
University of Central Florida University of Central Florida

STARS STARS

Electronic Theses and Dissertations, 2020-

2022

Towards More Efficient Collaborative Distributed Data Analysis Towards More Efficient Collaborative Distributed Data Analysis

and Learning and Learning

Zixia Liu
University of Central Florida

 Part of the Databases and Information Systems Commons

Find similar works at: https://stars.library.ucf.edu/etd2020

University of Central Florida Libraries http://library.ucf.edu

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted

for inclusion in Electronic Theses and Dissertations, 2020- by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

STARS Citation STARS Citation
Liu, Zixia, "Towards More Efficient Collaborative Distributed Data Analysis and Learning" (2022). Electronic
Theses and Dissertations, 2020-. 1477.
https://stars.library.ucf.edu/etd2020/1477

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd2020
https://network.bepress.com/hgg/discipline/145?utm_source=stars.library.ucf.edu%2Fetd2020%2F1477&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd2020
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd2020/1477?utm_source=stars.library.ucf.edu%2Fetd2020%2F1477&utm_medium=PDF&utm_campaign=PDFCoverPages

TOWARDS MORE EFFICIENT COLLABORATIVE DISTRIBUTED DATA ANALYSIS AND
LEARNING

by

ZIXIA LIU
M.A. University of Kansas, 2012

M.S. Jilin University, 2009
B.S. Jilin University, 2007

A dissertation submitted in partial fulfilment of the requirements
for the degree of Doctor of Philosophy
in the Department of Computer Science

in the College of Engineering and Computer Science
at the University of Central Florida

Orlando, Florida

Spring Term
2022

Major Professor: Liqiang Wang

© 2022 Zixia Liu

ii

ABSTRACT

Modern information era gives rise to the persistent generation of large amounts of data with rapid

speed and broad geographical distribution. Obtaining knowledge and understanding via analysis

and learning from such data have invaluable worth. Features of such data analytical tasks commonly

include: data can be large scale and geographically distributed; computing capability demand can be

enormous; tasks can be time-critical; some data can be private; participants can have heterogeneous

capabilities and non-IID data; and multiple simultaneously submitted data analytical tasks can be

possible. These bring challenges to contemporary computing infrastructure and learning models.

In view of this, we develop techniques with the purpose of tackling above challenges together to-

wards more efficient collaborative distributed data analysis and learning. We propose a hierarchical

framework that supports data analytics on multiple Apache Spark clusters. We propose reinforce-

ment learning based resource management approaches to improve overall efficiency and reduce

deadline violations for scheduling general and time-critical data analytical workflows among com-

puting resources. We establish a new hybrid framework for efficient privacy-preserving federated

learning and further propose an algorithm upon it for improving asynchronous federated learning

of heterogeneous participants having non-IID data. We also propose an asynchronous stochastic

gradient descent algorithm for general distributed learning of heterogeneous participants having

non-IID data with convergence analysis. Experiments have shown the efficacy of our proposed

approaches.

iii

ACKNOWLEDGMENTS

I would like to express my greatest appreciation to my advisor Dr. Liqiang Wang, who has provided

invaluable guidance and assistance to my doctoral research. He is a very kind, active and responsible

advisor and is always available for recommending research directions with potentials, inspiring

promising approach considerations, discussing possible problem solving techniques and providing

continual support throughout the research process. My research would not be possible without

his excellent mentoring. I also want to express my gratitude to other members of my graduate

committee, Dr. Kien A. Hua, Dr. Yanjie Fu and Dr. Yunjun Xu, who have also provided very

helpful suggestions to my doctoral research.

During my study and research, my parents have always provided me incredible and well-rounded

supports. Their supports are most priceless to me and give me the confidence to persist in pursuing

my goal. I will always cherish their encouragements and will try my utmost to strive for better.

My great thanks are also to my other colleagues, teammates, and anyone who has provided assistance

to my graduate research. I admire them for contributing great cooperation efforts, holding timely

discussions, providing insightful understandings and numerous suggestions to me whenever needed.

Their assistance forms a significant component of my research and shows great teamwork spirit.

My sincere thanks to all of them.

iv

TABLE OF CONTENTS

LIST OF FIGURES . xi

LIST OF TABLES . xv

CHAPTER 1: INTRODUCTION . 1

Features of Modern Data Analysis and Data Learning Tasks 1

Challenges Facing Computing Facilities . 3

Our Contributions . 5

CHAPTER 2: LITERATURE REVIEW . 7

Parallel and Distributed Data Analysis . 7

Reinforcement Learning based Resource Management 8

Elasticity-compatible Resource Management . 10

Efficient Privacy-preserving Federated Learning . 11

Convergence Analysis of Distributed Learning Algorithms 13

CHAPTER 3: COLLABORATIVE DATA ANALYTICS AMONG MULTIPLE CLUSTERS 15

Architecture of Hierarchical Spark . 17

v

Workflow Model . 17

Scheduling Algorithm . 21

Performance Model . 22

Scheduling Algorithm and Evaluation Function 23

Implementation Issues . 26

Global Controller and Distributed Daemon . 26

File Transfer . 27

Experiments . 28

Summary . 34

CHAPTER 4: RESOURCE MANAGEMENT FOR TIME-CRITICAL COMPUTING IN A

MULTI-CLUSTER ENVIRONMENT . 35

Problem Description . 36

The Reinforcement Learning Based Approach . 39

Concept Definition and Value Function Design 39

Neural Network and Reinforcement Learning Method Design 43

Strategies in Accommodating and Improving RL based Approach 43

Enabling resource management target selection among multiple applications 44

vi

Improved epsilon-greedy strategy for more effective and efficient RL process 45

Training with randomized workloads . 46

RL Training Algorithm for Resource Management 48

Experiment Results . 48

Job Arriving Patterns . 48

By Bernoulli process . 49

By Uniform distribution . 49

By Beta distribution . 50

Rule-based Baseline Resource Managers . 51

Evaluation Metrics . 52

Quantitative Measurement . 53

Comparative Methods . 54

Performance Comparison . 55

Summary . 61

CHAPTER 5: ELASTICITY-COMPATIBLE SCHEDULING FOR TIME-CRITICAL COM-

PUTING IN HETEROGENEOUS ENVIRONMENTS 62

Problem Description . 64

vii

The Deep Reinforcement Learning Based Approach . 66

Introduction to Reinforcement Learning . 66

Reinforcement Learning Method Design . 68

DRL Model Structure and Decomposition of Value Definition 72

Training Enhancement Skills . 75

Experiments . 77

Summary . 88

CHAPTER 6: HYBRID ASYNCHRONOUS APPROACH TOWARDS EFFICIENT PRIVACY-

PRESERVING FEDERATED LEARNING 90

The HALE-Fed Framework . 92

Architecture . 92

Participant Update Information Flow . 94

Shard Transmission . 95

System Operation . 97

Communication Failure Dealing Mechanism . 98

Threat Model and Privacy Preservation . 99

SMC-alike Functionality and Benefits of HALE-Fed 99

viii

Comparison with traditional SMC technique 100

Benefits of HALE-Fed . 101

Fed-SUDA: An Asynchronous FL Algorithm in Heterogeneous Environments Using

HALE-Fed . 102

Challenges Brought by HeDC . 103

Design of Fed-SUDA . 104

Asynchronicity and Staleness . 108

Algorithm . 109

Experiments . 112

Efficacy of SMC-alike Technique in HALE-Fed 112

Efficiency and Performance of HALE-Fed . 115

Effectiveness of Fed-SUDA built upon HALE-Fed 117

Heterogeneous Environment with Label Noise . 120

Additional Experiment on CIFAR-10 . 123

Summary . 124

CHAPTER 7: ASYNCHRONOUS DISTRIBUTED STOCHASTIC GRADIENT DESCENT

WITH NON-IID DATA AND HETEROGENEOUS PARTICIPANTS 125

Problem Description and HP-ASGD . 127

ix

p-weight, u-weight and Their Connections with Model Shift. 128

HP-ASGD: Algorithm Design. 132

HP-ASGD: Convergence Analysis. 133

Experiments . 140

Experiment-I . 141

Experiment-II . 144

Experiment-III . 145

Experiment-IV . 148

Experiment-V . 149

Summary . 150

CHAPTER 8: CONCLUSION . 152

LIST OF REFERENCES . 153

x

LIST OF FIGURES

Figure 3.1: Architecture of Hierarchical Spark . 18

Figure 3.2: Illustration of Hierarchical Spark workflow 18

Figure 3.3: Illustrative framework workflow DAG generation 20

Figure 3.4: Cluster running simulation . 26

Figure 3.5: Wordcount workflow execution time comparison 30

Figure 3.6: Illustration graph for component jobs and clusters 31

Figure 3.7: Illustration graph for Spark DAG workflow and framework DAG workflow . . 33

Figure 4.1: An illustration of the architecture of our approach. 39

Figure 4.2: Reinforcement learning procedure in single episode. 44

Figure 4.3: Job arriving pattern probability and pattern sampling 51

Figure 4.4: (a-c) Performance comparison of RL approach and different baselines for

Bernoulli, Uniform and Beta job arriving pattern respectively in different

training episodes. (d) Performance comparison of RL approach with and

without our improved ε-greedy method in different training episodes. 56

xi

Figure 4.5: Comparison of RL (at final training episode) with the best baseline (SF-E) for

Evalapp, TMDL and AJDR metrics in different job arriving patterns. Graphs

are showing for 50 testing episodes used for comparison, sorted by RL TMDL

in convenience of viewing. Three rows correspond to Bernoulli, Uniform and

Beta, respectively. Three columns correspond to Evalapp, TMDL and AJDR,

respectively. For Evalapp, the higher the better. For TMDL and AJDR, the

lower the better. 58

Figure 5.1: An illustration of the problem architecture. 65

Figure 5.2: An illustration of reinforcement learning. 67

Figure 5.3: The structure of our deep neural network. 74

Figure 5.4: Traverse of cluster occupation status. 76

Figure 5.5: Training architecture of our deep neural network in one episode. 77

Figure 5.6: Performance comparison (Slog) of our RL approach RL-LSFC and baseline ap-

proaches in different training episodes. 82

Figure 5.7: Comparison of RL-LSFC and MAF for 50 testing episodes. Three sub-figures are

w.r.t. TMDL, AJER and Slog. Data in all figures are sorted uniformly in descendent

by Slog of MAF for viewing convenience. (L) Lower is better. (H) Higher is better. . 82

Figure 5.8: Comparison of RL-LSFC and MAF in variant workloads. (a)-(c) are related to b = 36

scenario. (d)-(f) are related to b = 40 scenario. Other instructions are the same as

Figure 5.7. 84

xii

Figure 5.9: Comparison of obtained RL-LSFC and MAF in other job arriving patterns. (a)-(c):

Bernoulli pattern. (d)-(f): Beta pattern. Other instructions are the same as Figure 5.7. 85

Figure 5.10:Comparison of three RL models w.r.t. MAF. (a) each curve is independently sorted

for viewing convenience. In (b), we give F:2, S:1 and N:0 for scoring to show a

dominant area (larger is better) of RL-LSFC and RL-FC (RL-LSFCb is very similar

to RL-LSFC here and is omitted for viewing). RL-LSFC indeed has a much larger

area (difference as in the pure purple area) than RL-FC. (c) Non-dominant column is

omitted since all models have 0 in it. 87

Figure 5.12:Comparison of Job-Cluster scheduling pattern with respect to different job categories

under RL-LSFC control. Value axis is on logarithmic scale of job counts, angle axis

is time slice. One color for each cluster. 88

Figure 5.11:Job-Cluster scheduling patterns for RL-LSFC and MAF in one testing episode. One

point for each job and one color for each category. Vertical axis 1-5 are referring to

cluster sequence number. Horizontal axis is time slice. 89

Figure 6.1: Architecture of HALE-Fed. 93

Figure 6.2: Participant update information flow of HALE-Fed. 94

Figure 6.3: Procedure of HALE-Fed. 96

Figure 6.4: Comparison of AsynDA and AsynMA . 107

Figure 6.5: An illustrative example of participant-level privacy leakage. 113

Figure 6.6: Aggregated update result of Figure 6.5 updates. 114

xiii

Figure 6.7: Update splitting and merging. 115

Figure 6.8: Accuracy over wall time. 116

Figure 6.9: Accuracy over number of participant updates. 119

Figure 6.10:Accuracy over wall time. 121

Figure 6.11:Efficiency comparison. 121

Figure 6.12:Accuracy over number of participant updates. 122

Figure 7.1: Causal factors of model shift with respect to difference of p-weight and u-weight

distributions. 129

Figure 7.2: Accuracy comparison of different approaches. 143

Figure 7.3: Illustrations of experiment setting and results for Experiment-II. 145

