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ABSTRACT

The problem of understanding how biological species and infectious diseases can persist and

spread in heterogeneous networks has brought a wide attention, recently highlighted due to the

COVID-19 pandemic. This dissertation investigates the connection between the structures of

heterogeneous networks and population persistence/disease invasion. To do so, we propose a

new index for network heterogeneity by employing the Laplacian matrix of population dispersal

and its corresponding group inverse. The network growth rate and reproduction number can be

evaluated using the network average and the network heterogeneity index as the first and second

order approximation, respectively. We also illustrate the impact of arrangement of ecological

sources/sinks and disease hotspots/non-hotspots, which highlights the significance of the network

structures on population persistence and disease invasion in heterogeneous environments.

Mathematically, population and disease control strategies can be modeled via altering certain

ecological and epidemiological parameters in the biological processes. To quantitatively measure

the scale of the change in need, new indices and methods are introduced and developed to generalize

the existing threshold parameters. Properties and implications of these are provided to demonstrate

the applicability to infectious disease controls such as anthrax, cholera and Zika virus.
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CHAPTER 1: INTRODUCTION

The network structure is a fundamental tool for understanding complex problems from disciplines

like biology, economics, engineering, physics and public health. For this reason, the network

structures have attracted a lot of attention over the past two decades. Mathematically, a network

is referred to as a graph described as a collection of vertices (nodes) and directed edges. Vertices

represent individuals, devices, cities, countries, etc. Directed edges represent connections and

relationships between the vertices. Some real world examples of networks include the Internet,

airline networks, food webs, and social networks. Due to the size and dynamics of such networks

an alternation might not occur simultaneously throughout the network and thus heterogeneity

appears. Theoretically, a network is considered strongly connected if there is always a path

between any two pair of vertices. This dissertation mainly investigates networks of individual

movements in a spatially heterogeneous environment and the impact of their network structures on

population persistence in ecological models and disease spread in epidemiological models.

Theoretical foundations for population biology and mathematical epidemiology are rooted from

mathematical modelling and their model analyses using theories of differential equations, dynamical

systems, matrix and linear algebra. Specifically, the linearization at a trivial (or a semi-trivial)

equilibrium for population models in a heterogeneous network often yields a Jacobian matrix in

the form of

J = Q− µL, (1.1)

where Q = diag{qi} is a diagonal matrix encoding within-patch (vertex) population dynamics,

µ > 0 is a parameter representing the movement rate in the heterogeneous network, and L is a

Laplacian matrix containing all movements in the network. Specifically, L takes the following

1



form

L =



∑
j 6=1

aj1 −a12 · · · −a1n

−a21

∑
j 6=2

aj2 · · · −a2n

...
... . . . ...

−an1 −an2 · · ·
∑
j 6=n

ajn


.

The off-diagonal entry (i, j) of L is the opposite of aij , representing the movement coefficient

constant from patch j to patch i. Each diagonal entry of L tracks all the out-moving terms from

the patch and thus each column sum of L equals zero. As a consequence, L is singular and has an

eigenvalue 0.

The studies for population persistence and disease invasion in heterogeneous networks are often

converted to the stability problem of a certain Jacobian matrix in the form of (1.1). That is, if

the spectral bound of J , denoted as r = s(J), is negative, then the population (disease) dies out;

whereas, if it is positive, then the population (disease) persists.

However, the eigenvalue problems of such a matrix are extremely challenging due to the high

dimension, heterogeneity and complex network structures. Prior studies have been focused on

some special cases, e.g., for low dimension ( n = 2 or 3), assuming homogeneity (q1 = q2 = · · · =

qn), or symmetric movement in the network ( L = L>).

In this dissertation, we provide a new expansion formula for the spectral bound of the matrix in the

form of (1.1) as

r = s(J) = A+
1

µ
H + o

( 1

µ

)
, (1.2)

with the network average

A :=
n∑
i=1

θiqi,

2



and the network heterogeneity index

H :=
n∑
i=1

n∑
j=1

qi`
#
ijqjθj.

Here, θ = (θ1, . . . , θn)> is the normalized right eigenvector of L corresponding to eigenvalue 0 and

L# = [`#
ij ] is the group inverse of L. For the symmetric network (i.e., L = L>), θ = (1, . . . , 1)>

and thus the network average becomes the normal average. We have also proved the monotonicity

and convexity of r in terms of µ. Specifically, the following inequalities hold

A =
n∑
i=1

qiθi ≤ r = s(J) ≤ max
i
{qi},

with the upper and lower bounds achieved when µ → 0 and µ → +∞, respectively. For the

homogeneous landscape (i.e., qi = q for all i), the upper bound and lower bound are equal and thus

r = s(J) = q, irregardless of movement among patches.

When applying these new results to infectious disease models, we have obtained analogous results

for the basic reproduction number R0, which determines whether an infectious disease can invade

and spread in a host population. Our results provide answers for several open problems in the field

of mathematical epidemiology.

We have demonstrated the applicability of our results to various ecological and epidemiological

models, and also to different network structures. In order to control population persistence and

disease invasion, we develop new approaches for controlling spectral bounds and R0, respectively.

Applications have been illustrated using well-known biological models in the literature.

Due to the generality and applicability of theoretical results developed in the dissertation, it is

highly expected that further applications will likely be seen in ecology, epidemiology, engineering

and other science branches.
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CHAPTER 2: POPULATION PERSISTENCE AND NETWORK

HETEROGENEITY

The objective of this chapter is to provide a new expansion formula for the spectral bound of the

matrix J = Q − µL as defined in (1.1), which often arises in spatial population models. The

main tool to establishing the expansion comes from the analytic perturbation theory (Section 2.2).

In the new expansion derived, the first order term can be regarded as the network average while

the second order is described as the network heterogeneity index (Section 2.3). Applications to

ecological models are illustrated in Section 2.4 and Section 2.5 for single species and two species

of predator-prey interactions, respectively. We start this chapter with matrix notation (Section 2.1)

that will be used throughout the dissertation.

2.1 Notation

Throughout this dissertation, let n be a given positive integer. LetM be an n×nmatrix, sometimes

denoted as M = [mij]n×n with mij representing its (i, j) entry. Let σ(M) denote the set of all

eigenvalues of M , that is

σ(M) = {λ ∈ C : Mu = λu for some u ∈ Rn \ {0}}.

Denote the spectral bound of M (also called spectral abscissa) as

s(M) = max{Reλ : λ ∈ σ(M)},
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and the spectral radius of M as

ρ(M) = max{|λ| : λ ∈ σ(M)}.

For our purpose, we consider a nonnegative matrix A = [aij]n×n, encoding all movements of

population in a heterogeneous network of n nodes (patches). Specifically, aij ≥ 0, i 6= j, represents

the movement coefficient constant from patch j to patch i. Without loss of generality, we always

assume aii = 0 for all i. Customarily, matrix A is called as the movement matrix. In our studies,

we also employ the corresponding Laplacian matrix of A, that is,

L =



∑
j 6=1

aj1 −a12 · · · −a1n

−a21

∑
j 6=2

aj2 · · · −a2n

...
... . . . ...

−an1 −an2 · · ·
∑
j 6=n

ajn


.

As the diagonal entries of L track all the out-moving terms at each node while other entries in the

same column track where the movement toward, each column sum of L equals zero. Thus L is

singular and has a zero eigenvalue. In fact, s(−L) = 0.

It follows from the Perron-Frobenius theory thatL has a nonnegative left eigenvector and a nonnegative

right eigenvector corresponding to eigenvalue 0. In fact, one can check 1> = (1, . . . , 1) is a left

eigenvector of L. Here > represents the transpose. We often denote θ> = (θ1, . . . , θn) as a

normalized right-eigenvector corresponding to eigenvalue 0 such that Lθ = 0, 1>L = 0 and

1>θ =
∑n

i=1 θi = 1.

5



Let L# = [`#
ij ]n×n denote the group inverse of L. That is, the following is satisfied:

LL# = L#L, LL#L = L and L#LL# = L#.

2.2 Analytic Perturbation of Spectral Bounds

We are now ready to present the main result of the chapter.

Theorem 2.1. LetQ = diag{qi}n×n andL be the Laplacian matrix with the normalized right-eigenvector

θ = (θ1, . . . , θn)> corresponding to eigenvalue 0. Let r = s(Q− µL). Then, for µ > 0,

r = s(Q− µL) =
n∑
i=1

θiqi +
1

µ

n∑
i=1

n∑
j=1

qi`
#
ijqjθj + o

( 1

µ

)
, (2.1)

and
n∑
i=1

θiqi ≤ r ≤ max
i
{qi}, (2.2)

with lower and upper bounds achieved as µ approaches to∞ and 0, respectively.

The following analytic perturbation result is a key to prove Theorem 2.1.

Theorem 2.2 (Analytic Perturbation). Let Q = diag{qi}n×n and L be a Laplacian matrix. Define

M = εQ−L, with λ and ν be the Perron eigenvalue and corresponding right-eigenvector of matrix

M . Then, the following expansions hold

λ = λ0 + ελ1 + ε2λ2 + · · ·+ λkε
k + · · · (2.3)

ν = ν0 + εν1 + ε2ν2 + · · ·+ εkνk + · · · (2.4)

where λ0 = 0, λk = 1>Qνk−1 for k ≥ 1, ν0 is denoted as the normalized right-eigenvector of L

6



corresponding to eigenvalue 0, ν1 = L#Qν0, and νk = L#
(
Qνk−1 −

k−1∑
i=1

λiνk−i

)
for k ≥ 2.

Proof. Plugging the expansions (2.3), (2.4) into (εQ− L)ν = λν yields

(εQ− L)(ν0 + εν1 + ε2ν2 + · · ·+ εkνk + · · · )

= (λ0 + ελ1 + ε2λ2 + · · ·+ λkε
k + · · · )(ν0 + εν1 + ε2ν2 + · · ·+ εkνk + · · · ).

(2.5)

Comparing the ε0-th terms from both sides of (2.5) yields −Lν0 = λ0ν0, thus λ0 = 0 and ν0 = θ.

Multiplying both sides of (2.5) by L# from the left yields

L#Q(εν0 + ε2ν1 + ε3ν2 + · · ·+ εk+1νk + · · · )− L#L(ν0 + εν1 + ε2ν2 + · · ·+ εkνk + · · · )

=(ελ1 + ε2λ2 + · · ·+ λkε
k + · · · )L#(ν0 + εν1 + ε2ν2 + · · ·+ εkνk + · · · ).

It follows from part 2 of Lemma C.1 in Appendix C, L#ν0 = Lν0 = 0. The above equality can be

written as

L#L(εν1 + ε2ν2 + · · ·+ εkνk + · · · )

= L#Q(εν0 + ε2ν1 + ε3ν2 + · · ·+ εk+1νk + · · · )

− (ελ1 + ε2λ2 + · · ·+ λkε
k + · · · )L#(εν1 + ε2ν2 + · · ·+ εkνk + · · · ).

Comparing the ε1-th term and εk-th terms (k ≥ 2) yields respectively

L#Lν1 = L#Qν0 and L#Lνk = L#Qνk−1 − L#

k−1∑
i=1

λiνk−i . (2.6)

Straightforward verification shows that ν1 = L#Qν0 and νk = L#
(
Qνk−1 −

k−1∑
i=1

λiνk−i

)
solve

(2.6). In fact, νk ∈ range(L) for all k ≥ 1.

7



Next, it follows from multiplying both sides of (2.5) by 1> from the left that

1>Q(εν0 + ε2ν1 + ε3ν2 + · · ·+ εk+1νk + · · · )− 1>L(ν0 + εν1 + ε2ν2 + · · ·+ εkνk + · · · )

=(ελ1 + ε2λ2 + · · ·+ λkε
k + · · · )1>(ν0 + εν1 + ε2ν2 + · · ·+ εkνk + · · · ).

Since 1>L = 0, 1>ν0 = 1 and 1>νk = 0 for k ≥ 1 (as 1>L# = 0), it follows that

1>Q(εν0 + ε2ν1 + ε3ν2 + · · ·+ εk+1νk + · · · ) = ελ1 + ε2λ2 + · · ·+ λkε
k + · · · .

Hence λk = 1>Qνk−1 for k ≥ 1.

Remark 1. Replacing ν0 with θ in Theorem 2.2 results in λ1 = 1>Qν0 = 1>Qθ =
∑n

i=1 θiqi and

λ2 = 1>Qν1 = 1>QL#Qν0 =
∑n

i=1

∑n
j=1 L

#
ijθjqiqj , respectively. Thus, the first two terms in

theλ expansion(2.3) can be rewritten as

λ = s(εQ− L) = ε
n∑
i=1

θiqi + ε2
n∑
i=1

n∑
j=1

L#
ijθjqiqj + o(ε2). (2.7)

The following lemma, previously proven in [6], is used to establish sharp bounds for λ.

Lemma 2.3 ([6]). Let Q = diag{qi} and L be a Laplacian matrix. Suppose r = s(Q−µL) where

µ > 0. Then, the following statements hold:

(a)
dr

dµ
≤ 0, with equality holding if and only if qi = qj for i, j = 1, · · · , n.

(b)
d2r

dµ2
≥ 0, with equality holding if and only if all qi are equal.

Proof. (a) Letw = (w1, w2, . . . , wn)> denote the normalized left eigenvector ofQ−µL corresponding

8



to r, i.e.,

w>Q− µw>L = rw>, (2.8)

or in the component-wise form

qiwi + µ
∑
k 6=i

akiwk − µ
∑
k 6=i

akiwi = rwi, i = 1, 2, . . . , n. (2.9)

Dividing wi on both sides yields

r = qi + µ
∑
k 6=i

aki
wk
wi
− µ

∑
k 6=i

aki. (2.10)

Differentiating both sides with respect to µ yields

dr

dµ
= ṙ =

∑
k 6=i

aki
wk
wi

+ µ
∑
k 6=i

aki
ẇkwi − wkẇi

w2
i

−
∑
k 6=i

aki =
∑
k 6=i

aki
wk
wi

(
1− wi

wk
+ µ

ẇk
wk
− µẇi

wi

)
.

(2.11)

Set Ã = [ãki] with ãki = aki
wk
wi

, L̃ be the corresponding Laplacian matrix, and θ̃ = (θ̃1.θ̃2, . . . , θ̃n)>

be the normalized right-eigenvector of L̃ corresponding to eigenvalue 0. Multiplying θ̃i to (2.11)

and summing over all i yield

ṙ =
∑
i

θ̃iṙ =
∑
i

θ̃i
∑
k 6=i

ãki

(
1− wi

wk
+ µ

ẇk
wk
− µẇi

wi

)
(2.12)

=
∑
i

∑
k 6=i

θ̃iãki

[
1− wi

wk
+ µ
(ẇk
wk
− ẇi
wi

)]
. (2.13)

It follows from the Tree-Cycle identity (see Appendix A) that

ṙ =
∑
Q∈Q

w(Q)
∑

(r,s)∈E(CQ)

[
1− wr

ws
+ µ
(ẇs
ws
− ẇr
wr

)]
, (2.14)

where Q is the set of all spanning unicycle graphs of (G, A); w(Q) > 0 is the weight of Q, and

9



CQ denotes the directed cycle of Q with directed edge set E(CQ). Along any directed cycle CQ of

length l,

∑
(s,r)∈E(CQ)

(
1− ws

wr

)
= l −

( ∑
(s,r)∈E(CQ)

ws
wr

)
≤ l − l

( ∏
(s,r)∈E(CQ)

ws
wr

)1/l

= l − l = 0 (2.15)

where the inequality follows from AM-GM inequality (w1 + · · ·+ wl)/l ≥ l
√
w1 · · ·wl, and

∑
(r,s)∈E(CQ)

(ẇs
ws
− ẇr
wr

)
= 0. (2.16)

As a consequence, it follows from (2.14), (2.15) and (2.16) that ṙ ≤ 0. Notice that ṙ = 0 iff

wr = ws for every pair (s, r) in (2.15).

(b) Differentiating (2.11) with respect to µ yields

r̈ = 2
∑
k 6=i

aki

(ẇkwi − wkẇi
w2
i

)
+µ
∑
k 6=i

aki
wk
wi

(ẇk
wk
− ẇi
wi

)
−2µ

∑
k 6=i

aki
wk
wi

[ẅk
wk

ẅi
wi
−
(ẇi
wi

)2]
, (2.17)

and

r̈ =
∑
k 6=i

aki
wk
wi

[
2
(ẇk
wk
− ẇi
wi

)
+ µ
(ẅk
wk
− ẅi
wi

)
− 2µ

(ẇk
wk

ẇi
wi
−
(ẇi
wi

)2)]
. (2.18)

Recall ãki = aki
wk
wi

, multiplying (2.17) by θ̃i and summing over all i yield

r̈ =
∑
i

θ̃ir̈ =
∑
k 6=i

θ̃iãki

[
2
(ẇk
wk
− ẇi
wi

)
+ µ
(ẅk
wk
− ẅi
wi

)
− 2µ

(ẇk
wk

ẇi
wi
−
(ẇi
wi

)2)]
. (2.19)

It follows from the Tree-Cycle identity (see Appendix A) that

r̈ =
∑
Q∈Q

w(Q)
∑

(s,r)∈E(CQ)

[
2
(ẇs
ws
− ẇr
wr

)
+ µ
(ẅs
ws
− ẅr
wr

)
− 2µ

(ẇs
ws

ẇr
wr
−
(ẇr
wr

)2)]
. (2.20)
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Notice that 2
∑

(s,r)∈E(CQ)

(
ẇs
ws
− ẇr

wr

)
= 0 and µ

∑
(s,r)∈E(CQ)

(
ẅs
ws
− ẅr

wr

)
= 0. Hence

r̈ = 2µ
∑
Q∈Q

w(Q)
∑

(s,r)∈E(CQ)

((ẇr
wr

)2

− ẇs
ws

ẇr
wr

)
= µ

∑
Q∈Q

w(Q)
∑

(s,r)∈E(CQ)

[(ẇr
wr

)2

− ẇs
ws

ẇr
wr

+
(ẇs
ws

)2

− ẇs
ws

ẇr
wr

]
= µ

∑
Q∈Q

w(Q)
∑

(s,r)∈E(CQ)

(ẇr
wr
− ẇs
ws

)2

≥ 0.

Notice that r̈ = 0 if and only if ẇs
ws

= ẇr
wr

for any pair of (s, r) locating in a directed cycle of (G, L).

Since Ã is irreducible, the graph (G, L) is strongly connected. As a consequence, ẇs
ws

= ẇr
wr

for any

i, j.

As it is shown below, Theorem 2.1follows immediately from Theorem 2.2 and Lemma 2.3.

Proof. First, we prove the expansion (2.2) in Theorem 2.1. Consider

r = s(Q− µL) = s(µ(
1

µ
Q− L)) = µs((

1

µ
Q− L)). (2.21)

Let ε = 1
µ

. Thus, (2.21) becomes

r =
1

ε
s(εQ− L) =

n∑
i=1

θiqi + ε

n∑
i=1

n∑
j=1

qi`
#
ijqjθj + o(ε), (2.22)

where the last equality follows from (2.7). Thus,

r = s(Q− µL) =
n∑
i=1

θiqi +
1

µ

n∑
i=1

n∑
j=1

qi`
#
ijqjθj + o

( 1

µ

)
.

follows immediately from Theorem 2.2 and equation (2.7).
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Next, we prove the sharp bounds (2.2) for r in Theorem 2.2. From lemma 2.3(a), r = s(Q−µL) is

decreasing with respect to µ > 0, so the upper bound for r occurs when µ→ 0. Hence, the upper

bound for r is

lim
µ→0

s(Q− µL) = s(Q) = max
i=1,··· ,n

{qi}. (2.23)

Following above reasoning, the lower bound for r happens as µ approaches∞.

