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ABSTRACT

The problem of understanding how biological species and infectious diseases can persist and
spread in heterogeneous networks has brought a wide attention, recently highlighted due to the
COVID-19 pandemic. This dissertation investigates the connection between the structures of
heterogeneous networks and population persistence/disease invasion. To do so, we propose a
new index for network heterogeneity by employing the Laplacian matrix of population dispersal
and its corresponding group inverse. The network growth rate and reproduction number can be
evaluated using the network average and the network heterogeneity index as the first and second
order approximation, respectively. We also illustrate the impact of arrangement of ecological
sources/sinks and disease hotspots/non-hotspots, which highlights the significance of the network

structures on population persistence and disease invasion in heterogeneous environments.

Mathematically, population and disease control strategies can be modeled via altering certain
ecological and epidemiological parameters in the biological processes. To quantitatively measure
the scale of the change in need, new indices and methods are introduced and developed to generalize
the existing threshold parameters. Properties and implications of these are provided to demonstrate

the applicability to infectious disease controls such as anthrax, cholera and Zika virus.
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CHAPTER 1: INTRODUCTION

The network structure is a fundamental tool for understanding complex problems from disciplines
like biology, economics, engineering, physics and public health. For this reason, the network
structures have attracted a lot of attention over the past two decades. Mathematically, a network
is referred to as a graph described as a collection of vertices (nodes) and directed edges. Vertices
represent individuals, devices, cities, countries, etc. Directed edges represent connections and
relationships between the vertices. Some real world examples of networks include the Internet,
airline networks, food webs, and social networks. Due to the size and dynamics of such networks
an alternation might not occur simultaneously throughout the network and thus heterogeneity
appears. Theoretically, a network is considered strongly connected if there is always a path
between any two pair of vertices. This dissertation mainly investigates networks of individual
movements in a spatially heterogeneous environment and the impact of their network structures on

population persistence in ecological models and disease spread in epidemiological models.

Theoretical foundations for population biology and mathematical epidemiology are rooted from
mathematical modelling and their model analyses using theories of differential equations, dynamical
systems, matrix and linear algebra. Specifically, the linearization at a trivial (or a semi-trivial)
equilibrium for population models in a heterogeneous network often yields a Jacobian matrix in

the form of

J=Q—uL, (1.1)

where () = diag{q;} is a diagonal matrix encoding within-patch (vertex) population dynamics,
u > 0 is a parameter representing the movement rate in the heterogeneous network, and L is a

Laplacian matrix containing all movements in the network. Specifically, L takes the following



form

YA —Qip o —diy
J#1
—Qy Y, Gjp - —dg,
L= J7#2
—Qp1 —Qny Y Ajn
J#n

The off-diagonal entry (7, ) of L is the opposite of a;;, representing the movement coefficient
constant from patch j to patch ¢. Each diagonal entry of L tracks all the out-moving terms from
the patch and thus each column sum of L equals zero. As a consequence, L is singular and has an

eigenvalue 0.

The studies for population persistence and disease invasion in heterogeneous networks are often
converted to the stability problem of a certain Jacobian matrix in the form of (1.1). That i1s, if
the spectral bound of .J, denoted as r = s(.J), is negative, then the population (disease) dies out;

whereas, if it is positive, then the population (disease) persists.

However, the eigenvalue problems of such a matrix are extremely challenging due to the high
dimension, heterogeneity and complex network structures. Prior studies have been focused on
some special cases, e.g., for low dimension ( 7 = 2 or 3), assuming homogeneity (q; = g2 = - -+ =

¢»), or symmetric movement in the network ( L = LT).

In this dissertation, we provide a new expansion formula for the spectral bound of the matrix in the
form of (1.1) as

1 1
=s(J)=A+-H+o(—), 1.2
r = s(J) . O(M) (1.2)

with the network average

A= z”: 0:qi,
=1



and the network heterogeneity index

n n

i=1 j=1

Here, 0 = (61,...,0,)" is the normalized right eigenvector of L corresponding to eigenvalue 0 and
L#* = [éf;] is the group inverse of L. For the symmetric network (i.e., L = L"), 0 = (1,...,1)T
and thus the network average becomes the normal average. We have also proved the monotonicity

and convexity of 7 in terms of . Specifically, the following inequalities hold

A=) i <r=s(J) < max{g},

=1

with the upper and lower bounds achieved when ¢ — 0 and @ — 400, respectively. For the
homogeneous landscape (i.e., ¢; = ¢ for all 7), the upper bound and lower bound are equal and thus

r = s(J) = g, irregardless of movement among patches.

When applying these new results to infectious disease models, we have obtained analogous results
for the basic reproduction number 7y, which determines whether an infectious disease can invade
and spread in a host population. Our results provide answers for several open problems in the field

of mathematical epidemiology.

We have demonstrated the applicability of our results to various ecological and epidemiological
models, and also to different network structures. In order to control population persistence and
disease invasion, we develop new approaches for controlling spectral bounds and Ry, respectively.

Applications have been illustrated using well-known biological models in the literature.

Due to the generality and applicability of theoretical results developed in the dissertation, it is
highly expected that further applications will likely be seen in ecology, epidemiology, engineering

and other science branches.



CHAPTER 2: POPULATION PERSISTENCE AND NETWORK
HETEROGENEITY

The objective of this chapter is to provide a new expansion formula for the spectral bound of the
matrix J = ) — pL as defined in (1.1), which often arises in spatial population models. The
main tool to establishing the expansion comes from the analytic perturbation theory (Section 2.2).
In the new expansion derived, the first order term can be regarded as the network average while
the second order is described as the network heterogeneity index (Section 2.3). Applications to
ecological models are illustrated in Section 2.4 and Section 2.5 for single species and two species
of predator-prey interactions, respectively. We start this chapter with matrix notation (Section 2.1)

that will be used throughout the dissertation.

2.1 Notation

Throughout this dissertation, let n be a given positive integer. Let M be an n X n matrix, sometimes
denoted as M = [my;],xn With m;; representing its (¢, j) entry. Let o(M) denote the set of all

eigenvalues of M, that is

o(M)={AeC: Mu= X forsome wueR"\{0}}.

Denote the spectral bound of M (also called spectral abscissa) as

s(M) = max{ReX : A € o(M)},



and the spectral radius of M as

p(M) =max{|\| : A € o(M)}.

For our purpose, we consider a nonnegative matrix A = [a;],xn, encoding all movements of
population in a heterogeneous network of n nodes (patches). Specifically, a;; > 0,7 # j, represents
the movement coefficient constant from patch j to patch 7. Without loss of generality, we always
assume a;; = 0 for all 7. Customarily, matrix A is called as the movement matrix. In our studies,

we also employ the corresponding Laplacian matrix of A, that is,

YA —Qip e —diy
J#1
—Qy Y, G - —dag,
L= J#2
—0n1 —Ap2 Z QAjn
J#n

As the diagonal entries of L track all the out-moving terms at each node while other entries in the
same column track where the movement toward, each column sum of L equals zero. Thus L is

singular and has a zero eigenvalue. In fact, s(—L) = 0.

It follows from the Perron-Frobenius theory that L has a nonnegative left eigenvector and a nonnegative
right eigenvector corresponding to eigenvalue 0. In fact, one can check 1" = (1,...,1) is a left
eigenvector of L. Here T represents the transpose. We often denote ' = (0y,...,0,) as a

normalized right-eigenvector corresponding to eigenvalue 0 such that L6 = 0, 1T L = 0 and

170=>5",0,=1.



Let L# = [Kf;]nm denote the group inverse of L. That is, the following is satisfied:

LL* =L#L, LL¥L=L and L¥LL" =L7%.

2.2 Analytic Perturbation of Spectral Bounds

We are now ready to present the main result of the chapter.

Theorem 2.1. Let ) = diag{q; }nxn and L be the Laplacian matrix with the normalized right-eigenvector

0 = (6,...,0,)" corresponding to eigenvalue 0. Let v = s(Q — uL). Then, for ju > 0,
S(Q - pl) = Zezqﬁ ZZ%%%H +o( ). @1
=1 j=1

and

> 0iqi < r < max{q}, 22)

i=1
with lower and upper bounds achieved as | approaches to oo and 0, respectively.
The following analytic perturbation result is a key to prove Theorem 2.1.

Theorem 2.2 (Analytic Perturbation). Let ) = diag{q;}nxn and L be a Laplacian matrix. Define
M = eQ)— L, with A and v be the Perron eigenvalue and corresponding right-eigenvector of matrix

M. Then, the following expansions hold

)\:)\0+€)\1+€2)\2+"'+)\k6k+"' (23)

v=1y+ e+ gty - (2.4)

where Ny = 0, N\, = 1" Quy_, for k > 1, vy is denoted as the normalized right-eigenvector of L



k—1
corresponding to eigenvalue 0, v, = L¥Quy, and v, = L (ka,l - > )\iyk,i> fork > 2.
i=1

Proof. Plugging the expansions (2.3), (2.4) into (@ — L)v = \v yields

(€Q — L)(vo +evi + v+ - + Py + -+ ) (2.5)

= MoF+ed+E+ -+ N+ N tean+ el ).

Comparing the €’-th terms from both sides of (2.5) yields —Lvy = A\gvp, thus A\g = 0 and vy = 6.

Multiplying both sides of (2.5) by L# from the left yields

L#FQ(evg + vy + Evg + -+ Ty + ) = LFL(ng +evy + Evp + -+ e +--)

:(6)\1+€2)\2+"'+)\k6k+--->L#(y0+eyl—|—€2y2_|_..._|_6kyk+...).

It follows from part 2 of Lemma C.1 in Appendix C, L# 1y = Ly = 0. The above equality can be

written as

L¥L(evy 4+ o+ - 4y +--)
= L#Q(evy + vy + Evg + -+l -0

— (M A ENg+ - F M VL (e vy ).

Comparing the €!-th term and €*-th terms (k > 2) yields respectively

k—1
L*Lvy = L*Quy and  L*Luy, = L*Qupey — L* Y Nvis (2.6)

i=1

k—1
Straightforward verification shows that v, = L#Quq and v, = L# (ka,l - > Aiuk,i) solve
i=1

(2.6). In fact, v, € range(L) forall & > 1.



Next, it follows from multiplying both sides of (2.5) by 1 from the left that

1'Qlevg + v +Elvy+ -+ My + - ) = 1T L+ ey + Eva+ -+ Fyp + 1)

—(eN F XN+ M€ L (g F e+ Evg ).
Since 1"L=0,1Tyy=1and 1", =0for k > 1 (as 1" L# = 0), it follows that
1'Qlevg + v +Elvp+ -+ 4+ )= + N+ F M+

Hence \;, = 1"Quj,_; for k > 1. O

Remark 1. Replacing vy with 0 in Theorem 2.2 results in \y = 1" Quo = 17Q0 = Y"1 | 0:q; and
Ao =1TQuy = 1TQL*Quy = Y1, > i1 Lﬁﬁjqiqj, respectively. Thus, the first two terms in

the\ expansion(2.3) can be rewritten as

A= S(GQ — L) =€ Z qul + 62 Z Z Lfﬁjqij + 0(62). (27)
=1

i=1 j=1

The following lemma, previously proven in [6], is used to establish sharp bounds for \.

Lemma 2.3 ([6]). Let Q = diag{q;} and L be a Laplacian matrix. Suppose r = s(Q — j1L) where

> 0. Then, the following statements hold:

d
(a) d_r < 0, with equality holding if and only if ¢; = q; fori,j =1,--- n.
1L

d2
(b) d_g > 0, with equality holding if and only if all q; are equal.
1

Proof. (a)Letw = (wy,ws, ..., w,)" denote the normalized left eigenvector of (Q— L corresponding

8



tor, ie.,

w'Q—pw' L=rw', (2.8)
or in the component-wise form
G+ Y awg =y agw =, =120, (2.9)
ki ki
Dividing w; on both sides yields
Wy
PEG LY a0y a. (2.10)
ki Wi ki

Differentiating both sides with respect to x yields

- Zam’——i‘uzamwsz wsz_zam Zamw%(l——ﬂLMw—k—ﬂz—Z)-

k#£i Wi k#£i Wi k#1 ki Wi
(2.11)

Set A = [Grs] With Qg = ap 5>, L be the corresponding Laplacian matrix, and 0 = (51.52, . én)T
be the normalized right-eigenvector of L corresponding to eigenvalue 0. Multiplying 0; to (2.11)

and summing over all 7 yield

f:;@f:Z@dei<l—z—;+uZ—Z—u ) 2.12)

i ki

_ZZQakl[l——jLu(———Z)] (2.13)
i k#i
It follows from the Tree-Cycle identity (see Appendix A) that
w w w
- = i (-5——’“)], 2.14
D I D e s .14

QeQ (r,s)€E(CQ) s

where Q is the set of all spanning unicycle graphs of (G, A); w(Q) > 0 is the weight of QQ, and



C denotes the directed cycle of Q with directed edge set £(Cg). Along any directed cycle Cg of

length [,
Y ()= (Y By <o ] %)1”—1_1—0 (2.15)
W, N wy,/ W, N N '
(s,7)€E(Cy) (5,1 €E(Cy) (5,7 €E(Cy)

where the inequality follows from AM-GM inequality (w; + - - - 4+ w;)/l > Vwy - - - w;, and

3 (w— _ %> —0. (2.16)
ws W,
(r,s)€E(CQ)
As a consequence, it follows from (2.14), (2.15) and (2.16) that » < 0. Notice that » = 0 iff

w, = w, for every pair (s, ) in (2.15).

(b) Differentiating (2.11) with respect to x yields
; WEW; — WEW; Wk (Wg Wy W [Wy Wy (W52
(B T () D225 ()]
" Z i w? M Z i w; \WE W, H Z o W; LW W; w; ( )
k#i ¢ ki
and

Fm a2 Y (BB g (B (U] )
Py W; W W W W Wi Wy Wi

Recall a},; = akiz—’;, multiplying (2.17) by él and summing over all 7 yield
w W; Wy, W; w;\ 2
() (B (2] am
Wi w; Wi, W; Ww;

It follows from the Tree-Cycle identity (see Appendix A) that

= ZGT =2 _ ik [Z@_Z - %>

ki

@ S () () (- (5] e

Ws Wy

10



Notice that 237, .\ o) (5— — %:) =0and 1137, yepco) (5— - Z“}—:) = 0. Hence

rage T (-2

0cQ (s.1)€E(Co)
wy\2  Ws Wy We\2  We Wy
=nyw@ 3 () T () -
0cQ (s,r)EE(CQ) " s s s
Wy W2
:uZw(Q) Z (w__w_> > 0.
QcQ (s1)EBE(Co) " °

Notice that i* = 0 if and only if % = z—: for any pair of (s, r) locating in a directed cycle of (G, L).
Since A is irreducible, the graph (G, L) is strongly connected. As a consequence, Z— = g—: for any

0] O
As it is shown below, Theorem 2.1follows immediately from Theorem 2.2 and Lemma 2.3.

Proof. First, we prove the expansion (2.2) in Theorem 2.1. Consider

= 5(Q=pL) = s(u(,Q = 1) = ws((;Q ~ L) (2.21)

Lete = % Thus, (2.21) becomes

r:—s (eQ — L) ZQ qH—EZZ%EH%Q + o(e), (2.22)

=1 j=1

where the last equality follows from (2.7). Thus,

s(Q —pl) = Zéqﬁ— ZZqZ”qﬁ —|—0<>

zl]l

follows immediately from Theorem 2.2 and equation (2.7).

11



Next, we prove the sharp bounds (2.2) for r in Theorem 2.2. From lemma 2.3(a), 7 = s(Q) — uL) is
decreasing with respect to i > 0, so the upper bound for  occurs when i — 0. Hence, the upper

bound for r is

lim 5(Q — pL) = 5(Q) = max {g:}. (2.23)

Following above reasoning, the lower bound for  happens as . approaches oco.

Taking the limit from (2.2) when 1 — oo yields
lim s(Q — uL) = lim (Z bigi +— 3% L0, + o(—)) =S b 224
pee nee M4 P 5= H i=1
Combining (2.23) and (2.24) yield
Zei%’ < r < max{q;}.
i=1 ’
O
Theorem 2.4 (Sharp Bounds). Let Q) = diag{q;}.xn, L be the Laplacian matrix of digraph G

with the normalized right-eigenvector 0 = (01, - ,0,) corresponding to eigenvalue 0, and \ =

A - . . . .
s(eQ — L). Then, 2 is monotonically increasing with respect to ¢ for ¢ > 0, and

o>

> 0igi < = < max{q,}, (2.25)
i=1

with lower and upper bounds achieved as € approaches to 0 and oo, respectively.

Proof. Set ;n = 1. Then, A = s(eQ — L) = es(Q — 1L) = es(Q — pL) = er, where r is defined as

in Lemma 2.3. Thus the desired results follow immediately from Theorem 2.1 and Lemma 2.3. []

12



2.3 Network Average and Network Heterogeneity Index

Let Q = diag{¢;} be a diagonal matrix and let L be a Laplacian matrix with 87 = (6y,--- ,6,)

the normalized right Perron eigenvector of L.