Figure 7.4: Gradient staleness (delay) of different scenarios. 146

Figure 7.5: Accuracy and efficiency comparison of Experiment-IV. 149

Figure 7.6: Accuracy and efficiency comparison of Experiment-V. 150

xiv

LIST OF TABLES

Table 3.1: Component finishing time with different scheduling schemes 31

Table 3.2: Component job finishing time and total execution time of framework workflow

(In comparison, total execution time in one cluster is 3.3 min) 34

Table 4.1: State representation in reinforcement learning model 41

Table 4.2: Performance comparison of RL approach and SF-E for three different arriving

patterns . 60

Table 4.3: Performance comparison of RL and SF-E for Uniform arriving pattern with

eased and stressed workloads . 61

Table 5.1: State representation in our deep reinforcement learning model for 5 clusters . 70

Table 5.2: Some training parameters . 81

Table 5.3: Statistics w.r.t. Figure 5.7 . 83

Table 5.4: Statistics w.r.t. Figure 5.8 . 83

Table 5.5: Statistics w.r.t. Figure 5.9 . 85

Table 5.6: Statistics w.r.t. Figure 5.10, * are our models 87

Table 6.1: Training result . 117

Table 6.2: Training result . 120

xv

Table 6.3: Training result . 123

Table 7.1: Notations in this work . 129

Table 7.2: Suitable learning rate for different settings 147

Table 7.3: 0.98 accuracy time stamp for different settings 148

xvi

CHAPTER 1: INTRODUCTION

One of the most significant phenomenon that accompanies the ever accelerating development of

modern information era is the persistent generation of tremendous amount of data with both rapid

generation speed and widely broad geographical distribution. Hidden inside such data are the

abundant knowledge and information that intrinsically shapes the data generation. Such knowledge

and information are vitally important for understanding substantial property of the data and could

bring invaluable benefit to both the development of society and the improvement of people’ daily

life when adequately mined. This immense and still continually rising demand of obtaining

the knowledge behind data stimulates the desire of many large-scale data analysis and learning

tasks. Such tasks also present many special features and bring significant challenges to underlying

hosting computing facilities and infrastructures. Proposing techniques and mechanisms that could

tackle such challenges, fortifying the design of the computing infrastructure and fitting to the

representative features of modern data analysis and learning tasks have important academic and

practical significance.

Features of Modern Data Analysis and Data Learning Tasks

Based on their intrinsic characteristics, we can roughly categorize modern data analytical tasks

into general data analysis tasks (for instance, those general tasks running on popular parallel and

distributed platforms such as Apache Hadoop and Apache Spark) and data learning tasks (such as

those tasks running with distributed learning, federated learning mechanisms). To better depict and

understand modern data analysis and data learning tasks, we first inspect their most representative

features. Such kind of data analytical tasks commonly possess features such as:

1

1. Data involved in the analytics can be large scale and can be geo-graphically distributed. This

is due to the rapid and often widely spread generation of data, such that the data involved

in an analytical task can be both with a large volume and with multiple origins possessing

unique and irreplaceable data.

2. The amount of computing capability desired can be enormous. This is due to the frequently

observed enormous amount of input data involved in modern big data analytics. The analytical

workflows corresponding to such tasks often require processing all input data and correspond-

ing intermediate results with multiple operations that could be on some extent paralleled,

which favors larger amount of computing nodes within hosting facilities for efficient task

completion.

3. Task can be time-critical. Modern data analytical tasks nowadays mostly on some degree

have temporal urgency. This could simply be a general desire that the task be completed at

earliest possibility, such that the obtained knowledge can be quicker applied to beneficial

utilization. This could also be some more strict temporal deadlines that the analytical workflow

should follow (thus be time-critical), which could also present in streaming type iterated data

processing tasks.

4. Some of the data involved could be private. The large amount of data involved in analytical

tasks are more than likely to contain some private data that are uniquely generated and

owned by specific participants which shall not be shared. Protecting such private data and

avoids privacy leakage at best effort could be an important consideration for the successful

accomplishment of the according data analytical tasks.

5. Participants involved can have heterogeneous capabilities and non-IID data. Since data

involved in an analytical task can be from multiple unique origins (participants), they can

easily have non-IID data distribution. Furthermore, participants involved in computation

2

could also be from multiple agents in purpose of increasing available computing capability,

this results in possible heterogeneous participants with different computing and networking

capability.

6. It is possible to have a large amount of simultaneously submitted data analytic tasks in the

hosting computing facility during a time interval. This is once again due to the rapid and

spread generations of data that derive many diversified data analytical tasks which could

happen concurrently. Thus from the perspective of computing facility, a computing platform

may face task submission from multiple data analytical tasks simultaneously which could

cause a resource competition condition.

Challenges Facing Computing Facilities

With the detailed description of certain features of modern data analysis and learning tasks, the

focus now moves on to how the underlying computing facility could handle the load from all the

data analytical tasks and provide efficient task completion. However, there is no denying that all the

aforementioned task features bring much challenges to contemporary computing infrastructure and

facilities. We summarize the desires and challenges to the computing facility as follows:

• Due to the extensive computing capability demand of large-scale data analytical tasks, fa-

cility’s computing capability on one site (cluster) may not be sufficient for efficient task

completion. And further scaling up on one site is likely to be more unrealistic due to cost,

power and management concern. Therefore utilizing computing capabilities from multiple at-

tending facilities becomes more actual. However, how to enable the collaborative mechanism

remains a great challenge.

• From the view of the overall computing infrastructure which could be composed of multiple

3

distributed computing clusters, since there can be many continual and even multiple concurrent

task submissions, how to reasonably schedule all analytical tasks to according computing

cluster such that the overall efficiency is improved meanwhile lowering the missing deadline

events of time-critical tasks is a challenge to the scheduling scheme.

• A special type of data analytical tasks is the data learning problem. Due to the features of the

data origin, distributed data learning better fits the task requisites. Compare to synchronous

organization form, asynchronous distributed data learning improves training efficiency by

avoiding synchronization barriers. However, features of the underlying deployment scenario

could bring more pressure to the asynchronous organization form. Such as, with heteroge-

neous participants having different capability and non-IID data, asynchronous methods need

to take special consideration to grant a correct convergence result. How to provide efficient

asynchronous approaches under specified deployment environment for efficient data learning

remains a challenge.

• Since private data can be involved in the data analytical process, how to protect privacy

during potentially geographically distributed analytical tasks is a significant requirement

to the underlying system infrastructure design. Potential measures include keeping private

data local with no cross-participant transmission and neutralizing private information con-

tained in intermediate cross-participant information such as the participant gradients used in

distributed learning. An overall effective privacy protection approach can help to stimulate

participating enthusiasm of different data owners and alleviate privacy concern related to

general collaborative distributed data analytical tasks.

4

Our Contributions

In view of previously mentioned task features and corresponding system challenges, my doctoral

research focuses on developing a few approaches for the purpose of tackling aspects of these

described challenges. And in hope that these works together could be towards more efficient

collaborative distributed data analysis and learning.

• In order to enable large-scale data analysis of which the requirement of computing resources

could be beyond the capability of one computing cluster, we propose a hierarchical framework

that supports deploying a data analytical workflow onto multiple clusters with Apache Spark

platform for collaborative data analytical task completion. This work has been published as

paper [52].

• As stated previously, it is a challenge for accomplishing resource management in a large-

scale computing system which may contain multiple distributed computing clusters. For

scheduling a large amount of data analytical workflows potentially containing both general

and time-critical jobs among multiple computing clusters, we proposes a reinforcement

learning based resource management approach to improve overall efficiency and reduce

violations of temporal deadlines. This work has been published as paper [51].

• We further proposes a deep reinforcement learning based elasticity-compatible resource man-

agement approach for heterogeneous computing environment containing multiple computing

clusters. In this work, the nodes in different clusters may have different computing capabilities

and certain clusters could have elasticity. This work has been published as paper [50].

• For collaborative distributed learning (including federated learning) among multiple partici-

pants as a specific type of distributed data analytics, we establish a new hybrid architecture

5

with the name HALE-Fed for efficient privacy-preserving federated learning. It could pro-

vide equivalent if not better participant-level privacy protection effect as the native Secure

Multi-party Computation (SMC) meanwhile maintaining nearing to pure asynchronous orga-

nization training efficiency. We further proposes an algorithm Fed-SUDA which is built upon

HALE-Fed for improving federated learning in a deploy environment with heterogeneous

data and participants. It helps to enable a reliable asynchronous federated learning approach

in such kind of deployment environments.

• We also proposes an algorithm named HP-ASGD as an asynchronous stochastic gradient de-

scent (SGD) algorithm for general distributed learning having non-IID data and heterogeneous

participants. It could correct the model shift concern of native asynchronous SGD method in

such a heterogeneous condition and serve as a trustful SGD method in such a situation. We

also establish the convergence analysis of the HP-ASGD algorithm for non-convex problems,

so that the efficiency estimation and convergence guarantee can be quantitatively evaluated.

I hope the works done in this doctoral dissertation could serve as a step to stimulate more insightful

and innovative approaches towards resolving challenges facing the distributed computing system

from modern data analysis and learning tasks. And I hope this dissertation could contribute to the

eventual goal towards more efficient collaborative distributed data analysis and learning.

6

CHAPTER 2: LITERATURE REVIEW

Parallel and Distributed Data Analysis

1 Parallel and distributed data analytical systems have rising significance to meet the ever increasing

demand from modern data analytical tasks. Many works have contributed into improving system

performance in various aspects of such systems [28, 64, 56, 57]. Among them, Apache Hadoop and

Apache Spark are popular and representative platforms for such data analytical systems which also

attract attentions from researchers [34, 99, 76, 96, 97].

MapReduce is a popular computational model with great application and research potentials [40,

21, 12]. Apache Hadoop can be seen as a popular open-source implementation of the MapReduce

paradigm. There are several existing research projects either providing a hierarchical level design for

the MapReduce model or even providing framework design support for deploying MapReduce jobs

to multiple cluster environments. [92] proposes a new Map-reduce-Merge model as an extension

of the MapReduce paradigm. The new merge phase can merge heterogeneous dataset already

partitioned and sorted by MapReduce and can express relational algebra operators as well as join

algorithms. However, it increases system complexity and learning curve due to the introduction

of several new components. [22] classifies MapReduce jobs into two categories based on whether

they are recursively reducible or not. It provides a solution that could support hierarchical reduction

or incremental reduction for recursively reducible jobs, however it is only applicable to single

cluster environment. [30] introduces MRPGA (MapReduce for Parallel Genetic Algorithms), which

additionally adds a second reduce phase to the original MapReduce model in order to address

genetic algorithms, however, this extension is designed for a special application and may not be

1Content of this chapter is in part based on our published papers [52, 51, 50].

7

suitable as a solution for general MapReduce applications. The concept of "distributed MapReduce"

is introduced in [9], which is a hierarchical design for MapReduce. However this solution is lacking

scheduling algorithm and programming model design. [4] addresses the data analysis problem in

the hybrid cluster, which consists of a local cluster and cloud computing resources, with the usage

of both local and global reduce phases. However, the solution also lacks scheduling algorithm.

Luo et al. [55],[54] presents a hierarchical MapReduce framework that adopts the Map-Reduce-

GlobalReduce model introduced in the paper. The framework is capable of utilizing computational

resources from multiple clusters to collaboratively accomplish MapReduce jobs, and it also provides

scheduling algorithms for compute-intensive jobs and data-intensive jobs. However, above solutions

are targeted for MapReduce paradigms, and are not designed for Apache Spark system.

Reinforcement Learning based Resource Management

Resource management for time-critical distributed computing faces many challenges, which re-

quires a better understanding of both instantaneous and long-term influence of allocation decision.

Traditional rule-based or white-box resource allocation models are inadequate on these goals due to

intrinsic system complexity and difficulty in abstracting behavior characteristics. Instead, we tackle

this problem by using the cutting-edge reinforcement learning technique, which is good at capturing

intricate system features and gradually improving itself along RL process. Reinforcement learning

is an important area in machine learning. The goal of which is to gradually learn to perform good

actions in response to state representations of different environment status, in earning maximum

action value.

Recently, many significant achievements have been accomplished using reinforcement learning

technique. For one representative example, Deepmind [17] recently developed a computer Go

program called AlphaGo to defeat world champions [73, 74]. In [73], they facilitate Monte-Carlo

8

Tree Search (MCTS) algorithm [11] with their own policy network and value network, which

are obtained via techniques including supervised learning and reinforcement learning with deep

neural networks. Further in [74], they apply reinforcement learning strategy directly without human

knowledge, and are able to achieve model which surpasses previous one [73] in a short interval of

time.