Taking the limit from (2.2) when µ→∞ yields

lim
µ→∞

s(Q− µL) = lim
µ→∞

( n∑
i=1

θiqi +
1

µ

n∑
i=1

n∑
j=1

L#
ijθjqiqj + o

( 1

µ

))
=

n∑
i=1

θiqi. (2.24)

Combining (2.23) and (2.24) yield

n∑
i=1

θiqi ≤ r ≤ max
i
{qi}.

Theorem 2.4 (Sharp Bounds). Let Q = diag{qi}n×n, L be the Laplacian matrix of digraph GA

with the normalized right-eigenvector θ = (θ1, · · · , θn) corresponding to eigenvalue 0, and λ =

s(εQ− L). Then, λ
ε

is monotonically increasing with respect to ε for ε > 0, and

n∑
i=1

θiqi ≤
λ

ε
≤ max

i
{qi}, (2.25)

with lower and upper bounds achieved as ε approaches to 0 and∞, respectively.

Proof. Set µ = 1
ε
. Then, λ = s(εQ−L) = εs(Q− 1

ε
L) = εs(Q−µL) = εr, where r is defined as

in Lemma 2.3. Thus the desired results follow immediately from Theorem 2.1 and Lemma 2.3.
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2.3 Network Average and Network Heterogeneity Index

Let Q = diag{qi} be a diagonal matrix and let L be a Laplacian matrix with θ> = (θ1, · · · , θn)

the normalized right Perron eigenvector of L.

The network average A = A(L,Q), and network heterogeneity indexH = (L,Q) are defined as

A :=
n∑
i=1

qiθi = 1>Qθ, (2.26)

and

H :=
n∑
i=1

n∑
j=1

`#
ijqiqjθj = 1>QL#Qθ, (2.27)

where L# = [`#
ij ] denotes the group inverse of L.

Thus, r = s(Q− µL) in expansion (2.2) can be rewritten as

r = A+
1

µ
H + o

( 1

µ

)
(2.28)

The following result provides an alternative formulation forH.

Theorem 2.5. LetH be the network heterogeneity index as defined in (2.27). Then,

H = −1

2

n∑
i=1

∑
j 6=i

`#
ij(qi − qj)2θj. (2.29)

Proof.

H =
n∑
i=1

n∑
j=1

`#
ijqiqjθj =

n∑
i=1

`#
ii q

2
i θi +

n∑
i=1

∑
j 6=i

`#
ijqiqjθj. (2.30)
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The column sums of L# = [`#
ij ] are zero, i.e. `#

ii = −
∑

i 6=j `
#
ji. Thus, (2.30) becomes

H = −
n∑
i=1

∑
j 6=i

`#
jiq

2
i θi +

n∑
i=1

∑
j 6=i

`#
ijqiqjθj

= −
n∑
i=1

∑
j 6=i

`#
jiq

2
i θi +

1

2

n∑
i=1

∑
j 6=i

`#
ij [q

2
i − (qi − qj)2 + q2

j ]θj.

Rearranging the terms on the right hand side yields

H = −1

2

n∑
i=1

∑
j 6=i

`#
ij(qi − qj)2θj +

1

2

n∑
i=1

∑
i 6=j

[−2`#
jiq

2
i θi + `#

ijq
2
i θj + `#

ijq
2
j θj]

= −1

2

n∑
i=1

∑
j 6=i

`#
ij(qi − qj)2θj −

1

2

n∑
i=1

∑
j 6=i

[−`#
jiq

2
i θi + `#

ijq
2
i θj]

= −1

2

n∑
i=1

∑
j 6=i

`#
ij(qi − qj)2θj −

1

2

n∑
i=1

∑
j 6=i

q2
i θiθj(

`#
ij

θi
−
`#
ji

θj
).

Using the Tree-Cycle identity (see Appendix A) results in

H = −1

2

n∑
i=1

∑
j 6=i

`#
ij(qi − qj)2θj +

∑
Q∈Q

w(Q)
∑

(s,r)∈E(CQ)

(
`#
rs

θr
− `#

sr

θs
), (2.31)

where Q denotes the set of all spanning unicycle graphs of (G, A), w(Q) > 0 is the weight of Q,

and CQ represents the directed cycle of Q with directed edge set E(CQ). Notice that

∑
Q∈Q

w(Q)
∑

(s,r)∈E(CQ)

(
`#
rs

θr
− `#

sr

θs
) = 0.

Thus, (2.31) becomes

H = −1

2

n∑
i=1

∑
j 6=i

`#
ij(qi − qj)2θj.
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The following result provides necessary and sufficient conditions in determining the order of two

different expansions in the form of (2.28) in regards to their corresponding first terms.

Theorem 2.6 (First-Order Determination). Let Q1 and Q2 be two diagonal matrices. Let L1 and

L2 are two Laplacian matrices. Then, there exists η > 0 such that r1 = s(Q1 − µL1) > r2 =

s(Q2 − µL2) for all µ > η if and only if A1 > A2.

Proof. From equation (2.28), the expansions for r1 and r2 become

r1 = A1 +
1

µ
H1 + o(

1

µ
), (2.32)

and

r2 = A2 +
1

µ
H2 + o(

1

µ
). (2.33)

LetA1 > A2. There exists a fixed ν > 0 in whichA1 = A2 + ν. Choose η such that η < ν. Thus,

r1 − r2 = (A1 −A2) +
1

µ
(H1 −H2) + o(

1

µ
) > η +

1

µ
(H1 −H2) + o(

1

µ
). (2.34)

Then, for all µ > η, (2.34) becomes

r1 − r2 >
1

µ
(1 + (H1 −H2) + o(1)) (2.35)

For η > 0 small enough, the right hand side of (2.35) approaches 0. Thus,

r1 > r2.

15



Now, let r1 > r2. It follows from (2.32) and (2.33) that

r1 − r2 = (A1 −A2) +
1

µ
(H1 −H2) + o(

1

µ
) > 0 (2.36)

For µ > 0 large enough, A1 −A2 > 0. Hence, A1 > A2.

The following result states a sufficient condition in determining the order two different expansions

in the form of (2.28) where their corresponding first terms are equal.

Theorem 2.7 (Second-Order Determination). Let Q1 and Q2 be two diagonal matrices. Let L1

and L2 be two Laplacian matrices. Suppose that A1 = A2. Then, there exists η > 0 such that

r1 = s(Q1 − µL1) > r2 = s(Q2 − µL2) holds for all µ > η ifH1 > H2.

Proof. LetH1 > H2, then there exists a fixed ν > 0 such thatH1 = H2 + ν.

Choose η such that η < ν. Thus,H1 > H2 + η. Using equations (2.32) and (2.33) in Theorem 2.6

result in

r1 − r2 = (A1 −A2) +
1

µ
(H1 −H2) + o(

1

µ
) >

1

µ
(η) + o(

1

µ
). (2.37)

Thus,

r1 − r2 >
1

µ
(η + o(1)). (2.38)

Letting µ→∞ yield r1 > r2.
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2.4 Application to a Single Species Model

Consider the following single-species model in a heterogeneous landscape of n patches (n ≥ 2)

x′i = xifi(xi) + µ
n∑
j=1

(aijxj − ajixi), i = 1, 2, . . . , n, (2.39)

where xi ∈ [0,∞) denotes the population size in patch i and µ ≥ 0 represents the movement rate.

Function fi : [0,∞)→ R represents the population growth rate in patch i.

M = [aij]n×n indicates the movement matrix of the system where aij ≥ 0 represents the movement

from patch j to patch i. L = [`ij] is the Laplacian matrix corresponding to the movement in the

system, where `ij = −aij for i 6= j and `ii = −
∑

j 6=i aji.

The Jacobian matrix of system (2.39) is described as

J = diag{fi(xi)− xif ′(xi)} − µL. (2.40)

System (3.8) admits a trivial equilibrium point E0 = (0, . . . , 0). The stability of E0 is determined

by the sign of the spectral bound of the Jacobian matrix (2.40) evaluated at E0, i.e.,

r(E0) := s(J|E0) = s(diag{fi(0)} − µL). (2.41)

Thus, E0 is locally asymptotically stable, if r(E0) < 0, and E0 is unstable if r(E0) > 0.

The following result is an immediate consequence of Theorem 2.1 for system (2.39), by replacing

qi in expressions (2.7) and (2.2) with fi(0). Additionally, he monotonically decreasing of r(E0) is

attained from Lemma (2.3).
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Theorem 2.8. Let L be an irreducible Laplacian matrix such that θ> = (θ1, . . . , θn) is the

normalized right Perron eigenvector of L. Suppose that (2.41) holds. Then, for any µ > 0

r(E0) =
n∑
i=1

fi(0)θi +
1

µ

n∑
i=1

n∑
j=1

fi(0)`#
ijfj(0)θj + o

( 1

µ

)
, (2.42)

where L#
ij = [`#

ij ] is the group inverse matrix of L.

Furthermore, r(E0) is strictly decreasing with respect to µ and

n∑
i=1

fi(0)θi ≤ r(E0) ≤ max
1≤i≤n

{fi(0)}, (2.43)

with lower and upper bounds achieved when µ→∞ and µ→ 0, respectively.

The following result describes that r(E0) is a threshold parameter which determines the global

stability of E0 under certain assumptions.

Proposition 2.9. Let fi(xi) be the function defined in system (3.8) such that f ′i(xi) ≤ 0 for all

xi ≥ 0. Then, the following statements hold

(i) If r(E0) ≤ 0, then E0 is globally asymptotically stable in Rn
+.

(ii) If r(E0) ≥ 0, then E0 is unstable. Furthermore, there exists a unique positive equilibrium

Ē = (x̄1, . . . , x̄n) which is globally asymptotically stable in Rn
+.

The Jacobian matrix (2.40) of system (3.8) at Ē is given by

J |Ē = diag{fi(x̄i) + x̄if
′
i(x̄i)} − µL. (2.44)

The following result discusses the conditions in which Ē is stable. Biologically, it means that the
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population survives.

Corollary 2.10. Assume r(E0) > 0 and f ′i(xi) ≤ 0 for all xi. Then, s(J|Ē) < 0.

2.5 Application to a Predator-Prey Model

Consider the following predator–prey model in a heterogeneous network of n patches (n ≥ 2)


x′i = xifi(x)− gi(xi)yi + µx

n∑
j=1

(aijxj − ajixi), i = 1, 2, . . . , n,

y′i = εigi(xi)yi − hi(yi) + µy

n∑
j=1

(mijyj −mjiyi), i = 1, 2, . . . , n,

(2.45)

where xi ∈ [0,∞) and yi ∈ [0,∞) denote the population of the prey and predators in patch i,

respectively; εi > 0 is the conversion rate of the predation. Parameters µx ≥ 0 and µy ≥ 0

represent movement rates of prey and predator, respectively. Functions fi, gi and hi are continuous

functions that are satisfied in the following assumptions:

(A1) fi : R+ → R denotes the prey growth rate in patch i in which f ′i(xi) ≤ 0 and fi(xi) ≤ fi(0)xi

for all xi ≥ 0.

(A2) gi : R+ → R+ indicates the search efficiency where g′(xi) ≥ 0 and gi(0) = 0 for all xi ≥ 0.

(A3) hi : R+ → R+ represents the decay rate of predators in patch i in the absence of the prey

where h′i(xi) ≤ 0 for all xi ≥ 0.

Parameters aij ≥ 0 and bij ≥ 0 describe the dispersal of the prey and predators from patch i to

patch j, respectively, where aij 6= aji and mij 6= bji for i 6= j.

Assume that LA and LB denote the Laplacian matrices correspond to the dispersal of the prey and
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predators among patches, respectively.

The Jacobian matrix of system (2.45) is described as

J̃ =

diag{fi(xi) + xif
′
i(xi)} − µxLA −diag{gi(xi)}

diag{εig′i(xi)yi} diag{εigi(xi)− h′i(yi)} − µyLB

 . (2.46)

Generally, system (2.45) admits 3 equilibria:

(i) trivial equilibrium point P0 = (0, . . . , 0, . . . , 0) denoting the extinction of both the prey and

predators species,

(ii) semi-positive equilibrium point P̄ = (x̄1, . . . , x̄n, 0, . . . , 0), representing the survival of the

prey species only, and

(iii) positive equilibrium point P ∗ = (x∗1, . . . , x
∗
n, y

∗
1, . . . , y

∗
n), indicating the coexistence of the

prey and predators species.

For our purpose, it is more insightful to assume that

r(E0) = s(J |E0) = s(diag{fi(0)} − µxLA) > 0, (2.47)

whereE0 denotes the trivial equilibrium point of the prey population as discussed in Proposition 2.9.

Equation (2.47) states that the prey population survives in the absence of the predator population.

The coexistence of the prey and predators population is dependent on the stability of P̄ .

The stability of P̄ is determined by the sign of the spectral bound of the Jacobian matrix (2.48)
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evaluated at P̄ . That is,

s(J̃ |P̄ ) = s(

diag{fi(x̄i) + x̄if
′
i(x̄i)} − µxLA −diag{gi(x̄i)}

0 diag{εigi(x̄i)− h′i(0)} − µyLB

). (2.48)

Denote r(P̄ ) = s(J̃ |P̄ ). As shown in (2.48), the sign of r(P̄ ) depends on the sign of s(diag{fi(x̄i)+

x̄if
′
i(x̄i)} − µxLA) and s(diag{εigi(x̄i)− h′i(0)} − µyLB).

Since f ′i(xi) ≤ 0 and equation (2.47) holds, it follow from Corollary 2.10 that s(J|Ē) = s(diag{fi(x̄i)+

x̄if
′
i(x̄i)} − µxLA) < 0.

Theorem 2.11. Suppose thatLB is irreducible Laplacian matrix such that (η1, . . . , ηn) is corresponding

the normalized right Perron eigenvector. Assume that (A1) and (2.47) hold. Then, for any µy > 0

r(P̄ ) = s(diag{εigi(x̄i)− h′i(0)} − µyLB)

=
n∑
i=1

(εigi(x̄i)− h′i(0))ηi +
1

µy

n∑
i=1

∑
j 6=i

(εigi(x̄i)− h′i(0))˜̀#
ij(εjgj(x̄j)− h′j(0))ηj,

where L#
B = [˜̀#

ij ] is the group inverse of LB.

Furthermore, r(P̄ ) is strictly decreasing with respect to µy and

n∑
i=1

(εigi(x̄i)− h′i(0))ηi ≤ r(E0) ≤ max
1≤i≤n

{εigi(x̄i)− h′i(0)}, (2.49)

with lower and upper bounds achieved when µy →∞ and µy → 0, respectively.

The following result, discussed in [12], investigates the conditions in which P̄ is stable. Biologically,

this implies that the prey and predators coexist.

Proposition 2.12. Let r(E0) > 0 and f ′i(xi) ≤ 0. Then, the following statements hold
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(i) If r(P̄ ) < 0, then P̄ is globally asymptotically stable in Rn
+.

(ii) If r(P̄ ) > 0, then P̄ is unstable. Furthermore, there exists a unique positive equilibrium point

P ∗ = (x∗1, . . . , x
∗
n, y

∗
1, . . . , y

∗
n) in which it is globally asymptotically stable in Rn

+.
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CHAPTER 3: DISEASE INVASION AND R0 IN HETEROGENEOUS

NETWORKS

The objective of this chapter is to examine the disease invisibility, which is associated to the basic

reproduction R0 on multi-patch infectious disease models with movements among the patches.

In particular, the computation of the basic reproduction number is defined as the spectral radius

of matrix B(P + µL)−1, that is R0 := ρ(B(P + µL)−1), where B and P are diagonal matrices

with positive and non-negative elements on the diagonals, respectively; parameter µ denotes the

movement rate among patches, and L is the Laplacian matrix of the movements among the patches

in the network.

Our motivation comes from calculating R0 for the multi-patch cholera disease model with water

movement among the patches as described in [16], where the recovery rates of all the patches are

assumed to be equal. In this chapter, we formulate R0 for the generalized case when the recovery

rates in the patches are not necessarily the same.

The structure of this chapter is as follows: providing several formulations for R0 on multi-patch

infectious disease models with movement among the patches, (re)stating some properties of R0

including monotonicity, convexity as well as the upper and lower bounds, and finally applying our

findings on multi-patch SIS disease model and multi-patch cholera disease model.

3.1 An Expansion for the Reciprocal of R0

The following Theorem provides an expansion for
1

R0

on multi-patch disease models by applying

the result of Theorem 2.1 and using the group inverse of Laplacian matrix LB−1.
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Theorem 3.1. Let B = diag{bi} and P = diag{pi} where bi > 0, pi ≥ 0 and P 6= 0. Suppose

that L is a Laplacian matrix such that θ> = (θ1, . . . , θn) is the corresponding normalized right

Perron-eigenvector. Let R0 = ρ(B(P + µL)−1). Then, for any µ > 0

1

R0

=
1

R̂0

− 1

R̂0µ

(1>PB−1L̃#Pθ

1>Pθ

)
+ o(

1

µ
), (3.1)

where R̂0 :=

∑
i biθi∑
i piθi

, and L̃# is the group inverse of the Laplacian matrix L̃ := LB−1.

Proof. Since B is a positive diagonal matrix, B−1 exists. Thus,

R0 = ρ(B(P + µL)−1) = ρ((PB−1 + µLB−1)−1) =: ρ((PB−1 + µL̃)−1),

where L̃ = LB−1 is a Laplacian matrix and Bθ denotes the Perron right-eigenvector of L̃. Define

θ̃ =
Bθ∑
i biθi

as the normalized Perron right-eigenvector of L̃.

Following the assumption (PB−1 + µL̃) is a non-singular M-matrix. Thus, (PB−1 + µL̃)−1 is a

non-negative and irreducible matrix. Hence, by the Perron-Frobenius Theorem, R0 is the Perron

eigenvalue of (PB−1 + µL̃)−1. Denote x as the right Perron-eigenvector of R0. Thus,

R0x = (PB−1 + µL̃)−1x.

Multiplying both sides by (PB−1 + µL̃) and
1

R0

yield

(PB−1 + µL̃)x =
1

R0

x.
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Collecting all the terms on one side results in

(
1

R0

I − PB−1 − µL̃)x = 0,

where (
1

R0

I−PB−1−µL̃) is essentially non-negative and irreducible. Thus, by the Perron-Frobenius

theory

s(
1

R0

I − PB−1 − µL̃) = 0 and
1

R0

+ s(−PB−1 − µL̃) = 0.

Equivalently,

− 1

R0

= s(−PB−1 − µL̃).

Applying the result of Theorem 2.1 to s(−PB−1 − µL̃) results in

− 1

R0

= 1>(−PB−1)θ̃ +
1

µ
1>(−PB−1)L̃#(−PB−1)θ̃ + o(

1

µ
).

Replacing θ̃ with
Bθ∑
i biθi

yields

1

R0

=
1>PB−1Bθ∑

i biθi
− 1

µ
(
1>PB−1L̃#PB−1Bθ∑

i biθi
) + o(

1

µ
)

=
1>Pθ∑
i biθi

− 1

µ
(
1>PB−1L̃#Pθ∑

i biθi
) + o(

1

µ
)

=

∑
i piθi∑
i biθi

− 1

µ
(
1>PB−1L̃#Pθ∑

i biθi
) + o(

1

µ
).

Denote R̂0 =

∑
i biθi∑
i piθi

. Thus,

1

R0

=
1

R̂0

− 1

R̂0µ

(1>PB−1L̃#Pθ

1>Pθ

)
+ o(

1

µ
).
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3.2 Expansions for R0

In this Section we provide two expansions for R0 = ρ(B(P + µL)−1), where the first expansion

uses the group inverse of the Laplacian matrix LB−1 and the second one focuses on the group

inverse of the Laplacian matrix L.

The following result is a pivotal tool to provide an expansion for R0 = ρ(B(P + µL)−1) in terms

of the group inverse of LB−1.

