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A Novel In Vitro Multiple-Stress Dormancy Model for
Mycobacterium tuberculosis Generates a Lipid-Loaded,
Drug-Tolerant, Dormant Pathogen
Chirajyoti Deb, Chang-Muk Lee, Vinod S. Dubey, Jaiyanth Daniel, Bassam Abomoelak, Tatiana D.

Sirakova, Santosh Pawar, Linda Rogers, Pappachan E. Kolattukudy*

Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, United States of America

Abstract

Background: Mycobacterium tuberculosis (Mtb) becomes dormant and phenotypically drug resistant when it encounters
multiple stresses within the host. Inability of currently available drugs to kill latent Mtb is a major impediment to curing and
possibly eradicating tuberculosis (TB). Most in vitro dormancy models, using single stress factors, fail to generate a truly
dormant Mtb population. An in vitro model that generates truly dormant Mtb cells is needed to elucidate the metabolic
requirements that allow Mtb to successfully go through dormancy, identify new drug targets, and to screen drug candidates
to discover novel drugs that can kill dormant pathogen.

Methodology/Principal Findings: We developed a novel in vitro multiple-stress dormancy model for Mtb by applying
combined stresses of low oxygen (5%), high CO2 (10%), low nutrient (10% Dubos medium) and acidic pH (5.0), conditions
Mtb is thought to encounter in the host. Under this condition, Mtb stopped replicating, lost acid-fastness, accumulated
triacylglycerol (TG) and wax ester (WE), and concomitantly acquired phenotypic antibiotic-resistance. Putative neutral lipid
biosynthetic genes were up-regulated. These genes may serve as potential targets for new antilatency drugs. The
triacylglycerol synthase1 (tgs1) deletion mutant, with impaired ability to accumulate TG, exhibited a lesser degree of
antibiotic tolerance and complementation restored antibiotic tolerance. Transcriptome analysis with microarray revealed
the achievement of dormant state showing repression of energy generation, transcription and translation machineries and
induction of stress-responsive genes. We adapted this model for drug screening using the Alamar Blue dye to quantify the
antibiotic tolerant dormant cells.

Conclusions/Significance: The new in vitro multiple stress dormancy model efficiently generates Mtb cells meeting all
criteria of dormancy, and this method is adaptable to high-throughput screening for drugs that can kill dormant Mtb. A
critical link between storage-lipid accumulation and development of phenotypic drug-resistance in Mtb was established.
Storage lipid biosynthetic genes may be appropriate targets for novel drugs that can kill latent Mtb.
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Introduction

One third of the world population is carrying latent TB

infection [1,2]. The ability of the pathogen to go into the

phenotypically drug-resistant non-replicating dormant state in

such latent infection is a major impediment to curing the disease

since currently available drugs cannot kill latent Mtb. The

emergence and spread of multidrug-resistant (MDR) or extremely

drug resistant (XDR) TB complicates this problem especially with

the spread of AIDS world wide [2,3]. Development of drugs that

can kill phenotypically drug-resistant Mtb in patients with latent

TB infection is an extremely urgent need. The development of

antibiotic resistance in non-replicating dormant bacteria which is

described as ‘phenotypic drug-resistance’ or ‘drug-tolerance’ is due

to changes in the physiological state of the bacteria and not

conferred by any inheritable genetic resistance mechanism [4].

Typically, the phenotypic drug-resistance of dormant Mtb is

exemplified by resistance to the sterilizing antibiotic rifampicin

(Rif) and is regarded as one of the hallmarks of latent TB. Several

animal models of latent TB have been developed [5]. However, it

is unlikely that any of them truly represent the human latent TB

[5,6]. In vitro models of latent Mtb suitable for screening chemical

libraries to discover drugs that can kill latent Mtb are not available.

Metabolic processes that are critical for the pathogen to go into

dormancy, survive under this non-replicating drug-resistant state,

and get reactivated when the immune system of the host is

weakened remain poorly understood. It has been recognized for

more than half a century that the pathogen inside the host utilizes

fatty acids as the major energy source and that glyoxylate cycle

plays a critical role in the use of fatty acids as the main carbon

PLoS ONE | www.plosone.org 1 June 2009 | Volume 4 | Issue 6 | e6077



source [7,8]. Convincing evidence obtained in recent years have

shown that the glyoxylate cycle plays a critical role in the

persistence of the pathogen in the host [9,10]. However, the origin

of the fatty acids and the nature of the storage form of fatty acids

are not clear [9,11]. We have shown that the pathogen stores

energy as triacylglycerol (TG) as it goes into dormancy-like state in

vitro and uses this stored energy to survive during starvation [12–

14]. We have also reported the functional characterization of

products of 15 triacylglycerol synthase (tgs) genes and identified tgs1

product as the dominant contributor to storage of TG that occur

when Mtb is exposed to different single stress factors [12,14].

Many organisms use wax esters (WE) as the major form of

energy storage [15]. For example, seeds of some plants, such as

jojoba, and many marine organisms use WE as the major form of

energy storage. TG and WE are important storage lipids in some

groups of prokaryotes [16]. Nothing is known about the enzymatic

biosynthesis of WE in mycobacterial species. Based on our earlier

observation that some of the mycobacterial tgs gene products

expressed in E. coli showed significant activity for WE synthesis

[12], we speculated that some of these tgs genes may play a role in

biosynthesis and accumulation of WE under multiple-stress

condition. Enzymatic steps involved in the biosynthesis of WE

were first elucidated in our laboratory [17,18]. More recently the

enzymatic strategy used in the production of alcohol used in WE

biosynthesis was elucidated [19]. We identified three putative

fatty-acyl-CoA reductase (fcr) genes in Mtb genome and measured

their expression under the multiple-stress condition.

Several studies have explored possible stress conditions that Mtb

would face in the host where the pathogen goes into the latent

state [20–24]. In attempts to elucidate gene expression changes

that occur as the pathogen goes into a dormant state, the pathogen

has been subjected to certain stress factors thought to be

encountered by the pathogen in the host. Such stress factors so

far tested include hypoxia (slow oxygen depletion), nutrient

deprivation, NO treatment and growth in acidic media [21–29].

There were considerable variations in gene expression profile

changes under such individual stress conditions [30]. Some

conditions caused accumulation of storage lipids while others

made the pathogen resistant against a low concentration of Rif

[12,24], but a critical link between metabolic requirement and

dormancy phenotype development has not been established.

There are reports that bacilli within tuberculous lesions like the

granuloma or closed cavity, encounter low oxygen but not severe

hypoxia and high CO2 concentrations along with low nutrient

levels and acidic condition [21,31–34]. Therefore in an attempt to

mimic the conditions that the pathogen might encounter in the

host, we applied a combination of these four stresses (multiple

stress) on Mtb in culture.

Our experimental results show that the application of these four

stress factors in combination led to the accumulation of TG and

WE in Mtb cells and these cells lost acid-fastness. The genes

involved in the biosynthesis of these storage lipids were induced

during the development of dormancy-like features under multiple-

stress. Up-regulation of known stress-responsive regulatory genes

also implicated the achievement of dormant state. Lipid

accumulation and phenotypic Rif- and isoniazid (INH)-resistance

increased in Mtb population under multiple-stress. The tgs1

deletion mutant, that showed an inability to accumulate TG,

was not able to develop antibiotic tolerance at the level of the wild

type strain and complementation restored antibiotic tolerance.