In the field of distributed computing, there are also studies focusing on utilizing various approaches

in improving system performance and functionality. [47] proposes a search-based automatic

parameter tuning method for MapReduce [16] framework. It uses a genetic algorithm to identify

near-optimal configuration of several Hadoop platform parameters in minimizing job execution time.

[86] proposes an architecture for scientific workflow management systems that supports provenance

and atomicity to distributed scientific computations represented as scientific workflows. [52]

proposes a framework facilitating execution of a big data computing application with multiple spark

clusters. [79] proposes JDS-HNN, a heuristic approach that utilizes Hopfield Neural Network for job

scheduling and data replication in a grid, in purpose of minimizing job execution makespan and data

file delivery time. [94] and [83] try to deduce machine learning model that could respectively capture

the relationship between execution time or percentage performance improvement with parameter

configurations. The former is depicted as a regression problem, while the later a binary and multi-

category classification problem. [1] proposes a cloud computing configuration optimization method

for big data analytical platforms. It focuses on configurations such as selecting appropriate type

and numbers of instances, and could distinguish a good configuration efficiently due to Bayesian

optimization efficiency.

Approaches including reinforcement learning have been investigated to be applied to computing

resource management. [2] introduces a parallel temporal-difference reinforcement learning algo-

rithm for achieving optimal cloud resource scaling decision. [59] employs deep learning strategy in

reinforcement learning to accomplish resource management in a cluster from gradually accumulated

9

experience and the result called DeepRM is comparable to state-of-the-art heuristics. [88] presents

a novel multi-agent reinforcement learning method for load balancing problems of grid computing

resources composed of multiple clusters with large-scale computing jobs. [41] proposes to enable

model-free control in distributed stream data processing systems using deep reinforcement learning,

which aims at minimizing tuple processing time in average. However, none of the above researches

handles hybrid time-critical workload in distributed computing environment.

Elasticity-compatible Resource Management

Reinforcement learning (RL) has recently gained astonishing accomplishments in a diversified

range of tasks such as artificial intelligence, object tracking, vehicle management, robot navigation

and dialogue system [74][85][77][49][31][36]. Its advantages are well demonstrated in extracting

knowledge from continual interactions with the environment even in complicated systems, which is

otherwise hard to be abstracted by rule-based approaches even under expert guidance. Once trained,

it could respond fast to inference for providing timely action decisions in contrast to searching-based

approaches.

In accordance with this consensus, reinforcement learning has been adopted to deal with decision-

making problems in a distributed computing environment. [59] presents “DeepRM” that utilizes

reinforcement learning for obtaining a resource manager to coordinate workload execution in a

cluster for improving execution efficiency. [88] uses multi-agent reinforcement learning in obtaining

a method aiming at the job scheduling problem in a Grid computing environment, in purpose of

realizing load balancing. In [20], a cloud controller towards resource allocation for applications

in a cloud environment as an automatic workflow is obtained via reinforcement learning where

techniques in accelerating training process are integrated. [2] applies Q-learning in training towards

optimal policy for dynamic resource allocation for applications in a cloud. [48] tries to solve a joint

10

virtual machine resource allocation and power management problem by proposing a hierarchical

framework learned via reinforcement learning. In [41], a model-free approach is obtained by

deep reinforcement learning, targeting at minimizing average end-to-end tuple processing time for

distributed stream data processing systems. [14] presents DRL-Cloud, a resource provisioning and

task scheduling system achieved via deep reinforcement learning focusing on reducing energy cost.

[51] proposes a resource management approach for time-critical applications in a distributed

computing environment via reinforcement learning. It is the most related one to our elasticity-

compatible resource management approach. However, they differ in multiple aspects. Firstly, the

underlying problem is largely different. Although similarly dealing with a multi-cluster environment,

[51] does not consider cluster heterogeneity and elasticity, both of which are considered in this

elasticity-compatible approach. Later descriptions in Chapter 5 will reveal how greatly this will

change the problem nature and increase problem complexity. Secondly, depending on the new

problem feature, the most important action value in reinforcement learning of Chapter 5 is vitally

redefined with novel consideration and insights. Thirdly, the added problem complexity leads to a

brand new model structure design. [51] uses a general neural network with fully-connected layers,

while we in Chapter 5 propose a deep neural network based on LSTM structure and a partial network

sharing multi-target learning mechanism. Fourthly, experiments in Chapter 5 provide thorough

observations and show comparison with approach in [51]. Hence, this work shows great importance

and significant difference comparing to [51] from aforementioned aspects.

Efficient Privacy-preserving Federated Learning

FL related: Federated learning [38] is a form of technique for organizing collaborative learning

among multiple participants, meanwhile keeping their data local and private. It enables the oppor-

tunity to collaboratively learn knowledge and mine information from decentralized and privately

11

owned data of participants. FL is capable of handling up to a large scale of participants. In [6],

it provides design principles for scaling FL to a large group of participants. [27] provides an

application sample for FL at scale. The organization of FL can be traditionally classified into two

cases, synchronous and asynchronous, with synchronous FL being the more popular one in the past

due to its more formulated organization form. Besides SGD updating mechanism, other updating

mechanisms such as FedAvg [60] which adopts multiple local updating rounds before coordinating

to the global model, have also been developed for different algorithm balancing priority. However,

synchronous FL could suffer from the synchronization overhead and asynchronous FL has drawn

more and more attentions recently for its better efficiency due to the elimination of synchronization

process. Thus there are works emerged that focused on the research of asynchronous FL. [13]

proposes an asynchronous FL algorithm that tunes local computing episodes before sending out

local updates towards accelerating training convergence. [53] presents an asynchronous federated

learning mechanism for edge network computing which utilizes self-adaptive threshold gradient

compression and dual-weights correction for network communication reduction.

Privacy related: [32] has provided a good summarization for recent advances and open problems

in the field of FL. One category is about the Privacy related concerns related to FL. Similar as other

form of machine learning algorithms, FL faces challenges from adversarial attacks. [72] shows

membership inference attacks against machine learning models which is also applicable to FL. More

correspondingly, [61] directly demonstrates the appliance of inference attacks against collaborative

learning. [101] presents potential information leakage from gradients generated by model updating

process, and shows that such leakage could be used for reconstructing information related to

the training data. [68] extends the work in [101] by establishing the limits of the training data

reconstruction in different network structures. As aforementioned, these attacks can be categorized

into two functionality subgroups, one is those towards general information shared by many forms of

machine learning, the other is more towards FL-specific participant level information. Regarding

12

security and defending measures, DP is an effective approach towards information obfuscation

for defending multiple attacking methods and [24] provides description for applying DP in FL.

Another popular security measure, especially in synchronous FL, is MPC/SMC technique, which

hide individual gradient information by secure gradient aggregation among multiple participants

and [7] establish a practical secure aggregation protocol that could be used in large-scale FL.

Hybrid FL related: There are studies related to hybrid-alike FL providing benefit to FL be-

yond either synchronous or asynchronous structure. [10] organizes asynchronous tiers for global

updating with synchronous intra-tier computation with nodes of similar speed. [89] proposes

a semi-asynchronous federated averaging protocol, including a lag-tolerant model distribution

method that conditionally requires participant synchronization. [33] proposes a two-phase FL

algorithm that selects a small model aggregation committee for training, where secure aggregation

is only applied within committee to reduce communication overheads. However, none of the above

work provide SMC-alike technique to a foundationally asynchronous FL framework, and none

could solve practical issues like our proposed Fed-SUDA for asynchronous FL with heterogeneous

environments.

Convergence Analysis of Distributed Learning Algorithms

Distributed learning (including FL) is a machine learning technique that aims at accomplishing

collaborative learning from decentralized participant data [38, 93]. [6] shows the system design for

large scale federated learning. [26] presents a distributed learning scenario among multiple agents.

Regarding convergence analysis related to distributed GD/SGD in FL: [35] and [87] present analysis

for synchronous FL of convex function with non-IID data and full participation. [75] is with the

similar setting as the above but for IID data. [84] and [100] then focus on FL convergence for

13

non-convex functions with full participation. [95] adopts similar setting but is with respect to the

distributed momentum SGD. Accordingly for FedAvg [60] algorithm, [91] analyzes asynchronous

FL with non-IID data and full participation. [43] shows result for synchronous FL of convex

functions with non-IID data and partial participation. [70] changes setting in [43] to asynchronous

but still for convex functions.

Other distributed learning with SGD has also drawn great attention from theoretical analysis. [69]

presents parallelized SGD algorithm with lock-free manner and provides theoretical analysis for

convex functions. [15] provides a martingale-based analysis that reveals convergence rates for

convex functions with relaxed assumptions comparing to [69] and analyzes asynchronous SGD

for non-convex matrix problems and for lower-precision arithmetic. [19] shows that asynchronous

stochastic convex optimization achieves asymptotic optimal convergence rate. [46] further shows

ergodic convergence rate for asynchronously paralleled stochastic gradient algorithms for non-

convex functions in both network and multi-core systems. However, none of the above works is for

asynchronous algorithm for non-convex problems with non-IID data and participant heterogeneity.

14

CHAPTER 3: COLLABORATIVE DATA ANALYTICS AMONG

MULTIPLE CLUSTERS

1 With the coming and on-going duration of the information era, more and more data are generated

everyday, even in an exploding speed. These data carry lots of invaluable information that are of

great importance to human society and global development. The necessity of analyzing such drastic

amount of big data stimulates the continuing prosperous development of big data computing. Since

the analytical process of such data are way over the computational capability of even the best single

computing node, people spend great efforts to develop parallel computing methods and platforms.

Among them, Apache Hadoop and Apache Spark are two of the most popular open-source big

data computing platforms. Apache Hadoop utilizes HDFS (Hadoop Distributed File System) as its

storage layer, and uses MapReduce computing model to provide end users a distributing computing

platform that has better reliability and scalability than traditional parallel computing interfaces.

Apache Spark further improves the performance of Apache Hadoop by introducing RDD (Resilient

Distributed Dataset) object based on the in-memory technique. Apache spark overall provides better

distributed computing performance for big data analytical workflow, which supports much richer

computational operations and more complicated workflow structure comparing to Apache Hadoop.

Both Apache Hadoop and Apache Spark are deployed upon the concept of cluster. All computing

nodes form a cluster that can be employed by the resource manager such as YARN to schedule

computing tasks. In this case, all internal nodes are natively considered to have a local network

connection with other nodes in the cluster. However, distributed computing may involve multiple

geographical locations. Even if we use the virtual private network (VPN) technique to connect

these computer into a single cluster, as the resource manager is not able to detect and realize such

1Content of this chapter is based on our published paper [52].

15

heterogeneous network structure, the cluster performance will degrade significantly. A hybrid cloud

is a good example to utilize distributed computing on multiple geographical locations. A user may

have one local cluster initially, but then realizes the shortage of computing resources due to data

analytical demand, and decides to request more resources from public cloud platforms such as

Amazon EC2. The user is then facing with the obstacle of how to integrate and utilize the resources

from both local private cluster and public cloud computing recourses. On the other aspect, with

ongoing popularity of cloud computing platforms, many organizations with data security concerns

would like to keep sensitive data local. In this scenario, it is of great significance to enforce the

isolation between multiple clusters, in order to obey the data security standard. For example, the

data security standard may grant only the transferring of computation generated intermediate data

but not original input data. These scenarios motivate great necessity of migrating big data computing

workflow to multi-cluster environment.

In this chapter, we present a multi-cluster big data computing framework built upon Spark. Our

major contributions include:

• A framework that addresses the problem of utilizing the computation capability provided by

multiple Apache Spark clusters, where heterogeneous clusters are also permitted.

• A scheduling algorithm to optimize workflow execution on our multi-cluster big data comput-

ing framework.

• An integrated controller within the framework, which grants ability for submitting, monitoring,

and finishing of workflows.

16

Architecture of Hierarchical Spark

The architecture of hierarchical Spark mainly contains two component layers, the global controller

layer and the distributed layer. The global controller layer consists of the workflow scheduler and

the global listener. The distributed layer consists of the distributed daemons, each has job manager

and job monitor in charge of submitting and monitoring the job allocated to corresponding cluster.

When using hierarchical Spark, users provide the following files to the framework: (1) application

files that contains component jobs to form the overall workflow; (2) configuration files that specifies

application dependencies; (3) profiling information for component jobs. If the profiling information

is absent, it can be supplemented by on-site profiling with the original workflow and sample data.

