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ABSTRACT

Attosecond pulses have been developed as a means for investigating phenomena that proceed on the

order of the atomic unit of time (24 as). Unfortunately, these extreme ultraviolet (XUV) pulses by

themselves contain too few photons to initiate nonlinear dynamics or dress states in an attosecond

pump–attosecond probe scheme. As a result, most attosecond experiments thus far have featured

complementary near infrared (NIR) femtosecond lasers for instigating electron dynamics. In order

to access the benefits of all-attosecond measurements and open attosecond physics to new fields of

exploration, the photon flux of these pulses must be increased.

One way to boost the attosecond pulse energy is to scale up the energy of the NIR pulse re-

sponsible for driving high-harmonic generation (HHG). With generalized double optical gating

(GDOG), isolated attosecond pulses can be generated with multi-cycle laser systems, wherein the

pulse energy can be boosted more easily than in the few-cycle laser systems required by other

gating methods. At the Institute for the Frontier of Attosecond Science and Technology (IFAST),

this scalability was demonstrated using a 350 mJ, 15 fs (10 TW) Ti:sapphire laser, which was used

to generate a 100 nJ XUV continuum. This represented an order-of-magnitude improvement over

typical attosecond pulse energies achievable by millijoule-level few-cycle lasers.

To obtain the microjoule-level attosecond pulse energy required for performing all-attosecond ex-

periments, the attosecond flux generated by the IFAST 10 TW system was still deficient by an

order of magnitude. To this end, the laser system was upgraded to provide joule-level output en-

ergies while maintaining pulse compression to 15 fs, with a targeted peak power of 200 TW. This

was accomplished by adding an additional Ti:sapphire amplifier to the existing 10 TW system and

implementing a new pulse compression system to accommodate the higher pulse energy.

Because this system operated at a 10 Hz repetition rate, stabilization of the carrier-envelope phase
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(CEP) – important for controlling attosecond pulse production – could not be achieved using tra-

ditional methods. Therefore, a new scheme was developed, demonstrating the first-ever control of

CEP in a chirped-pulse amplifier (CPA) at low repetition rates.

Finally, a new variation of optical gating was proposed as a way to improve the efficiency of the

attosecond pulse generation process. This method was also predicted to allow for the generation

of isolated attosecond pulses with longer driving laser pulses, as well as the extension of the high-

energy photon cut-off of the XUV continuum.
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CHAPTER 1: INTRODUCTION

1.1 An Historical Glance at the Need for Higher Optical Power

Breakthroughs in the modern-day study of atomic and molecular dynamics have often been made

possible by the advancement of high-power optical sources.

1.1.1 Flash Photolysis

In 1947, the Faraday Society held a series of talks and discussions on “The Labile Molecule”.

Of primary interest was the topic of free radicals: highly reactive atoms or compounds that are

key to many important chemical processes. At the time, few free radicals had been thoroughly

measured due in part to their volatility: only certain more-stable specimens could be confined in

high enough concentrations to be properly studied (>10−5 mol/l required), but this stability also

made them less interesting and less important subjects of investigation. More relevant free radicals

could only be produced in very low concentrations – on the order of 10−7 – 10−10 mol/l. On

this matter, the introductory address stated: “The direct physical methods of measurement simply

cannot reach these magnitudes, far less make accurate measurements in a limited period of time,

e.g. 10−3 sec.” [1, 2].

Within the next five years, British chemists Ronald G. W. Norrish and George Porter had created

a new method that improved on both of these obstacles, producing higher concentrations of free

radicals and performing accurate time-resolved measurements on the millisecond time scale. Their

new technique, first published in Nature in 1949, was called flash photolysis: A meter-long cell

filled with a gas mixture was placed next to a flash tube, which was modified to drastically increase

the discharge pump energy from ∼100 J to as high as 10 kJ [3]. The great burst of energy from
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the lamp was sufficient to produce high concentrations of free radicals in the gas mixture, which

could be probed using the flash of a second lamp passing longitudinally through the cell and into

a spectrometer (shown in Fig. 1.1) [4]. By controlling the delay between the pump flash and the

probe flash, the disappearance of the free radicals could be mapped out over time, as suggested in

Fig. 1.2 [5]. The flash photolysis technique was quickly adapted by the rest of the field, leading

to many significant investigations into chemical dynamics occurring on the millisecond (10−3 s)

and microsecond (10−6 s) scale. This helped earn Norrish and Porter a share of the 1967 Nobel

Prize in Chemistry “for their studies of extremely fast chemical reactions, effected by disturbing

the equilibrium by means of very short pulses of energy” [6].