Thus we were able to demonstrate a link between storage-lipid

accumulation and development of drug-tolerance in the Mtb cells

during the development of dormancy. We have shown that with a

redox indicator dye, Alamar Blue, we can measure the viable Mtb

cell count remaining after treatment with antituberculosis drugs.

Adaptation of this method would allow high-throughput screening

for drugs that can kill dormant Mtb.

Results

Mtb accumulates storage lipids under multiple-stress
Since the hypoxic or NO-stress conditions caused accumulation

of storage lipids but did not result in detectable Rif-resistance

against moderate concentrations of Rif (5 mg/ml) (unpublished

results, [24,35],), an important indicator of true dormancy, we

tested a combination of stress conditions which the pathogen is

thought to encounter in the host [10,21,31,33,34]. After growing

Mtb in complete Dubos medium (OD600 nm = 0.2) the cells were

transferred to a low-nutrient medium (10% Dubos medium

without glycerol) at acidic pH (pH 5.0) in an atmosphere

containing high (10%) CO2 and low (5%) O2 for 18 days and

the lipid accumulation in those Mtb cells was analyzed at 3, 9 and

18 days. We found that TG accumulation reached maximal level

by day 9 (Fig. 1). WE levels in Mtb cells also increased significantly

and reached maximal levels by 3 days (Fig. 1). The aerobic control

samples at pH 5.0 or 7.0 did not show an increase in WE or TG

(data not shown). Capillary-GC analysis revealed that palmitate

(C16:0) and stearate (C18:0) were the major fatty acid constituents of

the TG and WE fractions (Fig 2). Metabolic incorporation of 14C-

oleic acid into lipids by the Mtb cells after 0, 9 and 18 days under

multiple-stress revealed that 14C was incorporated predominantly

into TG, and polar lipids (Table 1). Incorporation of 14C-oleic acid

into TG increased from 12% of the label in total lipids on day 0 to

43% on day 9 decreasing slightly to 37% on day 18. Incorporation

of the radiolabeled oleic acid into polar lipids decreased from 51%

on day 0 to 17% on day 9 reflecting down regulation of the

biosynthesis of membrane lipids and channeling of fatty acids into

storage lipids as the pathogen goes into the dormant state.

Figure 1. Accumulation of storage lipids by Mtb under
multiple-stress in vitro. Mtb was subjected to a combination of four
stresses - high CO2, low O2, acidic pH and nutrient starvation. Total
lipids were extracted at 0, 3, 9 and 18 days and resolved on silica-TLC
using hexane-diethyl ether-formic acid (90:10:1, v/v/v). Lipids were
visualized by charring after spraying with dichromate-sulfuric acid and
quantified by densitometry using Alpha Innotech Gel documentation
system and AlphaImager 2200 software (Alpha Innotech, USA). TG,
triglycerides; WE, wax esters.
doi:10.1371/journal.pone.0006077.g001

Mtb In Vitro MS Dormancy Model

PLoS ONE | www.plosone.org 2 June 2009 | Volume 4 | Issue 6 | e6077



Incorporation of 14C-oleic acid into WE increased significantly on

day 9 and remained at the same level at day 18 (Table 1).

Development of phenotypic Rif- and INH-resistance by
Mtb under multiple-stress

Multiple stresses inside the host are thought to cause Mtb to go

into a non-replicating, drug-tolerant dormant state

[10,21,31,33,34]. We found that when Mtb was subjected to the

combination of multiple stresses in vitro, it developed higher degree

of phenotypic resistance to Rif and INH indicating that a higher

percentage of the mycobacterial population entered a dormant

state. Nearly the entire Mtb population at the beginning of the

multiple-stress treatment (day 0) was killed (0.005 to 0.03%

survival) by both Rif (5 mg/ml) and INH (0.8 mg/ml). By day 9

under multiple-stress, phenotypic resistance of Mtb cells against Rif

(5 mg/ml) increased by about 120-fold (,5% survival) and

resistance against INH (0.8 mg/ml) increased by about 1200-fold

(,35% survival) (Table 2). After 18 days under multiple-stress, the

resistance of Mtb cells to Rif and INH were about 310-fold (,12%

survival) and 2800-fold (,84% survival), respectively, compared to

the survival level at day 0 (Table 2). At a lower concentration of

Rif (0.1 mg/ml), which was used in the slow oxygen depletion

model developed by Wayne and Hayes [24], 100% of the Mtb

population was resistant at both 9 and 18 day time periods under

multiple-stress (data not shown). Up to about 50% of the Mtb

population was resistant to Rif at 1 mg/ml after 18 days under the

combined stresses (data not shown). This degree of Rif-resistance

developed in the Mtb cultures under multiple-stress condition is

dramatically higher than that obtained in the hypoxia model of

Wayne and Hayes [24].

Figure 2. WE and TG accumulated by Mtb under multiple-stress
is composed mainly of C16:0 and C18:0 fatty acids. WE (A) and TG
(B) accumulated by Mtb after 18 days under MS were trans-esterified
and analyzed by capillary gas chromatography on Varian CP-TAP CB
column using a temperature program as described in Materials and
Methods.
doi:10.1371/journal.pone.0006077.g002

Table 1. Mtb cells under multiple-stress incorporate [14C]oleic
acid primarily into triglycerides.

Days under
multiple-stress Radioactivity as Percent of Total Lipids in

Triglycerides Wax Esters Polar lipids

0 12 0.8 51

9 43 1.6 17

18 37 1.5 20

At 0, 9 or 18 days under multiple-stress, Mtb cultures were metabolically labeled
with [1-14C]oleic acid for 6 h and total lipids were extracted and resolved on TLC
as described previously [12] using hexane:diethyl ether:formic acid (80:20:2, v/v/
v) as the solvent system. Regions of the TLC plates corresponding to standard
triolein (for triglycerides) or oleyl oleate (for wax esters) or the origin (for polar
lipids) were scraped and radioactivity was quantified by liquid scintillation
counting. Radioactivity in individual lipid subclasses is expressed as a fraction of
the radioactivity in total lipid extracts prior to TLC procedures.
doi:10.1371/journal.pone.0006077.t001

Table 2. Development of Rif-resistance in wild type Mtb
H37Rv but not in D-tgs1 mutant upon application of multiple-
stress; complementation restores Rif-resistance.

Mtb strains
Days under
Multiple-stress Resistance to Antibiotics (%)

INH (0.8 mg/ml) Rif (5.0 mg/ml)

WT-H37Rv 0 0.03 (60.01) 0.04 (60.02)

9 34.7 (612) 4.7 (61.9)

18 84.4 (617.5) 12.5 (63.4)

D-tgs1 0 0.01 (60.01) 0.03 (60.02)

9 21.1 (67.8) 1.2 (60.9)

18 31.2 (613.1) 1.9 (60.9)

C-D-tgs1 0 0.04 (60.02) 0.03 (60.01)

9 37.9 (613.5) 5.2 (62.1)

18 91.0 (619) 11.0 (64.5)

Mtb cultures at 0, 9 or 18 days of multiple-stress were treated with Rif (5 mg/ml)
or INH (0.8 mg/ml) for 5 days. Viable bacilli were enumerated by the cfu count
method and compared with controls not subjected to antibiotic treatment. WT-
H37RV, Mtb H37RV, D-tgs1, tgs1 deletion mutant of WT-H37Rv, C-D-tgs1,
complemented tgs1 mutant. Rif, Rifampicin; INH, Isoniazid.
doi:10.1371/journal.pone.0006077.t002

Mtb In Vitro MS Dormancy Model
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Loss of acid-fastness and accumulation of lipid bodies by
Mtb under multiple-stress

Dual staining of Mtb with the combination of Auramine-O and

Nile Red has been used to reveal acid-fast staining property and

neutral lipid accumulation in the same cell [36]. We applied this

dual staining procedure to examine acid-fastness of Mtb cells and

lipid body accumulation within the Mtb cells under multiple-stress.