Upon receiving input, the workflow scheduler extracts information, and then generates job allocation

arrangement by our scheduling algorithm. Once the arrangement is decided, the workflow scheduler

will utilize the global listener to distribute and start the actual execution. The global listener is

another component of the global controller layer, based on the scheduling plan provided by the

workflow scheduler, the global listener will deploy corresponding job to assigned clusters. It will

also communicate with distributed daemons, which manage job submission and monitor job status.

Once job finished, the distributed daemon will notify the global listener so that the latter will arrange

transferring of the output file, submitting other dependent jobs, or launching the final job, until the

entire workflow is finished. The architecture of hierarchical Spark is illustrated in Figure 3.1.

Workflow Model

In hierarchical Spark, the workflow model contains three type of components, i.e., non-dependent

job, dependent job, and final job. The non-dependent jobs are those jobs that start from initial input

files, and have no other dependencies. The dependent jobs are those jobs that have dependencies on

17

Workflow
Scheduler

Global
Listener

Global Controller

Workflow
Scheduler

Global
Listener

Global Controller

Public Cluster

Master
Node

Distributed
Daemon

Job Manager

Job Monitor

Public Cluster

Master
Node

Distributed
Daemon

Job Manager

Job Monitor

Public Cluster

Master
Node

Distributed
Daemon

Job Manager

Job Monitor

Public Cluster

Master
Node

Distributed
Daemon

Job Manager

Job Monitor

Master
Node

Private Cluster
Distributed

Daemon

Job Manager

Job Monitor

Retricted File Access
Only Output Transferring

is Allowed

Private Cluster
Distributed

Daemon

Job Manager

Job Monitor

Retricted File Access
Only Output Transferring

is Allowed

Master
Node

Private Cluster
Distributed

Daemon

Job Manager

Job Monitor

Retricted File Access
Only Output Transferring

is Allowed

Master
Node

Private Cluster
Distributed

Daemon

Job Manager

Job Monitor

Retricted File Access
Only Output Transferring

is Allowed

Private Cluster
Distributed

Daemon

Job Manager

Job Monitor

Retricted File Access
Only Output Transferring

is Allowed

Master
Node

Private Cluster
Distributed

Daemon

Job Manager

Job Monitor

Retricted File Access
Only Output Transferring

is Allowed

Figure 3.1: Architecture of Hierarchical Spark

other jobs, either non-dependent or dependent ones. The final job is the last component in the entire

workflow, this is fixed to be executed on the central cluster. By dependencies, all these component

jobs form the entire workflow as the input of our framework. Each job is a basic element that will

be scheduled to clusters for computation. Figure 3.2 illustrates a hierarchical Spark workflow.

Non-
dependent

Job

Input File

Non-
dependent

Job

Input File

Non-
dependent

Job

Input File

Non-
dependent

Job

Input File

Non-
dependent

Job

Input File

Non-
dependent

Job

Input File

Non-
dependent

Job

Input File

Non-
dependent

Job

Input File

Dependent
Job

Dependent
Job

Final Job

Figure 3.2: Illustration of Hierarchical Spark workflow

Recall in Spark, a job can be expressed as a DAG (Directed Acyclic Graph), similarly, our framework

18

workflow can also be represented as a DAG. The transformation from original spark workflow to

the our framework workflow is natural.

Basically, Algorithm 1 starts by letting each stage in initial spark DAG become a job in the

framework workflow. Then, we suggest splitting jobs in the workflow into multiple ones, or

combine several jobs in the framework workflow into one job. We recursively examine the workflow

until there is no new change. For example, in lines 3-8 of Algorithm 1, for a job in the workflow, if

its “inputsize" over “blocksize" (equivalently the number of blocks) is very big, we suggest split

it into multiple jobs, with default suggesting splitting number shown in algorithm. Conversely,

in lines 11-18, by looking at some job i together with its dependency jobs list Di as a group, we

can check whether using the whole group as one job in our workflow is beneficial, then apply the

change if this will significantly lower total transit data meanwhile not violating other constraints.

We provide general default values to thresholds in the algorithm, for example, the default value of

threshold1 is 10×(max # of executors in all clusters). However they can also be specified by the

user to customize the suggestion engine.

Using the wordcount application as an example. When it is used as the workflow input for

our framework, Algorithm 1 will provide transformation plan from this Spark workflow to our

framework workflow. For this example, if the number of block for the input file is larger than

threshold1, we suggest split the job into multiple ones. In this case, the split can be accomplished

by roughly repeating the unary operation “reducebykey()" twice, with each new non-dependent job

taking care of one portion of the initial input file.

The core pesudo code for original wordcount application is follows.

line.split(“ ”).map(word→ (word,1)).reducebykey()

Core pesudo code for our framework wordcount application (non-dependent jobs) is the same with

19

the code above, which also demonstrates that the transformation burden is little to framework users.

The core pseudo code for the final job is:

collectedresultline.map(parser(“K,V ”→ (K,V))) .reducebykey()

Algorithm 1 Spark Workflow Transformation Algorithm
1: Let each stage in Spark become a job
2: for each job i do
3: if (Di = /0 && (β =# of clusterhasinput)>1 && input/blocksize > threshold1) then
4: split job to β jobs, update corresponding dependency lists
5: end if
6: if (Di 6= /0 && input/blocksize > threshold1) then
7: split job to input/(blocksize×threshold1) jobs, update corresponding dependency lists
8: end if
9: end for

10: Change=true
11: while Change==true do
12: Change=false
13: for each job i do
14: if !IsNewSplittedJob(i) && total input blocks to i <threshold1 && new output/original

total output<threshold2 && combined input exists if non-dependent jobs are involved
then

15: combine job i and Di into one job, update corresponding dependency lists; Change=true;
16: end if
17: end for
18: end while

StageInput File StageInput File

StageInput File StageInput File

StageInput File StageInput File

StageInput File StageInput File

Stage

Stage

Final Stage

Non-
dependent

Job

Combined
Input File

Non-
dependent

Job

Combined
Input File

Non-
dependent

Job

Input File

Non-
dependent

Job

Input File

Non-
depdenden

t Job

Input File
Split

Non-
depdenden

t Job

Input File
Split

Dependen
t Job

Final Job

Non-
depdenden

t Job

Input File
Split

Non-
depdenden

t Job

Input File
Split

Spark DAG Framework Workflow DAG

Figure 3.3: Illustrative framework workflow DAG generation

This final job is added to act as an eventual collection and reduce procedure for all intermediate

data generated by previous non-dependent jobs, its code is straightforward and easy for framework

20

users to add.

Figure 3.3 illustrates a more general case, by showing the original spark DAG on the left and

Framework workflow DAG on the right. It shows that the general suggestion result from our

algorithm which may include some splitting as well as combing, with other stages in the original

DAG directly becoming corresponding jobs in our new workflow.

Scheduling Algorithm

Our framework not only aims at enabling distributing component jobs of an entire workflow to

multiple spark clusters for cooperated computing, but is also equipped with scheduling algorithm

designed to better achieve multi-job & multi-cluster scheduling in purpose for better performance.

Our proposed algorithm is shown in Algorithm 2.

Multi-job & multi-cluster job scheduling is a well-known NP-hard problem. To achieve a good

solution in an efficient way, we use simulated annealing as the major heuristic algorithm for solution

searching. To further increase the efficiency, we use greedy algorithm to achieve a better initial

solution that will be provided as input to the simulated annealing algorithm.

Regardless of the choice of heuristic algorithms, the core design of our scheduling algorithm is

nonetheless the evaluation function that could assess the scheduling arrangement. Since our aim

is to reduce the total execution time of the entire workflow, our evaluation function is designed to

be capable of evaluating the running time cost of a specific scheduling arrangement. Further, the

evaluation function needs a performance model, which can provide us an estimation for the running

time of a job on a cluster.

21

Performance Model

Now, we provide the performance model that could estimate the running time of a job on a candidate

cluster. To better introduce the entire performance function, we first introduce the performance

model for a stage in a job. Its details are as follows:

Let l be the average computing time of a task in a stage using its required executor. We define it in

unit of second. Let c denote the total available executors in a cluster for this job. Let a denote the

number of tasks in a RDD in a stage, we choose the maximum number of tasks in a RDD in a stage

if RDDs in a stage have different number of tasks.

Thus, a/c represents possible waves during execution.

The performance model for a stage is defined as:

tstage = l ·a/c (3.1)

Now, we propose the performance function that models the execution of a job into a more detailed

level as running of stages, relevant to the stage running concept in Spark.

PF =
InputSize

SampleSize
× (∑

stages
tstage + ∑

shu f f les
ST ∗nF) (3.2)

where ST is the intermediate data shuffle time that happens between stages. If no shuffle exists

between some stages, corresponding shuffle time equals zero. nF is the network factor, which can

reflect the different internal network speed of cluster. Notice that we consider the possibility that

the profiling may be corresponding to a sampling data, instead of the entire input data, so the ratio

22

of InputSize over SampleSize is also considered in the formula.

This performance function is currently adopted in our framework. Nonetheless, we would like to

point out that, when applicable, depending on different coarseness of profiling data, the performance

function can certainly be replaced by even more specially designed or more complicated performance

models suitable for certain scenarios corresponding to the actual application.

Scheduling Algorithm and Evaluation Function

When designing the scheduling algorithm for our framework, we have considered different options

at the early stage. The non-dependent jobs in our framework are a little special, as each of them

has no dependencies, thus all can be submitted at the beginning of the execution. Consider these

jobs as a group, one option for scheduling is the initial optimizing scheme designed to focus on

optimizing the arrangements of this group for better performance. As stated before, to decide an

optimized plan for all jobs in this group, we use greedy algorithm (sort all stages with computing

load in descending order) to achieve an arrangement plan, and then an on-the-fly arrangement plan

for other jobs in the workflow in actual submission time order. In this scheme, the arrangement plan

for all non-dependent jobs will not consider the consequences it brought to other dependent jobs

which depends on them, it therefore can be seen as a non-forward-looking scheme.

Stimulated from this idea, but further improved, we design a global optimizing scheme aims

at providing an overall scheduling arrangement of the entire workflow. We want to take into

consideration the consequential effect of optimizing non-dependent jobs it may bring to the later

jobs. In other words, instead of providing current moment optimized arrangement plan, we would

like to take global vision, foresee the whole picture of workflow DAG, then decide an arrangement

plan for each job in the workflow. Due to its more advanced feature, we select this scheme as our

framework scheduling scheme. The entire arrangement plan will be decided based on the following

23

procedure:

Firstly, similar as proposed in the initial optimizing scheme, we obtain arrangement plan for all

non-dependent jobs by greedy algorithm. Now, for each non-dependent job, the scheduling plan for

it will be represented as (cluster, tstart , t f inish), where cluster is the selected cluster, tstart is the job

start time. t f inish is the job finish time generated by the performance function.

For all dependent jobs, the tuple (cluster, tstart , t f inish) can be filled in by first calculating jobst using

equation 3.3:

jobst [s′][j] = max(t ′,clusterat [j]) (3.3)

where t ′ = max
s
{t f inish o f s+ IMO(s,s′)|s ∈ dep set o f s′}, IMO() is the intermediate output

transferring time for two jobs, clusterat [j] is the available time of cluster j which s′ may depoly to.

Equation 3.3 is also used for non-dependent jobs by considering their dependency set as empty and

only use clusters that has its input.

For any job where its dependencies has been cleared, its jobst [s′][] times are available. All these

jobs can gradually be fit into the greedy algorithm. Once their cluster arrangements are decided,

the corresponding tstart , and t f inish components can be filled in. Recursively, this can form an entire

initial scheduling plan for the entire workflow, this part is shown in lines 3-33 in our proposed

Algorithm 2. In fact, during this process, we are already simulating the execution process of the

workflow together with the usage of greedy algorithms for achieving an initial scheduling plan. The

similar idea of simulation will be used as the evaluation function in the iteration process of the

simulated annealing algorithm, where t f inish of the final job is the eventual output of the evaluation

function.

Secondly, for simulated annealing, each time it will randomly change one cluster arrangement if

suitable, feed into the evaluation function E() to simulate its execution to achieve the new t f inish of

24

the final job, which is the result of the evaluation function E(). Based on its result and therefore

the result of the function P(), the simulated annealing can decide whether to keep the current plan

or to update to the new one. The idea of the simulated annealing is that, if the new arrangement is

better than the current one, it will always accepts it; however, if the new arrangement is worse than

the current one, it will stochastically accepts it, which helps in jumping out of the “local" extrema.

