and the internal nodes are supertypes that denote general concepts relating two or more 

terms [Prieto-Diaz 19871. The user assigns weights in the edges of the graph. The sinaller 

the value of the weight, the closer is the perceived relationship of a term to a supertype. 

3 1 



The concept of closeness measurement could be utilized during the component 

retrieval process. In cases where the query for a term cannot match any descriptor, a 

retrieval system can check the nearby terms for related items. It is time-consuming to 

construct a conceptual graph with more than a few terms. However, the basic graph 

structure doesn't change much during the expansion of the collection of software 

components, and it also tends to remain stable. Conceptual graph construction can be 

considered a substantial but one-time effort. Regardless, once constructed, a conceptual 

graph would need tuning as users provide feedback on retrieval performance. 

2.2.6 Domain Analysis 

To make the faceted classification scheme a more efficient method for a software 

component reusability, the domai?~ nr~alysis methodology is recommended. This section 

provides an introduction to domain analysis and its application to classification and 

software reuse. According to Arango: "domain analysis is a knowledge intensive activity 

for which no methodology or any kind of formalism is yet available" [Arango 19881. 

Domain analysis is an activity that happens even before the system analysis phase 

of the software development life cycle, and creates a domain model to support the system 

analysis. This informatio~dmodel can be used in the subsequent phases of the software 

developtnent process. i n  the domain analysis process "information used in developing a 

software system is identified, captured, and organized with the purpose of lnaking it 

reusable when creating a new systen~" [Prieto-Diaz 19891. Domain a~~alysis can play an 

active role in the creation and organization of reusable software artifacts. Matsu~noto 



[Matsumoto 19871 reported the successfhl application of domain analysis in the 

development of software factories. 

The domain analysis process can be incorporated into the software development 

process. A simplified three-step domain analysis procedure to advance reuse is: 

1. Identification of reusable entities 

2. Abstraction or generalization of those entities 

3 .  Classification and cataloging for firther reuse 

Based on the above procedure, Prieto-Diaz proposed a procedural model for domain 

analysis [Prieto-Diaz 19891. Using the faceted classification schemes, his methodology is 

"to create and structure a controlled vocabulary that is standard not only for classifying 

but also for describing titles in a domain specific collection" [Prieto-Diaz 19981. 

In the context of domain analysis, Arango [Arango 19881 sees reuse as a learning 

system. In his proposed model, software development is a self-improving process which 

draws from a knowledge source that is named reuse i~$*nsh.z~cfu~~e, and is integrated with 

the software development process. Reuse infrastructure consists of domain-specific 

reusable resources (i.e., components in particular and assets in general) and their 

descriptions. In Arango's reuse environment, by employing the reuse infrastructure and 

utilizing the specification of the software to be built, an implelnentation of the desired 

software is constructed. Then, the software thus proposed is compared against the input 

of the system (i.e., the specification of the system). 

There are three particular functions that are crucial for reuse infrastructure. These 

fbnctions [Prieto-Diaz 19891 are the abstractions of the duties of 

A librarian (making assets accessible to potential reusers) 



An Asset Manager (controlling asset quality) 

A reuse manager (facilitating the collection of domain analysis relevant data and 

coordinating all reuse operations) 

Assets are those entities (documents, deliverables, and components) in the software 

development life cycle that is potentially reusable. 

The typical process resulting fro111 the integration of conventional software 

development and domain analysis is as follows: 

Reusable resources are identified and added to the system. 

Reuse data is gathered and fed back to the domain analysis process for tuning the 

domain models and updating the resource library. 

The newly developed system can then be used to refine the reuse infrastructure [Prieto- 

Diaz 19981. 

2.3 Types of Reusable Software Systems 

There are two main types of reusable software systems: active and passive. Active 

systems have cornponelits that generate the final systern. These syste~ns are tailored to 

specific user needs. Passive systems are libraries of co~uponents such as the standard C 

library. These systems require knowledge of the components and how to use the 

components. The advantage of this type of library system is that the existing software can 

be easily added to the library. Therefore, the reuse colnponents can be quickly 

incorporated into the development cycle. 



2.3.1 Passive Systeiiis 

Passive libraries, such as the standard C++ or Java Class library, require the user to have 

some level of knowledge about their components without direct assistance from the 

library. Most passive libraries provide a written manual explaining each of the library's 

components. But, how does a user know which colnponents will match his software 

needs without reading the entire manual? 

~ a s ~ i v e  libraries weren't designed to be easily extendible. Typically, 

enhancements are only available with periodic releases of the library. This fosters 

numerous similar components to be developed between releases. Developers cannot wait 

for the next needed functionality. The relatively long time periods between releases do 

not support the responsive~less demand of software producers and consumers. The typical 

passive systelns [An-nold 19881 are described in the following sections. 

High-Level Languages 

The reusable artifacts in a high-level language are assembly language patterns. High-level 

language constructs serve as abstraction specifications for low-level assembly language 

patterns. 

High-level languages are often the lowest level of abstraction used by software 

developers. However, it is not widely recognized that high-level languages are examples 

of software reuse. Nor is it recognized that, in many ways, high-level language 

technology is a paragon of software reuse that researchers currently can only hope to 

emulate. For example, discovery of a new reuse technology that routinely offered a factor 



of 5 speedup in software develop~nent would be among the most significant software 

engineering achievements of the decade. 

The primary limitation of high-level languages as a reuse technology is the large 

amount of system design effort required prior to coding. Thus, there is a large cognitive 

distance between the informal requirements for a software system and its implementation 

in a high-level language. 

Design and Code Scavenging 

The reusable artifacts in scavenging are source code fragments. The abstractions for these 

artifacts are infor~nal concepts that a software developer has learned from design and 

programming experience. When a programmer recognizes that part of a new application 

is similar to one previously written, a search for existing code may lead to code fragments 

that can be scavenged. 

In ideal cases of scavenging, the software developer is able to find large 

fragments of high-quality source code quickly that can be reused without significant 

modification. In these cases, the developer goes directly from an informal abstraction of a 

design to a fully implemented source code fragment. In this situation, the cognitive 

distance between the initial concept of a design and its final executable implementation is 

small. 

In practice, the overall effectiveness of code scavenging is severely restricted by 

its informality. A programmer can only scavenge those code frag~nents he or she 

remembers or knows how to find. In the worst case, a software developer spends Inore 



time locating, understanding, modifying, and debugging a scavenged code fragment than 

the time required to develop the equivalent software from scratch. 

These limitations lead to another truism of software reuse [Krueger 19921: 

For a soffivnre reuse iechnique to be eflective, it nrust be easier to reuse the nrtifncts 

rho11 if  is to de\)elop the sofhvnre frortr scratch. 

Source Code Components 

McIlroyYs "Mass Produced Software Components" introduced the notion of software 

reuse by proposing an industry of off-the-shelf source code components. These 

components were to serve as building blocks in the construction of larger systems. Given 

a large enough collection of these components, software developers could ask the 

question "What mechanism shall we rrse?" rather than "What mechanism shall we 

bzrila"?" 

Coinpared to code scavenging, reusable co~npone~~t libraries can be considerably 

more effective since coinponents are written, collected, and organized specifically for the 

purpose of reuse. The most successfLl reusable component systems, such as the IMSL 

math library [Betts 19901, rely on concise abstractions from a particular application 

domain. One-word abstraction specifications such as siile often allow a software 

developer to go directly from an informal requirement to a fully implemented and tested 

source code component. Thus, the cognitive distance between the infor~nal concept and 

its final executable implementation is very small. 



For components that do not have simple abstractions, more general specification 

techniques are required. These descriptions can often be as difficult to understand as 

source code, thereby increasing the cognitive distance. 

Creating a relatively co~nplete and practical library of reusable components is a 

formidable challenge. Library iinpleinenters must have the theory, foresight, and means 

to produce a collection of components from which software developers can select, 

specialize, and integrate to satisfy all possible software development requirements. This 

is currently possible to a lilnited degree for specific application domains that have a rich 

and thorough theoretical body of knowledge, such as statistical analysis. General-purpose 

libraries, however, remain elusive for at least two reasons: (1) the implementation 

characteristics and tradeoffs for data structures and computations are widely variable, and 

(2) library size grows rapidly with respect to general-purpose component size. 

Software Schema 

Software sche~uas are a formal extension to reusable software components. Reusable 

components often rely on ad hoc extensions to programming languages to implement 

reuse techniques such as specification, parameterization, classification, and verification. 

With software schemas, however, these ~necl~anisins are an integral part of the 

technology. 

Compared to reusable source code components, reusable scheinas place a greater 

emphasis on the abstract specification of algorithms and data structures and place less 

emphasis on the source code implementation. This shift in emphasis helps reduce the 

cognitive distance or separation between the informal requirements of a system atid its 



executable implementation by isolating the software developer from the source-code- 

level details. 

Unfortunately, with software syste~ns we do not have many universal abstractioi~s 

above the stack, list, tree, etc. Therefore, the semantics of higher level abstractions are 

often expressed with logic formalisms and specification languages. Formal specification 

for schema abstractions can be large and complex. Even with automated tools it can be 

difficult for software developers to locate, understand, and use schemas. This complexity 

serves to increase the cognitive distance, thereby offsetting some of the advantages of 

using higher level abstractions. Hence, the challenge for i~nplementers of a schema 

technology is to find abstraction for~nalis~ns that are natural, succinct, and expressive. 

2.3.2 Active Systems 

Since the late 1980s researchers recognized the failings of passive libraries and began 

proposing solutions. All solutions share two characteristics in common. The syste~ns 

actively assist users in locating co~nponents that matched their needs. In addition, these 

systems take an active role in promoting the development of reusable software 

components. Therefore, these syste~ns include component cataloging and retrieval 

functionality. 



I.-- 

Activc Systcnls 
/\-\ --'-. '---. 

-'\ 

Retrieval Genera t h e  

Sunluntic Nct Stivctulrd Query Nntu~*ill L,arlgungc 
-------- - 

Figure 2.3: Reuse System Genealogy 

Active systems can be grouped into several classes (Figure 2.3). These classifications 

include generative, transformative, and retrieval based systems. Within the retrieval 

classification, many types of retrieval mechanisms exist. These include semantic net, 

keyword, structured query, and natural language. The following sections present various 

systems as examples of active library types. In addition, a solution using object-oriented 

design is presented. 

Application Generators 

Applicatiol~ generators operate like programmi~lg language compilers; input 

specifications are autoinatically translated into executable programs [Cleaveland 19881, 

[Neighbors 19891. Application generators differ from the traditional compilers in that the 

input specifications are typically very high-level, special-purpose abstractions from a 



very narrow application domain [Levy 19861. Application generators are appropriate in 

application domains where 

Many similar software syste~ns are written, 

One software system is modified or rewritten many times during its lifetime, or 

Many prototypes of a system are necessary to converge on a usable product. 

In these cases, the systems have significant source code overlap. Application 

generators generalize and embody the commonalities, so they are implemented once 

when the application generator is built and then reused each time a software system is 

built using the generator. 

Application generators are specialized by writing an input specification for the 

generator. Due to the diversity in application abstractions, the techniques used for 

specialization are also widely varied. Examples include grammars, regular expressions, 

finite state machines, graphical languages, templates, interactive dialog, problem-solving 

methods, and constrait~ts. 

Very High-Level Languages 

Very high-level languages (VHLLs) are an attempt at improving on the successes of 

conventional high-level languages (HLLs). Developing software with VHLLs is very 

much like developing software with HLLs. Both VHLLs and HLLs provide a syntax and 

semantics for expressing general-purpose computation. 

VHLLs use high-level inathesnatical abstractions suitable for general-purpose 

software development. The goal of VHLL implementers is to find abstractions that are 

more natural and expressive than the abstractions in HLLs. As a result, VHLL progralns 



can be an order of magnitude more succinct than corresponding HLL programs. VHLLs 

are not, however, as powe~fil as application generators since application generators use 

domain-specific abstractions, which can be at a much higher level of abstraction. 

The distinction between VHLLs and application generators exemplifies the 

tradeoff between gerle~nli~ and leverage in software reuse tech~~ologies [Biggerstaff and 

Richter 19891. Typically, the more general a reuse technology is, the more effort is 

required to implement systems with it. The goal of VHLL research is to maximize the 

leverage offered by higher levels of specification without sacrificing computational 

generality. 

Transformation Systems 

Transformation systems are used to develop software in two phases: 

1. Software developers describe the semantic behavior of a software system using a 

high-level specification language. 

Software developers then apply ?ra~.~sfornm~ior~s to the high-level specifications. 

The transformations are meant to enhance the efficiency of execution without 

changing the semantic behavior. 

The two phases make a clear distinction between specifying what a software system does 

and the implementation issues of how it will be done [Zave 19841. 

The first phase is equivalent to using a VHLL. Software developers create an 

executable system in a language that has a relatively small cognitive distance from the 

developer's informal requirements for the system [Balzer 19891. The second phase in the 

transforn~ational approach is essentially a human-guided compilation. The goal in this 



phase is to produce an executable system that satisfies the high-level specification and 

that also exhibits performance comparable to an implementation in a conventional HLL. 

The transformation phase can be thought of as an interactive, human-guided compilation. 

Human intervention is necessary because issues such as automatic algorithm and data 

structure selectio~~ are beyond the current computer technology. By involving the 

software developer in the compilation process, transformational systems increase the 

cognitive distance in order to achieve better run-time performance. 

Software Architectures 

Reusable sofiware architectures are large-grain sofiware frameworks and subsystelns that 

capture the global structure of a sofiware systein design. This large-scale global structure 

represents a significant leverage in the development of software. The leverage offered by 

software architectures colnes fro111 the small cognitive distance between informal 

concepts in an application domain and executable implementations. The rnapping from 

abstraction specification to abstraction realization is ~nostly automated and this isolates 

the software developer from the hidden and realization parts of the abstraction. 

Software architectures are analogous to very large-scale software schemas. 

Software architectures, however, focus on subsystems and their interaction rather than 

data structures and algorithms. Software architectures are also analogous to application 

generators in that large-scale systein designs are reused. Application generators, however, 

are typically standalone systems with implicit architectures, whereas sofiware 

architectures can often be explicitly specialized and integrated with other architectures to 

create many different co~i~posite architectures. 

43 



Draco is an example sofiware architecture technology [Freeman 1987; Neighbors 

1984, 19891. Draco encapsulates software architectures in application generators. The 

output froin the architecture generators can be used as building blocks for higher-level 

architecture generators, making Draco an architecture generator ge~.,~ei.nfor. 

In Draco, each software architecture has a donmi11 ln/grmage and a set of . 
con~ponents that implement the domain language. The domain language corresponds to 

the abstraction specification for an architecture. It captures the relevant abstractions for a 

software architecture in a particular donlain. 

Reuse, Design Patterns and the Object-Oriented Paradig111 

The object-oriented approach to sofiwat-e development has emerged as one of the p r i ~ ~ ~ a l y  

vehicles for the realization of software reuse. The features of inheritance, dynamic 

binding, and polymorphism offered by this paradigm provide an extre~nely powerful and 

elegant approach to software reuse, which differs fundamentally from other mechanisms. 

There are a number of design methodologies that exploit its basic structuring concepts to 

impose a discipline on the use of languages such as C++ and Java. These languages fully 

support the object-oriented approach to developing reusable software. 

This section examines some of the more important principles and techniques that 

design patterns employ in solving design problems. Some of these are well-entrenched 

practices in the object-oriented software develop~nent colnmunity and are expressed as 

principles of reusable object-oriented design. 



2.4.1 Progran~ to an Interface, Not to a11 Implemel~trtio~~ 

An object's class defines how the object is implemented. The class defines the object's 

internal states and the implementation of its operations. In contrast, an object's type only 

refers to its interface (set of signatures) - the set of requests to which it can respond. An 

object can have many types, and objects of different classes can have the same type. 

Class inheritance defines an object's implementation in tercns of another object's 

implementqtion. Hence, it's just a mechanism for code and representation sharing. In 

contrast, interface inheritance (or sub-typing) describes when an object can be used in 

place of another. In languages such as C++, inheritance means both interface and 

implementation inheritance. Pure interface inheritance can be approximated in C++ by 

inheriting publicly from pure abstract classes. Pure implementation or class i~lheritance 

can be approximated with private inheritance. 

Although 1110st progralnming languages don't support the distinction between 

interface and implementation inheritance, many of the design patterns depend on this 

distinction. For example, objects in a Chain of Responsibility must have a comnlon type, 

but usually they don't share a colnlnon imple~nentation. In the Composite pattern 

[Gamma 19961, Co~nponent defines a colnrnon interface, but Composite often defines a 

common implementation. Command, Observer, State, and Strategy are often 

implemented with abstract classes that are pure interfaces. 

Class inheritance is basically a mechanism for extending an application's 

functionality by reusing functionality in parent classes. It lets you define a new kind of 

object rapidly in terms of an old one. It lets you get new icnplementations almost for free, 

inheriting most of what you want for free, inheriting most of what you need from exiting 

45 



classes. However, implementation reuse is not the end. Inheritance's ability to define 

families of objects with identical interfaces (by inheriting from an abstract class) is very 

important. This is because polymorphism depends on it. 

There are two benefits to manipulating objects solely in terms of the interface 

defined by abstract classes: 

1. Clients remain unaware of the specific types of objects they use, as long as the 

objects adhere to the interface that clients expect. 

2. Clients remain unaware of the classes that implement these objects. Clients only 

know about the abstract class(es) defining the interface. 

This greatly reduces implementation dependencies between subsystenls that leads to the 

following principle of reusable object-oriented design [Gamma 19961 : 

Prog0a~n lo o~r ir~te/face, not a11 iny../enret~lalio~r 

The Creational patterns Abstract factory, Builder, Factory Method, Prototype, and 

Singleton let you instantiate concrete classes [Gamma 1996; Schmidt 19991. By 

abstracting the process of object creation, these patterns give you different ways to 

associate an interface wit11 its implementation transparently at instantiation. Creational 

patterns ensure that your system is written in terms of interfaces, not implementations. 

2.4.2 Object Co~~q)os i t io~ l  

Class inheritance and object coinposition are the two most common techniques for 

reusing functio~lality in object-oriented systems [Biggerstaff 1989; Blair 1989; Gamma 

1996; Fowler 19991. With the class inheritance approach, you define the implementation 

of subclasses in terms of parent or super classes. This is nor~nally referred to as "white- 

46 



box7' reuse because the internals of the super classes are often visible to the subclasses. 

With composition, new functionality is obtained by assembling or composing objects to 

get more complex functionality. This approach to reuse is called "black-box" reuse, 

because no internal details of objects are visible. 

Class inheritance has the distinct advantage of being defined statically at compile- 

time and is therefore straightfo~ward to use. This also makes it easier to modify the 

implementation being reused. On the other hand, class inheritance has some 

disadvantages. First, you cannot change the implementations inherited from parent 

classes at run-time. Second, and more limiting, parent classes often define at least part of 

their subclasses' physical representation and inheritance exposes a subclass to the details 

of its parent's implementation. Thus, the notion of "inheritance breaking encapsulation" 

[Sny86]. The implementation of a subclass becomes so bound up with the 

implelnentation of its parent class that any change in the parent's i~nplelnentation will 

force the subclass to change. 

Object composition, on the other hand, is defined dynamically at run-time through 

objects acquiring references to other objects. Composition requires objects to respect 

each other's interface, which in turn requires carefully desi~ned interfaces. This approach 

has the very powerful benefit of not breaking encapsulation, because objects are accessed 

solely through their interfaces. 

A design based on object coinposition has the following advantages: (a) it helps 

you keep each class encapsulated and focus on one task and (b) the classes and class 

hierarchies will remain slnall and will be less likely to grow into an unmanageable 

conundrum. This leads to another principle of object-oriented design [Gamma 19961: 

47 



Fnvor object con~posiliotr over clnss i~lheritar~ce. 

In practice, the set of reusable components is never rich enough to facilitate a 

purely co~npositional approach to software construction. Reuse by inheritance makes it 

easier to make new conlponents that can be composed with old ones. Inheritance and 

composition thus comple~nent each other. 

Delegation 

Delegation is a way of making composition as powerhl for reuse as inheritance 

[Lieberman 1986; Johnson 19911. In delegation, two objects are involved in handling a 

request: a receiving object that delegates operations to its delegate. This is analogous to 

subclasses deferring requests to parent classes. But with inheritance, an inherited 

operation can always refer to the receiving object, "this member'' variable in C++ and 

"self' in Smalltalk. To achieve the same effect with delegation, the receiver passes itself 

to the delegate to let the delegated operation refer to the receiver. 

For example, instead of making class Window a subclass of Rectangle, the 

Window class could reuse the behavior of Rectangle by keeping a Rectangle instance 

variable and delegating Rectangle-specific behavior to it. Figure 2.4 depicts a Window 

class delegating its Area operation to a Rectangle instance. 

Delegation has a disadvantage it shares with other techniques that makes software 

more flexible through object composition: dynamic, highly parameterized software is 

harder to understand than Inore static software. There are also run-time inefficiencies, but 

the human inefficiencies are more important in the long run. Because of these 

disadvantages, delegation works best when it's used in highly stylized ways such as 



standard patterns. The State, Strategy, and Visitor design patterns [Gamma 19961 make 

extensive use of delegation. Delegation is an extreme example of object composition. It 

shows that you can always replace inheritance with object co~nposition as a mechanism 

for code reuse. 

I Window I ,I Rectangle I 

return rectangle->Area 

Figure 2.4: A Window class delegating its Area operation to a Rectangle instance 

2.5 Current Trends 

This section briefly examines some of the recent trends in the sottware development 

industry. The analysis was performed with the intention of determining how the object- 

oriented phenomena have been influencing the evolution of software construction and 

what role reuse has played in this process. 



2.5.1 Chnllellges in Systell~ Developme~~t 

System development today is about rapid change and responding to the realities of the 

business environment [Bigus 19981. The key to successfbl system develop~nent is how 

well an enterprise can (1) perform system integration, (2) manage the hture, and (3) find 

suitable supporting technology [Mowbray 19971. 

Inforinatio~~ systems development has changed from a reliance on unconstrained 

design and development to an increasing reliance on software integration methods in 

which new systems or applications are created by connecting components [OMG 19971. 

Traditionally, integration has been viewed as simpler than new software development. 

However, this notion has proven to be incorrect within the current context of the software 

industry. Integration has not resulted in the deployment of new capabilities at either a 

faster or cheaper rate. This is due primarily to customization efforts to achieve 

interoperability among coinponents that were not originally designed to work toget her. 

The investment to develop the interface can easily exceed the effort required to develop 

the code for the hnctions themselves. 

Traditionally, software system development has been primarily focused on the 

development of monolitl~ic single-ended software systems. The client server software 

paradigm is a notable exception to this theme. However, it still falls within a broader 

definition of rnonolitl~ic systems with de-coupled client and server components. The 

focus on systems integration brings to light a void in the software development process, a 

model of developing truly distributed software. 



2.5.2 The Common Object Request Broker Architecture (CORBA) 

In recognition of this technology vacuum, the Object Management Group (OMG) was 

created in 1989 [DEC 1990; Mowbray 1998; OMG 19951. The primary mandate was to 

develop a specification for defining interoperability of software colnponents [OMG 

19971. The CORBA specification addresses two of the most prominent problems faced in 

the software industry: (1) the difficulty of developing client server applications and (2) 

how to rapidly integrate legacy systems, off-the-shelf applications, and new development. 

CORBA is a specification for an emerging technology known as distributed 

object management (DOM) [OMG 1995; OMG 1997; Orfali 19981. DOM technology 

provides a higher-level, object-oriented interface on top of the basic distributed 

computing services. At the most basic, CORBA defines a standard framework from 

which a software developer can easily and quickly integrate network-resident software 

modules and applications to create new, more-powerful applications. It combines object 

technology wit11 a client server inodel to provide a uniform view of an enterprise's 

computing system - everything on the network is an object. 

The twin concepts of software reuse and software integration are closely related 

since integration is the combination of two or more existing components. Without good 

integration tools and techniques, reuse is difficult and will probably not happen to any 

significant degree because, without a back plane or broker, custom interfaces must be 

defined for each interaction between components. With a broker, however, each interface 

is defined just once and the broker handles subsequent interactions. The CORBA 

Interface Definition Language (IDL) [Orfali 1998; OMG 19951 i s  used to define 



interfaces in a standardized, platfor~n-independent fashion. This offers a significant 

reduction in complexity to the software developer 

Summary 

Software reuse is the process of creating software systems from existing software 

artifacts rathei than redeveloping every facet of the new software system from scratch. 

This simple but powerhl vision has failed to becotne a standard software engineering 

practice. This chapter surveyed the different approaches to software reuse found in the 

literature. Abstraction plays a central role in software reuse. Concise and expressive 

abstractions are essential if software artifacts are to be effectively reused. The 

effectiveness of a reuse technique can be evaluated in terms of cognitive distance - an 

intuitive gauge of the intellectual effort required to use the technique. Cognitive distance 

is reduced in two ways: ( I )  higher level abstractions and (2) automation. We have 

proposed design patterns as a way of raising the abstraction level. 

The next chapter gives an overview of the important concepts of design patterns, 

abstract data views, and software architecture. The concepts are hndamental to the 

adaptive application integration architecture framework that we have developed. 



Chapter 3 

Abstract Data Views, Design Patterns, and Software 
Architecture 

This chapter gives an overview of the central concepts of abstract data views 

(ADvs) [Cowan 1992; Alencar 19941, design patterns [Gamma 1996; Fowler 19991, and 

software architecture [Cowan 1993 a; Booch 1999; Orfali 19981. These concepts form the 

foundation of our work by providing a platform from which we developed a new 

approach to building large-scale reusable software systems. The abstract data view and its 

companion abstract data object (ADO) concepts are design constructs created with the 

notions of separation of concerns and reuse as important considerations. The tern1 

abstract data object (ADO) is very similar to that of an abstract data type (ADT), but is 

distinguished fro111 an ADT by having the property of state. Design patterns are macro 

software design artifacts that express the static and dynamic structures and collaborations 

of components in a software architecture. An architectural approach to software 

development enables the imposition of an overarching structure that rationalizes, 

arranges, and connects coinponents to produce the desired functionality. 

Tl~ese three concepts provide a very powerful approach to addressing the very 

large-scale software reuse (VLSR) problem from both a development and integration 

perspective. As pointed out in Chapter 2, any reasonable approach to the VLSR problem 

must provide an inherent mechanism for raising abstraction. The architectural approach 



enforces a disciplined approach to decomposition, specification, and separation of 

functional modules or layers within a software system. Thus, software architecture 

searches to uncover abstractions and make thein explicit. Design patterns are inacro 

constructs that facilitate the reuse of various kinds of knowledge in the software 

construction process. The knowledge being reused is independent of the itnplecnentation 

technolob. ADV allows us to partition a module or layer in the architecture by explicitly 

separating the specification part from the realization part of the module. The ADV 

concept also facilitates the building of new compoilents or extensions of module 

functionality from existing ones using composition. Hence, these three conceptual 

approaches focus heavily on the use of the principle of abstraction in realizing their core 

fbnctionali ty. 