When we subjected a young, synchronous culture of Mtb to the

multiple-stress condition for increasing periods of time, we

observed a steady decrease in Auramine-O stained green-

fluorescing acid-fast cells with a corresponding increase in Nile

Red stained red-fluorescing lipid-body containing cells (Fig. 3).

Initially, in the freshly grown starter culture about 90% of the

population was acid-fast positive by retaining the green-fluorescing

Auramine-O stain, and only a few lipid-body accumulating (Nile

Red) cells could be detected. Most of these Nile Red positive cells

also retained the acid-fast specific Auramine-O stain in the

heterogeneous population at day 0. After 18 days under multiple-

stress, acid-fast positive cells decreased to about 30% of the

population while Nile Red-stained cells with internal red spherical

bodies increased from 10% to about 70% (Fig. 4). Overlaid green

and red color images of dual-stained Mtb showed some cells

staining with both Auramine-O and Nile Red and fluoresced at

both green and red wavelengths to give an orange appearance

while other cells stained exclusively for Auramine-O or Nile Red

(Fig. 3). This difference in dual staining property indicated

generation of at least three different sub-populations in the Mtb

cultures under multiple-stress condition: a subset that stained only

with Auramine-O: (probably actively multiplying), a second subset

which stained with both Auramine-O and Nile Red (probably

transitioning to non-replicating state) and a third subset that

stained only with Nile Red (probably non-replicating and

dormant) (Fig. 3B).

Mtb cells become more buoyant when subjected to
multiple-stress

We investigated whether the lipid accumulation in Mtb cells

might be reflected in changes of buoyant density. Mtb cultures

subjected to multiple-stress for different periods of time were

fractionated on a Percoll density gradient and subsets of Mtb

population were separated at different density levels at different

time periods during multiple-stress treatment (Fig. 5). With

Figure 3. Accumulation of lipid bodies and loss of acid-fastness in Mtb cells under multiple-stress. (A), Acid-fast staining cells (green)
decreased and lipid body staining cells (red) increased with time under multiple-stress. Cells were stained with Auramine-O (acid-fast stain) and Nile
Red (neutral lipid stain) and examined by confocal laser scanning microscopy (Leica TCS SP5) at the same laser intensity for all the samples with Z-
stacking to get the depth of the scan field. Scanned samples were analyzed by LAS AF software for image projection. Overlaid images of the dual-
stained Mtb are shown. Bar = 4 mM. (B), Magnified view of three different Mtb cells, representing three different subsets of Mtb cells in terms of acid-
fast and neutral lipid staining property, observed in the Mtb population under multiple-stress: only acid-fast positive without any Nile Red stain
(green), both acid-fast and lipid stain positive (orange yellow) and acid-fast negative cells with only Nile Red staining lipid bodies (right). The only
acid-fast stain (green) positive cells gradually decreased and the other two types steadily increased during multiple-stress treatment. These cells
selected from a day 9 sample were stained with both dyes and examined by confocal scanning as stated above in (A). Bar = 5 mM.
doi:10.1371/journal.pone.0006077.g003

Mtb In Vitro MS Dormancy Model
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increasing incubation time under multiple-stress, the bands of

floating Mtb cells representing the major fraction of the Mtb

population shifted towards lower buoyant density regions of the

gradient in the upper phase of the tube (Fig. 5). This reflected the

increase in lipid-loaded and non acid-fast-staining cells in the

population with time under multiple-stress. Percoll density

gradient fractionation of the Mtb culture, after 18 days under

multiple-stress, showed a population of cells as a diffuse band in

the lighter density region and the great majority of the lipid-

droplet containing cells were distributed in the lighter fractions

(Fig. 5; fractions 6, 7 and 8). Auramine-O/Nile Red staining of the

different fractions showed that with increasing periods under the

multiple-stress condition, increasing number of cells became lipid-

loaded and lost acid-fast staining property. Nile Red staining of

Percoll density gradient fractions from 18 day-stressed cultures

showed that the lighter fractions were more enriched in lipid-

loaded cells that lost acid-fastness (Fig. 6). These changes are

consistent with the conclusion that application of multiple-stress

caused progressive changes in lipid accumulation resulting in

increasing percentages of presumably dormant cells in the lighter

fractions.

Transcriptomic profile of Mtb cells indicates down-
regulation of genes involved in energy metabolism,
transcription and translation, and up-regulation of stress
responsive genes under multiple-stress

We analyzed changes in the gene expression profiles using

oligonucleotide microarray. Analysis of variance (ANOVA) and

significance analysis of microarrays (SAM) [37] were conducted to

identify significant gene expression changes at selected time points

during the 18 days of multiple-stress application to Mtb cells. The

genes that were differentially expressed more than 2-fold include a

total of 331 targets, representing ,7% of ORFs on the chip.

Under the multiple-stress condition, genes that encode enzymes of

glyoxylate cycle such as isocitrate lyase (icl or aceA/Rv0467) and

citrate synthase (gltA1/Rv1131c) showed significant increase in

expression for all the time points examined (Fig. 7A). Mtb showed

shutdown of both ATP and NAD energy regeneration systems

(Fig. 7B). All the genes encoding NADH dehydrogenase I subunits

(nuoABEFHIJKLMN) and ubiquinol–cytochrome C complex (qcrA/

B/C) were repressed. In addition, the gene expression of ATP

synthase subunits was repressed, indicating the major shutdown of

ATP generation in the cells. Moreover, slowdown of the overall

activity in transcription/translation apparatus was manifested

under the multiple-stresses. For instance, rhlE (ATP-dependent

RNA helicase homolog) was repressed, demonstrating reduced

activity in transcription machineries. However, genes required for

anaerobic respiration (frdA, narG/H/X, nirA) were continuously

expressed until the later time points examined (18 days) and

aerobic respiration was significantly repressed throughout the

period of multiple-stress treatment. We also found significant

induction of the genes classified as the stress-response genes (e.g.

hspX/acr; Rv2031c) that may play a role in maintaining long term

survival within the host [38].