The network average A = A(L, (), and network heterogeneity index H = (L, () are defined as

A=) g =1"Q0, (2.26)
=1
and
Hi=> Y (Faiq0; =1 QL*Q9, (2.27)

i=1 j=1

where L# = [E?f] denotes the group inverse of L.

Thus, r = s(Q — L) in expansion (2.2) can be rewritten as

r— A+ %H n 0(%) (2.28)

The following result provides an alternative formulation for .

Theorem 2.5. Let H be the network heterogeneity index as defined in (2.27). Then,
1 “ )
H= —521;%‘(%‘_%) 0;. (2.29)
=1 j#i

Proof.

M= > haat; =Y Ciai0:+Y > lhaqb; (2.30)
i=1

i=1 j=1 i=1 j#i

13



/. Thus, (2.30) becomes

The column sums of L# = [Eﬁ] are zero, i.e. /% = — >z U

Y e+ Y

=1 j#i =1 ]'?éi
:_Zzgﬂqfe + = Zzgq qz qi ) +qJ]6
=1 j#i i=1 j#i

Rearranging the terms on the right hand side yields

__%Zzgf;( )20, + - ZZ —20%.q20; + (5.q20; + (£.q30)]

i=1 j#i i=1 i#j
1 < 1 <
= =52 il —a)'0; = 5D > [=Claiti+ i)
i=1 j#i =1 j#i
1 o # ) 0
O IR Do) SETIIC S )
i=1 j#i i=1 j# &
Using the Tree-Cycle identity (see Appendix A) results in
BN # 2 ﬁf‘i Eﬁ«
i=1 j#i QeQ (s,r)€EE(Co)

where Q denotes the set of all spanning unicycle graphs of (G, A), w(Q) > 0 is the weight of Q,

and Cg represents the directed cycle of Q with directed edge set £/(Co). Notice that

# #
Su@ Y (E--o

QeQ (s,r)EE(Co)
Thus, (2.31) becomes

H=—33 > i

i=1 j#i

14



The following result provides necessary and sufficient conditions in determining the order of two

different expansions in the form of (2.28) in regards to their corresponding first terms.

Theorem 2.6 (First-Order Determination). Let ()1 and Q> be two diagonal matrices. Let L and
Lo are two Laplacian matrices. Then, there exists 1 > 0 such that r1 = s(Q1 — puly) > ro =

$(Qa — puLs) for all ;> n if and only if A1 > As.
Proof. From equation (2.28), the expansions for r; and 7, become
1 1
o= At S olh), 232)
It It

and

1 1
ro = Ay + —Hs + o(—). (2.33)
1t 1
Let A; > Aj. There exists a fixed v > 0 in which A; = A, + v. Choose 7 such that 7y < v. Thus,
1 1 1 1
r—1ry = (A1 — Ag) + —(H1 — Ha) + o(—) >n+ —(H1 — Ha) + o(—). (2.34)
I 0 I 0
Then, for all ;1 > n, (2.34) becomes
1
Ty — To > p(l + (Hl - 7’[2) + 0(1)) (235)

For n > 0 small enough, the right hand side of (2.35) approaches 0. Thus,

1y > To.
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Now, let r; > ro. It follows from (2.32) and (2.33) that
1 1
r1—ry = (A — As) + ;(Hl —Ha) + 0(;) >0 (2.36)
For ;o > 0 large enough, A; — A, > 0. Hence, A; > A,. O

The following result states a sufficient condition in determining the order two different expansions

in the form of (2.28) where their corresponding first terms are equal.

Theorem 2.7 (Second-Order Determination). Let ()1 and ()5 be two diagonal matrices. Let L,
and Ly be two Laplacian matrices. Suppose that A, = Ay. Then, there exists 7 > 0 such that

r1 = 8(Q1 — ply) > ro = $(Qo — pLs) holds for all > n if Hy > Ha.

Proof. Let H, > Hs, then there exists a fixed v > 0 such that H; = H, + v.

Choose 7 such that n < v. Thus, H; > Hs + 7. Using equations (2.32) and (2.33) in Theorem 2.6

result in
(Ay = As) + ~(Hy = Ha) + 0(2) > () + o( ) (2.37)
ry — 1o = — — — ol — — ol—). .
1 2 1 2 P 1 2 M MU u
Thus,
1
Ty — Ty > ;(77 + 0(1)). (2.38)
Letting 1 — oo yield ry > rs. [
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2.4 Application to a Single Species Model

Consider the following single-species model in a heterogeneous landscape of n patches (n > 2)

x; = T fi(T:) + NZ(%‘%‘ —ajzi), 1=12,....n, (2.39)

=1

where z; € [0, 00) denotes the population size in patch i and p > 0 represents the movement rate.

Function f; : [0, 00) — R represents the population growth rate in patch i.

M = [aij]nxn indicates the movement matrix of the system where a;; > 0 represents the movement
from patch j to patch i. L = [{;;] is the Laplacian matrix corresponding to the movement in the

system, where /;; = —a;; fori # jand {;; = — Z#i aji.

The Jacobian matrix of system (2.39) is described as

System (3.8) admits a trivial equilibrium point Fy = (0, ..., 0). The stability of E, is determined

by the sign of the spectral bound of the Jacobian matrix (2.40) evaluated at E, i.e.,

F(Eo) = s(Jig) = s(diag{ f:(0)} — pL). (2.41)

Thus, Ej is locally asymptotically stable, if r(Ey) < 0, and Ej is unstable if r(Ey) > 0.

The following result is an immediate consequence of Theorem 2.1 for system (2.39), by replacing
¢; in expressions (2.7) and (2.2) with f;(0). Additionally, he monotonically decreasing of (E)) is

attained from Lemma (2.3).
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Theorem 2.8. Let L be an irreducible Laplacian matrix such that 07 = (0y,...,0,) is the

normalized right Perron eigenvector of L. Suppose that (2.41) holds. Then, for any p > 0

D> 0 £(0)6; + 0(%), (2.42)

r(Ey) = Z £:(0)0; + % >

where L?; = [EZE] is the group inverse matrix of L.

Furthermore, r(Ey) is strictly decreasing with respect to 1 and

ifi(o)ei < r(Ep) < max{fi(0)}, (2.43)

— 1<i<n

with lower and upper bounds achieved when ;. — oo and . — 0, respectively.

The following result describes that r(Ej) is a threshold parameter which determines the global

stability of Fy under certain assumptions.

Proposition 2.9. Let f;(x;) be the function defined in system (3.8) such that f!(x;) < 0 for all

x; > 0. Then, the following statements hold
(i) If r(Eo) < 0, then Ey is globally asymptotically stable in R’ .

(ii) If r(FEo) > 0, then Ey is unstable. Furthermore, there exists a unique positive equilibrium

E = (zy,...,Z,) which is globally asymptotically stable in R":.
The Jacobian matrix (2.40) of system (3.8) at F is given by

The following result discusses the conditions in which E is stable. Biologically, it means that the
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population survives.

Corollary 2.10. Assume r(Ey) > 0 and f;(x;) <0 for all x;. Then, s(J|g) < 0.

2.5 Application to a Predator-Prey Model

Consider the following predator—prey model in a heterogeneous network of n patches (n > 2)

n

r; = xifi(x) = gi(i)yi + pa Z(@z‘j% — a;;T;), 1=1,2,...,n,
= (2.45)
yi = €gi(zi)yi — hi(yi) + py Z(mijyj — M), 1=1,2,...,n,

J=1

where z; € [0,00) and y; € [0, 00) denote the population of the prey and predators in patch 7,
respectively; ¢, > 0 is the conversion rate of the predation. Parameters p, > 0 and p, > 0
represent movement rates of prey and predator, respectively. Functions f;, ¢g; and h; are continuous

functions that are satisfied in the following assumptions:

(A1) fi : Ry — R denotes the prey growth rate in patch 7 in which f/(z;) < 0and f;(x;) < f;(0)x;

for all x; > 0.
(As) g; : Ry — R, indicates the search efficiency where ¢'(z;) > 0 and g¢;(0) = 0 for all z; > 0.

(A3) h; : Ry — R, represents the decay rate of predators in patch 7 in the absence of the prey

where h(z;) < 0 for all z; > 0.

Parameters a;; > 0 and b;; > 0 describe the dispersal of the prey and predators from patch i to

patch j, respectively, where a;; # aj; and m;; # bj; fori # j.
Assume that L 4 and Ly denote the Laplacian matrices correspond to the dispersal of the prey and
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predators among patches, respectively.

The Jacobian matrix of system (2.45) is described as

diag{ f;(x:) + @i f{(2:)} — paLla —diag{g;(x:)}

diag{e;g;(w:)y: } diag{e;gi(ws) — hi(ys)} — pyLp

SR
I

(2.46)

Generally, system (2.45) admits 3 equilibria:

(i) trivial equilibrium point Py = (0,...,0,...,0) denoting the extinction of both the prey and

predators species,

(i) semi-positive equilibrium point P = (Z1,...,7,,0,...,0), representing the survival of the

prey species only, and

(iii) positive equilibrium point P* = (z7,...,z%,vy],...,y"), indicating the coexistence of the

prey and predators species.

For our purpose, it is more insightful to assume that

r(Eo) = s(J|g,) = s(diag{fi(0)} — paLa) >0, (2.47)

where Fy denotes the trivial equilibrium point of the prey population as discussed in Proposition 2.9.

Equation (2.47) states that the prey population survives in the absence of the predator population.
The coexistence of the prey and predators population is dependent on the stability of P.

The stability of P is determined by the sign of the spectral bound of the Jacobian matrix (2.48)
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evaluated at P. That is,

S(F1p) = s diag{ f;(z;) + T: f{(Z:)} — oL a —diag{g;(7;)} | 48

0 diag{e;gi(z:) — hi(0)} — pyLp
Denote r(P) = s(.J|5). As shown in (2.48), the sign of 7(P) depends on the sign of s(diag{ f;(Z;)+
Tifi(Zi)} — paLa) and s(diag{€;g:(7:) — hi(0)} — py Lp).

Since f;(7;) < 0and equation (2.47) holds, it follow from Corollary 2.10 that s(J|5) = s(diag{ fi(7;)+

7ifij(T:)} — pala) < 0.

Theorem 2.11. Suppose that Ly is irreducible Laplacian matrix such that (11, . . ., n,) is corresponding

the normalized right Perron eigenvector. Assume that (Ay) and (2.47) hold. Then, for any ji,, > 0

r(P) = s(diag{e;gi(:) — hi(0)} — py L)

= Z(@:gi(fz‘) — hi(0))m: + ’uiy 0 (egi(@) — hi(0)F (e59:(;) — 1 (0)m;,

i=1 ji
where L, = [gﬁ] is the group inverse of Lp.

Furthermore, r(P) is strictly decreasing with respect to fy and

n

> (eigi(@:) = Bi(0))ms < r(Eo) < max {e,:(7;) — hi(0)}, (2.49)

~ 1<i<n
i=1
with lower and upper bounds achieved when p,, — oo and i, — 0, respectively.
The following result, discussed in [12], investigates the conditions in which Pis stable. Biologically,
this implies that the prey and predators coexist.
Proposition 2.12. Let r(Ey) > 0 and f!(x;) < 0. Then, the following statements hold
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(i) If r(P) < 0, then P is globally asymptotically stable in R";.

(ii) If r(P) > 0, then P is unstable. Furthermore, there exists a unique positive equilibrium point

P* = (7,...,25,y1,...,y;) in which it is globally asymptotically stable in R'}.
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CHAPTER 3: DISEASE INVASION AND R, IN HETEROGENEOUS
NETWORKS

The objective of this chapter is to examine the disease invisibility, which is associated to the basic
reproduction R, on multi-patch infectious disease models with movements among the patches.
In particular, the computation of the basic reproduction number is defined as the spectral radius
of matrix B(P + pL)™!, thatis Ry := p(B(P + pL)™'), where B and P are diagonal matrices
with positive and non-negative elements on the diagonals, respectively; parameter 1 denotes the
movement rate among patches, and L is the Laplacian matrix of the movements among the patches

in the network.

Our motivation comes from calculating 7y for the multi-patch cholera disease model with water
movement among the patches as described in [16], where the recovery rates of all the patches are
assumed to be equal. In this chapter, we formulate R, for the generalized case when the recovery

rates in the patches are not necessarily the same.

The structure of this chapter is as follows: providing several formulations for 17, on multi-patch
infectious disease models with movement among the patches, (re)stating some properties of R
including monotonicity, convexity as well as the upper and lower bounds, and finally applying our

findings on multi-patch SIS disease model and multi-patch cholera disease model.

3.1 An Expansion for the Reciprocal of R,

1
The following Theorem provides an expansion for i on multi-patch disease models by applying
0

the result of Theorem 2.1 and using the group inverse of Laplacian matrix LB~
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Theorem 3.1. Let B = diag{b;} and P = diag{p;} where b; > 0, p; > 0 and P # 0. Suppose
that L is a Laplacian matrix such that 07 = (01, ...,0,) is the corresponding normalized right

Perron-eigenvector. Let Ry = p(B(P + puL)™'). Then, for any pn > 0

1 1 1 1TPBL#Po 1

= —=— — = +o(—), 3.1
B RO#( TP ) () 3.1)

5 . i bibi

where Ry := ﬁ , and L# is the group inverse of the Laplacian matrix L:=LB™"
i Dibi

Proof. Since B is a positive diagonal matrix, B! exists. Thus,
Ry = p(B(P+ puL)™") = p((PB™" + uLB™")™") =: p((PB™" + puL) ™),

where L = LB~! is a Laplacian matrix and B6 denotes the Perron right-eigenvector of L. Define

0= as the normalized Perron right-eigenvector of L.

B
> bibs
Following the assumption (PB~" + L) is a non-singular M-matrix. Thus, (PB~! 4 uL) 'is a
non-negative and irreducible matrix. Hence, by the Perron-Frobenius Theorem, Ry is the Perron

eigenvalue of (PB~! + ,uf/)*l. Denote x as the right Perron-eigenvector of Ry. Thus,
Rox = (PB™' 4 puL) 'x.
. . . 1 = 1 .
Multiplying both sides by (PB~" + pL) and oA yield
0

~ 1
(PB™' 4+ pL)x = —x.
Ry
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Collecting all the terms on one side results in

1
(g1~ PB™'— ul)x =0,

1 .
where (—I—PB~'—pL) is essentially non-negative and irreducible. Thus, by the Perron-Frobenius
0

theory
1 1 1 1 ~
s(=—I— PB~ —uL)—O and — +s(—PB " —pulL)=0.
RO RO
Equivalently,
1
PB™' — uL
ki pL).

Applying the result of Theorem 2.1 to s(—PB~! — pi) results in

1 ~ 1 ~ ~ 1
—— =1"(=PB™ Yo+ 1" (=PB HYL*(—PB Y0 + o(=).
o ( ) . ( JL7( ) ( M)
Replacing 0 with ———— BY ields
1 1"PB'BY 1 1TPBLL#PB-1B# 1
—( ) +o(—)
S o(=
B JLTPQ 1(]1TPB‘1E#P8>+0<1)
bt o Y bt 1t
> i 1(ILTPB 1L#P9)+ (1)
_Zibiei 1z > bit; OM.
Denote Ro = Z’ il Thus,
Zz‘pzez

1 1 1 ,1TPB-L#P# 1
= ————( = +o(—).
Ro Ry Ry 1"PO L
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3.2 Expansions for R

In this Section we provide two expansions for Ry = p(B(P + pL)~'), where the first expansion
uses the group inverse of the Laplacian matrix LB~! and the second one focuses on the group

inverse of the Laplacian matrix L.

The following result is a pivotal tool to provide an expansion for Ry = p(B(P + uL)™!) in terms

of the group inverse of LB~

Lemma 3.2. Let () be a non-negative diagonal matrix where ( # 0. Suppose that L is a Laplacian
matrix where 17 and 0 are the corresponding left and normalized right Perron-eigenvectors such

that 110 = 1. Then for any u > 0,

T #
p(Q+pul)™h) = Nth +% 1@%989) +0(%). (3.2)
Proof. Note that 1y — B -y = 1,8 1y 4
roof. Note that p((Q + pL) )—p((u(ﬂ + 1)) )—,/)((M +L)77) =ep((eQ+ L)7).