Figure 1.1: Diagram of the experimental arrangement for performing flash photolysis. Adapted
from [4] with permission of The Royal Society of Chemistry.
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Figure 1.2: Bimolecular disappearance of Chloric Oxide (ClO). Adapted from [5] with permission
of The Royal Society of Chemistry.

1.1.2 The First Laser

Of course, concurrent with this research was the development of other scientifically-useful radia-

tion sources: masers and lasers. Precursory work on the maser was first published in 1954 [7, 8],

and the earliest records of optical maser designs began to appear in 1957 [9]. Looking forward

to the laser’s applicability as a high-power source for scientific investigation, Arthur Schawlow

expressed his vision for the future in 1959 [10]:

If a plane wave output of, say, 1 milliwatt can be concentrated into a spot of 10−8 cm2,

the power density achieved will be 105 watts per cm2 at the focus. ... Such a large

field, even though very localized, might be sufficient to show nonlinear effects either

in its interaction with matter or with other light waves.
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Before the first-ever laser action could be realized in Theodore Maiman’s pink ruby, however,

limitations arising from insufficient pump power needed to be overcome (see Fig. 1.3).

Figure 1.3: Energy levels of ruby. The two strongest lines correspond to S21. Reprinted with
permission from [11]. Copyright 1960 by the American Physical Society.

Inducing a population inversion in pink ruby seemed unlikely at first: Schawlow dismissed the

medium completely, suggesting that “the two strongest lines (at 6919 Å and 6934 Å) go to the

ground state, so that they will always have more atoms in their lower state, and are not suit-

able for maser action” [10]. Even in April 1960 – only one month before his historic achieve-

ment! – Maiman reported only a 3% change in pink ruby’s ground-state population when optically

pumped [11]. A key alteration to this optical pumping configuration eventually made the differ-

ence: “due to the need for high source intensities to produce stimulated emission in ruby”, Maiman

switched to a high-power xenon flash lamp, and lasing was first observed in May 1960 [12–14]. A

diagram of this laser is shown in Fig. 1.4.
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Figure 1.4: Apparatus for pulsed excitation of ruby. (Actual size, approximately 2 × 1 in. o.d.).
Reprinted with permission from [13]. Copyright 1961 by the American Physical Society.

Maiman’s success was the first of many technological breakthroughs that facilitated new methods

for studying atoms and molecules. The significance of this development was commemorated in

1981, when Schawlow and Bloembergen were awarded shares of the Nobel Prize in Physics “for

their contribution to the development of laser spectroscopy” [15].

1.2 Attosecond Physics

While the first laser pulse lasted several hundred microseconds [16], laser advancements such

as Q-switching [17] and mode-locking [18] soon allowed for laser pulses reaching nanosecond

(10−9 s), picosecond (10−12 s), and even femtosecond (10−15 s) time scales. These pulses, like

the revolutionary pump and probe outbursts in the flash photolysis method, were also used to

initiate and measure atomic and molecular dynamics with a higher temporal resolution than ever
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before [19]. The significance of the discoveries resulting from these new ultrafast pulses was found

deserving of the 1999 Nobel Prize in Chemistry, presented to Ahmed Zewail “for his studies of the

transition states of chemical reactions using femtosecond spectroscopy” [20].