Functional clustering revealed nutrient starvation made a
major contribution to changes in gene expression

Comparison of the transcription profiles of Mtb in this new

multiple-stress model with those reported previously using single-

stress applications such as nutrient depletion [21], acidic shock

[22] and hypoxia [39] indicates that nutrient starvation caused

changes in expression of larger number of gene than the other

stresses did. Using transcription profile data from these reports, we

were able to cluster the gene-expression data of Mtb under

multiple-stress (Fig. 8A). This functional clustering was also

verified using genes that changed their expression by more than

1.8-fold at any time point under multiple-stress. A total of 141

genes classified by their stress responsiveness were clustered and

represented as Venn diagrams (Fig. 8B). Significantly induced

genes were mostly placed in either starvation-responsive or low-

oxygen-responsive gene clusters, while the repressed genes were

mostly grouped in the starvation-responsive gene cluster. The

number of genes repressed by nutrient-starvation was more than

double the number of induced genes (26 vs. 66 genes; Fig. 8B).

Real-time Taqman RT-PCR showed upregulation of
storage lipid biosynthetic and dormancy-associated
genes in Mtb

Among the 15 tgs genes tested for their transcript levels in Mtb

cells, upregulation of tgs1 (Rv3130c) was the highest with about

370 and 300 fold induction at 9 and 18 days respectively under the

multiple-stress condition (Fig. 9). Rv3371 and Rv1760 were also

significantly induced by approximately 8 and 4 fold, respectively at

9 day and by about 12 fold at 18 day. Their expression levels

increased significantly during the later time points, whereas

induction of tgs1 was maintained almost at the same level at both

9 and 18 days of multiple-stress treatment (Fig. 9). Among the

remaining 12 tgs genes, 10 tgs genes have been found to be

consistently induced at different levels, whereas Rv3233c and

Rv3234c were found to be repressed at all the time points (Fig. 9).

Induction of Rv3088 (tgs4), Rv3087, Rv3734c (tgs2) and Rv3480c

were in the range of 2 to 4 fold compared to the starter culture and

their induction level was higher on day 18 than on day 9 (Fig. 9).

Rv0221, Rv1425, Rv2484c and Rv2285 genes were found to be

Figure 4. Increase in the percentage of lipid-stained cells and
decrease in the percentage of acid-fast stained cells in Mtb
culture subjected to in vitro multiple-stress. Number of Auramine-
O stained acid-fast positive (green) and Nile Red stained lipid body
positive cells (red) were counted from multiple microscopic scans as
presented in the figure 3.
doi:10.1371/journal.pone.0006077.g004

Mtb In Vitro MS Dormancy Model
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induced in the range of .1.2 to ,2 fold either on 9 or on 18 days

under multiples-stress. In addition to increased TG accumulation,

we have also detected increased accumulation of WE as another

storage-lipid in the Mtb cells under multiple-stress. Three putative

fatty-acyl-CoA reductase (fcr) genes (Rv3391/fcr1; Rv1543/fcr2;

Rv1544/fcr3), which may take part in WE biosynthesis, were

tested for their change in expression. Among the three putative fcr

genes only Rv3391 (fcr1) was found to be up-regulated (Fig. 9).

To confirm the achievement of non-replicating dormant state in

the Mtb cells under multiple-stress, we have also determined the

expression pattern of a few known dormancy and stress responsive

genes in each sample. Genes encoding glyoxylate shunt pathway

enzymes, isocitrate lyase (icl/Rv0467) and citrate synthase (gltA1/

Rv1131c) were found to be up-regulated by 14 and 216 fold,

respectively after 18 days, whereas, malate dehydrogenase gene

(mdh/Rv1240) was found to be consistently repressed up to 18 days

under multiple-stress condition (Fig. 9). Stress responsive gene hspX

(acr/Rv2031c) was up-regulated by approximately 120 fold at both

9 and 18 day time points. Hypoxia responsive dosR (Rv3133c)

regulator was also found to be up-regulated at both 9 and 18 days

under multiple-stress and the induction level was lower compared

to the other dormancy responsive genes tested (Fig. 9); a similar

expression pattern for dosR was also observed by DNA-microarray

analysis.

Failure of tgs1 deletion mutant to develop Rif resistance
under multiple stress

The tgs1 deletion mutant failed to accumulate TG when

subjected to multiple-stress condition, while complementation of

this mutant with tgs1 restored the ability to store TG under the

same multiple-stress treatment (Fig. 10). Interestingly, tgs1 mutant

failed to develop resistance against Rif and INH to the extent as

the wild type (H37Rv) under multiple-stress, whereas the ability to

develop Rif resistance was restored by complementation of the

mutant with tgs1 (Table 2).

A higher percentage of the D-tgs1 cells were found to be acid-fast

positive compared to the wild type Mtb strain (Fig. 11A). The

number of acid-fast negative cells developed in the complemented

strain (C-D-tgs1) of D-tgs1 mutant was comparable to the wild type

(Fig. 11A). After 18 days under multiple-stress about 70% of the D-

tgs1 mutant population was found to be acid-fast staining positive,

whereas in the wild type Mtb and the C-D-tgs1 population only

about 30% of the cells were acid-fast positive (Fig. 11B).

Adaptation of multiple-stress model for drug screening
In order to assess whether our in vitro dormancy model can be

used for drug screening, we used a modification of the Alamar

Blue dye method [40–42] that can allow quick screening for

viability of mycobacterial cells following antibiotic treatment [43].

Figure 5. Decrease in buoyant density of Mtb cells subjected to multiple-stress. Mtb cells subjected to the multiple-stresses were placed on
the preformed gradient and centrifuged at 400 g for 20 min. The center tube is a 3 day cell sample mixed with density marker (M) beads. Percoll
gradients were self-formed by centrifugation from a starting solution with a density (r) of 1.0925 gm/ml. The densities of selected bead layers (r, in
gm/ml) are given on the right, and the positions of one ml fractions collected for analyses are at the left. Numbers below the tubes indicate the
number of days under multiple-stress.
doi:10.1371/journal.pone.0006077.g005
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We used the Alamar Blue dye to quantitate the phenotypic

resistance of the 9-day multiple-stressed Mtb cultures to Rif and

INH. Following antibiotic treatment, the culture was diluted into

fresh medium without antibiotic to allow the phenotypically drug-

resistant viable Mtb cells to resume growth. The Rif- and INH-

resistance of the same culture were also evaluated by the agar

plating method for comparison. As shown in Table 3, the Alamar

Blue dye method yielded antibiotic-resistance values that broadly

correlated with the resistance values estimated by the agar plating

method. Thus, the Alamar Blue dye method can be used with the

multiple-stress model to screen chemical libraries to detect

compounds that show lethal activity against dormant bacilli. This

method is adaptable to high throughput screening.

Discussion

The nature of the host environment that causes Mtb to go into a

latent state is poorly understood. However, reduced oxygen

tension, nutrient limitation (carbon and nitrogen), acidic pH, and

high carbon dioxide are among the major stress-factors that were

thought to be encountered by the pathogen in vivo besides the

immunological factors [10,29,31,33,34,44,45]. Stresses have been

applied to Mtb in attempts to generate a dormancy-like state in vitro

[21,22,24,27–29]. Mtb that is dormant in vivo does not show

acid-fast staining, contains lipid inclusion bodies and shows

resistance to drug such as INH and Rif. Available data show that

in vitro application of individual or dual stress conditions to Mtb

does not cause the pathogen to acquire all of these characteristics.

Therefore, we attempted to mimic the in vivo conditions by

applying a combination of four major stresses comprising of low

oxygen tension (5%), high concentration of CO2 (10%), low

carbon and nitrogen nutrient and acidic pH (5.0). Results

presented here show that under this multiple-stress condition in

vitro Mtb cells acquire all of the major characteristics of in vivo

dormancy.