Define T := ep((eQ + L)~'). Since €@ + L is a non-singular M-matrix matrix, (@ + L)™' exists
and is a positive matrix. By the Perron-Frobenius Theorem there exists a right Perron-eigenvector

© >> 0 such that

To=-¢e(eQ+L) o

Multiplying both sides by €@ + L and ¢! result in

T (eQ+ L)p = p. (3.3)
Define
(@) T = ro+retole), rg#0 3.4
(b) o = wvot+uvieto(e), vyo#0

26



as the perturbation expansions with respect to parameter €. Replacing the expansion corresponding

to v and g in equation (3.3) result in
e Hrg +rie+0(e))(eQ + L) (vg + vie + o€)) = vo + vie + o(e). (3.5)

Setting ¢~ 'th terms on both sides of (3.5) results in roLvy = 0. This gives Lvy = 0 as ry # 0.
Hence, vy is the right Perron eigenvector of L. For simplicity, we assume that v, is the normalized

right Perron eigenvector of L. That is,

— (3.6)

Comparing €"th terms on both sides of (3.5) results in

T’()QUO + TlLUO + T’oLUl = 1.

Applying (3.6) to the equation above yields

TO(QQ + TlL@ + TQLUl =40. (37)

Since LA = 0, (3.7) becomes
roQ0 + roLv, = 6. (3.8)

Since 1" L = 0 and 176 = 1, multiplying both sides of (3.8) from the left side by 1" results in

1

To
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Now, to find v; multiply both sides of (3.8) by L# from the left side. Thus (3.8) becomes

roL# Q0 + roL* Lv, = L*4. (3.10)

Since L## = 0 and L# Lv; = v, (See parts 2 and 3 of Lemma C.1 in Appendix C), (3.10) becomes

Comparing €'th terms of (3.5) from both sides yields

T()Q’Ul + TlQUO + TQL’UQ + rlLvl + T’QLU(] = V1. (312)

Given 1" L = 0, multiplying both sides of (3.12) by 1" results in

ToﬂTQvl + T ILTQUO = ﬂTvl.

Applying (3.6), (3.9) and (3.11) to the equation above yield

1TQLYQY

= 3.13
ST o

Replacing € with l% and applying (3.22) and (3.13) to (3.4) conclude

Ry =10+ rie + o(e)

1 1,1TQL7QY 1

1TQ6 - p (1TQA)? 7
O
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The following Theorem generalizes the result of Lemma 3.2 to formulate Ry = p(B(P + pL)™')

for any positive diagonal matrix B.

Theorem 3.3. Let B be a positive diagonal matrix and P be a non-negative diagonal matrix where
P # 0. Suppose that L is a Laplacian matrix in which 17 and 0 are the corresponding left and

normalized right Perron-eigenvectors such that 170 = 1. Let Ry = p(B(P + pL)™'). Then for

any (>0
. Ry, 1TPB'L#PY 1
Ry =R - — 3.14
0 0+ p ( 17 Po +0('u)7 (3.14)
A 1"B6 ~ . . : . -1
where Ry = TPo and L* denotes the group inverse matrix of the Laplacian matrix LB~".

Proof. Since B is a positive diagonal matrix, B! exists. Thus,

Ry = p(B(P+puL)™") = p((PB™" + pLB™")™") =: p((Q + pL) ™),

where Q = PB ' and L = LB~ is a Laplacian matrix. Denote § = and L# as the

17B6
normalized right Perron-eigenvector and the group inverse of L, respectively.

Substituting Q, L# and 6 into (3.2) of Lemma 3.2 yields

1 1,1TQL*Q0 1
Ry = ~~+—(M)—I—O(—)
1TQO 1 (17QH)2 I
. B0
1"PB-'[#PB~!
— 1 1 1786 0(1)
17 pp-1(-BY neoqrpp-(-BY H
(ILTBH) ( (HTBH))
1'B6 1 17B6 1TPBL#Pg 1

=17ps T UG TR ) Ol
o Ry1"PB'L#PY 1
_RO_'_? 17 P9 +O(;),

- 1"B6
where Ry = T7Po"
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The following result examines Theorem 3.3 by looking at Ry = p(B(P + uL)~!) from a different
angle. In particular, rather than considering the group inverse L# of the Laplacian matrix LB,

the following expansion takes the group inverse L# of the Laplacian matrix L into consideration.

Theorem 3.4. Let B be a positive diagonal matrix and P be a non-negative diagonal matrix where
P # 0. Suppose that L is a Laplacian matrix in which 17 and 0 are the corresponding left and

normalized right Perron-eigenvectors such that 170 = 1. Let Ry = p(B(P + pL)™'). Then for

any i >0
5 ﬂ}? —P)L#(RE—P)H
B 0 0 0
pu— —_— - .1
Ry = Ry + M( TP )+0(#), (3.15)
here R _LBo d L# is th j f L
wnere 1ivg = ]lTPH an 1S Ine group wnverse o, .

Proof. To acquire the expansion, it is convenient to work with Ry = p((P + pL)~'B). Note that
B(P + uL) " and (P + pL)~!' B are similar matrices, thus p(B(P + pL)™') = p((P + pL) ™' B).
—1 P B —1
Ro = (P + pL) ™" B) = p((= + 1) 2) = pl(eP + 1)"'eD).

1

As all the off diagonal entries of ¢ P 4 L are non-positive and the sum of the entries of each column
is positive, e P + L is a non-singular M-matrix, thus (eP + L)~ exists and is a positive matrix[4].

By the Perron-Frobenius Theorem there exists a right Perron-eigenvector v such that
Rov = (eP + L) '(eB)v.
o ) 1 .
Multiplying both sides by (e P + L)F yields
v

Ro(eP + L)o = (¢B)?, (3.16)
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~ v . . . .. ~
where v := T denotes the normalized right Perron-eigenvector. Rewriting R, and v as the
v

perturbation expansions with respect to parameter € are given by

Ry = ro+mre+ole), 0
" o¥metole), T (3.17)

0 = Vot v1e+o(e), vy F#£DO.

Replacing Ry and v with the perturbation expansion from (3.17) into (3.16) result in
(ro + 1€ +19® + .. )(eP 4 L) (T + V1€ + Doe® +...) = (eB) (T + 1€ + Doe® +...).

Setting the powers of € equal to each other gives the following equations

( )
(EO) TOLﬁo = O,
(El) T’0P1~)0 + 7"1L1~)[) + TQL@l = Bf)o,
(3.18)
(62) Topﬁl —|—7’1P170 +TOL1~}2 +7”1L171 +7’2L130 = B@l,
\ V

Comparing €’th terms from both sides of (3.18) yields 7oL, = 0. Equivalently, L&, = 0, which

implies that U is the normalized right Perron-eigenvector of L. Thus,

g = 0. (3.19)

Comparing €"th terms from both sides and substituting vy with 6 result in

’I“()PQ + TlLQ + T()L?jl = B6. (320)

Since L# = 0, (3.20) becomes
roP0 + roLv, = B6. (3.21)
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Multiplying both sides of (3.21) by 17 from the left side yields

rol" PO+ ryl " Lo, = 1" B6

rolT PO =17 B8,

where the last equation is obtained from the assumption that 17 is the left Perron eigenvector of L,
thus 17 L = 0 (Lemma C.1 in Appendix C). Hence,

1"Bo

To

Multiplying both sides of (3.21) by L# from the left side yields roL# PO + roL# Lo, = L* B. It

follows from Lemma C.1 in Appendix C that L# L#; = 9;. Hence,

0 = L#(E — P). (3.23)

To

Since 17 L = 0, multiplying both sides of equation (¢?) in (3.18) from the left hand side by 1"
results in

rol" Py +m1" Py = 1" B. (3.24)
Applying (3.19) and (3.23) to (3.24) give

= 1 (——-P)L"(— — P)b. 2
gl (2 = PG~ P)o (325)

1
The proof is complete by substituting € = i and applying (3.22) and (3.24) to R, in (3.17). [

The following result evaluates Ry for the special case when P is a nonnegative multiple of the
identity matrix. That is, P = diag{p;} = pI for some p > 0. In fact, the following result is the

direct implication of Theorem 3.4 by replacing P with pI in (3.15).
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Corollary 3.5. Let B = diag{b;} > 0 and P = diag{p;} = pI for some p > 0. Suppose
that L is a Laplacian matrix in which 17 and 0 are the corresponding left and normalized right

Perron-eigenvectors such that 170 = 1. Let Ry = p(B(P + pL)™Y). Then for any y > 0

sz)lel +_(Zzzj ) ])—FO(—).

R pr—
’ p w ZZ bit;

(3.26)

3.3 Monotonicity of Ry

The following result examines the monotonicity and convexity of the basic reproduction number

Ro = p(B(P + uL)~') by applying the graph-theoretic approach.

Proposition 3.6. Let B = diag{b;} and P = diag{p;} be diagonal matrices such that b; > 0, p; >
0 and P # 0. Suppose L is an irreducible Laplacian matrix. Denote Ry = p(B(P + pL)™') where

> 0. Then, the following statements hold:
dRy , . o : -
(a) W < 0, with equality holding if and only if b; = b; and p; = p; fori,j =1,--- ,n.

’R

d
(b) d/ﬂo > 0, with equality holding if and only if b; = b; and p; = pj fori,j =1,--- ,n.

Proof. (a)Letw = (wy, ..., w,) be the normalized left eigenvector of B(P+uL)~! corresponding

to R(), i.e.,
1 wB
Royw =wB(P+ pL)™ <= Row(P + uL) =wB <= w(P+ ulL) = 7
0
or in the component-wise form
biw; .
Diw; —,uZakiwar,uZakiwi = 1=1,2,...,n. (3.27)

ki ki R
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Dividing w; on both sides yields

Yty (3.28)

k#i Wi k#i

Differentiating both sides with respect to p yields

—b; dRy -V, RO

wkwl — wsz
SRy D DL el D B e e B D
0 ap ki Wi ki k#i
w w; w w;
= —Zam—]f@ — —M—>,
oy i W W w;
Thus,
. R2 wy, wp W W
Bo= 203 auet (1= 2t — ), (3.29)
b; Wi Wi W wi

Setting ay; = akl and summing over all 7 yield

i k#i Wk W
A w; Wy W
TR
OZZ b, o Mo w;
i k#i
W W W
—R2 [ _ W <_s__r>}
u@ Y -t
0cQ (rs)€E(Co)

The last equality follows from the Tree-Cycle identity (see Appendix A). Applying the AM-GM
inequality, (wy + - - +w;)/l > Vw; - - - w; yields

3 (1-%):1—( 3 %>gl—z( I1 %)l/l:z—lzo. (3.30)

W, w,
(s,r)€E(Cq) (s,r)eE(Cq) (s,r)eE(Cq)

Furthermore,

3 (Z_ _ %) _ (3.31)

(rs)eE(CqQ)



Inequality (3.30) together with equation (3.31) result in RO < 0. Notice that RO = 0 if and only if

w, = w; for every pair (s, ) in (2.15).

(b) Differentiating (3.29) with respect to y yields

Summing over all 7 yields

o BT (- )

w.
i k#i '

where ay,; = aki%. It follows from the Tree-Cycle identity (see Appendix A) that

Bo=m Y w©@) 2 [ ) () (Y (U)Y)]. a3
Q€eQ (s,r)EE(CQ) s s Wr r

Note that 3°, v picg) <g—s - Z—) = 0. Thus, (3.34) becomes

r
r

Ro=Ron Y wi@) Y ((B) - )

<0 (sm)EB(Cg) T Ws Wr
W2 W W, (BNE 0, 10,
= w@ 3 (0) -we (0) e
0ecQ (s,r)EE(CQ) r s s s
TR
=Riu> w(Q) (w——w—) > 0.
Q€Q (s,)EE(CQ) B

Notice that By = 0 if and only if L =
(G, L).

Y= for any pair of (s,r) locating in a directed cycle of

]

The following result states the upper and lower bounds for Ry = p(B(P + pL)~') by applying
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Proposition 3.6.

Theorem 3.7. Let B = diag{b;} and P = diag{p;} be two diagonal matrices such that b; >
0 and p; > 0. Suppose L is an irreducible Laplacian matrix where 0 is the normalized right

Perron-eigenvector. Let Ry = p(B(P + uL)™"). Then, for any > 0

Z?:l bib;

b;
S pid, <Ry < maX1<i<n{;}- (3.35)
i=1 PiVi i

Proof. Tt follows from Proposition 3.6 that R, is decreasing with respect to p. Thus, the upper

bound for Ry occurs when p — 0,

bi
lim p(B(P + uL)™") = p(BP™") = maxi<icn{—}. (3.36)
> .

1

Similarly, the lower bound for 17y happens when ;1 — oo. Letting ;o approach oo in (3.14) yield

. - Ry, 1TPB'L#Pg 1 LS b
li B(P+puL)™) =1 — N =Ry==E"" (3.37
Jim p(B(P +pl) ™) = Jim (o + —H(———7p5——) +0o(1)) = Ry s o 337
Combining (3.36) and (3.37) yields the result desired. OJ

3.4 Application to an Airborne Disease Model

Consider the following multi-patch SIS epidemiological model in a heterogeneous network of n

patches (n > 0) [1]

BiSil;.

SZ/ = S y + vl +MSZ azg a’jiSi>>
Jj=1 ;
n 1=1,2,...,n, (3.38)
[ 1 j=1
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where S; and I; denote the number of susceptible and infected individuals in patch 7, respectively.
~; > 0 is the recover rate of the infected individuals in patch ¢, and 3; > 0 represents the contact

rate between susceptible and infected individuals in patch .
Parameters pg > 0 and p; > 0 denote the dispersal rate of the susceptible and infected individuals.

The Jacobian matrix of system (3.38) at the the disease-free equilibrium £, becomes

J| g, = diag{B; — i} — prL. (3.39)

The disease growth rate is computed as the spectral bound of the Jacobian matrix at the disease

free equilibrium, i.e. s(J|g,).

The following result, which is an immediate consequence of Theorem 2.1, provides an expansion
for the disease growth rate for system (3.38) by replacing ¢; in expressions (2.7) and (2.2) with

B; — ~vi- Additionally, the monotonically decreasing of (Ej) is attained from Lemma 2.3.

Theorem 3.8. Let L be an irreducible Laplacian matrix such that 07 = (01,...,0,) is the

normalized right Perron eigenvector of L. Suppose that (2.41) holds. Then, for any p > 0

r(Eo) =) (B —7:)0: + p DD B =) (B — )65 + 0(;), (3.40)
i=1 i=1 j=1
where LZ-? = [6?;] is the group inverse matrix of L.

Furthermore, r(Ey) is strictly decreasing with respect to 1. and

n

> (B —7)0: < r(Eo) < max{8; — i}, (3.41)

T 1<i<n
=1

with lower and upper bounds achieved when p — oo and i — 0, respectively.
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In addition to the expansion for the disease growth rate r(Ey), an expansion for the network basic

reproduction number for system (3.14) is accessible.

The basic reproduction number of system (3.38) at the the disease-free equilibrium £ is given by
Ro = p(B(P + pL)™), (3.42)

where B = diag{;} and P = diag{~;}.

The following result describes the expansion for R, by replacing b; with [3; and g; with ~; in (3.14)

of Theorem 3.9, respectively.

Furthermore, the upper and lower bounds for Ry is attained from Theorem 3.7.

Theorem 3.9. Ler B = diag{3;} and P = diag{~;} be two positive diagonal matrices. Suppose
that L is an irreducible Laplacian matrix in which 0" = (0., . .., 0,,) is the normalized right-Perron
eigenvector. Let Ry = p(B(P + pL)™Y). Then, for any 11 > 0

. Ry, 1TPB-1L#Pg 1

Ro= Ry + -2 _ +o(=), 3.43
0 0 #( 5o O(M) (3.43)

A  Bib;
where Ry = %
i ViV

Furthermore, Ry is strictly decreasing with respect to p and

and L* denotes the group inverse matrix of the Laplacian matrix L=LB"

SO0 < Ro< (1, (3.44)

with lower and upper bounds achieved when p — oo and . — 0, respectively.
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3.5 Application to a Waterborne Disease Model

Consider the following multi-patch SIR waterborne disease (e.g., cholera) model in a heterogeneous

network of n patches (n > 0) [8]

(
B,
Si = A= BiSi———= — d;iS; + iR,
' ﬁB ni + Bi
Il = BiSi——— — (di + o + )1,
e )

i=1.2.. .n (3.45)
R, = ~lI, —(d; + 0;)R;,

\ J=1

5:Si B;

ni + B;
efficacy, and ;1 > 0 is the movement rate parameter with a;; is the movement rate from patch j to

Notice that

is incidence saturating with constant 7); representing the 50% transmission

patch ¢. In this case we assume that the movement is asymmetric, that is a;; # a;;.

The Jacobian matrix of system (3.45) at the disease-free equilibrium Ey = (S?,...,59) is given
by
0 D, D, 0
Jpg, =F—-V = — , (3.46)
0 0 —D3 (D4 + pul)

where Dy = diag{d;, + o + i}, D2 = diag{ﬁz—sg}, D3 = diag{¢&;}, and D, = diag{¢;}. Matrix

L denotes the Laplacian matrix associated to the movement matrix [a;;].