Lemma 3.2. LetQ be a non-negative diagonal matrix whereQ 6= 0. Suppose thatL is a Laplacian

matrix where 1T and θ are the corresponding left and normalized right Perron-eigenvectors such

that 1T θ = 1. Then for any µ > 0,

ρ((Q+ µL)−1) =
1

1>Qθ
+

1

µ

(1>QL#Qθ

(1>Qθ)2

)
+ o(

1

µ
). (3.2)

Proof. Note that ρ((Q+ µL)−1) = ρ((µ(
Q

µ
+ L))−1) = 1

µ
ρ((
Q

µ
+ L)−1) =: ερ((εQ+ L)−1).

Define Υ := ερ((εQ+L)−1). Since εQ+L is a non-singular M-matrix matrix, (εQ+L)−1 exists

and is a positive matrix. By the Perron-Frobenius Theorem there exists a right Perron-eigenvector

℘ >> 0 such that

Υ℘ = ε(εQ+ L)−1℘.

Multiplying both sides by εQ+ L and ε−1 result in

ε−1Υ(εQ+ L)℘ = ℘. (3.3)

Define  (a) Υ := r0 + r1ε+ o(ε), r0 6= 0

(b) ℘ := v0 + v1ε+ o(ε), v0 6= 0

 (3.4)
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as the perturbation expansions with respect to parameter ε. Replacing the expansion corresponding

to υ and ℘ in equation (3.3) result in

ε−1(r0 + r1ε+ o(ε))(εQ+ L)(v0 + v1ε+ o(ε)) = v0 + v1ε+ o(ε). (3.5)

Setting ε−1th terms on both sides of (3.5) results in r0Lv0 = 0. This gives Lv0 = 0 as r0 6= 0.

Hence, v0 is the right Perron eigenvector of L. For simplicity, we assume that v0 is the normalized

right Perron eigenvector of L. That is,

v0 = θ. (3.6)

Comparing ε0th terms on both sides of (3.5) results in

r0Qv0 + r1Lv0 + r0Lv1 = v0.

Applying (3.6) to the equation above yields

r0Qθ + r1Lθ + r0Lv1 = θ. (3.7)

Since Lθ = 0, (3.7) becomes

r0Qθ + r0Lv1 = θ. (3.8)

Since 1>L = 0 and 1>θ = 1, multiplying both sides of (3.8) from the left side by 1> results in

r0 =
1

1>Qθ
. (3.9)
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Now, to find v1 multiply both sides of (3.8) by L# from the left side. Thus (3.8) becomes

r0L
#Qθ + r0L

#Lv1 = L#θ. (3.10)

Since L#θ = 0 and L#Lv1 = v1 (See parts 2 and 3 of Lemma C.1 in Appendix C), (3.10) becomes

v1 = −L#Qθ. (3.11)

Comparing ε1th terms of (3.5) from both sides yields

r0Qv1 + r1Qv0 + r0Lv2 + r1Lv1 + r2Lv0 = v1. (3.12)

Given 1>L = 0, multiplying both sides of (3.12) by 1> results in

r01
>Qv1 + r11

>Qv0 = 1>v1.

Applying (3.6), (3.9) and (3.11) to the equation above yield

r1 =
1>QL#Qθ

(1>Qθ)2
. (3.13)

Replacing ε with 1
µ

and applying (3.22) and (3.13) to (3.4) conclude

R0 = r0 + r1ε+ o(ε)

=
1

1>Qθ
+

1

µ

(1>QL#Qθ

(1>Qθ)2

)
+ o(

1

µ
).
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The following Theorem generalizes the result of Lemma 3.2 to formulate R0 = ρ(B(P + µL)−1)

for any positive diagonal matrix B.

Theorem 3.3. LetB be a positive diagonal matrix and P be a non-negative diagonal matrix where

P 6= 0. Suppose that L is a Laplacian matrix in which 1> and θ are the corresponding left and

normalized right Perron-eigenvectors such that 1>θ = 1. Let R0 = ρ(B(P + µL)−1). Then for

any µ > 0

R0 = R̂0 +
R̂0

µ

(1>PB−1L̃#Pθ

1>Pθ

)
+ o(

1

µ
), (3.14)

where R̂0 =
1>Bθ

1>Pθ
and L̃# denotes the group inverse matrix of the Laplacian matrix LB−1.

Proof. Since B is a positive diagonal matrix, B−1 exists. Thus,

R0 = ρ(B(P + µL)−1) = ρ((PB−1 + µLB−1)−1) =: ρ((Q̃+ µL̃)−1),

where Q̃ = PB−1 and L̃ = LB−1 is a Laplacian matrix. Denote θ̃ =
Bθ

1>Bθ
and L̃# as the

normalized right Perron-eigenvector and the group inverse of L̃, respectively.

Substituting Q̃, L̃# and θ̃ into (3.2) of Lemma 3.2 yields

R0 =
1

1>Q̃θ̃
+

1

µ

(1>Q̃L̃#Q̃θ

(1>Q̃θ̃)2

)
+ o(

1

µ
)

=
1

1>PB−1(
Bθ

1>Bθ
)

+
1

µ

1>PB−1L̃#PB−1 Bθ

1>Bθ

(1>PB−1(
Bθ

1>Bθ
)2)

+ o(
1

µ
)

=
1>Bθ

1>Pθ
+ (

1

µ
)(
1>Bθ

1>Pθ
)(
1>PB−1L̃#Pθ

1>Pθ
) + o(

1

µ
)

= R̂0 +
R̂0

µ

1>PB−1L̃#Pθ

1>Pθ
+ o(

1

µ
),

where R̂0 =
1>Bθ

1>Pθ
.
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The following result examines Theorem 3.3 by looking at R0 = ρ(B(P + µL)−1) from a different

angle. In particular, rather than considering the group inverse L̃# of the Laplacian matrix LB−1,

the following expansion takes the group inverse L# of the Laplacian matrix L into consideration.

Theorem 3.4. LetB be a positive diagonal matrix and P be a non-negative diagonal matrix where

P 6= 0. Suppose that L is a Laplacian matrix in which 1> and θ are the corresponding left and

normalized right Perron-eigenvectors such that 1>θ = 1. Let R0 = ρ(B(P + µL)−1). Then for

any µ > 0

R0 = R̂0 +
R̂0

µ

(1>(
B

R̂0

− P )L#(
B

R̂0

− P )θ

1>Pθ

)
+ o(

1

µ
), (3.15)

where R̂0 =
1>Bθ

1>Pθ
and L# is the group inverse of L.

Proof. To acquire the expansion, it is convenient to work with R0 = ρ((P + µL)−1B). Note that

B(P + µL)−1 and (P + µL)−1B are similar matrices, thus ρ(B(P + µL)−1) = ρ((P + µL)−1B).

R0 = ρ((P + µL)−1B) = ρ((
P

µ
+ L)−1B

µ
) =: ρ((εP + L)−1εB).

As all the off diagonal entries of εP +L are non-positive and the sum of the entries of each column

is positive, εP + L is a non-singular M-matrix, thus (εP + L)−1 exists and is a positive matrix[4].

By the Perron-Frobenius Theorem there exists a right Perron-eigenvector v such that

R0v = (εP + L)−1(εB)v.

Multiplying both sides by (εP + L)
1

1>v
yields

R0(εP + L)ṽ = (εB)ṽ, (3.16)
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where ṽ :=
v

1>v
denotes the normalized right Perron-eigenvector. Rewriting R0 and ṽ as the

perturbation expansions with respect to parameter ε are given by

 R0 := r0 + r1ε+ o(ε), r0 6= 0

ṽ := ṽ0 + ṽ1ε+ o(ε), ṽ0 6= 0.

 (3.17)

Replacing R0 and ṽ with the perturbation expansion from (3.17) into (3.16) result in

(r0 + r1ε+ r2ε
2 + . . . )(εP + L)(ṽ0 + ṽ1ε+ ṽ2ε

2 + . . . ) = (εB)(ṽ0 + ṽ1ε+ ṽ2ε
2 + . . . ).

Setting the powers of ε equal to each other gives the following equations



(ε0) r0Lṽ0 = 0,

(ε1) r0P ṽ0 + r1Lṽ0 + r0Lṽ1 = Bṽ0,

(ε2) r0P ṽ1 + r1P ṽ0 + r0Lṽ2 + r1Lṽ1 + r2Lṽ0 = Bṽ1,

...


(3.18)

Comparing ε0th terms from both sides of (3.18) yields r0Lṽ0 = 0. Equivalently, Lṽ0 = 0, which

implies that ṽ0 is the normalized right Perron-eigenvector of L. Thus,

ṽ0 = θ. (3.19)

Comparing ε0th terms from both sides and substituting ṽ0 with θ result in

r0Pθ + r1Lθ + r0Lṽ1 = Bθ. (3.20)

Since Lθ = 0, (3.20) becomes

r0Pθ + r0Lṽ1 = Bθ. (3.21)
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Multiplying both sides of (3.21) by 1> from the left side yields

r01
>Pθ + r01

>Lṽ1 = 1>Bθ

r01
>Pθ = 1>Bθ,

where the last equation is obtained from the assumption that 1> is the left Perron eigenvector of L,

thus 1>L = 0 (Lemma C.1 in Appendix C). Hence,

r0 =
1>Bθ

1>Pθ
. (3.22)

Multiplying both sides of (3.21) by L# from the left side yields r0L
#Pθ + r0L

#Lṽ1 = L#Bθ. It

follows from Lemma C.1 in Appendix C that L#Lṽ1 = ṽ1. Hence,

ṽ1 = L#(
B

r0

− P )θ. (3.23)

Since 1>L = 0, multiplying both sides of equation (ε2) in (3.18) from the left hand side by 1>

results in

r01
>P ṽ1 + r11

>P ṽ0 = 1>Bṽ1. (3.24)

Applying (3.19) and (3.23) to (3.24) give

r1 =
r0

1>Pθ
1>(

B

r0

− P )L#(
B

r0

− P )θ. (3.25)

The proof is complete by substituting ε = 1
µ

and applying (3.22) and (3.24) to R0 in (3.17).

The following result evaluates R0 for the special case when P is a nonnegative multiple of the

identity matrix. That is, P = diag{pi} = p̃I for some p̃ ≥ 0. In fact, the following result is the

direct implication of Theorem 3.4 by replacing P with p̃I in (3.15).
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Corollary 3.5. Let B = diag{bi} > 0 and P = diag{pi} = p̃I for some p̃ ≥ 0. Suppose

that L is a Laplacian matrix in which 1> and θ are the corresponding left and normalized right

Perron-eigenvectors such that 1>θ = 1. Let R0 = ρ(B(P + µL)−1). Then for any µ > 0

R0 =

∑
i biθi
p̃

+
1

µ

(∑i

∑
j bi`

#
ijbjθj∑

i biθi

)
+ o
( 1

µ

)
. (3.26)

3.3 Monotonicity of R0

The following result examines the monotonicity and convexity of the basic reproduction number

R0 = ρ(B(P + µL)−1) by applying the graph-theoretic approach.

Proposition 3.6. LetB = diag{bi} and P = diag{pi} be diagonal matrices such that bi > 0, pi ≥

0 and P 6= 0. Suppose L is an irreducible Laplacian matrix. DenoteR0 = ρ(B(P +µL)−1) where

µ > 0. Then, the following statements hold:

(a)
dR0

dµ
≤ 0, with equality holding if and only if bi = bj and pi = pj for i, j = 1, · · · , n.

(b)
d2R0

dµ2
≥ 0, with equality holding if and only if bi = bj and pi = pj for i, j = 1, · · · , n.

Proof. (a) Letw = (w1, . . . , wn) be the normalized left eigenvector ofB(P+µL)−1 corresponding

to R0, i.e.,

R0w = wB(P + µL)−1 ⇐⇒ R0w(P + µL) = wB ⇐⇒ w(P + µL) =
wB

R0

,

or in the component-wise form

piwi − µ
∑
k 6=i

akiwk + µ
∑
k 6=i

akiwi =
biwi
R0

, i = 1, 2, . . . , n. (3.27)
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Dividing wi on both sides yields

bi
R0

= pi − µ
∑
k 6=i

aki
wk
wi

+ µ
∑
k 6=i

aki. (3.28)

Differentiating both sides with respect to µ yields

−bi
R2

0

dR0

dµ
=
−biṘ0

R2
0

= −
∑
k 6=i

aki
wk
wi
− µ

∑
k 6=i

aki
ẇkwi − wkẇi

w2
i

+
∑
k 6=i

aki

= −
∑
k 6=i

aki
wk
wi

(
1− wi

wk
+ µ

ẇk
wk
− µẇi

wi

)
,

Thus,

Ṙ0 =
R2

0

bi

∑
k 6=i

aki
wk
wi

(
1− wi

wk
+ µ

ẇk
wk
− µẇi

wi

)
. (3.29)

Setting ãki = aki
wk
wi

and summing over all i yield

Ṙ0 =R2
0

∑
i

1

bi

∑
k 6=i

ãki

(
1− wi

wk
+ µ

ẇk
wk
− µẇi

wi

)
=R2

0

∑
i

∑
k 6=i

ãki
bi

[
1− wi

wk
+ µ
(ẇk
wk
− ẇi
wi

)]
=R2

0

∑
Q∈Q

w(Q)
∑

(r,s)∈E(CQ)

[
1− wr

ws
+ µ
(ẇs
ws
− ẇr
wr

)]
.

The last equality follows from the Tree-Cycle identity (see Appendix A). Applying the AM-GM

inequality, (w1 + · · ·+ wl)/l ≥ l
√
w1 · · ·wl yields

∑
(s,r)∈E(CQ)

(
1− ws

wr

)
= l −

( ∑
(s,r)∈E(CQ)

ws
wr

)
≤ l − l

( ∏
(s,r)∈E(CQ)

ws
wr

)1/l

= l − l = 0. (3.30)

Furthermore, ∑
(r,s)∈E(CQ)

(ẇs
ws
− ẇr
wr

)
= 0. (3.31)
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Inequality (3.30) together with equation (3.31) result in Ṙ0 ≤ 0. Notice that Ṙ0 = 0 if and only if

wr = ws for every pair (s, r) in (2.15).

(b) Differentiating (3.29) with respect to µ yields

R̈0 =
R2

0

bi

∑
k 6=i

aki
wk
wi

[
2
(ẇk
wk
− ẇi
wi

)
+ µ
(ẅk
wk
− ẅi
wi

)
− 2µ

(ẇk
wk

ẇi
wi
−
(ẇi
wi

)2)]
. (3.32)

Summing over all i yields

R̈0 = R2
0

∑
i

∑
k 6=i

ãki
bi

[
2
(ẇk
wk
− ẇi
wi

)
+ µ
(ẅk
wk
− ẅi
wi

)
− 2µ

(ẇk
wk

ẇi
wi
−
(ẇi
wi

)2)]
, (3.33)

where ãki = aki
wk
wi

. It follows from the Tree-Cycle identity (see Appendix A) that

R̈0 = R2
0

∑
Q∈Q

w(Q)
∑

(s,r)∈E(CQ)

[
2
(ẇs
ws
− ẇr
wr

)
+ µ
(ẅs
ws
− ẅr
wr

)
− 2µ

(ẇs
ws

ẇr
wr
−
(ẇr
wr

)2)]
. (3.34)

Note that
∑

(s,r)∈E(CQ)

(
ẇs
ws
− ẇr

wr

)
= 0. Thus, (3.34) becomes

R̈0 = R2
02µ

∑
Q∈Q

w(Q)
∑

(s,r)∈E(CQ)

((ẇr
wr

)2

− ẇs
ws

ẇr
wr

)
= R2

0µ
∑
Q∈Q

w(Q)
∑

(s,r)∈E(CQ)

[(ẇr
wr

)2

− ẇs
ws

ẇr
wr

+
(ẇs
ws

)2

− ẇs
ws

ẇr
wr

]
= R2

0µ
∑
Q∈Q

w(Q)
∑

(s,r)∈E(CQ)

(ẇr
wr
− ẇs
ws

)2

≥ 0.

Notice that R̈0 = 0 if and only if ẇs
ws

= ẇr
wr

for any pair of (s, r) locating in a directed cycle of

(G, L).

The following result states the upper and lower bounds for R0 = ρ(B(P + µL)−1) by applying

35



Proposition 3.6.

Theorem 3.7. Let B = diag{bi} and P = diag{pi} be two diagonal matrices such that bi >

0 and pi ≥ 0. Suppose L is an irreducible Laplacian matrix where θ is the normalized right

Perron-eigenvector. Let R0 = ρ(B(P + µL)−1). Then, for any µ > 0

∑n
i=1 biθi∑n
i=1 piθi

≤ R0 ≤ max1≤i≤n

{ bi
pi

}
. (3.35)

Proof. It follows from Proposition 3.6 that R0 is decreasing with respect to µ. Thus, the upper

bound for R0 occurs when µ→ 0,

lim
µ→0

ρ(B(P + µL)−1) = ρ(BP−1) = max1≤i≤n{
bi
pi
}. (3.36)

Similarly, the lower bound for R0 happens when µ→∞. Letting µ approach∞ in (3.14) yield

lim
µ→∞

ρ(B(P + µL)−1) = lim
µ→∞

(R̂0 +
R̂0

µ

(1>PB−1L̃#Pθ

1>Pθ

)
+ o(

1

µ
)) = R̂0 =

∑n
i=1 biθi∑n
i=1 piθi

. (3.37)

Combining (3.36) and (3.37) yields the result desired.

3.4 Application to an Airborne Disease Model

Consider the following multi-patch SIS epidemiological model in a heterogeneous network of n

patches (n ≥ 0) [1]


S ′i = − βiSiIi

Si + Ii
+ γiIi + µS

n∑
j=1

(aijSj − ajiSi),

I ′i =
βiSiIi
Si + Ii

− γiIi + µI

n∑
j=1

(aijIj − ajiIi),
i = 1, 2, . . . , n, (3.38)
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where Si and Ii denote the number of susceptible and infected individuals in patch i, respectively.

γi > 0 is the recover rate of the infected individuals in patch i, and βi > 0 represents the contact

rate between susceptible and infected individuals in patch i.

Parameters µS > 0 and µI > 0 denote the dispersal rate of the susceptible and infected individuals.

The Jacobian matrix of system (3.38) at the the disease-free equilibrium E0 becomes

J |E0 = diag{βi − γi} − µIL. (3.39)

The disease growth rate is computed as the spectral bound of the Jacobian matrix at the disease

free equilibrium, i.e. s(J |E0).

The following result, which is an immediate consequence of Theorem 2.1, provides an expansion

for the disease growth rate for system (3.38) by replacing qi in expressions (2.7) and (2.2) with

βi − γi. Additionally, the monotonically decreasing of r(E0) is attained from Lemma 2.3.

Theorem 3.8. Let L be an irreducible Laplacian matrix such that θ> = (θ1, . . . , θn) is the

normalized right Perron eigenvector of L. Suppose that (2.41) holds. Then, for any µ > 0

r(E0) =
n∑
i=1

(βi − γi)θi +
1

µ

n∑
i=1

n∑
j=1

(βi − γi)`#
ij(βj − γj)θj + o

( 1

µ

)
, (3.40)

where L#
ij = [`#

ij ] is the group inverse matrix of L.

Furthermore, r(E0) is strictly decreasing with respect to µ and

n∑
i=1

(βi − γi)θi ≤ r(E0) ≤ max
1≤i≤n

{βi − γi}, (3.41)

with lower and upper bounds achieved when µ→∞ and µ→ 0, respectively.
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In addition to the expansion for the disease growth rate r(E0), an expansion for the network basic

reproduction number for system (3.14) is accessible.

The basic reproduction number of system (3.38) at the the disease-free equilibrium E0 is given by

R0 = ρ(B̃(P̃ + µL)−1), (3.42)

where B̃ = diag{βi} and P̃ = diag{γi}.

The following result describes the expansion for R0 by replacing bi with βi and gi with γi in (3.14)

of Theorem 3.9, respectively.

Furthermore, the upper and lower bounds for R0 is attained from Theorem 3.7.