Under the multiple-stress condition two types of storage lipids

(TG and WE) accumulated in Mtb cells. Chromatographic analysis

and labeling studies with [14C]oleic acid documented accumula-

tion of these storage lipids. The major fatty-acid constituents of

TG were found to be palmitate (C16:0) and stearate (C18:0) under

this multiple-stress condition. However, we have previously

reported C26:0 as the major fatty acid constituent of TG that

accumulated in Mtb under hypoxic or NO stresses [12,14]. Under

those stress conditions of hypoxia or NO-treatment the media used

were not nutritionally poor and we detected upregulation of

multifunctional fatty-acid synthase (fas/Rv2524c) gene in Mtb.

C26:0 is a major fatty acid generated by this enzyme [46].

However, under the multiple-stress condition, where the medium

Figure 6. Auramine-O (green) and Nile Red staining of Mtb cells in Percoll gradient fractions of Mtb culture after 18 day in multiple-
stress. Density gradient fractionation was performed as described in figure 5. Changes in acid-fast property, lipid accumulation and elongated cells
with cording were observed. Nile Red staining Mtb cells concentrated in higher fraction numbers at lighter density. No cells were detected in fractions
1, 2 and only a few were detected in fraction 3. Fr, fraction; fraction numbers ascending from the bottom of the tube to the top. Bar = 5 mM.
doi:10.1371/journal.pone.0006077.g006
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is nutritionally poor, there was no induction of the fas gene and this

could be the probable reason why we did not find C26:0 fatty-acid

as a major constituent of the storage lipids. Presumably these lipid

reserves serve as the energy sources for long term survival of Mtb in

latency [12–14,35,47]. We have previously shown that TG inside

Mtb cells is hydrolyzed under nutrient starvation [13] and

Mycobacterium bovis BCG was reported to preferentially use TG

within macrophages [48], indicating that TG is probably used as

an energy source by Mtb during the course of the disease.

Concomitant with the progressive increase in quantity of storage

lipids, as detected by TLC analysis, most of the Mtb cells were

observed to be loaded with Nile Red-staining lipid droplets by 18

days under multiple-stress. Previously Sudan Black B staining lipid

bodies have been found in non-dividing bacilli [49]. Nile Red-

staining lipid droplets were found in Mtb cells from sputum

samples and these lipid-loaded cells from human patients were

found to be dormant [35,36]. The appearance of the lipid loaded

Mtb cells from the multiple-stress in vitro model of dormancy was

very similar to that of the dormant Mtb cells from human patients

[35].

Loss of acid-fastness seems to be an important trait for non-

replicating dormant cells from in vitro cultures or from tuberculous

lesions and most of such cells would grow under favorable growth

conditions with restoration of acid-fastness [50–53]. We have also

observed restoration of acid-fastness, when the dormant cells

generated under multiple-stress were grown in fresh media with

complete nutrients (data not shown). Under the multiple-stress,

nearly all of the Mtb cells with lipid droplets failed to show acid-fast

staining. Acid-fast staining is usually performed by conventional

Ziehl-Neelson method to diagnose active TB using sputum

samples. But in the heterogeneous population of Mtb from sputum

samples many of the lipid loaded cells were lacking Auramine-O

Figure 7. Microarray analysis demonstrated changes in expression of genes involved in glyoxylate cycle and energy metabolism.
(A), The expression ratio of genes involved in glyoxylate shunt cycle was shown in the red-green-display according to the log2-tranformed color
code. Experimental time-points were shown at the top of the column. Genes were selected based on their annotation in TubercuList database, and
grouped into those that were either regulated at least one of the time-points under multiple- stress condition. (B), Energy generation and NAD
regeneration under multiple-stress. Genes involved in energy generation were selected based on their annotation. Red denotes induction and green
denotes repression.
doi:10.1371/journal.pone.0006077.g007
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Figure 8. Functional clustering of Mtb genes under multiple-stress revealed nutrient starvation made major contribution to the
number of genes that show changes in expression. (A), Microarray data of Mtb gene expression under multiple-stress compared to the
respective expression data for selected genes reported for nutrient-starvation- [21], hypoxic- [39,66], and low pH-response [22]. Expression ratios were
averaged, log2-transformed, and displayed according to the color code at the bottom of the each column. Experimental time-points were indicated
at the top of the each column. The Euclidean average linkage clustering (standard z-transformed) was performed to generate gene trees shown at
the left side of each column. MS, Multiple-stress. (B), Venn diagrams showing the number of overlapping and unique set of genes modulated more
than 1.8-fold at any time-points under multiple-stress condition. Induced or repressed genes were selected to categorize based on stress-response in
red circle or green circle to indicate gene induction or repression, respectively.
doi:10.1371/journal.pone.0006077.g008
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(acid-fast) stain as well [36]. Development of INH resistance has

been shown to be associated with loss of acid-fastness in a kasB

deletion mutant of Mtb, where loss of acid-fastness was found to be

due to the lack of mycolic acid biosynthesis [54]. Microarray

analysis showed that under multiple-stress kasB was down-

regulated in Mtb. Thus, under the multiple-stress, Mtb cells

become non-replicative and they lose acid-fast staining property

probably due to the shut down of mycolic acid synthesis and thus

exhibit INH-tolerance at a higher frequency and at a earlier time

point as compared to the development of Rif tolerance [55]. The

possible connection between INH resistance phenotype and loss of

acid-fastness owing to the absence of mycolic acid [54] was also

supported by the reduced ‘loss of acid-fast’ staining property and

higher degree of INH killing in the D-tgs1 mutant as compared to

the wild type and the tgs1 complemented strain.

Drug tolerance is a characteristic feature of dormancy in vivo [4].

However, development of drug tolerance has been assessed only in

few in vitro dormancy models [21,24]. Significant resistance to

moderate levels of Rif (5 mg/ml) has not been achieved within a

fairly short time in any of the in vitro models tested previously. In

the widely used Wayne model of dormancy based on hypoxia, the

maximum phenotypic Rif-resistance obtained against a very low

concentration of Rif (0.1 mg/ml) was about 21% after 8 days and

gradually decreased to 17% tolerance after 14 days and to 12%

after 22 days [24]. In the present multiple stress model, by 9 days

under stress 100% of the cells were resistant to 0.1 mg/ml of Rif

(data not shown). Under the multiple-stress condition the Rif-

resistance against a 50 times higher concentration of Rif (5 mg/ml)

increased gradually to approximately 5% and 12% within 9 and

18 days respectively. In the nutrient starvation model about 60%

tolerance against Rif (at 1 mg/ml) was reported after 42 days under

the stress [21], whereas, in our model we observed about 50%

survival at the same concentration of Rif within 18 days (data not

shown). Percent resistance against INH is generally higher

compared to Rif in the same bacterial population under stress,

Figure 9. Real-time Taqman RT-PCR measurement of transcripts levels of selected genes potentially involved in dormancy and
synthesis of storage lipids (TG and WE) in Mtb H37Rv under multiple-stress. Relative quantitation method (ddCt) was used with the 7500
Fast real time system and analysis was done using SDS v1.4 software of Applied Biosystems Inc. sigA was used as the endogenous control to
normalize expression values and samples of starter cultures (day 0) were used as calibrator to calculate the fold induction. Y axis is in log scale.
doi:10.1371/journal.pone.0006077.g009