Abstract Data View 

Abstract data views and abstract data objects are design constructs that divide the 

specification of software modules into two distinct types of components: the intcifocu 

that is represented by the ADV and the in~pleiuenfnliut~ that is represented by the ADO. 

Both ADV and ADO are instances of abstract data types (ADTs). An ADV can be used 

to provide an interface between two ADTs or between an ADT and another medium such 

as a user or a network. In addition, the ADV concept facilitates the construction of larger 

component from smaller components using the principle of composition. Thus, an ADV 

is both a specification of an ADO and a method of interacting with the ADO. The ADV 

approach has been used in a number of prototype applications [Cowan 1992; Lucena 

1992; Potengy 19931. 



The formulatioll of the ADV model was motivated by work in composition 

technology [Fiadeiro 19931, and as a method of separating the specification of the user 

interface (UI) from the non-user-interface (NUI) components of an interactive system 

[Cowan 921 and was intended to promote design reuse. In the ADV concept, ADOs or 

ADTs are completely independent of the interface and have their requirements for data 

translated by one or more ADVs. In the context of user interfaces this implies that ADTs 

or ADOs do not have direct access to input or output. An ADV approach to software 

design describes all design decisions that relate to information exchange between the user 

and the UI application, among other ADVs, and between the NU1 and U1 applications. 

Figure 3.1 shows the relationship between input and output devices, ADVs, and ADTs. 

The relationship between ADV and ADT, shown by an arrow, associates the public 

interface of the ADT with the corresponding specification in the ADV. The name of the 

corresponding ADT in the ADV specification is represented by a variable called ownel*, 

which provides the connection between the UI and NU1 parts of the system. The 

relationship between an ADV and an ADT is not symmetric. 

In the abstract data view approach to software design, a col~sistency property 

needs to be satisfied. This is due to the fact that several ADV instances could be 

associated with the same ADT instance in order to provide different views or different 

control functionality for the same ADT. 



User Input 
Sensor 

Control 

Consistency 

Output 

Figure 3.1 : The Abstract Data View Model 

3.1.1 ADV and Software Reuse 

ADV design concept promotes reuse of interface specification through the principle of 

composition because it allows a complex interface to be built from simpler interface 

components. A composite tnodule specification must guarantee syntactic non- 

interference and semantic context independence [Dennis 19731 alnong the different 

modules. Specificatiol~ constructors are used to perform the colnbinatio~l of specificatiolls 

and these include simple co~nposition with locality, set and sequences of component 



types, and inheritance of specification [Jones 19901 that are used for both ADV and ADO 

specifications. 

lxv,.my + SGDT --- SAW Sea, - .U)T Specifi ca ti on 
S,, - X l V  Specifi ca tiou 
I - Biter-pretntio~i of AiO, iu tanis of S,, 
I' - Ilrtelln'etatiou of A', in t enux of Sam, 
E,, - Exter~~iw~ of S,, by ineans c~frerisabic 

ADTs specifislati 011 c a l s h ~ ~ d o r s  
Ex,,- Es?ei~siorl of S,, by ukealls of ret~ssble 

ADVs nssocia tecl sritll .Om ~ s i u _ p  
specificati ai cm~atnldors 

Figure 3.2: The Modularizatior~ Theorem of Reuse of ADTs interpreted through ADVs 

Within the context of ADV, the central property of very large-scale software 

reuse can be phrased in a style similar to that adopted by Gaudel [Gaudel 19861: "An 

ADT specification extended by other reusable ADT specifications through the use of a 

given set of specification constructors can be interpreted (or viewed) as an equivalent 

ADV specification provided that the original ADT can be interpreted (or viewed) by an 

associated ADV that is extended by the application of the same given set of specification 

constructors applied to the ADVs associated with the reused ADTs" [Alencar 941. That 

is, we need to show that the operators in Figure 3.2 commute. Using a suitable 

terminology [Turski 19871, we can say that we have a "modularization theorern" for the 

reuse-in-the-large of ADTs interpreted as ADVs. 



Design Patterns 

Design patterns [Gamma 19961 are a promising technique for capturing and articulating 

proven techniques for developing extensible large-scale software systems, which are 

invariably distributed in nature. Design patterns express the static and dynamic structures 

and collaborations of cotnponents in software architectures. Patterns aid the development 

of extensible distributed system co~nponents and frameworks by expressing the structure 

and collaboration of participants in software architectures at a level higher than ( 1 )  source 

code components or (2) object-oriented design models that focus on individual objects 

and classes [Schmidt 1 9961. 

Experienced object-oriented designers do not solve every problem from first 

principles. Rather, they reuse solutio~~s that have worked for them in the past. When they 

find a good solution, it becomes a component in their arsenal of tools for reuse. 

Consequently, you will find recurring patterns of classes and communicating objects in 

many object-oriented systems. These patterns solve specific design problems and make 

object-oriented design more flexible, elegant, and ultimately reusable. They help 

designers reuse successful designs by basing new designs on prior experience. 

The unified modeling language (UML) graphical-based notation is an important 

and useful aspect of describing design patterns [Booch 1999; Derr 19951. However, it is 

not sufficient because it simply captures the end product of the design process as 

relationship between classes and objects. To reuse the design, we must record the 

decisions, alternatives, and trade-off that led to it. In addition, concr-ete examples are a 

very important dimension to describing design patterns, because they help you see the 

designs in action. 



Design patterns can be classified along two dimensions so that we can refer to 

families of patterns [Gamma 19961. The first criterion, called pliyase, reflects what a 

pattern does. Patterns can have either creational, structural, or behavioral purpose. The 

second criterion, called scope, specifies whether the pattern applies primarily to classes or 

objects. Class patterns have static relationships that are established through inheritance 

and fixed at compile time. Object patterns have more dynamic relationships that can be 

changed at run-time. 

3.2.1 Abstractio~i n ~ l d  Design Patter11 

The general structure of a design pattern can be modeled into a two-level abstraction 

hierarchy. The top level represents application independent structul-e, while the lower 

level represents application specific structure. Figure 3 . 3  illustrates the general 

abstraction hierarchy in design patterns. The structure and participants in the Reactor 

[Schmidt 1995bl and Factory Method [Gamma 19961 design patterns (Figures 3.4a and 

3.4b) illustrate this notion. 



Other 
Participant 

Classes 

Association Association 

Abstract 
Classes 

Inheritance 

Other 
Participant 

Inheri Lance 

Concrete 
Subclass 

Realize Concrete 
Subclass 

Application Independent Layer 

Application Specific Layer 

Figure 3.3: Generic two-level abstraction hierarchy for design patterns 

C 

Handles Reactor 
1 I 

1 
+handle-events() 

select (handles) 
1 

% +register-handler() 
b r  each h In handles loop 

+remove-handler() 
table[h]-zliar~dle-wt'nlc(1y~lr) I end loop 

Appl~calion lndeper~dent Layer 

Appl~catron Specrtrc Layer 

Structure and Part~crpants rn the Reactor Pattern 
UML Notalion 

Figure 3.4a: Structure and participants of the Reactor design pattern 



I Creator I I Product I -prod: Product * 

+FactoryMethod[) 
+Anoperation() prod = FactoryMethod 

Structure and Participants in the Factory Method 
UML Notation 

Figure 3.4b: Structure and participants of the Factory Method design pattern 

The application independent layer of a design pattern can be defined in such a 

way as to capture the majority of the behavioral functionality being implemented by the 

pattern. The application specific layer implements the concrete behavioral functionality. 

In other words, the application independent layer captures the requisite interface and 

relationships while the application specific layer implements the concrete methods and 

classes to effect the required hnctionality. 

A natural progress follows in which the super-structure of an application can be 

designed within the context of the application independent layer using structural design 

patterns and the correspo~~ding constructs. The concrete classes can be implemented in 



from the b ~ / s i ~ ~ e s s  model. This architectural separation allows business strategies to drive 

technology decisions, and isolates the business application froin evolving technology. 

3.3.1 Software Architecture and Abstraction 

Software architecture is akin to general systems theory in the natural sciences. On this 

topic, Gerald Weinberg quotes James G. Miller: "At each level there are scientists who 

apply systems theory in their investigations. They are systeins theorists but not 

necessarily general systeins theorists. They are general systems theorists only if they 

accept the more daring and controversial position that - though every living system and 

every level is obviously unique - there are important formal identities of large generality 

across levels" [Weinberg 19881. The realin of software architecture is to find these for~nal 

generalizations, or abstractions, and apply them in solving the programming probleins 

encountered in applicatioi~s development. Again, according to Weinberg: "The more 

general problem is often easier to solve and, in programming, the inore general design 

may be easier to implement, may operate faster on the machine, and call actually be 

better understood by the user. In addition, it will allnost certainly be easier to maintain, 

for often we won't have to change anything at all to ineet changing circumstal~ces that 

fall within its range of generality" [Weinberg 19881. 

After decades of building and delivery of distributed, client/server, and object 

systems with unpredictable results, a critical success factor has become apparent. That 

factor is a complete, consistent, and well-understood architecture. Grady Booth observes: 

"Two traits that are common to virtually all of the successful object-oriented systelns we 

have encountered, and noticeably absent froin the ones that we count as failures. These 



traits are: (1) The existence of a strong architectural vision, and (2) The application of a 

well-managed iterative and incremental development cycle" [Booch 19961. 

3.3.2 Benefits of Architectural Approach to Software Collstructioli 

A complete architecture is the first step in successfblly building large-scale software 

systems. The benefits of a co~nplete architecture include: 

Architecture enables embedded reuse through the i~nplementation of fra~ueworks 

that encapsulate shared functionality. It also enables service reuse through we1 I-  

defined interfaces between applications that encapsulate business functions. 

Architecture allows improved time to market of applications because of parallel 

develop~nent opportui~ities. The architecture will facilitate partitioning of the 

problem into self-contained levels of abstractioli and business services. 

Partitioning the levels of the architecture with clear specifications allows the 

selection of co~nmercial off-the-shelf (COTS) products. This is because 

architecture modularizes the solution, providing  nodules with clearly defined 

interfaces. 

A complete and robust architecture forces the separation of the business model 

from the machine model. This separation will allow both models to evolve 

independently to support busiliess and technology changes. Model separation will 

lead to an adaptive architecture system that will quickly satisfy the business 

objectives of the future. 

Proper technical isolation will allow the ability to separate and change the 

implementation. Proper levels of abstraction in the technical and software 

64 



architectures provide isolation froin specific technologies, reducing the cost of 

changing the implementation and maximizing the flexibility of the solution. 

The architecture ensures consistency and integrity of infor~nation. Well-defined 

interfaces between the semantic boundaries of the architecture will allow 

encapsulation of functionality and ensure the consistency and integrity of 

information in the layers. Building the elements of the architecture as context- 

iniensitive components that maintain their own state, will allow the components 

to be reused without losing consistency and integl-i ty. 

The implementation of the architecture will allow for operational performance 

improvements through parallelisin and asynchronous processing while reducing 

the developers' need to understand the technical details associated with the 

implementation. Partitioning the architecture into fine grained objects and using 

asynchronous messaging between components will position the system to take 

advantage of mulit-threaded operating systems, symmetric multi-processing 

(SMP), and massively parallel processing (MPP) hardware. The modular software 

will also allow performance opticnization to occur at multiple levels of the 

architecture. 

Summary 

Software-based architecture is currently a vaporous silver bullet. Reuse, the Holy Grail of 

software engineering, can only be predictable and reliably achieved with an architectural 

foundation. The ability to drive reuse to higher levels of abstraction such as design 

patterns and artifacts, analysis artifacts, business models, fra~neworks, and I-equiremet~ts 

65 



requires a solid architectural underpinning. Software development processes and 

lifecycles are frustrating and ultimately ineffective exercises in managing the 

unmanageable, if implemented without an architecture. Metrics, software quality 

assurance, software process improvement, and even quantitative and qualitative 

estimation and project management are ineffective abstractions without an architectural 

framework within which one can analyze, compare, and reason about them. It is apparent 

that unlocking the mystery of software architecture is essential to gaining insight into the 

issues of raising the abstraction levels for a software developer to be most productive. 

The need for and the goal of an architecture framework is to manage complexity, 

minimize the impact of change, incorporate and leverage existing components and, 

n m h ~ l n h ~  on overclll pei:~pecfive of the system. If accomplished, the framework 

accelerates the systems development process, reduces system costs, and improves 

systems quality. 

It is our belief that soji\vart! nrchitect~ti-e, ahsf/nc/ior~, nird sc!flwu/.e /*er/.se cu.e 

orthogonal views o f  !he snrne concept. However, software architecture provides a natural 

approach to gain insight into uncovering abstractions in the software system. In addition, 

it has the added benefit of being able to be mapped to a methodology and is therefore 

repeatable. In the next chapter, we present a detailed outline of our contributio~~ with 

major focus on the adaptive enterprise application integration framework. 



Chapter 4 

Outline of Our Work 

This chapter presents a detailed outline of our contribution. Our work is primarily 

focused on the develop~nent of an Adaptive Application Integration Architecture 

Framework. Software reuse and software integration are very closely related concepts 

since integration is the coinbination of two or more existing components. Without good 

integration tools and techniques, reuse is difficult and will probably not happen to any 

significant degree. In the development of the adaptive architecture framework, the 

primary enabling concept is object-oriented design support by the unified modeling 

language (UML). The concepts of software architecture, design patterns, and abstract 

data views are used in a structured and disciplined manner in establishing a generic 

adaptive integration framework. To illustrate our approach, the proposed framework is 

applied to solve the Enterprise Application Integration (EAI) problem in the 

telecominu~~ications operations support system (OSS) marketplace (Chapter 7). 

The need for and the goal of an architecture framework is to Inanage complexity, 

minimize the impact of change, incorporate and leverage existing components, and 

nraintaitl ntr o\)er.crN peraspeclive of the s))slenr. Design patterns allow us to solve various 

pieces of the overall problem. For example, we have developed a number of EAI design 

patterns that are used to integrate legacy third party applicatioi~s illto the architecture 

67 



framework. These design patterns allow us to develop a very definite and repeatable 

process for integrating legacy as well as newly developed applications into a unified 

framework. The abstract data view approach with its colnpositional capability is used to 

aggregate and build up the overall solution by combining smaller macro components. 

4.1 What is the Enterprise Applicntio~l Integration Problem? 

The enterprise'application integration (EAI) problem is the inability of an enterprise to 

leverage its enterprise domain silo software applications from a unified platform and to 

use these software systems to gain advantages in an intensely competitive marketplace. 

Businesses in general are in a process of continuous re-definition. Any reasonable 

solution to addressing large-scale software development must facilitate the notion of 

continuous business process re-definition or re-engineering. That is, the software system 

must be adaptive allowing the enterprise to adjust its business models to address 

changing market conditions. The problems associated with an enterprise inability to 

perform application inte~ration, adaptation, and business function interoperability at the 

enterprise level are further exacerbated in the teleco~nmunications industry where 

introduction of new frame breaking technologies and services are the norm. The 

telecommunications industry is therefore in a heightened state of awareness with respect 

to the problem of enterprise application integration. 

In addressing the EAI problem in a generic manner, our architecture centric 

approach presents solutions for the following broad proble~natic areas: 

1. Facilitate the integration and interoperability of stove pipe legacy applications 

2. Cater for a clear separation between the business models and machine models 

3 .  Facilitate the development of adaptive business process re-engineering 

68 



4. Facilitate the use of the Internet as a business platform across the entire enterprise 

The problem areas indicated by (I), (2), and (3) have been around for a long time and 

notoriously regarded as almost intractable problems in the sphere of the business 

community. Solving these problems will present a whole new way of looking at how we 

develop business software systems of the future. 

4.2 Solution to the Enterprise Application Integration P~-oblem 

Our approach to the enterprise application integration (EM) problem is to develop an 

overarching view of the entire enterprise integration problein using software al-chitecture. 

To this end, we developed the n-tier orthogonal application integration architecture model 

that is based on our proposed n-tier orthogonal architecture model. The n-tier orthogonal 

architecture model examines adaptive business centric software development from a 

single application context. The n-tier orthogonal application integration architecture 

model looks at the notion of adaptive business centric software systems fro111 an 

enterprise perspective, which results in a close exa~~linatioll of the problem of illtegratioll 

at the enterprise level. The principle of architectural layering is applied in the 

development of the adaptive application architecture model. The subsequent paragraphs 

outline this approach. 

The object-oriented approach provides useful levels of abstraction for addressing 

the co~nplexity of modern business problems. Problems are deco~t~posed recursively. At 

each level of decomposition, the prevalent vocabulary and concepts are used to describe 

that part of the domain. At the highest level, concepts are centered on overall enterprise 

procedures and workflows. Following these are the business objects supporting the 

69 



enterprise-level procedures and workflows. Finally, key concepts that are not particularly 

business or industry-specific are described. 

The application architecture deals specifically with the business problems and 

fbnctionality. It describes the visible portion of the application - the presentation. The 

application architecture is also distinct from the technical impleimentation details. With 

object orientation, technology-based details can be suppressed, allowing more focus on 

the problein to solve and on the business process to engineer. This results in the 

description of at least three layers of system architecture - the presentation, the 

application layers, and the tecl~nology-based details. 

Each of the layers can be further refined to contain sub-layers or components. 

Each layer and sub-layer is designed so that it arranges and connects layers and 

components to produce the desired fbnctionality. The sub-layers within the application 

map to the levels of the problem domain described above, and the colnponents of the 

application should represent processes and concepts that exist in the problem domain. 

This structure provides the followil~g benefits: 

Integrity is enhanced because colnponents share a common conceptual structure. 

The system is extensible because components and connections interact through 

well-defined interfaces. Also, the implementation details become hidden from the 

rest of the system, allowing components to change to take advantage of new 

technology or to address new business needs without affecting other systein parts. 



4.3 Generic Adaptive Applicatioll Illtegtrtioll Architecture Model 

The object management group's (OMG) object management architecture (OMA) [OMG 

19971 goes a long way in addressing the core requirements of a distributed object- 

oriented application framework. OMA is the canonical n-tier architecture model. 

However, it does not address the concerns of integrating enterprise silo applications into a 

unified framework that allows the enterprise to leverage its data across the different 

domain applications. It has been estimated that in excess of 95% of all enterprise data 

resides in legacy applications. These applications were not developed to facilitate 

interoperability and play nicely in a unified distributed framework. Hence, there is 

tremendous need to provide a framework for integrating legacy applications in large 

enterprise. 

The generic adaptive application integration architecture model describes a highly 

modular approach to integrating enterprise domain silo applications using standard 

client/server relationships. While this model is built on traditional concepts of clients and 

servers, the distinction between client and server is of a logical nature, resulting in peer- 

to-peer relationships among components. The coinponents are s~nall and functionally 

specialized so they can be easily reused. 

Figure 4.1 shows a schematic representation of the generic adaptive enterprise 

application integration (EAI) architecture model. This model contributed significantly to 

the development of the adaptive EAI framework pattern presented in Chapter 6. The 

adaptive EAI architecture model can be defined as a layered model, with each layer 

providing a specific function in the overall scope of the resultant software system. This 



architecture model enables the overall software systelll to be partitioned into small- 

grained services. The major layers of this architecture model are as follows: 

1. Domain Applications 

2. Domain Application Adapters 

3 .  Asynchronous Distributed Object Framework and Infrastructure Services 

4. Mediation Services, equivalent to the Application Architecture in the n-tier 

Architecture model and consisting of the following layers: 

i. Package Mediation 

ii. Intrinsic Objects 

i i i .  Domain Objects 

iv. Business Objects and Busii~ess Object Managers 

v. Business Processes 

5. Presentation Services 

6. Thin Client Application 



EAI Architecture 
Model 

Legend 

Infrastructure 
Services 

Transac~imaliiy 
Concurrei~y 
Pers~stence 

I I 

Presentation Services 
I I 
I I 

Business Processes [Automated Workflow Processes) 
I I 

I I 

0 Business Objects & Business Objects Managers Enterprise 
Mediation 
Services 

Domain Objects 

Intrinsic Objects 
1 

&u Packaoe Mediation lAutornatsd Mapplno) 

0 
Damain 

Application 

x-' Adapters 

Applications 

Figure 4.1 : Generic Adaptive EAI Architecture Model 

The benefits of using the EAI architecture model, which enables application 

partitioning, are: 

Adaptable business process, continuous business process re-engineering 

Framework facilitating plug-and-play capability for best of breed domain 

applications 

Framework for integrating the domain silo applications into a unified view 

Separation of business rules from presentation services and data access 

mechanisms 



Increased application perfor~nance 

Increased application scalability 

Isolate security and critical business processes 

Reuse of not just software but entire applications (service reuse) 

Macro software cotnponent reuse 

Macro software pattern reuse 

The following sections describe the layers of the adaptive EAI architecture model. 

4.3.1 Domain Applicatio~~s 

These are the enterprise silo applications that form the core of the infonnation technology 

(IT) and enterprise business automation that companies rely upon for management and 

successhi execution of day-to-day operations to satisfy their customers' needs. Legacy 

applications are a special class of domain applications specifically when it comes to 

integration and business function interoperability. These applications were not developed 

with the intention to facilitate integration and business function interoperation. There are 

a host of interesting problerns associated with the integration of legacy applications. 

These include problems relating to differences in technology, design methodology, 

implementation strategies, etc. 

4.3.2 Dotnri~l Applicntio~l Adapters 

These serve to externalize the infonnation model, application services, and data ~nodels 

of the respective enterprise silo applications. By so doing the domain application adapter 

principle facilitates wholesale reuse of specific classes of domain applications. Domain 

74 



applications can be plugged and played without impacting the enterprise information 

model. Likewise the enterprise information model can be modified without impacting the 

domain silo applications. 

4.3.3 Asyncl~ro~~ous  Distributed Object Framework and I~lfrastructure Setrices 

In the adaptive EAI architecture model, application services are available on the network 

and are accessed through an object-oriented programming interface. The application 

services are distributed on machines throughout the network. The Object Request Broker 

(ORB) technology [DEC 199 11 is used to facilitate the transparent cooperation of relnote 

objects. The ORB provides a very rich set of distributed middleware services. The ORB 

lets objects discover each other at run time and invoke each other's services whetlier 

remotely or locally located. Figure 4.2 shows a sample distributed object framework. 

Machine A 

Machine C 

Figure 4.2: Distributed Object Framework 



Business Processes 

Businass Objects 

Domain Objects 

Automated 
Mapping 

Execution 

I Enterprise to Domain Application Mappinp and Translation I 

Figure 4.3 : The Sub-Layers in the Mediation Services Layer 

4.3.4 Mediation Seivices 

The mediation services layer is a distinct layer in the adaptive EAI architecture. This 

layer has a number of sub-layers that combine to realize an orthogonal integration 

framework for integrating legacy and newly developed software applications. Figure 4.3 

provides a description of the mediation services sub-layers. The sub-layers form the 

framework for building a unified enterprise information model, application services, and 

data models. 



Process Objects 

Process objects represent business processes, sequence of events, business rules 

knowledge, and concepts that span specific business objects. These objects manage 

runtime coordination and cross-validation of business objects. For example, the order 

entry-process is not tied to a specific business object. Instead, it involves customers, the 

location of customers, and the details of what has been ordered. A detailed pattern of 

interaction among business objects constitutes the correct way to describe the placement 

of an order and the appropriate inforination on an order. To put this knowledge in a 

business object would violate the object-oriented principle of encapsulation. Instead, this 

knowledge should be encoded in an order entry process object. Behavioral rules should 

be contained within process objects. 

Process objects are fundainental to the notion of adaptive business process re- 

engineering. The process objects decouple the specification of the business fu~~ctions 

from the business objects that are used in the implementation of the business functions. 

Business Objects 

Business objects represent business concepts. This includes items such as 

information about an organization, custoiners, and orders. A business object marries the 

basic object with specific behavior, inforination, and structural business rules. A business 

object should not bind to other business objects - this is the responsibility of the process 

objects. Any cross-business object finctionality should be pushed up to a process object. 



Domain Objects 

Domain objects represent key business and industry concepts and are independent 

of a particular application. They may include basic information regarding a custoiner or 

order, but they may also include iteins such as products and contacts. 

Intrinsic Objects 

Intrinsic objects are foundation objects. These objects are not tied to an industry 

or domain. They include items such as addresses, names, dates, and times. Intrinsic 

objects are primarily used in the constructiodspecification of domain objects. The 

primary relationship between intrinsic and domain objects is of a structural nature. 

Intrinsic objects are normally aggregated into domain objects. 

4.3.5 Automated Mapping 

The automated mapping layer is responsible for performing enterprise to domain 

application  nayp ping and translation. The mapping is needed because domain silo 

applications are developed by different corporations and the fact that there is no universal 

domain application standards to specify in an unali~biguous mailner things such as 

component interfaces, information models, data models, collaboration sequences, and 

other issues that are critical to the developme~~t of a software system. lnvariably we have 

the situation in which individual software vendors specify their own information models, 

data models, and interfaces. This is hrther exacerbated by each enterprise developing its 

own enterprise information and data models, etc. All this coupled with the need to have 



interoperation between the various domain applications mandates the need to have some 

form of mapping and translation mechanism. 

In our adaptive application integration architecture model, mapping and 

translation is restricted to occur between the enterprise business and domain objects and 

the domain applications and between the intrinsic objects and the domain applications. 

This mapping mechanis~n is key to decoupling the enterprise view from the domain 

application view and is the core technological framework in giving this architecture its 

best-of-breed plug-and-play capability. This module is transparently invoked whenever 

there is any data transfer between the enterprise view and any of the domain silo 

applications. 

Presentation services are server coinponents that give a client application access to the 

enterprise services froin the mediation services layer. This layer is inherently distributed 

in nature and the components are deployable across different machines. This layer can be 

implemented using the model pattern or the typical peer-to-peer client server model. 

Models are usually stateless and therefore a model may interact simultaneously with 

many clients. 

4.3.7 Thin Client Applicatioas 

This layer's primary responsibility is to give a visual presentation of the information 

and/or data models projected from the presentation services. This implementation 

approach creates a clear separation between the enterprise services provided by the 



mediation layer and presentation or view provided by the client layer. The client should 

not be aware of the se~nantics of the information or data models of the enterprise 

mediatibn layer. Impleinentation technologies such as XML over RMl or IlOP can be 

used to hrther isolate the client application from the presentation and mediation layers. 

The clients are called thin clients because they implement very little or no business 

fbnction capabilities. 

Frameworks and Patterns of Interaction 

The components of a distributed syste~n interact to fulfill the overall requirements. These 

interactions are termed collaborations and represent requests from one component to 

another. By collaborating, seemingly disparate sub-systems and components can be 

connected to perforin the system responsibilities. Components can collaborate between 

layers or across the same layer depending on the type of function being performed. Rules 

of visibility must be established for each component to maintain consistency for the types 

of collaboration allowed across layers and between layers. Typical collaboration patterns 

include the coordination pattern and the configuration pattern. These Patterns are 

described below. 

