University of Central Florida

STARS

HIM 1990-2015

2013

Explaning the effects of unionization on unemployment at the state level

Matthew Robin University of Central Florida

Part of the Economics Commons Find similar works at: https://stars.library.ucf.edu/honorstheses1990-2015 University of Central Florida Libraries http://library.ucf.edu

This Open Access is brought to you for free and open access by STARS. It has been accepted for inclusion in HIM 1990-2015 by an authorized administrator of STARS. For more information, please contact STARS@ucf.edu.

Recommended Citation

Robin, Matthew, "Explaning the effects of unionization on unemployment at the state level" (2013). *HIM 1990-2015*. 1457. https://stars.library.ucf.edu/honorstheses1990-2015/1457

EXPLANING THE EFFECTS OF UNIONIZATION ON UNEMPLOYMENT AT THE STATE LEVEL

by

MATTHEW DOUGLAS ROBIN

A thesis submitted in partial fulfillment of the requirements for the Honors in the Major Program in Economics in the College of Business and in The Burnett Honors College at the University of Central Florida Orlando, Florida

Spring Term 2013

Thesis Chair: Dr. Melanie Guldi

ABSTRACT

Many researchers have attempted to find a concrete link between unionization and unemployment. I use panel data regression and simultaneous equation regressions to determine the relationship between unionization and unemployment. Regressions were run on equations which featured private sector and public sector unionization. A separate regression featured public sector unionization but replaced private sector unionization with unionization in the construction industry and manufacturing industry. In all sets of the equation, the unionization variable was also accompanied by a corresponding location quotient, which measures industrial concentration. Both sets of equations also contain and interaction term which test the interaction between unionization and industrial concentration.

The project produced surprising conclusions. I did not expect the unionization variable and the interaction term to produce different signs in front of their respective coefficients. This only applied to those results in which the unionization variable and interaction term was statistically significant. Also, in many equations the unionization variable proved to not be statistically significant. This can easily be seen in the equations which featured unionization of the construction industry. Another surprising result involves the minimum wage variable. Recently, scholars who study minimum wage have found no statistically significant effect of minimum wage on unemployment. Results I found support this conclusion and may shed light on the debate over minimum wage.

DEDICATIONS

For Susan and Steven Robin, my parents, who always believe in me.

For my grandparents, Rita and Philip Podel, who provide me inspiration every single day.

For my teachers and professors who have given such immense knowledge throughout my schooling.

And for my friends who constantly support me during this tumultuous journey.

ACKNOWLEDGEMENTS

I want to thank Dr. Guldi who has provided me invaluable guidance, direction, and support throughout the writing of this thesis. I also want to thank my thesis committee members Dr.

Scrogin and Dr. Li, both of whom have lent much assistance.

TABLE OF CONTENTS

Chapter 1: Introduction
Why Unions1
Literature Review
Unions2
Industrial Diversity
Minimum Wage7
Contributions
Chapter 2: Data
Sources
BEA
Minimum Wage
Unemployment
Unionization
Median Income
Chapter 3: Methods
Regression Model
Panel
Panel Regression
Simultaneous Equation Regression
Fixed Effects
Econometric Issues
Heteroskedasticity
Autocorrelation
Multicollinearity
Endogeniety
Predictions
Alternate Panels

Clustered Standard Errors
Right to Work
NAFTA
Chapter 4: Results
Regression Equations
Table 1
Table 2
Table 3
Table 4
Chapter 5: Conclusion
Explanatory Variables
Unionization
Location Quotient
Interaction
Alternate Panels
Right to Work
NAFTA
Final Thoughts
Equation 2
Further Research Questions
Appendix
Reference Page

Chapter 1: Introduction

Why Unions

While looking at various statistics of the U.S. economy, one aspect that interests me is the variation in state level statistics. Some states record unemployment rates much higher or lower than other states. This phenomenon suggests that other factors affect state level economic statistics besides national policies and trends. Unions interested me because its institution may affect state unemployment rate. Current news frequently mentions the importance of unions in politics and the economy. The governors of Wisconsin, Ohio, Indiana, and New Jersey all decry the power of unions and the negative effects they place on each respective state. In Wisconsin, Governor Scott Walker even faced a voter recall due to his attempts to limit the power of public sector unions. As Washington D.C. remains gridlocked, our federalist system allows states to craft policies to shape their destinies. Will limiting unionization assists states in creating better outcomes for its citizens?

Although one may argue both private and public sector unionization follow a national trend, variation in state unionization rates proves these numbers holds potential explanatory power to the question of variation in state level statistics. Determining the factors that affect state level statistics will give policymakers useful information regarding crafting effective public policies. Understanding the actual affect of unionization on the economies of the U.S. states sheds light on an important issue in current affairs. The purpose of this research is to examine the potential effect of unionization on state level statistics like unemployment.

1

Literature Review

Unions

The basis of this research project can be found in the work of Lou Pantuosco. He undertook three important studies examining the effect of unionization on state unemployment rates which will be referred to as Pantuosco et al (2001), Pantuosco (2002), and Pantuosco and Seyfried (2008). He used regression analysis by employing the simultaneous equation regression model to determine the effect of unionization on unemployment. Pantuosco used data from the U.S. Department of Labor, Bureau of Labor Statistics, Department of Commerce, Bureau of economic Analysis, United Slates Statistical Abstracts, Hirsh and McPherson, and Department of Labor, Employment, and Training Administration for all of his studies.¹ He also used the forty-eight contiguous U.S. states and the years 1978-1994 as parameters for Pantuosco et al (2001), Pantuosco (2002).² Pantuosco and Seyfried (2008) used the forty-eight contiguous states and included two time periods encompassing the years 1983-1996 and 1992-2005.³

Pantuosco et al (2001) differed from the other two by using six equations, paired two by two, for the simultaneous equation regressions. The equations in Pantuosco et al (2001) included unemployment, wage inflation, productivity, and gross state product, employment growth, and population growth as response variables.⁴ The other two studies, Pantuosco (2002), and

¹ Pantuosco, Lou, Darrell Parker, and Gary Stone, "The Effect of Unions on Labor Markets and Economic Growth: An Analysis of State Data," Journal of Labor Research XXII, no.1 (2001): 195-205

² Pantuosco, Lou, "Macroeconomic Differences in Public and Private Union Density: An Analysis of US State Economies, Review of Regional Studies 32, no. 2 (2002): 171-186

³ Pantuosco, Lou, William Seyfried, "The Effect Of Public And Private Unions On State Economic Activity: Evaluating The Benefits To Organized Workers, Policymakers, And Companies," Journal of Business & Economics Research 6, no. 2 (2008): 27-39

⁴ Pantuosco, Lou, Darrell Parker, and Gary Stone, "The Effect of Unions on Labor Markets and Economic Growth: An Analysis of State Data," Journal of Labor Research XXII, no.1 (2001): 195-205

Pantuosco and Seyfried (2008), both used simultaneous equation regression but used only four equations paired two by two. The new collection of simultaneous equations tested four regression equations which included unemployment, wage inflation, productivity, and gross state product as response variables.⁵ The authors used simultaneous equation regressions to account for multicollinearity and heteroskedasticity and were paired two by two by similarity to account for endogeneity between the various dependant variables. The authors also used rates of change and lagged variables to mitigate and control autocorrelation as well as fixed effect and random effect.⁶

The most important difference in Pantuosco's three studies revolves around the specific unionization variable used in each study. In the 2001 project, Pantuosco used the total union membership as his main independent variable.⁷ He then adopts two measures of unionization, public and private unionization, instead of using the overall unionization statistic for his 2002 study.⁸ Pantuosco decided to recreate his 2002 study but use different and extended time periods for his 2008 work.⁹ These changes produced meaningful results in each project.

In Pantuosco et al (2001), the authors found that unions significantly increase unemployment rates and wage inflation while decreasing GSP growth and productivity. Unions

⁵ Pantuosco, Lou, "Macroeconomic Differences in Public and Private Union Density: An Analysis of US State Economies, Review of Regional Studies 32, no. 2 (2002): 171-186

⁶ Pantuosco, Lou, Darrell Parker, and Gary Stone, "The Effect of Unions on Labor Markets and Economic Growth: An Analysis of State Data," Journal of Labor Research XXII, no.1 (2001): 195-205

⁷ Pantuosco, Lou, Darrell Parker, and Gary Stone, "The Effect of Unions on Labor Markets and Economic Growth: An Analysis of State Data," Journal of Labor Research XXII, no.1 (2001): 195-205

⁸ Pantuosco, Lou, "Macroeconomic Differences in Public and Private Union Density: An Analysis of US State Economies, Review of Regional Studies 32, no. 2 (2002): 171-186

⁹ Pantuosco, Lou, William Seyfried, "The Effect Of Public And Private Unions On State Economic Activity: Evaluating The Benefits To Organized Workers, Policymakers, And Companies," Journal of Business & Economics Research 6, no. 2 (2008): 27-39

negatively and insignificantly affect employment growth.¹⁰ Using public and private unionization instead of overall unionization created new results in Pantuosco (2002). Pantuosco found huge differences in the effect public and private unions have on the economy. Increases in private unionization decreases employment and productivity while increases in public unionization employment increase employment. Neither affects wage growth and public unions increase GSP.¹¹ Using different time periods also lead to new results. Pantuosco and Seyfried (2008) found that unions yielded different effect on economic statistics depending on the time period. Increases in private sector unionization lowered productivity throughout the entire time period (1983-2005). Increases in public sector unionization lowered unemployment rates in the time period 1983-1996, but the effects diminished for the 1992-2005 period. Contradicting the results of the previous study, public sector unions may not have a positive effect on the economy, while private sector unions still have a negative effect.¹²

The unionization rate can be broken down one step further. Pantuosco broke down the overall unionization rate to public and private unionization.¹³ This project aims to break down the private sector term further. Hirsh and Macpherson recorded unionization rates for construction and manufacturing industries.¹⁴ Using these two unionization rates and the public sector unionization rates will bring more insight into how unions affect the economy. Izraeli and

¹⁰ Pantuosco, Lou, Darrell Parker, and Gary Stone, "The Effect of Unions on Labor Markets and Economic Growth: An Analysis of State Data," Journal of Labor Research XXII, no.1 (2001): 195-205

¹¹ Pantuosco, Lou, "Macroeconomic Differences in Public and Private Union Density: An Analysis of US State Economies, Review of Regional Studies 32, no. 2 (2002): 171-186

¹² Pantuosco, Lou, William Seyfried, "The Effect Of Public And Private Unions On State Economic Activity: Evaluating The Benefits To Organized Workers, Policymakers, And Companies," Journal of Business & Economics Research 6, no. 2 (2008): 27-39

¹³ Pantuosco, Lou, "Macroeconomic Differences in Public and Private Union Density: An Analysis of US State Economies, Review of Regional Studies 32, no. 2 (2002): 171-186

¹⁴ "Union Membership and Coverage Database from the CPS," *unionstats.com*, February 4, 2012, http://unionstats.com/

Murphy (2003), Mizuno et al (2006), and Mollick and Varella (2008) researched how industrial diversity, concentration of specific industries in a geographic setting, affected various economic statistics. I believe the inclusion of industrial diversity as an interaction term with the previously mentioned unionization rates adds on to the work previously completed by Pantuosco. This next section will review the literature behind the use of the location quotient and the study of industrial diversity.