Theorem 3.9. Let B̃ = diag{βi} and P̃ = diag{γi} be two positive diagonal matrices. Suppose

thatL is an irreducible Laplacian matrix in which θ> = (θ1, . . . , θn) is the normalized right-Perron

eigenvector. Let R0 = ρ(B̃(P̃ + µL)−1). Then, for any µ > 0

R0 = R̂0 +
R̂0

µ

(1>P̃ B̃−1L̃#P̃ θ

1>P̃ θ

)
+ o(

1

µ
), (3.43)

where R̂0 =

∑
i βiθi∑
i γiθi

and L̃# denotes the group inverse matrix of the Laplacian matrix L̃ = LB̃−1.

Furthermore, R0 is strictly decreasing with respect to µ and

∑
i βiθi∑
i γiθi

≤ R0 ≤ max
1≤i≤n

{βi
γi
}, (3.44)

with lower and upper bounds achieved when µ→∞ and µ→ 0, respectively.
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3.5 Application to a Waterborne Disease Model

Consider the following multi-patch SIR waterborne disease (e.g., cholera) model in a heterogeneous

network of n patches (n ≥ 0) [8]



S ′i = Λi − βiSi
Bi

ηi +Bi

− diSi + σiRi,

I ′i = βiSi
Bi

ηi +Bi

− (di + αi + γi)Ii,

R′i = γiIi − (di + σi)Ri,

B′i = ξiIi − δiBi + µ
n∑
j=1

(aijBj − ajiBi),

i = 1, 2, . . . , n. (3.45)

Notice that
βiSiBi

ηi +Bi

is incidence saturating with constant ηi representing the 50% transmission

efficacy, and µ > 0 is the movement rate parameter with aij is the movement rate from patch j to

patch i. In this case we assume that the movement is asymmetric, that is aji 6= aij .

The Jacobian matrix of system (3.45) at the disease-free equilibrium E0 = (S0
i , . . . , S

0
n) is given

by

J |E0 = F − V =

0 D2

0 0

−
 D1 0

−D3 (D4 + µL)

 , (3.46)

where D1 = diag{di + αi + γi}, D2 = diag{βiS
0
i

ηi
}, D3 = diag{ξi}, and D4 = diag{δi}. Matrix

L denotes the Laplacian matrix associated to the movement matrix [aij].

Notice that the the Jacobian matrix J at E0 in (3.46) does not follow the same structure as its

counterpart in (3.39). Thus, unlike Section 3.4, the disease growth of system (3.45) cannot be

determined from the disease the expansion for the disease growth rate, i.e., r(E0) = s(J |E0), of

Theorem 2.1.
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However, Theorem 3.9 enables us to investigate the disease growth of the system by computing

the basic reproduction number R0 of the system.

Note that matrix blockD4+µL in (3.46) is a Z-matrix, i.e. all off-diagonal entries are non-positive,

and the sum of the entries of each column is positive, which means (D4 + µL)−1 ≥ 0. Following

the next generation matrix approach, R0 = ρ(FV −1) = ρ(V −1F ). Thus,

R0 = ρ(V −1F ) = ρ((D4 + µL)−1D−1
1 D2D3) =: ρ((D4 + µL)−1D5),

where D5 = diag{ βiS
0
i ψi

ηi(di + αi + γi)
}. Our expansion results of R0 in Section 3.2 and monotone

/convexity/upper bound/lower bound results in Section 3.3 can be applied immediately to produce

similar results as those in the previous Section for the SIS disease model, which are thus omitted.
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CHAPTER 4: POPULATION PERSISTENCE AND DISEASE INVASION

ON SPECIFIC NETWORKS

In this chapter, we numerically analyze the main results of Chapters 2 and 3 in epidemiology

and ecology models over strongly connected heterogeneous networks. We design a different

network structure for each model. We assume the movement between the regions in the network.

Depending on the model and network dynamic, the regions might be human-made or created by

nature, and the movement between the regions can be humans, animals or water.

An ecological model that describes a population dynamics in two regions, both occupied by the

same species is called the sink-source model. In one region the population is sustainable (source),

whereas in the other one the population cannot survive when they are isolated from other habitats

(sink). Denote f(0) as the population growth. A patch is called a source (sink), if f(0) > 0

(f(0) < 0).

In infectious disease models, the term hotspot is referred to areas with elevated transmission

efficiency. Generally, a region is considered as a hostspot (non-hotspot) if the basic reproduction

number R0 > 1 (R0 < 1). Throughout this Chapter R and r denote the hotspot and non-hotspot

regions.

4.1 Population Persistence on a Path Network

Consider the following single species model as described in Section 2.4 on a path network of four

regions shown as

1 2 3 4 ,
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where the movement between the patches is assumed to be symmetric with the assigned weight of

1. The Laplacian matrix L corresponding to the movement in the network is given by

L =



1 −1 0 0

−1 2 −1 0

0 −1 2 −1

0 0 −1 1


, (4.1)

where θ> = (θ1, θ2, θ3, θ4) = (1
4
, 1

4
, 1

4
, 1

4
) is the normalized right Perron-eigenvector. Denote L#

as the group inverse matrix of L, and is given by

L# := [`#
ij ]4×4 =

1

8



7 1 −3 −5

1 3 −1 −3

−3 −1 3 1

−5 −3 1 7


. (4.2)

For details of deriving the group inverse L# from L, see C.3 from Appendix C.

Following Theorem 3.8, the population growth r(E0) of the single species model over 4 patches is

described as

r(E0) =
1

4

4∑
i=1

fi(0) +
1

4µ

4∑
i=1

4∑
j=1

fi(0)`#
ijfj(0) + o

( 1

µ

)
= A+

1

µ
H + o(

1

µ
). (4.3)

where
1

4
denotes the ith, 1 ≤ i ≤ 4, element of the normalized right Perron-eigenvector θ, and `#

ij

for 1 ≤ i, j ≤ 4 is the ijth element of L#. Function fi(0) corresponds to the population growth

rate of patch i.

From (2.26), the first term in (4.3) denoted as A represents the network average, and from (2.27),
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the coefficient of 1
µ

in (4.3) denoted asH represents the network heterogeneity.

Plugging `#
ij from (4.2) result in

H =
1

32
[5(f1(0)−f4(0))2+3(f1(0)−f3(0))2−(f1(0)−f2(0))2+(f2(0)−f3(0))2+3(f2(0)−f4(0))2−(f3(0)−f4(0))2].

(4.4)

Given that the movement is assumed to symmetric, the value of A is independent of arrangement

of the population growth rate fi(0) on each patch. Unlike A, the value of H varies in regards to

different arrangements of fi(0) on each patch. This implies that H carries the information that

enables us understand the population persistent or extinction in the network.

In what follows, we investigate different sink-source scenarios on a 4-patch path network by

calculating the network heterogeneity valueH to understand the population dynamics in the network.

In all the scenarios, we denote f(0) > 0 as the source patch and f(0) < 0 as the sink patch.

One-source scenario

In this scenario we assume to have one source patch f(0) and three sink patches f(0). Since the

movement between the patches is symmetric, there are two possible cases for this scenario:

1) f1(0) = f(0) > f2(0) = f3(0) = f4(0) = f(0). The network heterogeneity index in (4.4)

becomesH1 =
7

32
(f(0)− f(0))2.

2) f2(0) = f(0) > f1(0) = f3(0) = f4(0) = f(0). The network heterogeneity index in (4.4)

becomesH2 =
3

32
(f(0)− f(0))2.

It can be seen that H1 > H2, which implies that locating the source on patch 1 will result in a

bigger population growth in the network.
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Two-source scenario

In this scenario we assume to have two source patches and two sink patches. The symmetric

movement between the patches in the network results in four possible cases as follow:

1) f1(0) = f2(0) = f(0) > f3(0) = f4(0) = f(0). The network heterogeneity index become

H12 =
12

32
(f(0)− f(0))2.

2) f1(0) = f3(0) = f(0) > f2(0) = f4(0) = f(0). The network heterogeneity index become

H13 =
4

32
(f(0)− f(0))2

3) f1(0) = f4(0) = f(0) > f2(0) = f3(0) = f(0). The network heterogeneity index become

H14 =
4

32
(f(0)− f(0))2.

4) f2(0) = f3(0) = f(0) > f1(0) = f4(0) = f(0). The network heterogeneity index become

H23 =
4

32
(f(0)− f(0))2.

The calculations above demonstrate that H12 > H13 = H14 = H23. This implies that locating the

sources on patches 1 and 2 will lead to the highest population growth compared to the two other

scenarios.

Three-source scenario

For this scenario, we assume to have three source patches f(0) and one sink patch f(0). Due to

the symmetry movement in the network, there are two cases:

1) f1(0) = f2(0) = f3(0) = f(0) > f4(0) = f(0). The network heterogeneity index become

H123 =
7

32
(f(0)− f(0))2.
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2) f1(0) = f2(0) = f4(0) = f(0) > f3(0) = f(0). The network heterogeneity index become

H124 =
3

32
(f(0)− f(0))2.

It can be observed that having three sources on patches 1, 2 and 3 lead to a higher network

population growth asH123 > H124.

General scenario: same network average

For this scenario, we consider 8 different distributions of patch growth rates, in which they all have

the same network average. All the scenarios (except distribution H) have the same maximum; see

Figure 4.1(a). Figure 4.1(b) shows the network heterogeneity index H (for distribution H, this

index value is 0). As shown in Figure 4.1(c), the meta-population growth rate r, corresponding to

all except distribution H, has the same limiting values (the maximum of patch growth rates and the

network average respectively) as the movement rate parameter µ approaches 0 or∞.
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Figure 4.1: Network heterogeneity promotes population persistence.

4.2 Disease Invasion on a Star Network

Consider the SIS model described in Section 3.4 over an n-patch of a star network shown as
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1 2

4

6

· · ·
n

3

7

5

Vertex 1 denotes the hub, and vertices 2, 3, . . . , n represent the leaves. All the movements between

the hub and each leaf are assumed to be symmetric with the assigned weight of 1. The Laplacian

matrix L corresponding to network movement is given by

L =



n− 1 −1 −1 · · · −1

−1 1 0 · · · 0

−1 0 1 · · · 0

...
...

... . . . ...

−1 0 0 · · · 1


, (4.5)

where θ> = ( 1
n
, . . . , 1

n
) denotes the normalized right Perron-eigenvector of L. The group inverse

L# of L is given by

L# =
n− 1

n2
J +

1

n



0 −1 −1 · · · · · · · · · −1

−1 n− 2 −2 · · · · · · · · · −2

−1 −2 n− 2 −2 · · · · · · −2

−1 −2 −2 n− 2 −2 · · · −2

...
...

...
...

...
...

...

−1 −2 −2 −2 · · · −2 n− 2


, (4.6)
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where J = [1]n×n. The details of computing L# over a star network are provided in Section D.1

of Appendix D.

For simplicity, we assume that the recovery rates γi, for 1 ≤ i ≤ n of the SIS model are equal. (For

parameter details, see Section 3.4). Denote γ̃ as the recovery rate for all the patches in the network.

Consequently, the basic reproduction number R0 for the SIS model over an n-patch star network is

special case of Theorem 3.4. In particular, the computation of R0 is followed from equation (3.26)

of Corollary 3.5. That is

R0 =
1

n

∑n
i=1 βi
γ̃

+
1

µ

∑n
i=1

∑n
j=1 βi`

#
ijβj∑n

i=1 βi
+ o
( 1

µ

)
, (4.7)

where
1

n
denotes the ith element 1 ≤ i ≤ n of the normalized right Perron-eigenvector of L and

`#
ij for 1 ≤ i, j ≤ n is the ijth element of L#. Parameter βi represents the transmission rate

patch i and thus R(i) :=
βi
γ̃

denotes the corresponding basic reproduction number. Expansion (4.7)

becomes

R0 = A+
γ̃

µ

H
A

+ o
( 1

µ

)
, (4.8)

where A :=

∑n
i=1R

(i)
0

n
represents the average of the basic reproduction numbers of each patch

in the network and H :=

∑n
i=1

∑n
j=1R

(0)
i `#

ijR
(0)
j

n
denotes the network heterogeneity index. A

is independent of the arrangements of R0 in the network, whereas H is highly dependent of the

locations of R(0)
i s. Therefore,H conveys information in regards to the population dynamics of the

network.

In the following we investigate 3 scenarios for locating hotspot R region(s) and non-hotspot r

region(s) in the star network.

47



One-hotspot scenario

In this scenario we consider to have one hotspot patch in the star network. For that, we assume two

case: locating source at the hub and at leaf 2. Denote HH and HL as the network heterogeneity

indices corresponding to source at hub and at a leaf, respectively. It follows from the description

that

HH =
n− 1

n2
(R− r)2 and HL =

n2 − n− 1

n2
(R− r)2.

By comparing the values HH and HA we can state that in a star network of at least 3 regions (a

hub and 2 leaves), the network disease invasion occurs more likely when the hotspot is at a leaf.

Two-hotspot scenario

In this scenario we locate two hotspots in the network. This results in 2 cases: hotspots at the

hub and a leaf and hotspots at 2 leaves, where HHL and H2L denote the corresponding network

heterogeneity indices. Thus,

HHL =
n2 − 4

n2
(R− r)2 and H2L =

2n2 − 4n− 4

n2
(R− r)2. (4.9)

The following observations are made from comparing the values ofHHL andH2L,

• In a star network of at least 5 regions (a hub and 4 leaves), the disease spreads widely when

two hotspots are at leaves.

• In a 4-patch star network the disease spread is the same for both instances.

• In a 3-patch star network an outbreak happens more rapidly when one hostpot is at the hub

and one at a leaf.
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Note that the above results are the direct outcomes of computing network heterogeneity index of

the star network for each scenario.

Three-hotspot scenario

In this scenario we assume that there are three hotspots in the star network, which results in two

cases: one hotspot at the hub and two at leaves, and three hotspots at leaves, whereHH2L andH3L

denote the respected network heterogeneity indices. It follows from (4.8) that

HH2L =
2n2 − 3n− 9

n2
(R− r)2 and H3L =

3n2 − 9n− 9

n2
(R− r)2.

By comparingHH2L andH3L, we can deduce that in a star network of

• at least 7 regions (a hub and 6 leaves) an outbreak most likely when all three sources are at

leaves.

• 6 regions (a hub and 5 leaves), the disease spread is independent of the location of hotspot

and thus it is the same for both cases.

• at most 5 regions ( a hub and 4 leaves), the disease spread more widely when one hotspot is

at the hub and the other two are at the leaves.

4.3 Cholera Spread on a Stream Network

In this Section, we use the the cholera model in Section 3.5 to demonstrate that the network average

(the first order term in the expansion) and the network heterogeneity (the second order term) jointly

impact the disease invasion in an asymmetric network.
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Consider the spread of a waterborne disease (e.g. cholera) along a river of 4 nodes (as shown in

Figure 4.2(a)) with 1 hotspot patch where R(k)
0 = 2.8 and 3 other patches R(k)

0 = 0.7. If b = 2a,

then straightforward calculations yield θ1 = 1/15, θ2 = 2/15, θ3 = 4/15, and θ4 = 8/15. For large

pathogen movement parameter µ, R0 ≈ A =
∑

k θkR
(k)
0 . If the hotspot is located at patch 1, then

R0 ≈ (2.8+0.7×14)/15 = 0.84. If the hotspot is at patch 2, thenR0 ≈ (2.8×2+0.7×13)/15 =

0.98. If the hotspot is at patch 3, thenR0 ≈ (2.8× 4 + 0.7× 11)/15 = 1.26. Lastly, if the hotspot

is at patch 4, thenR0 ≈ (2.8× 8 + 0.7× 7)/15 = 1.82.

However, for intermediate values of µ, the network heterogeneity jointly plays an important role,

e.g., bring the R0 value for the case of the hotspot at patch 1 larger than R0 values for the cases of

hotspot at patch 2 or 3 (see Figure 4.2(c)).
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Figure 4.2: Network average and network heterogeneity jointly impact cholera invasion on a
stream network: a = 1 (upstream movement rate), b = 2 (downstream movement rate); patch
reproduction number is 2.8 at a hotspot and 0.7 at a non-hotspot; patch disease growth rate is 0.14
at a hotspot and -0.03 at a non-hotspot
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CHAPTER 5: A NEW INDEX FOR CONTROLLING R0

5.1 Motivation

In mathematical epidemiology, the basic reproduction numberR0 is undoubtedly amongst the most

crucial threshold quantities, not just for determining whether or not an epidemic or endemic can

occur in a host population, but also for providing a measure to guide disease control strategies.

For example, the disease can be eradicated if more than a proportion h = 1 − 1/R0 of the

host population can be effectively vaccinated, where h is customarily called the herd immunity

ratio. For a given infectious disease model of ordinary differential equations, R0 can be derived

as the spectral radius (the largest modulus of its eigenvalues) of a next-generation matrix K =

[kij]n×n [18], which encodes the disease transmission from one generation to the next; that is,

R0 = ρ(K) = max{|λ| : Kx = λx, x ∈ Rn \ {0}}.

The herd immunity ratio h indeed measures the number of vaccinations needed to reduce all

entries of K simultaneously (in a multiplicative way) to reach the threshold value 1. That is,

after effectively vaccinating a proportion h of the host population, each pathway kij of disease

transmission from one generation to another can be reduced by a proportion h, yielding the controlled

next-generation matrix Kc = [kij(1− h)] = [
kij
R0

] = K
R0

and ρ(Kc) = ρ( K
R0

) = ρ(K)
R0

= 1.

However, the concept of R0 is less useful when control efforts target a specific group, or if

the infection includes another host type, i.e., a vector, intermediate host, or reservoir host. To

overcome the problem, [13, 9] defined the type-reproduction number Ti for an infectious disease,

and showed that Ti not only has the required threshold behavior, but also correctly determines the

critical control effort for heterogeneous populations. For example, if sub-population i of the host

population is to be vaccinated, then the type reproduction number Ti [13, 9] measures the required
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vaccine coverage for the group, and 1 − 1
Ti indicates the proportion of vaccination coverage in

group i to have the disease under the control among all the host population groups.

In [15] the target reproduction number method was presented as an extension to the type reproduction

number, allowing us to estimate disease control measurements targeting not just specific host

types, but also transition terms between them. The method description in [11] concentrated on the

decomposition of the next generation matrix K into nonnegative target matrix C and nonnegative

residual matrix B with ρ(B) < 1, that is K = B + C. Then, the target reproduction number is

defined as TC = ρ(C(I − B)−1) and the controlled next generation matrix Kc = B + C
TC

has the

spectral radius of 1. The following proposition establishes the relationships among the basic, type,

and target reproduction numbers. The computation of the target reproduction number is similar

to that of the type reproduction number, where more projection matrices are added to the target

reproduction number.

In the applications, A can take the form of projection matrices in ecological models with r = ρ(A)

denotes the population growth rate, and next-generation matrices in epidemiological models where

R0 = ρ(A) represents the basic reproduction number.

Let p be a parameter (or a set of parameters) subject to change (due to some population/disease

control), whereA = A(p) and rp = ρ(A(p)). Set r∞ := limp→∞ ρ(A(p)) and r0 := limp→0 ρ(A(p))

if they exist and could be∞.

Lemma 5.1. Let A be a nonnegative matrix and p be a parameter (set) subject to change. Suppose

rp = ρ(A(p)) is strictly monotone and min{r0, r∞} < 1 < max{r0, r∞}. Then there exists a

unique p∗ such that rp∗ = ρ(A(p∗)) = 1.

Proof. As ρ(A(p)) is a continuous function with respect to p, and min{r0, r∞} < 1 < max{r0, r∞},

then by the Intermediate Value Theorem, there exists p∗ ∈ (0,∞) such that rp∗ = ρ(A(p∗)) = 1.
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The uniqueness of rp∗ is determined by strict monotonicity of rp∗ .

Let A be an irreducible matrix A = B + C, where A,B and C are nonnegative matrices. An

explicit formula for p∗ can be derived under certain circumstances.