The coordination pattern of interaction represents tasks such as propose and confirm or 

validation of data items. A client might enter data into a field on the screen. Validation 

would be performed on the data and errors would be sent back to the client. Figure 4.4 

shows one example. 



To accomplish data validation, values entered by the client are sent from the order 

user interface to the order server application service. A policy component lnay be 

responsible for enforcing the business rules associated with the data item. The order 

server would request the order policy server to validate the data item. The status of the 

validation is sent back through the reverse path. 

Presentation 
Services 

Application 
Services 

Client A 

4 

Order Server Order Policy 

Object 
Services 

Concurrency 0 
,/-. 
( Security 'j 

Figure 4.4: Example Coordination Interaction 



4.4.2 Co~ifigura tion Pattern 

The configuration pattern is another common type of server collaboration. Figure 4.5 

shows an example of a configuration interaction. The client can alter application behavior 

by setting configuration paralneters or properties. This pattern of interaction traverses all 

the layers of the architecture. An application server would receive the configuration 

request from a presentation server and validate it with a policy server. The policy server 

would enforce rules such as range checking, user privileges, and conflicts with other 

settings. Once validated, all of the data storage servers associated with this change would 

be updated. This pattern gives the user control over presentation layer components. In 

addition, system behavior such as workflow steps and error message routing should be 

controllable by the user. In the application of this framework some tradeoffs must be 

considered along the dimensions of Time to Code (time to market), Execution speed, and 

Level of Effort to adapt. 



Client A l -7 

Presentation 
Services - 

Application 
Services 

Object 
Services 

Mechanism Policy 

.--.- 

Figure 4.5 : Example Configuration Interaction 

4.4.3 Model Pattern 

The model pattern is an object interaction framework that implements the collaborations 

between the presentation and application layers. Figure 4.6 shows a generic example of a 

model pattern. 



Machine A 

Model 
Process 

-..I.; ,, ,. 1; ,::<i . "' , 

Figure 4.6: Generic Model Pattern 

Machine B 

In the model pattern, clients access the business objects through a common model 

object. This object hides the details of the business objects by receiving requests for 

business activity or data, and coordinating the actions that must occur to meet those 

requests. A model object is norinally focused around one specific domain or activity, 

such as order taking. Multiple models may exist throughout the system, each 

accomplishing a different task. Models should be stateless, letting multiple clients access 

them simultaneously. 

In the following three chapters (Chapters 5-7) we will describe our proposed 

approach in detail along with a complete example. 

In Chapter 8 we will present the model based software developi~lent approach. 

This is an approach to raise the abstraction level at which application developers work 

and to automate the process of translation from an application model to its corresponding 

84 



distributable runtime component. The basic thesis here is that we can effectively 

transform the effort deployment in the software development process in which about 80% 

of the developinent effort goes into the development of infrastructure services and 20% 

into the development of application logic [Eeles 19981. 

In Chapter 9 we will present a mathematical formalism for the specification of 

design patterns. The formalisln is the basis of a general-purpose approach for the 

specification of software systems and components. This formalism is based on many- 

sorted algebra. The approach thus provides a solid theoretical foundatior~ for describing 

and reasoning about software artifacts. 



Chapter 5 

Adaptive Orthogonal N-Tier Integration Architecture 

Traditional legacy applications have been developed along a synchronous push- 

oriented transaction model. In this architecture, the client initiates a transaction on the 

server by posting a request; the client blocks and waits for the server to service the 

request, and the server eventually delivers a response to the client. At this point, the client 

receives the response and continues with its tasks, possibly posting another request to the 

server. Because of the inherent lack of asynchronous capability in this type of application 

architecture, integrating it into a bus framework such as CORBA is fairly difficult. Most 

attempts at integration result in a peer-to-peer integration model over the co~nmunication 

bus. In addition, these kinds of applications suffer from a lack of clear de~narcation of 

functionality between the application sub-layers and therefore embedding aspects of the 

business processes into the exposed application program interface (API). 

The Need for Application Portfolio 111tegrntio11 

The intensely competitive nature of today's business market place mandates that 

businesses must have the ability to perform very flexible business process reengineering. 

Modern businesses, in general, are continually redefining their business models in an 

effort to differentiate themselves from their competitors and to ward off competition. 



In this market environment, high availability and custo~ner care management is 

essential to establishing market acceptability and high customer retention. These are 

essential ingredients to successfblly operate a business in the Internet driven economy. 

These requirements coupled with the necessity of flexible business process reengineering 

have driven us to reevaluate the approaches that have been taken to address the large- 

scale (or enterprise) application integration (EAI) problern. The above requirements 

mandate a business process driven integration framework that allows individual business 

processes to be represented, monitored, and integrated with existing systems and users 

across the enterprise. It also requires the ability to dynamically reconfigure active 

business processes (software fault tolerant and hot swappable capabilities), allowing 

users to continuously adapt to rapidly changing inarket conditions. This process-driven 

infrastructure provides businesses the ability to adjust and alter their operational systems 

to changing market conditions without any down time. 

Application portfolio integration is mandatory in order to support larger 

enterprises' organizational goals. These goals include operational efficiency via process 

flow-through and customer intimacy to enhance customer satisfaction. Examples of this 

include knowing what a customer has ordered across multiple products, what problems 

he or she has experienced, and his or her billing and payment history. Addressing this 

integration challenge requires a comprehensive application portfolio assembly approach 

that can exchange information among multiple application architectures each with 

different data and process models and wit11 different data exchange models. 

The challe~~ge is to create a means of integration at the business process level. An 

information broker can create generalized event and object models to normalize the flow 



of information between dolllain silo applications. We can create adapters to the various 

domain applications. This serves the purpose of migrating the architecture from a multi- 

point, spaghetti architecture into a much more manageable hub-and-spoke arrangement. 

However, the adapter approach is just the starting point because it does not allow for a 

flexible business architecture. To create an architecture that enables best-of-breed third 

party application selection, while not sacrificing integration and data sharing, requires 

another layer of "business aware" software that runs above the inforination broker. 

With such a layer in place the business processes can change without affecting the 

underlying applications. And conversely, IT should be able to change applications 

without affecting the business processes. 

5.2 Traditional Approaches to Enterprise Applicatioa Integratio~l 

Typical approaches to address the need for enterprise application integration i~~volve 

building point-to-point interfaces between applications [OMG 1997; Linthicum 1999; 

Mowbray 19981. This is an order n-squared problem and is therefore very expensive. In 

addition, it does nothing to address the adaptive requirements of most   nod ern businesses. 

The business lnodels and corresponding business processes are consta~ltly undergoing 

changes to address the competitive nature of today's marketplaces. 

The next prevalent approach to addressing the EAI problem is to use a hub-and- 

spoke architecture in which an application is chosen as the master and all the other 

applications are logically integrated through this master application [Mowbray 19981. 

Norinally, a bus fi-amework is used and thus the n-square interface problem is eliminated. 

This type of integration architecture is very application specific. It does not facilitate 

88 



plug-and-play of best-of-breed or co~nlnercial off-the-shelf (COTS) software products. 

This kind of application integration continues to suffer from shortcomings resulting from 

the push transaction model. The new enterprise business processes are tightly coupled 

within the APIs of the master application and are therefore not adaptable. Figure 5.1 

depicts s u ~ h  an application integration architecture model. 

The mediation layer makes an attempt to capture the definition of business 

concepts independent of the different applications being integrated. However, the 

business rules and business processes are defined fully within the context of the master 

application. The master application also serves as the entry point of the system and 

therefore drives the overall system interaction. 

The close coupling of the business processes with the inherent li~nitations of the 

inaster application architectural model severely lili~its tlie ability of such a system to 

adapt to changing market conditions. The rapid delivery of new products and services is a 

mandatory requirement in today's business environment for an enterprise to remain a 

viable entity. Hence, applications must have, as a core requirement, the ability to be 

rapidly adaptive to changing market conditions. A business analysis should be able to 

create an enhanced version of a product or service offering and deploy it in the runtime 

environment in hours or days, but certainly not weeks or months. Time to market 

responsiveness is absolutely critical for the survival of business in  industries such as 

telecommunications that experience intense competition to acquire and retain customers 

through differentiated services. 



Problem: 
Most appl~cations are 

Very close coupllny / 
between the master 
spplicetion and the 
business processes 
The master appl~calion 
is tbs entry pornt Into the 
system. The tight 
coupling lirnils Uiis 
applicabon 
architecture's ab~l~ty to 
be adaptive. 

-- 

synchronous with a push 
oriented transacuon 
model. Presentat ion Services 

Th~s approach favours a 4 1  41 

Business Objects I Business Object Managers Mediation 
. Services 

Domain Objects I 

hierarchical cnlorrnatron 
/- 

1 5 2  
4> 

Message Oriented Dis t r ibuted Object Framework 
n > 

master, directing the 
a . > A -  - -  

Execution 
- . -  

intercation with the orher Environment 
appl~cat~ons Buslness ProcesseslAutornated Workf low Processes 

. , , - I . .  - 3 '  

I 
I I 

- - 

model arch~tecture ~n 
wh~ch one of the 
applicat~ons act as a 

Figure 5.1 : Traditional N-Tier Application Integration Architecture Model 

/ 

Damain 
Adapters 

7 

Domaln 
Applications 

blaster Application Services 

, I  2 . 
r , , > . 

The domain adapters are used to expose the enterprise silo application data model 

and application services. They ]nay also be used to perform data mapping to and from the 

Master 
Appiicatlon 

application domain. The domain applications often have application specific data and 

information models, lnaking it necessary to have some form of data mapping. This 

hnctionality of the domain adapters further limits their reusability because they are 

closely tied to object specification in the master application. The master application, 

which is the entry point for the enterprise, hosts the enterprise object models. The 



Enterprise object models vary from organization to organization and hence the adapter 

must be modified to reflect this in the hnctionality of the data mapping. 

To address the shortcomings of the above-mentioned approach, we propose a new 

adaptive orthogonal integration architecture framework. 

N-Tier Orthogonal Application Integration Architecture 

Modern business is by definition evolutionary. An enterprise must continuously redefine 

itself to remain competitive and thus a viable business entity. To accomplish this 

hndamental business requirement, the business processes representing enterprises' 

business models must be evolutionary by nature. That is, the business processes must be 

adaptable and thus give the enterprise the ability to be responsive to changing market 

conditions and competitive market pressures. Inherent in the adaptability requirement is 

the fact that business processes must be elevated to the status of first class entities, 

complete with their own execution environments. From a distributed computing 

perspective, business processes can be viewed as deployable distributed components. 

These components should be developed as complete sofrwnre agents with respect to their 

ability to interact, acquire, and use the services provided by the run-time distributed 

object framework and infrastructure services. 

The Generic Adaptive Integration Application Architecture Model of Figure 4.1 

(presented in Section 4.3) forms the basis of the Adaptive N-Tier Orthogonal Application 

Integration Architecture that we propose. The concept of the Adaptive N-Tier Orthogol~al 

Integration Application framework is explored in Chapter 6. There we take a distinct 



implementation perspective, identifying the major component and technologies required 

for the approach. 

From a business perspective, a business process represents a business function. 

That is, a hnctional use-case of the application that is used to represent a business's 

functional requirement. Thus, in the finest granularity, there is a one-to-one 

correspondence between business processes and business functions. A change in business 

inodel is manifested as a change in business function. This should be ultiinately reflected 

as a modification or enhancement to the business processes ilnple~nei~tii~g the business 

functions. In the runtime environment, this could be achieved by deploying a new 

business process component that implements the new requirements. 

The orthogonality of this architectural approach is accomplished by removal of 

the master application concept. Each application has the same level of importance with 

respect to peer relationship. This approach effectively destroys the hierarchical master- 

slave relationship between the master application and the other subordinate applications. 

In addition, this approach also addresses a more sinister and difficult problem. The 

hierarchical master-slave relationship imposes a hierarchical information model in the 

integration architecture. This is reminiscent of the problems resulting from strict 

hnctional decomposition that typifies the traditional software construction process. 

Inherent to software constructed using functional decomposition is the fact that the higher 

layers require knowledge of the lower layers. Knowledge percolates or flows upward in 

this kind of architecture and makes it inflexible and therefore resistant to change. Within 

the context of this kind of architecture, business functions or business models are also 

knowledge and have to be encoded. Thus, it is fair to state that, the traditional software 



architecture and i~nple~nentation approaches result in business models being encoded in 

the APIs of these kinds of applications. 

The fact that the business models and resulting business processes are embedded 

in the APIs in traditional software applications is reinforced by the fact that these 

applications are extremely resistant to change. Changing them to address new business 

directives means reprogramming the application. To address this problem, most large 

enterprises have substantial Infor~nation Technology (IT) resources dedicated to address 

this problem. Again, it is fair to assume, for example, that banks are in the banking 

business and not information technology. If the software they use allows them to adapt to 

changing market conditions and facilitate growth, then they would not have to invest the 

current level of resources into their in-house IT departments. Thus, in order to tackle the 

problem of developing flexible business process objects to facilitate adaptable software 

systems, we must effectively develop a new architecture, one that destroys the notion of a 

hierarchical inforination model to handle interfacing between the layers of the application 

architecture. Hence, the adaptive orthogonal integration architecture. 

Domain application orthogonality results in a simplification that can be 

characterized by the application services being viewed as extension of the infrastructure 

services. This is co~~siste~lt with the work of the OMG in their effort to develop domain 

specific standard services. The logical extension is that these services becolne evolvable 

distributed components that can be deployed directly into the execution run-time 

environ~nents. 

The enterprise application architecture can now be developed using an object- 

oriented n-tier architecture model. The application and infrastructure services are the 

93 



foundations on which the intrinsic and domain objects are built. The process objects 

imple~nent the enterprise business processes. Process objects are deployable distributed 

components. Process objects implement logic to facilitate collaboration between two or 

more business objects in addressing a business fbnction. Integration between the various 

domain silo applications is manifested as collaborations between the business objects 

within the context of a process object. 

This is a form of dy~tcznlic integi*rrfiot~. This kind of integration is expressed as the 

collaboration logic between business objects within the context of a process object. The 

business objects represent domain application services. These services are implemented 

within the domain silo applications. 

Implelneritatio~i and Protocol of the Enterprise Mediation Layers 

As described in Chapter 4, the mediation services layer is a distinct layer of the adaptive 

enterprise application integration (EAI) architecture model and is co~nposed of several 

conceptual layers. This section describes the imple~nentation of the mediation's sub- 

layers and the protocol between those layers. Figure 5.2 provides a graphical description 

of the implementation layers and protocols between the layers. 



Figure 5.2: Mediation Services Layer Implementation and Protocol 

Figure 5.2 shows the three major components in the mediation layer. The first is 

the process object. As described in Section 4.3.4, the process object can span a particular 

business object or concept. The second and third coinponerlts are application 

components. These two coinponents are represented by A and B in Figure 5.2. Either 

component could represent order, customer, affiliate, or any other component of an 

integrated telecommunication management application; however, the particular 

components should be viewed as patterns of interaction between components rather than 

details of a particular component. Each application component colnprises a Business 

95 



Object Manager, a Business Object, and a Persistent Object. Whereas Section 4.3 

describes the basic capabilities and function of each layer of the application, Section 5.2 

describes some aspects of implementation relating to how the layers are constructed and 

how, t hey interact. 

5.4.1 Compolle~lt Collstructio~l 

This section describes the structural aspects of the mediation layer components. 

Process Objects 

A process object contains functionality that spans business object components. 

Process objects contain no state. Instead, they coiltain only hnctions that require a 

particular sequencing or cross-reference between other objects. These functions contain 

the procedural/behavioraI knowledge of the application. Process objects may therefore be 

replicated for performance and scalability as needed. Process objects should be used to: 

Coalesce lists and queries that cross class boundaries 

Provide convenience functions for a user interface client 

Gather a subset of Business Objects to invoke the same function on each 

Provide validation of state at the model level (cross-object) 

Force a sequence of activities. 

Business Object Managers 

The Business object managers provide lifecycle and location services for a 

particular class of business object. Unlike process objects, the business objects manasers 

96 



contain state. Each business object manager contains a transient list of business objects 

for the class it represents. The lists may be separated for performance reasons within a 

particular business object manager to contain, for instance, a list of those business objects 

that are active and those that are inactive, determined by the state of the business object 

itself. Other separation schemes may also be possible. 

A business object manager can be designed to handle some larger-grained read- 

only queries. When such requests are made, the business object manager initiates a 

transaction and makes calls directly to private methods of the business object (the 

business object manager of a particular class can be implemented as a C++ friend of the 

same class of business object or in the same Java package). This implementation 

approach could be done to increase performance by handling the query in one transaction. 

Because this layer of the application contains state, replication is not simple. To 

replicate this layer, an event mechanism must be implemented so that multiple business 

objects managers will be aware of the changes to the transient lists of business objects 

that other managers are making. 

Business Objects 

The business objects contain no state. They serve as gatekeeper to the persistent 

objects. A business object contains the transaction logic to access the persistent layer of 

the application for write transactions. Although this layer contains no state, the business 

objects may not be replicated because there is a distinct tie between an instance of a 

business object and its corresponding persistent object. In other words, the business 



Some interactions are considered illegal within the context of this architecture and 

are not allowed. They are represented in Figure 5.2 by dash directed lines. These 

interactions primarily violate encapsulation and include, but are not limited, to the 

following: Process Object to Persistent Object of any class, Business Object Manager to 

Business Object Manager of different class, Business Object Manager to Business Object 

of different class, Business Object Manager to Persistent Object of different class, and 

Business Object Manager to Persistent Object of same class. 

Process Object to Business Object Manager of Any Class 

Process object to business object manager of any class invocations (Line 1 in Figure 5.2) 

may be performed to get a subset of the list of business objects contained in  the business 

object manager. This is not completed in a transaction. To the extent possible, the 

business object manager provides convenience functions to narrow the list of business 

objects returned in a query, thus reducing the internal knowledge of a business object that 

a process object must contain. 

When the process object receives a transient list of business objects, a question 

arises as to the integrity of the process object's function that may be addressed by the 

process object subscribing temporarily to event notification of update to the transient list 

of business objects. This will call for a case-by-case analysis of the process object 

function to determine how the event will be handled, and may include updating the 

transient list, breaking a transaction lock (if one was initiated) and forcing the process 

object to retry, or ignoring the event. 



Process Object to Business Object of Any Class 

Process object to business object of any class invocations (Line 2 in Figure 5.2) are 

performed when the process object has already invoked a function on the business object 

manager to get a subset of the particular business objects (narrowing the list of business 

objects through a query). The process object then either returns the list of business 

objects to the client that invoked a function on the process object or invoked a specific 

function on each of the returned business objects. 

Business Object Manager to Business Object Manager of Same Class 

Business object manager to business object manager of same class invocations (Line 5 in 

Figure 5.2) are required because of the transient list that exist in the business object 

manager. This is not a business object manager invocation of a function on itself, but 

rather is the invocation of a function on other instances of the same business object 

manager class. This could be a simple event notification mechanism to update the 

transient list. 

Business Object Manager to Business Object of Same Class 

Business object manager to business object of same class (Line 6 in Figure 5.2) supports 

create, read, update, and delete functions. Write transactions are done on a transaction- 

per-object basis to ensure persistent object integrity. The read transactions are done on a 

transaction-per-business object manager basis, so that one transaction may be used to 

collect the entire list of business objects. 



Business Object to Persistent Object of Same Class 

Business object to persistent object of same class (Line 10 in Figure 5.2) are performed 

for create, read, update, and delete functions. The business object public functions always 

access the persistent object through a transaction. The business object contains private 

functions that do not have a transaction that make the actual call to the persistent object. 

The business object public function (with the transaction) calls its own private function to 

carry out' the public fbnction. 

In this chapter we coinpared and contrasted our proposed adaptive ortliogonal integration 

architecture with the traditional integration approaches and showed how our approach 

avoids the issues relating to hierarchical information models and related problelns 

resulting from hnctional decomposition. In addition, we showed how our architecture 

lends itself to the concept of adaptive business process by taking advantage of dynamic 

integration. This is essential to facilitate application portfolio interoperability. 

The next chapter presents the adaptive application integration architecture. The 

presentation in that chapter is from an implementation perspective. 



Chapter 6 

The Adaptive EAI Architecture Framework 

The central theme of the adaptive enterprise application integration (EAI) 

architecture framework is to provide an enterprise infrastructure for sharing objects and 

processes, making them accessible to applications at the enterprise level and thus 

facilitating application integration. Figure 6.1 gives an illustration of the adaptive EAI 

architecture framework. This is effectively a high level pattern corresponding to the 

Adaptive Orthogonal Integration architecture model presented in Chapter 4. The core 

component is the distributed object framework, such as CORBA, that acts as the essential 

glue for distributed object interoperability and fault-tolerant architecture. The major 

components in the adaptive EAI architecture are as follows: 

Distributed object framework 

Domain application adapters 

Application Mediation core 

Event mediation tnodule 

Event Handlers 

Enterprise application architecture 

Business processes 

Package mediation 



<<Entity>> 
Process Object (Enterprise 

Business S e ~ c e s )  7 

11 
<<Entity>> 

Distributed Object Framework [Domain Services, 

<<Entity>> 
Package Mediation 

(Automated mapping) 

<<Entity>> 
Domain Objects 

Figure 6.1 : Adaptive EAI Architecture Framework 

- 
, 1  O..n 

1 

\ 1 

The EAI architecture framework facilitates object as well as design reuse. Object 

reuse results from the domain and infrastructure services being incorporated into the 

<<Entity>> 
Application Mediation 

Core 

A 

solution. Design reuse is a consequence of the design patterns and architecture pri~~ciples 

<<Entity>> 
Event Mediation 

1 
4. 

Event Channel 
1 0. n 

1 
1 

O..n 
0. n 

-I 

<<Entity>> 
Domain Application 

<<Entity >> 
Event Handler . 

Adapter - .' 

I ' 



employed. A UML model-based translation developinent process can support the overall 

software component creation process. The component being developed can be specified 

as a UML model, complete with behavioral specification done using UML extended with 

an action semantic language (ASL) [Mosses 1992; Mosses 1996; Doh 1994; Even 19901. 

6.1 Distributed Object Framewo~-k 

The distributed object framework is the infrastructure mechanisms standardized by 

CORBA and can be ilnplemented using a standard off-the-shelf object request broker 

(ORB) such as lONA Orbix [Iona 19991. The role of the ORB is to unify access to 

application services, which it does by providing a comlnon object-oriented, remote 

procedure call mechanism. The CORBA Interface Definition Language (IDL), an 

essential component of the family of standards that define the CORBA architecture, 

provides a language-neutral and location-neutral messaging interface for component 

interaction. CORBA provides a number of standard infrastructure services inclusive of 

the following: 

Externalization Service 

Externalization is the process of taking program data structure and other object states 

and converting that information into a form that can be stored or transmitted. This 

process involves removing pointers and converting binary data into flat 

representations so that the information can be considered to be a stream of bytes 

without additional internal structure. Externalization plays a very crucial role in 

object location transparency. We can think of this as representing an object ~ r a p h  as a 

flat stream by doing a graph traversal. 



Persistent Object Service 

The Persistent object service provides the ability to store the state information and 

data of objects into a relational database management system (RDBMS) or an object- 

oriented database management system (OODBMS). The Persistent object service 

provides for the replacement of the persistence protocols used within the service. A 

persistence protocol is a particular set of interfaces used by a persistent object to store 

its persistent state. Figure 6.2 provides the components of the persistent object 

service. 

,Client Persistent 
Object 

b Persistent ID 

4 OMG IDL connect u 
Persistent 

Persistence 
Protocol Manager 

Persistent 

Service 

Store 

Figure 6.2: Persistent Object Service Components 

disconnect 
store 
restore 
delete 



Eve11 t Service 

The Event service defines generic interfaces for passing event information among 

multiple sources and lnultiple event consumers. It allows for decoupling of the 

generators and receivers of events and for a large number of receivers that are 

managed by the service and not by the event sources. Event notification is one way of 

using this service. This service can also be used as a multicast capability. The service 

provides a general set of mechal~isrns for allowing recipients of event information to 

register their interest in events. This also allows the source of a multicast message to 

post the message once and have it conveyed to multiple recipients without direct 

knowledge between the event's source and the recipients or direct connections 

between the supplier and consumer objects. Figure 6.3 provides the components of 

the event service. 

FactoryfObject Interface 

Figure 6.3 : Event Service Objects 



The Concurrency Service 

The Concurrency Service is a general-purpose service for ensuring atomic access to 

distributed objects. The Concurrency Service provides synchronization across 

distributed environments and allows the locking of individual objects or several 

objects to provide atomic access when changing state information. This allows 

applications an enabling capability for assuring coherent state information in 

distributed systems. Previous capabilities for concurrency control, which are 

operating system and language dependent, do not extend easily to distributed systems. 

The Concurrency Service provides the advantage of portability and the effective use 

of concurrency across multiple operating system platforms and languages in a 

distributed environment. 

The Concurrency Service works with the Transaction Service in a closely 

coordinated manner. Regardless, it is likely that the Concurrency Service would be 

one of the key services used during transaction processing. When the Concurrency 

Service completes a transaction, either by committing the transaction or aborting the 

transaction, the combined services are responsible for releasing any concurrency 

locks that were put in place during the transaction. The locks are reset to their 

unlocked state. This is an i~nportant part of the clean-up on termination of 

transactions 

The Tra~~saction Service 

The Transaction Service is a general-purpose set of interfaces that can be used to 

encapsulate a variety of existing technologies and provide standard interfaces across 

all i~npletnentations of transaction monitors. For example, the Transaction Service is 

107 



designed to be layered over monitors that are compliant with the XIOpen distributed 

transaction protocol [OG 19941: monitors that use the Tuxedo protocols, and object- 

oriented database conforn~atlt with the OBMG-93 standards. The Transaction Service 

is a general capability that allows the manipulation of the state of lnultiple objects in a 

distributed environment. It builds on the capability of the Concurrency Service for 

controlling access to individual objects. The Transaction Service allows modification 

of the state of multiple objects to be viewed in a reliable and highly consistent way. 

The Transaction Service supports the ACID properties of transactions (atomicity, 

consistency, isolation, and durability). 

Transpareat Tmi~sactionality 

AII processing can be performed within the context of a transaction that ensures 

application consistency and full transparent recoverability. 

A s y ~ ~ c h r o ~ ~ o u s  Pi-ocessing Model 

This processing model minimizes synchronization points within the application for 

high throughput and traffic peak absorption. 

Applicatio~l Recoverability 

The CORBA architecture provides recovery services for applications that are both 

transactional and non-trat~sactional, enabling customers to integrate legacy data and 

process sources into the recoverable application model. 

Reliable Queuing 

Application developers can build models on different nodes and communicate via 

distributed asyi~chronous transactions. 