Figure 10. Loss of TG accumulation in D-tgs1 (D-Rv3130c) under
multiple-stress (18 days) and its restoration by complementa-
tion. Equal amount of lipid for each strain was loaded to Silica-TLC and
resolved using hexane-diethyl ether-formic acid (90:10:1, v/v/v) solvent
system. Lipids were visualized by charring for 10 min at 180uC after
spraying with dichromate-sulfuric acid. WE, wax ester; TG, triglyceride;
WT-H37Rv, Mtb H37Rv; D-tgs1, tgs1 deletion mutant of Mtb H37Rv; C-D-
tgs1, tgs1 complemented strain of D-tgs1 mutant.
doi:10.1371/journal.pone.0006077.g010
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as INH can kill only actively dividing cells whereas Rif can kill

growing as well as non-dividing cells with short spurts of

metabolism [4]. Development of a higher frequency of Rif-

resistance against a higher concentration of the drug indicates the

development of true dormancy of Mtb under multiple-stress. The

model suggests a link between the occurrence of higher phenotypic

drug resistance and storage lipid accumulation. Under the

multiple-stress condition no TG could be detected in the tgs1

deletion mutant. The tgs1 deletion mutant with compromised

accumulation of TG was not able to develop phenotypic

antibiotic-resistance comparable to that reached by the wild type.

The linkage between lipid accumulation and Rif resistance was

strongly supported by the finding that complementation of tgs1

mutant restored development of Rif resistance. Moreover, the

higher percentage of acid-fast positive cells in tgs1 mutant, with

impaired TG accumulation ability under multiple-stress, suggests

links between loss of acid-fastness, lipid accumulation and

development of phenotypic antibiotic resistance during the

development of true dormancy. The molecular basis of these

linkages remains to be elucidated.

We investigated the gene regulation reflecting overall metabolic

and physiological changes that occur when Mtb is subjected to the

multiple stress condition by measuring the gene transcript levels at

different time points under multiple-stress using whole genome

microarray and qRT-PCR. Several TG and WE biosynthetic

genes were up-regulated. Induction level of tgs1 (Rv3130c) was the

highest among the tgs genes measured by qRT-PCR, which is

comparable to our previous reports where tgs1 was the maximally

Figure 11. (A), Diminished ‘loss of acid-fastness’ in the D-tgs1 mutant population under multiple-stress. WT-H37Rv, D-tgs1 mutant and
C-D-tgs1 cells were stained with Auramine-O (acid-fast) and Nile Red (neutral lipid) after 18 days under multiple-stress. Bar = 4 mM. (B), Percent acid-
fast stain positive cells observed in different Mtb strains under multiple-stress for 9 and 18 days. WT-H37Rv, wild type Mtb H37RV; D-tgs1, tgs1 deletion
mutant of WT-H37Rv; C-D-tgs1, tgs1 complemented strain of D-tgs1.
doi:10.1371/journal.pone.0006077.g011

Table 3. Comparison of Antibiotic Resistance Evaluation by
Alamar Blue and Agar Plating Methods.

Antibiotic

Percent Antibiotic Resistance in Mtb population
after day 9 under multiple-stress

Alamar Blue Agar Plating Method

Rif, 0.1 mg/ml 6568 100

Rif, 5.0 mg/ml 361 461

INH, 0.8 mg/ml 64614 40620

Cultures of Mtb at 9 day in multiple-stress were treated with antibiotic for 5
days. Viable cells surviving the antibiotic treatment were allowed to grow for 5
days by 200-fold dilution into media without antibiotic. The viable cells were
quantified using Alamar Blue dye as described in Materials and Methods.
doi:10.1371/journal.pone.0006077.t003
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expressed gene under different stress conditions [12]. TGS1 was

also the most active enzyme when expressed in E. coli [12].

Reports on the use of many other stress conditions on Mtb have

also shown induction of tgs1, which is one of the genes of the

hypoxia responsive dormancy regulon [12,45,56–59]. We identi-

fied tgs1 as the critical gene for the biosynthesis of TG in the

bacterium under in vitro dormancy-like conditions induced by

single stress factors [14]. It has been suggested that constitutive

accumulation of TG by the W/Beijing strains may confer an

adaptive advantage for growth and survival in microaerophilic or

anaerobic environments and thus be related to the strength of

epidemiological spread by this strain [47]. Besides tgs1 (Rv3130c),

Rv3371 and Rv1760 were significantly up-regulated as detected

by qRT-PCR and 10 other tgs genes were also induced at a lower

level. Induction of Rv3371 and Rv1760 increased gradually with

time. Our microarray analysis of transcripts also revealed that

Rv3371 was significantly up-regulated tgs gene under multiple-

stress condition. This tgs gene was also shown to be up-regulated in

human lung granuloma and in pericavity [60]. Rv3734c (tgs2) was

reported to be induced under nutrient starvation [21]. Induced

expressions of Rv3088 (tgs4) and Rv3087 under multiple-stress are

worth noting as these two genes were previously found to be

induced by acidic shock and these are the only two tgs genes that

belong to a putative acid inducible mymA operon [61] and were

also reported to be up-regulated under nutrient starvation [21].

Rv0221 and Rv1425 were reported to be up-regulated in

intraphagosomal lesions [58]. We previously detected significant

upregulation of several tgs genes under hypoxic and NO exposures,

particularly for those which exhibited highest TG synthase activity

when expressed in E. coli [12].

It is noteworthy that according to a recent report on meta-

analysis of Mtb transcription profile data obtained using various in

vitro and in vivo stress conditions, tgs1 (Rv3130c), Rv3371 and

Rv1760 had the highest up-regulation scores among the tgs genes

[62]; and were placed in the same order of ranking based on

induction levels that we measured under multiple-stress condition.

Many other tgs genes which were reported with up-regulations

scores in the meta-analyses [62], were also found to be induced

under the multiple-stress condition. The meta-analysis of Mtb gene

expression data also reported upregulation scores for Rv3391 (fcr1)

and Rv1543 (fcr2) that are probably involved in WE biosynthesis.

Only fcr1 (Rv3391) was found to be induced under multiple-stress

condition by qRT-PCR, whereas both fcr1 (Rv3391) and fcr2

(Rv1543) were detected to be up-regulated by microarray analysis

[GEO accession: GSE10391]. fcr1 (Rv3391) was also reported to

be induced after 96 h of nutrient starvation but no induction was

reported for the fcr2 (Rv1543) or fcr3 (Rv1544) under that

starvation condition [21]. Variable expression profile of different

tgs or fcr genes under different stresses raise the possibility that lipid

accumulation under different stress conditions might use different

sets of tgs and fcr genes.

Since multiple-stress generates what appears to be truly

dormant Mtb cells similar to those found in vivo, this in vitro

dormancy model might be suitable for screening of drug

candidates that can kill dormant Mtb. To use cultures containing

the dormant cells for such drug candidates testing we need a

convenient method to measure the killing of dormant cells that can

be adapted for high-throughput screening. Alamar Blue dye

reduction method was used to measure the viable cells remaining

after drug treatment. This method yielded values that were

comparable to the traditional cfu count method, but the results

were obtained in much less time. This method can be adapted for

use in high throughput screening of chemical libraries for novel

antilatency drug candidates. If new drugs can be developed and

used along with the available frontline drugs then TB cure can be

achieved in a short period and such an approach could lead to

eventual eradication of TB. This is the first report of an in vitro

multiple-stress dormancy model for Mtb that manifests all features

characteristic of in vivo dormancy and implicate a critical link

between storage lipid accumulation and drug-tolerance.