- LetA = B+C withB = [bij], C = [cij] ≥ 0. If p = {cij : 1 ≤ i ≤ n, 1 ≤ j ≤ n}, then p∗ = p
TC

,

where TC = ρ(C(I −B)−1) is the corresponding target reproduction number. Here p∗ is uniquely

defined provided that r0 = limp→0 ρ(A) = ρ(B) < 1. Note that r∞ = limp→∞ ρ(A) =∞.

- If p = aij for some i, j (i.e., the (i, j)-entry of A), then p∗ =
aij
Tij where Tij is the target

reproduction number with the target entry (i, j) of A.

- If p = {ai1, ai2, . . . , ain} for some i (i.e., the i-th row of A), then p∗ =
aij
Ti where Ti is the target

reproduction number with the target i-th row of A.

- If p = {aij : 1 ≤ i ≤ n, 1 ≤ j ≤ n} (i.e., all entries of A), then p∗ = p
ρ(A)

.

Proposition 5.2. All (basic/type/target) reproduction numbers, if they exist, stay at the same side

of 1.

Proof. Let K = B + C be the next generation matrix and TC = ρ(C(I − B)−1) be the target

reproduction number corresponding to target matrix C. Assume TC > 1, then from the definition

the controlled next generation matrix KC = B + 1
TC
C has the spectral radius of 1, which means

ρ(KC) = 1. Furthermore, KC = B + C
TC

< B + C = K, thus ρ(KC) < ρ(K) [4]. This yields

1 < ρ(K) = R0.

Similarly, if TC < 1, then KC = B + C
TC

< K resulting R0 = ρ(K) < 1.
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5.2 Spectrum Yield Index

In the previous Section we have given an overview of the concept of the target reproduction

number which targets parameters that appear (partially or as a whole) in the numerator of the

next generation matrix. In this Section, we extend the notion of targeting parameters to a more

general setting by proposing a new index. By doing so, we clarify some points of confusions from

the literature.

To start, set A = B + C = B + f(p)D where A,B and C are defined above, D is a nonnegative

matrix, and independent of p and f(p) is a nonnegative function of p, which is monotone(increasing

or decreasing); thus, the inverse f−1 exists.

We define the spectrum yield index of p as the following:

Yp =
p

f−1(f(p)
TC

)
, (5.1)

where TC = ρ(C(I −B)−1) = ρ(f(p)D(I −B)−1) provided that ρ(B) < 1.

Theorem 5.3. Let A be an irreducible and nonnegative matrix and A = B + C with C = f(p)D,

where B,D are nonnegative matrices independent of p. If f is strictly monotone and f−1 exists,

then p∗ = p
Yp and rp∗ = ρ(A(p∗)) = 1, where the spectrum yield index Yp is defined as in (5.1).

Proof. Let x> ≥ 0 be a nonnegative left eigenvector ofC(I−B)−1 = f(p)D(I−B)−1 corresponding

to the Perron eigenvalue of TC , then

x>TC = x>f(p)D(I −B)−1 ⇐⇒ x>(I −B) = x>
f(p)

TC
D ⇐⇒ x> = x>(B +

f(p)

TC
D).

By Perron-Frobenius Theory, the spectral radius of (B + f(p)
TC
D) is the unique largest eigenvalue
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with a nonnegative eigenvector. Thus ρ(B + f(p)
TC
D) = 1. From (5.1), f(p)

TC
= f( p

Yp ), thus

ρ(B + f( p
Yp )D) = 1, which implies ρ(A( p

Yp )) = 1. Following Lemma 5.1, ρ(A(p∗)) = 1 where

p∗ = p
Yp .

Theorem 5.4. Let Yp be as defined in (5.1). If f(p) is strictly increasing, then Yp and reproduction

numbers stay at the same side of 1; if f(p) is strictly decreasing, then Yp and reproduction numbers

stay at the opposite side of 1.

Proof. We prove the case when f(p) is increasing. Assume TC > 1, then

f(p)

TC
< f(p) ⇐⇒ f−1(

f(p)

TC
) < f−1(f(p)) = p ⇐⇒ 1 <

p

f−1(f(p)
TC

)
⇐⇒ 1 < Yp. (5.2)

By proposition 5.2, all reproduction numbers stay at one side of 1, hence Yp > 1 if and only if

ρ(A(p)) > 1. In similar fashion it can be shown that TC < 1 if and only if Yp < 1.

The proof when f(p) is decreasing can be performed by reversing all the inequalities above.

Corollary 5.5. Let Yp be defined as in (5.1), and f(p) be a monotone function (decreasing or

increasing). Then Yp = 1 if and only if TC = 1.

Proof. Suppose TC = 1, then

f(p)

TC
= f(p) ⇐⇒ f−1(

f(p)

TC
) = f−1(f(p)) = p ⇐⇒ 1 =

p

f−1(f(p)
TC

)
⇐⇒ 1 = Yp.

Theorem 5.6. Let A = A(p) and Yp be well-defined, then the following holds.

(a) If f(p) is increasing, then Yp > 1 if and only if dr
dp

= d
dp
ρ(A(p)) > 0.

(b) If f(p) is decreasing, then Yp < 1 if and only if dr
dp

= d
dp
ρ(A(p)) > 0.
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Proof. We prove (a) only. The proof of (b) is similar. Assume Yp > 1, then p∗ = p
Yp < p, which

implies f(p∗) < f(p), which follows from f(p) being strictly increasing. Thus,

A(p∗) = B + f(p∗)D < B + f(p)D = A(p). (5.3)

Since both A(p∗) and A(p) are irreducible, then ρ(A(p∗)) < ρ(A(p)) [4] for any p∗ < p. Now,

d

dp
ρ(A(p)) = lim

ε→0

ρ(A(p)|(p∗+ε) − ρ(A(p)|(p∗)
ε

= lim
ε→0

ρ(A(p∗ + ε))− ρ(A(p∗))

ε
> 0.

In this section we illustrate three applications in the context of compartmental epidemic models.

The first two examples emphasize various control measures for disease elimination. The last one

focuses on the different next-generation matrix decompositions to compare their corresponding

target reproduction numbers and spectrum yield indices. As computations show, different next

generation matrix constructions lead to the same spectrum yield index value, which is thus independent

of the next generation matrix decomposition.

Note that in all disease infectious applications the assumption is that the outbreak occurs, that is

R0 > 1, leading us to look for effective control strategies to prevent the spread of the disease.

5.3 Application to a Zika Model

Zika virus is a mosquito-borne disease that is primarily transmitted by the bite of an infected

mosquito from the Aedes genus, mainly Aedes aegypti, in tropical and subtropical regions. This is
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the same mosquito that transmits dengue, chikungunya and yellow fever. Zika virus can also be

transmitted from human to human including mother to fetus during pregnancy, and through sexual

contact.

Consider a human-vector population Zika virus model in which the human population is divided

into five classes: susceptible SH , exposed EH , symptomatic infected IHS , asymptomatic infected

IHA and and recoveredRH , while the mosquito population is divided into three classes: susceptible

SV , exposed EV and infectedIV as described in [3]. The system has five infected states, EH , IHS ,

IHA, EV and IV where EH and EV are states-at-infection, and IHS, IHA and IV are states of

infectiousness so next generation matrix with the large domain KL is a 5× 5 matrix.

In [7] an approach to derive the next generation matrix K form KL is introduced, which has the

same epidemiological reasoning as KL, but keeps out irrelevant information, and usually is of

lower dimension than KL. The entry (i, j) of K corresponds to the expected number of new cases

at state-at-infection i produced by a single individual who has just entered state-at-infection j in a

completely susceptible population. Here we derive K in this manner with states-at-infection EH

and EV . Thus,

K =


ψSq + ψA(1− q)

γ

aHbβV
(βV + µV )µV

aV b

γ
0

 ,

where ψA and ψS denote humans’ asymptomatic and symptomatic sexual transmission rate,

respectively for an entire infectious period of 1
γ

. Infected individuals become symptomatic infectious

with probability q. Parameter aH(aV ) is the transmission rate from an infectious mosquito(individual)

to a susceptible individual(mosquito) per mosquito bite, b is the mosquito’s biting rate and β−1
V is

the latency period of Zika virus in mosquitoes. Finally, µV represents the death rate of mosquitoes.

In the following, we explain the biological description of entries of K = [kij].
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− k11 =
ψSq + ψA(1− q)

γ
determines the expected number of exposed cases, generated by one

individual who has just entered state EH during the infectious period. Here, the individual

survives the EH state with probability 1 and moves to one of the two infectious states, IHS

or IHA with probability q and 1− q, respectively. During their stay in IHS , the individual is

expected to produce new cases at a rate ψS , and to produce new cases at rate ψA while they

are in state IHA for an expected time 1
γ

.

− k12 =
aHbβV

(βV + µV )µV
corresponds to the expected number of new cases of exposed humans

by one mosquito that has just entered state EV for the infectious life. For the mosquito to be

infectious, it needs to survive the EV state and moves to infectious state IV with probability
βV

βV + µV
. While in the IV state, the infectious vector is expected to produce new cases of

exposed humans at a rate aHb, for an expected time 1
µV

.

− k21 =
aV b

γ
indicates the expected number of new cases of exposed mosquitoes produced by

one human who just entered state EH during the infectious time. The exposed human moves

to states IHS and IHA with probability q and 1 − q, respectively. While in infectious state,

IHS or IHA, they are expected to produce new cases of exposed vectors with rate aV b, for an

expected time
1

γ
.

− k22 = 0 because Zika virus is spread mainly by mosquito bites, thus there is no transmission

between mosquitoes.

As there is no vaccine or antiviral treatment available for Zika virus infection, the following

disease control measurements are recommended.
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Reducing the infectious mosquitoes to individuals transmission

One method to prevent the spread of Zika virus is to decrease the encounter between the infectious

mosquitoes and susceptible individuals. To achieve it, the Wolbachia bacterium is introduced into

the mosquito population by breeding and releasing Wolbachia-carrying mosquitoes into the disease

affected areas. From mathematical point of view, these strategies target parameter aH where it

appears in entry (1, 2) of K. Then, the target matrix is C =

0 aHbβV
(βV +µV )µV

0 0

 and the residual

matrix is B =


ψSq+ψA(1−q)

γ
0

aV b
γ

0

, with the controllability condition

ρ(B) < 1 ⇐⇒ ψSq + ψA(1− q)
γ

< 1,

where it leads to γ − (ψSq + ψA(1− q)) > 0. Thus, the target reproduction number

TC = ρ(C(I −B)−1)

= ρ

(0
aHbβV

(βV + µV )µV

0 0


1− ψSq + ψA(1− q)

γ
0

−aV b
γ

1


−1)

= ρ

(
aHβV aV b

µV (βV +µV )(γ−(ψSq+ψA(1−q)))
aHβV

(µV +βV )

0 0


)

=
aHβV aV b

µV (βV + µV )(γ − (ψSq + ψA(1− q)))
.

TC is meaningful as γ − (ψSq + ψA(1 − q)) > 0. This implies that the transmission rate from
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infectious mosquitoes to susceptible individuals is successfully reduced as every entry cij of target

matrix C becomes cij
TC

. That means, the dominant eigenvalue of the controlled matrix KC =

B + 1
TC
C is 1, i.e. ρ(KC) = 1.

Reduction in mosquito bites

One way to control the spread of Zika virus is to prevent the mosquito bites by using screens on the

windows or air conditioner to keep mosquitoes from entering. Individuals are recommended to stay

indoors during the peak of biting time of vectors, which are early morning and late afternoon/evening.

If individuals can’t avoid being outdoors, they are suggested to take some precautions such that

wearing light-colored clothing and using insect repellents. Such measurements target parameter

“b” in which it appears at entries (1, 2) and (2, 1) of the next generation matrix. Thus, target

matrix is C =

 0 aHbβV
(βV +µV )µV

aV b
γ

0

, and the residual matrix is B =


ψSq+ψA(1−q)

γ
0

0 0

 with the

controlability condition ρ(B) < 1 ⇐⇒ 0 < γ − (ψSq + ψA(1− q)). Following the definition of

target reproduction TC , we have

TC = ρ(C(I −B)−1)

= ρ(

 0 aHbβV
(βV +µV )µV

aV b
γ

0


1− ψSq+ψA(1−q)

γ
0

0 1


−1

)

= ρ(

 0 aHbβV
(βV +µV )µV

aV b
γ−(ψq+ψA(1−q)) 0

)

= b

√
aV aHβV

ψSq + ψA(1− q)− γ
.
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Reduction in the latent period

From the model description, β−1
V is the latent period of mosquitoes from the exposed compartment

to the infected one. Given the short lifespan of mosquitoes, we assume infectious vectors remain

infectious for the rest of their life . Hypothetically, if we are to increase the latency period, there

will be less infectious mosquitoes, as the result the spread of Zika virus can be controlled. Such

strategies target parameter βV , where is located both in the numerator and denominator of entry

(1, 2). From (5.1), to measure such strategies, we are required to calculate the corresponding

spectrum yield index YβV . Note that target matrix C is the same as the one in Section 5.3, so is the

associated target reproduction number, hence TC = aHβV aV b
µV (βV +µV )(γ−(ψSq+ψA(1−q))) . Following (5.1),

the target matrix can be representedC = βV
βV +µV

0 aHb

0 0

where f(βV ) = βV
βV +µV

is a continuous

strictly increasing function of βV as βV , µV > 0, so the inverse exists and f−1(βV ) = βV µV
1−βV

. Thus,

βV associated spectrum yield index is

YβV =
βV

f−1(f(βV )
TC

)

=
TC(βV + µV )− βV

µV

=
βV (aHaV b− (γ − (ψSq + ψA(1− q))))

µ2
V (γ − (ψSq + ψA(1− q))

.

Decrease in the symptomatic sexual transmission rate

Zika virus can be passed through sexual intercourse from a person who has Zika to their sex

partners. To control the spread of Zika virus, individuals must be informed about the correct

and consistent use of condoms or abstinence during infectious period. Such interventions target

parameter ψS where it appears as part of entry (1, 1). Target matrix C and residual matrix B are
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defined as

C =


ψSq
γ

0

0 0

 and B =


ψA(1−q)

γ
aHbβV

(βV +µV )µV

aV b
γ

0

 ,

with the controllability condition

ρ(B) < 1

1

2

(
ψA(1− q)

γ
+

√(
ψA(1− q)

γ

)2

+ 4

(
aV aHb

2βV
(βV + µV )µV

))
< 1

⇐⇒
(
ψA(1− q)

γ

)2

+ 4

(
aV aHb

2βV
(βV + µV )µV

)
<

(
2− ψA(1− q)

γ

)2

⇐⇒ aV aHb
2βV

(βV + µV )µV
<
γ − ψA(1− q)

γ

⇐⇒ 0 <
µV (γ − ψA(1− q))(βV + µV )− aV aHβV b2

γµV (βV + µV )
.

Following the definition of the target reproduction number, TC is given by

TC = ρ(


ψSq

γΩ

aHbβV ψSq

γµV (µV + βV )Ω

0 0

),

where Ω =
γµV (βV + µV )

µV (γ − ψA(1− q))(βV + µV )− aV aHβV b2
.

Hence ,

TC =
ψSqµV (βV + µV )

µV (γ − ψA(1− q))(βV + µV )− aV aHβV b2
.

TC is well defined as the condition for controllability, ρ(B) < 1, holds. One can check that the
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controlled matrix KC = B + 1
TC
C corresponds to the control measures reducing ψS has dominant

eigenvalue 1.

Increase in the death rate of mosquitoes

Another Zika virus prevention strategy is to spray Permethrin on the clothes treating clothes to

increase the death rate of mosquitoes. Such control strategies effect parameter µV where it appears

in the quadratic form in the denominator of entry (1, 2) of K. Following (5.1), the effort required

to increase the death rate of mosquitoes can be estimated using the spectrum yield index associated

to parameter µV .

Note that the target matrixC and residual matrixB are the same as the ones described in Section 5.3,

so is the target reproduction number. Thus, TC = ρ(C(I − B)−1) = aHβV aV b
2

µV (βV +µV )(γ−ψsq−ψA(1−q)) .

Note that the target matrix can be represented as C = 1
(βV +µV )µV

0 aHbβV

0 0

, where f(µv) =

1

(βV + µV )µV
is decreasing and continuous everywhere as βV > 0 and µV > 0. Thus, the inverse

exists and f−1(µV ) =
√

β2
V

4
+ 1

µV
− βV

2
. From (5.1), the spectrum yield index corresponding to

parameter µV is

YµV =
µV

f−1(f(µV )
TC

)

=
µV√

aHβV aV b2

γ−ψsq−ψA(1−q) + β2

4
− β

2

.
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For effective control strategies µV is to be replaced with µV
YµV

=
√

aHβV aV b2

γ−ψsq−ψA(1−q) + β2

4
− β

2
, thus

the spectral radius of the controlled next generation matrix is 1, that is

ρ(KµV ) = ρ(


ψSq + ψA(1− q)

γ

aHbβV
(βV + µV

YµV
) µV
YµV

aV b

γ
0

) = 1.

5.4 Application to an Anthrax Disease model

Anthrax is a zoonotic infectious disease caused by bacteria called Bacillus anthracis. It can

be found naturally in soil in dormant form called spores, and mainly affects animals, specially

live stock. Humans can also become infected if they come in contact with infected animals,

contaminated animal products or inhaling the spores. Usually, the bacteria enters the body through

a wound in the skin.

Consider the four-compartment SIACa anthrax disease model in animal populations is given

in [14], where S and I denote susceptible and infected animals, Ca represents infected carcasses

andA denotes the grams of spores in the environment. The dynamics of a special case of the model

are described in [17] as

Ṡ = r(S + I)(1− S + I

K
)− ηaAS − ηcCaS −mS + τI

İ = ηaAS + ηcCaS − (γ +m+ c)I

Ȧ = −αA+ βCa

Ċa = (γ +m)I − δ(S + I)Ca − κCa.

The animal population is assumed to follow logistic growth with birth rate r and carrying capacity

K. ηa is the contact rate between susceptible animals and spores times the probability of transmission
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from spores to susceptible animals, ηc is the contact rate between susceptible animals and infected

carcasses. β and α denote the spore growth rate and decay rate in the environment on the infected

carcasses, κ is the carcasses decay rate, δ is the carcass consumption rate, κ is the decay rate of

carcasses, m and γ are the natural and the disease induced death rates, respectively, and τ is the

recovery rate of infected animals.

The system has three infected states; S, I and Ca, thus, the next generation matrix around the

disease-free equilibrium (S0, 0, 0, 0) with S0 = K(1− m
r

) is

K =



0 ηaS0

α
ηcS0

δS0+κ

0 0 β
δS0+κ

γ +m

γ +m+ τ
0 0


. (5.4)

Table 5.1: Model parameter values, descriptions and associated units.

Parameter Baseline value Unit
K 100 animals
r 1/300 day−1

m 1/600 day−1

δ 1/20 day−1animal−1

α 1/20 day−1

ηa 1/2 day−1gm spore−1

β 1/500 gm spores carcass−1 day−1

τ 1/10 day−1

γ 1/7 day−1

ηc 1/10 day−1carcass−1

κ 1/10 day−1

Using the table above, the basic reproduction number R0 is approximated as 1.113.
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In what follows we investigate different disease control strategies to calculate the spectrum yield

index associated with each strategy in order to have anthrax under control.

Increase in the decay rate of carcasses

In the case of anthrax outbreak, one approach to reduce the spread of anthrax is to increase the

decay rate of carcasses. In most countries, the best method of disposal of infected carcasses

is incineration. Such control measures target parameter κ, where it happens to appear in the

denominator of entries (1, 3) and (2, 3) of K. Following (5.1), to measure the change in κ, we

are required to compute Yκ with the target matrix C =


0 0 ηcS0

δS0+κ

0 0 β
δS0+κ

0 0 0


and residual matrix B =


0 ηaS0

α
0

0 0 0

γ+m
γ+m+τ

0 0


, where

γ +m

γ +m+ τ
< 1, following the controllability condition ρ(B) < 1.