Notice that the the Jacobian matrix J at Ej in (3.46) does not follow the same structure as its
counterpart in (3.39). Thus, unlike Section 3.4, the disease growth of system (3.45) cannot be
determined from the disease the expansion for the disease growth rate, i.e., 7(Ey) = s(J|g,), of

Theorem 2.1.
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However, Theorem 3.9 enables us to investigate the disease growth of the system by computing

the basic reproduction number R, of the system.

Note that matrix block D,+ L in (3.46) is a Z-matrix, i.e. all off-diagonal entries are non-positive,
and the sum of the entries of each column is positive, which means (D4 + pL)~' > 0. Following

the next generation matrix approach, Ry = p(FV 1) = p(V~'F). Thus,

Ry = p(V'F) = p((Dy + L)™' D' Dy D3) =: p((Da + L)™' D5),

BiSibi
ni(di + o + i)
/convexity/upper bound/lower bound results in Section 3.3 can be applied immediately to produce

where D5 = diag{

}. Our expansion results of Ry in Section 3.2 and monotone

similar results as those in the previous Section for the SIS disease model, which are thus omitted.
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CHAPTER 4: POPULATION PERSISTENCE AND DISEASE INVASION
ON SPECIFIC NETWORKS

In this chapter, we numerically analyze the main results of Chapters 2 and 3 in epidemiology
and ecology models over strongly connected heterogeneous networks. We design a different
network structure for each model. We assume the movement between the regions in the network.
Depending on the model and network dynamic, the regions might be human-made or created by

nature, and the movement between the regions can be humans, animals or water.

An ecological model that describes a population dynamics in two regions, both occupied by the
same species is called the sink-source model. In one region the population is sustainable (source),
whereas in the other one the population cannot survive when they are isolated from other habitats

(sink). Denote f(0) as the population growth. A patch is called a source (sink), if f(0) > 0
(f(0) <0).

In infectious disease models, the term hotspot is referred to areas with elevated transmission
efficiency. Generally, a region is considered as a hostspot (non-hotspot) if the basic reproduction
number Ry > 1 (Ry < 1). Throughout this Chapter R and r denote the hotspot and non-hotspot

regions.

4.1 Population Persistence on a Path Network

Consider the following single species model as described in Section 2.4 on a path network of four

regions shown as

[ —2k—{3k—{4]
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where the movement between the patches is assumed to be symmetric with the assigned weight of

1. The Laplacian matrix L corresponding to the movement in the network is given by

L= , 4.1)

where 7 = (01,65,05,64) = (3,1, 1, 1) is the normalized right Perron-eigenvector. Denote L#

as the group inverse matrix of L, and is given by

7 1 -3 -5
11 1 3 -1 =3
L# = [(f)1xs = < . (4.2)
-3 -1 3 1
-5 -3 1 7

For details of deriving the group inverse L# from L, see C.3 from Appendix C.

Following Theorem 3.8, the population growth r(Ey) of the single species model over 4 patches is

described as

4 4 4

r(Ey) = iz f:(0) + ﬁ DY 0V £5(0) + 0(%) = A+ %’H + o(i). (4.3)

i=1 i=1 j=1

1
where 1 denotes the ith, 1 < i < 4, element of the normalized right Perron-eigenvector ¢, and EZ?
for 1 < i,j < 4 is the ijth element of L#. Function f;(0) corresponds to the population growth

rate of patch :.

From (2.26), the first term in (4.3) denoted as A represents the network average, and from (2.27),
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the coefficient of i in (4.3) denoted as H represents the network heterogeneity.

Plugging E?; from (4.2) result in

H= 3*12[5(f1(0)—f4(0))2+3(f1(0)—f3(0))2—(f1(0)—fz(0))2+(f2(0)—f3(0))2+3(f2(0)—f4(0))2—(f3(0)—f4(0))2]-
4.4)

Given that the movement is assumed to symmetric, the value of .4 is independent of arrangement
of the population growth rate f;(0) on each patch. Unlike .4, the value of H varies in regards to
different arrangements of f;(0) on each patch. This implies that # carries the information that

enables us understand the population persistent or extinction in the network.

In what follows, we investigate different sink-source scenarios on a 4-patch path network by

calculating the network heterogeneity value H to understand the population dynamics in the network.

In all the scenarios, we denote f(0) > 0 as the source patch and f(0) < 0 as the sink patch.

One-source scenario

In this scenario we assume to have one source patch f(0) and three sink patches f(0). Since the

movement between the patches is symmetric, there are two possible cases for this scenario:

1) f1(0) = f(0) > f2(0) = f3(0) = f4(0) = f(0). The network heterogeneity index in (4.4)

becomes H; = 312(% — f(0))%.

2) f2(0) = f(0) > f1(0) = f3(0) = f4(0) = f(0). The network heterogeneity index in (4.4)

3 T 2
becomes Hy = 3—2(f(0) — £(0))*.

It can be seen that H; > H,, which implies that locating the source on patch 1 will result in a

bigger population growth in the network.
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Two-source scenario

In this scenario we assume to have two source patches and two sink patches. The symmetric

movement between the patches in the network results in four possible cases as follow:

1) f1(0) = £2(0) = f(0) > f3(0) = f1(0) = f(0). The network heterogeneity index become
oz = 55 (700) - f(0))”

2) f1(0) = f3(0) = f(0) > f2(0) = f4(0) = f(0). The network heterogeneity index become
His = o5 (F0)  £(0))°

32 —
3) f1(0) = f4(0) = £(0) > f2(0) = f3(0) = f(0). The network heterogeneity index become
Hi = %(m - @)2

4) f2(0) = f3(0) =

(
4
Hoz = 5(]‘(0) - f0)".

> f1(0) = f4(0) = f(0). The network heterogeneity index become

The calculations above demonstrate that Hqo > Hi13 = H14 = Hos. This implies that locating the
sources on patches 1 and 2 will lead to the highest population growth compared to the two other

scenarios.

Three-source scenario

For this scenario, we assume to have three source patches f(0) and one sink patch f(0). Due to

the symmetry movement in the network, there are two cases:

1) f1(0) = £2(0) = f3(0) = f(0) > f4(0) = f(0). The network heterogeneity index become
Higs = 312(% — f(0))%.
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2) f1(0) = f2(0) = f4(0) = f(0) > f3(0) = f(0). The network heterogeneity index become
3
Hioa = 3_2( (0) - ﬂ)Z

It can be observed that having three sources on patches 1, 2 and 3 lead to a higher network

population growth as Hio3 > Hio4.

General scenario: same network average

For this scenario, we consider 8 different distributions of patch growth rates, in which they all have
the same network average. All the scenarios (except distribution H) have the same maximum; see
Figure 4.1(a). Figure 4.1(b) shows the network heterogeneity index H (for distribution H, this
index value is 0). As shown in Figure 4.1(c), the meta-population growth rate r, corresponding to
all except distribution H, has the same limiting values (the maximum of patch growth rates and the

network average respectively) as the movement rate parameter p approaches 0 or co.

(a) (b) (c)

o 8 8

5 o 5 5 30

4 4 4 4 3
S 25

2 2 2 2
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Figure 4.1: Network heterogeneity promotes population persistence.

4.2 Disease Invasion on a Star Network

Consider the SIS model described in Section 3.4 over an n-patch of a star network shown as
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Vertex 1 denotes the hub, and vertices 2, 3, . . ., n represent the leaves. All the movements between

the hub and each leaf are assumed to be symmetric with the assigned weight of 1. The Laplacian

matrix L corresponding to network movement is given by

n—-1 -1 -1 .- —1
-1 1 0 0
L=1-1 0 1 - 0|, (4.5)
-1 0 0 1
where 07 = (%, VN %) denotes the normalized right Perron-eigenvector of L. The group inverse
L# of L is given by
0 —1 —1 -1
-1 n—-2 =2 -9
-1 11-1 -2 n—-2 -2 . . =2
A , (4.6)
" -1 2 2 n-2 -2 —2
-1 =2 -2 -2 - =2 n-2
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where J = [1],,x,. The details of computing L# over a star network are provided in Section D.1

of Appendix D.

For simplicity, we assume that the recovery rates ;, for 1 < ¢ < n of the SIS model are equal. (For
parameter details, see Section 3.4). Denote 7 as the recovery rate for all the patches in the network.
Consequently, the basic reproduction number Ry for the SIS model over an n-patch star network is
special case of Theorem 3.4. In particular, the computation of Ry is followed from equation (3.26)
of Corollary 3.5. That is

EDY R LT/

127'1:161' 1
Ry = —&i=tli | = - 4.7
"Tn 5 Tu > i Bi O(M)’ *7)

1 ) ) .
where — denotes the ith element 1 < ¢ < n of the normalized right Perron-eigenvector of L and
n

Efj for 1 < 4,5 < n is the ijth element of L¥. Parameter j3; represents the transmission rate

patch 7 and thus R®) := @ denotes the corresponding basic reproduction number. Expansion (4.7)
g

becomes

vH 1
Ry=A+——+o0(—-), (4.8)
pA (u)
Zn R(i)
where A := ==1"Y_ represents the average of the basic reproduction numbers of each patch
n

denotes the network heterogeneity index. A

n s RO plo)
in the network and ‘H = 2ica ijl i il
n

is independent of the arrangements of R in the network, whereas # is highly dependent of the
locations of Rgo)s. Therefore, H conveys information in regards to the population dynamics of the

network.

In the following we investigate 3 scenarios for locating hotspot R region(s) and non-hotspot 7

region(s) in the star network.
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One-hotspot scenario

In this scenario we consider to have one hotspot patch in the star network. For that, we assume two
case: locating source at the hub and at leaf 2. Denote ‘Hy and H as the network heterogeneity
indices corresponding to source at hub and at a leaf, respectively. It follows from the description

that

n—1,—= n—-n—1_—

Hy = (R—r)* and H;= T(R — )2

By comparing the values Hy and H 4 we can state that in a star network of at least 3 regions (a

hub and 2 leaves), the network disease invasion occurs more likely when the hotspot is at a leaf.

Two-hotspot scenario

In this scenario we locate two hotspots in the network. This results in 2 cases: hotspots at the
hub and a leaf and hotspots at 2 leaves, where Hy and Hy;, denote the corresponding network

heterogeneity indices. Thus,

on?—4dn —4 —

Hpur = (R—r)? and Hyp = (R—r)> (4.9)

n2

The following observations are made from comparing the values of Hy; and Hs;,

* In a star network of at least 5 regions (a hub and 4 leaves), the disease spreads widely when

two hotspots are at leaves.

* In a 4-patch star network the disease spread is the same for both instances.

* In a 3-patch star network an outbreak happens more rapidly when one hostpot is at the hub

and one at a leaf.
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Note that the above results are the direct outcomes of computing network heterogeneity index of

the star network for each scenario.

Three-hotspot scenario

In this scenario we assume that there are three hotspots in the star network, which results in two
cases: one hotspot at the hub and two at leaves, and three hotspots at leaves, where H o7, and Hsy,

denote the respected network heterogeneity indices. It follows from (4.8) that

on?—3n—9 — N 3n2—9n—9 —

HHQL - (R—f) and HgL = (R—[)2.

n? n?

By comparing H p2r, and Hsz, we can deduce that in a star network of
* at least 7 regions (a hub and 6 leaves) an outbreak most likely when all three sources are at
leaves.

* 6 regions (a hub and 5 leaves), the disease spread is independent of the location of hotspot

and thus it is the same for both cases.

* at most 5 regions ( a hub and 4 leaves), the disease spread more widely when one hotspot is

at the hub and the other two are at the leaves.

4.3 Cholera Spread on a Stream Network

In this Section, we use the the cholera model in Section 3.5 to demonstrate that the network average
(the first order term in the expansion) and the network heterogeneity (the second order term) jointly

impact the disease invasion in an asymmetric network.

49



Consider the spread of a waterborne disease (e.g. cholera) along a river of 4 nodes (as shown in
Figure 4.2(a)) with 1 hotspot patch where Rék) = 2.8 and 3 other patches R(()k) =0.7. If b = 2a,
then straightforward calculations yield ¢, = 1/15, 6, = 2/15, 05 = 4/15, and 6, = 8/15. For large
pathogen movement parameter p, Ry =~ A =), GkRék). If the hotspot is located at patch 1, then
Ro ~ (2.840.7x14)/15 = 0.84. If the hotspot is at patch 2, then R ~ (2.8 x2+0.7x 13)/15 =
0.98. If the hotspot is at patch 3, then Ry ~ (2.8 x 4+ 0.7 x 11)/15 = 1.26. Lastly, if the hotspot
is at patch 4, then Ry ~ (2.8 x 8 + 0.7 x 7)/15 = 1.82.

However, for intermediate values of 1, the network heterogeneity jointly plays an important role,
e.g., bring the R value for the case of the hotspot at patch 1 larger than R, values for the cases of

hotspot at patch 2 or 3 (see Figure 4.2(c)).
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Figure 4.2: Network average and network heterogeneity jointly impact cholera invasion on a
stream network: a = 1 (upstream movement rate), b = 2 (downstream movement rate); patch
reproduction number is 2.8 at a hotspot and 0.7 at a non-hotspot; patch disease growth rate is 0.14
at a hotspot and -0.03 at a non-hotspot
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CHAPTER 5: A NEW INDEX FOR CONTROLLING R,

5.1 Motivation

In mathematical epidemiology, the basic reproduction number Ry is undoubtedly amongst the most
crucial threshold quantities, not just for determining whether or not an epidemic or endemic can
occur in a host population, but also for providing a measure to guide disease control strategies.
For example, the disease can be eradicated if more than a proportion h = 1 — 1/Ry of the
host population can be effectively vaccinated, where h is customarily called the herd immunity
ratio. For a given infectious disease model of ordinary differential equations, 7y can be derived
as the spectral radius (the largest modulus of its eigenvalues) of a next-generation matrix K =
[ki]nxn [18], which encodes the disease transmission from one generation to the next; that is,

Ry = p(K) = max{|\| : Kz = \x,z € R"\ {0}}.

The herd immunity ratio & indeed measures the number of vaccinations needed to reduce all
entries of A simultaneously (in a multiplicative way) to reach the threshold value 1. That is,
after effectively vaccinating a proportion /1 of the host population, each pathway k;; of disease
transmission from one generation to another can be reduced by a proportion h, yielding the controlled
ki

next-generation matrix K. = [k;;(1 — h)] = [32] = R£0 and p(K,) = p(%) =

(K) _
20 = 1.

However, the concept of R, is less useful when control efforts target a specific group, or if
the infection includes another host type, i.e., a vector, intermediate host, or reservoir host. To
overcome the problem, [13, 9] defined the type-reproduction number 7; for an infectious disease,
and showed that 7; not only has the required threshold behavior, but also correctly determines the
critical control effort for heterogeneous populations. For example, if sub-population ¢ of the host

population is to be vaccinated, then the type reproduction number 7; [13, 9] measures the required
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vaccine coverage for the group, and 1 — % indicates the proportion of vaccination coverage in
2

group 7 to have the disease under the control among all the host population groups.

In [15] the target reproduction number method was presented as an extension to the type reproduction
number, allowing us to estimate disease control measurements targeting not just specific host
types, but also transition terms between them. The method description in [11] concentrated on the
decomposition of the next generation matrix K into nonnegative target matrix C' and nonnegative
residual matrix B with p(B) < 1, thatis K = B + C. Then, the target reproduction number is
defined as T = p(C(I — B)™') and the controlled next generation matrix K, = B + % has the
spectral radius of 1. The following proposition establishes the relationships among the basic, type,
and target reproduction numbers. The computation of the target reproduction number is similar
to that of the type reproduction number, where more projection matrices are added to the target

reproduction number.

In the applications, A can take the form of projection matrices in ecological models with = p(A)
denotes the population growth rate, and next-generation matrices in epidemiological models where

Ry = p(A) represents the basic reproduction number.

Let p be a parameter (or a set of parameters) subject to change (due to some population/disease
control), where A = A(p) and r, = p(A(p)). Setro = lim, .o, p(A(p)) and ry := lim,,_,o p(A(p))

if they exist and could be oo.

Lemma 5.1. Let A be a nonnegative matrix and p be a parameter (set) subject to change. Suppose
r, = p(A(p)) is strictly monotone and min{ry,ro} < 1 < max{rg,r«}. Then there exists a

unique p* such that r,» = p(A(p*)) = 1.

Proof. As p(A(p)) is a continuous function with respect to p, and min{r, 7« } < 1 < max{rg, 7o},

then by the Intermediate Value Theorem, there exists p* € (0, co0) such that r,« = p(A(p*)) = 1.
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The uniqueness of 7, is determined by strict monotonicity of 7.

Let A be an irreducible matrix A = B + C, where A, B and C' are nonnegative matrices. An

explicit formula for p* can be derived under certain circumstances.