Kernel Level Threading 

Kernel threads are lightweight processes. The CORBA architecture is designed to 

take advantage of kernel Inode threads, which minimizes context-switching overhead 

that reduces latency and improves performance. 

Transparent Scalability 

The CORBA architecture framework scales transparently by supporting single and 

distributed scaling mechanisms, providing flexibility for the application designer to 

make trade-offs among cost, manageability, and redundancy - as required by existing 

application and business models. 

Domain Applicatioll Adapters 

The domain adapters form a vely powefil framework for incorporating domain 

applications into the overall enterprise framework. The adapter framework can be 

extended to include interfaces for integrating protocols such as SNMP, and provide 

support for CORBA, persistent resource managers, etc. We have developed a generic 

design pattern that can be used to implement this capability. This pattern is part of the set 

of EAI design pattern that we present in Chapter 6 .  

The domain adapters are used to expose the infortnation and data models of the 

legacy applications. This exposition allows us to look at the application services provided 

by the legacy applicatiol~ as extension of the infrastructure services provided by the 

distributed object framework. Again, this approach is consistent with the work of the 

OMG in their specification of domain services. 



Domain Application Adapter Design Pattern 

The domain application adapter pattern provides a consistent and repeatable manner for 

thinking about and integrating domain silo applications into a unified franlework. Figure 

6.4 presents schematics of the adapter pattern. The pattern provides three main functional 

areas: (1) the communication transport, (2) the application interface, and (3) the adaptor, 

which is a container for the application functionality. The 

~ o ~ l c r e ~ ~ ~ ~ l i c a f i o ~ ~ ~ r n r l s c ~ c ~ i o i l  class is the main class interacting with the application 

hnctionality via the application program interface (API). The API may have to be 

enveloped in a special purpose wrapper to handle platform specific data type conversion. 

This is shown in Figure 6.5. 

The CoilcreteAdopfer class acts as a container for the concrete application 

transaction object. It effectively overrides the Getfi.ntlsacfio/l method to return the 

relevant transaction object. This is an instance of the Factory Method design pattern at 

work. The Tra~~sacfior~iklgi~ object associates an Apply i~orl.sacfiot1 object wit 11 a 

coinmunication object and returns it to the Adapter. Thus, we can have ~~~ul t ip le  

concurrent transactions occurring at the same time. Hence, this pattern is inherently 

scalable and therefore imposes no limit on the performance of the lesacy application it is 

adapting. 



Figure 6.4: Domain Application Adapter Design Pattern 

<<Entity>> 
ConortteMapter 

----------I) +ln i@dapt*~  
*0et~1anuc4ion0bjeoQ 1 

<<Entity?, 

0..1 
Conrn rmnsport 

1 

<<Entity>, 
o . . ~  

<<Entity>* 
Communlcrtionk4gr 

&tp/ rmnwclion 
* ~ r c a t e ~ o n n e c t i o n ~  
+ ~ l t ~ o n n e d i o n ~  
% n ~ t ~ o n n ~ ~ o  

teEntlty?? 
TranradionMn~ 

+~.fCunnrcthnS?atu~ 
* ~ e t ~ o n n r c t i ~ S ? a t u s Q  
+~otAdlocation IaturO 

I 0.: 

* e t A l t o c a ~ o n S a C ~  
+ ~ o n n e c t ~  
+&stmYo 

+~1.thbst#amr0 
+st ~erwedtarre 0 
+ s ~ P A ~ ~ ~ + s o  

* t h *  ?ianzactionwd 
+ k ~ ) l o c r t i o n  St;rturQ 
+ t~ t~ l /oca tmion~a tus~  
* ~ l l c ~ t i o n & ~ i n  Q 
+4pplicationlngout~ 

a ' 1 
' 

* ~ r e . t e ~ l r n u c t i o n ~ b j ~  
+ b c t ~  ldfnsda!ioft~bj~ 

Instant  ales . 
~ l n i t ~ r r n ~ ~ f ~  1 .. 



Application API 

Application API Wrapper 

(from Adapter Design Pattern) 

<<Entity>> 
Adapter I 

(from Adapter Design Patte~n) 

<<Entity>> 
ConcreteAda pter 

(from Adapter Design Paltern) 

I + ~ e ~ ~ o c a t i , i i t u ~  I , 
' + ~ e t ~ l l o c a t i o n ~ t a t u ~  *<Entity,> 
~ ~ ~ p l i c a t i o n ~ o g i n ~  TransactionMgr 
+ ~ ~ p l i c a t i o n ~ o g o u ~  

(from Adapter Design Pattern) 

' h e t h o d l 0  
+M eth o d20 
%M eth o d30 

Figure 6.5: API Specific Wrapper 

Applicrtio~l Adapter Mediation 

The application adapter mediation is a central component that provides the actual hooks 

to anchor the doinain application via the domain adapters to the core distributed object 

framework. We have developed a design pattern to accolnplish this functionality. This 

pattern is part of the set of EAI design patterns. The application adapter iliediation pattern 

is presented in the next section. 



6.3.1 Application Adapter Mediation Pattern 

The mediation pattern, Figure 6.6, provides the framework for the adapters to register 

themselves and make their hnctionality available. It uses the principle of delegation to 

present the hnctionality of the respective application via the adapter to interested parties. 

<<Interface>> 
intAdapterMediation 

*~egisterAdapter(Adapter : intAdapter) : void 
* ~ e t A d a ~ t e r ( ~ d a ~ t e r N a r n e  : String) : intAdapter 
+ l n i t ~ d a p t e r ~ e d i a t i o n ~  : void 
* u n ~ e ~ i s t e r ~ d a ~ t e r ( ~ d a ~ t e r ~ a t n e  : String) : void 

AdapterMediation 
% m - ~ d a ~ i e r ~ o u n t  : Integer 

I * ~ o n i t o r ~ d a ~ t e ~ a ~ ~ n a r n . )  : void I 
a 

* ~ e ~ i s t s r ~ d a p t e r ( ~ d a ~ t e r  : intAdapter) : void 
* ~ e t ~ d a ~ t  e r ( ~ d a p t e r ~ a m e  : String) : intAdapter 
* l n i t ~ d a p t e r ~ e d i a t i o n ~  : void 
* u n ~ e g i s t e r ~ d a ~ t e r ( ~ d a p t e r ~ a m e  : String) : void 

Figure 6.6: Application Adapter Mediation Pattern 

0 ' 

+registe 

Event Mediation 

adapters 

O..' 

Most legacy applications have no concept of asynchronous processing. This is a 

consequence of the push oriented transaction model that typifies software applications 

113 

Adapter 
Q m - ~ d a ~ t e r N a m e  : String 
Qrn-~da~ter lnterface : intAdapter 

* ~ e t ~ d a ~ t e r ~ a r n e ~  : String 
* ~ e t ~ d a ~ t e r l n t e r f a c e ( ~ d a ~ t e r  : intAdapler) : intAdapter 
* ~ e t ~ d a p t e r l n t e r f a c e ~  : intAdapter 

I 



developed using a functional decomposition methodology. The event mediation module 

provides a mechanism to retrofit legacy applications with asynchronous notification 

capability. This is in effect a standardized layer that is wrapped around other rudimentary 

mechanisms (such as polling) that can be retrofitted into the legacy applications. 

6.4.1 Event Mediation Pattern 

EventMan ger 

Qrn-~andles : lid <Handle$> 

Figure 6.7: Event Mediation Pattern 



The event mediation pattern, Figure 6.7, is an extension of the Subject Observer pattern. 

Concrete event handlers are registered with the event mediation object to receive specific 

event notifications. The respective event manager will invoke the event handler to 

process the delivered event. The event handler is able to activate process objects via the 

event mediation and adapter mediation objects. 

6.5 Package Mediation 

This module perforrns data mapping between the enterprise dornain, enterprise business 

objects, and the silo domain application object representation. This module is 

transparently invoked whenever there is any data transfer between the enterprise view 

and any of the domain silo applications. 

6.6 Flexible Busilless P~*ocesses 

Business processes are the mechanism by which an enterprise implements its business 

models. Thus, these act as mini-workflow processes that coordinate and collaborate the 

interaction between business objects and business object managers in the N-Tier 

Orthogonal architecture. The business model, the critical intellectual property of the 

enterprise, is programmed into the business processes. Depending on the technology 

employed in the implementation, business process objects can be developed as 

deployable runtime executable components. Since business process objects are o/?jec/.s in 

the object-oriented sense, all the properties inherent to the 00 paradigm apply to them. 

Thus, one can use the principle of inheritance to form a new business process that can be 

further refined to address changes in market conditions. The new business object is 

115 



effectively a new version. This is the manner in which this architecture achieves its 

adaptable capability. 

An interesting consequence of the collaboration mechanis~n employed by the 

business process objects is that it presents a new way of looking at integration. A finite 

state automaton (FSA) can be used to represent the collaboration sequence of the 

business process objects. This coupled with the notion of versioning mentioned above 

forms a very powefil way of looking at integration. Integration is effectively dynamic in 

nature. This Dy,lainic it~fegr*ntio~r can be envisioned as a business process traversing a 

specified path through a set of nodes. The nodes represent the business objects. Hence, 

for a given set of nodes, the executio~~ of different business processes result in different 

outputs. 

The abstract data view (ADV) concept is central to the notion of adaptive 

business process being presented. The ADV design concept promotes reuse of interface 

specification through the principle of composition since it allows con~plex interfaces to 

be built from simpler interface components. In addition, the specification constructors 

have the ability to extend the capability of the module components being combined. The 

business models represented as automated workflows are, in fact, the extension capability 

provided by the ADV or business process components. In so doing, the ADV mechanism 

provides the capability for specification of the collaboration logic between the enterprise 

business objects as well as the enterprise workflows that define the business ~nodels of 

the respective organizations. In principle, the ADV approach for business processes is an 

extension of the basic delegation mechanism. Figure 6.8 provides a schematic 

representation of the concept. 



Figure 6.8: ADV Representation of Business Processes 

6.7 Putting It Together 

The Adaptive EAI Architecture Framework presented in Figure 5.1 lends itself to 

significant automation. In Chapter 8, we present a UML based component development 

approach using model-based development to autoinate much of the coding. There is 

significant scope for reuse in this approach. The domain application, domain adapters, 

and mediation core facilitate wholesale reuse. As long as the domain application has the 

fbnctionality, no coding is needed for reuse. It is the business process objects that will 

have to undergo the most modification to i~nplernent the enterprise business models. This 

is understandable since this is what affords an enterprise the ability to differentiate itself. 



In Chapter 8, we also propose a translation process that can take a UML model of the 

business process and generate the deployable runtime component. 



Chapter 7 

OSS Integration in the Telecommunications Industry 

Operations support systems (OSS) are the mission-critical enterprise hardware 

manage, 

and software systems that telecomlnunications service providers use to implement. 

and support the complex transmission and delivery systems of the 

communications environment. OSS software systems can be segmented into three very 

broad categories: (1) Customer care, customer support, and billing, (2) provisioning and 

order management, and (3) network management. The deregulation of the 

telecominunications industry has resulted in significant structural changes in the 

teleco~nmunications market, causing major modifications of the business models for 

telecom providers. The changes in the business models have direct impact on telecom 

companies' OSSs and interoperability of the OSSs. 

The deregulation of the telecommunications industry has resulted in the 

proliferation of new service providers and technology offerings, such as wireless, long 

distance, Internet service providers (ISPs), and cable. The new players have fueled a 

robust market for telecom OSSs, as they position themselves for battle with the 

incumbent service providers. As these providers jostle for market position, convergent 

service offerings and other valued-added services are used to differentiate and attelnpt to 

gain customer lock-in. 



The solutions offered by OSS vendors are highly fragmented. Most vendors offer 

solutions that can be categorized in one of the three segments mentioned above. These 

solutions have little or no integration or interoperability between the various categories. 

Thus, integration of OSS systems, as a general rule, is non-existent, resulting in severe 

inefficiencies in the back ofice. This situation is exacerbated by the fact that each of the 

domain-specific OSS software application is developed using diverse software 

technologies and architectural frameworks, resulting in very disparate solutions that are 

very difficult to integrate and interoperate. Swivel-chair integration is the order of the 

day. 

The business processes are nor~nally integrated into the OSS applications' APIs. 

This results in service providers not being able to be responsive to market pressure 

arising from competition, consolidations, and technological innovations. In addition, 

because of the co~nplexities of these systems, traditional peer-to-peer integration 

approaches are not a viable solution. More il~novative solutions must be adopted. 

We need an architecture that takes the business processes out of the APIs and 

elevates them to a higher level of abstraction - such as a business process management 

layer. This layer should be integrated to the service management layer using configurable 

soft-edge domain adapter frameworks. The impact of such an orthogonal architecture is 

that the service provides can adapt rapidly to changes in their business models and these 

changes do not percolate to the lower-level core OSS applications. Hence, the adaptive 

EM architecture model and framework. 



Key Industry Standards 

Experience with telecommunications in the deregulated market has proven the utility of 

the ITU Telecommunications Management Network (TMN) information model as the 

organizing principle for the inforination/data architecture (ITU-T M.3 100, Ger~e~-ic  

Network ModeZ). The information model of TMN is distinct from its corresponding 

implementation model. The TMN information model defines layers of abstraction that are 

appropriate to different aspects of the overall telecommunication enterprise. TMN also 

specifies an agent-based ii~~pleinentation inodel for the network management sofiware. 

The information model, as specified by ITU, is illustrated in Figure 7.1. A brief su~ninary 

of the main components and associated features of the TMN model is presented below. 

Abstractions 

Figure 7.1 : ITU Standard TMN Information Model 

The TMN inodel has five layers of abstraction, namely: 



1. Element Layer 

This is the least abstract view of the total system, consisting of the software interface 

to the hardware co~nponents that comprise the network. 

2. Element Management Layer 

This layer abstracts the differences among similar components, hiding the differences 

between different products of equivalent type. This abstraction allows management of 

technology types by the upper layers. 

3. Network Management Layer 

At this layer, we can abstract the difference between technologies to transform the 

network configuration management problem into a graph problem. 

4. Service Layer 

At this layer, applications are constructed to provide services to the customer of the 

coinrnunications firin. This layer provides service sofiware developer with a service- 

based, rather than a hardware-based, view of the network. 

5. Business Layer 

This layer consists of business applications such as billing, rate control, and customer 

care. This layer provides the business software developer with business-model based, 

rather than hardware-based, view of the network. 

Solutiorl to the Telecom OSS I~ l t egrr t io~~  Problem - A Busi~less Process 

Centric Approach 

Traditional application develop~nent approaches often embed the business process logic 

within the application APIs. Any attempt to modify the busitless model result in 



programming changes to the applications that have corresponding down time to the 

application availability when installing a new version that embeds updated business 

processes. The correspoilding business implications are many folds: application down 

time resulting in lost revenues, dissatisfied customers, and difficulty in the specification 

and implementation of business process. Most OSS applications were developed with 

little or no concern for interoperability and as such, resulted in enterprise stovepipes. The 

competitive market pressure in the telecommunications industry has propelled service 

providers to demand hlly integrated operational hnctionality from all the OSS 

applications that they have to operate in the con~inission of their business. A number of 

approaches to integration have emerged to address the OSS interoperability problern. The 

most notables are the peer-to-peer and hub and spoke (broker) models. 

The intensely competitive nature of the telecommunications business market 

place mandates that a telecom service provider must have the ability to perform very 

flexible business process reengineering. Telecom service providers are continually 

redefining their business models in an effort to differentiate theinselves from their 

competitors and to ward off competition. 

In this environment, high availability and customer care management is essential 

to establishing market acceptability and high customer retention. These are essential 

ingredients to successfully operate a business in the internet driven economy. These 

requirements coupled with the necessity of flexible business process reengineering have 

driven us to reevaluate the approaches that have been taken to address the enterprise 

application integration (EIA) problem. The above requirements mandate a business 

process driven integration framework that allows individual business processes to be 



represented, monitored, and integrated with existing systems and users across the 

enterprise. With the ability to dynamically reconfigure active business processes 

(software fault tolerant and hot swappable capabilities), allowing users to continuously 

adapt to rapidly changing business conditions. This process-driven infrastructure provides 

businesses the ability to adjust and alter their operational systems to changing market 

conditions without any down time. 

Application portfolio integration is mandatory in order to support many carriers' 

organizational goals. These goals include operational efficiency via process flow through 

and customer intimacy to enhance customer satisfaction. Examples of this include 

knowing what a customer has ordered across inultiple products, what proble~ns he or she 

has experienced, and his or her billing and payment history. Addressing this integration 

challenge requires a co~nprehensive application portfolio assembly approach that can 

exchange information among multiple applicatio~i architectures each with different data 

and process models and with different data exchange models. 

The challenge is to create a means of integration at the business process level. An 

information broker can create generalized event and object models to norlnalize the flow 

of information between OSSs. We can create adapters to the various OSS applications. 

This serves the purpose of migrating the architecture from a multi-point, spaghetti 

architecture into a much inore manageable hub-and-spoke arrangement. However, the 

adapter approach is just the starting point because it does not allow for a flexible business 

architecture. To create an architecture that enables best-of-breed OSS selection, while not 

sacrificing integration and data sharing, requires another layer of "business aware" 

software that runs above the information broker. With such a layer in place the business 

124 



process can change without affecting the underlying applications. And conversely, IT 

should be able to change applications without affecting the business processes. 

Eleckoric 
- 

WEB BOndillfJ Trouble 0MK)E CRM - Application GatMry EBPP WFM 

I A r 

Adapter Framework 

Porcess Mediation Framework 

Adapter Framewok 

Network Peifo~mance 
Billing h v i s i o ~ l i n g  M'duagm~ex~t Marrimmt Mlmzerunll 

I 
Dntn Nebvork Element Medi;ltion 

Trans formation 

Figure 7.2: Generic OSS Integration Architecture 

Element 

The architectural approach outlined in Chapters 4-6 are used to build the 

schematics of integrating the typical OSS dolnain applicatiolis that the Telecom Service 

Providers will use in the co~nmission of telecoln services to their customer. Figure 7.2 

shows a logical OSS Integration architecture. This diagram has most of the applications a 

telecom service provider will need. 

Elenlent I Element I Elenlent 



Business 
Processes 

Figure 7.3: EAI Context Diagram 

D~str~buted Object Onented Framework (CORBA) 

f 

Event 
Mediation Server 
i 

Asynchronous 
Event 

Figure 7.3 presents a simplified context diagra~n for the EAI problem. Domain 

Domain 
Adapter 

silo applications are plugged into an application mediation server via their respective 

domain adapters. These applications can be retrofitted with asynchronous event delivery 

Processor 

mechanisms that can be interfaced to an event mediation server via event handlers. Event 

processors (event handlers) can be registered to the event mediation server. The event 

processors respond to event notifications and can trigger operations in the business 

1 

processes. This provides an automated mechanism for legacy applications to trigger 

business processes. 

Domain 
Adapter 

I 

Domain 

I 
Envet 

Appl~cahon Interface 
' 

Envet 
Interface 

Domain 
Appl~cat~on 

+ 



&eqister~dapter(~dapter : intAdwter1 : void 
ketAdaPter[~dapter~ame : String) : intAdrpter 
*~nit~dapter~edidion() : void 
%n~egister~dapter(Adapter~ame : String) : void 

AdapterMediationCore 

& - ~ d a ~ t e r ~ o u n t  : Integer 

heuirterAdapta(~daptcr 1 intAdapter1 I void 
& e l ~ d a ~ t e r ( ~ d r ~ t e r ~ s r n e  I String) I intAdapter 
+lnit~da~ter~ediation() : void 
h n ~ e g i s t e r ~ d a ~ t e r ( ~ d a p t r r ~ a m e  : String) : void 

Adapter 
AdapterName : String 

Interhce : intAdapter 

* ~ n i t ~ d a ~ t e r ( )  : void 
k e t ~ d a p t e r ~ a r n e ( 1  : String 
%ingAdapter() : Long 
k e t ~ d a p t c r ( ~ d a ~ t t r ~ a m e  : String) : void 

h e t ~ d a p t c r ~ a r n c ( )  : Strinq 
k e t ~ d a ~ t e r ~ n t e r f a c e ( ~ d a ~ t e r  : intAdapter) : intAdapter 
h e t ~ d a ~ t e r ~ n t e r f a c e ( )  : inlAdapter 

Figure 7.4: Application Mediation Server 

- 

Figure 7.4 presents the main coinponents of the application mediation server. Its 

primary hnction is to provide for registration and use of the application domain adapters. 

Adapters as fitted with interfaces corresponding to abstract data view classes. 



<ren(4pb 
E Tmrrclmr -b;n_.-L-.--- . . - .  -- *nilMap(cO 

C*nnra~on'  ECommTranpod * g c l A d a p l a ~ ~ a m g  
~ - ~ i t o c r t ~ ~ n s t ~ ~ w  : long I . S C ~ H * D *  :i 
% ~ t ~ # n n r d ~ ~ n O  C Cbnr mud ' 
% * t N l a d i o n b t . k g  
C f a ~ ~ t t o o r t ~ n n ~ ~ ~ t u ~  

I 

\ 1 

+ ~ r ( l v n r ~ l r n i d ~  
~ I ~ ~ I T ~ o I I * ~ @  
%d~.rmhSpea~ 
*ba~l.Ou.rrQ 
% a t f i n t R a ~ ~  
+O~HI~INJIU@ 
% * l a d ~ u r c * m p ~  

a 
0 n 

+ D O C ~ R J ~ ~ T U ~ O ~ X )  
I *~.lT~rm?rolSize(l , *51Wum~dtwaTunO 

R I  
d<lntabireabr 

V s l e a e I T ~ r m r a l ~ n  
I 

* e a ~ e ~ & j a . ~  ! 
h * w 1 w u ~ e 4 @  r <<Enb+>r 
* A d W a I a ~ l * l ~  1 ~ ~ i r b ~ ~ l a . r u d l a n ~ ~  
~ J r a ~ T r n O u ~ ~  
% r l ~ a a m h S ~ . Q  ~ - ~ r a n r r d l o n  : V e h r  !ETtrnucbonr 

* E ~ w f * o u . * O  t %-TI~~PO*ISR~ : 1em0 - b - w u m * d t w a ~ r a n  :dong 
*5m(t id~*wrdQ +p.c(_frqurst-)a 
*&rllmld~aludJ 
*~rled8usCsmp0 / * ~ a t ~ ~ m ~ . ~ T i a n . U a ~  

1 *Q~IT rrnP*ml~ir& 
I *5aINu-l1rn0 

Figure 7.5 : Billing Application Adapter 

Figure 7.5 provides the major classes in the adapter for the billing application. 

This adapter was developed around the Portal Billing system. 



Figure 7.6: CRM Application Adapter 

\Browse Class Diagmml tctn,brtma&r 

F M m k  

-*z??3z?L-L 

Figure 7.6 provides the major classes in the adapter for the custolner relationship 

management (CRM) application. This adapter was developed around the Siebel CRM 

system. 

+ n - ~ l m o d ~ r n B t r t u s  long - . ----- -.. .--- -- - 
+ I ~ I A d a p t m ~ ~ a r n a  

* O * ~ l a u t i o n ~ ( . ~ 4  
+ * E m ~ b p r  
e w a p k r  

e r ~ n l l i y r *  

iCa*r h a - A  
ConaecWonA(pntl 

m-HmrOlame : Ik'nm 
P+m-lPAddf*r : N(nO 
b m P n d  +In@ 
~ m ~ S ~ n e ~ l l r m ~  rtrinw 
b m J ~ n n 0 b l w  Imno 
g+m-NIaarlmnhtabr tang . - -  .-.. -.*--..-.- - 
% r l H d N r n i q  
.s* t IPM1le& 
h * i ~ D w  
*r.?~@rnf~rm*CJ 

<dhn(itrrr 

~ ~ a l m b m l C I m O b j . e  Sl.b.lBkf~ObjaC4-Wal ~ d ~ : ~ ~ ~ Q  *cannmc(~! 
b m - S i e b e l B u d a r n ~  SiebelBuyCump-u*f +,,(ji~hmlTranObJm~ % d ~ e v C ,  

* p m K o n n a l o n S t a t ~  
*CeIClnnamlan~ . t a ~ ~ l o e r t b a n S t r t M J  
* C n a i ~ ~ l e b @ l ~ p ~ l ~ h ~ w h j  I ; I **Enmy.% 

+ Q c l f i l l n a l l m n ~ l # ~  
*Sml~U)usObjrcl(b 

E S I e b r U d r p h ~  L ~ ~ ~ a n n a d l o n S t a M  ' *<EnHiys, ? b t b l * ~ u o d l c  
* ~ d ~ v a l e ~ l e l r g  

-..-. .. .. - 1 ES~mb.lWfapp.r 

* ~ ~ r n r t ~ m ~ u e m  - - --I 
%*1?..1d.Jp.* 
g B e s u l s O u e ~  I * ~ r l ~ i m b . l ~ ~ a n ~ b l e ~ .  1FS1ubmlllrn 
*GetF~n(~mm&l I *iniWdapleO : w i d  
* O a w r * ~ a v r l u q  
~ a l e ~ u s ~ o m p ~  

e*Enlit lb* 
ECb~baT~ampeR 

'&->;a< .il\pP~;&y3~%;l~~~ r-ii,-- - -  .-- .- . --. -- .-- .- 
E T r r w l e n M g r  

d~lnlerfram.8 ,' %enn.sO 

IFT~rnsrotlan ; 
krn-Trarsrdlap V*btm~ CETfanradlanr 
Spmn-T~anPoolSize. IDIIU 0 .n 
brn-NurnAetmTlan I e ~ l u  R I 

+~o~~.alsT~.aOb&) 
.~e17ran~oeIB1zr0 E S i r b ~ l C o ~ ~ ~ r r d ~ r r ~ ~ M q ~  
* ~ . ~ u d a m T r a @  

* i~cann*ded-b? *QetN.r(C.nnrdio@ 

*InltCnnnUgO 
~ e ~ ~ o n u ~ o a l ~ ~ c ~  
~ O r l N u r r ~ \ d ~ r r C o n ~ S  
%rariaConmad~sb(I 

*~ t t~ t *be l l rmObjmcUl  
*Oet~ran~oalSbsO 
* ~ b l w u m A c t i v m ~ l a n ~  

------ - 
i \\ 

d*Enlitvwr 
E l i m b u l T ~ r n s r d ~ a n  

shbaI*pploD/ee: ~ t l b a l & # ~ l l ~ a 1 1 ~ n - ~ a l  

- I F S ~ ~ b m U d a p l ~ f  

*iniMdaplrO 
*aetAdaptefN~meQ 

. 'pine'd*pl*o 

+lnllAdaptslg 
+grIAdapl.~~arn.O 
% 1 n ~ d a p b 0  
'Islnlofde d l a  
%mtl\arpl*rHarna~ 



Infor~llation Architecture: Static Domairl Model 

This section presents the information architecture corresponding to the enterprise 

mediation layers (domain objects, business objects, and business processes) for the 

adaptive orthogonal EAI architecture model presented in Chapters 4 and 5. The material 

provides~.a gradient walk through the logical architecture from a domain analysis 

viewpoint. 