The corresponding target reproduction number TC is

TC = ρ(C(I −B)−1) =



S0ηc(γ +m)

(δS0 + κ)(γ +m+ τ)

S2
0ηcηa(γ +m)

α(δS0 + κ)(γ +m+ τ)

S0ηc
δS0 + κ

β(γ +m)

(δS0 + κ)(γ +m+ τ)

S0βηa(γ +m)

α(δS0 + κ)(γ +m+ τ)

β

δS0 + κ

0 0 0


=

S0ηc(γ +m)

(δS0 + κ)(γ +m+ τ)
+

S0βηa(γ +m)

α(δS0 + κ)(γ +m+ τ)
.
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Note that the target matrix C can be represented as

C =
1

δS0 + κ


0 0 S0ηc

0 0 β

0 0 0


,

where f(κ) =
1

δS0 + κ
that is strictly decreasing with respect to κ and continuous everywhere,

thus the inverse exits and f−1(κ) =
1

κ
− δS0. Now, we can derive Yκ from (5.1).

Yκ =
κ

f−1(f(κ)
TC

)
=

κα(γ +m+ τ)

S0(γ +m)(βηα + aηc)− S0δa(γ +m+ τ)
.

Using the parameter values provided in table (5.1), Yk = 0.133, which implies that in order to

control the spread of anthrax, the decay rate of carcasses must be increased from κ = 0.1 day−1

to
κ

Yκ
= 0.751 day−1. This implies that in order to have the spread of anthrax under the control,

on average, a carcass must decompose in about 1.331 days rather than 10 days. By doing so, the

basic reproduction of the controlled next generation matrix Kκ, which was 1.113 in the outset of

anthrax reduces to 1. Thus, ρ(Kκ) = 1, where Kκ =


0 ηa

α
ηc

δ+ κ
Yκ

0 0 β
δ+ κ
Yκ

γ+m
γ+m+τ

0 0


.
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Figure 5.1: The relation between R0 and spectrum yield index Yκ

Note that both R0 and Yκ reach the threshold value 1 simultaneously, which is the direct result of

Proposition 5.2 and Corollary 5.5. Additionally, R0 and Yκ stay on the opposite side of 1, R0 > 1

whenever Yκ < 1, which is consistent with the result of Theorem 5.4, as f(κ) =
1

δS0 + κ
is a

decreasing function of κ.

Decrease in the anthrax induced mortality rate

During anthrax outbreak, another approach to have the disease under control is to reduce the fatality

rate caused by anthrax by treating the infected animals with antibiotics (antibiotics treatments

are the most effective if started early). From a mathematical perspective, such measures target

parameter m, which appears both in the numerator and denominator of entry (3, 1) of K. Hence,

the target matrix C = [cij], 1 ≤ i, j ≤ 3 has only one nonzero entry: c31 = γ+m
γ+m+τ

, and cij = 0 for

(i, j) 6= (1, 3). By definition the target reproduction number is given as

TC = ρ(C(I −B)−1) =
S0(γ +m)

(δS0 + κ)(γ +m+ τ)
(
ηaβ

a
+ ηc).
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Notice that the target matrix can be shown as C =
γ +m

γ +m+ τ


0 0 0

0 0 0

1 0 0

, where f(γ) =

γ +m

γ +m+ τ
is an increasing and continuous function of γ on its domain, thus, the inverse exists

and f−1(γ) =
m− γτ − γm

γ − 1
.

Following (5.1), the corresponding spectrum yield index Yγ is

Yγ =
γ

f−1(f(γ)
TC

)
=

γ(a(δS0 + κ)− S0(ηaβ + ηcα))

mS0(ηaβ + ηcα)− α(δS0 + κ)(τ +m)
.

By using the parameter values provided in table (5.1), Yγ ≈ 1.624. thus, γ = 1/7 day−1 become
γ

Yγ
≈ 0.088 day−1. This implies after a successful treatment, an infected animal dies on average

11.36 days after being exposed to disease rather than 7 days.

Figure 5.2: The relation between R0 and spectrum yield index Yγ

Note that both R0 and Yγ stay on one side of threshold value 1, as f(γ) =
γ +m

γ +m+ τ
is an

increasing function of γ Theorem 5.4, Furthermore, they reach the threshold value 1 together;

Proposition 5.2 and Corollary 5.5.
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5.5 Application to a Cholera Model

Cholera is a water-borne infectious disease caused by bacteria called Vibrio cholerae. Cholera

outbreak occurs primarily in areas with inadequate water treatment and poor sanitation. Individuals

become sick by eating food or drinking water contaminated by feces of infected individuals.

Consider the four-class (SIRSP ) Cholera model described in [2], where S, I and R denote

susceptible, infected and recovered classes, respectively, and P indicates free-living pathogen

(FLP) that can grow and survive in the environment, where I and P are states-at-infection.

S I R

FLP

αR

b

βSI

γI

νI

mS mR

rP

gP (1− cP )

(m+ µ)I

Thus, the corresponding Jacobian matrix J is

J =

βb
m
− (µ+m+ ν) δb

m

γ g − r

 , (5.5)

where b and m denote the birth and death rate, respectively, µ indicates diseased induced mortality

rate. δ and β represent environment to host an host to host transmission rate. Finally, γ, g and r

are shedding, growth and decay rate of pathogens in the environment. To ensure stability of the

system around the disease free equilibrium we assume r > g.

It is worth noting that there are some uncertainties surrounding the role of the contaminated

environment in the literature. While some studies highlight the role of the environment as a
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reservoir of infectious FLP, other works remark the environment with the less crucial part on

disease infections.

In this example, we consider both scenarios to derive next generation matrix from (6.8), and show

that the decomposition of the next generation has no impact on the computation of the spectrum

yield index.

• Environment as a reservoir

The environment is viewed solely as a reservoir, where both FLP growth rate g and pathogen

shedding rate γ are regarded as new infections. Thus, the new infection matrix F and

transition matrix V are

F =


βb
m

δb
m

γ g

 , V =

(µ+m+ ν) 0

0 r

 ,

and the NGM K is

K = FV −1 =


βb

m(µ+m+ ν)

δb

mr

γ

µ+m+ ν

g

r

 . (5.6)

• Environment as a transition-reservoir

Unlike the previous case, the environment is not solely considered as a reservoir. While

the pathogen shedding by the infectious host is assumed as transitions, the pathogen growth

within the environment is regarded as new infection. Thus, the shedding rate g, and the
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growth rate γ are placed into matrices F and V , respectively. Hence,

F =


βb
m

δb
m

0 g

 , V =

(µ+m+ ν) 0

−γ r

 ,

where the NGM K is

K = FV −1 =


βb

m(µ+m+ ν)
+

δγb

m(µ+m+ ν)r

δb

mr

γg

r(µ+m+ ν)

g

r

 . (5.7)

In the remaining of this example, we implement control measure to target a particular parameter

corresponding to NGMs (5.6) and (5.7) to compare the associated spectrum yield index of

each scenario.

Reduction in the environment-to-host transmission

As cholera outbreak is mainly associated to inadequate sanitation system, its further spread

can be prevented by promoting the hygiene habits including washing hands with soap, and

safe food preparations. Such measures tend to reduce the contact between the environment

and host, in which they target parameter δ of NGMs (5.6) and (5.7).

73



Table 5.2: Description of targeting parameter δ.

Reservoir Transition-Reservoir

1 NGM


βb

m(µ+m+ν)
δb
mr

γ
µ+m+ν

g

r




βbr+δγb
mr(µ+m+ν)

δb
mr

γg
r(µ+m+ν)

g
r



2 Target matrix C δ
m


0

b

r

0 0

 δ
m


γb

(µ+m+ν)r
b
r

0 0



3 Residual matrix B


βb

m(µ+m+ν) 0

γ
µ+m+ν

g
r




βb
m(µ+m+ν) 0

γg
r(µ+m+ν)

g
r



4 C(I −B)−1 δb
r−g


γ

m(µ+m+ν)−βb
1
m

0 0

 δb
r−g


γ

m(µ+m+ν)−βb
1
m

0 0



5 TC = ρ(C(I −B)−1) δγb
(m(µ+m+ν)−βb)(r−g)

δγb
(m(µ+m+ν)−βb)(r−g)

6 Yδ = δ

f−1(
f(δ)
TC

)

δγb
(m(µ+m+ν)−βb)(r−g)

δγb
(m(µ+m+ν)−βb)(r−g)
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Note that despite parameter δ having to appear in different entries of the NGM associated to

each case, the corresponding target reproduction number TC (step 5) is the same. Additionally,

from (5.1) f(δ) = δ and f−1(δ) = δ. Thus, Yδ =
δ

f−1(f(δ)
TC

)
=

δ
δ
TC

= TC (step 6).

Decrease in the cholera induced mortality rate

Cholera may cause severe diarrhea which can lead to the dehydration and eventually death.

This can be prevented by simple treatments such as rehydration solution. By doing so, we

decrease cholera induced fatality rate. Mathematically, such treatments target parameter µ

of NGMs (5.6) and (5.7).
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Table 5.3: Description of targeting parameter µ

Reservoir Transition-Reservoir

1 NGM


βb

m(µ+m+ν)
δb
mr

γ
µ+m+ν

g
r




βbr+δγb
m(µ+m+ν)

δb
mr

γg
r(µ+m+ν)

g
r



2 Target matrix C 1
µ+m+ν


βb
m 0

γ 0

 1
µ+m+ν


βbr+δγb
mr 0

γg
r 0



3 Residual matrix B


0 δb

mr

0 g
r




0 δb
mr

0 g
r



4 C(I −B)−1 1
µ+m+ν


βb
m

δβb2

m2(r−g)

γ δγb
m(r−g)

 1
µ+m+ν


βbr+δγb
mr

δb2(βr+δγ)
m2r(r−g)

γg
r

δγgb
mr(r−g)



5 TC = ρ(C(I −B)−1)
βb(r−g)+δγb

m(r−g)(µ+m+ν)
βb(r−g)+δγb

m(r−g)(µ+m+ν)

6 Yµ = µ

f−1(
f(µ)
TC

)

mµ(r−g)
(r−g)(βb−m(m+ν))+δγb

mµ(r−g)
(r−g)(βb−m(m+ν))+δγb
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Note that µ is located in the same entries (1, 1) and (2, 1) of each scenario’s NGMs (step

1). While the associated target matrix is different (step 2), the resulting target matrices is the

same (step 5). Furthermore, in both scenarios f(µ) = 1
µ+m+ν

(step 2) where it is decreasing

and continuous everywhere, thus the inverse exists. From (5.1), the spectrum yield index

is Yµ =
µ

f−1(f(µ)
TC

)
=

µ

f−1( m(r−g)
βb(r−g)+δγb)

=
mµ(r − g)

(r − g)(βb−m(m+ ν)) + δγb
(step 6), where

f−1(µ) =
1

µ
− (m+ ν).

Increase in the pathogen decay rate

As Cholera is mainly an aquatic disease, we can mitigate the spread by providing clean water

to drink and use via boiling or using antiseptic, i.e., Chlorine. Such measures increase the

decay rate of pathogens which lead to the disease decline where they target parameter r of

NGM (5.6) and (5.7).
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Table 5.4: Description of targeting parameter r

Reservoir Transition-Reservoir

1 NGM


βb

m(µ+m+ν)
δb
mr

γ
µ+m+ν

g
r




βbr+δγb
m(µ+m+ν)r

δb
mr

γg
r(µ+m+ν)

g
r



2 Target matrix C 1
r


0 δb

m

0 g

 1
r


δγb

m(µ+m+ν)
δb
m

γg
(µ+m+ν) g



3 Residual matrix B


βb

m(µ+m+ν) 0

γ
µ+m+ν 0




βb
m(µ+m+ν) 0

0 0



4 C(I −B)−1 1
r


δγb

m(µ+m+ν)−βb
δb
m

γgm
m(µ+m+ν)−βb g

 1
r


δγb

m(µ+m+ν)−βb
δb
m

γgm
m(µ+m+ν)−βb g



5 TC = ρ(C(I −B)−1) g
r + δγb

r[m(µ+m+ν)−βb]
g
r + δγb

r[m(µ+m+ν)−βb]

6 Yr = r

f−1(
f(r)
TC

)

r(m(µ+m+ν)−βb)
mg(µ+m+ν)−gβb+γbδ

r(m(µ+m+ν)−βb)
mg(µ+m+ν)−gβb+γbδ
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Given targeted parameter r is located in different entries of the corresponding NGM of each

scenario (step 1) and leading to different target and residual matrices (step 2 and 3), the target

reproduction number in both cases is identical (step 5). Moreover, in both cases, f(r) = 1
r

(step 2). From (5.1), we have

Yr =
r

f−1(f(r)
TC

)
=

r

f−1( 1
rTC

)
=

1

TC
(step 6), where f−1(r) = 1

r
.

• A different decomposition for K

Note that we can consider another decomposition for the Jacobian matrix (6.8), where FLP growth

rate g is regarded as transition, whereas the shedding rate γ is assumed to be new infectious. Under

these assumptions, matrices F, V and K are defined as

F =


βb
m

δb
m

γ 0

 , V =


µ+m+ ν 0

0 r − g

 ,

and

K =


βb

m(µ+m+ ν)

δb

m(r − g)

γ

µ+m+ ν
0

 .

If we target r, then the target matrix C and residual matrix B are

C =
1

r − g


0

δb

m

0 0

 and B =


βb

m(µ+m+ ν)
0

γ

µ+m+ ν
0

 .
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Thus, the corresponding target reproduction number is

TC = ρ(C(I −B)−1) =
δγb

m(r − g)[m(µ+m+ ν)− βb]
, (5.8)

Substituting (5.8), f(r) =
1

r − g
and f−1(r) =

1

r
+ g as expressions defined in (5.1), give rise to

Yr =
r

f−1(f(r)
TC

)
=

r(m(µ+m+ ν)− βb)
mg(µ+m+ ν)− gβb+ γbδ

. (5.9)

Notice that while TC and f(r) provided in (5.8) are not the same as their counterparts in 5.4 (steps

2 and 5), the corresponding Yr to all scenarios are the same. This implies that calculating Yr is

independent of the the decomposition of NGM K.
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CHAPTER 6: A NEW METHOD FOR CONTROLLING THE SPECTRAL

BOUND

Over the past several years, a substantial amount of work has been done to develop effective

disease control strategies on the epidemiological disease models. Generally, such strategies target

particular entries of the next generation matrixK of the disease models to bring the basic reproduction

number R0 = ρ(K) to the threshold value 1.

The objective of this work, is to impose disease control strategies directly to the entries of the

jacobian matrix J rather than the ones in the next generation matrix K.

As it will be discussed in the next Section, the disease control strategies that determine the efforts

to bring R0 to the threshold value 1, are exactly the ones that make the determinant of the jacobian

matrix |J | equal to 0.

6.1 Motivation

Let A = [aij]n×n such that σ(A) is the set of eigenvalues of A. Let ρ(A) be the spectral radius of

A, then

ρ(A) = max{|λ| : λ ∈ σ(A)}.

Let s(A) be the spectral bound of A, then

s(A) = max{Reλ : λ ∈ σ(A)}.
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Matrix A is called essentially non-negative if A has a non-positive spectral bound, i.e., s(A) ≤ 0.

That is, A is essentially non-negative, if aij ≥ 0 for i 6= j.

Proposition 6.1. Let A = [aij] be an irreducible and essentially non-negative matrix. Then, the

spectral bound of A is an eigenvalue of A. That is, Ax = s(A)x for some x ∈ Cn.

Proposition 6.2. Let J = F − V be a jacobian matrix with the non-negative matrix F and the

non-singular M-matrix matrix V . Suppose K = FV −1 is a non-negative next generation matrix

where R0 = ρ(K). Then,

R0 = 1 ⇐⇒ s(J) = 0.

The following result, which is the direct implication of Propositions 6.1 and 6.2, highlights the

relationship between R0 and the determinant of J .

Lemma 6.3. Let J = F −V be a jacobian matrix such that F is a non-negative matrix and V is a

non-singular M-matrix matrix. Suppose K = FV −1 is a non-negative next generation matrix with

R0 = ρ(K). Then,

R0 = 1 ⇐⇒ |J | = 0.

Proof. Let R0 = 1. Thus, by Proposition 6.2, s(J) = 0. On the other hand, by the assumption J

is essentially non-negative. Following Proposition 6.1, this implies that s(J) = 0 is an eigenvalue

of J . Thus, |J | = 0.

Definition 6.1. Let p∗ > 0. Parameter p∗ is called the pivotal index, if it measures the required

effort to bring the value of the determinant of the jacobian matrix J to 0 by targeting a particular

parameter in J . That is,

|J(p∗)| = 0,

where J(p∗) is the controlled jacobian matrix, and is a function of p∗.
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Remark 2. The above definition on the pivotal index p∗ can be extended to targeting a set of

parameters in J .

Remark 3. The pivotal index p∗ also works for situations where parts of entries of J are targeted.

Remark 4. The same effort that makes the determinant of J , is the same effort that bring R0 to the

threshold value 1. Thus,
R0

p∗
= 1 ⇐⇒ |J(p∗)| = 0.

In the following Section, we elaborate the role of p∗ in the connection with the jacobian matrix in

details. Specifically, we provide a technique to compute p∗ from the jacobian matrix.

6.2 Method Description

In this Section, we first describe the general method to calculate the pivotal index p∗ that brings

the determinant of the jacobian matrix J to 0. Then, we disclose some closed form formulas for a

special case.

General technique

Step 1. Decompose the jacobian matrix J as B + C = B + pD, where:

– p is the target parameter,

– D is the p correspondence coefficient matrix,

– C is the target matrix, consisting of entries containing p, and

– B is the residual matrix, consisting entries not containing p.
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Step 2. Derive the controlled jacobian matrix J(p∗) from J by replacing p with
p

p∗
. Thus,

J(p∗) = B +
p

p∗
D.

Step 3. Find p∗ by solving det(B +
p

p∗
D) = 0.

Special case: rank(C) = 1

The method description in 6.2 to derive the pivotal index p∗ works for any target matrix C. This

Section gives a more explicit expression for the pivotal index p∗ for situations when the rank of

target matrix C is 1.

Before stating the main result of this Section and its corresponding implications, let us take a look

at the following result, which is a powerful tool to prove the primary result of this Section.

Proposition 6.4. Let A be n× n matrix, where rank(A) = 1. Then,

det(A+ I) = 1 + tr(A).

Proof. Let A = Ψ∆Ψ−1, such that ∆ = diag{υ1, . . . , υn} is the matrix of eigenvalues of A, in

which the eigenvalues of A are the diagonal entries of ∆, and Ψ denotes the matrix of eigenvectors

of A, in which column i for 1 ≤ i ≤ n is the eigenvector associated to eigenvalue υi and Ψ−1

exists. Since rank(A) = 1, matrix ∆ has only one nonzero eigenvalue, i.e., υ1 6= 0 and υi = 0 for
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i = 2, . . . , n. Thus,

det(A+ I) = det(Ψ∆Ψ−1 + ΨΨ−1)

= det(Ψ)det(∆ + I)det(Ψ−1)

= det(diag{υ1 + 1, 1, . . . , 1})

= 1 + υ1

= 1 + tr(A).

Theorem 6.5. Let J be an n× n jacobian matrix such that J = B + C = B + pD, where

(i) C is the target matrix associated to target parameter p, and D = [dij] is the p correspondence

matrix with rank(C) = rank(D) = 1, and

(ii) B is the residual matrix, consists of entries not containing parameter p, with rank(B) = n.

Then, the pivotal index p∗ is given by

p∗ = −pΣi,j(−1)i+jdijBij

det(B)
,

where Bij is the cofactor element of B obtained from omitting the ith row and jth column of B.