The probability depends on the parameter αT and the evaluation difference. At the beginning of

simulated annealing, the result of exp() function if used is very close to 1 and therefore there is much

higher chance for accepting bad arrangements. In contrary, when nearing to the end of the algorithm,

T , therefore αT , becomes small and the chance of accepting bad arrangement is significantly

decreased. This simulated the physical annealing process where T act as the “temperature" in

original process. This algorithm is good at obtaining global extreme for scheduling arrangement.

Parameter α is used to make sure that according to the range of evaluation function difference,

the initial probability to accept bad arrangement is very close to 1. The function P() used in our

simulatedAnnealing() function is:

P(E(S),E(Snew),T) =

 1 IF E(snew)≤ E(s)

exp
(

E(s)−E(snew)
αT

)
Otherwise

(3.4)

The SimulatedAnnealing() function is shown in lines 35-43 in Algorithm 2. To supplement the

detail, we now will state the definition of the evaluation function E(), which is a simulation process,

as follows:

The input for the simulation engine is the set of jobs, each with a configuration tuple (cluster, tstart).

The simulation process will then generate a simulated running for each cluster. For each cluster, the

input is the tuples with format (job, tstart). The simulated cluster submit the job to it by order of start

25

time. For all jobs with tstart time undecided, the cluster simulation will wait until its dependencies

are all cleared. Then each job on the cluster simulation will simulate its running by result from the

performance function, with currently updated cluster information being considered. Simulations for

all clusters are processed simultaneously. Eventually, all simulation of all clusters are finished, then

the t f inish of the final job becomes the eventual output of the evaluation function. An illustration

graph of this process can be found in Figure 3.4. Now, we can formally state our scheduling

algorithm in Algorithm 2.

Clusters

Positive time direction

Time t Other awaiting dependent jobs will be
added to corresponding execution line

once dependencies are cleared

Non-dependent
jobs

Dependent
jobs

Figure 3.4: Cluster running simulation

Implementation Issues

Global Controller and Distributed Daemon

To enable the distributing, monitoring and executing of the big data analytical workflow, we

designed global controller and distributed daemon in our proposed multi-cluster big data computing

26

framework.

The global controller is composed by the workflow scheduler and global listener, the workflow

scheduler accepts user provided framework input, extract necessary information, and provide the

scheduling arrangement result. The global listener is constructed as a multi-threading program,

where all distributed daemon will be connected to it. Functionality of the global listener include:

Send job arrangement to corresponding distributed daemon, order the moving of intermediate files.

The distributed daemon are composed by the job manager and the job monitor. Upon receiving

job arrangement, the distributed daemon will submit the job to the cluster, it will also capture the

application ID after submission, using it to monitor the job status. Once succeed, the distributed

daemon will notify the global listener about the status update and intermediate file collection

movements will be applied if necessary.

File Transfer

During the execution of the workflow, there are certain steps that contain or require intermediate

data file transfer. For example, the final job definitely relies on outputs generated by some other

jobs in the workflow. Also, when deploying dependent jobs, it may be necessary to apply movement

of intermediate data to other clusters. In our framework, we assume the underlying file system

to be HDFS (Hadoop Distributed File System). In order to make the file transfer more efficient,

instead of applying the HDFS to local, transfer, then local to HDFS procedure, we use transfer

command provided by the HDFS API (hdfs distcp) to facilitate direct and efficient parallel file

transfer between source and target HDFS system.

27

Algorithm 2 Scheduling Algorithm
1: Create Scheduling[], cluster available time clusterat []. For each job i, create estimated job start

time jobst [i][], dependency list D[i][], and the wall clock time for all jobs in dependency lists of
job i, i.e., Dep-walltime[i][]. For each cluster j, create Running[j][] to record running interval
and capability usage of each job on cluster

2:
3: GreedySolution() {
4: while RemainingJob!=0 do
5: for each job i where Scheduling[i]=Null do
6: if D[i][]==Null then
7: scheduling-pool.add(job i)
8: jobst [i][]= Eqn(3) result by Dep-walltime[i][]
9: end if

10: end for
11: if All jobs in pool has same min start time then
12: Sort(scheduling-pool, computing load, descending)
13: else
14: Sort(scheduling-pool, min

j
(jobst [i][j]), descending)

15: end if
16: for each job i in scheduling-pool do
17: initialize Score[];
18: for each candidate cluster j do
19: // Using reciprocal of estimated job finishing time as score for cluster j w.r.t job i for

scheduling
20: decide cluster j capability by Running[j][] and jobst [i][j]
21: Score[j]=1/(jobst [i][j]+PF(i, j))
22: end for
23: j=Scheduling[i]=argmax(Score[])
24: RemainingJob−−
25: jobwalltime = jobst [i][j]+PF(i, j)
26: update Running[j][]
27: if cluster j is fully occupied by submitting job i then
28: clusterat [j] = min(jobwalltime) for current jobs on j
29: end if
30: Delete job i from all dependency lists, adding jobwalltime to corresponding Dep-walltime[][]
31: end for
32: end while
33: return Scheduling }
34:
35: SimulatedAnnealing() {
36: for k = 0 through kmax do
37: T = 100× (kmax

√
0.001)k

38: Scheduling’ = randomAlternation(Scheduling)
39: if P(E(Scheduling), E(Scheduling’), T) >= rand(0, 1)) then
40: Scheduling=Scheduling’
41: end if
42: end for
43: return Scheduling }

Experiments

Our experiments are done on Amazon EC2 cloud computing platform, the Hadoop version is 2.7.3,

and the Spark version is 2.1.0. Each cluster used in the experiment utilizes at most 9 m4.xlarge

computing nodes to compose cluster of different sizes. For each cluster we mention below, the

28

number of nodes are referring to data nodes (computing nodes) in the cluster and there will be an

extra name node in the cluster as well. We set one executor on each computing node that utilizes

four virtual cores. There are mainly two purposes of our experiments. First, to show that by enabling

multi-cluster collaborative execution, we could dispatch the original workflow by component jobs

that could run on different clusters. Second, in some situations, the distributed workflow can also

outperform the original application due to enabling of computing resources from multiple clusters

and our designed scheduling algorithm. Our first experiment uses the WordCount application.

• WordCount: Comparing Effort of Original and Distributed workflow

In the first experiment, we run WordCount on 100GB input file with a 6-node cluster, this will act as

our execution for the original workflow and as the comparing case for other distributed workflows.

For comparison, we run the distributed workflow on two, three, and four clusters (one of them is the

central cluster where the final job is on), each having 6 computing nodes, and each deals with its

proportional portion of the original total input. We further assume all clusters have all inputs in this

experiment. The distributed component jobs are the same as the original WordCount job, however,

in the end, the output files will be collected to the main 6 nodes cluster, and apply an additional

application which act as a global reduce process. For 100 GB input on original workflow on one

single cluster with 6 computing nodes, the total execution time is 16 minutes. As an example, in

comparison, for three cluster scenarios, the 33 GB input on 6-node cluster costs a maximum of

5.6 min execution time, the generated output file is around 2 MB for each cluster, gathering them

to the main cluster using HDFS distcp will cost around 20s, and the final job running time on the

6-node main cluster will cost about 49 seconds. Due to the scale of the workflow, other overhead

caused by the architecture is low enough to be ignored, in fact, the scheduling algorithm can even

be omitted in this special case. Therefore, the total performance comparison is 16 minutes vs 6.8

minutes, which yields a 2.35 times speed up. The result related to all number of clusters is shown in

29

Figure 3.5.

• WordCount: Comparing Effect of Default and Our Proposed Scheduling Algorithm

0

2

4

6

8

10

12

14

16

18

1 Cluster 2 Clusters 3 Clusters 4 Clusters

To
ta

l E
xe

cu
ti

o
n

 T
im

e
(m

in
u

te
)

Max component job running time

Intermediate output data transit

Final job running time

Figure 3.5: Wordcount workflow execution time comparison

In the second experiment case for WordCount, the scenario simulates where there are four clusters,

with 2, 4, 6, 8 computing nodes respectively. The 8 nodes cluster is the central cluster where the

final job is on. Four identical component jobs are split from the original WordCount computing,

each deal with 1/10, 1/5, 3/10, 2/5 portion of the 100G input, proportional to the component cluster’s

computing node numbers. The entire computation process is the same as in the first experiment. We

further assume all clusters have all inputs in this experiment. Now, suppose we adopt the default

fair scheduling algorithm in Spark to our framework. If all workloads are in descending order of

their input size (as well as computing burden in this case), but all cluster are in ascending order of

their number of nodes, then by fair scheduling, the heaviest task will be arranged to the smallest

cluster, etc. However, for our scheduling algorithm, no matter what the sequence of the workloads

and clusters are, the scheduling will make the correct decision to send corresponding component

30

jobs to the cluster that is proportional to its computing load. We now show the experiment result in

Table 3.1.

Computing job with 2/5 of total input

Computing job with 3/10 of
total input

Computing job with
1/5 of total input

Computing
job with 1/10
of total input

Scheduling
Arrangement

Figure 3.6: Illustration graph for component jobs and clusters

Table 3.1: Component finishing time with different scheduling schemes

Fair Scheduling Proposed Scheduling
Cluster Input Finish Time Input Finish Time

cluster-1 (2 nodes) 2/5 19 mins 1/10 5.0 mins
cluster-2 (4 nodes) 3/10 5.2 mins 1/5 5.2 mins
cluster-3 (6 nodes) 1/5 5.2 mins 3/10 5.2 mins
cluster-4 (8 nodes) 1/10 5.3 mins 2/5 5.3 mins

We can observe from the result that, for the default fair scheduling scheme, the longest component

job running time is 19 minutes, whereas for our proposed scheduling algorithm, the longest

component time is 5.3 minutes, since all intermediate outputs from all components jobs are all very

similar in sizes (about 2 MB), and the running time for the final process job will be very similar as

well, the running time improvement in the component jobs will greatly be reflected in the overall

execution time. Therefore, our proposed scheduling algorithm is better than the default scheduling

scheme in Spark. In fact, for component jobs only, the maximum running time achieves a 3.58

31

times speedup by scheduling arrangement improvement.

• GIS Analytical Workflow: A Practical Workflow Demonstration on Hierarchical Spark

In [98] and [76], some GIS (Geographical Information System) computations have been accom-

plished on parallel computing platforms, especially in [76], these computations are executed on

Apache Spark platform. Such computations include geographic mean computation, geographic

median computation, etc. Stimulated by such application, in this experiment, we try to distribute

an actual GIS workflow to multiple clusters by our framework. The workflow uses users’ twitter

sending GPS positions with format (userID, lon, lat) as input, accumulated by user ID, calculate

their geographic mean and median, then join the results by user ID again to achieve a tuple for each

user that could describe the geographical social behavior center for the user for further analysis, the

output format is (userID, Geographic Mean, Geographic Median). The definition of geographic

mean and median, together with a workflow illustration graph in Figure 3.7 is shown below:

Geographic Mean:

LON =
∑

n
i=1 loni

n
LAT =

∑
n
i=1 lati

n
(3.5)

Geographic Median:

Median = min
x∈space

n

∑
i=1

√
(xlat− lati)2 +(xlon− loni)2 (3.6)

32

Accumulation
Input Split

1
Accumulation

Input Split
1

Accumulation
Input Split

2
Accumulation

Input Split
2

Geographic
Median

Whole
Input

Geographic
Median

Whole
Input

Geographic
Mean

Join

Spark DAG Framework Workflow DAG

Whole
Input

Geographic
Median

Whole
Input

Geographic
Median

Whole
Input

Geographic
Mean

Join

Figure 3.7: Illustration graph for Spark DAG workflow and framework DAG workflow

This experiment shows a scenario with three component clusters. The first cluster has 4 nodes and

is a private cluster with half of the whole input data, which are sensitive. The second cluster has 4

nodes and is a public cluster with second half of non-sensitive data. The third cluster has 8 nodes

(central cluster) and is a private cluster with whole input. In the framework workflow, since the

geographic median computation requires whole input, it is kept as one job and deployed to third

cluster. The original geographic mean computation is firstly split into two accumulation component

jobs, with each one takes half of whole input on the first and second cluster respectively, accumulates

their GPS locations and number of occurrence, generate output in format (userID, accumulated

lon, accumulated lat, number of occurrence). Then, the geographic mean job in our framework

workflow which reduces the intermediate outputs from two accumulation jobs is launched on the

first cluster. Eventually, both intermediate outputs from geographic mean and geographic median

jobs are gathered to central cluster, where the joining of the two intermediate results by userID is

launched to achieve final result desired.

The execution time comparison is shown in Table 3.2. It shows that our framework not only enables

the collaborative execution of this workflow on multiple clusters, but also achieves performance

33

improvement comparing to the original single cluster execution. It is also worth mentioning that this

experiment well demonstrates the capability of our framework in maintaining certain data security

and isolation standards.