7.3.1 Customers and Orders 

Figure 7.7 shows the siinple and obvious relationship between customers and their orders. 

An entity (company or individual) who has ordered service(s) from a telecoinmul~ication 

service provider is called a customer. 

Customer P I  
Order F 7  

Figure 7.7: Custo~ners and Orders 

Customers can place any number of orders for service. There is a one-to-many 

relationship between a customer and its orders. The system should reinember all orders a 

customer has placed, even after the entity ceases to be a customer. If the entity becomes a 

130 



custoiner again, all past order history is restored. The navigation between customers and 

orders should be two-way. Users should be able to access all past and present order 

information from the customer information and reference customer information, such as 

billing address, from the order information. 

7.3.2 Service Earolln~eot Simplified 

ServiceEnr ollment 

I Order 
(from Curtornerr and orders4 - 

0, ,* 

Figure 7.8: Service Enrollinent Simplified 

Figure 7.8 presents a simplified diagram of the details of a service enrollment. We will 

elaborate in Section 7.3.4 to make it represent a inore realistic real world model, but this 

view will suffice for now. A service enrollment is a specific instance of some teleco~n 

service ordered by a customer. The term e ~ ~ i . o l / n ~ e ~ ~ f  is used to represent the customer's 

use of, or enrollinent onto, a service that can potentially be disconnected later. 



An order can have several service enrollments, and each enrollment is associated 

with a particular product and an optional list of features. Examples of products are a 

business line or a combo trunk. Examples of features are call waiting or call forwarding. 

Features are dependent on products and are not inventoried. Products are independent and 

are inventoried or allocated, and thus there are individual instances of products. Features 

have instances so as to be associated with products in orders. 

A-specific product can be allocated to a customer via an order; later it can be de- 

allocated (i.e., returned to the catalog of available products) and allocated to a different 

customer. Line can be moved and telephone numbers changed. Thus, enrollment signifies 

the changeable relationship between products and customers (via their orders). The 

customer enrolls in the service. The service is added to the customer's service portfolio 

(list of services the customer has). 

7.3.3 Order Operatio~~s 

A more complete picture of the relationship between orders and their service enrollments, 

Figure 7.9, introduces the concept of order opeiqatio~ls. In addition to requests to acquire 

and turn on service, orders are actually the primary medium of exchange between a 

customer and a telecom service provider, and embody all requests for modifying the 

customer's status. Orders include requests to change some aspect of service (Change 

orders) and requests to discontinue part or all service (Disconnect orders) as well as 

requests for new service and several miscellaneous kinds of orders. The subtypes of order 

operation shown in Figure 7.9 are not complete; however the list is easy to expand. Other 



operations include From and To operations, which are two sides of a customer move, and 

Records orders, which make a change to customer or service data in some small way. 

(From Customers a d  Orders) E Z r l  

New eration Chan e eration DisconnecK>peration BE€s 
Figure 7.9: Order Operations 

!3rvlceEnroliment 
rom Service Enrohent SimpliFisd) (I 

The order operation is conceived to be an association between an order and its 

service enrollments (SEs), as the operation describes what will be done to the 

enrollments. For example, for a disconnect order, the list of SEs represents the lines that 

will be disconnected. 

Order operations are com~nonly thought of as being associated with orders rather 

than with individual items. This means that norrnally an operation applies to all SEs on 

the order. However, the structure presented in Figure 7.9 is more flexible and makes way 

for an ordering system where different items can be handled differently on the same 

order. For example, a single order could specify a disco~zlrect of three lines while adding 

four lines of some other kind. If a single order tjpe for each order was required, then 



users or the system would have to create an order type at the order level and have rules to 

force all order operations to the same kind. 

7.3.4 Offerings and Offering Instaxlces 

The diagram in Figure 7.10 completes and corrects Figure 7.8 and introduces the concept 

of offerings. An offering is a template for describing a product or feature. Each different 

kind of product (i.e., a product type) has a unique set of attributes that are relevant to it. 

For example, a business line has a telephone number, whereas a trunk does not. A trunk 

has a circuit ID, which may be considered irrelevant for a business line. Some types of 

features, which are also offerings, have attributes; some do not. 

Figure 7.10: Offering and Offering Instances 

1 

. o,,* 

1 
OffwingInstances 

o.,* 

Product 1 



An offering instance is a specific item being sold and provisioned for the 

customer. The two main kinds of offerings are product types and feature types. Each has 

an associated instance class, product and feature, respectively. Products call be allocated 

and inventoried. If you sell a customer a telephone number, nobody else can have it. 

Features simply serve to further enhance and modify products. A service enrollment can 

have only one product, but many features can modify the product. 

7.3.5 Offerings 

The diagram in Figure 7.11 expands the offering world. From the top, the 

OfferingCatalogHolder and its subclasses indicate that different kinds of enterprises can 

hold catalogs of offering, among which are service providers, offering vendors, and 

market organizations. This list is by no means complete and could vary in many ways. 

Offering catalogs are silnple collections of offerings. 



I I 

Market 

I 

0 
ProductType FeatureType OfferingGroup 

(from &ring and Olfcring Instances) 0 (horn Ohring and Ohrhg Instances) 

0.: 

Figure 7.1 1 : Offerings 

The recursive or nesting structure of offering inakes it interesting. An offering can 

contain other offering in offering groups. Product types and feature types retain their 

identity as leaf nodes of an offering tree. 

This structure is the "implementation" view of products and features. That is, it 

addresses the problem of specifying complex configuration of products and feature 

definitions and their dependencies when defining the offering in the catalog, not when 

putting an order together. This structure can be used to manage complex rules for 

inclusion of products and features. 

The offering class lists and describes the unique attributes of a certain offering. 

Example implementation of this could be a collection of (name, type, length) tuples for a 

'"rid 

!i 
"PI 



DDL definition. Each offering has an optional specification, which manages the rules of 

combination and exclusion between offering and their component offering (groups, 

products, and features). It represents a placeholder for constraints such as allowed 

features and nested products. 

The contni~ls relationship between product type and feature type is not structural 

in nature; it merely represents the rule that features are subordinate to products. 

Implicit, but not shown, in the diagram in Figure 7.11 is the relationship between 

an offering and its offering instances, which relates this diagram closely with Figure 7.10. 

In Figure 7.10, offerings are seen as related to one or more offering instances. 

7.3.6 Custonler4 and Setvice Locations 

Figure 7.12 provides the relationship between a custolner and its service locations. 

Customers can have inany service locations, which are specific places that they receive 

service and where circuits terininate. However, locations exist independently of 

customers - custolners can move in and out of locations, but many of the facts about a 

location remain constant (or change independently of who is occupying the location). 



ServiceLocation I 

Figure 7.12: Customer and Service Locations 

A many-to-many relationship exists between customers and locations. A customer 

can have many offices, and a location can serve several customers. The complexity of 

this relationship and the fact that the connection between a customer and its location is 

transient call for an object to inanage and track the relationship. This is the custoiner 

location object, which signifies a customer at a location. 

A site survey is an event in which an engineer from a service provider visits the 

service location and inspects the facilities. A report or form describing what was found is 

called a site si~rsey, and may be printed at the time of the visit. Thus, conceptually, a site 

survey is a complete collection of information about a site as prepared at a certain time. A 

service location call be surveyed any number of times. Site surveys apply to locations, not 

customers, even though some of the data on the form pertains to the customer, as 

theoretically a site survey could be taken on a location unoccupied by any customer. 



7.3.7 Custolners and Service Ellrollnlel~ts 

ServiceEnrollment 
(From New Offering and &ring Instances) 

Customer 

- 

Figure 7.13 : Customer and Service Enrollments 

1 

ServiceLoca tion 
(From Customers and Service Locations] 

The diagram in Figure 7.13 introduces the concept of service portfolio. A customer's 

portfolio is the collection of all telecommunication products to which the custo~ner is 

currently subscribed. Service portfolios are grouped by location, as the facilities at 

different locations determine many constraints about the possible service. Also, 

custolners usually keep their locations separate from an accounting viewpoint. For 

example, bills are prepared for different locations. 
139 



Note that the service enrollment is the same object used to specify an individual 

product in an order. Thus, an order can be considered to be a delta (i.e., an incremental 

change) to the customer's service portfolio. A new customer has an empty service 

portfolio. The enrollme~~ts of the completed order are copied to the service portfolio, 

resulting in a portfolio that looks just like the first order's contents. A subsequent order to 

disconnect a line would result in a removal of that line from the portfolio, a New or 

Change order would affect an addition to the service portfolio, and so on. 

An interesting way to view orders and service portfolios is from a configuration 

management viewpoint. The customer's portfolio is the aggregation of all the orders and 

could be reconstructed by starting from an empty portfolio and siinulating the installation 

of each of the customer's past orders in sequence. 

7.3.8 The Order World 

The diagram in Figure 7.14 completes the picture of the concepts surrounding the order. 

In addition to the key relationships previously discussed, some more details are 

mentioned in this section. 

Orders are related to other orders. There are various reasons for this. For example, 

an order can be related to an earlier incompletely fulfilled order or to an order for 

facilities (such as a T-1 line) on which it is dependent. 

An order can have any number of remarks entered for it during the process of 

installing the service. An order is assigned to a sales representative for commission 

purposes. The sales representative can be a person, a team, or even an external 

organization. 



An order is also assigned to a customer care person who acts as the single point of 

contact where applicable and also acts as the assurance person, making sure all tasks are 

completed to turn up service. 

Figure 7.14: The Order World 

customer 
[horn Cutomen and Orders) 

Note that offerings are illustrated differently than in the previous diagrams. This 

O.." 

diagram has hidden the inheritance relationship between products and features and the 

offering instance. Both products and features are show11 here as offering instances (which 

they are) and the fact that they are products and features is derived (the slash before the 

label in the line). 

on.* 
Order ServiceEnroUment - 

ServP€?Pmtlbk, 
o.,* o..* 

0 
cus tomer~ocat IM 

OrderOperat~on Remark 

ServiceLocatlon 

o..* 



7.3.9 The Custonler World 

Figure 7.15: The Customer World 

1 
1 

The diagrain presented in Figure 7.15 completes the picture surrounding the customer, 

CwtB~llInfo 

beyond its association with orders. This diagrain shows details not covered in the earlier 

diagrams which discussed ollly the essential concepts. 

A customer does business with a single service provider organization, usually an 

ExlernCurtMnrgar 
Contact /contacts 

L 

0.: 

I ExlmalSyrtemCustom~~ 
cus t m  

(From Customers and Orders) 

TakWervProviderOrg 1 o,.* 

- O.." F~<~ CCSSCustomer Sav~#*Cuslom*r 

CARECuslomer 
InternalCustorner 

' 
Resident~dCustomsr BudnessCustomer + arent 

1 +child 

Assoclat~on 
Ogrw IbMok 

1 7 

affiliate or a market office. A single point of contact, usually the Customer Care Rep. 

manages the relationship between the customer and the service provider. 



The individual customer class is an association between custolner and individual 

that can assume many other roles than simply the customer role. The same is true for the 

business customer, which is an association between business organization and customer. 

Note that business customer can nest in an organizational pattern. 

7.3.10 simplified Telco Orgrnizntion Structure 

I Affiliate I I Market I 

Figure 7.16: Simplified Telco Organization Structure 

Figure 7.16 provides a simplified organizational structure for a typical telecom service 

provider. A service provider is composed of affiliates, which are semi-autonomous 



operating organizations with their own presidents, staff, local policies, and business 

activity flow. 

Affiliates often are divided into markets, which are also called branch offices. 

Markets also have their own staff and management but report their business statistics 

(number of ordkrs and lines connected) to the affiliate. 

The structure presented in Figure 7.16 is very flexible and represents the fact that 

new companies are constantly entering the teleco~n market space. Young companies do 

not have solidified organizational lines and need to be modeled with a structure that can 

facilitate change. 

In order to control this structure and not allow, for example, markets to certain 

affiliates, an organization rule is needed. This class is needed to enforce the company's 

organization rules. 

7.3.11 Telco Orgnnizr tion it! Detail 

Figure 7.17 illustrates the details of a telecom service provider organization and the 

things that are closely related to them. A structure like the one shown in Figure 7.17 will 

help manage the future as the organization grows and discovers new organizational 

relationships. Task management capabilities are assigned to the top-level organization. 

In this structure, the Telco organizations can contain other Telco organizations, 

without any predefined labeling hierarchy for the subdivision or containment. The 

affiliates and their branches actually provide service to customers. Consequently, 

affiliates do business with custoiners and LECS and have local business practices, often 

enforced by the processes of the local BELL operating companies that they must interact 



with. The column of classes on the right side on the model shows the different unique 

collections that the affiliates maintain (this list is not complete). 

I repartr Report [ 

Figure 7.17: Detail Telco Organization Structure 

7.3.12 Itlstrnces of Busirless Activity Flows 

Figure 7.18 illustrates the basic process and activity flows as it applies to a typical Telco 

service provider. Each aftiliate orgal~izatio~~ has a collection of business process 

definitions (ProcessDef). The individual steps of a process definition are called activities 



and are defined by activity definitions (ActivityDef). A process definition inay contain 

many activity definitions along with the relationships between them, which can be 

complex. There are different process definitions for different order operations. For 

example, starting a new service for a customer is different from disconnecting service and 

so has a different process definition. 

Figure 7.18: Instances of Busitless Activity Flows 

Process instances are the individual, currently running processes defined by 

process definitions. Likewise, activity definitions serve as ternplates for individual, 

currently executing activity instances. An alternative term for activity instance is fask. 



7.3.13 Orders in the Flow of Busi~less Activity 

TakaOrgmiratii +subOrg~&.tionS 
(from Simplified Tclco Organhation Slruclurt) 1 

Figure 7.19: Orders in the Flow of Business Activities 

Figure 7.19 presents the relationship of a typical business activity flow and an order. 

Service activation is accomplished through a sequence of business activities. The 

individual business activities are represented in the diagram as a work item. The work 

itern is the basic thing that is passed from step to step as work proceeds. The work item 

can accumulate many attachments - related documents and artifacts - as work proceeds. 

The premiere work item attachment is the order. 

Every instance of a process is related to one and only one order, via the work 

item. (Orders can relate to other orders, which can be somewhere in the execution of a 

business process themselves.) Likewise, every activity instance pertains to one and only 



one order. The line between an activity instance and an order is probably a derived 

association, from the fact that an activity is related to a process. 

7.3.14 Worklists 

+who can do it ( 0..* 

:signed to 1 1 
Participant 

+ c m  do that 

Associate 

El 

0,,* 

Figure 7.20: Worklists 

The diagram in Figure 7.20 introduces the concepts of roles and Worklists. A 

business activity role is a kind of participant who is capable or authorized to perform a 

certain kind of activity. A participant can be many different kinds of entities, including 

but not limited to software processes and huinan employees (associates). The most 

~orkf lowRale  
' 

I 



common participant is an associate. A participant is defined as some person or thing that 

is assigned to a business activity role. 

Whereas the business activity role describes who is authorized to do what kind of 

activity, .the worklist defines who is actually assigned to do a specific task in real time. 

All assigne'd tasks for all of associates' roles appear on their worklists. An assigned task 

is one which has been assigned to a participant but has not been completed (it may not 

have been started). If one associate acts as both a salesperson and as a customer care rep, 

all assigned salesperson and customer care rep tasks will appear in that person's worklist. 

7.3.15 Combined Busi~~ess  Activity Flow 

Figure 7.21 presents a comprehensive view on typical business activity flow. There is a 

slight modeling twist. Here, business activity role and worklist are seen as association 

classes between the participants and their activity definitions and activity instances. The 

sense of the previous diagram is retained. 

As an association class, the business activity role manages the assignment of 

participants to kinds of activities. It keeps the list of who can do what activity. Likewise, 

the worklist maintains the list of who is currently assigned to what task in real time. 

One point that is not shown in Figure 7.26 is that the business process can branch 

conditionally. In most cases, the data to be tested in the branch decision is in the order. 

The business activity flow is usually modeled using the UM.L activity or state 

diagrams. 



TnlcoSrrvicaOrgrnizat ion 

WorkkwRole 
worklist 

Participant 

v Wwkaem 

O.." 

I I +who is assigned to this tash 

? 
AeHvityDef +daRms +defined by 

Figure 7.2 1 : Combined Business Activity Flow 

ActivityImtance 
: 

1 On . *  3) Order 

+kinds d uLivRias can be done by o.a* O..* +what tnks  arc .signed ta 



Example: Get Customer Data for Viewing 

This section provides details pertaining to the retrieval and presentation of the customer 

data for viewing. The customer data resides in the customer relationship manager (CRM) 

application and the billing application. Figure 7.22 provides some details of the custorner 

businkss object. 

Number : Slring 

St rd  : Slrhg 
Citv t Strina 

FistNwnc : String 
MiidleName I Slrng 

I Customer 

-CustrD : Long 
-CustNum : String 
-CudType : Lorq 

+ A ~ ~ E M ~ ~ I O  
%at€~ail() 
*~dd~hmeInfm() 
ketPhoneInFoO 
~~dd~ddress~nfo() 
~ ~ t ~ d d r r s s ~ n F o ( )  
+~dd~arne~nb() 
~ E I N W ~ ~ I ~ M I  
hddBilling~&() 
~etBillinglnh(] 

AccountID : Long 
AccounyNum : String 

NameInFo 
Salutation : Siring 
FirstName : String 
MiddlcNamc I String 
LastNarnt : String 

Figure 7.22: Customer Business Object 

The contact information resides in the Siebel CRM application. Figures 7.23 and 

7.24 show the entities and associated state diagram for retrieving the customer contact 

information from the CRM application. 



Sub Diagrams I 

Figure 7.23: Get Customer from CRM Operation 



Start 

Getcontact( string inCustld ) 

Figure 7.24: Get Contact Information from CRM State Diagram 

Figure 7.25 shows the state specification for the Getcontact state operation. The 

specification uses a high-level action semantic like language for defining the operation. 

This layer also inherently specifies the mapping and translation between the application 

domain model exposed via the domain adapter and the enterprise business objects. 



1 State Specification for Getcontact 

re iMediationCore: 

/ I  retrieve a Siebel adapter from the mediation core 
iSiebelAdapter = iMediationCore.GetAdapter("SiebelAdaptetl); 

//retieve Siebel Trsnsadion Object from Siebel adapter 
declare IFSiebelTren iSiebelTren; 
iSiebelTran = iSiebelAdapter.GetSiebelTranObject0; 

//Select Account Business Comp 
ebelTran.SelectEusComp("Account"): 
ebelTranActivateField("ld"); 
ebelTran.ClearToQueryO: 
ebelTran.SetSearchSpec("ld': AccntlD): 
e belTran.ExecuteQuey(0); 

Boolean FirstRecord = iSiebelTran.GetFirstRecordO; 

//throw exception 

Set View Model 
iebelTran.SetViewMode(3): 

Select Account Bus~ness Component Fields 
iebelTr~n.ActivateFieId(~Ild"): 

iSiebelTran.ActivateField("Namel'); 
belTranActrvateF~eld("Type"); 

iSiebelTranActivateField("Main Phone Num"); 
iSiebelTranActivateField(''Main Fax Number"): 
iSiebelTranActivateFisld('5treet Address"): 
iSiebelTranAdvateF~eId(~~CityII); 
iSiebelTranAdvateField("State"): 

Figure 7.25: Get Contact Action Semantic Language 



Figure 7.26: Retrieve Customer Data for Viewing Operation 

Figures 7.26 and 7.27 capture the overall business process for retrieval and 

presentation of the customer data to the viewing application. Figure 7.27 is a typical 

activity diagram with swimlanes. Each swimlane specifies operations for a domain silo 

operation. The horizontal lines indicate synchronization points. 

7.5 Summary 

The proposed adaptive architecture approach and techniques have been used to develop a 

natural solution for the telecoin OSS integration problems. Telecom OSS integration is at 

the extreme end of the spectrum of application integration problems. Using our approach 

to address this problem is a testament to its capability. The generic nature of the proposed 

adaptive architecture approach makes it applicable to any customer centric business 

software application that is transactional by nature. Thus, the approach can be used to 



address integration concerns in any enterprise that has a need for application portfolio 

interoperability. 

Figure 7.27: Retrieve Custo~ner Data Activity Diagram 



Chapter 8 

UML Model-Based Component Development Framework 

Dramatic and rapid changes in the computer industry make it impossible for 

application developers to stay current with technological advances. Developers are 

expected. not only to create the applications solutions, but also to design the recovery, 

scaling, distribution, and other infrastructure services needed to support the mission 

critical business solutions of today's enterprises. This is an unrealistic expectation and 

results in the software application landscape being littered with failed projects. 

To address this mismatch in expectations between what is currently achievable 

and what the business enterprises desire, we put forward the concept of model based 

software construction. This is explained in the following sections. 

Model-Based Software Construction 

The objective of the Model-Based Component Development Framework is to isolate core 

application logic specifications from infrastructure services that the software components 

will use. This will enable developers to create complex, robust, operation-critical 

software solutions without embedding infrastructure services into the core application 

logic. However, this is only the first step. What we really want is to have programming 

language, infrastructure services, and execution environment neutrally in the 

157 



CORBA architecture framework goes a long way to accomplish some of these 

goals [OMG 1997; OMG 20011. With such an approach we could provide the complete 

specification of software components. That is, what we would like is to be able to specify 

the component object model, complete with behavioral specification, all in a meta- 

formalism such as some extended version of UML (EUML) [OMG 2000bl or some other 

Universal Design Language (UDL) [OMG 20001. Figure 8.1 gives a schematic 

representation of a model-based component development framework. 

High level Language 

(C++. Java,CORBAIIDL) 

Action Semantic 

--- 

Figure 8.1 : Model-Based Component Development Framework 



specification of a software component (object model) using a meta specification 

formalism that is independent of any imperative high level programming language 

specificity, independent of any execution environment, and independent of the runtime 

infrastructure services that it will be using. Such components would lend themselves to 

significant reusability since they could be looked at as higher-level abstract design 

artifacts. An Integrated Development Environment (IDE) can be used during program 

creation time to translate the meta model into a specified high level programming 

language equivalent specification and link in all the runtime infrastructure services that 

the generated component will use. 

The application developer would thus work exclusively within a high-level 

programming language independent meta-specification to determine the component 

hnctionality. Infrastructure services and runtime binding can be specified in the IDE and 

automatically generated into the resulting executable component. 

Implementation induces programming language, infrastructure services, and 

runtime environment specificity. If these issues are taken into consideration and 

addressed during the application design then they will ultimately impose limits on the 

reusability of the resulting software components. The only reasonable way to address 

these issues is to have complete separation of the application business functionality from 

imperative programming language, infrastructure services, and runt i~ne environment 

specificity. This requirement mandates that the application must be specified using a 

meta-object formalism from which the resulting deployable software component can be 

generated. 



This approach provides an effective mechanism for raising the level of abstraction 

at which an application developer works. The application developer effectively works 

within a graphical environment using some extended form of the UML meta-metarnodel 

formalism derived from the Meta Object Facility (MOF) [OMG 20001. 

A great deal of the efforts, maybe up to 80%, expended during the traditional 

software development process, goes into the development of the application 

infrastructure. This may be even more for highly distributed applications. Only about 

20% of the effort goes into the design of the application logic. If we can change this 

process to be one in which the application developer specifies, using a metamodel, the 

infrastructure service he/she wishes to use and the manner of use, and then allow the 

integrated development environment to generate the specified software component and 

associate it with all the infrastructure services it requires, we could have the developer 

working at a higher level of abstraction. This approach will hndamentally change the 

software developinent process to be that of "model and generate" as opposed to "model 

and code". Model based software construction will be the new paradigm in which we 

develop software systems. 

The Integrated Development Environment should let the developer perform the 

following fknctions: 

Load a component metarnodel specification into the Meta-Object Inforination 

Repository. 

Specify target implementations (colorings), such as database type, caching, CORBA 

Services, etc., without corrupting the business processes defined in the model. 

Audit models to verify correctness. 



Generate server components from the models. 

Raising the abstraction level of the software developer should result in a number 

of tangible advantages that we should be able to associate with metrics. These include the 

following: 

Faster time to market for new products and services being offered by the enterprise. 

Since applications would be define using a high-level meta-metarnodel, the enterprise 

needs to recruit technocrats who are skilled using this technology to define the 

enterprise business model in the relevant domains. People who are skilled in 

middleware technologies such as CORBA and high-level programming languages 

such as C++ and Java would not be required to develop high performance business 

applications. The enterprise would put greater emphasis on employing business and 

domain analysts. 

The enterprise could have business analysts performing the majority of the 

application enhancement and refinement during the maintenance cycle. Since this is 

the phase during which most of the cost for an application is incurred, the enterprise 

should be able to significantly reduce its application maintenance expenditure. 

Since infrastructure services such as externalization, transactionality, concurrency, 

persistence, and synchronization can be specified in a high level meta formalism and 

language and environment specificity associated with these services generated during 

the build process, there is a distinct possibility that we could reverse the effort role. 

The developer or modeler could now spent 80% or more of his or her time designing 

the application hnctionality as opposed to programming infrastructure services in 

some high level language. 



Applications developed along this model will be high-level programming language 

and runtime environment independent allowing for easy migration and 

interoperability across different computing platforms. 

Some of the major components of such an integrated development environment 

include the following: 

A h 4 L  based modeling tool 

UML Extended with Action Semantic Language 

Meta-Object Information Repository 

UML based Model CompilerITranslator 

Language specific code generators 

Iinporters 

Exporters 

Auditors 

Plug-Ins 

8.2 Meta-Object I~lformation Repository 

In their efforts to advance the development of distributed software systems, the Object 

Management Group (OMG) proposed two standard specifications for modeling 

distributed software architecture and systems [OMG 2000; OMG 2000bl that are 

consistent with the CORB A Object Management Architecture (OMA). The two 

complementary specifications are as follows: 

Unified Modeling Language Specification 

Meta-Object Facility Specification 



The Unified Modeling Language (UML) Specification defines a graphical 

language for visualizing, specifying, constructing, and documenting the artifacts of 

distributed object systems. The specification includes the formal definition of a common 

Object Analysis and Design (OA&D) metarnodel, a graphical notation, and a CORBA 

IDL facility that supports model interchange between OA&D tools and ~netadata 

repositories. The UML provides the foundation for specifying and sharing CORBA-based 

distributed object models. 

The Meta-Object Facility (MOF) Specification defines a set of CORBA IDL 

interfaces that can be used to define and manipulate a set of interoperable metamodels 

and their corresponding models. These interoperable metamodels include the UML 

metamodel, the MOF meta-metarnodel, as well as hture OMG adopted technologies that 

will be specified using metamodels. The MOF provides the infrastructure for 

implementing CORBA-based design and reuse repositories. The MOF specifies precise 

mapping rules that enable the CORBA interfaces for lnetamodels to be automatically 

generated, thus encouraging consistency in manipulating metadata in all phases of the 

distributed application development cycle. 