-Let A= B+Cwith B = [b;;],C = [c;;] > 0. Ifp={¢;; : 1 <i<n,1 <j<n}, thenp* = %,
where To = p(C(I — B)™1) is the corresponding target reproduction number. Here p* is uniquely

defined provided that ry = lim, o p(A) = p(B) < 1. Note that ro, = lim, o, p(A) = 0.

-If p = a;; for some i,j (i.e., the (,j)-entry of A), then p* = 3# where 7;; is the target
ij

reproduction number with the target entry (i, j) of A.

-If p = {a;1, aia, . . ., az, } for some i (i.e., the i-th row of A), then p* = a% where 7; is the target

reproduction number with the target i-th row of A.

-Ifp={a;;: 1 <i<n,1<j<n} (ie,all entries of A), then p* = %.

Proposition 5.2. All (basic/type/target) reproduction numbers, if they exist, stay at the same side

of 1.

Proof. Let K = B + C be the next generation matrix and T = p(C(I — B)™') be the target
reproduction number corresponding to target matrix C'. Assume 7 > 1, then from the definition
the controlled next generation matrix Ko = B + %C has the spectral radius of 1, which means
p(K¢) = 1. Furthermore, Ko = B + % < B+ C = K, thus p(K¢) < p(K) [4]. This yields
1 < p(K) = R,.

Similarly, if 7o < 1, then Ko = B + 7> < K resulting Ry = p(K) < 1. O
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5.2 Spectrum Yield Index

In the previous Section we have given an overview of the concept of the target reproduction
number which targets parameters that appear (partially or as a whole) in the numerator of the
next generation matrix. In this Section, we extend the notion of targeting parameters to a more
general setting by proposing a new index. By doing so, we clarify some points of confusions from

the literature.

To start, set A = B+ C' = B+ f(p)D where A, B and C are defined above, D is a nonnegative
matrix, and independent of p and f(p) is a nonnegative function of p, which is monotone(increasing

or decreasing); thus, the inverse f~! exists.

We define the spectrum yield index of p as the following:

p
Vp = f—l(f(p))’

Tc

(5.1)

where T = p(C(I — B)™') = p(f(p)D(I — B)~!) provided that p(B) < 1.

Theorem 5.3. Let A be an irreducible and nonnegative matrix and A = B + C with C = f(p)D,
where B, D are nonnegative matrices independent of p. If f is strictly monotone and = exists,

then p* = J% and rp = p(A(p*)) = 1, where the spectrum yield index ), is defined as in (5.1).

Proof. Letz" > (0 be a nonnegative left eigenvector of C(I—B)~! = f(p)D(I—B)~! corresponding

to the Perron eigenvalue of 7¢, then

(T =2 fp)D(I - By = o7 (1-B) =10 p s 4T =T34 [P p)
TC TC

By Perron-Frobenius Theory, the spectral radius of (B + %D) is the unique largest eigenvalue
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with a nonnegative eigenvector. Thus p(B + %D) = 1. From (5.1), % =f (3%) thus

p(B + f(y%)D) = 1, which implies p(A(J%)) = 1. Following Lemma 5.1, p(A(p*)) = 1 where
p* = yL;_ D

Theorem 5.4. Let Y, be as defined in (5.1). If f(p) is strictly increasing, then ), and reproduction
numbers stay at the same side of 1; if f(p) is strictly decreasing, then Y, and reproduction numbers

stay at the opposite side of 1.

Proof. We prove the case when f(p) is increasing. Assume 7 > 1, then

L)
<) = D <IUE) =p o 1< < 1<V, 62)

f(p)
Tc

By proposition 5.2, all reproduction numbers stay at one side of 1, hence ), > 1 if and only if
p(A(p)) > 1. In similar fashion it can be shown that 7> < 1 if and only if ), < 1.

The proof when f(p) is decreasing can be performed by reversing all the inequalities above. [

Corollary 5.5. Let ), be defined as in (5.1), and f(p) be a monotone function (decreasing or

increasing). Then Y, = 1 if and only if T = 1.

Proof. Suppose T = 1, then

) _ f) = 17

i I _ sy =p = 1= —L = 1=,

Tc e

Theorem 5.6. Let A = A(p) and Y, be well-defined, then the following holds.

(a) If f(p) is increasing, then Y, > 1 if and only ifg—; = dipp(A(p)) > 0.
(b) If f(p) is decreasing, then ), < 1 if and only ifg—; = Ly(A(p)) > 0.
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Proof. We prove (a) only. The proof of (b) is similar. Assume ), > 1, then p* = 3% < p, which

implies f(p*) < f(p), which follows from f(p) being strictly increasing. Thus,

A(p") = B+ f(p")D < B+ f(p)D = Alp). (5.3)

Since both A(p*) and A(p) are irreducible, then p(A(p*)) < p(A(p)) [4] for any p* < p. Now,

d e plAD) 1 1o — PLAR) o)
& (A(p)) = lim c
iy PAG™ +€)) = p(AP7) _

In this section we illustrate three applications in the context of compartmental epidemic models.
The first two examples emphasize various control measures for disease elimination. The last one
focuses on the different next-generation matrix decompositions to compare their corresponding
target reproduction numbers and spectrum yield indices. As computations show, different next
generation matrix constructions lead to the same spectrum yield index value, which is thus independent

of the next generation matrix decomposition.

Note that in all disease infectious applications the assumption is that the outbreak occurs, that is

Ry > 1, leading us to look for effective control strategies to prevent the spread of the disease.

5.3 Application to a Zika Model

Zika virus is a mosquito-borne disease that is primarily transmitted by the bite of an infected

mosquito from the Aedes genus, mainly Aedes aegypti, in tropical and subtropical regions. This is
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the same mosquito that transmits dengue, chikungunya and yellow fever. Zika virus can also be
transmitted from human to human including mother to fetus during pregnancy, and through sexual

contact.

Consider a human-vector population Zika virus model in which the human population is divided
into five classes: susceptible Sy, exposed £y, symptomatic infected ¢, asymptomatic infected
I 4 and and recovered Ry, while the mosquito population is divided into three classes: susceptible
Sy, exposed Ey and infected/y as described in [3]. The system has five infected states, Fy, Iy,
Iga, Ey and I, where Ey and E)y, are states-at-infection, and Iyg, g4 and Iy are states of

infectiousness so next generation matrix with the large domain K is a 5 X 5 matrix.

In [7] an approach to derive the next generation matrix K form K7, is introduced, which has the
same epidemiological reasoning as K, but keeps out irrelevant information, and usually is of
lower dimension than K. The entry (7, j) of K corresponds to the expected number of new cases
at state-at-infection ¢ produced by a single individual who has just entered state-at-infection 7 in a

completely susceptible population. Here we derive K in this manner with states-at-infection Ey

and Fy . Thus,
Vsq +Ya(l —q) agbBy
K v (Bv + pv)py |
avb 0
Y

where 14 and 1)g denote humans’ asymptomatic and symptomatic sexual transmission rate,

respectively for an entire infectious period of % Infected individuals become symptomatic infectious
with probability ¢. Parameter ay (ay ) is the transmission rate from an infectious mosquito(individual)
to a susceptible individual(mosquito) per mosquito bite, b is the mosquito’s biting rate and 6;1 is

the latency period of Zika virus in mosquitoes. Finally, 1y, represents the death rate of mosquitoes.

In the following, we explain the biological description of entries of K = [k;;].
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- kll

_ Usq+a(l —q)

v
individual who has just entered state I/ during the infectious period. Here, the individual

determines the expected number of exposed cases, generated by one

survives the Fy state with probability 1 and moves to one of the two infectious states, /g
or [ 4 with probability ¢ and 1 — g, respectively. During their stay in /g, the individual is
expected to produce new cases at a rate 1/g, and to produce new cases at rate ¢4 while they

are in state [ 4 for an expected time %

agbfBy
(Bv + v ) v
by one mosquito that has just entered state £y for the infectious life. For the mosquito to be

k1o = corresponds to the expected number of new cases of exposed humans

infectious, it needs to survive the £y, state and moves to infectious state [y, with probability

By

Bv + v
exposed humans at a rate ay b, for an expected time /%v

. While in the [y, state, the infectious vector is expected to produce new cases of

ko = a%b indicates the expected number of new cases of exposed mosquitoes produced by
one human who just entered state F/ during the infectious time. The exposed human moves
to states /s and [y 4 with probability ¢ and 1 — ¢, respectively. While in infectious state,
Iy or Iy 4, they are expected to produce new cases of exposed vectors with rate ay b, for an

1
expected time — .
8

koo = 0 because Zika virus is spread mainly by mosquito bites, thus there is no transmission

between mosquitoes.

As there is no vaccine or antiviral treatment available for Zika virus infection, the following

disease control measurements are recommended.
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Reducing the infectious mosquitoes to individuals transmission

One method to prevent the spread of Zika virus is to decrease the encounter between the infectious
mosquitoes and susceptible individuals. To achieve it, the Wolbachia bacterium is introduced into
the mosquito population by breeding and releasing Wolbachia-carrying mosquitoes into the disease

affected areas. From mathematical point of view, these strategies target parameter ay where it

appears in entry (1,2) of K. Then, the target matrix is C' =

0 agbBy
(Bv+uv)uy
0 0

Ysqt+va(l—q) 0

.. v
matrix is B =
ayb
v

, with the controllability condition

Usat+vall—q) _

p(B) <1 <
~

L,

where it leads to v — (¢)sq + ¥a(1 — ¢)) > 0. Thus, the target reproduction number

To=p(C(I-B)™)

0 CLHbﬁV 1— ¢SQ+¢A(1_Q) 0 -
(By + pv) py v >
b
0 0 _ave 1
Y

agByayb ay By

py (Bv+pv)(y—(sa+va(1—q))  (pv-+Bv) )
0 0
apPByvayb

v (By + ) (v = (Ysq + Ya(l —q)))

T¢ is meaningful as v — (¢sq + ¥a(1 — ¢)) > 0. This implies that the transmission rate from
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infectious mosquitoes to susceptible individuals is successfully reduced as every entry c;; of target
matrix C becomes ;—é That means, the dominant eigenvalue of the controlled matrix Ko =

B+ %C is1,i.e p(K¢) = 1.

Reduction in mosquito bites

One way to control the spread of Zika virus is to prevent the mosquito bites by using screens on the
windows or air conditioner to keep mosquitoes from entering. Individuals are recommended to stay
indoors during the peak of biting time of vectors, which are early morning and late afternoon/evening.
If individuals can’t avoid being outdoors, they are suggested to take some precautions such that
wearing light-colored clothing and using insect repellents. Such measurements target parameter

“b” in which it appears at entries (1,2) and (2, 1) of the next generation matrix. Thus, target

0 —ambby Ysatval-a
L. (Bv +pv)uv . o v .
matrix is C' = , and the residual matrix is B = with the
avb 0 0 0
>

controlability condition p(B) <1 <= 0 <y — (¢sq+ 1a(1 — q)). Following the definition of

target reproduction 7, we have

Te = p(C(I—-B)™)

-1

apbBy 1 — »sq+iba(1—q) 0
(Bv+pv )y v
= p( )
ayb 0 0 1
Y
0 agbByv
(Bv+pv ) v
= p(
ayb 0

Y=g+ a(1-9))

b ayag Py
Vsq+a(l—q) =7
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Reduction in the latent period

From the model description, 6‘}1 is the latent period of mosquitoes from the exposed compartment
to the infected one. Given the short lifespan of mosquitoes, we assume infectious vectors remain
infectious for the rest of their life . Hypothetically, if we are to increase the latency period, there
will be less infectious mosquitoes, as the result the spread of Zika virus can be controlled. Such
strategies target parameter [3i,, where is located both in the numerator and denominator of entry
(1,2). From (5.1), to measure such strategies, we are required to calculate the corresponding

spectrum yield index ), . Note that target matrix C' is the same as the one in Section 5.3, so is the

associated target reproduction number, hence T = Gy +W;1(’§ %ZSV; PR Following (5.1),

0 aHb

; _ _Bv — _Bv ;
the target matrix can be represented C' = oy where f(By) = By tay 18 @continuous
0 0

strictly increasing function of By as (v, uy > 0, so the inverse exists and f~1(8y) = % Thus,

By associated spectrum yield index is

B
Yoy = f—l(@)

~ Te(By + pv) — By
B 124%
Bv(amayb — (v — (Ysq + ¥a(l —q))))
13 (v = (Ysq +va(l - q))

Decrease in the symptomatic sexual transmission rate

Zika virus can be passed through sexual intercourse from a person who has Zika to their sex
partners. To control the spread of Zika virus, individuals must be informed about the correct
and consistent use of condoms or abstinence during infectious period. Such interventions target

parameter 1) where it appears as part of entry (1, 1). Target matrix C' and residual matrix B are
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defined as

bsq 0 Pa(l—gq) agbByv
¥ ¥ (Bv +uv)uy
C= and B = 7
0 0 ayb 0

with the controllability condition

p(B) <1

¢A 1—Q 1—(1 avaHb25V ))
o +\/ +4((ﬁv+ﬂv)uv <!

(By + pv) pv g

pv (v = a1l — @) (Bv + pv) — avaHﬂvb
Yo (By + py)

—0<

Following the definition of the target reproduction number, 7 is given by

hsq apbByisq
Y ypv(py + Br)Q2

TC = p( )7
0 0
pv (By + pv)
O = .
Mt = — 0a(l— ) By + ) — awan PP
Hence ,

Ysquy (Bv + 1)

fe= pv (v — a1 —q))(By + pv) — avap Byb?

Te is well defined as the condition for controllability, p(B) < 1, holds. One can check that the
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controlled matrix K¢ = B + %C corresponds to the control measures reducing 1)s has dominant

eigenvalue 1.

Increase in the death rate of mosquitoes

Another Zika virus prevention strategy is to spray Permethrin on the clothes treating clothes to
increase the death rate of mosquitoes. Such control strategies effect parameter 1, where it appears
in the quadratic form in the denominator of entry (1, 2) of K. Following (5.1), the effort required
to increase the death rate of mosquitoes can be estimated using the spectrum yield index associated
to parameter /iy .

Note that the target matrix C' and residual matrix B are the same as the ones described in Section 5.3,

so is the target reproduction number. Thus, T = p(C(I — B)™') = G wg’)‘f(f ‘i‘fpvsi T

0 amg 55V

Note that the target matrix can be represented as C' = —————
Bv+uv)py

0 0

, where f(u,) =

—— — is decreasing and continuous everywhere as Sy > 0 and py > 0. Thus, the inverse
(Bv + pv) v

exists and f~!(py) = \/ % + /%v — %‘/ From (5.1), the spectrum yield index corresponding to

parameter (i 1S

By

\/ ayByayb? + B2
Y—bsq—Ya(1—q) 4
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For effective control strategies jiy is to be replaced w1th = \/ - quﬁ VTZAVbl gt %2 § thus

the spectral radius of the controlled next generation matrix is 1, that is

VYsq+Pa(l —q) abBy
oK) = ol ! B+ 3037 ) =1
ot ;
v

5.4 Application to an Anthrax Disease model

Anthrax is a zoonotic infectious disease caused by bacteria called Bacillus anthracis. It can
be found naturally in soil in dormant form called spores, and mainly affects animals, specially
live stock. Humans can also become infected if they come in contact with infected animals,
contaminated animal products or inhaling the spores. Usually, the bacteria enters the body through

a wound in the skin.

Consider the four-compartment SIAC, anthrax disease model in animal populations is given
n [14], where S and I denote susceptible and infected animals, C', represents infected carcasses
and A denotes the grams of spores in the environment. The dynamics of a special case of the model

are described in [17] as

S = r(S+1I)(1- %) NaAS — 1.0,S —mS + 711

I =n,AS +1.0,5 — (v +m+ )l
A=—aA+BC,

Co=(y4+m) —6(S+1)C, — kC,.

The animal population is assumed to follow logistic growth with birth rate r and carrying capacity

IC. n, is the contact rate between susceptible animals and spores times the probability of transmission
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from spores to susceptible animals, 7. is the contact rate between susceptible animals and infected

carcasses. J and « denote the spore growth rate and decay rate in the environment on the infected

carcasses, k is the carcasses decay rate, d is the carcass consumption rate, x is the decay rate of

carcasses, m and + are the natural and the disease induced death rates, respectively, and 7 is the

recovery rate of infected animals.

The system has three infected states; S, I and C,, thus, the next generation matrix around the

disease-free equilibrium (S, 0,0, 0) with Sy = IC(1 — 2) is

T

S S
0 % 62‘0—4?5
_ B
K= 0 0 6So+k
Y A+m 0
Yy+m+T

Table 5.1: Model parameter values, descriptions and associated units.

Parameter Baseline value Unit
K 100 animals
r 1/300 day ™!
m 1/600 day !
) 1/20 day'animal !
o 1/20 day~!
Na 1/2 day~!'gm spore!
B 1/500 gm spores carcass~ ! day !
T 1/10 day™!
v 1/7 day~!
Ne 1/10 day'carcass™!
K 1/10 day™!