Table 3.2: Component job finishing time and total execution time of framework workflow (In

comparison, total execution time in one cluster is 3.3 min)

Framework workflow Time

Accumulation 1 55 s

Accumulation 2 59 s

Geographic Mean 23 s

Geographic Median 1.5 min

Final Join 45 s

Total Execution 2.8 min

Summary

In this chapter, we present our proposed hierarchical Spark framework. The experiments show that

the proposed framework not only enables the functionality to distribute original spark workflow to

multiple clusters for collaborative execution, but also provides great performance improvement due

to better utilization of the overall computing resources.

34

CHAPTER 4: RESOURCE MANAGEMENT FOR TIME-CRITICAL

COMPUTING IN A MULTI-CLUSTER ENVIRONMENT

1 In today’s big data era, enormous amount of data is generated continuously and awaiting to

be analyzed. Some of the analytical applications, such as accumulative historical data statistics

analysis, may not have strict deadline or are more tolerant of response delay. However, more and

more data analyzing applications, such as streaming data processing, highly rely on timely response

from execution result, and can be referred as time-critical jobs. In this work, we classify time-

critical applications into two subcategories, time-critical streaming application with approximately

periodical repeating patterns and non-streaming single running time-critical application without

repeating patterns.

Due to frequent appearing of gigantic amount of data and deeper analytical workflow in contempo-

rary data analytics, these applications often rely on large scale distributed computing systems which

often include multi-cluster/multi-group topological structures due to geographical distribution of

resources, internal isolation for resource management purpose, possible hybrid cloud elastic struc-

ture of computing capabilities, etc. In real-world environment, it is more likely that the large scale

computing resources not only handle time-critical applications but also regular non-time-critical

data analytics as well. We call such kind of mixed workloads with time-critical and non-time-critical

applications as hybrid workloads. Although resource scheduling and management have been well

studied in traditional parallel and distributed computing, time-critical big data analytics brings many

new challenges such as how to balance multiple performance demands regarding hybrid workloads,

how to at best effort fulfill the temporal needs from time-critical applications meanwhile keeping

general job delay low.

1Content of this chapter is based on our published paper [51].

35

In this chapter, we present a reinforcement learning based resource management approach that

takes into consideration many unique features specific to efficient resource utilization on large-

scale distributed data analytical systems for hybrid workloads. Our approach coordinates overall

cluster-level resource allocation and is compatible with different inner-cluster resource management

components. By our approach, time-critical and non-time-critical applications can comprehensively

utilize computing resources in an efficient and harmonic way. The experiment results demonstrate

that our approach is more effective than rule-based resource management approaches due to better

capability of capturing complex characteristics behind scene using reinforcement learning. The

major contributions of this chapter include:

• Use reinforcement learning based approach with proper neural network to obtain effective

resource management solution that outperforms baseline rule-based resource manager.

• Design applicable value function definition in reinforcement learning for evaluating both

effects of actions in reducing missing deadline occurrences and reducing average job delay.

• Improve reinforcement learning technique relating to ε-greedy strategy, as well as other

accommodations to better suit RL approach to underlying practical problem and improve

learning effectiveness and efficiency.

• Compare effects of different reinforcement learning models with multiple competitive rule-

based resource management schemes in various hybrid workload scenarios.

Problem Description

The overall computing resource is defined as multiple computer clusters with specific capability.

To define computing capability, we use the concept of executor in Yarn [82], which is a stationary

basic allocation unit of a combination of virtual CPUs (a.k.a., vCPUs) and memory. This concept is

36

general and is widely adopted in popular distributed computing systems such as Apache Hadoop

and Spark. Clusters can be heterogeneous in the sense that they provide overall different numbers of

executor units. In this work, we assume executors in a cluster are identical to different applications

so that they provide the same computing performance.

The workload deployed to the overall computing resource is hybrid. More specifically, it can be a

combination of three categorical applications: (1) streaming applications that repeat executions of

themselves with different batches of arriving streaming data, which intrinsically contain temporal

desire thus are time-critical; (2) non-streaming time-critical applications without repeating patterns;

and (3) regular non-time-critical applications. Each application may have different duration,

execution time on single executor and different computing capacity needs in unit of executors.

Streaming applications can also possibly experience streaming input data fluctuation. In such a

case, the streaming application will reflect this as a different desire for numbers of executors in

order to maintain equivalent workload on single executor to better achieve temporal requirement in

data fluctuation. In addition, we assume that computing resources are released between intervals of

batch executions of streaming applications for less idling resource occupation.

At each moment, multiple applications may possibly arrive at the scheduling pool, which mimics the

practical scenario where multiple users submit jobs simultaneously. At each moment, the resource

management module picks one of the awaiting applications to deploy onto one of the computing

clusters for actual execution. Selecting which application and which cluster is crucial in determining

the overall performance of all applications.

Internal scheduling within a cluster is accomplished by local scheduler. The global resource

management module does not interact or intervene with the operation of the local internal schedulers.

As a matter of fact, this design brings up one advantage of the global resource management module,

that is, our proposed reinforcement learning is capable of coordinating with different local internal

37

scheduling schemes, which greatly enhances the generality and applicability of the proposed

approach to different practical scenarios.

For time-critical applications, if the actual execution time exceeds its temporal deadline requirement,

this triggers the “missing deadline" (MDL) event. It can be caused by prolonged resource allocation

waiting time and/or insufficient executor allocation due to resource competition among concurrent

applications. For both time-critical and non-time-critical applications, we also generally care about

the average job execution delay ratio, where a lower average of job execution delay ratio represents

more efficient overall application running.

A critical problem that the global resource manager needs to solve is how to schedule a hybrid

workload for minimal total missing deadline events and average job delay ratio. Hence it may need

to abstract cluster running statistics, application characteristics, workload pattern, and internal local

scheduler behavior. The achieved resource management module should be capable of achieving

favorable balance in goals and provide effective resource management scheme.

38

Streaming
time-critical
 application

Non-streaming
time-critical
 application

Regular non-time-
critical

 application

Reinforcement Learning based Resource
Management Approach

Simulation with local
scheduling scheme

Knowledge and
Performance

Metrics Collector

Reinforcement
Learning
Training

Knowledge
Replay
Buffer

Computing
Resource
 Cluster

Computing
Resource
 Cluster

Computing
Resource
 Cluster

Computing
Resource
 Cluster

Computing
Resource
 Cluster

Computing
Resource
 Cluster

Figure 4.1: An illustration of the architecture of our approach.

The Reinforcement Learning Based Approach

As depicted in Figure 4.1, we propose a resource management approach based on reinforcement

learning for hybrid workloads in distributed computing environment. Recall the main purpose is to

select an application from possible multiple candidates and identify a suitable cluster for it among

all available ones for application deployment.

Concept Definition and Value Function Design

The environment of our reinforcement learning can be described as follows: the overall distributed

computing resource is composed of multiple computing clusters. These clusters may provide

39

different numbers of executors, with each executor a fixed basic combinational allocation unit of

vCPU and memory resources. The applications awaiting to be allocated can be categorized as three

classes: streaming time-critical, non-streaming time-critical, and regular non-time-critical.

The state of the environment is defined as a vector of several components, with details shown in

Table 4.1 according to experiment setup. (1) For each cluster, a component is used for describing its

computing capability in terms of executors, discrete resource utilization statistics in the past 100

time slices if available, and total occurrences of missing deadlines for time-critical applications

in current episode. (2) Another component is for job profile. Without loss of generality, we

use streaming time-critical application as an example for description. The profile includes: (a)

The category of job: streaming time-critical application, non-streaming time-critical application,

or non-time-critical application; (b) Discrete probability distribution of resource utilization due

to streaming data fluctuation; (c) Single executor occupation time, execution deadline for batch

running, and overall duration of the streaming application. Applications in the other two categories

can nonetheless use the same state format with intuitive modifications. For all state representations,

we uniformly expand or shrink individual value range accordingly to maintain similar data range

for different dimensions in state vector.

40

Table 4.1: State representation in reinforcement learning model

Vector Component Dimensions

Cluster (i = 1 . . .5)

Sequence number 1

Capability 1

Occupation statistics (latest 100 steps) 100

Current total missing deadline 1

515 (103×5)

Application

Category 1

Discrete resource utilization distribution 10

Single executor occupation time 1

Execution deadline 1

Duration 1

14

Overall state vector 529 (515+14)

The action space of our reinforcement learning model is composed of a number of actions equaling

the number of candidate clusters from 1 to C. In our experiment, C = 5.

An episode is defined as the successful finishing of a fixed number of applications, where each ap-

plication finishes its execution (for non-streaming applications) or a number of repeating executions

(for streaming applications) during its lifespan.

The value of an action with respect to assigning a time-critical application i to a cluster can be

defined as follows:

valuei =−λ ·MDLi− γ ·MDLt>ti−η ·DelayResulti (4.1)

41

Similarly, the value of an action with respect to assigning a regular non-time-critical application i to

a cluster can be defined as follows:

valuei =−γ ·MDLt>ti−η ·DelayResulti (4.2)

where MDLi is the accumulative occurrence of missing temporal deadline events of application

i during its lifespan. MDLt>ti is total number of missing deadlines for all applications in entire

resource that happen after ti when application i is deployed and before eventual termination of

i. The delay result DelayResulti is the average value of all running time ratio of application i in

possible multiple executions during the episode. A running time ratio of application i is the ratio of

its actual running time over its optimal expected running time. λ , γ and η are hyper-parameters. In

our experiment λ = 1, γ = 0.02 and η = 0.1.

The value of an action here is equivalent as accumulated rewards an action received in an episode.

Definition of the value function can be interpreted as follows. Our purpose for resource management

for hybrid workloads is to increase the overall resource utilization of all clusters by assigning

newly coming applications, meanwhile achieving multiple performance considerations. For each

application, we would like the average job delay result remains low. However, for any time-critical

application, we also want to greatly restrict any temporal deadline missing. Consequently, these

should be comprehensively taken into consideration by desired resource manager. Specifically, our

value function not only depicts the influence of selected action to the occurrence of application’s

own missing deadline events, but also takes into account the influence of it to all missing deadline

events happened after the action, regardless of whether the event is solely related to application

i or not. This ensures the global vision of action value evaluation, and enables consideration of

correlated influence of multiple actions during action selection performed by the approach.

42

Neural Network and Reinforcement Learning Method Design

To capture important characteristics of efficient resource management decision, we utilize a neural

network of three layers, including two fully connected hidden layers of 2000 and 500 neurons

respectively and one output layer with neurons equal to the number of available actions.

We use reinforcement learning framework to improve the neural network model served as a value

function estimator. Given feature vector input regarding to a single application, the network outputs

value estimation for each possible actions. Action is selected based on ε-greedy strategy.

To accomplish the training process, in each episode, we gather resource management actions made

by the neural network model and attach them to the knowledge replay buffer, which consists of at

most 50000 latest resource management knowledge. At the end of an episode, each action taken is

evaluated and their values are supplemented to corresponding items in the knowledge replay buffer.

Therefore, our approach can be categorized as a Monte-Carlo method [62] instead of Temporal

Difference method [3]. After finishing of each episode, if enough knowledge is accumulated in the

knowledge replay buffer, neural network training process will be carried out with 1000 randomly

selected samples from knowledge replay buffer.

Strategies in Accommodating and Improving RL based Approach

We briefly describe the special strategies and considerations we have taken in the process of

better accommodating the reinforcement learning based model in the desired resource management

problems as follows.

43

Job Arriving
Pattern

Controller

Multi-Job
Arriving

Iterator by
Gaussian

Distribution

Job Categorical
Generator by

Stationary
Distribution

Resource
Management

Approach

Multi-cluster
Resource

Simulation Engine

Knowledge
Replay BufferNew

Knowledge

Action Value
Calculator

Performance
Metrics Collector

Knowledge Value
 Supplement

Reinforcement
Learning Training

Job Generation Module Simulation Module

Random Knowledge
Retrival

Figure 4.2: Reinforcement learning procedure in single episode.

Enabling resource management target selection among multiple applications

Note that for the designed neural network, it accepts feature vector of a single application awaiting

resource allocation, and the output is the value estimation of all actions corresponding to allocating

the aforementioned application to according cluster. However, it is possible that there are multiple

applications awaiting scheduling by our resource manager at certain moments. We would like

our reinforcement learning based approach to be able to deliberately choose the most suitable

application among all awaiting ones at each time slice.