Within the next few years, a new level of temporal resolution became available for pump–probe

spectroscopy, as pulses with attosecond (10−18 s) durations were demonstrated for the first time

in 2001 [21]. While attosecond pulses have proven to be valuable for studying electron dynam-

ics [22], their usefulness so far has been largely limited to femtosecond pump–attosecond probe

schemes (an example of which is shown in Fig. 1.5). This is because typical attosecond pulses

are usually limited to pulse energies on the nanojoule level, which by itself is too weak to serve

as both the pump and the probe of a system. Because attosecond pulses are not strong enough

to drive electron dynamics themselves, past experiments have relied upon stronger femtosecond

pulses even though they do not possess the same level of temporal confinement.

To make new breakthroughs in attosecond physics, the attosecond pulse flux must increase so as

to enable all-attosecond measurements.

Figure 1.5: Example of a femtosecond pump–attosecond probe setup investigating helium [23].
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1.3 Dissertation Outline

With the overarching goal of generating isolated attosecond pulses with 1 µJ of energy, this disser-

tation primarily concerns itself with the development of the driving laser system capable of driving

a high-flux isolated attosecond pulse source at the Institute for the Frontier of Attosecond Science

and Technology (IFAST) at the University of Central Florida.

After a brief introduction to chirped pulse amplification (CPA), Chapter 2 describes the design and

performance of the IFAST 10 TW CPA system, which was used to generate an extreme ultraviolet

(XUV) continuum with a pulse energy of 100 nJ. This is followed by a discussion of the imple-

mented system upgrade for increasing the laser’s peak power from 10 TW to 200 TW, with the

intention being to scale the attosecond pulse flux to the microjoule regime.

Even isolated attosecond pulses with the potential for high flux would be unfit for all-attosecond

measurements if the carrier-envelope phase (CEP) of the driving laser were not stabilized, as result-

ing fluctuations in the attosecond pulse parameters would be unacceptable when using the pulses to

pump and probe a quantum system or to initiate nonlinear XUV dynamics. Unfortunately, locking

the CEP of a sub-kHz laser is not straightforward: phase feedback arriving at the repetition rate

of the laser comes too infrequently to compensate the CEP noise arising from vibrations in the

pulse stretcher and compressor. Chapter 3 details a new method capable of controlling the CEP of

low-repetition-rate CPA systems, and results with the 10 TW system and the 200 TW system are

presented.

Finally, Chapter 4 examines the gating schemes used for generating isolated attosecond pulses,

and a new variation on these previous techniques is suggested. A decrease in pre-gate ionization

is expected using the proposed method as compared to other common schemes. This innovation is

predicted to help increase attosecond flux by improving phase matching and extending the high-
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energy photon cutoff, and it also opens the possibility of isolated attosecond pulse production with

longer, more common driving laser pulse durations.

Chapter 5 concludes this dissertation with a discussion of future work.
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CHAPTER 2: A 200 TW Ti:SAPPHIRE LASER

2.1 General Design Considerations

The primary objective towards reaching microjoule-level attosecond pulses in the IFAST lab is up-

grading a previously-constructed 10 TW system to be capable of reaching peak powers of 200 TW

(3 J in 15 fs). Before discussing the 10 TW and 200 TW systems, first some background infor-

mation is provided that introduces a number of the basic concepts encountered when constructing

laser systems with peak powers in excess of 10 TW.

2.1.1 History and Concept of Chirped Pulse Amplification

Similar to how the laser was developed borrowing concepts from the maser, the historical roots of

chirped pulse amplification (CPA) can be traced back to shaping techniques used with radar pulses

in the mid-twentieth century. At the time, two constraints of a typical radar system were 1) the

limit of the detection range, as determined by the energy of the radar pulses, and 2) the limit of the

detection resolution, as determined by the temporal duration of the radar pulses. To improve the

detection range, the pulse energy could be increased; unfortunately, this led to a deterioration in

detection resolution, as longer pulses were needed to prevent equipment damage from increasing

peak powers. To solve this problem, a radar pulse was instead transmitted with a “chirp”, meaning

that a strong non-zero phase relationship was applied between the individual frequency constituents

of the radio pulse. This resulted in a pulse with a long, non-bandwidth-limited pulse duration that

could be safely amplified to higher pulse energies, thus improving the detection range. When

the “echo” signal of the radar pulse returned, a complementary phase was applied in order to

temporally compress, or “de-chirp”, the radar pulse to a short duration, thus also improving the
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detection resolution [24, 25].