The MOF and OA&D metamodels are architecturally aligned to use the MOF 

IDL mapping for generating CORBA IDL for both the MOF and UML models. This was 

accomplished by defining the MOF and UML models using the MOF and by generating 

the IDL interfaces based on the MOF specification. Alignment of UML, MOF, and 

CORBA paves the way for future extensibility of CORBA in key areas such as richer 

semantics, relationships, and constraints. Likewise the longer-term benefits to UML and 



MOF include better recognition and addressing of distributed computing issues in 

developing CORBA-compliant systems. 

The extension of UML with Action Semantic Language (ASL) behavioral 

specification can be accomplished by extending the UML ineta-inetamodel with the new 

ASL constructs using the MOF. The Meta-Object Inforination Repository (MIR) service 

would be an implelnentation of the extended UML MOF inetamodel interfaces. This 

service would be accompanied by tools (e.g., compilers or graphical editors) that allow 

the designer to input information models using a human readable notation for the MOF 

model. 



Chapter 9 

A Mathematical Formalism for Specifying Design Patterns 

Within the context of software engineering the nomenclature pertaining to object- 

oriented methodologies depicts an object as an instance of a chss. An object is a self- 

contained entity that is complete with its sets of data and associated operations. A class is 

a specification of an abstract data type. Many-sorted algebra is the mathematical 

formalism used for the specification of abstract data types and represents a 

straightforward generalization of classical (i.e., single-sorted) algebras [Loeckx 19961. 

In this chapter we present a mathematical formalism for the specification of 

design patterns. This specification constitutes an extension of the basic concepts from 

many-sorted algebra. In particular, the notion of signature is extended to that of a vector, 

consisting of a set of linearly independent signatures. The linearly independence property 

is necessary to satisfy non-interference that is essential for compositional based 

construction [Cowan 1993a; Loeckx 1996; Enderton 19721. This is o f  hnda~nental 

concern in the building of large-scale software systems where we have the composition 

of smaller components to form larger components. In what follows, the major concepts 

for the specification of design patterns are developed using successive extensions of the 

relevant many-sorted algebraic concepts. 



Definitions and Co~lcepts 

This section outlines the definitions and concepts relevant to the formal specification of 

the design patterns. 

Signatures. 

A many-sorted algebra consists of sets and fbnctions. A signature may be viewed as the 

syntax of an algebra for fixing the names of the sorts and functions. 

Definition 1: Signature 

A signnlzrre C is a pair C = (S ,F)  of sets, the elements of which are called sorls and 

operations respectively. Each operation consists of a (k+2)-tuple 

-with- s; s, ; : ,363 €3 and R 2-0;-rr i3 -catle&the operat2'or nrmz -of -the-apwatian- and - - 

s , ,  s, ,. . . ,s ,  + s its arity; the sorts s , ,  s2 ,.. .,s, are called argument sorts of the operation 

and the sort s its target sort. In the case k = 0 the operation n:+s is called a constant of 

sort s. 

Inforinally, a sort denotes (i-e., is a name of) a type and an operation denotes a 

function. Note that different operations may have the same operation name. In particular, 

the equality o f  two operations implies the equality of their names and the equality of their 

arities. One ]nay write n instead of (17 : s, x.. . x s, -t s) if no ambiguities arise. 



The operations and relations defined on sets are lifted to signatures by applying 

them componentwise. For example, if E = ( S , F )  and C' = ( S ' , F f )  are signatures, 

Z c Z' stands for S S' and F c F'; similarly, C u C' stands for ( S  u S f ,  F u F ' )  . 

Definition 2: Vector Signature, extension of signature 

A vector signaiz~re X, is an 11-tuple of linearly independent (C-) signatures represented as 

XI, = (Z, , XI,. . . , C,, ) , such that X i  = (S ,  ,I;; ) and 

Si represents the set of sorts for Ci 

I;, represents the set of operations for Ci 

The linearly independent property states that 

An operation of Z,, is a vector. For example the vector w is defined as 

w = (w, ,w ,  ,. . .,w,,) such that iVi E I;, with 

with 

s/,S: ,..., $ , S J  ES ,  and k>O and l S i , j < f l .  

Algebras 

A many-sorted algebra assigns a meaning to a signature by associating a set of data to 

each sort and a function to each operation. 



Definition 3: Total Algebra (Algebra) 

Let Z = (S, F) be a signature. A total algebra for C assigns the following: 

1. A set Ass) to each sort SES, called a carrier set of the sort s; the elements of a carrier 

set are called carriers; 

2. A total finction 

A(II:s, x...xs, + s ) :  A ( s , ) x  ...x A(s,)+A(s) 

to each operation (11 : s, x . . . x s, -+ s) E F, k 2 0 ; when k = 0, A(n:+s) denotes an 

element of the carrier set A@). 

Definition 4: Vector Algebra, 

Let C,, = (C,,C ,,..., C,) be a 
-----.------- - 

extension of algebra 

vector signature. A total 
------- - 

vector algebra for C, (C,-algebra) 
-- - -  - - - - - - -  --------.--- - - - -  - 

is a vector of C-algebras. A &algebra A is depicted as the vector A = ( A , ,  A, ,. . . , A, ) 

where A,=,.., are C,-algebras corresponding to Ci = (S, , ) and 1 2 i 5 n . A total vector 

algebra (&-algebra) assigns the following: 

1. A set A@, ) to each algebra Ai; Alg(Zi ) is the class of C-algebra corresponding to Zi. 

A(X, ) = UA(s,) with S, E Sj. 

2. A total function A,, that is the union of the total fbnctions of the Z-algebra 

corresponding to the individual Ci in the vector signature Z,. = (C, , C, , . . . , C, ) . A,, is 

represented as 

A,. ( 1 ~ )  = U A(s ) 



such that each operation P I ,  E Fi is covered. 

Homomorhpisms constitute mappings between the carrier sets of algebras that i*espect the 

functions. 

Definition 5: Homomorphis~n 

Let A, B be two C-algebras, C=(S, I;). A C-homomorphism h: A+B from A to R is a 

family h = (h, ),,, of functions 

following condition holds: 

's ( A ( w ) ( a I  Y 9 * y a k  1) = B(w)(hs, (a] )Y . .  * Y  hsk (ak 1) 

for all (al,. . ., nk) E A(s , )  x.. . x A @ , ) .  The above equation, equation (I), is called the 

homomorphism condition of the homomorphism h for the operation w.  Note that in the 

case k = 0 the condition simply states: 



Figure 9.1 shows the coinlnuting diagram that graphically illustrates the 

homomorphism condition of the homomorphism h : A + B for the operation 

Figure 9.1: Commuting Diagram illustrating the homomorphis~n condition of the 

---------- hnmamacphbmh~A-+Bf.~r the op_eratLon w = (11  : s! x . . . x s,. 2 s )  ,k~0-- - 

Vector homomorhpisms constitute mappings between the carrier sets of vector algebras. 

The mappings respect the hnctions of the corresponding vector signature. 

Definition 6:  Vector Homomorphism, extension of homomorphis~n 

Let A = ( A , ,  A , , .  . ., A,), B = (B , ,  B,,. . ., B,,) be two Xv-algebras, Z,, = (XI, El,.  . ., Cn) . 

A Xv-homomorhpism H: A+B is a vector of C-homornorhpisms represented as 

where h, is a homomorphism from A, to B, over C, given by the mapping h,: Ai -t HI. 

170 



For any operation w E C,, = (C,, S 2 , .  . . , E n ) ,  say w=(wl,wz, .. .,Iv,,), such that w, E f i  with 

w, = S: x S{ x ... x S; -+ S' and S: ,S: ,..., S i , S i  E S, and Ci = (S,,I;;) 

and k 2 0 and I I i s n the following conditions hold: 

= B(w)(H(q)7H('2)>* *JH('n)) 

where iT, = (a,, a,, . . . , a,) E S: x S: x . . . x S: and S: , s;, . . . , Si. E S, . 

The linearly independent property mandates that the application of iv over q. must be 

done on a pair-wise basis. That is, 

where I V ,  x Zi, 

. ) -  ----- ----- 
Thus, we have, 

Again, the linearly independent property mandates that the homomorphisms must be 

applied on a pair-wise component basis. Hence, 

- 
- '1 (+vl)(hsl (q))7'2(1,v2)(hs2 ('2))7* *,Bn(wn)(hSn Gin)) 

= B, (M); )(hsl ("1 1, . 7 hs; (a, 11, B, (w, )(hsi (",),. , hs; ((a I), - 3  B,, (II?" )(h .$, (a, 1, . , hs; (fl, 1) 



The above equation, equation (3), is called the hoino~norphism condition for the vector 

homomorphism H for the operation MI. In the case when k = 0, the condition simply 

states: 

Figure 9.2 shows the commuting diagram for the homomorphism condition for 

the vector homomorphism H for the operation w. 



Figure 9.2: Commuting diagram illustrating the vector l~omomorphism condition 

In our discussion of software components we have seen that the application of the 

principle of abstraction partitions a software coinponent into a specification part and a 

realization part. The specification part corresponds to the interface of the software 

component. The Abstract Data View (ADV) concept further extends this notion. ADV 

corresponds to interfaces that are extensible. Hence, we can think of extending the 

fbnctionality of a software module by extending the ADV interface. This approach 



preserves encapsulation and enhances reusability by effectively applying the principle of 

composition to the existing module functionality. 

Design Patterns 

Informally, a design pattern or micro-architecture software artifact is an aggregate of 

abstract data types (ADTs). The class of objects corresponding to each of the ADTs is 

represented by a C-algebra. Assuming that the components are linearly independent and 

thus satis@ the non-interference proof obligation, then we can represent a design pattern 

as a vector of Z-algebras. One of the inajor attributes of design patterns is that it captures 

knowledge from past experience. Thus, relationship between the component ADTs must 

be made explicit in any reasonable representation of design pattern. Hence, the vector of 

Calgebras is not sufficient to represent a design pattern. 

One reasonable representation is to extend the n-tuple of Z-algebras by including 

a relation that is capable of encoding the requisite knowledge. That is, the relation must 

be able to encode relationship, associations, roles, and multiplicity between entities in a 

design pattern. The relation depicted below is capable of encoding the requisite 

knowledge in a design pattern 

R r L(Alphn) x L(Alphn) x AIg(C,,) x Alg(C,,) x L(Abhct) x L(Alpho) x N L I ~  x N d  
where 



L(Alpl?n): depicts a set of alphabetic strings representing the name of relationship 

between entities 

Alg(Cv): is the class of C-algebra corresponding to the vector signature Z, 

is the set of natural number. 

The components for the relation R are defined as follows: the first component of 

R depicts the name of the relationship or association between two entities. The second 

component depicts the type of relationship. The third and forth components depict the 

entities that the relation is defined between. Coinponents five and six define the roles of 

the relationship. Coinponents seven and eight define the multiplicity of the relationship. 

More formally, a design pattern can be defined as an (n+l)-tuple containing 17 C 

algebras and R. The n Z-algebras corresponds to the various object entities in the design 

pattern while R is used to encode the relationships between the entities. Thus, the design 

pattern DP can be represented as DP = (A,,A?, . . . , A , ,  R) 

Example 

The design pattern fragment given in Figure 9.3 shows a number of object entities and 

their associations. DPI  is an (?I+ I)-vector represelltation of the design pattern fragment. 



Figure 9.3 : A Design Pattern Fragment 

The relation R is enumerated by the following set of relationships: 

R = ( (nil, Aggregation, E, B, nil, nil, nil, nil), 

(nil, Aggregation, F, B, nil, nil, nil, nil), 

(Rl, Association, B, C, nil, nil, 1, n), 

(R2, Association, F, C, nil, nil, 1, n), 

(R3, Association, F, F, parent, child, 1, l..n), 

(nil, Inheritance, A, B, nil, nil, nil, nil,), 

(nil, Interface, D, B, nil, nil, nil, nil) ) 

176 



Thus, the vector DPI = ((A, B, C, D, E, F),  R) can be used to represent the design 

pattern fragment shown above. 

Definition 7: Module Signature 

A modzrle signahrr-e is a pair (Ci, Co) of signatures; C, and Z, are called in~por-t sign70f111.e 

and export signatzrre respectively. A sort or operation from the signature Xi, Ce or Z i d e  

is respectively called imported, exported or inherited. 

Figure 9.4 gives a graphical representation of the module signature (G, Ca) with 

( { s ,  r }  {wi, w2}), Ce=({s),{wl, w3)). In this representation the inherited sorts and 

operations are shown by broken lines. Informally, the module signature fixes the 

signatures of the argument and of the value of a modularized abstract data type. 

Figure 9.4: Graphical Representation of a Module Signature 



It is now possible to introduce a formal notion of the syrltnclic spec~ficn/io~l for 

design pattern. Three dimensions of design pattern are characterized: the major classes 

forming the body or realization of the pattern, the interface or specification of the pattern, 

and the relationship between the classes in the body and interface of the pattern 

Definition 8: Module Vector Signature, extension of Module Signature 

A mod~de 11ector sigt~ntl~re is a 3-tuple consisting of a pair of signatures and the 

knowledge relation discussed above. This is represented as follows: 

(q', E;, R+) 

where Cy represents the vector signature corresponding to abstract data types depicting 

the main classes in the body or realization of the design pattern. C: represents the vector 

signature corresponding to the abstract data views (ADVs) depicting the main classes in 

the interface or specification of the design pattern. R is the relation that captures the inter- 

relationship between the classes in Cj' and C: . 

Definition 8a: Expanded Version of Module Vector Signature 

A module vector signature is a 3-tuple consisting of three pairs. The first component of 

each pair is a vector signature representing the classes of the corresponding abstract data 

types and the second co~nponent represents the knowledge relation that define the actual 

binary relationship between the instances of the abstract data types and between abstract 

data types and binary relationships. This is represented as follows: 

(z~,Z~,R)=((Z~,R,),(Z~,R~),((~~ uE:),R3) 



where R2 c R; and R = UX, 
lSig3 

and 

R is defined to be a set of binary relationships between the entities in a design 

pattern. The binary relationships can be defined between abstract data types (or classes) 

in the design pattern or between an abstract data type and a binary relation that has been 

defined in the design pattern. As a result there are at least two kinds of binary 

relationships to be considered in the specification of design pattern: (1) The primitive 

binary relationship between abstract data types and (2) A higher order binary 

relationships between abstract data types and primitive binary relationships. Conceivably, 

this process of defining higher order relationship can be continued, defining tertiary and 

quaternary relationship similar to the concepts in the entity relationship (ER) model. 

The schematic design pattern shown in Figure 9.5 shows a relationship in the 

specification that does not explicitly exist in the realization. The binary relationship 

between A and C, (A,C)EX,  in the specification is preserved via transitivity of A to 

B, (A.B) €I? ,  and B to C, (B,C)ER, in the realization. The relationship between A and H is 

that of inheritance. Hence, B is a type of A.  Therefore the set defining relationships 

between B and C can be extended to include relationships between C and A .  This 

accounts for the inclusion of the transitive closure condition in the above definition. 



Realization 

Figure 9.5 : Schematic Representation of Design Patterns 

Claim 1: Definition 8 is coi~sistent 

An important observation of definition 7 is that implicit in the definition is the fact that 

there is a structural relationship existing between the two signatures. This relationship is 

effectively the inheritance relationship. Therefore the basic module signature definition 

can be extended to explicitly include the inheritance relationship. This form is shown 

below: 

( ' i > ' e ) ~ ( ' j > ' e > ' )  

If the signatures in the vector export and import signatures are all empty except for one in 

each vector signature then the vector module signature reduces to the module signature. 

Consider 



with l < i s n ,  C, =@,fori#kand l s e s m ,  E, =@,fiore+l. 

and x, = ( 4 , 4 ) ~ 4  and x; =(XI =4,..*,@,&. # 4 , @  ,..., +,zn, = @ ) z z k .  

Thus, the more general vector module signature reduces to the simpler module signature. 

Definition 9: Modularized Abstract Data Type 

i. A modt/lnn'zed abs~uc t  doto v p e  for the module signature (Xi, E,) or, briefly, a (Ci, 

C,)-modlrle is a total fbnction 

M : Alg(C, -, @(Alg(C, 1) 

such that for each algebra A E  Alg(Zi) the class M(A) Alg(C,)is an abstract 

data type. 

ii. A (Ci,C,)-rnoduleMiscalledpersis~entforn~~nlgebra A E  A l g ( E , ) ,  if: 

for each B E M(A): 

(AIZi n X e ) ~ ( B I E i  n X e ) .  

It is calledpersisle~lt if it is persistent for all A E Alg(Zi) . 

iii .  A (Ci, Ce)-module M is called co~~sisiste~~t for at1 algebl-o A E Alg(Ei) , if M ( A )  + @ . 

It is called cor~sisfe~rt if it is consistent for all A E Alg(C, ) . 

iv. A (&, C,)-module M is called mo?~onlorphic for an algebra A E A/g(Ci ) , if M(A) is 

monomorphic. It is called mononlorphic if it is monomorphic for all A E Alg(Ci ) . 



Informally, persistency means that the inherited sorts and operations have the 

same meaning in A and M(A) up to isomorphism. Consistency expresses the fact that the 

mapping M is "effective". 

Clearly, an abstract data type may be viewed as a "constant" module, i.e., a 

module with-an empty import signature. 

Definition 10: Modularized Vector Abstract Data Type, extension of modularized ADT 

A n~odzilauized vector obslt.nct data tyye for the module signature (C:', CL, R' ) is a family 

of total knctions that define the relationships between the various classes in a design 

pattern. C: = (C,, C, ,. . ., C,) and C: = (Z,, C,, . . ., Z,,) are vector signatures representing 

abstract data types corresponding to classes in the main body (realization part) and 

interface (specification part) of a design pattern respectively. 

i.  The realirnrio~r patar of the modrilnrired vecior abstract data ope  for the module 

signature (CY, C:, R') is defined by the following function: 

where the following conditions hold: 1 5 k, I < 177 and k + 1 and C, , C, E Z)' and for 

each algebra A E AIg(C, ) the class M, ( A )  Alg(C,) is an abstract data type. 

ii. The specrfication parl of the modrilrrrized vector abstract darn i)pe for the module 

signature (E:, Xi, R) is defined by the following function: 



where the following conditions hold: 1 5 k 5 nz, C, E ZY and 1 5 1 2 1 1 ,  C, E C: and 

for A E @(AIg(Ck ))the class M ,  ( A )  c ,p(AZg(X, ) is an abstract data view. 

The hnction MI effectively defines the use of object-oriented design principles 

such as inheritance, composition, and aggregation in the progressive build up of the 

realization part of design patterns. 

The mapping allows subsets of the component ADTs of the design pattern to 

present their interfaces through a combined abstract data view. The ADV can be used to 

specialized or extend the fbnctionality provided by the component ADTs comprising the 

realization part of the design pattern. 

Definition 1 1: Loose Module S,pecification 

Let L be a logic. 

i. Abstmct Syt~taw: A loose module specification in L is a pair n~sp = ((X,,E,),@) 

where (Zi , C e )  is a module signature with C i  c C e  and s L(C,) is a set of 

formulas. 

The meaning M(n1sp) of the loose module specificat ion 

n~sp = ((Ci , C e  ), a) is the (Ci , E, ) - module defined by: 

M(msp)(A) = {B  E Alg(Ce) I B I= Q, and (B  I C,) E A }  

for each A E Alg(C,). 



Clearly, a loose module specification defines a persistent but not necessarily consistent 

module. 

Definition 12: Design Pattern Specification, Extension of Loose Module Specification 

~ e t   be a logic. 

i. Absirnct Sy~ztax 

A design pattern specIficatiio12 in L is a pair dpsp = ((C j', C:, R' ), a )  where 

(C J', Z:, X') is a vector module signature with R = Uq' and (R, modlfiesC;') , 
1 <is3 

(R,n~odlfiesZ:), (R,modrfies(C)' uC:))and @=a, u@, with CD, cL(x: ' )and - 

Q2 E L(Ci) .  is a set of formulas that defines the derivation sequence to 

establish a relationship between two instances (entities) of the abstract data types 

corresponding to the vector signatures. R is the resultant static relationship that is 

determined by @ . 

. . 
rz .  Sen~antics 

The meaning M(dpsp) of the design pattern specification dpsp = ((CY, Z:, It ') ,  0) is 

the (Z:, C:, R') -module defined by the following set of mappings: 

1. The meaning of the relationships in the realization part of the design pattern 

specification is given by: 

M(dpsp)(A) = { B  E Alg(E,) I A I=,, B, iff for each opi E @, , 

A; I=, A;,, , implies ( A ; ,  A; , , )  E R,+ and upi ( A ; )  = A,:,, ) 



for each algebra A E A l g ( C ,  ) and 1 < k, l < n7 and k ;t Z and C ,  , C, E C; and 

Note: A I=,, B = B I= a, . 

2. The meaning of the relationships in the interface part of the design pattern 

specification is given by: 

M (dpsp)(A) = (B  E p (A lg (Z , ) )  I A I=,2 B, i f f  for each op, E 

A: I=, A;+, , implies ( A ; ,  A,:,, ) E R; and opi ( A ; )  = A;,, ', 

foreach A~p(Alg'(&))and 1 r k s n t , l 1 l < ~ , C ,  ~ C y a n d  C, E Z ~ .  CI 

The set of for~nulas represented by a, characterizes the nature of the relationship 

between abstract data types constituting the realization part of the design pattern that is 

consistent with the mapping defined by MI of definition 10. @, is depicted as follows: 

The set of formulas represented by a, characterizes the nature of the relationship 

between the specification part and realization part of the design pattern that is consistent 

with the mapping defined by Mz of definition 10. 0, is depicted as follows: 

We can think ofA I=, Bas having the meaning of abstract data type H derived 

from abstract data type A through a sequence of fo~n~l,lcls or operations belonging to Q, . 

In addition, an operation is only permissible if the resulting relationships between the 



abstract data types for each of the derivation steps are contained in the transitive closure 

of R. That is, if the following relationship holds: 

A; I = ,  A,',, ,iff(A,I, A;, ,)  E R' 

- and op, E @ and A;,  A:,, E @(Alg(C)') u @(Alg(C: ) 

This process of deriving abstract data type B from abstract data type A can be interpreted 

using a derivation tree for the operations in @ .  The process of building the derivation 

tree is constrained by the relationship set depicted by R' . Figure 9.6 gives the schematics 

of the derivation tree for deriving B from A 



Figure 9.6: Schematic Derivation Tree for Vector Algebra B being derived from Vector 
Algebra A 

It is conceivable to have more than one derivation tree for a design pattern. Each 

derivation tree will result in a difference structural version of the pattern. This variation 

could account for differences in impleinentation approaches. For example, one 

implementation may favor delegation over an inheritance-based strategy. 



The concept of derivation tree presented above can be used to give some insight 

into the effort required to reuse a component. Algebra A represents the component to be 

reused and algebra B represents the desired component. The derivation tree gives the 

sequence of transformations that can be used to go from A to B. The sequence of 

transformations is a quantitative measure of the effort to reuse a particular component. 

9.2 Semantics of Design Patterns and their Specification Co~~structors 

A reasonable representation for the Semantics of Design Patterns and their Specification 

Constructors is presented based on the concept of Abstract Data Views (ADV) that was 

proposed by Donald Cowan and his associates [Cowan 92, Cowan 93, Cowan 93al. The 

ADV specification is consistent with the theoretical model put fonvard in this work and is 

based on the general principle of term writing system. 

The semantics of the specification constructor for composition is given in terms of 

the representation of both ADVs and ADTs. The interpretation of the relationship 

between ADTs and ADVs is done using the variable owner (see Chapter 3). A general 

schema for an ADV is shown in Figure 9.7. 

ADV-Type = ADV [is ADVJ [for ADT] 
declaration xI : q,(i = 1 ,...,I) 
invaricmt 
component 

component 

function 

I11v 
ADF;l'lvpe =ADT7[for ADV'] [for ADT'] 
... ... 
sct of ADV-Type 1 = ADV [for ADV'] [for ADT'J 
... ... 
seq of ADV_T).pe2 = ADV [for ADV'] [for ADT'] 



event 

where S ~ L Z ~ Z I S , , ,  , E ('wr ' ,'rdl) 

pre conditio~~ pre - ADV - f ,  

post condition post - ADV -A. 
en(b Q,,, :Ro,m;o= lY...,O,,)(~i= l , . . . ,N)  

declaration I),,, : S,, , (p = 1,. . . ,P) 

esternal stallrs,, : w,, , (q = 1,. . ., Q), 
where statzrsq,, E ('wr ' ,'rdf) 

pre condition pre - AD V - en 

post condition post - ADV - e,] 
end ADV - 

Figure 9.7: A General Schema for an ADV 

In the schema of Figure 9.7, the declaration "ADV'Type = ADV[is ADV][for ADT]" 

expresses the definition of a type ADV. The symbol "[..I" encloses optional syntactic 

items, i.e., the declaration "is ADV" and "for ADT" are optional. The declaration "is 

ADV" represents the inheritance relationship, i.e., the A D V  - Type is being defined as a 

specialization or extension of another AD V-Type. The declaration "for ADT" represents 

the association of an ADV'Type with an ADT-Type. 



ADT-Type = ADT 

declaration 

invariant 

com~onen t 

function 

declaration Y l S j  : V ~ . j ( l  = 1 ,..., L) 
- - 

external status,, : z N. j , (nt = 1,. . . ,M)  

where slatzrs,,, E (.WI ' , ' d l )  

end ADT - 

pre condition pre - ADT - f ,  

post condition post - ADV - f 

Figure 9.8 : A General Schema for an ADT 

An ADV-Type is coinposed of a declaration part, invariant, components, fbnctions, and 

events. The declaration part represents the private variables of the ADV Type. The - 

invariant part describes the constraints on variables that colnpose the ADV-Ijy~e. The 

components represent the structural composition of the ADV-Type. Finally, the functions 

and events describe the behavior of the ADV-Type. 

A general schema for an ADT is presented in Figure 9.8. The sylnbols and col~structs 

used in this schema are the same ones used in the ADV representation. The variable 

owner represents the association of an ADV with an ADT. This association is illustrated 

by the representation in Figure 9.9. 