Industrial Diversity

In researching state unemployment I discovered the need for a more detailed regression equation to capture the effects of unionization on state unemployment rates. Industrial diversity presents itself as a potentially useful variable. Izraeli and Murphy (2003), Mizuno et al (2006), and Mollick and Varella (2008) researched the effect of industrial diversity on a variety of state level economic statistics. The three projects studied different locations and time periods. Izraeli and Murphy (2003) used seventeen U.S states and two sample periods ranging from around the 1970's-1987 and 1987-1998. The starting period in the decade of the 70's differed for some states.¹⁵ The data come from the Bureau of Labor Statistics, County Business Patterns web site, and United States Statistical Abstract.¹⁶ Mizuno et al (2005) used 118 Japanese metro areas, for which the authors defined, and a cross section of data compiled in 1995. The authors averaged data from 1991-1997 for missing data. They also used data from The Population Census of

¹⁵ Izraeli, Oded, Kevin J. Murphy, "The effect of industrial diversity on state unemployment rate and per capita income," Annuls of Regional Science 37, no. 1 (2003): 1-14

¹⁶ Izraeli, Oded, Kevin J. Murphy, "The effect of industrial diversity on state unemployment rate and per capita income," Annuls of Regional Science 37, no. 1 (2003): 1-14

Japan, the Japanese Statistics Bureau, and the Management and Coordination Agency.¹⁷ Mollick and Varella (2008) used MSA's located near the Mexican border from the time period 1990-2005. The data they used come from Bureau of Labor Statistics.¹⁸

Each study used different tactics to measure industrial diversity. Israeli and Murphy (2003) used the Herenfindahl index to measure industrial diversity. The authors used both pooled Ordinary Least Square (OLS) regression and fixed effects model to test the impact of industrial diversity on unemployment. Some models controlled for spatial heteorgeniety while others did not.¹⁹ Mizuno et al (2006) used both the Herenfindahl index and the location quotient to measure industrial diversity. They used the standard OLS model to test the relationship and modeled six equations, all using a different set of location quotients.²⁰ Mollick used both the relative specialization index and the relative diversity index to measure industrial diversity by a Feasible Generalized Least Square model (FGLS) test. They also included two panels, border and non-border MSA's, and the time trend as the independent variables. Both panels included the relative specialization as well as the relative diversity index.²¹

The authors of the three papers found similar results with respect to the impact of industrial diversity on unemployment. Israeli and Murphy (2003) found that industrial diversity reduces the state's unemployment rate when spatial heterogeneity is controlled, but there is no

¹⁷ Mizuno, Keizo, Fumitoshi Mizutani. Noriyoshi Nakayama, "Industrial diversity and metropolitan unemployment rate," Annuls of Regional Science 40, no. 1 (2006): 157-172

¹⁸ Mollick, André Varella, "What explains unemployment in US–Mexican border cities?" Annuls of Regional Science 42, no.1 (2008): 169-192

¹⁹ Izraeli, Oded, Kevin J. Murphy, "The effect of industrial diversity on state unemployment rate and per capita income," Annuls of Regional Science 37, no. 1 (2003): 1-14

²⁰ Mizuno, Keizo, Fumitoshi Mizutani. Noriyoshi Nakayama, "Industrial diversity and metropolitan unemployment rate," Annuls of Regional Science 40, no. 1 (2006): 157-172

²¹ Mollick, André Varella, "What explains unemployment in US–Mexican border cities?" Annuls of Regional Science 42, no.1 (2008): 169-192

clear answer for the relationship between industrial diversity and income.²² In Mizuno et al (2006) the authors found the Herfindahl index was not a significant predictor of unemployment rates as compared to the location quotient. Increases in both the location quotient for construction and manufacturing as well as education level significantly reduced unemployment.²³ Mollick and Varella (2008) found that the concentration of industries increases unemployment. The relative diversity index shows a stronger link than the relative specialization index.²⁴

Minimum Wage

Minimum wage presents another important factor in regards to determining the unemployment rate of a particular state. Many who study minimum wage tend to research its effect on teen employment, a specific subgroup thought to be heavily affected by minimum wage laws. Allegretto, Dube, and Reich (2011) researched the effect of minimum wage laws on teen employment statistics. The author's hypothesis claimed many previous studies failed to account properly for spatial heterogeneity and long term growth rates of states. The authors used individual level repeated cross-section sample from the CPS Outgoing Rotation Group for the years 1990-2009. The authors later also used CPS data on teens but focused on the restaurant industry. They compared their restaurant study to Dube, Lester, and Reich (2010a) and Neumark and Wascher (2007a). Methodologically, the two experiments are similar. The authors used the same package of four regression equations to test both the individual level data and the restaurant

²² Izraeli, Oded, Kevin J. Murphy, "The effect of industrial diversity on state unemployment rate and per capita income," Annuls of Regional Science 37, no. 1 (2003): 1-14

²³ Mizuno, Keizo, Fumitoshi Mizutani. Noriyoshi Nakayama, "Industrial diversity and metropolitan unemployment rate," Annuls of Regional Science 40, no. 1 (2006): 157-172

²⁴ Mollick, André Varella, "What explains unemployment in US–Mexican border cities?" Annuls of Regional Science 42, no.1 (2008): 169-192

data. Each equation added more data than the previous equation. The first equation included standard information plus a time dummy and state-fixed effect variable. The second equation added a variable to capture differences in long-term growth rates of states, while the third equation only added a term for spatial heterogeneity. The fourth equation added terms for both differences in long-term growth rates and spatial heterogeneity. The results indicated increases in the minimum wage did not produce disemployment among teen groups. It also suggests the standard argument that increases in the minimum wage increases disemployment may be wrong.²⁵

Contributions

This project focuses on the unionization statistic and how it affects unemployment. While viewing the results of the regression analysis, the main statistics of focus will be the p-values and adjusted r-squared scores of the models. These two statistics will determine the efficacy of the models and significance of the independent variables. This main contribution of this project is threefold. First, this project replaces the public private paradigm by including two specific private sectors, construction and manufacturing. Second, this project adds location quotient to the model as an exogenous variable. Third, project adds in an interaction term which takes into account how location quotient along with unionization affects unemployment.

Chapter 2: Data

²⁵ Allegretto, Sylvia A., Arindrajit Dube, Michael, "Do Minimum Wages Really Reduce Teen Employment? Accounting for Heterogeneity and Selectivity in State Panel Data," Industrial Relations 50, no. 2 (2011): 205-240

This section will describe the methodology used to collect and format the data into Stata 12. The data collected for this project came from many sources. These include the Bureau of Economic Analysis (BEA), the Department of Labor (DOL), the Census, the Bureau of Labor Statistics (BLS), and unionstats (a database created by Barry T. Hirsch and David A. Macpherson). Formatting techniques were made to allow for proper testing in Stata 12.

Sources

BEA

Data for each three of the Location Quotients (manufacturing, construction, and public administration) and population were found in the BEA regional data section. The BEA splits up the data into two time periods, 1963-1997 and 1997 to the present. The first time period, 1963-1997, uses the Standard Industrial Classification (SIC) system which uses a four digit code to classify all industries. The classification system was replaced by the North American Industry Classification System (NAICS) beginning in the year 1997. A joint effort from Canada, Mexico, and the United States created this new system which allowed for comparisons between all three countries.

Specifically, I will discuss the Location Quotient first. The BEA calculates the Location Quotient as an index and labeled it the Industry Specialization Index (ISI). This index is created by calculating the industry's share of business in a state and dividing that number by the share of business of the industry in the entire United States. This number is then multiplied by 100. The resulting ISI can be categorized into three categories. First, a score of less than 100 signifies the industry is less important to a state when compared to its importance to the entire United States.

9

Second, a score of greater than 100 signifies the industry is more important to a state while compared to its importance to the entire United States. Third, a score of exactly 100 signifies the industry importance to the state is equal to its importance to the entire United States.

I also found data for state population at the BEA regional data section. The data list the total population for each state in the millions. The dataset did not need to be altered in order to run the regression analysis.

Minimum Wage

Data for minimum wage was found in the Department of Labor (DOL) Wage and Hour Division (WHD). This historical table is found on the State Labor Laws section and compiles data from two sources. The first source the WHD uses came from the Council of State Governments published work titled the Book of States 1968-1999 edition volume 32. This data set calculates the minimum wage for both state and federal government starting from the year 1968 till the year 1999. The second source which contained data starting from the year 2000 to the present was collected from the U.S. Department of Labor, Office of State Standards Programs Wage and Hour Division web site Minimum Wage and Overtime Pay Standards Applicable to Nonsupervisory NONFARM Private Sector Employment Under State and Federal Laws.²⁶

²⁶ http://www.dol.gov/whd/state/stateMinWageHis.htm

This data set contained problems which need to be addressed order to utilized in my studies. First, some states adhere to minimum wage based off the number of employees in a company. Minimum wage laws in Arkansas, Illinois, Nebraska, and Virginia apply only to firms who hire four or more employees. Georgia and West Virginia contain similar minimum wage laws but they apply to firms who hire six or more employees. West Virginia takes its law one step further by stipulating it only applies to firms which hire six or more in one location. Also the minimum wage laws in Indiana and Vermont only apply to firms who hire more than two employees.

Overall these special characteristics could cause biases in the statistical analysis on unemployment, but if the bias does exist, it is likely minimal. According to the data compiled by the Census Bureau with help from the Small Business Administration (SBA) Office of Advocacy, while around half of all businesses in the 48 contiguous states contain around four to six workers, they only account for around ten percent of the total amount of employees in a state.²⁷ Because of this low percentage, I assume this discrepancy of minimum wage laws within states will not substantially bias my results.

The next problem involving minimum wage presents a much more complicated issue. Minnesota, Montana, Ohio, and Oklahoma all set two differing rates of minimum wage. The level of minimum wage the firm must comply with varies on the revenue of the company. Covering the time period January 1, 1991-January 1, 1997, Minnesota levied a minimum wage of \$4.00 for businesses with less than \$362,500 in annual receipts. Minnesota increased this rate

²⁷ http://archive.sba.gov/advo/research/data.html

to \$4.90 for businesses with an increased amount of annual receipts, less than \$500,000, covering the time frame January 1, 1998 - January 1, 2005. Montana levied a lower minimum wage of \$4.00 for businesses who earned of gross annual sales of \$110,000 or less covering the time period of January 1, 1992 - January 1, 2005. Ohio levied a lower minimum wage of \$3.35 during the time period of January 1, 1991-January 1, 2005 for firms with gross annual sales from \$150,000 to \$500,000. They also levied another lower minimum wage of \$2.50 for businesses that earned less than \$150,000 in gross annual sales covering the time period of January 1, 1991-January 1, 2005. Oklahoma sets a lesser minimum wage for two distinct categories of businesses. They allow firms with less than 10 full-time employees at any one location and firms who earned less than \$100,000 in annual gross sales to pay a minimum wage of \$2.00. This covered the time period of January 1, 1991 - January 1, 2005.