Proof. It follows from Step 3. in the method description of Section 6.2 that in order to compute

the pivotal index p∗, it is required to solve det(B +
p

p∗
D) = 0 for p∗. That is,

det(B +
p

p∗
D) = det(B)det(I +

p

p∗
B−1D) = 0,
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where it follows from the fact that rank(B) = n, i.e., B−1 exists, and det(B) 6= 0. Thus,

det(I +
p

p∗
B−1D) = 0. (6.1)

On the other hand, as rank(D) = 1, rank(B−1D) = 1. Thus, by Proposition 6.4, equation (6.1)

becomes

0 = det(I +
p

p∗
B−1D) = 1 + tr(

p

p∗
B−1D) = 1 +

p

p∗
tr(B−1D) = 1 +

p

p∗
Σi,j(−1)i+jdijBij

det(B)
,

where Bij is the cofactor element of B obtained by eliminating the ith row and the jth column of

B. Hence,

p∗ = −pΣi,j(−1)i+jdijBij

det(B)
.

The pivotal index p∗ in Theorem 6.5 works for any matrix D of rank 1. The following result

provides a derivation for the pivotal index p∗ when matrix D of rank 1 with one nonzero row (or

column).

Corollary 6.6. Let J be an n × n jacobian matrix such that J = B + C = B + pD, such

that parameter p and matrices C,B and D are satisfied in conditions (i) and (ii) in Theorem 6.5.

Assume that D has one nonzero row at j. That is, D = [dij ] =


dij 6= 0 row j

0 otherwise.

Then, the pivotal index p∗ is given by

p∗ = −pΣi(−1)i+jdijBij

det(B)
, (6.2)

where Bij is the cofactor element of B obtained from removing the ith row and jth column of B.
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Proof. From the method description in Section 6.2, to determine p∗, solve det(B +
p

p∗
D) = 0 for

p∗. Applying the Laplacian determinant expansion, the expansion of the determinant of B +
p

p∗
D

along the jth row is as follows:

det(B+
p

p∗
D) = (

pd1j

p∗
+b1j)B1j(−1)1+j+(

pd2j

p∗
+b2j)B2j(−1)2+j+· · ·+(

pdnj
p∗

+bnj)Bnj(−1)n+j = 0.

Collecting all the terms with p∗ on the left side yields

p

p∗

∑
i

(−1)i+jdijBij = −
∑
i

(−1)i+jbijBij = −det(B).

Thus,

p∗ = −p
∑

i(−1)i+jdijBij

det(B)
.

Remark 5. The result of Corollary 6.6 holds when matrix D has one nonzero column, i.e., column

j. In this case, the pivotal index (6.3) is an expansion along column j.

The pivotal index p∗ formula in Corollary 6.6 works when matrix D has only one nonzero row

(or column). The following result provided a derivation for the pivotal index p∗ when matrix D

contains only one nonzero entry. Since the following result follows directly from Corollary 6.6,

the proof is omitted.

Corollary 6.7. Let J be an n × n jacobian matrix such that J = B + C = B + pD, such

that parameter p and matrices C,B and D are satisfied in conditions (i) and (ii) of Theorem 6.5.

Assume that D has one nonzero element at entry (i, j), that is, D = [dij ] =


dij 6= 0 entry (i, j)

0 otherwise.
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Then, the pivotal index p∗ is given by

p∗ = −p(−1)i+jdijBij

det(B)
, (6.3)

where Bij is the cofactor element of B obtained from omitting the ith row and jth column of B.

6.3 Graph-Theoretic Interpretation

The previous Section used the matrix theoretic and linear algebraic results to formulate the pivotal

index p∗ This Section uses the graph theoretic technique to compute p∗.

We first present the definition of the determinant by using the graph terminology, which is a

powerful too to establish the main results of this Section.

Let A = [aij] be an n × n matrix. Denote D = D(A) as the corresponding weighted digraph of

A. Digraph D consists of n vertices which are labelled as 1, . . . , n. An arc from vertex j to vertex

i for 1 ≤ i, j ≤ n in D has a weight of aij . Note that the weights of arcs in digraph D are not

necessarily positive. An arc is called a target arc, if its weight corresponds to the target parameter

in A. A subdigraph D is a digraph whose set of vertices is a subset of vertices of D, and set of

edges is a subset of set of edges of D. A linear-subdigraph L is a subdigraph of D that consists of

all vertices of D in which each vertex has in-degree 1 and out-degree 1. That is, linear subdigraph

L consists of all pairwise vertex-disjoint cycles in D. The product of the weights of the edges of L

is the weight w(L) of L. The number of cycles contained in L is denoted by c(L).

The following definition gives the formulation of the determinant det(A) of the matrix A using the

linear subdigraphs of digraph of D(A).
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Definition 6.2. Let A be an n× n matrix. Then

det(A) = (−1)n
∑
L

(−1)c(L)w(L), (6.4)

where the sum is all over linear subdigraph L of D(A).

The following result uses Definition 6.2 to provide an alternative way to compute the pivotal index

p∗.

Theorem 6.8. Let J be an n × n jacobian matrix such that J = B + C = B + pD, where

rank(B) = n and rank(C) = rank(D) = r for r ≤ n. Then, the pivotal index p∗ satisfies the

following characteristic equation

%r
(p∗)r

+
%r−1

(p∗)r−1
+ · · ·+ %1

p∗
+ %0 = 0, (6.5)

with

%i =
∑
Li

(−1)c(L
i)w(Li),

where the sum is over all linear subdigraphs Li of D consist of i target arcs of C.

When the rank of target matrix C is 1, an explicit expression for the pivotal index p∗ can be derived

as follows.

Theorem 6.9. Let J be an n × n jacobian matrix such that J = B + C = B + pD, where

rank(B) = n and rank(C) = rank(D) = 1. Then, the pivotal index p∗ is given by

p∗ =
Σζ(−1)1+c(ζ)w(ζ)

Σϑ(−1)c(ϑ)w(ϑ)
, (6.6)

where the sums are over all linear subdigraphs ζ and linear subdigraphs ϑ of D that contain and
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do not contain target arc carrying p.

Proof. Since rank(C) = 1, the characteristic equation (6.5) in Theorem 6.8 becomes

%1

p∗
+ %0 = 0, (6.7)

with

%1 =
∑
ζ

(−1)c(ζ)w(ζ) and %0 =
∑
ϑ

(−1)c(ϑ)w(ϑ),

where linear subdigraphs ζ and % contain and do not contain a target arc in C, respectively. Solving

the pivotal index p∗ from (6.7) results in

p∗ = −
∑

ζ(−1)c(ζ)w(ζ)∑
ϑ(−1)c(ϑ)w(ϑ)

.

6.4 Application to a Homogeneous Cholera Model

Consider the following one-patch cholera model described as

Ṡ = b− βSI − δSW + αR−mS,

İ = βSI + δSW − (η +m+ γ)I,

Ṙ = γI − (α +m)R,

Ẇ = ξI + gW (1− cW )− νW,

where S, I andR compartments denote the number of susceptible, infectious, and recovered hosts,

respectively. TheW compartment indicates the free living pathogens (FLP). Parameters b,m and η
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denote the birth rate, natural death rate and diseased induced mortality rate, respectively. Parameter

γ represents the recover rate. The environment to host and the host to host transmission rates are

denoted by δ and β. Parameters ξ, g and ν are the shedding, growth and decay rates of pathogens

in the environment, respectively. Assume that the pathogens cannot survive in the absence of the

cholera infection, thus, ν > g.

The jacobian matrix J of the system at the disease free equilibrium is given by

J =

βb
m
− (γ +m+ η) δb

m

ξ g − ν

 , (6.8)

In what follow, we implement different disease control strategies to have the spread of cholera

under control. Mathematically, these strategies target a particular parameter (or a set of parameters)

in the jacobian matrix in (6.8) to bring the determinant of J to the threshold value 0.

Reduction in the host-to-host contact

The spread of cholera can be controlled by reducing the contact between the susceptible and

infected individuals. Mathematically, this practice targets parameter β, which is part of the entry

(1, 1) of (6.8).

Following the method description in Section 6.2, the target matrix C and the residual matrix B are

given by

C = β

 b
m

0

0 0

 =: βD and B =

−(γ +m+ η) δb
m

ξ g − ν

 ,

where D denotes the β correspondence coefficient matrix. The pivotal index p∗ measures the
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required reduction in the contact rate between susceptible and infected individuals. Since rank(D) =

1 with one nonzero entry, by Corollary 6.7 the pivotal index p∗ is given as

p∗ = −β
(−1)(1+1) b

m
(g − ν)

−(γ +m+ η)(g − ν)− ξδb
m

=
βb(g − ν)

m(γ +m+ η)(g − ν) + δbξ
. (6.9)

This implies that the effective quarantine practice decreases the host to host contact by fraction p∗

provided in (6.9). Thus,
β

p∗
replaces p∗ in (6.8).

Reducing both the environment-to-host and the host-to-host transmissions

In areas where cholera outbreak is serious one effective way to have the spread under control is to

promote vaccination among newborns. Such control strategy targets parameter b, which appears in

entries (1, 1) and (1, 2) of (6.8). Thus, the target matrix C and the residual matrix B are given as

C = b

 β
m

δ
m

0 0

 = bD and B =

−(γ +m+ η) 0

ξ g − ν

 ,

where D is the b correspondence coefficient matrix. The pivotal index p∗ determines the required

vaccine coverage to have cholera under control. Since rank(D) = 1 with a nonzero row, following

Corollary 6.6 the pivotal index p∗ is

p∗ = −b
β
m

(−1)(1+1)(g − ν) + δ
m

(−1)(1+2)ξ

−(γ +m+ η)(g − ν)
=

b[(g − ν)− δξ]
m(γ +m+ η)(g − ν)

.

This implies that effective vaccination practices decrease parameter b in (6.8) to
b

p∗
.
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Reduction in the shedding rate

In addition to the above mentioned strategies, one factor to prevent cholera is to decrease the

bacterial shedding. Appropriate antibiotics are recommended to shorten the duration and volume

of diarrhoea and reduce the duration of the bacterial shedding. Such prevention strategies target

parameter ξ which is located in entry (2, 1) of (6.8). Thus, the target matrix C and the residual

matrix B are described as

C = ξ

0 0

1 0

 = ξD and B =

βb
m
− (γ +m+ η) δb

m

0 g − ν

 ,

where D is the ξ correspondence coefficient matrix. The pivotal index p∗ determines the effective

reduction in bacterial shedding to prevent cholera. Since rank(D) = 1 with one nonzero entry,

following Corollary 6.7 the pivotal index is given as

p∗ =
ξβb

(βb−m(γ +m+ ν))(g − ν)
, (6.10)

which implies that the appropriate antibiotics could reduce transmission and interrupt the outbreak

by reducing the shedding rate from ξ to
ξ

p∗
=

(g − ν)[βb−m(γ +m+ ν)]

δbξ
.
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6.5 Application to a Heterogeneous SIS Model

Consider the following jacobian matrix of a SIS model as follows

J = diag{βi−γi}−µL =



β1 − γ1 − µ
∑
i 6=1

ai1 µa12 . . . µa1n

µa21 β2 − γ2 − µ
∑
i 6=2

ai2 . . . µa2n

...
... . . . ...

µan1 µan2 . . . βn − γn − µ
∑
i 6=n

ain


,

(6.11)

where γi > 0 denotes the recover rate of the infected individuals in patch i, βi > 0 represents the

contact rate between susceptible and infected individuals in patch i, and aij ≥ 0 is the movement

from patch j to patch i for 1 ≤ i, j ≤ n and i 6= j. Parameter µ > 0 denotes the dispersal rate of

the susceptible and infected individuals.

In the remaining of this Section, we consider different disease control strategies.

Reducing the movement between two particular patches

One way to have the spread of the infectious under control is to reduce the movement from patch l

to patch k, for k > l, by imposing the practice of social distancing. This strategy targets parameter

akl,which is located in entries (k, k) and (k, l) of the jacobian matrix (6.11). The pivotal index p∗

determines the effective quarantine practice applied to akl to control the spread of the infectious.

Following the method description in Section 6.2, the target matrix C has two nonzero entries as
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follows

C =



0 . . . 0 . . . 0

...
...

0 . . . 0

(l,l)entry︷ ︸︸ ︷
−µakl 0 . . . 0

...
...

...

0 . . . 0 µakl︸ ︷︷ ︸
(k,l)entry

0 . . . 0

...
...

...

0 . . . 0 . . . 0


= akl



0 . . . 0 . . . 0

...
...

0 . . . 0

(l,l)entry︷︸︸︷
−µ 0 . . . 0

...
...

...

0 . . . 0 µ︸︷︷︸
(k,l)entry

0 . . . 0

...
...

...

0 . . . 0 . . . 0


=: aklD,

where D is the coefficient matrix associated to akl. Similarly, by the method description in

Section 6.2, the residual matrix B obtained from the jacobian matrix in (6.11) by eliminating

parameter aij . Thus,

B =



β1 − γ1 − µ
∑
i 6=1

ai1 . . . µa1` . . . µa1n

...
. . .

... . . .
...

µa`1 . . .

(`,`)entry︷ ︸︸ ︷
β` − γ` − µ

∑
i6=k,`

ai` . . . µa`n

...
...

...

µak1 . . . 0︸︷︷︸
(k,`)entry

. . . µakn

...
...

...

µan1 . . . µan` . . . βn − γn − µ
∑
i 6=n

ain


.

It can be observed from equation (6.5) that rank(D) = 1 with one nonzero column at column `.

Thus, from Corollary 6.6 the pivotal index p∗ is given by

p∗ = µak`
(−1)`+`B`` + (−1)k+`Bk`

det(B)
, (6.12)

where B`` and Bk` are the co-factor matrices of B. To control the disease spread effectively,

the movement from patch ` to patch k should be decreased by the pivotal index provided in
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equation (6.12).

Reducing transmission rate of a particular patch

One way to reduce the spread of the disease is to bring down the contact between the susceptible

and infected individuals in one patch, i.e., patch `. Such control strategies target parameter β`,

which is located partially in entry (`, `) of the jacobian matrix in (6.8). Following the method

description in Section 6.2, the residual matrix B is obtained from J in (6.8) by omitting β` from

entry (`, `), and target matrix C only consists of β` at entry (`, `). Thus,

B =



β1 − γ1 − µ
∑
i 6=1

ai1 . . . µa1` . . . µa1n

...
. . .

... . . .
...

µa`1 . . .

(`,`)entry︷ ︸︸ ︷
−γ` − µ

∑
i 6=k,`

ai` . . . µa`n

...
...

...

µan1 . . . µan` . . . βn − γn − µ
∑
i6=n

ain


and

C =


0 . . . 0 . . . 0

...
...

0 . . . β` . . . 0

...
...

0 . . . 0 . . . 0

 =: β`D,

whereD is the β` associated coefficient matrix. The pivotal index p∗ determines required reduction

in the contact between the susceptible and infected individuals in patch `.

Since D has only one nonzero entry, by Corollary (6.7), p∗ is computed as follows

p∗ = −β`(−1)`+`B``

det(B)
, (6.13)
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where B`` is the co-factor matrix of B obtained by eliminating row ` and column ` of B. This

implies, to constructively control the spread of the disease β` becomes
β`
p∗

for p∗ given as in (6.13).

Reducing the movement rate in all patches

One way to have the disease under control is to reduce the movement rate among all patches.

Mathematically, such control strategies target parameter µ in the jacobian matrix J of (6.8), which

is located in all entries of J .

To compute the pivotal index p∗, which is the required effort to bring down the movement rate

among all patches, we are required to construct the residual matrix B and the target matrix C.

Following the method description in Section 6.2, B and C are generated from J by excluding

parameter µ and including µ, respectively. Thus,

B = diag{βi − γi}, and C = −µL, (6.14)

where L is the Laplacian matrix associated to the movement in the system, and, rank(L) = n− 1.

Consequently, the rank of target matrix C is not 1. Thus, to compute the pivotal index p∗, none of

the closed form formulas, i.e., Theorem 6.5, Corollary 6.6 and Corollary 6.7 works. However, one

can compute p∗ by following the general technique in Section 6.2.

In the remaining, we investigate the pivotal index p∗ for each disease control strategy described

above for the special case of jacobian matrix J in (6.8) with two patches. Additionally,for each

scenario the graph theoretic interpretation approach, as described in Section 6.3, is applied to

compute the the pivotal index p∗.

Note that both the algebraic formulation and the graph interpretation method lead to the same p∗
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value.

Application to a Two-Patch SIS Model: A Special Case

Consider a special case of the jacobian matrix of (6.8) with two patches. That is,

J =

β1 − γ1 − µa21 µa12

µa21 β2 − γ2 − µa12

 , (6.15)

where all the parameter descriptions are exactly the same as the ones in Section 6.5.

Reducing the movement from patch 1 to patch 2: Target a21

Closed form formula The target parameter a21 appears at entries (1, 1) and (2, 1) of the jacobian

matrix in (6.15). By the method description in Section 6.2, the residual matrix B and the target

matrix C are given as

B =

β1 − γ1 µa12

0 β2 − γ2 − µa12

 and C =

−µa21 0

µa21 0

 = a21

−µ 0

µ 0

 =: a21D

where D is the coefficient matrix associated to a21. It can be observed that rank(D) = 1 with

one nonzero column at column 1. Thus, from equation (6.3) in Corollary 6.6 the pivotalindex p∗ is

given by

p∗ = −a21
(−1)1+1(−µ)(β2 − γ2 − µa12) + (−1)1+2µ(µa12)

(β1 − γ1)(β2 − γ2 − µa12)
=

µa21(β2 − γ2)

(β1 − γ1)(β2 − γ2 − µa12)
.

(6.16)

This implies that effective quarantine practice reduces the movement from patch 2 to patch 1 by
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factor p∗. This implies that a21 becomes
a21

p∗
.

Graph theoretic interpretation Consider the following weighted digraph corresponding to the jacobian

matrix of (6.15) as

1 2

β1 − γ1

−µa21 µa12

µa21
β2 − γ2 − µa12

where the red arcs correspond to those containing target parameter a21. Following Theorem 6.9,

the pivotalindex p∗ is given by

p∗ =
µ2a12a21(−1)1+1 + (−µa21)(β2 − γ2 − µa12)(−1)1+2

(β1 − γ1)(β2 − γ2 − µa12)
=

µa21(β2 − γ2)

(β1 − γ1)(β2 − γ2 − µa12)

(6.17)

where the numerator is the sum over linear subdigraphs consisting target arc a21, and the denominator

is the sum over linear subdigraphs not consisting target arc a21.

As it was expected, p∗ value from the algebraic formulation, equation (6.16), is equal to the graph

interpretation approach, equation (6.17).

Reduction in the transmission rate in patch 1: Target β1

Closed form formula The target parameter β1 appears only at entry (1, 1) of the jacobian matrix

of (6.15). From the method description of Section 6.2, the target matrix C and the residual matrix
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B are described as

C =

β1 0

0 0

 =: β1D and B =

−γ1 − µa21 µa12

µa21 β2 − γ2 − µa12

 ,

where D is the coefficient matrix associated to β1. Since rank(D) = 1 with one nonzero entry, by

Corollary 6.7, the pivotalindex p∗ is as follows

p∗ = −β1
(−1)1+1(β2 − γ2 − µa12)

(β2 − γ2 − µa12)(−γ1 − µa21)− µ2a12a21

=
β1(β2 − γ2 − µa12)

(β2 − γ2 − µa12)γ1 + µa21(β2 − γ2)
,

(6.18)

which determines the required decrease in the transmission rate in patch 1. That is,
β1

p∗
replaces p∗

in the jacobian matrix of (6.15).

Graph theoretic interpretation Consider the the following weighted digraph associated to the jacobian

matrix of (6.15) given as

1 2

−γ1 − µa21

β1 µa12

µa21
β2 − γ2 − µa12

where the red arc correspond to the target arc β1. By Theorem 6.9, the pivotal index p∗ is the

negative of the sum of all weighted linear sub digraphs that contain β1 over the sum of all weighted

linear sub digraphs that do not contain β1. That is,

p∗ =
β1(β2 − γ2 − µa12)

(β2 − γ2 − µa12)γ1 + µa21(β2 − γ2)
. (6.19)

It can be seen from equations (6.18) and (6.19) that both the graph interpretation approach and the
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closed form formula result in the same pivotal index p∗ value.