Materials and Methods

Strains, Stock culture and Development of multiple-stress
in vitro dormancy model

Mycobacterium tuberculosis H37Rv (Mtb), tgs1 (Rv3130c) deletion

mutant of Mtb (D-tgs1) and tgs1 complemented strain of D-tgs1 (C-

D-tgs1) were grown in Middlebrook 7H9 broth supplemented with

0.2% glycerol and 10% Middlebrook OADC enrichment (Difco)

up to OD600 nm of 0.7, mixed with glycerol to a final concentration

of 15%, and stored at -80.0uC as stock cultures before they were

used to inoculate complete Dubos medium to prepare culture for

multiple-stress application. D-tgs1 and C-D-tgs1 strains were grown

in media containing hygromycin (Hyg, 75 mg/ml) and Hyg

(75 mg/ml) plus kanamycin (Kan, 30 mg/ml) antibiotics respec-

tively.

Mtb strains from frozen stock were grown in complete Dubos

(Difco) medium containing 1.5% glycerol and 10% Dubos-

medium-albumin-supplement to an OD600 nm of 0.2 in a roller

bottle incubator at 37uC. This seed culture was used to inoculate a

second batch of culture and grown up to an OD600 nm of 0.2. Cells

were harvested and resuspended to obtain OD600 nm of 0.2 in an

acidic (pH 5.0), low nutrient Dubos medium (10% of Dubos

medium with Dubos albumin supplement and without glycerol)

supplemented with 0.018% Tyloxapol surfactant. 150 ml of this

cell suspension was placed in a 1000 ml glass bottle fitted with a

24/40 standard joint neck, and the bottle was sealed with a tight-

fitting rubber septum flip top cap. Molten paraffin wax was

layered on the out side of the cap to ensure air-tight seal. Each

bottle was flushed using 18G needle attached to a 0.2 mm filter

with a gas mixture (5% O2+10% CO2+85% N2) at the rate of

1000 ppm for 5 min. Oxygen consumption was measured on a

daily basis and only a slight oxygen depletion could be detected

after 3 days. Therefore, the bottles were flushed with the gas

mixture on every alternate day. Sealed culture bottles were rolled

in a roller incubator at 37uC. Cells from a set of bottles were

harvested at different (0 to 18 days) time points and were stored at

280uC until used to isolate RNA to determine gene expression

profile by microarray and quantitative RT-PCR, and to perform

lipid analysis by TLC. Aliquots of 2 ml cultures were treated with

respective antibiotics to determine phenotypic antibiotic resistance

by plate count method (cfu counting).

Lipid analysis of Mtb cells treated with multiple-stress
condition

Mtb cultures were subjected to the multiple-stress condition for

0, 3, 9 or 18 days and total lipids were extracted and analyzed by

silica-thin layer chromatography (TLC) as described previously

[12]. For metabolic incorporation studies Mtb cells under multiple-

stress condition were incubated with [1-14C]oleic acid and the

lipids were extracted and analyzed as previously described [12].

Wax ester (WE), and triacylglycerol (TG) fractions were purified

from preparative silica-TLC plates and the constituent fatty acids

were converted to methyl esters by BF3/methanol transesterifica-

tion. The fatty acid methyl esters were analyzed by capillary gas

chromatography using a Varian CP-TAP CB column

(25 m60.25 mm60.1 mm; He 2.2 ml/min) attached to a Varian

CP-3900 gas chromatograph under a temperature control
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program (70uC, 0.1 min; 40uC/min to 280uC; 4uC/min to

320uC).

Auramine-O/Nile Red dual fluorescent staining to
determine loss of acid-fastness and accumulated lipid
bodies

Fluorescent acid-fast staining dye Auramine-O was used in

combination with neutral lipid staining dye Nile Red (9-

Diethylamino-5H-benzo-a-phenoxazine-5-one) using a modified

method described by Garton et al [36]. About 20 ml of culture at

different time points were evenly spread to make a thin smear on a

glass slide, quickly heat fixed on a flame and cooled to room

temperature before staining. Each smear was covered with

Auramine-O (10 mg/ml), incubated for 20 min, gently washed

with distilled water, treated with decolorizer solution for 30 sec,

washed with distilled water, covered with the second dye Nile Red

solution (10 mg/ml in ethanol), incubated for 15 min, washed with

water, covered with potassium permanganate solution for 1 min,

washed thoroughly with water and air dried. The staining

procedure was carried out in BSL3 hood without direct light

exposure. Stained smears were mounted using Cytoseal60 and

thin cover glass (less than 150 micron thick). The mounted slides

were dried under darkness for at least 8 hrs before examining

under fluorescent (Nikon) and confocal laser scanning microscopes

(Leica TCS SP5). The confocal scanning images were analyzed

and projected using the LAS AF software for Leica TCS SP5

confocla systems. The stability of both the dyes were tested using

different mounting media for different time periods and no

significant loss of fluorescence intensity due to quenching or

leaching of the dyes was observed with the mounting medium

used.

Fractionation of mycobacterial cells by density gradient
centrifugation

We tested a self-generated gradient based on a starting density

(r of 1.07 g/ml), which would cover a range of r from ,1.13 to

1.01 g/ml. Following manufacturer’s protocol (GE Healthcare,

USA), we made a Stock Isotonic Percoll (SIP) solution by mixing 9

parts Percoll with 1 part sterile 1.5 M NaCl. The SIP was further

diluted to r= 1.07 g/ml with sterile 0.15 M NaCl. To form the

gradient, 9.5 ml of the 1.07 r solution was pipetted into 10 ml

Seton Easy-Seal polyallomer centrifuge tubes with the Seton Noryl

crown assembly and centrifuged without brakes in a Beckman

Optima L-90K ultracentrifuge at 18,000 rpm at 20uC for 20 min,

using a Ti 70.1 rotor. Mtb cell sample at different time points were

centrifuged and resuspended in complete 7H9 medium to give one

OD600 equivalent per ml. One ml of such M. tuberculosis cell

suspension was carefully layered on top of the gradient. All

relevant steps are carried out under aseptic conditions. The tubes

were centrifuged at 400 g for 16 min in a Sorvall Legend RT

clinical centrifuge with a swinging bucket rotor at 5uC.

Phenotypic antibiotic resistance by plate count method
(cfu counting)

The phenotypic antibiotic resistance against different concen-

trations of rifampicin (Rif) and isoniazid (INH) was measured by

plate count method (cfu counting). At different time points under

multiple-stress condition 2 ml aliquots of the cultures were placed

in 25 ml glass tubes, to each tube appropriate aliquot of an

antibiotic was added, sealed tightly with septum rubber caps and

flushed with the same multiple-stress gas mix before incubating at

37uC for 5 days. After incubating for 5 days under antibiotic

treatment, serial dilutions were made in Middlebrook 7H9 liquid

medium and appropriate dilutions were spread on Middlebrrok

7H10 agar plates without any antibiotic. Colonies were counted

after 4 weeks of incubation at 37uC. A tube which did not receive

any antibiotic was used as a control to determine the total cfu

present.