In order to simplify the study, I will use the highest level of minimum wage for each of the four states that differentiate minimum wage on the basis of revenue, gross sales, annual sales, or receipts. I will use the following state minimum wage levels for Minnesota. For the years 1991 through 1997, 1998 through 2005, and 2006 through 2011 I will use \$4.25, \$5.15, and \$6.15 respectively. Montana's state level minimum wage varies much more than Minnesota's. Montana changed its minimum wage level nine times since 1991. The first period containing differentiated minimum wages covered the years 1991 through 1996 (\$4.25). The next eight changes occurred during the following time periods; 1997 (\$4.75), 1998 through 2005 (\$5.15), 2006 through 2007 (\$6.15), 2008 (\$6.25), 2010 (\$6.90), 2011 (\$7.35), and 2012 (\$7.65). In contrast, Ohio only change its minimum wage twice under it's differentiate system which lasted from 1991 through 2005. In 1991 Ohio set the state minimum wage level at \$3.80. Ohio changed

12

the level in the next year to 4.25. This changed covered the years 1992 through 2005. Oklahoma used seven different state minimum wage levels during the years 1991 through 2012. The minimum wage levels list as follows; 1991 (\$3.80), 1992 through 1996 (4.25), 1997 (\$4.75), 1998 through 2007 (\$5.15), 2008 (\$5.85), 2009 (\$6.55), 2010 through 2012 (\$7.25).²⁸

By using the highest of the stated state minimum wage, I am allowing for the possibility of bias in my estimate. By using the highest minimum wage as the states minimum wage I am overestimating the state's average minimum wage. I do not believe his problem regarding minimum wage data will significantly bias my estimates because this specific problem only occurs in four states.

Unemployment

Unemployment data was obtained from the Department of Labor's Bureau of Labor Statistics (BLS). The data currently encompasses the years 1991 through 2011. The data is separated by year and is offered in multiple formats; HTML, PDF, TXT. Each dataset contains the unemployment rate for all forty-eight contiguous states.²⁹ The data needed to be properly transferred to Stata via an Excel comma separated file (csv).

Unionization

All data pertaining to unions were found at unionstats.com. This website is the creation of Barry Hirsch from the Andrew Young School of Policy Studies in Georgia State University and David Macpherson from the Department of Economics in Trinity University. This collection of

²⁸ http://www.dol.gov/whd/state/stateMinWageHis.htm

²⁹ http://www.bls.gov/schedule/archives/all_nr.htm#SRGUNE

annually update datasets contains much information pertaining to unions. I am using the collection of data called, *State*: Union Membership, Coverage, Density, and Employment by State and Sector, 1983-2011. Each dataset contains an excel file corresponding to each year covered by the collection of data. Each data set contains estimations for the percent of people covered by unions (coverage) and the percent of workers who are members of a union (members). Both statistics are available for the three industries of concern in this project, construction, manufacturing, and public administration. These two statistics, coverage and members, are used in differing test as the measurement for overall unionization.³⁰

One glaring problem exists in the dataset. Some of the samples contain a small amount of observations. The sample size for total unionization in the economy is over 1,000 observations for each state, but sample size decreases as I use the more specific unionization metrics (construction, manufacturing, and public administration). I will compensate this problem by using econometric methods to correct for a small sample size. The data needed to be formatted differently because each year contained its own excel page. After correctly formatting the data, no other problem appeared in the process of transferring the data to Stata.

Median Income

Data for state median income was obtained from the Census Department section on Income. This data calculates the median household income per state weighted by the 2011 CPI-U-RS.³¹ This data presents a good tool to track wages over time, as wages are an important

³⁰ unionstats.com

³¹ http://www.census.gov/hhes/www/income/data/statemedian/

component of income. Increased income should correspond to increase wages and vice versa. The dataset contained no issues and is easily transformed into Stata's format.

Chapter 3: Methods

Regression Model

Panel

The main panel of data used in this project is included in the model. The subscripts *s* and *y* represents states and years. The contiguous forty-eight U.S. states and the years 1991-2011 comprise the panel. Pantuosco used the forty-eight U.S. states in each of his projects. He also used 1978-1994, 1983-1996, and 1992-2005 as his time periods in each of his three projects respectively.³² The unemployment rates for each states where found on the DOL website. I could only find data for the years 1991-2011. I decided to use a shorter panel because of the unemployment data. Being that the unemployment rate is my dependent variable, I determined that the total amount of years Include in the panel would be determined by the total amount of years of unemployment data I find.

Three types of regression equations were used in this analysis; panel model with no effects, panel model with fixed effects, simultaneous equation model with no effects, simultaneous equation model with fixed effects. Each presents various strengths and weaknesses which will be covered here. The equations will be presented first followed by a discussion of the regression method used in each test.

³² Pantuosco, Lou, William Seyfried, "The Effect Of Public And Private Unions On State Economic Activity: Evaluating The Benefits To Organized Workers, Policymakers, And Companies," Journal of Business & Economics Research 6, no. 2 (2008): 27-39

Panel Regression

Equation 1- Panel Regression, No Fixed Effect

(1)
$$UR_{sy} = \beta_0 + \beta_1 UNP_{sy} + \beta_2 UNM_{sy} + \beta_3 UNC_{sy} + \beta_4 LQP_{sy} + \beta_5 LQM_{sy} + \beta_6 LQC_{sy} + \beta_7 (UNP*LQP)_{sy} + \beta_8 (UNM*LQM)_{sy} + \beta_9 (UNC*LQC)_{sy} + \beta_{10} UR_{s(y-1)} + \beta_{11} POP_{sy} + \beta_{12} MIN_{sy} + \varepsilon$$

Equation 2 - Panel Regression, Fixed Effect

(2)
$$UR_{sy} = \beta_0 + \beta_1 UNP_{sy} + \beta_2 UNM_{sy} + \beta_3 UNC_{sy} + \beta_4 LQP_{sy} + \beta_5 LQM_{sy} + \beta_6 LQC_{sy} + \beta_7 (UNP*LQP)_{sy} + \beta_8 (UNM*LQM)_{sy} + \beta_9 (UNC*LQC)_{sy} + \beta_{10} UR_{s(y-1)} + \beta_{11}POP_{sy} + \beta_{12}MIN_{sy} + \beta_{13}FE_y + \beta_{14}FE_s + \varepsilon$$

This test represents the most basic regression which will be conducted. This method test how each of the 11 exogenous variables affects the main dependant variable, state unemployment rates. This model encompasses equations 1 and 2. This model does not include wage because of concerns over endogeneity which will be discussed in the Econometric Issues section. These issues should bias the model leading to results poorer than the simultaneous equation regressions used in this project. Equations 1 and 2 should have the lowest and second lowest adjusted r-squared score respectively.

Simultaneous Equation Regression

Equation 3 - Simultaneous Equation Regression, No Fixed Effect

(3)
$$UR_{sy} = \beta_0 + \beta_1 UNP_{sy} + \beta_2 UNM_{sy} + \beta_3 UNC_{sy} + \beta_4 LQP_{sy} + \beta_5 LQM_{sy} + \beta_6 LQC_{sy} + \beta_7 (UNP*LQP)_{sy} + \beta_8 (UNM*LQM)_{sy} + \beta_9 (UNC*LQC)_{sy} + \beta_{10} UR_{s(y-1)} + \beta_{11} POP_{sy} + \beta_{12} MIN_{sy} \beta_{13} WAGE_{sy} + \varepsilon$$

Equation 4- Simultaneous Equation Regression, Fixed Effect

(4)
$$UR_{sy} = \beta_0 + \beta_1 UNP_{sy} + \beta_2 UNM_{sy} + \beta_3 UNC_{sy} + \beta_4 LQP_{sy} + \beta_5 LQM_{sy} + \beta_6 LQC_{sy} + \beta_7 (UNP*LQP)_{sy} + \beta_8 (UNM*LQM)_{sy} + \beta_9 (UNC*LQC)_{sy} + \beta_{10} UR_{s(y-1)} + \beta_{11} POP_{sy} + \beta_{12} MIN_{sy} \beta_{13} WAGE_{sy} + \beta_{14} FE_y + \beta_{15} FE_s + \varepsilon$$

Pantuosco uses simultaneous equation regression method in his works. He uses wage as his second endogenous variable.³³ Equations 3 and 4 list the first part of the simultaneous equation, unemployment with wage as an independent variable. Equations 5 and 6 describe the second equation of the simultaneous equation regression. Wage is the dependant variable of the second equation. Equation 3 should provide a higher adjusted r-square score than Equation 2 but Equation 4 should provide the highest adjusted r-squared score because of the inclusion if state and year fixed effects along the wage as an endogenous right-hand variable.

Equation 5 - Wage, No Effect

(5)
$$W_{sy} = \beta_0 + \beta_1 UNPCI_{sy} + \beta_2 UNC_{sy} + \beta_3 UNM_{sy} + \beta_4 UNP_{sy} + \beta_5 UR_{sy} + \beta_6 POP_{sy} + \beta_7 MIN_{sy} + \epsilon$$
)

Equation 6 - Wage Fixed Effect

³³ Pantuosco, Lou, Darrell Parker, and Gary Stone, "The Effect of Unions on Labor Markets and Economic Growth: An Analysis of State Data," Journal of Labor Research XXII, no.1 (2001): 195-205

(6)
$$W_{sy} = \beta_0 + \beta_1 UNPCI_{sy} + \beta_2 UNC_{sy} + \beta_3 UNM_{sy} + \beta_4 UNP_{sy} + \beta_5 UR_{sy} + \beta_6 POP_{sy} + \beta_7 MIN_{sy} + \beta_8 FE_y + \beta_9 FE_s + \varepsilon$$

Fixed Effects

Equations 2, 4, and 6 utilize the fixed effect model. All three equations include a dummy variable for each state and year. This allows differences between states to be taken into account and to factor in differences over time. State fixed effects are included to control for differences between states, like ideology. Time fixed effects are included to control for differences overtime like business cycles. Equation 2 is modeled by itself in the panel regression with fixed effect but equations 4 and 6 are modeled together in the simultaneous equation regression with fixed effects. The equations with fixed effects are expected to produce better estimates because it takes into account differences in state characteristics and differences over time.

Econometric Issues

This project uses various methods to address various econometric issues. Pantuosco (2001) noted three important econometric issues that must be addressed in order to conduct this research. These issues include heteroskedasticity, autocorrelation, and multicollinearity.³⁴ This project attempts to account for all three econometric issues,

Heteroskedasticity

Heteroskedasticity refers to the event where over time the error term is not constant. This leads to bias in statistics recording the variance of the regression. This paper uses the simultaneous equation regression to control for heteroskedasticity is the use of simultaneous

³⁴ Pantuosco, Lou, Darrell Parker, and Gary Stone, "The Effect of Unions on Labor Markets and Economic Growth: An Analysis of State Data," Journal of Labor Research XXII, no.1 (2001): 195-205

equation regressions. According to Pantuosco (2001) this represents a useful tool to account for heteroskedasticity.