ADV-Type = ADV for ADT 

declaration x1 : q,(i = 1, ... , I )  
ol~~iler : .4DT Tvpe 
1111~ invariant 

component 



function 

event 

: Uk,,;k = 1, ..., Kj)ak+,,j : Uk+,, , ( j  = 1 ,... , J )  

declaration Y,,, : F, j  (1 = 1 ,..., L) 

esternal stahis ,,,, , : I,, , , (m = 1,. . . , M )  

wvl~ere stahis,,,, , E ('wr','r*dl) 

pre condition p7.e - ADV - f ,  

post condition post - ADV -A. 
en (bovn : Ro,n ; 0 = 1 , .  . ., OH)(tt = 1,. * ., N )  

declaration v,,, : S,,, , ( p  = 1,. . ., P) 
esternel stcrtlrsq,, : w,,, , (g = 1,. . . , Q), 

where stahrs,, E ('wr ' ,'rdl} 

pre condition pre - ADV - en 

post co~~dition post - ADV -en 
end ADV - 

Figure 9.9: A General Schema Showing Inclusion of an ADT in an ADV 

9.3 Closure of Design Patter11 under Composition 

Let , = ( . .  . be a vector signature. The composition of two X,, - 

homomorphisms, say H : A + B and G : B + C , yields a C,, -homomorphism 

G 0 H : A -+ C that is a family of fbnctions of the forin G 0 H = (gs, 0 hs,)i=l ,., . 

Theo~~em 

For any vector signature C,, the composition of two X,, -ho~noinorphisms yields a C,, - 

homomorphism. 



Proof: 

Given a vector signature , = ( , Z2 , . . . , ) and the two C,, -homomorphisms 

H : A -+ B and G : B -+ C , we want to show that G OH : A -+ C satisfies the vector 

homomorphism condition, thus, 

G o H(A(w)(q3z2i,,* ..,if,) = C(w)(G oH(Zi,),G oH(q) ,  ..., G O H ( % ) ) .  

That is, 

g " hsl (A,  )(w, )(Si, )7 g 4 2  ( A,)(w,)(Zi , ) ,*  * , g  O hsn (An)(w,,)(Zi,) 

Therefore, we have 

- G(H(A(w)(q,a,,- .,q,) = G(B(w)(H(Z,),  H(Si,),. . .,H(Zn)) 

- Applying vector homomorphism condition 

= gsl ('1 ( ~ 1  )(',I (G))),gsZ ('2(~2)(h~' ('2)))7* **,gs" (Bn(wn)(hs, ( & I ) ) )  

Applying G component wise 

- 
- CI ( ~ 1  )(gsl O hsl ))?C2(w2)(gs2 o hs2 (z2)),m - *, Cn(wn)(gSJ, 0 hsn (Zn)) 

= CI ('+'I )(G H(Zil )),C2 (w2)(G o H(Z2)),. . ., C, (w,)(G 0 H(z~)) 



9.4 Examples Illustrati~lg the Use of the Formalism Presented Above 

The Factory Method design pattern primary intent is to define an interface for creating an 

object, but let subclasses decide which class to instantiate [Gamrna1995]. Thus, the 

Factory Method lets a class defer instantiation to subclasses. Figure 9.10 provides a 

generic structure of the Factory Method design pattern. 

ConcreteCreator rr-l 

Figure 9.10: Generic Structure of the Factory Method Design Pattern 

Use of the Factory Method design pattern is applicable when either of the 

following conditions apply: (1) a class can't anticipate the class of objects it must create. 

(2) a class wants its subclasses to specify the objects it creates, or (3) classes delegate 

responsibility to one of several helper subclasses, and you want to localize the knowledge 

of which helper subclass is the delegate [Gamma 19951. The Factory Method is ideal for 

use in frameworks that use abstract classes to define and maintain relationships between 

objects. Frameworks are often responsible for creating the objects as well. 



Figure 9.1 1 gives an instance of the Factory Method design pattern that can be 

used in a inultiple document framework. The key abstractions are Doczm~enl and 

Applicatio?~. The Factory Method pattern encapsulates the knowledge of which 

Document subclass to create and moves this knowledge out of the framework. 

Application subclasses redefine an abstract CrenteDoclm~ent operation on Application to 

return the appropriate Document subclass. Once an Application subclass is instantiated, 

the application subclass can then instantiate application-specific Documents without 

knowing their classes. 

instantiates - 

Docement 'doc = CreateOocument 
docs.Add(doc) 
doc->Opeen 

return new MyDocument e 
Figure 9.1 1 : Instance of Factory Method Design Pattern 

The Factory Method design pattern for the document framework is represented by 

FM,, using the formalism presented above. Thus, 



The realization part of the factory method design pattern is represented by the tuple 

(Alg(C)'), R, ) . These components are explained below. 

Ey = ((ED omn,e,,r = ((void,. . .), {Open : void -+ void, Close : void + void, 

Sm)e : void 4 void , Revert : void -+ void,. . .I)) , 

(CwD I, = ( { D O C I ~ I I I ~ I I ~ ,  void,. . .),{Open : void -+ void, Close : void -+ void, 

Save : void + void , Revert : void + void,. . .))) , 

{CreateDoaiment : void -+ Docun~en f, 

NewDocume~zt : void + ir~t , 

OpenDoczime~~f : stl*ing -+ jilt,. . .} )) , 

= ({ Applicntio~~, Docuntent , void, in/, . . .) , 

NrwDoniment : void -+ int , 

The class of X,, -algebras corresponding to ZY is represented by A l g ( C : ' ) ,  

AZg(E ) = (Doczrme~~t, MyDoctm~e~d, Application, MyApplicafiot~) . 

The relationships between the algebraic entities is represented by R, , 

R, = ( (R 1 ,  Aggrzgntio~~, Doczrme~~t, Applicntio~~, belo~lgs, has, 1 ,  0. .n), 

( I d ,  b~he~.i~ntlce, MyDoczmle11I, Docvment, ,,I/, ~ i l ,  tril, nil), 

(~lil,  b~heritnt~ce, MyAppIicalio~~, Applicntio~~, nil, nil, t~il ,  tlil), 



(nil, i?~stantiates, MyApplicatior~, MyDoczmtnet, uil, nil, nil, nil) } 

The Specification part or interface of the Factory Method design pattern is 

represented by the tuple (Alg(C:),R,) . There is no explicit specification part or interface 

corresponding to this design pattern. However, the Applicatio~r and the set of 

Co~lcreteApplicatio~t classes can be combined to form the interface specification for this 

pattern. In addition, it is quite easy to extend this pattern with an interface. Figure 9.12 

shows an expanded example that has an interface. 

ccEntltybb 
ApplioationY ..-..R3--' .-. (from Deo Examplt] 

+ ~ r r a t r D o e u m r n ~  i 
Figure 9.12: Factory Method Design Pattern with Interface 

The interface corresponding to Figure 9.11 is given by (AIg(C:),R,) where we 

have the following: 

C :  = ( (Z App,icntiOn = ({Docz~nze~~t, void, i t ~ t , .  . .), 



(CreateDocz~ntent : void + Doczrment, 

OpenDoctmlent : string + iint,. . .})) , 

(CAfilpplication = ((Applicutio~~, Docz~nle?~f, void, in f, . . .} , 

{CreateDocument : void -, Doctmlent, 

NewDocz/nze~r t : void + ii7t , 

OpenDocz/me~lt : string + iitt, . . .} )) ) 

The class of C,, -algebras corresponding to C: is represented by Alg(ZL), 

A lg (C ) = (Application, MyApplicdionX) 

The relationships between the algebraic entities in the interface is represented by X,, 

The relationship between interface and the realization is represented by R3 , 

R3 = ( (nil, Instnntiafes, MyApplicatio?~, MyDoczmmet, nil, nil, nil, niT) ) 

The interface corresponding to Figure 9.12 is given by (A1'(C:),Az) where we 

have the following: 



NewDoczrnle~~t : void + int , 

(C = ({intApplicaNor~, Doczmle~lt, DoczmlealX, void, irrt, . . .) , 

{CreateDoczin~ent : void + Doczmlent , 

NewDoczmle~zt : void + int , 

OpenDocttnle~~t : sti-ing -+ int,. . .))) , 

(C ppli 
onY = ({ Applicatio n , Docttment , DocurrtentY - void , i n / ,  . . . I ,  

{CreafeDoczrment : void -+ Doctime~ltX, 

Ne~~Doczmletzt : void + int , 

OpenDocz/n~ent : string + int,. . .))) ) 

The class of C ,, -algebras corresponding to C: is represented by Alg(C: ) , 

The relationships between the algebraic entities in the interface is represented by R, , 

R, = { (nil, inherifance, intApplicationX, intApplication, nil, ilil, nil, nil), 

(nil, Inherila~lce, intApplicatio~zY, intAppIicatio~l, ?lily nil, nil, nil) } 

The relationship between interface and the realization is represented by R, , 

R, = { (R2, Realizes, itrtApplicntiotl, Application, nil, nil, nil, rlil), 

(R4, Realizes, i~ltApplicationX, ApplicationX, ~ n l ,  nil, nil, nil), 

(R3, Realizes, irltApplicatio~lY, ApplicntionY, ?lily nil, nil, nil) ) 

Realize is a special form of inheritance. It allows you to inherit a subset of a signature. 



9.4.1 The Transformation Process of Building the Document Framework Pattern 

The document Framework version of the Factory Method design pattern shown in Figure 

9.12 can be built using a sequence of elemental transformations that are consistent with 

the permissible relationships. 

The set of transformation operations include the following: 

Inheritance of operation 

Inheritance of sorts or types 

Addition of sort to the signature 

Addition of operation to the signature 

Rename of operation 

Rename of sort 

Addition of variable 

Rename of variable 

Aggregate a class to another 

Instantiate 

Realize a class by another 

Duplication of a design pattern 

The sequence of transformation is as follows: 

1. Duplicate the pattern in Figure 9.10 

2. Rename Product to Document 

3 .  Renaine Creator to Application 



4. Renaine ConcreteProduct algebra to DocumentX 

5. Rename ConcreteCreator algebra to ApplicationX 

6. Aggregate (Document, Application) 

7. Add operation Open to Document 

8. Add operation Close to Document 

9. Add operation Save to Document 

10. Add operation Revert to Document 

11. Inherit operation Open (DocumentX, Document) 

12. Inherit operation Close (DocumentX, Document) 

13. Inherit operation Save (DocurnentX, Document) 

14. Inherit operation Revert (DocumentX, Document) 

15. Renaine operation (FactoryMethod, CreateDocument) Application 

16. Update operation signature CreateDocument (void+Document) Application 

17. Rename operation (Anoperation, NewDocument) Application 

18. Add operation OpenDocument to Application 

The resulting vector inodule signature after the above sequence of operations is given 

below: 

C ]' = ((C Doc,,,,, = ({void, . . .) , {Operz : void -+ void, Close : void + void, 

Save : void + void , Revert : void -+ void,. . .))) , 

(c D ~ , , , , , ~ , V  = (( Doam~ent, void, . . .) , {Ope)? : void -+ void, Close : void + void, 
Save : void + void , Reserl : void -+ void,. . .))) , 

{CrenteDoarn~ent : void -+ Doatment, 



NewDocz~nlent : void + i~ t t  , 

OpenDoc~tntetrt : string -+ int.. . .I)) , 

(C ,,,,, = ((Application, Docu~jtent , void, int, . . .) , 

(CreareDoczlrnent : void + Doczm~e~tt, 

Ne1vDoctm7ent : void + i17t, 

Ope~rDocttmenl : string -+ in/.. .. .})) ) 

The relationships between the algebraic entities is represented by R, , 

X, = { (R 1 ,  Aggregation, Doczrrne~lt, Application, belo~tgs, has, 1 ,  0. .m), 

(nil, i~~heriirulce, MyDocz~ment, Docz~n~e~~t ,  nil, tlil, rtil, nil), 

(ttil, inheritar~ce, MyApylication, Application, nil, nil, ilil, nil), 

(nil, insta~ttia~es, MyApplication, MyDoczinmet, nil, rtii, nil, ~ i l )  } 

Applicability to Reuse 

With the exception of the dztplicate pattern operation, the operations presented above are 

all elemental. Since the set of elemental operations needed to build a component is finite 

then we can use the aggregate of the sequence of operations as a quantitative measure of 

the effort to reuse a component. The operations can be fitted with a differential-weighting 

scheme based on relative weights of the operations. 

The prevailing conclusion of the collective wisdom of building complex 

distributed software over the past decade or so is that the software construction process 

must be iterative and incremental. The software practitioner must have a very good 



understanding of what he wants to build and must be able to give a reasonable 

specification of it, albeit incomplete. A tool environment that takes advantage of the 

above mentioned formal principles will give the practitioner the ability to play scenario 

games with very complex modules specification and therefore help to guide the 

development process. 

The-formal principle explored above can be incorporated into the very large-scale 

software construction process to facilitate automatic program verification. Given the 

beginning and ending specifications, a tool could use the principles above to verify that 

the resulting component is consistent. In fact, it would be able to identify the offending 

code giving developers the ability to zero in on supposedly suspected code. 

The applicability of the formal principles explored in this thesis to automatic 

program verification can be put into the format of a theorem prover based on the 

principle of illterpretalion betweer1 theories [Enderton 19721. The vector signature 

concept can be incorporated into a logic based on predicate calculus. This can then be 

used to represent a design pattern as a theory, to which the principle of interpretation 

between theories can be applied. Thus, we can develop a forinal mathematical basis for 

the theorem prover. 



Chapter 10 

Conclusions and Future Work 

Software 'reuse is the reapplication of a variety of existing knowledge during the 

construction of a software system in order to reduce the effort of development and 

maintenance of the new system. This reused knowledge includes artifacts such as domain 

knowledge, develop~nent experience, design decisions, architectural structures, module- 

level implementation structures, specification, design, code, etc. Different reuse 

techniques may emphasize or de-emphasize certain of these artifacts. 

Creating a complex software system with a smaller amount of effort and less 

cognitive burden on the part of the software developer implies a higher level of 

abstraction. For a developer to effectively select, specialize, and integrate reusable 

artifacts, the reuse technology must provide natural, succinct, high-level abstractions in 

which the abstraction specifications describe the artifacts in terms of what they do. The 

ability of a developer to practice software reuse is primarily limited by the abstraction 

mechanism employed by the reuse technology. That is, there must be a small cognitive 

distance between infor~nal reasoning and the abstract concepts defined by the reuse 

technology. 

Why is software reuse so difficult? The answer is simply that raising the level of 

abstraction of an artifact is extremely difficult. For example, early reuse required the 



development of the entire body of knowledge of Formal Language Theory before 

unlocking the secrets of compiler construction. 

The object-oriented approach to software development has emerged as one of the 

primary vehicles for the realization of software reuse. The features of inheritance, 

dynamic binding, and polymorphism offered by this paradigm provide an extremely 

powerfir1 and elegant approach to software reuse, which differs hndamentally from other 

mechanisms. 

Design patterns express the static and dynamic structures and collaborations of 

components in software architectures. Patterns aid the development of extensible 

distributed system components and frameworks by expressing the structure and 

collaboration of participants in software architecture at a level higher than (1) source 

code and (2) object-oriented design models that focus on individual objects and classes. 

Design patterns are an effective mechanism for capturing successhl designs and 

micro-architectures. Expressing proven techniques as design patterns makes them more 

accessible to new systems and thus facilitates greater reuse. The ability to reuse a 

successfbl pattern without any modification is highly desirable. However, this is hardly a 

realistic expectation because the interface exported may not be an exact match. Hence, 

the next best thing is to be able to superimpose on the design pattern the requisite 

interface. The abstract data view (ADV) concept performs this task perfectly. 

Summmy 

We have shown how to use the concepts of ADV, design pattern, and software 

architecture to create a very powefil software architecture framework for developing 



new applications and integrating existing applications into a unified adaptive business 

centric solution. To illustrate the approach, we have applied this framework to solving the 

OSS integration problem in the telecommunications industry. 

We have presented a model-based software development approach. This is an 

approach to raise the abstraction level at which application developers work and to 

automate the process of translation from an application model to its corresponding 

distributable runtime component. The basic thesis here is that we can effectively reverse 

the effort role in the software development process in which about 80% of the 

development effort goes into the development of infrastructure services and 20% into the 

development of application logic. 

We have presented a mathematical formalism for the specification of design 

patterns. This specification constitutes an extension of the basic concepts from many- 

sorted algebra. 111 particular, the notion of signature is extended to that of a vector. 

consisting of a set of linearly independent signatures. The linearly independence property 

is necessary to satisfy non-interference that is essential for compositional based 

construction. This is of hndamental concern in the building of large-scale software 

systems where we have the composition of smaller components to form larger 

components. The approach can be used to determine efforts for co~nponent reuse and 

facilitate program verification. The approach has the potential to be able to aid complex 

software development by providing the developer with different design alternatives. 



Future Work 

The material from Chapters 8 and 9 present opportunities for the construction of various 

tools to explore the concepts proposed by this research effort. The algebraic specification 

formalism presented illustrates an approach to determine the effort to reuse a software 

artifact. This concept can also be applied to automatic program verification and other 

related concepts. ' 

The applicability of the formal principles explored in this thesis to automatic 

program verification can be put into the format of a theorem prover based on the 

principle of interprefafion between fheor*ies [Enderton 19721. The vector signature 

concept can be incorporated into a logic based on predicate calculus. This can then be 

used to represent a design pattern as a theory, to which the principle of interpretation 

between theories can be applied. Thus, we can develop a formal mathematical basis for 

the theorem prover. 

The proposed adaptive integration architecture can be combined with the model- 

based software development approach presented in Chapter 8 to provide a very powefil 

IDE. The architecture framework could be transparently provided by the IDE along with 

all the relevant infrastructure services. Such an environment would definitely facilitate 

raising the abstraction level at which application developers work by allowing them to 

focus on prwe nppliccz~io~l model specification using a meta-metarnodel formalism. The 

application model is independent of infrastructure and imperative programming language 

specificities. 

The adaptive architecture technique explored in this research undertaking is of a 

generic nature and applicable to any customer centric business software application that 

206 



is transactional by nature. Some of the relevant application domains include financial 

services, telecommunication OSSs, item tracking, energy and water utilities, back-office 

item processing, and office automation. Applying the proposed approach to such systems 

will provide hrther experiments in supporting the findings of this research effort. 



REFERENCES 

[Alencar 19941 

[Alencar 1994al 

[Arango 198 81 

[Arnold 19881 

[Atkinson 199 11 

[Balzer 19891 

[Bass 19911 

[Betts 19901 

The semantics of abstracts data views: A design concept to support 
reuse-in-the-large, A. Alencar, L. Carneiro, D. D. Cowan, and C. 
Lucena, Proc. Colloquium Object-Orientation in Database and 
Software Engineering. Kluwer Press, May 1994. 

Towards a formal theory of abstract data views, A. Alencar, L. 
Carneiro, D. D. Cowan, and C. Lucena, Technical Report 94-18, 
Computer Science Department, University of Waterloo, Waterloo, 
Ontario, Canada, April 1994. 

Domain Engineering for Software Reuse, Ph.D. Thesis, G. Arango, 
Computer Science Department, University of California, Irvine, 
CA, 1988. 

The REUSE System: Cataloging and Retrieval of Reusable 
Software, S. P. Arnold and S. L. Stepoway, Editor: W. Tracz, 
Software Reuse: Emerging Technologies, IEEE Computer Society, 
1988, pp. 138-141. 

Object-Oriented Reuse, Concurrency and Distribution: An Ada- 
based approach, Colin Atkinson, ACM Press, New York, NY, 
1991. 

A 15 year perspective on automatic programming, Frontier Series: 
Software Reusability: Application and Experience, Volume 11, Ted 
J. Biggerstaff and Alan J. Perlis (editors), ACM Press, New York, 
NY, 1989, pp. 289-3 1 1, Chapter 14. 

Developing Software for the User Interface, L. Bass and J. Coutaz, 
Reading, MA: Addison-Wesley, 199 1. 

Math packages multiply, Kellyn S. Betts, Mechanical Engineering, 
Volume 112, Number 8, August 1990, pp. 32-38. 



[Biggerstaff 19891 Reusability Framework, Assessment, and Directions, Frontier 
Series: Software Reusability: Concepts and Models, Volume I, Ted 
J. Biggerstaff and Alan J. Perlis (editors), ACM Press, New York, 
NY, 1989, pp. 1-17. 

piggerstaff 1989bl Reusability Framework, Assessment, and Directions, Frontier 
Series: Software Reusability: Application Experience, Volume 11, 
Ted J. Biggerstaff and Alan J. Perlis (editors), ACM Press, New 
York, NY, 1989. 

[Booch 19871 

[Booch 19941 

[Booch 19991 

[Breu 19911 

[Breymann 19981 

[Buchanan 19791 

,. Constructing intelligent agents with Java: A programmer's guide to 
.smarter applications, Joseph P. Bigus and Jennifer Bigus, John 
Wiley & Sons, Inc., New York, NY, 1998. 

Genericity vs. Inheritance vs. Delegation vs. Confor~nance vs. . . . , 
S. G. Blair, J.J. Gallagher, and J. Malik, Journal of Object-Oriented 
Programming, Volume 2, Number 3, Septe~nberIOctober 1989, pp. 
11-17. 

Software Co~nponents with Ada: Structure, Tools, and Subsystems, 
G. Booch, BenjamidCummings Publishing Company, Inc., Menlo 
Park, CA, 1987. 

Object-Oriented Analysis and Design with Applications, Second 
Edition, G. Booch, BenjarninlCummings Publishing Company, 
Inc., Redwood City, CA, 1994. 

The Unified Modeling Language User Guide, Grady Booch, James 
Rumbaugh, and Ivar Jacobson, Addison Wesley Longman, Inc., 
Reading Massachusetts, 1999. 

Algebraic Specification Techniques in Object Oriented 
Programming Environments, R. Breu, Springer-Verlag, Berlin, 
Heidelberg, 199 1. 

Designing Components with the C++ STL: A new approach to 
programming, Ulrich Breymann, Addison Wesley Longman 
Limited, Edinburgh Gate, Harlow, England, 1998. 

Theory of Library Classification, B. Buchanan, Clive Bingley, 
London, UK, 1979. 



[Buschmann 19981 Pattern-Oriented Software Architecture: A System of Patterns: 
Volume 1, Frank Buschmann, Regine Meunier, Michael Stal, Hans 
Rohnert, and Peter Sommerlad, John Wiley & Sons, Inc., New 
York, NY, July 1998. 

[Carneiro 1993)- 

[Carneiro 19941 

[Carneiro 19951 

[Carothers 19971 

[Cleaveland 19881 

[Cleeland 19961 

[Coplien 19951 

[Coutaz 199 11 

User interface higher-order architectural models, L. M. F. 
Carneiro, M. H. Coffin, D. D. Cowan, C. J. P. Lucena, Technical 
Report 93-14, Computer Science Department, University of 
Waterloo, Waterloo, Ontario, Canada, 1993. 

ADVcharts: A visual formalism for interactive systems, L. M. F. 
Carneiro, D. D. Cowan, and C. J. P. Lucena, SIGCHI Bulletin, 
1993, pp. 74-77. 

ADVcharts: A Visual Formalism for Highly Interactive Systems, 
L. M. F. Carneiro-Cafin, D. D. Cowan, and C. J. P. Lucena, 
Software Engineering in Human-Computer Interaction, eds. M. D. 
Harrison and C. W. Johnson, Cambridge University Press, 
Cambridge, 1995. 

Design and Implementation of HLA time management in the RTI 
version F.0, Christopher D. Carothers, Winter Simulation 
Conference Proceeding, 1997. IEEE, Piscataway, NJ, USA 
97CB36141, pp. 373-380. 

Building application generators, J. C. Cleaveland, IEEE Software, 
Volume 5, Number 4, July 1988, pp. 25-33. 

External Polymorphism: An Object Structural Pattern for 
Transparently Extending C++ Concrete Data Types, Chris 
Cleeland, Douglas C. Schmidt, and Timothy H. Harrison, 
Proceedings of the 3rd Pattern Languages of Programming 
Conference, Allerton Park, Illinois, September 4-6, 1996. 

Pattern languages of prograin design, edited by James 0. Coplien 
and Douglas C. Schmidt, Addison-Wesley Publishing Company, 
Inc., Reading, Massachusetts, 1995. 

Applications: A dimension space for user interface management 
systems, J. Coutaz and S. Balbo, Reaching Through Technology, 
CHI 1991 Conference Proceedings, Editors: S. P. Robertson, G. M. 
Olson, and J. S. Olson, New Orleans, LA, April 27-May 2, 199 1, 
pp. 27-32. 



[Cowan 19921 

[Cowan 19931 

[Cowan 1993 a] 

[Cowan 1993 b J 

[Cowan 19951 

[Dahmann 19971 

[DEC 19911 

[Dewey 19791 

[Dennis 19731 

[DeRemer 19721 

Program design using abstract data views - An illustrative 
example, D. D. Cowan et al, Technical Report 92-54, Computer 
Science Department, University of Waterloo, Waterloo, Ontario, 
Canada, December 1992. 

Abstract Data Views, D. D. Cowan, R. Ierusalimschy, C. J. P. 
Lucena, and T. M. Stepien, Structured Programming, Volume 14, 
January 1993, pp. 1-13. 

Application Integration: Constructing composite applications from 
interactive components, D. D. Cowan, Software Practice and 
Experience, Volume 23, March 1993, pp. 255-276. 

Abstract Data Views: A module interconnection concept to 
enhance design for reusability, D. D. Cowan and C. J. P. Lucena, 
Technical Report 93-52, Computer Science Department and 
Computer Systems Group, University of Waterloo, Waterloo, 
Ontario, Canada, November 1993. 

Abstract Data Views: An interface specification concept to 
enhance design for reuse, Donald D. Cowan and Carlos J. P. 
Lucena, IEEE Transactions on Software Engineering, Volume 2 1, 
Number 3, March 1995, pp. 229-242. 

Department of Defense High Level Architecture, Judith S. 
Dahmann, Winter Simulation Conference Proceeding, 1997. IEEE, 
Piscataway, NJ, USA 97CB36 14 1, pp. 142- 149. 

The common object request broker: Architecture and specification, 
Digital Equipment Corporation, Hewlett-Packard Company, 
HyperDesk Corporation, NCR Corporation, Object Design Inc., 
and Sunsoft Inc., OMG 9 1.12.1, December 199 1. 

Decimal Classification and Relative Index, M. Dewey, 1 9 ' ~  ed., 
Forest Press Inc., Albany, N.Y., 1979. 

Modularity, Advanced Course on Software Engineering, J. Dennis, 
Springer-Verlag, New York, 1973. 

Programming-in-the-large versus programming-in-the-small, F. 
DeRemer and H. Kron, IEEE Transactions on Software 
Engineering, Volume 2, 1976. 



[Derr 19951 

[Dick 20001 

[Dodd 19991 

[Doh 19941 

[Eeles 19981 

[Even 19901 

[Fiadeiro 19931 

[Enderton 19721 

[Fowler 19991 

[Freeman 19831 

[Freeman 19871 

[Frichman 19921 

Applying OMT: a practical step-by-step guide to using the object 
modeling technique, Kurt W. Derr, SIGS Books, New York, NY, 
1995. 

XML: a manager's guide, Kevin Dick, Addison Wesley Longman, 
Inc., Reading, Massachusetts, 2000. 