Decrease in the movement rate between both patches: Target µ

Closed form formula The target parameter µ appears in every entry of the jacobian matrix of (6.15).

Thus, by the method description in Section 6.2, the residual matrix B and the target matrix C are

described as

B =

β1 − γ1 0

0 β2 − γ2

 and C =

−µa21 µa12

µa21 −µa12

 = µ

−a21 a12

a21 −a12

 =: µD,

where D is the µ associated coefficient matrix with rank(D) = 1. Thus, by Theorem 6.5 the

pivotal index p∗ is as follows

p∗ = −−µa21(β2 − γ2)− µa12(β1 − γ1)

(β1 − γ1)(β2 − γ2)
= µ

a21(β2 − γ2) + a12(β1 − γ1)

(β1 − γ1)(β2 − γ2)
. (6.20)

This implies that to successfully have the spread of the disease under control, the movement rate

of both patches should be decreased by factor p∗. That is, µ becomes
µ

p∗
in the jacobian matrix

of (6.15).

Graph theoretic interpretation Consider the the following weighted digraph associated to the jacobian

matrix of (6.15) given as
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1 2

β1 − γ1

−µa21 µa12

µa21
β2 − γ2

−µa12

where the red arcs corresponds to the the target arc consisting µ. By Theorem 6.9, the pivotal index

p∗ is described as

p∗ = −−µa12(β1 − γ1)(−1)2 − µa21(β2 − γ2)(−1)2

(β2 − γ2)(β1 − γ1)(−1)2
= µ

a12(β1 − γ1) + a21(β2 − γ2)

(β2 − γ2)(β1 − γ1)
, (6.21)

where the numerator consists of the linear subdigraph including target arc µ, and the denominator

consists of all linear subdigraphs excluding the target arc µ.

It can be verified from equations (6.20) and (6.21), that the pivotal index p∗ is the same for both

techniques.
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CHAPTER 7: SUMMARY AND FUTURE WORK

This dissertation primarily investigates the architectures of heterogeneous networks and how they

impact population and disease dynamics in ecological and epidemiological models. We developed

an expansion for the network population growth in ecological models, which can also be applied

for the network disease growth rate and the basic reproduction number R0 in epidemiological

models. Notice that two different expansions for the same R0 are derived, which involve group

inverse matrices corresponding to two Laplacian matrices different by a product of a diagonal

matrix. A possible future work is to investigate the group inverse of the product matrix of a

Laplace matrix and a diagonal matrix as this has potential applications in spatial heterogeneous

population dynamics.

We have focused our applications on two specific networks (path and star) due to the time strain,

and further studies of other network configurations would be of both practical interests and theoretical

needs in order to apply results in the dissertation to real world problems.

Our new indices and methods in controlling the spectral bound and spectral radius of matrices can

be further applied to other ecological, epidemiological, engineering and scientific problems.
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APPENDIX A: TREE CYCLE IDENTITY
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Let G = (V,E) denote a weighted digraph with V = {1, 2, · · · , n} be the set of vertices and E the

set of arcs (i, j) with weight aij > 0 from initial vertex j to terminal vertex i. Define the weight

matrix A = [aij]n×n whose entry aij equals the weight of arc (i, j) if it exists, and 0 otherwise.

We denote a weighted digraph as GA = (G, A). A digraph is strongly connected if, for any pair

of distinct vertices, there exists a directed path from one to the other.The Weighted digraph GA is

strongly connected if and only if A is irreducible. A sub-digraphH of G is spanning if bothH and

G have the same vertex set. The weight w(H) of H is the product of the weights of all its arcs. A

connected sub-digraph T is called a tree, if it contains no directed cycle. A tree is called rooted-in,

if there is one vertex, called the root, that is not an initial vertex of any arcs while each of the

remaining vertices is an initial vertex of exactly one arc. A sub-digraph Q of G is unicyclic ,if it is

a disjoint union of rooted-in trees whose roots form a directed cycle. Every vertex of unicyclic Q

is an initial vertex of exactly one arc. The Laplacian matrix of (G, A) is defined as

L = diag(
∑
i 6=1

ai1,
∑
i 6=2

ai2, · · · ,
∑
i 6=n

ain)− A, (A.1)

with θ = (θ1, · · · , θn)> be the positive, normalized principal right eigenvector ofL. It follows from

Kirchhoff’s Matrix-Tree Theorem that θi =
Cii∑n
k=1Ckk

; Cii is the cofactor of the i-th diagonal entry

of L and is interpreted as Cii =
∑
T ∈Ti w(T ) where Ti is the set of all spanning-in trees rooted at

vertex i, and w(T ) is the weight of T .

Theorem A.1. (Tree-Cycle Identity) Let GA be a strongly connected weighted digraph, and L =

[aij] be the corresponding Laplacian matrix of GA with θ = (θ1, · · · , θn)> be the positive, normalized

Perron right eigenvector of L. Then, the following identities holds

n∑
i,j=1

θiajiFji(xi, xj) =
∑
Q∈Q

w(Q)
∑

(s,r)∈E(CQ)

Frs(xs, xr),

where Fji(xj, xi), 1 ≤ j, i ≤ n are arbitrary functions, Q is the set of all spanning unicycle graphs
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of (G, A), w(Q) > 0 is the weight ofQ, and CQ denotes the directed cycle ofQ with arc setE(CQ).

Corollary A.2. Let θj and aji be given as above, then the following identity holds and

n∑
i,j=1

θjajiGj(xj) =
n∑

i,j=1

θjajiGi(xi),

where Gj(xj), 1 ≤ j ≤ n are arbitrary functions.
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APPENDIX B: THE GROUP INVERSE OF LAPLACIAN MATRIX
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Preliminaries

Lemma B.1. [5] Let M ∈ Rn, then there exists a non-negative integer k such that

Rn = ker(Mk)
⊕

range(Mk).

Proof. By the rank-nullity theorem dim(ker(Mk)) + dim(range(Mk)) = n . To complete the

proof we show if x ∈ ker(Mk) ∩ range(Mk), then x = 0. Let k be the smallest non-negative

integer such that rank(M) ⊃ rank(M2) ⊃ · · · rank(Mk) = rank(Mk+1) = ...; equivalently

ker(M) ⊂ ker(M2) ⊂ · · · ker(Mk) = ker(Mk+1) = .... Now suppose x ∈ ker(Mk)∩range(Mk),

then, there exist a y ∈ Rn such thatMx = y, thusMky = A2kx = 0, so y ∈ ker(M2k) = ker(Mk),

so x = 0.

The smallest non-negative integer k such that rank(Mk) = rank(Mk+1) or equivalently Rn =

ker(Mk)
⊕

range(Mk) is called the index of M and denoted by ind(M).

Let M ∈ Rn be a singular matrix of ind(M) ≤ 1. Then, the group inverse of M denoted by

M# ∈ Rn is a unique matrix satisfying the three equations

MM# = M#M, M#MM# = M#, and MM#M = M.

Now, we will proceed to prove some of properties of the group inverse that will be used later.

Lemma B.2. Let M ∈ Rn, such that Ind(M) = 0 then the followings hold

(a) 0 is an eigenvalue of M if and only if it is an eigenvalue of M#.

(b) λ 6= 0 is an eigenvalue of M if and only if
1

λ
it is an eigenvalue of M#.
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Proof. (a) Let 0 be the gienvalue of M , and v be its 17 corresponding eigenvector, then Mv = 0.

0 = Mv = M#M#Mv = M#MM#v = M#v.

(b) Let λ 6= 0 and v be the eigenvalue and eigenvector of A. Since v ∈ range(M), then there exist

w ∈ Rn such that Mw = v.

Mv = λv ⇐⇒ M#Mv = λM#v ⇐⇒ MM#v = λM#v

⇐⇒ MM#Mw = λM#v ⇐⇒

Mw = λM#v ⇐⇒ v = λM#v ⇐⇒ 1

λ
v = M#v

Theorem B.3. Let M ∈ Rn of ind(M) ≤ 1 with rank(M) = n − r, and let P0 be a projection

matrix onto ker(M) along range(M) with rank(P0) = r. Then (M − P0) is nonsingular and

M# = P0 + (M − P0)−1.

In addition, if rank(M) = n− 1, then P0 = uv> where v>M = Mu = 0 and v>u = 1.

Proof. We first show (M − P0) is nonsingular, by showing MP0 = 0 For matrix M of index

1, range(A) ∩ ker(M) = 0. Thus range(M) and ker(M) are complementary spaces, and Rn =

range(M) ⊕ ker(M). Since P0 is a projecion matrix onto range(M), it sends range(M) to 0.

In other words pj denote the jth column of P0, then pj = vj + wj where vj ∈ range(M) and

wj ∈ ker(M), then P0(vj) = 0 and P0(wj) = wj .
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Now, let Mj for j = 1, · · · , n be columns of matrix A. As columns of A are in range of M ,

Aj ∈ range(M), then it follows P0(Mj) = 0 for j = 1, · · · , n, giving P0A = 0.

Conversely, as P0 is a projection matrix onto Ker(M), its columns are in the Ker(M), i.e. pj ∈

Ker(M), hence M(pj) = 0 for j = 1, · · · , n, thus MP0 = 0.

Now, we show M − P0 is nonsingular. To do so, we we show (M − P0)x = 0 has a solution if

and only if x = 0. (M − P0)x = 0 if and only if Mx = P0x. This means Mx ∈ range(M)

and Mx ∈ ker(M)(as P0x ∈ ker(M)), hence Mx = 0, therefore x ∈ ker(M). On the other

hand, P0x = 0, this implies that x ∈ range(M), so x = 0. So M − P0 is nonsingular, and

M(M − P0)−1 = (M − P0)−1M .

For M# to be the group inverse of M , three properties of group inverse must hold.

• M#M = (P0 + (M − P0)−1)M = P0M + (M − P0)−1M = 0 + M(M − P0)−1 =

MP0 +M(M − P0)−1 = M(P0 + (M − P0)−1) = MM#

• MM#M = M(P0 + (M − P0)−1)M = M(M − P0)−1M = (M − P0)−1M2 = M

• M#MM# = (P0 + (M − P0)−1)M(P0 + (M − P0)−1) = (M − P0)−1M(M − P0)−1 =

(M − P0)−1((M − P0) + P0)(M − P0)−1 = (M − P0)−1 + P0 = M#

110



APPENDIX C: FURTHER PROPERTIES OF LAPLACIAN MATRIX
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Let L be a Laplacian matrix of a directed graph G of order n. Suppose that G is strongly connected;

namely, L is irreducible, and rank(L) = n − 1. As a consequence, L has a simple eigenvalue 0,

with corresponding left eigenvector 1 which is the all ones column vector of dimension n and right

(normalized) eigenvector θ = (θ1, θ2, . . . , θn)> with
∑

i θi = 1. That is, 1>L = 0, Lθ = 0, and

1>θ = 1. Thus, L can be be partitioned as L = P

 0 0̄>

0̄ C

P−1, where Pn×n and C(n−1)×(n−1)

are non-singular matrices, and 0̄ is a zero vector of dimension n− 1. Simple calculations result in

L2 = P

 0 0̄>

0̄ C2

P−1, Hence, rank(L) = rank(L2) = n− 1, equivalently, ind(L) = 1, so the

group inverse L# of L is well-defined and unique. The following lemma provides several related

properties of L#, which will be used throughout the paper.

Lemma C.1. Let L be an irreducible Laplacian matrix and L# be its corresponding group inverse,

then

1. 1>L# = 1>L = 0.

2. If u ∈ ker(L), then L#u = Lu = 0.

3. If u ∈ range(L), then LL#u = L#Lu = u.

4. L# = θ1> + (L− θ1>)−1, where θ ∈ ker(L) and 1>θ = 1.

5. L = θ1> + (L# − θ1>)−1.

6. LL# = I − θ1>.

Proof. 1. It follows from the properties of the Laplacian matrix that 0 = 1>L. Now,

1>L# = 1>L#LL# = 1>LL#L# = 0.
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2. If u ∈ ker(L), then Lu = 0. Thus L#u = L#LL#u = L#L#Lu = 0.

3. If u ∈ range(L), then there exists w ∈ Rn such that Lw = u. Hence, LL#u = LL#Lw =

Lw = u.

4. It is the direct result of Theorem B.3 (See Appendix) with P0 = 1>θ and M = L.

5. It follows from part 4. L# − 1>θ = (L − 1>θ)−1. From Theorem B.3, (L − 1>θ) is

nonsingular, so (L# − 1>θ)−1 = L− 1>θ, and L = 1>θ + (L# − 1>θ).

From the hypotheses on L, it is easy to see that L may be partitioned as

L =

 1̄>z −1̄>B

−z B

 , (C.1)

where B is an (n− 1)× (n− 1) invertible matrix, u1 is the first entry of u, ū = (u2, . . . , un)>, z =

1

u1

Bū, and 1̄ is the all ones column vector of dimension n− 1. It follows from Observation 2.3.4

in [10]: From the hypotheses on L, it is easy to see that L may be partitioned as

L =

 1̄>z −1̄>B

−z B

 . (C.2)

Thus, the group inverse of L denoted as L# is as follow:

L# = (1̄>B−1ū)u1> +


0 −u11̄

>B−1

−B−1ū B−1 −B−1ū1̄> − ū1̄>B−1

 . (C.3)
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D.1 Star Network

Consider a star network with vertex 1 as the hub, and 2, 3, . . . , n as leaf vertices. Assume that all

movement coefficients between adjacent vertices are the same and equal to 1, then the resulting

Laplacian matrix can be written as the form of

L =



n− 1 −1 −1 · · · −1

−1 1 0 · · · 0

−1 0 1 · · · 0

...
...

... . . . ...

−1 0 0 · · · 1


n×n

.

Following the partition in (C.2), set B = In−1, i.e., the identity matrix of order n − 1, u =

( 1
n
, 1
n
, · · · , 1

n
)>, and z = 1̄. Straightforward calculations yield B−1 = In−1, 1̄>B−1ū = n−1

n
,

u1> = 1
n
Jn, and B−1 −B−1ū1̄> − ū1̄>B−1 = 1

n
(nIn−1 − 2Jn−1), where J is the all ones matrix

(i.e., every entry of J is 1). As a consequence,

L# =
n− 1

n2
Jn +

1

n

 0 −1̄>

−1̄ nIn−1 − 2Jn−1

 ,

that is,

L# =
n− 1

n
u1̄> +

1

n



0 −1 −1 · · · · · · · · · −1

−1 n− 2 −2 · · · · · · · · · −2

−1 −2 n− 2 −2 · · · · · · −2

−1 −2 −2 n− 2 −2 · · · −2

...
...

...
...

...
...

...

−1 −2 −2 −2 · · · −2 n− 2


. (D.1)
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Note that each column sum of the matrix in the second term has the same value −n+ 1.

When n = 2, L =

 1 −1

−1 1

 and L# = 1
2
· 1

2

1 1

1 1

+ 1
2

 0 −1

−1 0

 = 1
4

 1 −1

−1 1

.

When n = 3, L =


2 −1 −1

−1 1 0

−1 0 1

 and

L# = 2
3
· 1

3


1 1 1

1 1 1

1 1 1

+ 1
3


0 −1 −1

−1 1 −2

−1 −2 1

 = 1
9


2 −1 −1

−1 5 −4

−1 −4 5

.

For n = 4, L# = 1
16



3 −1 −1 −1

−1 11 −5 −5

−1 −5 11 −5

−1 −5 −5 11


. For n = 5, L# = 1

25



4 −1 −1 −1 −1

−1 19 −6 −6 −6

−1 −6 19 −6 −6

−1 −6 −6 19 −6

−1 −6 −6 −6 19


.

D.2 Path Network

Consider a path network with vertices labeled 1, 2, 3, ..., n consecutively located along a line,

and assume that all movement between adjacent vertices are the same and of weight 1. The
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corresponding Laplacian matrix takes the form of

L =



1 −1 0 · · · 0

−1 2 −1 · · · 0

0 −1 2 · · · 0

...
...

... . . . ...

0 · · · −1 2 −1

0 · · · 0 −1 1


n×n

.

Following the partition (C.2), set z = 1̄, u = ( 1
n
, · · · , 1

n
)>, and

B =



2 −1 · · · 0

−1 2 · · · 0

...
... . . . ...

· · · −1 2 −1

· · · 0 −1 1


(n−1)×(n−1)

.

It can be verified that

B−1 =



1 1 1 1 · · · 1

1 2 2 2 · · · 2

1 2 3 3 · · · 3

1 2 3 4 · · · 4

...
... . . . ...

1 2 3 4 · · · (n− 1)


(n−1)×(n−1)

,
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u11̄
>B−1 = 1

n
(
n−1∑
i=n−1

i,
n−1∑
i=n−2

i, · · · ,
n−1∑
i=1

i) and B−1u = 1
n
(
n−1∑
i=n−1

i,
n−1∑
i=n−2

i, · · · ,
n−1∑
i=1

i)>. It follows

that

L# =
(n− 1)(2n− 1)

6
u1>

−
1

n



0
n−1∑
i=n−1

i
n−1∑
i=n−2

i
n−1∑
i=n−3

i · · ·
n−1∑
i=3

i
n−1∑
i=2

i
n−1∑
i=1

i

n−1∑
i=n−1

i
n−1∑
i=n−1

i− 1
n−1∑
i=n−2

i− 1
n−1∑
i=n−3

i− 1 · · ·
n−1∑
i=3

i− 1
n−1∑
i=2

i− 1
n−1∑
i=2

i

n−1∑
i=n−2

i
n−1∑
i=n−2

i− 1 (
n−1∑
i=n−2

i− 1)− 2 (
n−1∑
i=n−3

i− 1)− 2 · · · (
n−1∑
i=3

i− 1)− 2
n−1∑
i=3

i− 1
n−1∑
i=3

i

n−1∑
i=n−3

i
n−1∑
i=n−3

i− 1 (
n−1∑
i=n−3

i− 1)− 2 ((
n−1∑
i=4

i− 1)− 2)− 3 · · · (
n−1∑
i=4

i− 1)− 2
n−1∑
i=4

i− 1
n−1∑
i=4

i

...
...

...
...

...
...

...
...

n−1∑
i=3

i
n−1∑
i=3

i− 1 (
n−1∑
i=3

i− 1)− 2 (
n−1∑
i=4

i− 1)− 2 · · · (
n−1∑
i=n−2

i− 1)− 2
n−1∑
i=n−2

i− 1
n−2∑
i=n−2

i

n−1∑
i=2

i
n−1∑
i=2

i− 1
n−1∑
i=3

i− 1
n−1∑
i=4

i− 1 · · ·
n−1∑
i=2

i− 1
n−1∑
i=n−2

i− 1
n−1∑
i=n−1

i

n−1∑
i=1

i
n−1∑
i=2

i
n−1∑
i=3

i
n−1∑
i=n−2

i · · ·
n−1∑
i=n−1

i
n−1∑
i=n−1

i 0



When n = 2, L# = 1
4

 1 −1

−1 1

 .

When n = 3, L# = 1
9


5 −1 −4

−1 2 −1

−4 −1 5

.
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When n = 4, L# = 1
8



7 1 −3 −5

1 3 −1 −3

−3 −1 3 1

−5 −3 1 7


= 1

16



14 2 −6 −10

2 6 −2 −6

−6 −2 6 2

−10 −6 2 14


.

When n = 5, L# = 1
5



6 2 −1 −3 −4

2 3 0 −2 −3

−1 0 2 0 −1

−3 −2 0 3 2

−4 −3 −1 2 6


= 1

25



30 10 −5 −15 −20

10 15 0 −10 −15

−5 0 10 0 −5

−15 −10 0 15 10

−20 −15 −5 10 30


.
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