Autocorrelation

Autocorrelation refers to the degree a variable is correlated with itself. Pantuosco suggest this issue may arise with respect to state unemployment rates. Pantuosco suggest in his paper that state unemployment rates may suffer from hysteresis. In order to test whether state unemployment rates change slowly over time and suffer from autocorrelation, a lagged state unemployment term is added to the model. This term will show the level of hysteresis and autocorrelation that plagues the state level unemployment rate.

Multicollinearity

Multicollinearity presented a challenging issue to this project. While trying to incorporate the suggestions by Allegretto (2011) this issue presented itself. Allegretto's research suggested the need to include state-linear trends and division specific time trends.³⁵ When running regression analysis with these specifications multicollinearity biased the results. Stata decided to drop random observations to correct the multicollinearity issues. Due to the econometric setback this methods will not be included in the project. Although both state specific linear trend and and division specific time division cannot be included in the same model, they can both be added separately. Including one or the other does not create the multicollinearity mentioned before.

³⁵ Allegretto, Sylvia A., Arindrajit Dube, Michael, "Do Minimum Wages Really Reduce Teen Employment? Accounting for Heterogeneity and Selectivity in State Panel Data," Industrial Relations 50, no. 2 (2011): 205-240

Simultaneous equation regression will be utilized instead. According to Pantuosco (2001), this method will manage the multicollinearity issues.³⁶

Endogeniety

Endogeniety presents itself as a difficult issue to reconcile. Wage is endogenous to unemployment. This discourages me from including wage in the base model. In order to ascertain how wage affects unemployment, I need to account for endogeniety. In order to accomplish this, I will use simultaneous equation regression, the same method used in Pantuosco's three studies. As mentioned before, I estimated a second equation for wage (Equations 5 and 6) which will be paired together with the unemployment equation (Equations 3 and 4) in the simultaneous equation regressions.

Predictions

The hypothesis of this paper reads as follows: increases in each of the three interaction variables will lead to decreases in the unemployment rate. I also make predictions for the other variables. UNP, UNM, UNC, LQP, LQM, LQC, and MIN are expected to exhibit a positive relationship with the unemployment rate while all three interaction terms, POP, W, and lagged UR are expected to exhibit a negative relationship with the unemployment rate.

Alternate Panels

After the tests are run on Equations 1 through 4, I will decide which equation best models the effects of unionization on unemployment. This equation will still need to undergo further test

³⁶ Pantuosco, Lou, Darrell Parker, and Gary Stone, "The Effect of Unions on Labor Markets and Economic Growth: An Analysis of State Data," Journal of Labor Research XXII, no.1 (2001): 195-205

to make sure the results are robust. I will apply the following test to the equation which best models how unionization affects unemployment.

Clustered Standard Errors

The error term needs to be altered in order to fully test my results. The most pressing concerns regarding the error term includes the effects of having states in the panel. When states are included in the panel, the error term may cluster around each state. Unless I use clustered standard errors, the results may be biased.

Right to Work

Although the subscript *s* takes into account differences between states, there is one difference in particular that needs to be tested. Some states, mostly southern, have passed right to work laws. These laws make it harder to form and manage a union within a state. The presence of right to work laws could be skewing the results which is why I will run regressions on my best equation using two panels; first, a panel defined by having right to work laws and second, a panel defined by states not having right to work laws.

NAFTA

In 1997, The United States signed the North American Free Trade Agreement (NAFTA). NAFTA changed the U.S. economy and placed pressures on construction and manufacturing workers In order to determine how the ratification of NAFTA also affected unemployment, I will run my best regression equation on two more panels. The first panel will contain the years 1991-1997. The second panel will contain the years 1997-2011. This should help ascertain the role NAFTA played in altering state level unemployment.

21

Chapter 4: Results

Regression Equations

Table 1

This following section refers to the results in Table 1. This regression equation models unionization as a function of a host of independent variables. This table shows the results of Equation 1, panel regression without state or year fixed effects. As I begin to describe the data, statistical significance will be given to variables which are significant at the 95% confidence interval. The results from the regression on Equation 1 will be discussed first. Seven out of the twelve variables test significant at the 95% confidence interval. Public sector unionization and the interaction effect test positive at the 92% and 88% confidence interval respectively. The construction variables tested out to be the least significant with all 3 construction variables having p-values of .142, .571, and .462. The overall model test reasonably well with an adjusted r-squared of .7126. Of the variables which tested significant or close to significant, location quotients and unionization levels for manufacturing and public sector, minimum wage, population, and lagged unemployment correlated with an increase in the state unemployment level. The interaction effects for manufacturing and public sector are both correlated with lower unemployment.

Table 2

The second table describes the results of the regression analysis of Equation 2 which uses panel regression with state and year fixed effects. This estimation technique produces differing results as compared the estimating technique of Equation 1. The first thing I noticed is the p-values of the terms associated with the construction industry. This regression recorded much smaller p-values for the construction variables with no variable recording a high p-value than .373. Minimum wage represents another surprising result regarding p-values. Minimum Wage has a p-value of 0 and t score of 15.23 for Table 1, but only exhibits a p-value of .604 and t score of -.052 for Table 2. As compared to Table 1, Table 2 showcases seven independent variables which test significant at the 95% confidence interval. Minimum wage lost its statistical significance in Table 2 while the interaction term for manufacturing became significant in Table 2. The introduction of state and year fixed effects significantly altered the minimum wage statistics. The overall model seems to have improved in accuracy. The adjusted r-squared term of Table 1.

Table 3

This next section lists the results of Equation 3, a simultaneous equation regression with no state or year fixed effects. The most surprising result of the regression is the incredibly high p-value, .923, of the construction unionization variable. The other two construction variables also recorded high p-values, .302 and .555. This suggests that the introduction of the wage, the other endogenous variable, affects the significance of the construction variables. Wage proves to significantly affect state unemployment rates. All three public sector variables, population, minimum wage, and lagged unemployment recorded statistically significant p-values.

23

Incidentally, the there is no difference in the directional change of all of the exogenous variables (not including wage due to its absence from Table 1) when comparing Table 1 to Table 3. Without using fixed effects, the simultaneous equation regression resulted in no change in the signs of the coefficients of the exogenous variables. Also the adjusted-square score of Table 3 (.7189) is incredibly close to the adjusted r-squared score of Table 1 (.7161). The second equation included only one variable with a p-value of greater than zero, population.

Table 4

In this section, the results of Equation 4, the simultaneous equation regression with fixed effects, will be discussed. The results present a contradiction. The adjusted r-squared score of .8506 lies three percentage points under the adjusted r-squared score of Table 2 (.8806). With using the fixed effects model, adding in the simultaneous equation regression results in a model with a similar fit to Table 2. In other words, adding in the simultaneous equation regression should produce similar outcomes to Table 2. This notion may be challenged by viewing the p-values of the exogenous variables. For the main equation being estimated in both Table 2 and 4, there is a difference in the amount of statistically significant variables. Table 2 list seven statistically significant exogenous variables while Table 4 produces only four statistically significant exogenous variables not including wage.

Chapter 5: Conclusion

The following analysis concerns Figures 1-4 located in the appendix. These are the four main regression equations which will be estimated. The rest of the figures located in the appendix will be discussed in the conclusion. After the robustness checks section follows the

discussion of Figures 1-4. The final section will discuss Equation 2, the equation I believe best explains how unionization affects unemployment.

Explanatory Variables

Unionization

There appears to be mixed results for determining the effects of unionization on state level unemployment. No unionization statistic tested significant for all four equations. UNM tested significant in Figures 1, 2 and 4 while UNP tested significant in Figure 3, and UNC tested insignificant for all four equations. This sheds light on the reliability of each statistic. On average, manufacturing unionization presents itself as a reliable predictor of unemployment. Unionization is also correlated with higher unemployment on average. The unionization variables which contradicted this statement all contained insignificant p-values with the lowest pvalue being UNC on Figure 4 which displayed a p-value of .18.

Location Quotient

The location quotient variables also exhibited mixed results. Most of the location quotient variables were correlated with higher unemployment. The only exceptions occur for LQC on Figures 2 and 4. One can suspect the introduction of fixed effects may have contributed to this directional change. It is interesting to note that LQC in both Figures 2 and 4 exhibit p-values of 0. The LQM significant p-values turned insignificant when modeled in the simultaneous equation regression. In the Panel Regression LQM contained a p-value of less than .02, but in the simultaneous equation regression, the value raised to above .15. LQP contained a significant p-

value for Figures 1, 2, and 3 but turned insignificant in Figure 4. Figure 4 should be the most robust model so I am not sure why LQP suddenly became insignificant.

Interaction

All of the coefficients of the interaction variables trend upward with respect to unemployment for all observations except for two. In both exceptions, the variable proved insignificant. None of the interaction variables proved to be significant at the 95% level. Only one, interaction for manufacturing on Figure 2, proved significant. Not much information can be gathered form the interaction variable.

Alternate Panels

Right to Work

In order to test the effects of right to work laws on Equation 2, I created two new panels. The first panel contained states which have passed Right to Work laws. The second panel contains states that have not passed such laws. Figure 17 reports the results of the regression equation on states that have passed right to work laws, while figure 18 reports the results of the regression equation on states that have not passed right to work laws. Population and minimum wage performed incredibly similarly in both regressions. Both variables reported similar p-values and reported the same sign change in both figures. Of the interaction variables, only manufacturing proved significant in Figure 18, while none proved significant in Figure 17. No information can be ascertained from the interaction variable from these two figures. Both figures contained two location quotient variables which proved significant. LQC and LQP proved significant in Figure 17 while LQM and LQP proved significant in figure 18. Interestingly LQP proved significant in both figures while producing differing sign changes. All three unionization variables proved insignificant for Figure 17 while two (UNM and UNP) proved significant in Figure 18. Unionization variables proved more significant in states without right to work laws.

NAFTA

In this next section, I created two new panels where the first panel encompasses the years 1991-1997 while the second covers 1998-2011. This is done to account for the passage of NAFTA and how it affected the regression equation. Regarding the interaction variable, all interactions proved insignificant in both panels. LQC proved significant in both panels while LQM proved significant in none and LQP proved significant for post 1998. UNM proved significant in both while UNP proved significant for post 1998 and UNC proved significant in neither. Overall I do not believe much information can be ascertained about the effects of NAFTA on my regression equation.

Final Thoughts

Equation 2

After review the results of each test, I come to the conclusion that Equation 2 represents the best model representing how unionization affects unemployment at the state level. This test recorded the highest adjusted r-squared score for the four main equations. LQC, LQM, LQP, POP, and UNM tested significant while LQC earned the distinction of being the only significant variable correlated with decreasing unemployment rates. The results of Equation 2 suggest to policy makers that they make sure their respective economies do not concentrate too heavily on manufacturing and public administration. Increasing concentration of construction jobs is

27

correlated with decreased unemployment rates. Concerning unionization, all that can be stated is that increasing the unionization rate of manufacturing jobs will lead to increased unemployment. It is noticeable that the interaction variable for manufacturing tested significant at the 93% confidence interval while the rest of the interaction variables proved to be very insignificant.

Further Research Questions

I can only guess from the results of the four tables that non-linear relationships may exist between my variables. More research needs to be conducted on how the interaction between unionization and industrial concentration affects unemployment. Also, researchers should still look into using state linear trends and division specific time trends. Other researchers may be able to handle the issue of multicollinearity which arises from using these methods.