Quantitation of phenotypic drug resistance using Alamar
Blue dye

Aliquots of Mtb culture after multiple-stress treatment for 9 days

were incubated with Rif (5 mg/ml) for 5 days at 37uC as stated

above. The cultures were then diluted 1000-fold into Middlebrook

7H9 medium containing no antibiotic and incubated in a roller

incubator at 37uC for 5 days to allow the viable cells to grow.

Alamar Blue dye (diluted 100-fold) was added and the increase in

fluorescence at 590 nm, after excitation at 530 nm, was monitored

at 0, 4, 8 and 24 h after addition of the dye using a BioScan

Chameleon V plate reader. Fluorescence readings above the

autofluorescence controls were calculated and used to quantitate

phenotypic resistance to the antibiotics by comparison with Mtb

culture not treated with any antibiotic.

Microarray hybridization, data processing and functional
clustering of genes

The whole genome microarray (PFGRC, http://pfgrc.jcvi.org)

consisted of 70-mer oligonucleotides for each ORF representing

4,127 ORFs from M. tuberculosis strain H37Rv, and 623 unique

ORFs from Mtb strain CDC 1551 which are not present in the

H37Rv strain’s annotated gene complement (98% of H37Rv

ORFs). The full 70-mer complement was printed in replicate of

four spots on the surface of a microarray slide. Total Mtb RNA

was isolated using a TRIzol (Invitrogen) extraction and RNeasy

(Qiagen) purification as described [29]. A two-color (Cyanine 3

(Cy3) and Cyanine 5 (Cy5)) hybridization format was used for the

microarray analysis. Generally, RNA extracted from cells growing

exponentially at an optical density of 0.3 in Dubos (pH 7.0), was

used to create fluorescent Cy3-labeled reference cDNA for each

experiment. The reference cDNA was hybridized together with

the Cy5-labeled cDNA synthesized from RNA extracted from cells

grown under experimental multiple-stress conditions. All hybrid-

izations were performed with dye-reversal replicates. Labeling

cDNA and hybridization were conducted following instructions

from PFGRC, JCVI (http://pfgrc.jcvi.org/index.php/microarray/proto-

cols.html). QuantArray (ver. 3.0, Perkin Elmer) was used for 16-bit

TIFF image quantification and initial data visualization. The

hybridization signal was subjected to normalization and clustering

by using open-source R (ver. 2.1.1) packages and S-Plus

(Insightful, WA). Intensity-dependent print-tip MAD normaliza-

tion, Quantile normalization, and hierarchical clustering [63] were

performed with R as described before [64]. Significantly expressed

genes (a fold change of .2.0) were identified by two different;

Benjamini-Hochberg multiple testing correction-ANOVA-test

(a= 0.05) [65], and the two-class unpaired algorithm from the

Significance Analysis of Microarrays package (SAM, http://www-

stat.stanford.edu/,tibs/SAM/). In SAM analysis, we chose the delta

value such that the median false discovery rate was less than 1%

[37]. ORFs were identified based on the annotation of Tubercu-

List Database (http://genolist.pasteur.fr/TubercuList/index.html).

Genes induced by multiple-stress condition were clustered by

their annotated functions in response to three different stresses

reported previously (nutrient starvation [21], acidic shock [22] and

hypoxic treatment [39]). Data from previous reports of indepen-

dent microarray analysis of gene transcripts were referred to

classify unknown hypothetical proteins. Gene transcription profiles
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of cells that were treated only under nutrient starvation (10%

Dubos medium-without glycerol at pH 7.0), was used as the

internal control.
Microarray data compliance and accession

number. The microarray data presented and discussed in this

article are in accordance with MIAME guidelines, deposited in

Gene Expression Omnibus of NCBI (GEO [http://www.ncbi.

nlm.nih.gov/geo/]) and are accessible through GEO series

accession number: GSE10391.

RNA isolation and real-time Taqman RT-PCR (qRT-PCR)
To each cell pellet from 50 ml culture of untreated and

multiple-stress treated cells at different time points, 1 ml Trizol

(Invitrogen) containing 20 mg/ml linear acrylamide was added and

resuspended by pipetting. The cell suspension was transferred to a

2 ml screw cap tube (Lysing matrix B, Q-Biogene) containing

0.5 ml of 0.1 mm zirconia/silicon beads, disrupted thrice for

40 sec each at speed 6 (Fast Prep cell disruptor, Q-Biogene) with

cooling on ice-water for 1 min after each cycle of burst. The

disrupted cell suspension was centrifuged for 5 min at high speed

(Eppendorf, 5415D) and the supernatant was transferred to a 2 ml

snap cap tube containing heavy phase lock gel (5 Prime, Fisher

Scientific Co.). 300 ml chloroform was added to each tube,

vortexed at high speed for 15 sec, inverted vigorously for 2 mins

and centrifuged for 10 min at maximum speed (Eppendorf

5415D). The upper aqueous phase was transferred to a 2.0 ml

tube, disinfected with Vesphene-II and taken out from BSL-3 for

further processing and maintained on ice until RNA was

precipitated on the same day. To this aqueous suspension

Glycoblue coprecipitant (100 mg/ml; Ambion Cat#9515), 1/10

volume of 5 M ammonium acetate (Ambion) and equal volume of

isopropanol were added. Tubes were incubated at 220uC for 2 hr

and centrifuged for 30 min at 4uC (Sorvall). Supernatant was

discarded, the RNA pellet was washed twice in 70% ethanol and

air dried (,5 min) after removing all the liquid droplets by

pipetting. RNA was suspended in appropriate volume of nuclease

free water (Ambion), linear acrylamide was added to a final

concentration of 20 mg/ml and purified using RNeasy mini

column following the manufacturer’s instructions. Column

purified RNA was treated with RQ1 DNase (Promega) for

30 min at 37uC and purified by RNeasy mini column (Qiagen,

USA) following the manufacturers’ instructions. Equal amount of

RNA from each sample was used to synthesize cDNA using

superscript-III reverse transcriptase (Invitrogen, USA), Ribolock

RNase inhibitor (Farmentas, USA) and random hexamers

following manufacturer’s instruction (Invitrogen). cDNA was used

at an appropriate dilution for real-time Taqman RT-PCR

amplification. All the PCR primer and Taqman probes (59-6-

FAM reporter and 39-BHQ1 quencher) were designed by using

Primer Express software (v 3.0, Applied Biosystems Inc.) and 26
Taqman Fast Universal PCR master mix reagent (Applied

Biosystems Inc., USA) was used for PCR amplification and

quantification with 7500 Fast real-time PCR system (Applied

Biosystems Inc., USA). Default real-time cycling parameter (1

cycle at 95.0uC for 20 sec followed by 40 cycles of 95.0uC for 3 sec

and 60uC for 30 sec) and ramp rate for Taqman PCR of 7500 Fast

SDS system was used. Data was analyzed by SDS v1.4 software

using relative quantification module (ddCt method) to obtain the

fold change values for each target gene with the sigA as the

endogenous control for normalization and day 0 transcript level

for each target gene as the calibrator.
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