The essential guide to telecommunications, Annabel 2. Dodd, 
Prentice Hall, Inc., Upper Saddle River, NJ, 1999. 

The facets of action semantics: Some principles and applications, 
Kyung-Goo Doh and David A. Schmidt, Proceedings lst 
International Workshop on Action Semantics, Edinburg, 1994, pp. 
1-15. 

Building business objects, Peter Eeles and Oliver Sims, John 
Wiley & Sons Inc., New York, NY, 1998. 

Category sorted algebra-based action semantics, Susan Even and 
David A. Schmidt, Theoretical Computer Science, Volume 77, 
1990, pp. 73-96. 

Verifying for Reuse: Foundations of Onbject-Oriented System 
Verification, J. Fiadeiro and T. Maibaum, Technical Report, 
Imperial College of Science and Technology, University of 
London, London, 1993. 

A mathematical Introduction to Logic, H. B. Enderton, Academic 
Press, New York, NY, 1972. 

Analysis patterns: reusable object models, Martin Fowler, Addison 
Wesley Longman, Inc., Reading, Massachusetts, October 1999. 

Reusable software engineering: Concepts and research directions, 
P. Freeman, Workshop on Reusability in Progralnining (Newport, 
R.I., Sept. 1983), ITT Programming, Stratford, Conn., pp. 2- 16. 

A conceptual analysis of the Draco approach to constructing 
software systems, P. Freeman, IEEE Transactions on Software 
Engineering, SE-13, 7, July 1987, pp. 830-844. 

The Assimilation of Software Process Innovations: An 
Organizational Learning Perspective, R. Frichman and C. 
Kemerer, MIT Center for Information Systems Research WP 281, 
Management Science, 1992. 



[Gamma 19961 

[Gaudel 19861 

[Green 19831 

[Hartson 19891 

[Harmon 19971 

[Helm 19901 

[Henning 19991 

[Henry 19951 

[Hill 1 9 8 61 

[Hill 19921 

[Hoare 19691 

Design Patterns: Elements of Reusable Object-Oriented Software, 
Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, 
Addison-Wesley Publishing Company, Inc., Reading, MA, 
December 1996. 

Towards Structured Algebraic Specifications, M. C. Gaudel, 
ESPRIT 85 Status Report, North-Holland, Brussels, 1986, pp. 493- 
5 10. 

Design notations and user interface management systems, M. 
Green, User Interface Management System, Proceedings on 
Workshop User Interface Management System, Seeheim, F RG, 
November 1-3, 1983. 

User-interface management control and communication, 
Hartson, IEEE Software, volume 26, January 1989, pp. 62-70. 

Understanding UML: the developer's guide: with a web-based 
application in Java, Paul Harmon and Mark Watson, Morgan 
Kaufinann Publishers, Inc., San Francisco, CA, 1997. 

Contracts: Specifying behavioral composition in object-oriented 
systems, R. Helm, I. M. Holland, and D. Gangopadhyay, 
OOPSLA, 1990, pp. 169-180. 

Advanced CORBA Programming with C++, Michi Henning and 
Steve Vinoski, Addison Wesley Longman, Inc., Reading, 
Massachusetts, April 1999. 

Large-scale industrial reuse to reduce cost and cycle time, 
Emmanuel Henry and Benoit Faller, IEEE Software, September 
1995. 

Supporting concurrency, communication, and synchronization in 
human-computer interaction - The Sassafras UIMS, R. D. Hill, 
ACM Transactions on Graphics, Volume 5, July 1986, pp. 179- 
2 10. 

The abstraction-link view paradigm: using constraints to connect 
user interface to applications, R. D. Hill, CHL 1992, ACM, May 
1992, pp. 335-342. 

An axiomatic approach to computer programming, C. A. R. Hoare, 
Communications of the ACM, Volume 12, 1969, pp. 576-580, 583. 



[Iona 19991 

[Jacobson 19921 

[Johnson 199 11 

[Jones 19901 

[Krasner 1 98 81 

[Krueger 19921 

[Levy 19861 

[Lieberman 1 9861 

[Linthicum 19991 

[Loeckx 19961 

[Lucena 19921 

Orbix Programmers' Manual. Iona Technologies. Inc, January 
1999. 

Object-Oriented Sofiware Engineering - A Use Case Driven 
Approach, Ivar Jacobson, Magnus Christerson, Patrik Johnson, and 
Gunnar Overgaard, Addison-Wesley, Wokingham, England, 1992. 

Delegation in C++, Ralph E. Johnson and Jonathan Zweig, Journal 
of Object-Oriented Programming, Volume 4, Number 1 1, pp. 22- 
35, November 199 1. 

Systematic Software Development Using VDM, C. B. Jones, 
Prentice-Hall, New York, NY, 1990. 

A cookbook for using the model-view-controller user interface 
paradigm in smalltalk-80, G. E. Krasner, JOOP, August-September 
1988, pp. 26-49. 

Software Reuse, Charles W. Krueger, ACM Computing Surveys, 
Volu~ne 24, Number 2, June 1992. 

A metaprogramrning method and its economic justification, L. S. 
Levy, IEEE Transaction on Software Engineering, SE- 12, Number 
2, February 1986, pp.272-277. 

Using Prototypical Objects to Implement Shared Behavior in 
Object-Oriented Systems, H. Lieberinan, OOPSLA'86 Conference 
Proceeding, SIGPLAN Notices, Volume 21, Number 11, pp. 214- 
223, 1986. 

Enterprise application integration, David S. Linthicum, Addison 
Wesley Longtnan, Inc., Reading, Massachusetts, November 1999. 

Specification of Abstract Data Types, Jacques Loeckx, Hans- 
Dieter Ehrich, and Markus Wolf, John Wiley & Sons, Inc., New 
York, NY, 1996. 

A programming Model for User Interface Compositions, C. J. P. 
Lucena, D. D. Cowan, and A. B. Potengy, Technical Report 92-61, 
Computer Science Department and Computer Systems Group, 
University of Waterloo, Waterloo, Ontario, Canada, March 1992. 



[Lucena 19931 

[Maarek 1 9 9 1 ] 

[Marciniak 1 9941 

[Martin 19971 

A programming approach for parallel rendering applications, C. J. 
P. Lucena, D. D. Cowan, and A. B. Potengy, Technical Report 93- 
62, Computer Science Department and Computer Systems Group, 
University of Waterloo, Waterloo, Ontario, Canada, March 1993. 

An information retrieval approach for automatically constructing 
software libraries, Y. S. Maarek, D. M. Berry, and G. E. Kaiser, 
IEEE Transactions on Software Engineering, Volume 17, No. 8, 
August 1991, pp. 800-8 13. 

Encyclopedia of Software Engineering, J.J. Marciniak, John Wiley 
& Sons, Inc., New York, NY, 1994. 

Object-oriented methods: a foundation, James Martin and James 
Odell, Prentice-Hall, Inc., Upper Saddle River, NJ, 1997. 

XML and lava: developing web applications, Hiroshi Maruyama, 
Kent Tamura, and Naohiko Uramoto, Addison Wesley Longman, 
Inc., Reading, Massachusetts, January 2000. 

[Matsumoto 19871 A Software Factory: An overall approach to software production, 
IEEE Tutorial on Software Reusability, P. Freeman (editor), IEEE 
Computer Society Press, Los Alamitos, CA, 1987, pp. 155-1 78. 

ATM theory and applications, David E. McDysan and Darren L. 
Spohn, McGraw-Hill, New York, NY, 1999. 

[McCormack 19881 An overview of the X toolkit, J. McCormack and P. Asente, 
Proceedings of the ACM SIGGRAPH Sylnposium on User 
Interface Software, October 1988, pp. 46-55. 

[McIlory 19681 

[Meyer 19881 

[Mosses 19921 

Mass Produced Software Components, M.D. McIlory, Software 
Engineering Concepts and Techniques, Brussels 3 9, Belgium: 
Pertrocelli/Charter, 1968, pp. 88-98. Paper presented at the 1 968 
NATO Conference on Software Engineering. 

Object-oriented software construction, B. Meyer, Prentice-Hall, 
1988. 

Action Semantics, Peter D. Mosses, Cambridge Tracts in 
Theoretical Computer Science, Number 26, Cambridge University 
Press, 1992. 



[Mosses 19961 

[Mowbray 19971 

[Mowbray 19981 

[MSC 19911 

[Myers 199 11 

[Neighbors 19831 

Theory and practice of action semantics, Peter D. Mosses, MFCS: 
Proceedings of the 2 la International Symposium on Mathematical 
Foundations of Computer Science, Lecture Notes in Computer 
Science: Volume 1 1 13, Springer-Verlag, Cracow, Poland, 
September 1996, pp. 37-61. 

Corba design patterns, Thomas J. Mowbray and Raphael Malveau, 
John Wiley & Sons, Inc., New York, NY, 1997. 

Inside CORBA: Distributed object standards and applications, 
Thomas J. Mowbray and Willam A. Ruh, Addison Wesley 
Longman, Inc., Reading, MA, February 1998. 

Microsoft VisuaI 
Corporation, 199 1. 

Basic Programmer's Guide, Microsoft 

Separating application code from toolkits: Eliminating the 
spaghetti of call-backs, B. A. Myers, UIST-4' Annual Symposium 
on User Interface Software Technology, 199 1, pp. 2 1 1-220. 

The Draco approach to constructing software from reusable 
components, J. M. Neighbors, Workshop on reusability in 
programiniilg (Newport, R.I., September 1983), ITT Programming, 
Conn., pp. 167-178. 

[Neighbors 19891 Draco: A method for engineering reusable software systems, 
Frontier Series: Software Reusability: Concepts and Models, 
Volume 1, Ted J. Biggerstaff and Alan J. Perlis (editors), ACM 
Press, New York, NY, 1989, pp. 295-3 19, Chapter 12. 

[OG 19941 

[Orfali 19981 

[Olsen 19831 

Component-oriented software development, 0 Nierstrasz, S. 
Gibbs, and D. Tsichritzis, Com~nunications of the ACM, Volume 
35, September 1992, pp. 160-165. 

Distributed Co~nputing Services (XDCS) Framework: XIOpen 
Framework and Models, The Open Group, October 1994. 

Clientlserver programming with Java and CORB A, Robert Orfali 
and Dan Harkey, John Wiley & Sons, Inc., New York, NY, 1998. 

Presentational, syntactic, and semantic co~nponents of interactive 
dialogue specifications, D. R. Jr. Olsen, User Interface 
Management System, Proceedings on Workshop User Interface 
Management System, Seeheim, FRG, November 1-3, 1983. 



[OMG 19971 

[OMG 19981 

[OMG 1998al 

[OMG 20001 

[OMG 2000al 

[OMG 2000bl 

[OMG 200 11 

[OSF 19901 

[Ousterhoust 19941 

[Parnas 19891 

[Potengy 19931 

[Poulin 19951 

[Prieto-Diaz 19851 

A Discussion of the Object Management Architecture, OMG, 
January 1997. 

CORBA Finance: Financial Domain Specifications: Version 1.0, 
OMG, December 1998. 

CORBA Telecoms: Telecommunications Domain Specifications: 
Version 1.0, OMG, June 1998. 

Meta Object Facility (MOF) Specification: Version 1.3, OMG, 
March 2000. 

OMG XML Metadata Interchange (XMI) Specification : Version 
1.1, OMG, November 2000. 

OMG Unified Modeling Language (UML) Specification: Version 
1.3, OMG, March 2000. 

The Common Object Request Broker Architecture: Architecture 
and Specification: Version 2.4.2, OMG, February 2001. 

Application Environment Specification (AES) User Environment 
Volume, Open Software Foundation, 1990. 

Tcl and Tk Toolkit, J. K. Ousterhoust, Reading, MA: Addison- 
Wesley, 1994. 

Enhancing Reusability with Information Hiding, Frontier Series: 
Software Reusability: Concepts and Models, Volume 1, D.L. 
Parnas, P.C. Clements, and D. M. Weiss, Ted J. Biggerstaff and 
Alan J. Perlis (editors), ACM Press, New York, NY, 1989, pp. 
141-1 57. 

A Programming Approach for Parallel Rendering Applications, A. 
B. Potengy, C. J. P. Lucena, and D. D. Cowan, Technical Report 
93-62, Computer Science Department, University of Waterloo, 
Waterloo, Ontario, Canada, March 1993. 

Populating software repositories: incentives and domain-specific 
software, J. S. Poulin, Journal of Systems and Software, Volume 
30, Number 3, September 1995, pp. 187-1 99. 

A software classification scheme: Ph.D. thesis, R. Prieto-Diaz, 
Department of Information and Computer Science, University of 
California, Irvine, 1985. 



[Prieto-Diaz 19861 

[Prieto-Diaz 19871 

Module Interconnection Languages, R. Prieto-Diaz and J.M. 
neighbors, Journal of System Software, Volume 6, Number 4, 
November 1986, pp. 307-334. 

Classifying Software for Reusability, R. Prieto-Diaz and P. 
Freeman, IEEE Software, Volume 4, Number 1, January 1987, pp. 
6- 16. 

[Prieto-Diaz 19891 Classification of Reusable Modules, Software Reusability: 
Concepts and Models, Volume 1, Ted J. Biggerstaff and Alan J. 
Perlis (editors), ACM Press, New York, NY, 1989, pp. 99-123. 

[Prieto-Diaz 199 11 Domain Analysis and Software System Modeling, R. Prieto-Diaz 
and G. Arango, IEEE Computer Society Press, Los Alamitos, 
1991. 

[Prieto-Diaz 199 1 a] Implementing Faceted Classification for Software Reuse, R. 
Prieto-Diaz, Communications of the ACM, Volume 34, Number 5, 
May 1991, pp. 89-97. 

[Rising 19981 

[Rumbaugh 199 11 

[Schmidt 1995al 

[Schmidt 1995bl 

[Schmidt 1995~1 

  he Patterns Handbook: Techniques, Strategies, and Applications, 
collected by Linda Rising, Cambridge University Press, 
Cambridge, UK, 1998. 

Object-Oriented Modeling and Design, 3. Rumbaugh et al., 
Prentice Hall, Englewood Cliffs, NJ, 199 1, pp. 156- 16 1. 

An Object-Oriented Framework for Dynamically Configuring 
Extensible Distributed Systems, Douglas C. Schmidt and Tatsuya 
Suda, BCSDEE Distibuted Systems Engineering Journal, 1995. 

Reactor: An Object Behavioral Pattern for Concurrent Event 
Demultiplexing and Event Handler Dispatching, Douglas C. 
Schmidt, Pattern Languages of Program design, Addison-Wesley 
Publishing Company, Inc., Reading, Massachusetts, 1995. 

Object-Oriented Components for High Speed Network 
Programming, D. C. Schmidt, T. H. Harrison, and E. Al-Shaer, 
Proceedings of the Conference on Object-Oriented Technologies, 
(Monterey, CA), USENIX, June 1995. 



[Schmidt 19961 

[Schmidt 1996al 

[Schmidt 20001 . 

[Shaw 19841 

[Shaw 19891 

[Shaw 19911 

[Shepard 20001 

[S hlaer 198 81 

[S hlaer 19921 

[Sikkel 19921 

[Stroustrup 19861 

A Family of Design Patterns for Flexibly Configuring Network 
Services in Distributed Systems, Douglas C. Schmidt, International 
Conference on Configurable Distributed Systems, Annapolis, 
Maryland, May 6-8, 1996. 

A Family of Design Patterns for Application-Level Gateways, 
Douglas C. Schmidt, Theory and Practice of Object Systems, 
Wiley & Sons, Volu~ne 2, Number 1, December 1996. 

Pattern-Oriented Software Architecture: Patterns for Concurrent 
and Network Objects: Volume 2, Douglas Schmidt, Michael Stal, 
Hans Rohnert, and Frank Buschmann, John Wiley & Sons, Inc., 
New York, NY, 2000. 

Abstraction techniques in modern programming languages, M. 
Shaw, IEEE Software, Volume 1, Number 4, October 1984, pp. 
1 0-26. 

Larger scale systems re uire higher-level abstractions, M. Shaw, In 
Proceedings of the ?' International Workshop on Software 
Specification and Design, IEEE Computer Society Press, Los 
Alamitos, Calif., May 1989, pp. 143-146. 

Heterogeneous design idioms for software architecture, M. Shaw, 
In Proceedings of the 6" International Workshop on Software 
Specification and Design (Como, Italy), IEEE Computer Society 
Press, Los Alamitos, Calif, October 1991, pp. 143- 146. 

Telecommunications Convergence, Steven Shepard, McGraw-Hill, 
New York, NY, 2000. 

Object-oriented systems analysis: modeling the world in data, 
Sally Shlaer and Stephen J. Mellor, Prentice-Hall, Inc., Englewood 
Cliffs, NJ, 1992 

Object lifecycles: modeling the world in states, Sally Shlaer and 
Stephen J. Mellor, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1992 

Abstract data types as reusable software components: the case for 
twin ADTs, K. Sikkel and J. C. van Vliet, Software Engineering 
Journal, May 1992, pp. 177-1 83 

The C++ Program~ning Language, B. Stroustrup, Addison-Wesley 
Publishing Company, 1986. 



[Szyperski 19981 Component Software: Beyond Object-Oriented Programming, 
Clemens Szyperski, ACM Press, New York, NY, 1998. 

[Summerville 19891 Software Design with Reuse, I. Summerville, J. Mariani, N. 
Haddley, and R. Thomson, Internal Report, Department of 
Computing, Lancaster University, B ailrigg, lancaster, 1 989. 

[Sun 19961 

[Texel 19971 

[TMF 19991 

[TMF 1999aI 

[Tracz 19871 

[Turski 19871 

[Udupa 19991 

[Vogel 19981 

[Wang 19991 

[Wegner 19831 

[Wegner 19871 

Term rewriting and Hoare logic - coded rewriting, Yong Sun, 
Information Processing Letters, Volume 60, Number 5, December 
9, 1996, pp. 237-242. 

Use cases combined with BOOCWOMTfUML: process and 
products, Tutnam Texel and Charles Williams, Prentice-Hall, Inc., 
Upper Saddle River, NJ, 1997. 

Telecom Operations Map: Evaluation Version 
TeleManagecnent Forum, Morristown, NJ, April 1 999. 

Network Management Detailed Operations Map: Evaluation 
Version 1.1, TeleManagement Forum, Morristown, NJ, March 
1999. 

Software Reuse: motivators and inhibitors, W. J. Tracz, 
Proceedings of COMPCON, San Francisco, CA, February 1987, 
pp. 358-3 63. 

The Specification of Computer Programs, W. M. Turski and T. S. 
E. Maibaum, Addison-Wesley, New York, 1987. 

TMN: Telecom~nunications Management Network, Divakara K. 
Udupa, McGraw-Hill, New York, NY, 1999. 

Java programming with CORBA, Andreas Vogel and Keith 
Duddy, John Wiley & Sons, Inc., New York, NY, 1998. 

Telecommunications Network Management, 
McGraw-Hill, New York, NY, 1999. 

Haojin Wang, 

Varieties of Reusability, P. Wegner, Workshop on reusability in 
programming, ITT programming, Stratford, Conn., 1983, pp. 30- 
44. 

Dimensions of Object-Based Language Design, P. Wegner, 
00PSLA787 Conference Proceedings, SIGPLAN Notices (Special 
Issue), Volucne 22, Number 12, 1987, pp. 168-1 82. 



[Zahavi 19991 

[Zave 19841 

[Zilles 19741 

Watcoln VX-REXX for OS12 Programmer's Guide and Reference, 
Watco~n Int. Corporation, Waterloo, Ontario, Canada, 1993. 

Enterprise Application Integration with CORBA, Ron Zahavi, 
John Wiley & Sons, Inc., New York, NY, 1999. 

The operational versus the conventional approach to software 
development, P. Zave, Communications of the ACM, Volu~ne 27. 
Number 2, February 1984, pp. 104-1 18. 

Algebraic Specification of Data Types, S. Zilles, Project MAC 
Progress Report 1 1, MIT, 1974. 



DATE DUE 




	An Adaptive Integration Architecture for Software Reuse
	STARS Citation

	FRONT COVER
	Front Cover

	TITLE PAGE
	Title Page

	COPYRIGHT
	Copyright

	ABSTRACT
	iii
	iv

	DEDICATION
	v

	ACKNOWLEDGEMENTS
	vi
	vii

	TABLE OF CONTENTS
	viii
	ix
	x
	xi
	xii

	LIST OF ACRONYMS�
	xiii
	xiv
	xv

	LIST OF FIGURES
	xvi
	xvii
	xviii
	xix

	CHAPTER ONE: INTRODUCTION
	001
	1.1 Expansive View of Software Reuse
	002
	003
	004

	1.2 Module Interface and Software Reuse
	005
	006
	007

	1.3 User Interface and Reuse
	008

	1.4 Our Contribution
	009
	010
	011

	1.5 Outline of the Dissteration
	012


	CHAPTER TWO: OUTLINE OF PREVIOUS WORK
	2.1 Abstraction
	013
	2.1.1 Abstraction in Software Development
	014
	015
	016
	017

	2.1.2 Abstraction in Software Reuse
	018

	2.1.3 Cognitive Distance
	019


	2.2 Classification of Reuseable Modules
	020
	021
	2.2.1 Software Components
	022
	023

	2.2.2 A Software Component Reuse Model
	024
	025

	2.2.3 Classification Principles
	026
	027

	2.2.4 Software Classification
	028
	029
	030

	2.2.5 Conceptual Closeness
	031

	2.2.6 Domain Analysis
	032
	033


	2.3 Types of Reusable Software Systems
	034
	2.3.1 Passive Systems
	035
	036
	037
	038

	2.3.2 Active Systems
	039
	040
	041
	042
	043


	2.4 Reuse, Design Patterns and the Object-Oriented Paradign
	044
	2.4.1 Program to an Interface, Not to an Implementation
	045

	2.4.2 Object Composition
	046
	047

	2.4.3 Delegation
	048


	2.5 Current Trends
	049
	2.5.1 Challenges in System Development
	050

	2.5.2 The Common Object Request Broker Architecture (CORBA)�
	051
	052



	CHAPTER THREE: ABSTRACT DATA VIEWS, DESIGN PATTERNS, AND SOFTWARE ARCHITECTURE
	053
	3.1 Abstract Data View
	054
	055
	3.1.1 ADV and Software Reuse
	056
	057


	3.2 Design Patterns
	058
	3.2.1 Abstraction and Design Pattern
	059
	060
	061


	3.3.1 Software Architecture and Abstraction
	063

	3.3.2 Benefits of Architectural Approach to Software Construction
	064
	065
	066


	CHAPTER FOUR: OUTLINE OF OUR WORK
	067
	4.1 What is the Enterprise Application Intergration Problem?
	068

	4.2 Solution to the Enterprise Application Integration Problem
	069
	070

	4.3 Generic Adaptive Application Intergration Architecture Model
	071
	072
	073
	4.3.1 Domain Applications
	4.3.2 Domain Application Adapters
	074

	4.3.3 Asynchronous Distributed Object Framework and Infrastructure Services
	075

	4.3.4 Mediation Services
	076
	077

	4.3.5 Automated Mapping
	078

	4.3.6 Presentation Services
	4.3.7 Thin Client Applications
	079


	4.4 Frameworks and Patterns of Interaction
	4.4.1 Coordination Pattern
	080
	081

	4.4.2 Configuration Pattern
	082

	4.4.3 Model Pattern
	083
	084
	085



	CHAPTER FIVE: ADAPTIVE ORTHOGONAL N-TIER INTEGRATION ARCHITECTURE
	5.1 The Need for Application Portfolio Integration
	086
	087

	5.2 Traditional Approaches to Enterprise Application Integration
	088
	089
	090

	5.3 N-TIER ORTHOGONAL APPLICATION INTEGRATION ARCHITECTURE
	091
	092
	093

	5.4 Implementation and Protocol of the Enterprise Mediation Layers
	094
	095
	5.4.1 Component Construction
	096
	097

	118_099.tif
	119_100.tif
	120_101.tif


	CHAPTER SIX: THE ADAPTIVE EAI ARCHITECTURE FRAMEWORK
	102
	103
	6.1 Distributed Object Framework
	104
	105
	106
	107
	108

	6.2 Domain Application Adapters
	109
	6.2.1 Domain Application Adapter Design Pattern
	110
	111


	6.3 Application Adapter Mediation
	112
	6.3.1 Application Adapter Mediation Pattern

	6.4 Event Mediation
	113
	6.4.1 Event Mediation Pattern
	114


	6.5 Package Mediation
	6.6 Flexible Business Processes
	115
	116

	6.7 Putting It Together
	117
	118


	CHAPTER SEVEN: OSS INTEGRATION IN THE TELECOMMUNICATIONS INDUSTRY
	119
	120
	7.1 Key Industry Standards
	121

	7.2 Solution to the Telecom OSS Integration Problem - A Business Process Centric Approach
	122
	123
	124
	125
	126
	127
	128
	129

	7.3 Information Architecture: Static Domain Model
	7.3.1 Customers and Orders
	130

	7.3.2 Service Enrollment Simplified
	131

	7.3.3 Order Operations
	132
	133

	7.3.4 Offerings and Offering Instances
	134

	7.3.5 Offerings
	135
	136

	7.3.6 Customer and Service Locations
	137
	138

	7.3.7 Customers and Service Enrollments
	139

	7.3.8 The Order World
	140
	141

	7.3.9 The Customer World
	142

	7.3.10 Simplified Telco Orgranization Structure
	143

	7.3.11 Telco Organization in Detail
	144

	7.3.12 Instances of Business Activity Flows
	145
	146

	7.3.13 Orders in the Flow of Business Activity
	147

	7.3.14 Worklists
	148

	7.3.15 Combined Business Activity Flow
	149
	150


	7.4 Example: Get Customer Data for Viewing
	151
	152
	153
	154

	7.5 Summary
	155
	156


	CHAPTER EIGHT: UML MODEL-BASED COMPONENT DEVELOPMENT FRAMEWORK
	8.1 Model-Based Software Construction
	157
	158
	159
	160
	161

	8.2 Meta-Object Information Repository
	162
	163
	164


	CHAPTER NINE: A MATHEMATICAL FORMALISM FOR SPECIFYING DESIGN PATTERNS
	165
	9.1 Definitions and Concepts
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187

	9.2 Semantics of Design Patterns and their Specification Constructors
	188
	189
	190

	9.3 Closure of Design Pattern Under Composition
	191
	192

	9.4 Examples Illsutrating the Use of the Formalism Presented Above
	193
	194
	195
	196
	197
	198
	9.4.1 The Transformation Process of Building the Document Framework Pattern
	199
	200


	9.5 Applicability to Reuse
	201
	202


	CHAPTER TEN: CONCLUSIONS AND FUTURE WORK
	203
	10.1 Summary
	204
	205

	10.2 Future Work
	206
	207


	REFERENCES
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221

	BACK MATTER
	Back Matter

	BACK COVER
	Back Cover