Appendix

Source	SS	df	MS		Number of obs F(12, 994)	
Model Residual	2590.63499 1027.19685		886249 339723		Prob > F R-squared	= 0.0000 = 0.7161
Total	3617.83184	1006 3.59	625431		Adj R-squared Root MSE	= 0.7126 = 1.0166
UR	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
LQC	.0048392	.003294	1.47	0.142	0016248	.0113032
LQM	.0046667	.0018681	2.50	0.013	.0010008	.0083325
LQP	.00881	.0038087	2.31	0.021	.0013359	.016284
UNC	-1.014152	1.790625	-0.57	0.571	-4.527992	2.499687
UNM	3.495897	1.453533	2.41	0.016	.6435511	6.348243
UNP	2.181574	1.244645	1.75	0.080	2608594	4.624008
I_C	.0118991	.01618	0.74	0.462	0198519	.04365
I_M	0181112	.0113638	-1.59	0.111	0404109	.0041885
I_P	0246115	.0121495	-2.03	0.043	0484531	0007698
POP_MIL	.0256153	.005743	4.46	0.000	.0143454	.0368852
MIN	.4929646	.0323639	15.23	0.000	.4294551	.5564741
lag_UR	.7363401	.0177372	41.51	0.000	.7015335	.7711468
_cons	-3.408225	.6663468	-5.11	0.000	-4.715833	-2.100617

Figure 1- Panel Regression, No Fixed Effect

. nlcom _b[LQC]*_b[UNC]

_nl_1: _b[LQC]*_b[UNC]

UR	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
nl_1	0049077	.0064695	-0.76	0.448	0176032	.0077878

. nlcom _b[LQM]*_b[UNM]

_nl_1: _b[LQM]*_b[UNM]

UR	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
nl_1	.0163142	.012302	1.33	0.185	0078267	.0404551

. nlcom _b[LQP]*_b[UNP]

UR	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
nl1	.0192196	.0186896	1.03	0.304	0174559	.0558951

Source	SS	df	MS		Number of obs F(79, 927)	
Model Residual	3219.62971 398.202126		7548065 9560006		Prob > F R-squared Adj R-squared	= 0.0000 = 0.8899
Total	3617.83184	1006 3.59	9625431		Root MSE	= .65541
UR	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
LQC	0147413	.0034523	-4.27	0.000	0215164	0079662
LQM	.0063779	.0023876	2.67	0.008	.0016922	.0110636
LQP	.0145586	.006641	2.19	0.029	.0015254	.0275917
UNC	-1.707444	1.790088	-0.95	0.340	-5.220539	1.805652
UNM	7.473559	1.616635	4.62	0.000	4.300869	10.64625
UNP	2.841626	2.449851	1.16	0.246	-1.966272	7.649523
I_C	.0139877	.0156953	0.89	0.373	0168147	.0447902
I_M	055317	.0131884	-4.19	0.000	0811995	0294345
I_P	0332965	.0225452	-1.48	0.140	0775421	.0109491
POP_MIL	.1119232	.0416286	2.69	0.007	.0302261	.1936204
MIN	0329994	.063629	-0.52	0.604	1578729	.0918742
lag_UR	.5055293	.0240988	20.98	0.000	.4582348	.5528238

Figure 2 - Panel Regression, Fixed Effect

_nl_1: _b[LQC]*_b[UNC]

UR	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
nl_1	.0251699	.0306355	0.82	0.412	0349531	.085293

. nlcom _b[LQM]*_b[UNM]

_nl_1: _b[LQM]*_b[UNM]

UR	Coef.	Std. Err.	t	₽> t	[95% Conf.	Interval]
nl_1	.0476656	.0253988	1.88	0.061	0021802	.0975114

. nlcom _b[LQP]*_b[UNP]

UR	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
nl_1	.04137	.0509718	0.81	0.417	0586636	.1414036

		chi2	-sq"	"R	RMSE	Parms	Obs	Equation
	0.000	2598.99 1450.80	7186 5923		1.005503 5018.73	13	1007 1007	UR WAGE
nterval]	Conf.	[95%	P> z	z	td. Err.	ef. S	Co	
								UR
.0090713	2851	002	0.307	1.02	0030414	101 .	.0031	LQC
.0058261	0921	000	0.154	1.42	0017212	525 .	.0024	LQM
.0163859	5779	.0026	0.006	2.73	.003497	319	.0095	LQP
3.061802	4624	-3.384	0.922	-0.10	.644527	106 1	1614	UNC
4.264082	5687	985	0.221	1.22	.339251	198 1	1.639	UNM
7.04536	3199	1.873	0.001	3.38	.319453	279 1	4.459	UNP
.0376241	1703	0202	0.554	0.59	0147437	269 .	.0087	I_C
.0068203	5345	0336	0.194	-1.30	0103203	071 .	0134	I_M
.0122635	1179	0591	0.003	-2.99	0119529 -	907 .	0356	I_P
.0376184	1303	.0171	0.000	5.24	0052266	744 .	.0273	POP_MIL
.6234358	4289	.4864	0.000	L5.88	0349514	323 .	.5549	MIN
.0000414	0884	0000	0.000	-5.41	.000012	649	0000	WAGE
.6976861	5032	.6036	0.000	27.11	0240012	446 .	.6506	lag_UR
1.624412	2839	-1.42	0.900	0.13	7787904	011 .	.098	_cons
								WAGE
.7349252	3102	.5838	0.000	L7.10	0385504	677 .	.6593	PCI
1686.618	.519	-2846	0.000	7.66	95.8986	569 2	-2266.	MIN
11632.8	.705	2740	0.002	3.17	268.434	754 2	7186.	UNC
8403.185	4.18	-19414	0.000	4.95	2808.98	.68	-13908	UNM
19057.65	0.24	14110	0.000	13.14	262.117	.94 1	16583	UNP
817.2617	.265	-1297	0.000	-8.63	22.4521	263 1	-1057.	UR
47030.59	3.72	43323	0.000	17.77	45.6469	.16 9	45177	_cons

Figure 3- Simultaneous Equation Regression, No Fixed Effect

_nl_1: _b[LQC]*_b[UNC]

	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
nl1	000502	.00475	-0.11	0.916	0098118	.0088078

. . nlcom _b[LQM]*_b[UNM]

_nl_1: _b[LQM]*_b[UNM]

	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
_nl_1	.0040202	.0056228	0.71	0.475	0070002	.0150407

. . nlcom _b[LQP]*_b[UNP]

	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
_nl_1	.0425052	.0268885	1.58	0.114	0101953	.0952058

Figure 4 - Simultaneous Equation Regression, Fixed Effect

Equation	Obs	Parms	RMS	E "R	-sq"	chi2		P
UR	1007	80	.731545	4 0.	8510	5116.51	0.00	0.0
WAGE	1007	73	2216.95	5 0.	9204	11685.36	0.00	00
	Coe	f. s	td. Err.	Z	₽> z	[95%	Conf.	Interval]
UR								
LQC	01092	08 .	0024825	-4.40	0.000	015	7864	0060552
LQM	.00251	81 .	0019261	1.31	0.191	001	2569	.0062931
LQP	.00416	08 .	0058738	0.71	0.479	007	3517	.0156732
UNC	-1.8486	12	1.38539	-1.33	0.182	-4.56	3927	.8667037
UNM	4.7289	23 1	.398763	3.38	0.001	1.98	7398	7.470449
UNP	1.3417	65 1	.858877	0.72	0.470	-2.30	1567	4.985098
I_C	.01718	85.	0109059	1.58	0.115	004	1866	.0385636
I_M	02230	44 .	0097337	-2.29	0.022	041	3821	0032268
I_P	00972	06.	0156929	-0.62	0.536	504	0478	.0210368
POP_MIL	.081	68 .	0326257	2.50	0.012	.017	7348	.1456252
MIN	03749	21 .	0765208	-0.49	0.624	187	4701	.1124858
lag_UR	.38044	64.	0417192	9.12	0.000	.298	6782	.4622147
WAGE	00020	39.	0000469	-4.35	0.000	000	2958	000112

_nl_1: _b[LQC]*_b[UNC]

	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
_nl_1	.0201883	.0182143	1.11	0.268	015511	.0558877

. nlcom _b[LQM]*_b[UNM]

.

.

.

_nl_1: _b[LQM]*_b[UNM]

	Coef.	Std. Err.	Z	₽> z	[95% Conf.	Interval]
_nl_1	.011908	.0112185	1.06	0.288	0100798	.0338958

. nlcom _b[LQP]*_b[UNP]

	Coef.	Std. Err.	Z	₽> z	[95% Conf.	Interval]
nl_1	.0055828	.0134882	0.41	0.679	0208537	.0320192

Source	SS	df	MS		Number of obs F(12, 994)	
Model Residual	2570.94918 1046.88266		245765 320187		Prob > F R-squared	= 0.0000 = 0.7106
Total	3617.83184	1006 3.59	625431		Adj R-squared Root MSE	= 0.7071 = 1.0263
UR	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
LQC	.0061012	.0034313	1.78	0.076	0006322	.0128346
LQM	.0039472	.0018789	2.10	0.036	.0002602	.0076342
LQP	.0071181	.0038595	1.84	0.065	0004556	.0146919
UNC	1.243319	1.745837	0.71	0.477	-2.182629	4.669268
UNM	2.955603	1.463859	2.02	0.044	.0829949	5.828211
UNP	2.023683	1.258084	1.61	0.108	4451217	4.492488
I_C	0077541	.0158269	-0.49	0.624	038812	.0233038
I_M	0145984	.0114658	-1.27	0.203	0370984	.0079017
I_P	0225958	.0122635	-1.84	0.066	0466611	.0014695
POP_ROC	.0479386	.052679	0.91	0.363	0554362	.1513133
MIN	.5028436	.03471	14.49	0.000	.4347303	.5709568
lag_UR	.751677	.0175558	42.82	0.000	.7172263	.7861277
_cons	-3.356749	.6810742	-4.93	0.000	-4.693257	-2.02024

Figure 5 - Panel Regression, Population Rate of Change, No Fixed Effects

.

.

.