While the chirping and de-chirping of radio pulses could be accomplished using electronics, meth-

ods for de-chirping materially-dispersed optical pulses were not developed until after the advent

of the laser; several such techniques include the Gires-Tournois Interferometer in 1964 [26–28],

the Bragg diffraction compressor in 1967 [29], the bulk compressor (bromobenzene) in 1968 [30],

the grating compressor in 1969 [31], the alkali-metal vapor compressor in 1971 [32], the prism

compressor in 1985 [33], and the chirped mirror compressor in 1994 [34]. The general function of

these techniques is the same as the radar-chirping electronics: a fixed, frequency-dependent phase

is applied across the spectral bandwidth of the optical pulse, thereby allowing a degree of control

over its temporal profile.

Early on, these techniques were often applied in re-compressing a pulse to a width shorter than its

original durations after using self-phase modulation in a fiber or frequency sweeping in an electro-

optic crystal to broaden the spectrum of the initial pulse [30, 35–43]. This technique still finds use

in increasing the bandwidth of seed and amplified pulses for generating few-cycle pulses [44–47].

In most of these cases, the magnitude of the positive material chirp was relatively small, and the

chirped elements were simply used at the end of the laser system for dispersion control to achieve

pulse durations close to the new bandwidth limit.

Unlike these earlier efforts which simply used dispersion control to re-compress the final optical

pulse, chirped pulse amplification is more similar to the chirped radar technique, likewise calling

for additional pre-chirping of the initial optical pulse so it can be amplified to high energy without

damaging or accruing nonlinear effects in the gain medium. As was the case with chirped radar,

the large total chirp of the optical pulses can be compensated in order to produce short temporal

pulse durations. For these optical pulses, the compressive de-chirping can lead to peak powers that

are orders of magnitude higher than the damage threshold of the amplifier, which would otherwise
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impose a limit on the laser system’s highest level of performance.

When chirped pulse amplification was first implemented in 1985, a >1 km fiber was used to sig-

nificantly stretch the pulse before it was amplified in a neodymium glass amplifier and compressed

by a grating pair [48]. This is captured in Fig. 2.1. Around the same time, non-material-based

positive-dispersion systems were under development: it was shown that a lens pair inserted be-

tween a pair of gratings or prisms – often called a “4-f stretcher” – could reverse the typical sign

of the dispersion [49–52]. These advancements led to the first proposal of chirped pulse amplifi-

cation as it is commonly implemented in ultrafast laser laboratories, using diffraction gratings for

both the pulse stretcher and compressor [53]. All the same, fiber stretchers continued to be used in

CPA setups, often in conjunction with prism pairs to compensate for dispersion in (for example)

regenerative amplifiers [54, 55].

Figure 2.1: The first demonstration of chirped pulse amplification. Reprinted from [48], with
permission from Elsevier.
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2.1.2 Spectrum and Phase Correction in CPA Systems

According to Fourier optics, the temporal duration of a laser pulse is directly related to 1) the

frequency bandwidth of the pulse and 2) the relative phases between those frequencies. In order

to attain the shortest-possible pulse, 1) the spectrum must be as broad as possible and 2) the phase

must be as uniform as possible. These two conditions, however, are often undermined by the

typical operation of amplifiers and other elements in CPA systems.

Pulse amplification can cause many unwanted changes to a laser’s spectrum. For example, a gain

medium with a wide gain bandwidth, such as titanium-doped sapphire (Ti:S) [56, 57], is required

to produce an amplified pulse with a broad spectrum. However, the gain profile of such media

are typically non-uniform, meaning that wavelengths near the peak of the gain curve are amplified

more than wavelengths in the wings of the spectrum. This leads to a phenomenon called “gain

narrowing”, an effectual contraction of the amplified wavelength spread that places a limitation

on the pulse duration [58–60]. Similarly, if the wavelength of the peak of the gain curve and

the input spectrum do not match, the peak wavelength of the output spectrum shifts towards the

peak of the gain curve – an effect known as “gain pulling”. Additional changes to the spectrum

may also occur due to the chirp of the pulse, as the wavelengths arriving at the amplification

medium first experience higher gain than the latter wavelengths due to gain saturation. In titanium-

doped sapphire, these detrimental effects must be addressed in order to reduce the amplified pulse

duration below ∼ 25 fs [61].