Using the table above, the basic reproduction number R is approximated as 1.113.
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In what follows we investigate different disease control strategies to calculate the spectrum yield

index associated with each strategy in order to have anthrax under control.

Increase in the decay rate of carcasses

In the case of anthrax outbreak, one approach to reduce the spread of anthrax is to increase the

decay rate of carcasses. In most countries, the best method of disposal of infected carcasses

is incineration. Such control measures target parameter x, where it happens to appear in the

denominator of entries (1,3) and (2,3) of K. Following (5.1), to measure the change in k, we

are required to compute ),; with the target matrix C' =

0 NaSo 0
«
0 0 0], where ytm
Yyt+m+T
+m
mer 00

The corresponding target reproduction number 7t is

0

0

0

0

neSo
0So+k

B
6SO+H

and residual matrix B =

< 1, following the controllability condition p(B) < 1.

Sone(y +m) Sinena(y +m) Soe
(0So+ K)(y+m+T) a(dSy+ k) (y+m+171) S0+ kK
Te = p(C(I — B)™Y) = Bly+m) SoBna(y +m) s
(0So + K)(y+m+17) a(6Sy+ K)(y+m+71) 0So+ K
0 0 0
Sone(y +m) SoBna(y +m)
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Note that the target matrix C' can be represented as

00 S(ﬂ?c
1
C:
5So+r |00 B
00 0

where f(k) that is strictly decreasing with respect to x and continuous everywhere,

T 0S5, +
1

thus the inverse exits and f~!(x) = — — §5;. Now, we can derive ), from (5.1).
K

Y K _ ko(y+m+T)
Ty Soly 4+ m)(Bna + ane) = Soda(y +m + 1)

Using the parameter values provided in table (5.1), ), = 0.133, which implies that in order to
control the spread of anthrax, the decay rate of carcasses must be increased from x = 0.1 day ™!
to yi = 0.751 day~!. This implies that in order to have the spread of anthrax under the control,

on average, a carcass must decompose in about 1.331 days rather than 10 days. By doing so, the

basic reproduction of the controlled next generation matrix K, which was 1.113 in the outset of

0B g
anthrax reduces to 1. Thus, p(K,;) = 1, where K, = 0 0 6+ﬁ“
Ve
+m
2Em 00
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Figure 5.1: The relation between R, and spectrum yield index )V,

Note that both R and )/, reach the threshold value 1 simultaneously, which is the direct result of

Proposition 5.2 and Corollary 5.5. Additionally, 17y and ), stay on the opposite side of 1, Ry > 1
1

is a
(550—1-/%

whenever ), < 1, which is consistent with the result of Theorem 5.4, as f(k) =

decreasing function of k.

Decrease in the anthrax induced mortality rate

During anthrax outbreak, another approach to have the disease under control is to reduce the fatality
rate caused by anthrax by treating the infected animals with antibiotics (antibiotics treatments
are the most effective if started early). From a mathematical perspective, such measures target

parameter m, which appears both in the numerator and denominator of entry (3, 1) of K. Hence,

the target matrix C' = [¢;;], 1 <4, j < 3 has only one nonzero entry: c3; = 71:{17, and ¢;; = 0 for
(,7) # (1, 3). By definition the target reproduction number is given as
_ SO (’7 + m) naﬁ
To=p(C(I—-B)™) = (= + 1)

(0So+K)(Yy+m+7) a
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000

m
Notice that the target matrix can be shown as C' = _oyxm 0 0 0], where f(y) =
Y+m+T
1 0 0
Yy+m . . . . . . . . .

—— 1is an increasing and continuous function of v on its domain, thus, the inverse exists
Y+m+T

m— T —ym
and f~!(y) =

v—1
Following (5.1), the corresponding spectrum yield index ), is

v (880 + k) = So(naf + 1et))
F1(L9)  mSo(naB + near) — a(8So + k) (7 +m)’

C

y’y:

By using the parameter values provided in table (5.1), ), ~ 1.624. thus, v = 1/7 day~' become

T 5 0.088 day~!. This implies after a successful treatment, an infected animal dies on average

Y
11.36 days after being exposed to disease rather than 7 days.

0.08 0.0% 010 011 012 0.13 0.14

Figure 5.2: The relation between Iy and spectrum yield index )/,

Y A+m
Y+m+T
increasing function of v Theorem 5.4, Furthermore, they reach the threshold value 1 together;

Note that both R, and ), stay on one side of threshold value 1, as f(y) = is an

Proposition 5.2 and Corollary 5.5.
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5.5 Application to a Cholera Model

Cholera is a water-borne infectious disease caused by bacteria called Vibrio cholerae. Cholera
outbreak occurs primarily in areas with inadequate water treatment and poor sanitation. Individuals
become sick by eating food or drinking water contaminated by feces of infected individuals.

Consider the four-class (STRSP) Cholera model described in [2], where S, [ and R denote
susceptible, infected and recovered classes, respectively, and P indicates free-living pathogen

(FLP) that can grow and survive in the environment, where / and P are states-at-infection.

aR

mS mR
BST .
S 1 T R

Thus, the corresponding Jacobian matrix J is

%—(M—FW—FV) gb

J = , (5.5
v g—r

where b and m denote the birth and death rate, respectively, i indicates diseased induced mortality
rate. 0 and [ represent environment to host an host to host transmission rate. Finally, -, g and r
are shedding, growth and decay rate of pathogens in the environment. To ensure stability of the
system around the disease free equilibrium we assume r > g.

It is worth noting that there are some uncertainties surrounding the role of the contaminated

environment in the literature. While some studies highlight the role of the environment as a
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reservoir of infectious FLP, other works remark the environment with the less crucial part on
disease infections.

In this example, we consider both scenarios to derive next generation matrix from (6.8), and show
that the decomposition of the next generation has no impact on the computation of the spectrum

yield index.

e Environment as a reservoir

The environment is viewed solely as a reservoir, where both FLP growth rate g and pathogen
shedding rate ~ are regarded as new infections. Thus, the new infection matrix F' and

transition matrix V are

L (u+m+v) 0
F = , V= ,
v o9 0 r
and the NGM K is
Bb ob
m(p+m+v) mr
K=FV'!= : (5.6)
_r 9
nw+m+v T

e Environment as a transition-reservoir

Unlike the previous case, the environment is not solely considered as a reservoir. While
the pathogen shedding by the infectious host is assumed as transitions, the pathogen growth

within the environment is regarded as new infection. Thus, the shedding rate g, and the
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growth rate vy are placed into matrices F' and V/, respectively. Hence,

£ (u+m+v) 0
F= L V= ,
0 g —y T
where the NGM K is
Bb N 5vb ob
m(p+m+v) mp+m+v)r mr
K=Fy 1= : (5.7)

9 9
r(p+m+v) r

In the remaining of this example, we implement control measure to target a particular parameter
corresponding to NGMs (5.6) and (5.7) to compare the associated spectrum yield index of

each scenario.

Reduction in the environment-to-host transmission

As cholera outbreak is mainly associated to inadequate sanitation system, its further spread
can be prevented by promoting the hygiene habits including washing hands with soap, and
safe food preparations. Such measures tend to reduce the contact between the environment

and host, in which they target parameter 6 of NGMs (5.6) and (5.7).
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Table 5.2: Description of targeting parameter ¢.

Reservoir Transition-Reservoir

Bb b Bbr+d+b b
m(p+m—+v) mr mr(p+m—+v) mr
1 NGM
JR S Z 9 g
ptm—4v r r(p+m-+v) r
0 b 2 b
r (p+m~+v)r r
2 Target matrix C' % %
0 0 0 0
b ——Bb
mGrmEr) P )
3 Residual matrix B
Y9 g
put+m—+tv r r(p+m+v) T
ol 1 ol 1
m(p+m+v)—p3 m m(p+m+v)—Bb  m
4 c(I-B) 3 s
r—g r—g9
0 0 0 0
_ -1 ovb 5vb
o e = O = ) it t)—Bh—9) Gl Tw) - F)
6 Vs = S E— b 5vb
ey () =B =) ()= r—g)
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Note that despite parameter ¢ having to appear in different entries of the NGM associated to
each case, the corresponding target reproduction number 7 (step 5) is the same. Additionally,
) )
from (5.1) f(d) = ¢ and f~1(6) = 6. Thus, Vs = ——=— = — = T (step 6).
UED

le]

Decrease in the cholera induced mortality rate

Cholera may cause severe diarrhea which can lead to the dehydration and eventually death.
This can be prevented by simple treatments such as rehydration solution. By doing so, we
decrease cholera induced fatality rate. Mathematically, such treatments target parameter p

of NGMs (5.6) and (5.7).
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Table 5.3: Description of targeting parameter p

Reservoir Transition-Reservoir

Bb b Bbr+4+vb b
m(p+m—+v) mr m(p+m—+v) mr
1 NGM
ol g 9 g
ntmtv r r(p+m+v) r
Bb Bbr+35vb
w0 - 0
g 1 1
2 Target matrix C' T tmtv
v 0 14 0
0 o 0 o
3 Residual matrix B
0 7 0 7
Bb 58b% Bbr+8vb  8b%(Br+dv)
m  m2(r—g) mr m2r(r—g)
—1 1 1
4 C(I - B) p+m—+v ptm+v
~y 5vb Y9 dvgb
m(r—9) v mr(r—g)
. _ Bb(r—g)+6vb Bb(r—g)+5~b
5 Te =p(CI—B)™Y) m(r—g)(u+m+v) m(r—g)(p+m+v)
6 Y, = S — mu(r—g) mu(r—g)
w = T, (=g)(Bb—m(m-7)) 737 = a)(Bb-m(m+)) 7575
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Note that 1 is located in the same entries (1,1) and (2, 1) of each scenario’s NGMs (step

1). While the associated target matrix is different (step 2), the resulting target matrices is the

same (step 5). Furthermore, in both scenarios f(u) = m +$L + (step 2) where it is decreasing

and continuous everywhere, thus the inverse exists. From (5.1), the spectrum yield index

N p _ mpu(r — g)

is), = f_1<f:[(’g)) = f_l(ﬁb(rfﬁgi)(;wb) = =) (Bb—m(m + ) + 99D (step 6), where
1

FH0) = = (m+0).

Increase in the pathogen decay rate

As Cholera is mainly an aquatic disease, we can mitigate the spread by providing clean water
to drink and use via boiling or using antiseptic, i.e., Chlorine. Such measures increase the
decay rate of pathogens which lead to the disease decline where they target parameter r of

NGM (5.6) and (5.7).
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Table 5.4: Description of targeting parameter r

Reservoir Transition-Reservoir

Bb b Bbr+6~b ob
m(p+m+v) mr m(p+m—+v)r mr
1 NGM
. S g 9 g
p+m+v T r(ut+m+v) r
0 & b b
m m(p+m+v) m
2 Target matrix C' i 1
Y9
0 g (pt+m+v) )
Bb B8b
mGetmty 0 mGtmty 0
3 Residual matrix B
~y
pt+m-+tv 0 0 0
b sb b 5b
m(p+m+v)—p3 m m(u+m+v)—Bb  m
-1 1 1
4 oI - B) 1 1
ygm Ygm
m(u+m+v)—p3 9 m(p+m—+v)—p_ g
— —1 6vb ovb
5 Tc =p(C(I—-B)™") r (e mr o) —BY] r T et mto) 58]
6 Y, = —L — r(m(pt+m+v)—pBb) r(m(u+m+v)—pBb)
T EI G mg(p+m+v)—gBb+~bs mg(ptm+v)—gBbtbd
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Given targeted parameter r is located in different entries of the corresponding NGM of each
scenario (step 1) and leading to different target and residual matrices (step 2 and 3), the target
1

reproduction number in both cases is identical (step 5). Moreover, in both cases, f(r) = -

(step 2). From (5.1), we have

_ _ 1 o
= [0y )~ T (step 6), where f~'(r) = 1.

* A different decomposition for K

Note that we can consider another decomposition for the Jacobian matrix (6.8), where FLP growth
rate g is regarded as transition, whereas the shedding rate  is assumed to be new infectious. Under

these assumptions, matrices F, V and K are defined as

% % p+m+v 0
F = , V= ,
v 0 0 r—g
and
Bb ob
m(p+m+v) m(r—g)
K =
b 0
ut+m-+v

If we target r, then the target matrix C' and residual matrix B are

5b Bb
O m(p+m+v) !
1 m
C = and B =
T—g fy
_— 0
0 0 pryr——
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Thus, the corresponding target reproduction number is

To = O = B)) = e e oy =] >

1
Substituting (5.8), f(r) =
,

1
and f~!(r) = = 4 g as expressions defined in (5.1), give rise to

__r _rmpt+m+tv)—pb)
) mg(p+m+v) = gfb+ b

(5.9)

Notice that while 7> and f(r) provided in (5.8) are not the same as their counterparts in 5.4 (steps
2 and 5), the corresponding ), to all scenarios are the same. This implies that calculating ), is

independent of the the decomposition of NGM K.
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CHAPTER 6: A NEW METHOD FOR CONTROLLING THE SPECTRAL
BOUND

Over the past several years, a substantial amount of work has been done to develop effective
disease control strategies on the epidemiological disease models. Generally, such strategies target
particular entries of the next generation matrix K of the disease models to bring the basic reproduction

number Ry = p(K) to the threshold value 1.

The objective of this work, is to impose disease control strategies directly to the entries of the

jacobian matrix J rather than the ones in the next generation matrix /.

As it will be discussed in the next Section, the disease control strategies that determine the efforts
to bring R, to the threshold value 1, are exactly the ones that make the determinant of the jacobian

matrix |J| equal to 0.

6.1 Motivation
Let A = [a;;]nxn such that o(A) is the set of eigenvalues of A. Let p(A) be the spectral radius of
A, then

p(A) = max{|\| : A € 6(A)}.

Let s(A) be the spectral bound of A, then

s(A) = max{ReX: A € 0(A)}.
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Matrix A is called essentially non-negative if A has a non-positive spectral bound, i.e., s(A4) < 0.

That is, A is essentially non-negative, if a;; > 0 for ¢ # j.

Proposition 6.1. Let A = [a;;] be an irreducible and essentially non-negative matrix. Then, the

spectral bound of A is an eigenvalue of A. That is, Ax = s(A)x for some x € C™.

Proposition 6.2. Let J = F — V be a jacobian matrix with the non-negative matrix F' and the
non-singular M-matrix matrix V. Suppose K = FV ™! is a non-negative next generation matrix
where Ry = p(K). Then,

Ry=1 < s(J)=0.

The following result, which is the direct implication of Propositions 6.1 and 6.2, highlights the

relationship between R, and the determinant of .J.

Lemma 6.3. Let J = F' —V be a jacobian matrix such that F' is a non-negative matrix and V' is a
non-singular M-matrix matrix. Suppose K = FV ~! is a non-negative next generation matrix with
Ry = p(K). Then,

Ry=1 << |J|=0.

Proof. Let Ry = 1. Thus, by Proposition 6.2, s(J) = 0. On the other hand, by the assumption J
is essentially non-negative. Following Proposition 6.1, this implies that s(./) = 0 is an eigenvalue

of J. Thus, |J| = 0. O

Definition 6.1. Let p* > 0. Parameter p* is called the pivotal index, if it measures the required
effort to bring the value of the determinant of the jacobian matrix J to 0 by targeting a particular

parameter in J. That is,

where J(p*) is the controlled jacobian matrix, and is a function of p*.
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Remark 2. The above definition on the pivotal index p* can be extended to targeting a set of

parameters in J.
Remark 3. The pivotal index p* also works for situations where parts of entries of J are targeted.

Remark 4. The same effort that makes the determinant of J, is the same effort that bring Ry, to the

threshold value 1. Thus,
Ry

o 1 < |J(p")|=0.

In the following Section, we elaborate the role of p* in the connection with the jacobian matrix in

details. Specifically, we provide a technique to compute p* from the jacobian matrix.

6.2 Method Description

In this Section, we first describe the general method to calculate the pivotal index p* that brings
the determinant of the jacobian matrix .J to 0. Then, we disclose some closed form formulas for a

special case.

General technique

Step 1. Decompose the jacobian matrix J as B + C' = B + pD, where:

p is the target parameter,

D is the p correspondence coefficient matrix,

C' is the target matrix, consisting of entries containing p, and

B is the residual matrix, consisting entries not containing p.
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Step 2. Derive the controlled jacobian matrix J(p*) from .J by replacing p with ﬁ. Thus,
p*

J(p*) =B+ ]%D.

Step 3. Find p* by solving det(B + - D) = 0.
p

Special case: rank(C) = 1

The method description in 6.2 to derive the pivotal index p* works for any target matrix C'. This
Section gives a more explicit expression for the pivotal index p* for situations when the rank of

target matrix C'is 1.

Before stating the main result of this Section and its corresponding implications, let us take a look

at the following result, which is a powerful tool to prove the primary result of this Section.