_nl_1: _b[LQC]*_b[UNC]

UR	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
_nl_1	.0075857	.0140055	0.54	0.588	0198981	.0350695

. nlcom _b[LQM]*_b[UNM]

_nl_1: _b[LQM]*_b[UNM]

UR	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
_nl_1	.0116663	.0104576	1.12	0.265	0088552	.0321878

. nlcom _b[LQP]*_b[UNP]

UR	Coef.	Std. Err.	t	₽> t	[95% Conf.	Interval]
_nl_1	.0144048	.0162511	0.89	0.376	0174855	.0462952

Source	SS	df	MS		Number of obs F(11, 996)	
Model Residual	637.436416 2983.41595		.9487651 99539754		Prob > F R-squared Adj R-squared	= 0.0000 = 0.1760
Total	3620.85236	1007 3.	59568258		Root MSE	= 1.7307
UR	Coef.	Std. Err	. t	P> t	[95% Conf.	Interval]
LQC	.012886	.0057796	2.23	0.026	.0015443	.0242276
LQM	.0135246	.0031458	4.30	0.000	.0073514	.0196978
LQP	.0175294	.0064944	2.70	0.007	.0047851	.0302737
UNC	2.715468	2.943373	0.92	0.356	-3.060455	8.491392
UNM	11.35108	2.446513	4.64	0.000	6.550172	16.152
UNP	5.607229	2.11694	2.65	0.008	1.453055	9.761404
I_C	0227287	.0266837	-0.85	0.395	0750914	.029634
I_M	0620255	.0192415	-3.22	0.001	099784	0242671
I_P	054645	.020643	-2.65	0.008	0951538	0141363
POP_ROC	.0952396	.0888012	1.07	0.284	0790193	.2694986
MIN	.7271841	.0578474	12.57	0.000	.6136673	.8407009
_cons	-3.787507	1.148457	-3.30	0.001	-6.041181	-1.533834

Figure 6 - Panel Regression, Population Rate of Change, No Lagged Unemployment, No Fixed Effects

.

.

```
_nl_1: _b[LQC]*_b[UNC]
```

UR	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
_nl_1	.0349914	.0502953	0.70	0.487	0637054	.1336883

. nlcom _b[LQM]*_b[UNM]

_nl_1: _b[LQM]*_b[UNM]

UR	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
nl_1	.153519	.0634105	2.42	0.016	.0290854	.2779525

. nlcom _b[LQP]*_b[UNP]

UR	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
_nl_1	.0982913	.0712489	1.38	0.168	0415238	.2381065

Source	SS	df	Μ	S		Number of obs F(11, 996)		L008
Model Residual	807.335668 2813.51669	11 996	73.394 2.8248			Prob > F R-squared Adj R-squared	= 0.0 = 0.2	2230 2144
Total	3620.85236	1007	3.5956	8258		Root MSE		5807
UR	Coef.	Std.	Err.	t	P> t	[95% Conf.	Interv	ral]
LQC	.0080811	.0054	442	1.48	0.138	0026023	.0187	645
LQM	.0150118	.0030	608	4.90	0.000	.0090055	.021	.018
LQP	.0222486	.0062	733	3.55	0.000	.0099383	.034	1559
UNC	-3.693127	2.958	255	-1.25	0.212	-9.498255	2.112	2002
UNM	12.48203	2.376	426	5.25	0.000	7.818656	17.14	1541
UNP	5.916205	2.052	415	2.88	0.004	1.888651	9.943	3758
I_C	.0331133	.0267	366	1.24	0.216	0193533	.0855	5798
I_M	0687711	.0186	754	-3.68	0.000	1054188	0321	234
I_P	0589484	.0200	406	-2.94	0.003	0982751	0196	5217
POP_MIL	.0729077	.0093	071	7.83	0.000	.054644	.0911	715
MIN	.6956836	.052	864	13.16	0.000	.591946	.7994	1211
_cons	-4.002362	1.101	442	-3.63	0.000	-6.163776	-1.840	948

Figure 7 - Panel Regression, No Lagged Unemployment, No Fixed Effects

.

.

.

_nl_1: _b[LQC]*_b[UNC]

UR	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
_nl_1	0298446	.0154014	-1.94	0.053	0600676	.0003783

. nlcom _b[LQM]*_b[UNM]

_nl_1: _b[LQM]*_b[UNM]

UR	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
_nl_1	.1873773	.0681526	2.75	0.006	.0536381	.3211164

. nlcom _b[LQP]*_b[UNP]

UR	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
_nl_1	.1316274	.0802314	1.64	0.101	0258145	.2890693

Source	SS	df		MS		Number of obs F(79, 927)		1007 98.91
Model Residual	3234.15234 383.679496	79 927		386372 893739		Prob > F R-squared Adj R-squared	= =	0.0000 0.8939 0.8849
Total	3617.83184	1006	3.59	625431		Root MSE	=	.64335
UR	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
LQC	0107456	.0033	635	-3.19	0.001	0173465		0041446
LQM	.0079848	.0023	524	3.39	0.001	.0033681		0126014
LQP	.0114795	.0065	237	1.76	0.079	0013234		0242823
UNC	-1.70604	1.751	138	-0.97	0.330	-5.142695	1	.730615
UNM	8.61228	1.582	415	5.44	0.000	5.506748	1	1.71781
UNP	2.77262	2.399	844	1.16	0.248	-1.937138	7	.482377
I_C	.0132562	.015	339	0.86	0.388	0168469		0433594
I_M	0679958	.013	074	-5.20	0.000	093654		0423377
I_P	0311699	.0221	208	-1.41	0.159	0745826		0122427
POP_ROC	3281168	.0502	776	-6.53	0.000	4267879		2294458
MIN	0757514	.0628	444	-1.21	0.228	1990853	•	0475824

Figure 8 - Panel Regression, Population Rate of Change, Fixed Effects

_nl_1: _b[LQC]*_b[UNC]

UR	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
_nl_1	.0183324	.0229868	0.80	0.425	0267797	.0634445

. . nlcom _b[LQM]*_b[UNM]

_nl_1: _b[LQM]*_b[UNM]

UR	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
nl_1	.068767	.0296317	2.32	0.021	.0106139	.12692

. nlcom _b[LQP]*_b[UNP]

UR	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
_nl_1	.0318283	.0425435	0.75	0.455	0516646	.1153211

Source	SS	df	MS		Number of obs F(78, 929)	
Model Residual	3096.42933 524.423031		.6978119 64502725		Prob > F R-squared Adj R-squared	= 0.0000 = 0.8552
Total	3620.85236	1007 3.	59568258		Root MSE	= .75133
UR	Coef.	Std. Err	. t	P> t	[95% Conf.	Interval]
LQC	0225444	.0038555	-5.85	0.000	0301108	014978
LQM	.0143735	.0027148	5.29	0.000	.0090456	.0197013
LQP	.0245872	.0075687	3.25	0.001	.0097334	.0394411
UNC	-4.710769	2.036202	-2.31	0.021	-8.706857	7146809
UNM	13.84777	1.817668	7.62	0.000	10.28056	17.41498
UNP	4.387066	2.800422	1.57	0.118	-1.108821	9.882953
I_C	.0365441	.0178528	2.05	0.041	.0015076	.0715807
I_M	1185566	.0149106	-7.95	0.000	147819	0892943
I_P	0572438	.0257651	-2.22	0.027	1078083	0066794
POP_ROC	6370344	.0553072	-11.52	0.000	7455759	528493
MIN	1734056	.0731047	-2.37	0.018	316875	0299361

Figure 9 - Panel Regression, Population Rate of Change, No Lagged Unemployment, Fixed Effects

_nl_1: _b[LQC]*_b[UNC]

UR	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
_nl_1	.1062014	.0593636	1.79	0.074	0103009	.2227037

. . nlcom _b[LQM]*_b[UNM]

_nl_1: _b[LQM]*_b[UNM]

UR	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
1	.1990405	.0570648	3.49	0.001	.0870495	.3110314

. nlcom _b[LQP]*_b[UNP]

UR	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
1	.1078659	.0957514	1.13	0.260	0800482	.2957799

Source	SS	df		MS		Number of obs F(78, 929)		1008 61.52
Model	3033.51715	78	38.89	12455		Prob > F	=	0.0000
Residual	587.335217	929	.6322	23054		R-squared	=	0.8378
						Adj R-squared	=	0.8242
Total	3620.85236	1007	3.595	68258		Root MSE	=	.79512
UR	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
LQC	0333892	.004	046	-8.25	0.000	0413295		0254488
LQM	.0124271	.0028	733	4.33	0.000	.0067882		.018066
LQP	.0338128	.0079	745	4.24	0.000	.0181626		0494629
UNC	-5.286974	2.16	179	-2.45	0.015	-9.529532	-1	.044415
UNM	12.65951	1.937	949	6.53	0.000	8.856245	1	6.46278
UNP	4.963446	2.969	242	1.67	0.095	8637539	1	0.79065
I_C	.0423674	.0189	699	2.23	0.026	.0051385		0795963
I_M	1029443	.0157	474	-6.54	0.000	133849		0720397
I_P	0676097	.0272	631	-2.48	0.013	1211141		0141052
POP_MIL	.2181762	.050	123	4.35	0.000	.1198088		3165436
MIN	1009498	.0770	779	-1.31	0.191	2522167		0503172

Figure 10 - Panel Regression, No Lagged Unemployment, Fixed Effects

_nl_1: _b[LQC]*_b[UNC]

UR	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
_nl_1	.1765276	.0879201	2.01	0.045	.0039826	.3490726

. . nlcom _b[LQM]*_b[UNM]

_nl_1: _b[LQM]*_b[UNM]

UR	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
_nl_1	.1573212	.0542182	2.90	0.004	.0509168	.2637256

. . nlcom _b[LQP]*_b[UNP]

UR	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
_nl_1	.1678278	.1318621	1.27	0.203	0909543	.42661

P		chi2	-sq"	"R·	RMSE	Parms	Obs	ation	Equa
000	0.000	2571.77	7162	0.7	1.009764	13	1007		UR
)00	0.00	1448.12	5925	0.	5017.601	6	1007	Έ	WAGE
. Interval]	Conf.	[95%	₽> z	z	d. Err.	ef. St	Co		
									UR
.0116543	7865	0007	0.087	1.71	031737	339 .0	.0054	LQC	
.0053719	5221	0015	0.274	1.09	017587	249 .0	.0019	LQM	
.0144972	2856	.0002	0.041	2.04	036255	914 .0	.0073	LQP	
5.276598	1693	-1.12	0.203	1.27	632247	452 1.	2.077	UNC	
3.918778	3252	-1.423	0.360	0.92	362788	763 1.	1.247	UNM	
6.746265	1059	1.424	0.003	3.01	357731	162 1.	4.085	UNP	
.0175252	1017	0401	0.443	-0.77	014701	882 .	0112	I_C	
.0099259	5034	0315	0.307	-1.02	105689	887 .0	0107	I_M	
0087775	9069	0569	0.007	-2.67	122782	422 .0	0328	I_P	
.1179672	1738	0824	0.729	0.35)511339	467 .0	.0177	POP_ROC	
.6272597	5839	.4776	0.000	14.48	381578	718 .0	.5524	MIN	
0000351	0818	0000	0.000	-4.91	000119	585 .0	0000	WAGE	
.7228896	3126	.6293	0.000	28.32	238721	011 .0	.6761	lag_UR	
1.352887	1192	-1.683	0.832	-0.21	7740138	524 .7	1641	_cons	
								E	WAGE
.7371908	3842	.5858	0.000	17.14	385993	375 .0	.6615	PCI	
-1707.58	.351	-2870	0.000	-7.72	96.6307	966 29	-2288.	MIN	
11605.06	.361	2714	0.002	3.16	268.076	708 22	7159.	UNC	
-8414.471	3.06	-19423	0.000	-4.96	308.365	.76 28	-13918	UNM	
19045.79	99.3	1409	0.000	13.13	261.882	.54 12	16572	UNP	
-799.6089	3.27	-1283	0.000	-8.44	23.3853	.44 12	-1041	UR	
47008.33	1.32	4330	0.000	17.75	15.6829	.82 94	45154	_cons	