A fundamental requirement for neural network is the stationary length of input vector, which

is obviously achievable when the input is with respect to one application, but not likely when

input vector is used for describing multiple jobs, where the number of jobs remains variable and

unbounded. Considering features of adopted reinforcement learning process, where an action is

chosen based on the largest values given by all available actions, we decide to modify the outer-layer

of the action selection process, instead of the neural network input vector, to accommodate the need

in choosing among multiple awaiting applications.

44

In our modification, the neural network remains unchanged, that is, its input is still with respect to

one single application. However, by utilizing the uniform meaning of values in the output, in each

time slice, if there are multiple jobs awaiting, we would feed each of them to the neural network

individually, then append all values together as one vector. The vector is then passed through the

ε-greedy process as described below. For any position selection in vector, the position is then

translated back to corresponding application and its action. This enables the choice among multiple

awaiting jobs without modifying neural network input.

Improved epsilon-greedy strategy for more effective and efficient RL process

In reinforcement learning, there is a strategy with the name ε-greedy strategy. It can expand the

exploration by randomly selecting actions with ε probability, so that the vision of the reinforcement

learning is not restricted by current capability of the obtained model. It also provides opportunities

to escape out of local optimum, and enhances chances to reach global optimum.

However, one disadvantage of the ε-greedy strategy is that it solely expands exploration by random

actions, therefore no other possible valuable prior knowledge is utilized. This may hinder efficiency

in achieving better evolved resource manager via reinforcement learning model. In light of this, we

innovatively apply an improved ε-greedy strategy by default for more effective and efficient RL

process. Specifically, the improved ε-greedy strategy uses both the random action and action from

our baseline resource manager to increase exploration. The details of it are stated as below.

action =


random action r1 < ε1 & r2 < ε2

baseline guided action r1 < ε1 & r2 ≥ ε2

argmax
j∈J,a∈A

Qa(s j) r1 ≥ ε1

(4.3)

45

When deciding an action, a randomized value from 0 to 1 is compared to current ε1 value. If less

than, an action is selected with ε2 possibility being random and 1− ε2 probability being the action

selected by our baseline resource manager; otherwise, action with largest value given by network

outputs is selected. Thus, knowledge from the baseline approach could be utilized to enhance

reinforcement learning effectiveness and efficiency meanwhile the random exploration is carried

out. This improved strategy is shown in Eqn. 4.3, where J is the set of scheduling awaiting jobs, A

is the action set and Qa(s j) gives value estimation of action a for application j, r1, r2 are randoms in

[0,1]. In experiments, we set ε2 = 0.5, and ε1 linearly decrements from 0.8 to 0.00001 in Episode 1

to Episode 1900 (total episode is 2000).

Training with randomized workloads

In specifying single application characteristics in a workload, there are multiple configuration

parameters that can be varied, such as discrete resource utilization distribution for streaming

application, single executor occupation time, execution deadline, and duration for application.

These parameters define the execution features of an application. Whenever an application is

generated, especially in verifying the performance effect of resource management approaches, we

implement proper randomness to these parameters to expand generality of the workload.

The question remains whether in the reinforcement learning training process, application charac-

teristic randomness, which enhances workload generality, will bring difficulty or even hinder the

training process. We consequently verify the answer to this question in several circumstances and

have made the following observation:

For different value function designs, it is possible that the broad generality of workload by ap-

plication randomness may bring great difficulty in training process and harm the effectiveness of

reinforcement learning model. Using one sampling of randomized workload as a fixed workload for

46

the entire training process could mostly alleviate the problem, and surprisingly, the resulting model

ends up reasonably well for using in randomized workload environment. However, after refining

the value function design to be what we present in this work, we discover that the effectiveness

of the training process remains well even for randomized workload and the performance of the

resulting model is further greatly improved comparing to the model obtained by training with a

fixed sampling of randomized workload. The underlying reason behind this is apparent since the

trained model with randomized workload has better knowledge and vision from the better workload

generality. We thus apply training with randomized workloads in experiments.

Algorithm 3 Resource Management and Training Algorithm
i: Current episode; t: Time,
N: Total number of episodes,
NoW : Predefined number of applications in workload,
f NoW : Finished number of applications in workload,
RGA: Number of randomly Generated Applications,
vecV : Value vector for jobs in job pool,
nn: Neural network model,
kb: Knowledge replay buffer
kb=[]; initialize ε1
for i in range(N) do

t=0; RGA=0; f NoW = 0
while f NoW < NoW do

if RGA < NoW then
RGA += generateJobs(jobPool)

end if
vecV=[]
for all job j in jobPool do

generate feature vector s for j
vecV.append(nn.eval(s))

end for
if random(0,1)< ε1 then

if random(0,1)< ε2 then
action=randint(0,len(vecV)-1)

else
action=actionbaseline

end if
else

action=argmax(vecV)
end if
takeAction(action)
knowl=generateKnowledge(action)
kb.push(knowl)
f NoW+= removeFinishedJobs()
t++

end while
update value for new knowledges in episode i
if len(kb)> batchsize then

minibatch=random.sample(kb,batchsize)
Train neural network by stochastic gradient descent

end if
ε1 decrements

end for

47

RL Training Algorithm for Resource Management

The main algorithm for RL training is presented in Algorithm 3. A detailed presentation of the

procedure for one single episode is shown in Figure 4.2. The entire training process is composed by

N training episodes. In our experiments, N = 2000. Obtained knowledge in each episode is pushed

into the knowledge replay buffer. At the end of each episode, the value of each new knowledge is

calculated and supplemented to the knowledge buffer. If sufficient knowledge exists, the neural

network training is launched where the newly obtained model is used in the next episode. The

weight of the neural network is updated via Stochastic Gradient Descent (SGD) with mean square

error.

Experiment Results

In this section, we present experiment design and results. The experiment is launched in our designed

simulator, in a computing resource of 5 clusters with different number of executors defined by

[500,800,1200,1300,1900]. For inner-cluster local scheduler, a First-in-First-out (FIFO) scheduler

is adopted, which is popularly provided as a default scheduler in various big data platforms. First,

we introduce design of job arriving patterns and the baseline rule-based resource managers. Then

we present experimental results regarding the performance comparison of RL based resource

management approach to baseline models.

Job Arriving Patterns

To thoroughly testify the effectiveness of designed reinforcement learning based approach, we adopt

three statistical patterns as job arriving patterns in resource management experiments.

48

By Bernoulli process

In the first job arriving pattern, we assume at each simulation time step, a job arriving event happens

with a stationary probability ρ = 0.08, where each experiment is fully independent. This obeys the

definition of “Bernoulli process”. When such an event happens, we let the number of arriving jobs

be decided following a rectified discrete Gaussian distribution: Num job = max(round(N(µ,σ2)),1).

For Bernoulli pattern, µ = 1.5, σ = 1, for other two patterns, µ = 3, σ = 1.

The category of arriving jobs also follows a stationary distribution, with β1, β2, and β3 being

probabilities for regular non-time-critical, non-streaming time-critical and streaming time-critical,

respectively. Here β1 +β2 +β3 = 1, and remains the same for other job arriving patterns as well.

For all three patterns, β1 = 0.5, β2 = 0.25, and β3 = 0.25. From the property of Bernoulli process,

the probability of having a new job arriving event with interval i is equivalent as the probability

of having a first success in i consecutive yet independent Bernoulli experiments, of which the

expression can be written as: P(i) = (1−ρ)i−1 ·ρ · Ii>0(i). Here Iset(x) is the indicator function, it

is 1 when x ∈ set, otherwise 0.

By Uniform distribution

In the second job arriving pattern, we assume the occurring interval of job arriving event follows a

discrete uniform distribution in [a,b], here a= 1, b= 39. That is, in our selected range, the occurring

probability for job arriving event with each interval time i is the same. Thus, the probability function

can be presented as:

P(i) =
1

|b−a+1|
Ii∈[a,b](i) (4.4)

49

By Beta distribution

In the third job arriving pattern, we assume the occurring interval of job arriving event follows a

modified discrete version of Beta distribution. α , β and M are pattern parameters, where in our

experiment α = 4, β = 2, M = 30. The probability of job arriving event with interval i therefore

can be written as:

P(i) =
Ii>0(i) ·Γ (α +β) · [B

(i
M ;α,β

)
− (B

(i−1
M ;α,β

)
]

Γ (α)Γ (β)
(4.5)

where,

B(x;α,β) =
∫ x

0
tα−1(1− t)β−1dt (4.6)

and Γ (x) is defined as the Gamma function:

Γ (x) =
∫

∞

0
tx−1e−tdt (4.7)

The probability of job arriving event with interval time i for all three job arriving patterns, and

corresponding sampling of first 30 job arriving events in an episode, could be seen in Figure 4.3.

50

(a) Bernoulli pattern probability (b) Bernoulli pattern sampling

(c) Uniform pattern probability (d) Uniform pattern sampling

(e) Beta pattern probability (f) Beta pattern sampling

Figure 4.3: Job arriving pattern probability and pattern sampling

Rule-based Baseline Resource Managers

To compare with the effectiveness and justify the necessity of the proposed reinforcement learning

based approaches, we put forward rule-based resource management approaches as the baseline

models. These different rule-based resource management methods are designed in purpose of

expanding baseline solution generality. During designing, we at best effort design competitive

51

ruled-based solutions that utilize available information reasonably and at its utmost; meanwhile

keeping variance and generality of solutions in mind.

The rule-based approaches are shown as follow:

• Random action (Random): Both the target job when multiple jobs are awaiting scheduling

and the scheduling action for this job are selected randomly.

• Smallest first-P (SF-P): When multiple jobs are awaiting scheduling, the job with smallest

computing capacity requirement will be selected. This scheduler will examine cluster utiliza-

tion percentage in the nearest past 100 time slices, and select the one with the lowest average

percentage as the destination for the target job.

• Largest first-P (LF-P): Same as previous, except that the job with largest requirement in

computing capacity is selected among multiple awaiting jobs.

• Smallest first-E (SF-E): SF-E is the same with SF-P in selecting target job among multiple

awaiting ones. But it will examine cluster resource utilization in the nearest past 100 time

slices, and select the one with the largest average number of available executors as the

destination for the target job.

• Largest first-E (LF-E): Same as previous, except that the job with largest requirement in

computing capacity is selected among multiple awaiting jobs.

Evaluation Metrics

Whenever evaluating approaches, all participating approaches will be tested for 50 independent

testing episodes. Each testing episode is independent in the sense that its workload consisting of

500 jobs is entirely randomly generated following designated job arriving pattern. However, in

52

each testing episode, this same workload of 500 jobs are submitted to all approaches. To enable

performance comparison, we present multiple evaluation metrics as follow.

Firstly, as previously stated, there are two major performance factors we take into consideration as

shown below.

• TMDL: Total occurrence of missing temporal deadline events in all clusters of the overall

computing resource during one episode, with respect to the resource management approach.

• AJDR: Average job delay ratio is defined as the average job running overhead percentage for

all 500 jobs in one episode with respect to certain resource management approach. Specifically,

it is defined as:

AJDR =
J

∑
i=1

100 ·∑Ni
j=1

(
ARi j
ORi j
−1
)

Ni

/J (4.8)

where J = 500 is the total number of jobs in one episode. Ni is the total repeating runtime of

job i, it is 1 for non-streaming application and larger than 1 for streaming applications. ARi j

and ORi j are the actual running time and optimal expected running time of job i in its j-th

running, respectively.

Then, besides these two direct metrics, to evaluate system performance in a more integrated and

well-rounded way with considering both performance metrics as mentioned before, we include one

more quantitative measurement and four more comparative methods.

Quantitative Measurement

The quantitative measurement is presented in Eqn. 4.9. It is designed in purpose of concisely

evaluating both major performance metrics TMDL and AJDR in combination. With the reciprocal

53

operation, the eventual Evalapp can be interpreted as an evaluation score where higher score implies

better performance, with 0 being the lower bound. The weights in linear combination are chosen

considering data scales in separate metrics.

Evalapp = (0.02 ·TMDL+AJDR)−1 (4.9)

Comparative Methods

Comparative methods will be used in different configurations for comparing proposed RL ap-

proaches with baseline approaches (the best of candidates is chosen) in 50 testing episodes of

workloads. The methods are constructed based on deciding win(1), lose(0), and optionally, even(0.5)

for proposed RL approach in each testing episode. The sum of which is then multiplied by 2 to

convert into a 100 basis. At all times, ScoreRL +ScoreBase = 100, with a winning-for-all-rounds RL

approach during testing scored at 100. Difference in score definition decides its strictness.