Proposition 6.4. Let A be n x n matrix, where rank(A) = 1. Then,
det(A+ 1) =1+ tr(A).

Proof. Let A = WAU~!, such that A = diag{vy,...,v,} is the matrix of eigenvalues of A, in
which the eigenvalues of A are the diagonal entries of A, and ¥ denotes the matrix of eigenvectors
of A, in which column i for 1 < i < n is the eigenvector associated to eigenvalue v; and ¥~!

exists. Since rank(A) = 1, matrix A has only one nonzero eigenvalue, i.e., v; # 0 and v; = 0 for
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1 =2,...,n. Thus,

det(A+ 1) = det(VAT! + o1
= det(V)det(A + I)det(¥~)
= det(diag{v, +1,1,...,1})
=1+v;

=1+tr(A).

Theorem 6.5. Let J be an n x n jacobian matrix such that J = B + C = B + pD, where

(i) C' is the target matrix associated to target parameter p, and D = [d;;] is the p correspondence

matrix with rank(C') = rank(D) = 1, and
(ii) B is the residual matrix, consists of entries not containing parameter p, with rank(B) = n.
Then, the pivotal index p* is given by

o= —p 2 (1) dy; By
det(B) ’

where B;; is the cofactor element of B obtained from omitting the ith row and jth column of B.

Proof. Tt follows from Step 3. in the method description of Section 6.2 that in order to compute

the pivotal index p*, it is required to solve det(B + %D) = 0 for p*. That is,
p
det(B + £ D) = det(B)det(I + L B~'D) =0,
p p
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where it follows from the fact that rank(B) = n, i.e., B! exists, and det(B) # 0. Thus,

det(I+LBD) = 0. 6.1)
P

On the other hand, as rank(D) = 1, rank(B~'D) = 1. Thus, by Proposition 6.4, equation (6.1)

becomes

f P 1 p i (—1)"d;;B;
—B " D)=1+~—tr(B ' D)=1+ — ,
p* ) P ( ) p* det(B)

0 = det(T+B™'D) = 1 + tx(
p

where B;; is the cofactor element of B obtained by eliminating the ¢th row and the jth column of

B. Hence,
5, (=1)"d;; By
det(B)

*

p =-p

The pivotal index p* in Theorem 6.5 works for any matrix D of rank 1. The following result
provides a derivation for the pivotal index p* when matrix D of rank 1 with one nonzero row (or

column).

Corollary 6.6. Let J be an n x n jacobian matrix such that J = B + C = B + pD, such

that parameter p and matrices C, B and D are satisfied in conditions (i) and (ii) in Theorem 6.5.

) ) di; #0 row j
Assume that D has one nonzero row at j. Thatis, D = [d;;] =

0 otherwise.

Then, the pivotal index p* is given by

(6.2)

where B;; is the cofactor element of B obtained from removing the ith row and jth column of B.
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Proof. From the method description in Section 6.2, to determine p*, solve det(B + %D) = 0 for
p

p*. Applying the Laplacian determinant expansion, the expansion of the determinant of B + %D

D
along the jth row is as follows:

dy  pdy; 4 d,; :
det(B—l—]%D) = (%erlj)Blj(—1)1“+(%+sz)sz(—1)2+ﬂ+~ : ~+(ppj+bnj)8nj(—1)"ﬂ =0.

Collecting all the terms with p* on the left side yields

]% N (~1)"dyBy = =Y (~1)"b,; By = —det(B).

i

Thus,
= PLilZ1)dy By
det(B) '

]

Remark 5. The result of Corollary 6.6 holds when matrix D has one nonzero column, i.e., column

J. In this case, the pivotal index (6.3) is an expansion along column j.

The pivotal index p* formula in Corollary 6.6 works when matrix D has only one nonzero row
(or column). The following result provided a derivation for the pivotal index p* when matrix D
contains only one nonzero entry. Since the following result follows directly from Corollary 6.6,

the proof is omitted.

Corollary 6.7. Let J be an n x n jacobian matrix such that J = B + C = B + pD, such

that parameter p and matrices C, B and D are satisfied in conditions (i) and (ii) of Theorem 6.5.
o ) dij #0  entry (i,])
Assume that D has one nonzero element at entry (i, j), that is, D = [d;;] =

0 otherwise.
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Then, the pivotal index p* is given by

(—1)™d;; By

det(B) ©3)

p =-D

where B;; is the cofactor element of B obtained from omitting the ith row and jth column of B.

6.3 Graph-Theoretic Interpretation

The previous Section used the matrix theoretic and linear algebraic results to formulate the pivotal

index p* This Section uses the graph theoretic technique to compute p*.

We first present the definition of the determinant by using the graph terminology, which is a

powerful too to establish the main results of this Section.

Let A = [a;;] be an n x n matrix. Denote D = D(A) as the corresponding weighted digraph of
A. Digraph D consists of n vertices which are labelled as 1, ..., n. An arc from vertex j to vertex
tfor 1 < 7,57 < nin D has a weight of a;;. Note that the weights of arcs in digraph D are not
necessarily positive. An arc is called a target arc, if its weight corresponds to the target parameter
in A. A subdigraph D is a digraph whose set of vertices is a subset of vertices of D, and set of
edges is a subset of set of edges of D. A linear-subdigraph L is a subdigraph of D that consists of
all vertices of D in which each vertex has in-degree 1 and out-degree 1. That is, linear subdigraph
L consists of all pairwise vertex-disjoint cycles in D. The product of the weights of the edges of L

is the weight w (L) of L. The number of cycles contained in £ is denoted by ¢(L).

The following definition gives the formulation of the determinant det(A) of the matrix A using the

linear subdigraphs of digraph of D(A).
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Definition 6.2. Let A be an n X n matrix. Then

det(A D"y (=1 Ew (6.4)

L

where the sum is all over linear subdigraph L of D(A).

The following result uses Definition 6.2 to provide an alternative way to compute the pivotal index

*

p.

Theorem 6.8. Let J be an n X n jacobian matrix such that J = B + C = B + pD, where
rank(B) = n and rank(C) = rank(D) = r for r < n. Then, the pivotal index p* satisfies the

following characteristic equation

Or Or—1 + o+ & -+ 09 = O, (65)

(pr) ()t p*

with

0= 3 (~ 1 (L),

Li

where the sum is over all linear subdigraphs L' of D consist of i target arcs of C.

When the rank of target matrix C'is 1, an explicit expression for the pivotal index p* can be derived

as follows.

Theorem 6.9. Let J be an n X n jacobian matrix such that J = B + C = B + pD, where

rank(B) = n and rank(C') = rank(D) = 1. Then, the pivotal index p* is given by

B (g
Yy(=1)Dw(d) ’

(6.6)

where the sums are over all linear subdigraphs ( and linear subdigraphs 1 of D that contain and
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do not contain target arc carrying p.

Proof. Since rank(C') = 1, the characteristic equation (6.5) in Theorem 6.8 becomes

A o=0, 6.7)
p
with

o1=> (=) Ww(¢) and gy=Y (=1)w(¥),

¢ 9
where linear subdigraphs ¢ and o contain and do not contain a target arc in C, respectively. Solving

the pivotal index p* from (6.7) results in

6.4 Application to a Homogeneous Cholera Model

Consider the following one-patch cholera model described as

S=b—BSI —6SW +aR — mS,
I =BSI+65W — (n+m+)1,

W =€+ gW(l—cW)—vW,

where S, [ and R compartments denote the number of susceptible, infectious, and recovered hosts,

respectively. The W compartment indicates the free living pathogens (FLP). Parameters b, m and n
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denote the birth rate, natural death rate and diseased induced mortality rate, respectively. Parameter
~ represents the recover rate. The environment to host and the host to host transmission rates are
denoted by ¢ and 3. Parameters &, g and v are the shedding, growth and decay rates of pathogens
in the environment, respectively. Assume that the pathogens cannot survive in the absence of the

cholera infection, thus, v > g.

The jacobian matrix .J of the system at the disease free equilibrium is given by

R—(y+m+n) 2

J= , (6.8)
§ g—v

In what follow, we implement different disease control strategies to have the spread of cholera
under control. Mathematically, these strategies target a particular parameter (or a set of parameters)

in the jacobian matrix in (6.8) to bring the determinant of J to the threshold value 0.

Reduction in the host-to-host contact

The spread of cholera can be controlled by reducing the contact between the susceptible and
infected individuals. Mathematically, this practice targets parameter /3, which is part of the entry

(1,1) of (6.8).

Following the method description in Section 6.2, the target matrix C' and the residual matrix B are

given by

|
(@)

m —(y+m+n) 2
c=p =: D and B = ,
0 0 19 g—v

where D denotes the 3 correspondence coefficient matrix. The pivotal index p* measures the
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required reduction in the contact rate between susceptible and infected individuals. Since rank(D)

1 with one nonzero entry, by Corollary 6.7 the pivotal index p* is given as

e 5y — )
P - - &

00 m(y +m 4 n)(g —v) + 0bE ©9)

This implies that the effective quarantine practice decreases the host to host contact by fraction p*
provided in (6.9). Thus, é replaces p* in (6.8).
p*

Reducing both the environment-to-host and the host-to-host transmissions

In areas where cholera outbreak is serious one effective way to have the spread under control is to
promote vaccination among newborns. Such control strategy targets parameter b, which appears in

entries (1,1) and (1, 2) of (6.8). Thus, the target matrix C' and the residual matrix B are given as

3=
|

—(y+m+n) 0
=bD and B =

e}
e}

£ g—v
where D is the b correspondence coefficient matrix. The pivotal index p* determines the required

vaccine coverage to have cholera under control. Since rank(D) = 1 with a nonzero row, following
Corollary 6.6 the pivotal index p* is

pr = LD =)+ FEDTIE by~ v) - 6]
—(y+m+n)(g—v)

S mly+m+n)(g—v)

This implies that effective vaccination practices decrease parameter b in (6.8) to —.
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Reduction in the shedding rate

In addition to the above mentioned strategies, one factor to prevent cholera is to decrease the
bacterial shedding. Appropriate antibiotics are recommended to shorten the duration and volume
of diarrhoea and reduce the duration of the bacterial shedding. Such prevention strategies target
parameter £ which is located in entry (2, 1) of (6.8). Thus, the target matrix C' and the residual

matrix B are described as

C=¢ =¢D and B = ,

where D is the £ correspondence coefficient matrix. The pivotal index p* determines the effective
reduction in bacterial shedding to prevent cholera. Since rank(D) = 1 with one nonzero entry,

following Corollary 6.7 the pivotal index is given as

P = §5Y (6.10)

(Bb=m(y+m+v))(g—v)

which implies that the appropriate antibiotics could reduce transmission and interrupt the outbreak

_ h—
by reducing the shedding rate from & to < = (g =15 67;”2(7 +m+v)]
p*
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6.5 Application to a Heterogeneous SIS Model

Consider the following jacobian matrix of a SIS model as follows

Br—m — Z a1 Haio cee Ha1n
i#1
Hag1 B2 —v2 — Z (07 R Haon
J = diag{Bi—yi}—pL = i#2 7
i1 [ oo B =Y — Y Qi
i#En

(6.11)
where v; > 0 denotes the recover rate of the infected individuals in patch ¢, 8; > 0 represents the
contact rate between susceptible and infected individuals in patch 7, and a;; > 0 is the movement
from patch j to patch i for 1 < 4,5 < n and i # j. Parameter u > 0 denotes the dispersal rate of

the susceptible and infected individuals.

In the remaining of this Section, we consider different disease control strategies.

Reducing the movement between two particular patches

One way to have the spread of the infectious under control is to reduce the movement from patch [
to patch k, for £ > [, by imposing the practice of social distancing. This strategy targets parameter
ag;,which is located in entries (k, k) and (k, ) of the jacobian matrix (6.11). The pivotal index p*
determines the effective quarantine practice applied to ay; to control the spread of the infectious.

Following the method description in Section 6.2, the target matrix C' has two nonzero entries as
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follows

0 0 0 0 0 0
(L,Dentry (L,)entry
—— ~~
0O ... O —lagg 0o ... 0 0o ... O — o ... 0O
cC=1: : : =ay | : : : =:ayuD,
0o ... 0 Hak o ... 0 0o ... 0 ”w o ... 0
N~~~ ~~
(k,)entry (k,)entry
0 0 0 0 0 0

where D is the coefficient matrix associated to ay;. Similarly, by the method description in
Section 6.2, the residual matrix B obtained from the jacobian matrix in (6.11) by eliminating

parameter a;;. Thus,

Br—m—pd an ... Haye HaA1n
i£1
(£,0)entry
Hag Be*’%*uzaw Hagn
i%k,L
B =
pakl e 0 K Hakn
(k,)entry
Han1 Hany v Bu—ym —p 2 ain
i#En

It can be observed from equation (6.5) that rank(D) = 1 with one nonzero column at column /.

Thus, from Corollary 6.6 the pivotal index p* is given by

(_1)€+€BM + (_1)k+€BM
det(B) ’

p* = page (6.12)

where By, and By, are the co-factor matrices of B. To control the disease spread effectively,

the movement from patch ¢ to patch k should be decreased by the pivotal index provided in
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equation (6.12).

Reducing transmission rate of a particular patch

One way to reduce the spread of the disease is to bring down the contact between the susceptible
and infected individuals in one patch, i.e., patch £. Such control strategies target parameter [,
which is located partially in entry (¢, /) of the jacobian matrix in (6.8). Following the method
description in Section 6.2, the residual matrix B is obtained from J in (6.8) by omitting 3, from

entry (¢, (), and target matrix C' only consists of 3, at entry (¢, ¢). Thus,

Br—m—p D ain ... pale pain
i£l
(£,0)entry
B = pag Y= Y A Haen
%k,
Hanl 2227 cor Bn—n —p Y ain
i#n
and
0 0 0

C=1o ... g ... o =:06,D,

o ... 0 ... O
where D is the 3, associated coefficient matrix. The pivotal index p* determines required reduction

in the contact between the susceptible and infected individuals in patch ¢.
Since D has only one nonzero entry, by Corollary (6.7), p* is computed as follows

* Bf(_]'y—%BM
P= " aet(B) @19
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where By is the co-factor matrix of B obtained by eliminating row ¢ and column ¢ of B. This

implies, to constructively control the spread of the disease (5, becomes B—f for p* given as in (6.13).
p

Reducing the movement rate in all patches

One way to have the disease under control is to reduce the movement rate among all patches.
Mathematically, such control strategies target parameter p in the jacobian matrix J of (6.8), which

is located in all entries of J.

To compute the pivotal index p*, which is the required effort to bring down the movement rate
among all patches, we are required to construct the residual matrix B and the target matrix C.
Following the method description in Section 6.2, B and C' are generated from .J by excluding

parameter p and including i, respectively. Thus,
B = diag{f; — v}, and C = —pulL, (6.14)

where L is the Laplacian matrix associated to the movement in the system, and, rank(L) = n — 1.
Consequently, the rank of target matrix C' is not 1. Thus, to compute the pivotal index p*, none of
the closed form formulas, i.e., Theorem 6.5, Corollary 6.6 and Corollary 6.7 works. However, one

can compute p* by following the general technique in Section 6.2.

In the remaining, we investigate the pivotal index p* for each disease control strategy described
above for the special case of jacobian matrix J in (6.8) with two patches. Additionally,for each
scenario the graph theoretic interpretation approach, as described in Section 6.3, is applied to

compute the the pivotal index p*.
Note that both the algebraic formulation and the graph interpretation method lead to the same p*
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value.

Application to a Two-Patch SIS Model: A Special Case

Consider a special case of the jacobian matrix of (6.8) with two patches. That is,

J— B1 — 71 — pasg Haig 7 6.15)

Haoy P2 — 2 — paz

where all the parameter descriptions are exactly the same as the ones in Section 6.5.

Reducing the movement from patch 1 to patch 2: Target as;

Closed form formula The target parameter ay; appears at entries (1, 1) and (2, 1) of the jacobian

matrix in (6.15). By the method description in Section 6.2, the residual matrix 5B and the target
matrix C' are given as

B1—7 a —pas; 0 —u 0
B = ! ! — and C = pa = Q921 s = CLQlD

0 Pa — 2 — paiz pagr 0 po 0

where D is the coefficient matrix associated to ag;. It can be observed that rank(D) = 1 with
one nonzero column at column 1. Thus, from equation (6.3) in Corollary 6.6 the pivotalindex p* is
given by

(=D (=p)(Ba = 72 — parg) + (=1)"?p(pass) paz (B2 — o)

b= (B1—71)(B2 — 72 — pasz) N (B1 = ) (B2 = 72 — paiz)

(6.16)

This implies that effective quarantine practice reduces the movement from patch 2 to patch 1 by
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C e a
factor p*. This implies that ay; becomes %
p

Graph theoretic interpretation Consider the following weighted digraph corresponding to the jacobian

pazy
B1—m 3 : : ?52—"12—ua12
—pa21 Qa2

where the red arcs correspond to those containing target parameter a;. Following Theorem 6.9,

matrix of (6.15) as

the pivotalindex p* is given by

P = M2&12@21(—1)1+1 + (—M@m)(ﬁQ — Y2 — Mam)(_l)HQ _ Mam(ﬁz - ’72)
(51 - 71)(52 — Y2 — HCZ12) (51 - 71)(52 — 72— ,U@12)

(6.17)

where the numerator is the sum over linear subdigraphs consisting target arc as;, and the denominator

is the sum over linear subdigraphs not consisting target arc as;.