Figure 11 - Simultaneous Equation Regression, Population Rate of Change, No Fixed Effect

_nl_1: _b[LQC]*_b[UNC]

 Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
 .0112886	.014319	0.79	0.430	0167762	.0393533

. . nlcom _b[LQM]*_b[UNM]

_nl_1: _b[LQM]*_b[UNM]

	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
nl_1	.0024018	.0044323	0.54	0.588	0062854	.0110891

. . nlcom _b[LQP]*_b[UNP]

	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
nl_1	.030195	.0238455	1.27	0.205	0165413	.0769313

Figure 12 - Simultaneous Equation Regression, Population Rate of Change, No Lagged Unemployment, and No Fixed Effect

tion	Obs P	arms	RM	ISE	" F	-sq"	chi2		P
	1008 1008	12 6	1.5844			3011 4180	417.46 970.00	0.00	
	Coef	. Std	. Err.		z	₽> z	[95%	Conf.	Interval]
LQC	.01490	2 .00	52933	2	82	0.005	.004	5272	.0252767
LQM	.004996	1 .00	29562	1	69	0.091	00	0798	.0107901
LQP	.025421	8.00	59773	4	25	0.000	.013	7066	.0371371
UNC	5.93339	7 2.7	06226	2	19	0.028	.629	2927	11.2375
UNM	7.72309	1 2.2	57516	3	42	0.001	3.2	9844	12.14774
UNP	15.845	3 2.0	96789	7	56	0.000	11.7	3567	19.95493
I_C -	048232	9.02	45089	-1	97	0.049	096	2694	0001964
I_M ·	048776	2 .01	76453	-2	76	0.006	083	3603	0141921
I_P	.123143	7.01	96417	-6	27	0.000	161	6408	0846466
POP_ROC	.3295	1.08	33584	3	95	0.000	.166	1306	.4928894
MIN	.934422	5.05	53902	16	87	0.000	.825	8596	1.042985
WAGE	000189	7.00	00148	-12	79	0.000	000	2187	0001606
_cons	3.48288	4 1.1	94986	2	91	0.004	1.14	0754	5.825014
PCI	.956763	6.08	99994	10	63	0.000	.780	3679	1.133159
MIN	-5328.38	4 871	.3882	-6	11	0.000	-7036	.274	-3620.495
UNC	3574.07	6 287	0.836	1	24	0.213	-2052	.658	9200.81
UNM	-15453.1	7 337	7.822	-4	57	0.000	-2207	3.58	-8832.758
UNP	15022.8	9 156	2.583	9	61	0.000	1196	0.28	18085.49
UR	1107.7	4 58	1.712	1	90	0.057	-32.3	9422	2247.875
_cons	42095.2	4 1	384.7	30	40	0.000	3938	1.28	44809.2

_nl_1: _b[LQC]*_b[UNC]

	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
_nl_1	.0884193	.0663981	1.33	0.183	0417185	.2185571

. . nlcom _b[LQM]*_b[UNM]

_nl_1: _b[LQM]*_b[UNM]

	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
_nl_1	.038585	.0317931	1.21	0.225	0237283	.1008983

. . nlcom _b[LQP]*_b[UNP]

.

	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
_nl_1	.4028165	.1426911	2.82	0.005	.1231471	.6824859

P		chi2	-sq"	"R	RMSE	ms	Par	Obs	uation
00	0.00	511.96	3087	0.	.575856	12 1		1008	
00	0.00	1359.21	5854	0.	064.172	6 5		1008	GE
Interval	Conf.	[95%	P> z	z	Err.	Std.	oef.	Co	
.0166884	L232	0011	0.087	1.71	439	.0045	826	.0077	LQC
.011027	7919	.0007	0.024	2.26	112	.0026	097	.0059	LQM
.0349882	1924	.0141	0.000	4.64	051	.0053	5903	.0245	LQP
4.49032	3444	-5.243	0.879	-0.15	149	2.483	612	3765	UNC
10.2692	3563	2.193	0.002	3.02	169	2.060	421	6.231	UNM
17.7758	L181	10.31	0.000	7.38	125	1.904	1382	14.04	UNP
.055850	0502	0310	0.576	0.56	689	.0221	3999	.0123	I_C
018768	3801	0798	0.002	-3.16	559	.01	3243	0493	I_M
0719798	7991	1417	0.000	-6.00	114	.0178	894	1068	I_P
.083647	0744	.050	0.000	8.01	394	.008	958	.0671	POP_MIL
.931253	7975	.7327	0.000	L6.43	274	.0506	254	.8320	MIN
000165	2228	0002	0.000	13.31	146 -	.0000	942	0001	WAGE
7.411013	0712	3.080	0.000	4.75	689	1.104	5863	5.245	_cons
									GE
.8448952	7253	.6357	0.000	L3.87	606	.0533	8103	.7403	PCI
-2156.90	.633	-4039.	0.000	-6.45	827	480.2	297	-3098.	MIN
10791.20	.254	1654.	0.008	2.67	913	2330.	759	6222.	UNC
-8800.30	1.36	-19924	0.000	-5.06	808	2837.	2.36	-14362	UNM
18683.62	5.14	13635	0.000	L2.55	901	1287.	9.38	16159	UNP
106.036	.606	-1043.	0.110	-1.60	814	293.2	7849	-468.7	UR
46345.43	2.65	42322	0.000	13.20	238	1026.	1.04	44334	_cons

Figure 13 - Simultaneous Equation Regression, No Lagged Unemployment, and No Fixed Effect

_nl_1: _b[LQC]*_b[UNC]

	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
_nl_1	0029306	.0180635	-0.16	0.871	0383345	.0324732

. . nlcom _b[LQM]*_b[UNM]

_nl_1: _b[LQM]*_b[UNM]

	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
nl_1	.0368259	.0262591	1.40	0.161	014641	.0882929

. . nlcom _b[LQP]*_b[UNP]

	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
_nl_1	.3453419	.1164598	2.97	0.003	.1170848	.573599

Equation	Obs Pa:	rms RM:	SE "R-	sq"	chi2		P
UR WAGE	1007	80 .68926 73 2210.0			6352.75 11754.78	0.000	
	1007		29 0.9		11/54.76	0.000	
	Coef.	Std. Err.	Z	P> z	[95%	Conf.	Interval]
UR							
LQC	0092978	.0025986	-3.58	0.000	014	3911	0042045
LQM	.0039411	.002106	1.87	0.061	000	1866	.0080687
LQP	.0029955	.0061288	0.49	0.625	009	0169	.0150078
UNC	-1.819986	1.42603	-1.28	0.202	-4.61	4954	.9749814
UNM	5.958127	1.40838	4.23	0.000	3.19	7752	8.718502
UNP	1.674159	1.927203	0.87	0.385	-2.10	3089	5.451408
I_C	.0162466	.0117727	1.38	0.168	006	8276	.0393207
I_M	0355502	.0108296	-3.28	0.001	056	7759	0143246
I_P	0128275	.0170334	-0.75	0.451	046	2124	.0205574
POP_ROC	1930272	.040843	-4.73	0.000	273	0781	1129763
MIN	0592235	.0690183	-0.86	0.391	194	4968	.0760498
lag UR	.3795215	.0377029	10.07	0.000	.305	6252	.4534177
WAGE	0001723	.0000429	-4.01	0.000	000	2564	0000882
WAGE	.4073612	.060005	6.79	0.000	.289	7535	.5249689
MIN	-376.2594	215.4392	-1.75	0.081	-798.		45.99366
UNC	1675.287	2088.217	0.80	0.422	-2417	.543	5768.117
UNM	4501.751	2697.167	1.67	0.095	-784.		9788.101
UNP	3990.026	2554.33	1.56	0.118	-1016		8996.421
UR	-961.7079	145.0256	-6.63	0.000	-1245	.953	-677.4628

Figure 14 - Simultaneous Equation Regression, Population Rate of Change, Fixed Effect

_nl_1: _b[LQC]*_b[UNC]

	Coef.	Std. Err.	z	₽> z	[95% Conf.	Interval]
_nl_1	.0169219	.016595	1.02	0.308	0156037	.0494475

. . nlcom _b[LQM]*_b[UNM]

_nl_1: _b[LQM]*_b[UNM]

	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
_nl_1	.0234815	.0163006	1.44	0.150	0084672	.0554301

. . nlcom _b[LQP]*_b[UNP]

	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
_nl_1	.0050149	.0143464	0.35	0.727	0231036	.0331333

Figure 15 - Simultaneous Equation Regression, Population Rate of Change, No Lagged Unemployment, Fixed Effect

P		chi2	-sq"	" R	RMSE	Parms	Obs	uation
	0.000	4606.69 11990.83	8307 9226		.7798632 2187.546	79 73	1008 1008	GE
. Interval	Conf.	[95%	P> z	z	td. Err.	ef. S	Co	
013976	5939	027	0.000	-5.98	0034739	852 .	0207	LQC
.013400	6635	.002	0.003	2.93	0027391	321 .	.0080	LQM
.0242	7783	005	0.228	1.21	0076655	459 .	.0092	LQP
-1.3796	8981	-8.22	0.006	-2.75	.747303	331 1	-4.804	UNC
13.5701	6325	6.50	0.000	5.57	.802022	822 1	10.03	UNM
7.52570	6598	-1.65	0.210	1.25	.342468	555 2	2.934	UNP
.069480	2403	.012	0.005	2.80	0146024	604 .	.0408	I_C
044500	6624	102	0.000	4.96	0148375 -	814 .	0735	I_M
.0104	4352	072	0.143	-1.47	0211471 .	876 .	0309	I_P
326762	0126	57	0.000	-7.22	0620837 -	441 .	4484	POP_ROC
.014358	2407	298	0.075	-1.78	0797462	411 .	1419	MIN
000123	3021	000	0.000	-4.67	0000456	127 .	0002	WAGE
								GE
.627287	6245	.350	0.000	6.93	0705787	562 .	.4889	PCI
-4.79593	3414	-845.	0.047	-1.98	14.4288	687 2	-425.0	MIN
6202.45	.623	-1942	0.305	1.03	077.863	914 2	2129.	UNC
9107.83	.903	-1416	0.152	1.43	684.932	467 2	3845.	UNM
9391.73	.417	-534	0.080	1.75	532.229	.66 2	4428	UNP
-188.132	8.29	-103	0.005	-2.83	16.8808	112 2	-613.2	UR

_nl_1: _b[LQC]*_b[UNC]

	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
_nl_1	.0998591	.0485888	2.06	0.040	.0046268	.1950914

. nlcom _b[LQM]*_b[UNM]

•

_nl_1: _b[LQM]*_b[UNM]

	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
_nl_1	.0806276	.0383968	2.10	0.036	.0053712	.155884

. . nlcom _b[LQP]*_b[UNP]

	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
_nl_1	.0271326	.0393726	0.69	0.491	0500362	.1043014