In terms of the second Fourier condition, a pulse propagating through a CPA system accrues phase

errors and aberrations that distort the pulse’s phase. High-order errors arise as various wavelengths

of the pulse travel differently through system materials. Other phase errors occur from the mis-

alignment, inhomogeneities, surface roughness, or aberrations of optical elements. All phase errors

must be addressed collectively to achieve a bandwidth-limited pulse duration.
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These spectrum and phase concerns can be approached in a number of ways, as described in the

following sections.

2.1.2.1 Specialty Stretcher Construction

Higher-order phase problems are most fundamentally addressed by the chirping elements of the

CPA system itself. While the primary purpose of the stretcher and compressor is to provide

controllable positive and negative dispersion (usually in that order), the design and alignment of

these CPA subsystems can themselves introduce higher-order phase terms and aberrations which

detrimentally impact the laser pulse [62]. As a result, many stretcher and compressor configu-

rations have been devised that prevent new phase problems and even reduce phase errors from

the rest of the system [45, 63–71]. Examples include grism-based stretchers and compressors

(Fig. 2.2(a)) [72, 73], mixed-grating stretchers and compressors [74–76], aberration-free Offner-

type stretchers (Fig. 2.2(b)) [71, 77–79], and phase-corrected chirped mirrors [80].

(a) Grism-type [73]. (b) Offner-type [77].

Figure 2.2: Examples of stretchers designed to reduce higher-order phase errors.
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2.1.2.2 Gain-Competition Reduction

Design considerations for the amplifier can also alleviate distortions in the spectrum that arise from

gain. To reduce the competition for gain between the laser’s individual wavelengths, for example,

special propagation configurations have been formulated to allow each wavelength to see its own

gain separately. These setups, in some cases, can eliminate the phenomena of gain narrowing, gain

pulling, and gain saturation altogether.

One such demonstration is the spatially-dispersed resonator, as shown in Fig. 2.3 [81]. Because of

the intra-cavity prism pair, each wavelength propagates along its own trajectory through the entire

resonator, including the gain medium. In this way the effects of gain saturation are avoided.

Figure 2.3: Elimination of gain competition via a spatially-dispersed resonator. Adapted from [81]
with kind permission from Springer Science and Business Media.

Such a setup can also eliminate the effects of gain narrowing and gain pulling if the gain medium

is pumped non-uniformly, as in Fig. 2.4 [82]. Wavelengths near the peak of the material gain curve

can be allocated less energy than wavelengths in the wings of the curve through judicious spatial

variation of the pump energy. This can flatten the overall gain curve. A similar technique based on

parametric amplification rather than stimulated emission is mentioned in Sec. 5.3.
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Figure 2.4: Gain curve-flattened amplification using a spatially-modulated pump [82].

In practice, the localized variation of the pump energy is sometimes achieved by pumping the gain

medium with multiple pump lasers. The intersection of these laser profiles is chosen to overlap

in the regions of the gain medium through which the less-efficient wavelengths propagate. These

wavelengths in the wings of the gain curve thus experience a similar gain to that of the “peak

gain” wavelengths, which do not propagate through the high-energy regions corresponding to the

overlapping pump beams [83, 84]. Figures 2.5 and 2.6 show examples of a spatially-dispersed re-

generative Ti:S amplifier and multi-pass Ti:S amplifer, respectively, using this multi-pump method.

Figure 2.5: Multi-pump, spatially-dispersed, regenerative Ti:S amplifier. Reprinted from [83], with
permission from Elsevier.
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Figure 2.6: Multi-pump, spatially-dispersed, multi-pass Ti:S amplifier [84].

2.1.2.3 Gain-Reduction Competition

While each of the gain effects mentioned above distorts the input laser spectrum, each effect occurs

in a different way. The schemes mentioned in this section provide spectral shaping by setting one

gain effect at odds with another, causing a beneficial competition between the two.