As it was expected, p* value from the algebraic formulation, equation (6.16), is equal to the graph

interpretation approach, equation (6.17).

Reduction in the transmission rate in patch 1: Target (3,

Closed form formula The target parameter /3, appears only at entry (1, 1) of the jacobian matrix

of (6.15). From the method description of Section 6.2, the target matrix C' and the residual matrix
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B are described as

G 0 —Y1 — Ja a
c_ 1 _. 8D and B— 71— Ha21 Haiz ’

0 0 Haoq Ba — Y2 — pa12

where D is the coefficient matrix associated to /3;. Since rank(D) = 1 with one nonzero entry, by

Corollary 6.7, the pivotalindex p* is as follows

b= 8 (=)™ (By — 72 — payy) _ B1(Ba — y2 — para)
! (Ba — 2 — par)(—y1 — pagr) — p2aiaao; (B2 — 72 — paiz)y1 + pagi (B2 — 72)7

(6.18)

which determines the required decrease in the transmission rate in patch 1. That is, ﬁ—i replaces p*
p

in the jacobian matrix of (6.15).

Graph theoretic interpretation Consider the the following weighted digraph associated to the jacobian

matrix of (6.15) given as

Haz1
—71 — pazi B2 — v2 — paiz

B

paiz

where the red arc correspond to the target arc 5;. By Theorem 6.9, the pivotal index p* is the
negative of the sum of all weighted linear sub digraphs that contain ; over the sum of all weighted

linear sub digraphs that do not contain ;. That is,

P = Bi(B2 — 72 — paga) ‘ (6.19)

(B2 — 72 — pai2) 1 + pagi (B2 — 72)

It can be seen from equations (6.18) and (6.19) that both the graph interpretation approach and the
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closed form formula result in the same pivotal index p* value.

Decrease in the movement rate between both patches: Target |

Closed form formula The target parameter ;4 appears in every entry of the jacobian matrix of (6.15).

Thus, by the method description in Section 6.2, the residual matrix B and the target matrix C' are

described as

B Bi—m 0 and O = —Haz  flan2 . —ag g D,

0 B2 — 72 pagr —HG12 21  —aig

where D is the u associated coefficient matrix with rank(D) = 1. Thus, by Theorem 6.5 the

pivotal index p* is as follows

P =— —paz (B2 —y2) — pa(fi — 1) _ ag (B2 — v2) + a2(B1 — M)
(51 - 71)(52 - ’72) s (51 - 71)(52 - 72) '

(6.20)

This implies that to successfully have the spread of the disease under control, the movement rate
of both patches should be decreased by factor p*. That is, . becomes Hin the jacobian matrix
p*

of (6.15).

Graph theoretic interpretation Consider the the following weighted digraph associated to the jacobian

matrix of (6.15) given as
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pazi
B1—m B2 — 72

—Ha21 pais —Ha12

where the red arcs corresponds to the the target arc consisting ;. By Theorem 6.9, the pivotal index

p* is described as

o= —pars(Br — 1) (—=1)? = pan (Bs — 7o) (—1)? _ ’ualg(ﬁl — 1) +an(Bs —72)
(Ba = 72)(B1 — 1) (—1)? (B2 =7)(Br—m) 7

(6.21)

where the numerator consists of the linear subdigraph including target arc y, and the denominator

consists of all linear subdigraphs excluding the target arc .

It can be verified from equations (6.20) and (6.21), that the pivotal index p* is the same for both

techniques.
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CHAPTER 7: SUMMARY AND FUTURE WORK

This dissertation primarily investigates the architectures of heterogeneous networks and how they
impact population and disease dynamics in ecological and epidemiological models. We developed
an expansion for the network population growth in ecological models, which can also be applied
for the network disease growth rate and the basic reproduction number R, in epidemiological
models. Notice that two different expansions for the same R, are derived, which involve group
inverse matrices corresponding to two Laplacian matrices different by a product of a diagonal
matrix. A possible future work is to investigate the group inverse of the product matrix of a
Laplace matrix and a diagonal matrix as this has potential applications in spatial heterogeneous

population dynamics.

We have focused our applications on two specific networks (path and star) due to the time strain,
and further studies of other network configurations would be of both practical interests and theoretical

needs in order to apply results in the dissertation to real world problems.

Our new indices and methods in controlling the spectral bound and spectral radius of matrices can

be further applied to other ecological, epidemiological, engineering and scientific problems.
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APPENDIX A: TREE CYCLE IDENTITY
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Let G = (V, E) denote a weighted digraph with V' = {1,2,--- n} be the set of vertices and F the
set of arcs (7, j) with weight a;; > 0 from initial vertex j to terminal vertex i. Define the weight
matrix A = [a;;]nxn Whose entry a;; equals the weight of arc (4, j) if it exists, and 0 otherwise.
We denote a weighted digraph as G4 = (G, A). A digraph is strongly connected if, for any pair
of distinct vertices, there exists a directed path from one to the other.The Weighted digraph G4 is
strongly connected if and only if A is irreducible. A sub-digraph H of G is spanning if both H and
G have the same vertex set. The weight w(H) of H is the product of the weights of all its arcs. A
connected sub-digraph 7T is called a tree, if it contains no directed cycle. A tree is called rooted-in,
if there is one vertex, called the root, that is not an initial vertex of any arcs while each of the
remaining vertices is an initial vertex of exactly one arc. A sub-digraph Q of G is unicyclic ,if it is
a disjoint union of rooted-in trees whose roots form a directed cycle. Every vertex of unicyclic Q

is an initial vertex of exactly one arc. The Laplacian matrix of (G, A) is defined as

L= dlag(z a;1, Z(IZ’Q, s ,Z(lm) — A, (Al)

i#1 i#2 i#n

with = (61, --- ,0,)" be the positive, normalized principal right eigenvector of L. It follows from

Kirchhoff’s Matrix-Tree Theorem that 6; = Zn—c; C;; 1s the cofactor of the i-th diagonal entry
k=1 “kk

of L and is interpreted as C;; = ZTeTi w(T) where T; is the set of all spanning-in trees rooted at

vertex i, and w(7) is the weight of 7.

Theorem A.l1. (Tree-Cycle Identity) Let G4 be a strongly connected weighted digraph, and [ =
;] be the corresponding Laplacian matrix of G4 with @ = (01, - - ,0,) " be the positive, normalized

Perron right eigenvector of L. Then, the following identities holds

Y baF(w, ) =Y w(@Q) Y Fr(w, @),

ij=1 QeQ (s,r)EE(CQ)

where Fj;(x;, x;),1 < j,i < n are arbitrary functions, Q is the set of all spanning unicycle graphs
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of (G, A), w(Q) > 0is the weight of Q, and Cg denotes the directed cycle of Q with arc set E(Cg).

Corollary A.2. Let 0; and a;; be given as above, then the following identity holds and

Z QjajiGj(xj) = Z ejajiGi(xi)a

,j=1 ,j=1

where Gj(x;),1 < j < n are arbitrary functions.
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APPENDIX B: THE GROUP INVERSE OF LAPLACIAN MATRIX
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Preliminaries

Lemma B.1. [5] Let M € R", then there exists a non-negative integer k such that
R™ = ker(M*) @ range(M*).

Proof. By the rank-nullity theorem dim(ker(M*)) + dim(range(M*)) = n . To complete the
proof we show if z € ker(M*) N range(M*), then x = 0. Let k be the smallest non-negative
integer such that rank(M) D rank(M?) D ---rank(M*) = rank(M**!) = ...; equivalently
ker(M) C ker(M?) C - --ker(M*) = ker(M**!) = .... Now suppose = € ker(M*)Nrange(M*),
then, there exista y € R™ such that Mz = y, thus M*y = A%z = 0, s0y € ker(M?*) = ker(M*),

sox = 0. L]

The smallest non-negative integer k such that rank(M*) = rank(M**!) or equivalently R" =

ker(M*) @ range(M*) is called the index of M and denoted by ind (M ).

Let M € R" be a singular matrix of ind(M) < 1. Then, the group inverse of M denoted by

M# € R" is a unique matrix satisfying the three equations

MM#* = M#*M, M*MM?* =M% and MM*M = M.

Now, we will proceed to prove some of properties of the group inverse that will be used later.

Lemma B.2. Let M € R", such that Ind(M) = 0 then the followings hold
(a) 0 is an eigenvalue of M if and only if it is an eigenvalue of M.

1
(b) \ # 0 is an eigenvalue of M if and only zfx it is an eigenvalue of M.
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Proof. (a) Let 0 be the gienvalue of M, and v be its 17 corresponding eigenvector, then Mv = 0.
0= Muv=M*M*Mv=M#*MM#*v=M*v.

(b) Let A # 0 and v be the eigenvalue and eigenvector of A. Since v € range(M ), then there exist

w € R™ such that Mw = v.

Mo =M < M*Mv=\M"y <— MM*v=\M"v
— MM"Mw = \M7"y <—

1
Mw = \M7y < v=\M"y < XU:M#U

]
Theorem B.3. Let M € R™ of ind(M) < 1 with rank(M) = n — r, and let Py be a projection
matrix onto ker(M ) along range(M) with rank(FPy) = r. Then (M — P,) is nonsingular and
M# =R+ (M~ R)™".

In addition, if rank(M) = n — 1, then Py = uwv" where v' M = Mu = 0and v'u = 1.

Proof. We first show (M — F,) is nonsingular, by showing M P, = 0 For matrix M of index
1, range(A) Nker(M) = 0. Thus range(M ) and ker(M) are complementary spaces, and R" =
range(M) @ ker(M). Since P, is a projecion matrix onto range(M ), it sends range(M) to 0.
In other words p; denote the jth column of P, then p; = v; + w; where v; € range(M) and

w S ker(M), then P()(Uj) = (0 and Po(w]') = wjy.
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Now, let M, for j = 1,--- ,n be columns of matrix A. As columns of A are in range of M,
A; € range(M), then it follows Py (M) =0for j =1,--- ,n, giving FyA = 0.
Conversely, as I is a projection matrix onto Ker(M ), its columns are in the Ker(M), i.e. p; €

Ker(M), hence M (p;) =0forj=1,--- ,n,thus M P = 0.

Now, we show M — P, is nonsingular. To do so, we we show (M — Py)x = 0 has a solution if
and only if + = 0. (M — Py)x = 0 if and only if Mz = FPyx. This means Mz € range(M)
and Mx € ker(M)(as Pyx € ker(M)), hence Mz = 0, therefore x € ker(M). On the other
hand, Pyx = 0, this implies that x € range(M), so x = 0. So M — P, is nonsingular, and

M(M — Py)™' = (M - Py)~'M.
For M# to be the group inverse of M, three properties of group inverse must hold.
« M#¥M = (Py+ (M — Py))™ )M = PoM + (M — Py)™'M = 0+ M(M — P)™! =
MPy+ M(M — Py)) ™t = M(Py+ (M — By)™') = MM#
e MM#M = M(Py+ (M — Py)) " YM = M(M — Py))*M = (M — Py))*M*=M

« M¥FMM#* = (Py+ (M — By)) )YM(Py+ (M — By)™') = (M — Py) "M (M — P))~ =
(M = Po) ' (M = Po) + Po)(M = Py) ™' = (M — By) ™' + Py = M7
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APPENDIX C: FURTHER PROPERTIES OF LAPLACIAN MATRIX
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Let L be a Laplacian matrix of a directed graph G of order n. Suppose that G is strongly connected;
namely, L is irreducible, and rank(L) = n — 1. As a consequence, L has a simple eigenvalue 0,
with corresponding left eigenvector 1 which is the all ones column vector of dimension n and right

(normalized) eigenvector § = (0y,0,,...,0,)" with >..0; = 1. Thatis, 1L =0,L6 =0, and

0(0"
176 = 1. Thus, L can be be partitioned as L = P P!, where P, and Cin-1)x(n—-1)
0| C
are non-singular matrices, and 0 is a zero vector of dimension n — 1. Simple calculations result in
00"
[*=P P~!, Hence, rank(L) = rank(L?) = n — 1, equivalently, ind(L) = 1, so the
0]C?

group inverse L# of L is well-defined and unique. The following lemma provides several related

properties of L#, which will be used throughout the paper.

Lemma C.1. Let L be an irreducible Laplacian matrix and L* be its corresponding group inverse,
then

1.1"TL#=1"TL=0.

2. Ifu € ker(L), then L¥u = Lu = 0.

3. Ifu € range(L), then LL#u = L¥ Lu = w.

4. L#* =017 + (L —01")7Y, where § € ker(L) and 170 = 1.

5. L=01"+(L* —017)"".

6. LL¥ =1—01",

Proof. 1. It follows from the properties of the Laplacian matrix that 0 = 1" L. Now,

1T0#* =1TL#LL* = 1T LL#¥L¥ = 0.
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2. Ifu € ker(L), then Lu = 0. Thus L#u = L¥ LL#u = L#*L¥ Lu = 0.

3. If u € range(L), then there exists w € R" such that Lw = u. Hence, LL#u = LL# Lw =

Lw = u.
4. It is the direct result of Theorem B.3 (See Appendix) with ) = 1T@and M = L.

5. Tt follows from part 4. L# — 170 = (L — 176)"'. From Theorem B.3, (L — 170) is

nonsingular, so (L# —170)"' =L —1"0,and L =170 + (L* — 170).

O
From the hypotheses on L, it is easy to see that L may be partitioned as
12| -1"B
L= : (C.1)
—z B
where B is an (n— 1) x (n — 1) invertible matrix, u; is the first entry of u, 4 = (ug, ..., u,) ", 2z =

1 _
— B, and 1 is the all ones column vector of dimension n — 1. It follows from Observation 2.3.4
Uy

in [10]: From the hypotheses on L, it is easy to see that L. may be partitioned as

1"z |-1"B
I — (C.2)
—Zz B
Thus, the group inverse of L denoted as L is as follow:
0 ‘ —Ul]_lTB_l
L#* = (1"B ' a)ul " + (C.3)
—B ' | B'- Bl —al'B™!




APPENDIX D: TWO SPECIFIC NETWORKS
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D.1 Star Network

Consider a star network with vertex 1 as the hub, and 2, 3, ..., n as leaf vertices. Assume that all
movement coefficients between adjacent vertices are the same and equal to 1, then the resulting

Laplacian matrix can be written as the form of

n—-—1 -1 -1 --- —1

-1 1 0 0

L= —1 0 1 0
-1 0 0 1

nxn

Following the partition in (C.2), set B = I,,_4, i.e., the identity matrix of order n — 1, u =
(£,4,---, )7, and z = 1. Straightforward calculations yield B! = I,_;, 1"B~'u = 2=,
ul" =1J,,and B~ — B7'al" —al"B~! = 2 (nl,_; — 2J,,_;), where J is the all ones matrix

(i.e., every entry of J is 1). As a consequence,

1 [0 ‘ -
n_
LF = —=Jnt :
n —
—1 nIn_l — 2Jn—1
that is,
0 -1 -1 -1
1 n-2 -2 _9
T T [ A N U
A=l AT = . (D.1)
" o1 -2 -2 n-2 -2 —9
1 -2 -2 -2 ... -2 pn-2
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Note that each column sum of the matrix in the second term has the same value —n + 1.

1 -1 11 0 -1 1 -1
11 1 1
Whenn =2, L = andL#:§.§ +3 —1
-1 1 11 -1 0 -1 1
2 -1 -1
Whenn=3,L=1]| -1 1 0 | and
-1 0 1
1 11 0 -1 -1 2 -1 -1

3 -1 -1 -1
-1 19 -6 -6 -6
-1 11 -5 -5
Forn:4,L#:% .Forn=5,L#=% -1 -6 19 -6 -6
-1 =5 11 -5
-1 -6 -6 19 -6
-1 -5 =5 11

D.2 Path Network

Consider a path network with vertices labeled 1,2, 3,...,n consecutively located along a line,

and assume that all movement between adjacent vertices are the same and of weight 1. The
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corresponding Laplacian matrix takes the form of

1 -1 0
-1 2 -1
0o -1 2
I =
0 —1
0 --- 0
Following the partition (C.2), set z = 1, u = (£,
2 -1
-1 2
B =
-1 2
0 -1
It can be verified that
1111
1 2 2 2
1 2 3 3
Bl =
1 2 3 4
1 2 3 4
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Whenn:él,L#:%

Whenn =5, L# = 1

—4
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