Equation	Obs Pa	arms	RMSE	"R	-sq"	chi2		P
UR	1008	79	.8935248	0.	7777	3264.81	0.000	0
WAGE	1008	73	2193.29	0.	9222	11928.24	0.000	0
	Coef	. Std.	Err.		P> z		Conf.	 Interval]
 UR								
LQC	02483	R 004	15915	-5.41	0.000	033	8372	0158388
LQM	.004421		23815	1.86	0.063			.009089
LQP	.009596	9 .007	1074	1.35	0.177		3332	.0235271
UNC	-4.88080	5 1.79	90603	-2.73	0.006	-8.39	0322	-1.371288
UNM	7.48413	91.	8189	4.11	0.000	3.91	9161	11.04912
UNP	2.47470	3 2.24	1614	1.10	0.270	-1.9	1878	6.868187
I_C	.043141	1 .014	13001	3.02	0.003	.015	1135	.0711688
I_M	044112	9 .013	33817	-3.30	0.001	070	3406	0178852
I_P	025044	5 .019	91479	-1.31	0.191	062	5738	.0124845
POP_MIL	.141056	9 .043	38089	3.22	0.001	.055	1929	.2269208
MIN	086990	9.093	37178	-0.93	0.353	270	6744	.0966926
WAGE	00029	4 .000	0473	-6.21	0.000	000	3868	0002013
WAGE	+							
PCI	.451279	1 090)5142	5.60	0.000	.293	1712	.609084
MIN	-402.911			-1.86	0.062			20.78393
UNC	1919.55		1.325	0.92	0.002			6024.359
UNC	4136.83		1.325 3.316	1.53	0.359			9445.035
UNP	4242.00		5.997	1.67	0.096			9232.07
UR	-773.372	L 271.	.9147	-2.84	0.004	-1306	.315	-240.4292

Figure 16 - Simultaneous Equation Regression, No Lagged Unemployment, Fixed Effect

_nl_1: _b[LQC]*_b[UNC]

	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
_nl_1	.1212295	.0611585	1.98	0.047	.001361	.2410979

. . nlcom _b[LQM]*_b[UNM]

_nl_1: _b[LQM]*_b[UNM]

	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
_nl_1	.0330906	.0232349	1.42	0.154	012449	.0786302

. nlcom _b[LQP]*_b[UNP]

_nl_1: _b[LQP]*_b[UNP]

	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
_nl_1	.0237496	.034152	0.70	0.487	043187	.0906862

Source	SS	df	MS		Number of obs F(53, 395)	
Model Residual	1446.56931 161.049814		2937606 7721049		Prob > F R-squared	= 0.0000 = 0.8998
Total	1607.61912	448 3.58	3843555		Adj R-squared Root MSE	= .63853
UR	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
LQC	0284627	.0041252	-6.90	0.000	0365728	0203526
LQM	0061714	.0043867	-1.41	0.160	0147956	.0024528
LQP	.0254131	.0115355	2.20	0.028	.0027345	.0480917
UNC	-4.24402	2.506714	-1.69	0.091	-9.172189	.6841491
UNM	2.807198	2.833649	0.99	0.322	-2.763721	8.378118
UNP	5166661	6.356521	-0.08	0.935	-13.01351	11.98018
I_C	.0398078	.0185243	2.15	0.032	.0033893	.0762264
I_M	.0130872	.0250353	0.52	0.601	0361319	.0623062
I_P	.010151	.0561773	0.18	0.857	1002929	.1205949
POP_MIL	.1169633	.0561115	2.08	0.038	.0066488	.2272777
MIN	.2824601	.189289	1.49	0.136	0896798	.6546001
lag_UR	.4266962	.0377046	11.32	0.000	.3525694	.5008231

Figure 17 – Equation 2 for States with Right to Work laws

_nl_1: _b[LQC]*_b[UNC]

UR	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
_nl_1	.1207963	.0831796	1.45	0.147	0427337	.2843263

. . nlcom _b[LQM]*_b[UNM]

_nl_1: _b[LQM]*_b[UNM]

UR	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
_nl_1	0173244	.013041	-1.33	0.185	0429628	.008314

. . nlcom _b[LQP]*_b[UNP]

UR	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
nl_1	0131301	.1564879	-0.08	0.933	3207833	.2945231

Source	SS	df	MS		Number of obs F(59, 498)	
Model Residual	1764.0752 180.628606		8995797 2708044		Prob > F R-squared Adj R-squared	= 0.0000 = 0.9071
Total	1944.70381	557 3.4	9138924		Root MSE	= .60225
UR	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
LQC	.0028906	.0068216	0.42	0.672	010512	.0162933
LQM	.011831	.0029843	3.96	0.000	.0059675	.0176944
LQP	0344386	.010406	-3.31	0.001	0548837	0139935
UNC	2.853845	3.349088	0.85	0.395	-3.726239	9.433929
UNM	8.778448	1.8688	4.70	0.000	5.106745	12.45015
UNP	-7.828399	2.988304	-2.62	0.009	-13.69964	-1.957161
I_C	0415082	.0321632	-1.29	0.197	1047005	.0216842
I_M	0872728	.0153655	-5.68	0.000	1174621	0570835
I_P	.0689422	.0277037	2.49	0.013	.0145116	.1233727
POP_MIL	.1210083	.0668001	1.81	0.071	0102365	.2522531
MIN	1092843	.0751885	-1.45	0.147	2570101	.0384416
lag_UR	.473078	.0310976	15.21	0.000	.4119793	.5341767

Figure 18 – Equation 2 for States without Right to Work laws

_nl_1: _b[LQC]*_b[UNC]

UR	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
nl_1	.0082494	.027586	0.30	0.765	0459499	.0624488

. . nlcom _b[LQM]*_b[UNM]

_nl_1: _b[LQM]*_b[UNM]

UR	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
_nl_1	.1038576	.042836	2.42	0.016	.019696	.1880191

. . nlcom _b[LQP]*_b[UNP]

.

UR	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
_nl_1	.2695992	.1730293	1.56	0.120	0703581	.6095566

Source	SS	df	MS		Number of obs F(72, 599)	= 672 = 145.64
Model Residual	2713.23887 154.990409		5838732 3748597		Prob > F R-squared Adj R-squared	= 0.0000 = 0.9460
Total	2868.22928	671 4.27	7455929		Root MSE	= .50867
UR	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
LQC	0156703	.0036999	-4.24	0.000	0229367	008404
LQM	.003487	.0027698	1.26	0.209	0019527	.0089268
LQP	.0228529	.0075755	3.02	0.003	.0079751	.0377308
UNC	-3.760505	2.14279	-1.75	0.080	-7.968799	.4477894
UNM	3.554744	1.829494	1.94	0.052	0382589	7.147747
UNP	6392015	2.529728	-0.25	0.801	-5.607416	4.329013
I_C	.040797	.0188015	2.17	0.030	.0038722	.0777219
I_M	0252229	.0158159	-1.59	0.111	0562842	.0058384
I_P	.0043483	.0228551	0.19	0.849	0405376	.0492342
POP_MIL	.204864	.0591951	3.46	0.001	.0886089	.3211191
MIN	.1124458	.0607568	1.85	0.065	0068764	.2317679

Figure 19 – Equation 2 for States after 1998

_nl_1: _b[LQC]*_b[UNC]

UR	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
nl_1	.0589283	.0438251	1.34	0.179	0271411	.1449978

. . nlcom _b[LQM]*_b[UNM]

_nl_1: _b[LQM]*_b[UNM]

UR	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
_nl_1	.0123955	.0145513	0.85	0.395	0161822	.0409733

. nlcom _b[LQP]*_b[UNP]

UR	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
_nl_1	0146076	.0547178	-0.27	0.790	1220697	.0928545

Source	SS	df	MS		Number of obs $F(47, 286)$	
Model Residual	1033.23745 99.6923808				Prob > F R-squared	= 0.0000 = 0.9120
Total	1132.92984	333 3.4	021917		Adj R-squared Root MSE	= .5904
UR	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
LQC	0154845	.0059951	-2.58	0.010	0272846	0036845
LQM	.0033228	.0042831	0.78	0.439	0051077	.0117533
LQP	.0066633	.0138884	0.48	0.632	0206731	.0339997
UNC	5053676	4.571621	-0.11	0.912	-9.503658	8.492923
UNM	8.43614	3.668598	2.30	0.022	1.215264	15.65702
UNP	-1.28458	5.089505	-0.25	0.801	-11.30222	8.733058
I_C	0003167	.0437469	-0.01	0.994	0864234	.0857899
I_M	0533947	.0261834	-2.04	0.042	1049313	0018582
I_P	.023608	.0505402	0.47	0.641	0758699	.1230859
POP_MIL	.1538907	.061286	2.51	0.013	.033262	.2745195
MIN	1682282	.1074788	-1.57	0.119	379778	.0433215
lag_UR	.4410083	.0486653	9.06	0.000	.3452208	.5367959

Figure 20 - Equation 2 for States before 1998

_nl_1: _b[LQC]*_b[UNC]

UR	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
_nl_1	.0078254	.0727811	0.11	0.914	1354292	.1510799

. . nlcom _b[LQM]*_b[UNM]

_nl_1: _b[LQM]*_b[UNM]

UR	Coef.	Std. Err.	t	₽> t	[95% Conf.	Interval]
nl_1	.0280316	.0461147	0.61	0.544	0627357	.1187988

. nlcom _b[LQP]*_b[UNP]

•

UR	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
nl_1	0085595	.0232642	-0.37	0.713	0543504	.0372313

Reference Page

- Allegretto, Sylvia A., Arindrajit Dube, Michael, "Do Minimum Wages Really Reduce Teen Employment? Accounting for Heterogeneity and Selectivity in State Panel Data," Industrial Relations 50, no. 2 (2011): 205-240
- Izraeli, Oded, Kevin J. Murphy, "The effect of industrial diversity on state unemployment rate and per capita income," Annuls of Regional Science 37, no. 1 (2003): 1-14
- Mizuno, Keizo, Fumitoshi Mizutani. Noriyoshi Nakayama, "Industrial diversity and metropolitan unemployment rate," Annuls of Regional Science 40, no. 1 (2006): 157-172
- Mollick, André Varella, "What explains unemployment in US–Mexican border cities?" Annuls of Regional Science 42, no.1 (2008): 169-192
- Pantuosco, Lou, Darrell Parker, and Gary Stone, "The Effect of Unions on Labor Markets and Economic Growth: An Analysis of State Data," Journal of Labor Research XXII, no.1 (2001): 195-205
- Pantuosco, Lou, "Macroeconomic Differences in Public and Private Union Density: An Analysis of US State Economies, Review of Regional Studies 32, no. 2 (2002): 171-186

- Pantuosco, Lou, William Seyfried, "The Effect Of Public And Private Unions On State
 Economic Activity: Evaluating The Benefits To Organized Workers, Policymakers, And
 Companies," Journal of Business & Economics Research 6, no. 2 (2008): 27-39
- "Union Membership and Coverage Database from the CPS," *unionstats.com*, February 4, 2012, http://unionstats.com/

http://archive.sba.gov/advo/research/data.html

http://www.bea.gov/iTable/index_regional.cfm

http://www.bls.gov/schedule/archives/all_nr.htm#SRGUNE

http://www.census.gov/hhes/www/income/data/statemedian/ http://www.dol.gov/whd/state/stateMinWageHis.htm