One such scenario, called negatively and positively chirped pulse amplification (NPCPA), uses

gain saturation in each amplification stage to mitigate spectral distortions. As seen in Fig. 2.7, the

laser pulse is first chirped negatively and amplified before being chirped positively and amplified.

Because of gain saturation, the first amplification stage favors the short wavelengths and the second

amplification stage favors the long wavelengths. These two effects largely balance each other and

lead to a broader, more-symmetric spectrum [85].
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Figure 2.7: Negative and positive chirped pulse amplification (NPCPA). Adapted from [85] with
kind permission from Springer Science and Business Media.

Another method counter-balances two gain-pulling effects by including two different gain media in

the same regenerative amplifier. Each type of neodymium-doped glass has its own gain curve, with

the two peaks located at different wavelengths. For an input spectrum centered at a wavelength be-

tween these two peaks, the gain-pulling effect pulls the peak of the spectrum in opposite directions

as the pulse is amplified. The pump power for each glass amplifier can be tuned to balance the

spectral pulling from either side, thus providing a smoother, broader overall gain profile [86, 87].

Finally, the long wavelength injection (LWI) method takes advantage of a competition between

gain saturation and gain pulling. Under typical CPA operation, gain saturation favors longer wave-

lengths because they comprise the leading edge of the pulse. Comparatively, the peak of the gain

curve is often found at lower wavelengths, meaning that gain pulling shifts the spectrum in the

opposite direction. Therefore, if the input spectrum is tuned such that its peak lies well beyond

the center of the gain profile, then gain saturation preferentially amplifies the long wavelength side

and gain pulling preferentially amplifies what is tuned to be the short wavelength side. As a result,

each effect favors a different part of the spectrum, and the overall gain is more uniform [88].
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2.1.2.4 Spatial Light Modulation

It is straightforward to treat the individual components of the laser’s phase and spectrum when the

wavelengths are spatially dispersed. As a result, many spectral- and phase-correction devices in

CPA lasers are located in a stretcher or compressor. In the simplest of cases, an opaque spatial

mask can block unwanted frequencies, or a dispersive material can delay the phases of covered

frequencies [66, 89–91]. As an example of its usefulness, the overall gain curve of a regenerative

amplifier can be leveled by adding loss to the wavelengths near the peak gain (e.g. using a well-

placed needle), thus reducing the effects of gain narrowing [67]. Figure 2.8 shows one of the

earliest applications of this rudimentary pulse-shaping technique.

Figure 2.8: Shaping with opaque mask and dispersive material in a compressor [89].
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A more versatile tool is the liquid crystal spatial light modulator (LC-SLM), an example of which

is captured in Fig. 2.9. This array of liquid crystal cells, placed at the Fourier plane of a stretcher or

compressor, can perform both phase and amplitude manipulation, and its values can be dynamically

assigned (as opposed to the permanent nature of an etched mask) [92,93]. Multiple LC-SLMs can

be used together to improve control over the spectrum [94–96], the individual corrections being

determined by specialized algorithms [97, 98] and even experimental feedback [99, 100]. These

corrections, while beneficial, cannot always optimize an entire CPA system alone, so LC-SLMs

are sometimes used cooperatively with other corrective devices [46, 101–103].

Figure 2.9: Typical implementation of a liquid crystal spatial light modulator [92].

While a traditional LC-SLM can have thousands of cells [104], the pixelated nature of the array

can lead to some undesirable effects. One inventive solution is the continuous-electrode LC-SLM

shown in Fig. 2.10. Instead of an array of liquid crystal cells, this device uses a single cell with

an included layer of the photoconductor BSO. By illuminating the BSO with wavelengths below

550 nm, its conductivity can be adjusted. Therefore, a quartz lamp imaged through an LC TV (i.e.

to give the variation desired) onto the BSO changes its conductivity locally, which in turn alters the

field applied to different regions of the liquid crystal. This produces the same corrective behavior

as a traditional LC-SLM, except without the effects of pixelation [105].
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