• Score-A: If RL approach outperforms the baseline in both metrics in a testing episode, it

scores 1, otherwise 0. It is a very strict evaluation standard for RL approach, in purpose of

showing absolute dominant percentage of RL approach over baseline.

• Score-B: Same as Score-A, but additionally adds the ’even’ case, that is, the RL approach

receives 0.5 if it outperforms in only one of either metrics.

• Score-C: RL receives 1 if its evaluation Evalapp is higher than that of the baseline solution,

calculated by Eqn. 4.9. Otherwise, it receives 0.

• Score-D: The percentage changes respectively in TMDL and AJDR from baseline to RL

approach are computed and added together. If the overall percentage change is negative (thus

implies improved performance for RL approach), RL gets 1, otherwise 0.

54

Performance Comparison

In this section, we present performance comparison of RL approach with multiple baselines for all

job arriving patterns. The RL approach is constructed by description in Section 4, with employing

all modification strategies mentioned in Section 4 (SF-E as baseline in improved ε-greedy method).

Each RL approach is trained for 2000 episodes.

For each job arriving pattern, we present performance comparison of RL with other baseline

approaches along different training episodes. Following by quantitative metric and score comparison

of RL at final training episode with the best baseline approach.

Furthermore, we present the comparison of RL approaches with and without utilization of our

improved ε-greedy strategy in reinforcement learning process. We also present the result of applying

the obtained RL approach to workloads with intentionally varied computing capability requirement

statistics, which demonstrates the generality of our obtained RL resource management approach.

55

(a) Bernoulli (b) Uniform

(c) Beta (d) RL comparison

Figure 4.4: (a-c) Performance comparison of RL approach and different baselines for Bernoulli,

Uniform and Beta job arriving pattern respectively in different training episodes. (d) Performance

comparison of RL approach with and without our improved ε-greedy method in different training

episodes.

For three job arriving patterns, the performance comparisons of RL approach with different baselines,

with respect to training episodes are shown in Figure 4.4(a), 4.4(b) and 4.4(c). When computing

Evalapp in Figure 4.4, TMDL and AJDR are averaged respectively over 50 testing episodes. For all

job arriving patterns, it is observable that among five baselines, the Random baseline performs the

worst; SF-P and LF-P although perform slightly differently, are on average at a similar level; as

well, SF-E and LF-E perform at a very similar level with slight differences occasionally.

56

From Figure 4.4(a), 4.4(b) and 4.4(c) we can see that our proposed RL approach for all job

arriving patterns gradually improves itself, surpassing all opponents in early training episodes, and

eventually achieves big performance advantage over all baseline approaches. This fulfills our desire

in achieving good resource management approach.

When further looking into the final model, which is the RL approach at final training episode, we

first select its best opponent. By examining the overall performance of all baseline approaches, in

all three job arriving patterns, SF-E remains performing as the best baseline, it is thus selected for

pairwise comparison with final RL approach for all three job arriving patterns.

The comparison of corresponding RL approach (at final training episode) and best baseline SF-E

in 50 testing episodes for three job arriving patterns can be found in Figures 4.5. Specifically, for

Bernoulli pattern: 4.5(a), 4.5(b), 4.5(c); for Uniform pattern: 4.5(d), 4.5(e), 4.5(f); and for Beta

pattern: 4.5(g), 4.5(h), 4.5(i), which are all related to Evalapp, TMDL and AJDR metrics, respec-

tively. It is worth mentioning that for Evalapp metric, the higher value means better performance.

Whereas for the later two metrics TMDL and AJDR, the lower means the better performance. It is

apparent that our final RL approach consistently performs very well in all three job arriving patterns,

and outperforms SF-E in all three metrics with significant difference.

57

(a) Bernoulli Evalapp (b) Bernoulli TMDL (c) Bernoulli AJDR

(d) Uniform Evalapp (e) Uniform TMDL (f) Uniform AJDR

(g) Beta Evalapp (h) Beta TMDL (i) Beta AJDR

Figure 4.5: Comparison of RL (at final training episode) with the best baseline (SF-E) for Evalapp,

TMDL and AJDR metrics in different job arriving patterns. Graphs are showing for 50 testing

episodes used for comparison, sorted by RL TMDL in convenience of viewing. Three rows

correspond to Bernoulli, Uniform and Beta, respectively. Three columns correspond to Evalapp,

TMDL and AJDR, respectively. For Evalapp, the higher the better. For TMDL and AJDR, the

lower the better.

58

The average statistics of aforementioned 50 testing episodes with respect to all three job arriving

patterns can be found in Table 4.2:

Bernoulli pattern: For TMDL, the average belongs to RL and Baseline are 35.04 and 189.34. RL

approach achieves to reduce TMDL by a significant ratio of 5.40. It also reduces AJDR by ratio

1.78. For four scoring metrics, it suffices to say that even for Score-A, the most strict standard for

RL, it achieves 98 out of 100. That is, according to testing, it can dominant baseline in both TMDL

and AJDR simultaneously with approximately 98 percentages probability. Other scores are even

higher.

Uniform pattern: For TMDL, RL approach achieves to reduce TMDL by a significant ratio of 7.55,

it also receives reduction in AJDR by 2.08. For four scoring metrics, the scores keep showing RL

approach as dominant solution, with Score-A, the most strict one, being 96 out of 100.

Beta pattern: Once again, RL approach achieves to reduce TMDL by a good ratio of 4.40, and

receives reduction in AJDR by 1.79. For four scoring metrics relating to 50 testing episodes, all

scores are identically 100.

By examining performance comparison, we are therefore confident to consider achieved RL ap-

proach as a good resource management approach for designated scenario and it becomes a much

better resource management solution than aforementioned rule-based baselines.

After showing major performance comparison, we would like to supplement additional experiments.

Firstly, we want to verify influence of the improved ε-greedy strategy described in Section 4. We

use Bernoulli process pattern and compare the performance of obtained RL approach with and

without the improved ε-greedy method as shown in Figure 4.4(d). The improved ε-greedy method

(with SF-E as baseline) indeed improves both the effectiveness and efficiency of RL approach. The

RL approach with improved ε-greedy strategy gains much better final performance. And even at

59

middle stage of RL process, it already achieves comparable performance to the one at final episode

without the improved ε-greedy method. This justifies the necessity in utilizing proposed improved

ε-greedy strategy.

Secondly, although our RL resource management approach demonstrates good generality by being

suitable to randomly generated hybrid workloads in multiple job arriving patterns, we intend to

further apply stresses to the obtained RL approach by the following experiments:

Table 4.2: Performance comparison of RL approach and SF-E for three different arriving patterns

Metric Bernoulli arriving pattern Uniform arriving pattern Beta arriving pattern

RL Approach Baseline Ratio RL Approach Baseline Ratio RL Approach Baseline Ratio

TMDL 35.04 189.34 5.40 46.34 349.9 7.55 56.52 248.86 4.40

AJDR 3.24 5.78 1.78 5.18 10.80 2.08 3.40 6.07 1.79

Score-A 98 2 49 96 4 24 100 0 ∞

Score-B 99 1 99 98 2 49 100 0 ∞

Score-C 100 0 ∞ 100 0 ∞ 100 0 ∞

Score-D 100 0 ∞ 100 0 ∞ 100 0 ∞

For an already obtained RL model, we vary several statistical characteristics during workload

generation in testing. The newly randomly generated workloads, although following the same job

arriving pattern as in training, show significantly different computing capability desires than ones

during training. This consequently brings challenges to RL approach generality. Using uniform

distribution job arriving pattern, we generate two new testing workload patterns, “eased” uniform

and “stressed” uniform, where randomly generated jobs have statistically less (more) computing

capability requirement than original ones respectively. We test obtained final RL approach by

original uniform pattern and SF-E against new workload patterns. The result is shown in Table 4.3.

As expected, comparing to original version, it can be seen that the performance of RL and SF-E in

60

the sense of TMDL and AJDR both simultaneously improve (deteriorate) in the “eased” (“stressed”)

version, respectively, due to changes in computing capability requirement statistics. However,

regardless of the pattern change, the originally obtained RL approach remains performing very

well in either cases. It means that the generality of our RL approach is further fortified. And this

concludes our experiment section.

Table 4.3: Performance comparison of RL and SF-E for Uniform arriving pattern with eased and

stressed workloads

Metric Eased workloads Stressed workloads

RL Baseline Ratio RL Baseline Ratio

TMDL 16.36 140.52 8.59 350.44 1027.86 2.93

AJDR 3.12 4.87 1.56 13.76 19.96 1.45

Score-A 96 4 24 92 8 11.5

Score-B 98 2 49 95 5 19

Score-C 100 0 ∞ 94 6 15.67

Score-D 100 0 ∞ 96 4 24

Summary

In this chapter, we analyze reinforcement learning based approach for resource management of

hybrid workloads in large-scale distributed computing environment. By comparing performance

with baseline solutions in various job arriving patterns, as well as comparing to other RL approach

version, we demonstrate the effectiveness and generality of obtained RL approach. It is observed

during testing that the TMDL metric is improved by up to 7.55 times, while the AJDR metric is

improved by up to 2.08 times. In conclusion, we successfully obtain better RL based resource

management approaches for hybrid workloads in distributed big data computing environment.

61

CHAPTER 5: ELASTICITY-COMPATIBLE SCHEDULING FOR

TIME-CRITICAL COMPUTING IN HETEROGENEOUS

ENVIRONMENTS

1 Nowadays’ distributed computing resources hosting data analytical jobs are often organized in

the unit of cluster, where each cluster represents a closed association of computing nodes that

a data analytical work can be carried out in a distributed manner [82]. To further expand the

computing resources in a large scale, opting for a multi-cluster computing resource raises its benefit

and necessity due to the following reasons: Firstly, the multi-cluster environment can be naturally

derived from the geographical distribution of resource. Secondly, it sometimes can be beneficial

to organize overall resource into clusters as a separation for managing jobs and data. Thirdly, the

facility may utilize online computing resources from service providers as additional clusters for

resource expansion. Examples of a multi-cluster environment could happen when an institution

has several physical clusters at its branches (may at different locations). Another example could be

a hybrid-cloud, which may consist of multiple private (self-owned) and public cloud clusters. In

accordance, an efficient resource management being aware and compatible with such a multi-cluster

computing infrastructure should be presented to guide job distribution.

Moreover, there are other computing environment features to be taken into considerations. Firstly, it

is possible that computing nodes in different clusters have different computing capabilities. In other

words, multiple clusters composing the environment could be heterogeneous. Secondly, certain

clusters could possess elasticity. Here, elasticity is referring to that the capacity of the cluster could

be temporally expanded as desired to fit the expanded computing demands, which is more often

observed in cloud computing as one of its main features [67]. It is certainly beneficial if a proposed

1Content of this chapter is based on our published paper [50].

62

resource manager could be compatible with such elasticity capability and be aware of heterogeneity.

Furthermore, job features are equivalently important. For example, besides general analytical jobs,

many jobs nowadays could be streaming jobs, which aim to timely process gradually arriving

streaming data, and can be regarded as conducting repetitive executions with different batch of

data. Such jobs are intrinsically end-to-end delay-sensitive, thus are time-critical. In a multi-cluster

environment, considering differentiated transmission overhead for a time-critical job, it requires

differentiated temporal execution deadline on different clusters, which should be regarded as a job

feature and be considered by the resource management approach.

All computing environment features such as multi-cluster, elasticity and heterogeneity, and the

job features such as job type and timeliness, add up to the complexity of generating a satisfactory

resource management approach that can well utilize the multi-cluster environment. Thus, it is very

hard to devise a comprehensive rule-based approach. Moreover, the high dynamic feature of the

system status as well as the desire for a timely online scheduling decision hinder the utilization of

iterative searching based approaches. In vision of this, we propose to utilize deep reinforcement

learning (DRL) techniques in this work to obtain a resource management that could fulfill the

expectation. The major contributions include:

• We propose a deep reinforcement learning based approach utilizing LSTM model and multi-

target regression with partial model sharing mechanism, and compare its effectiveness

with respect to other baseline and RL approaches.

• The DRL-based resource management is designed for distributed multi-cluster computing

environments with considering its heterogeneity and being elasticity-compatible.

• The DRL-based resource management provides scheduling support for time-critical (delay-

sensitive) computing in such a multi-cluster environment as described.

63

Problem Description

The intended global resource management is aiming to (1) reduce occurrences of missing tem-

poral deadline events while (2) maintaining a low average execution time ratio for a hybrid

workload containing multiple time-critical and general jobs, by properly scheduling them to ap-

propriate computing clusters in the underlying computing environment. We depict the overall

architecture of the problem in Figure 5.1 and present detailed problem description as follows.

The underlying computing environment is composed of multiple computing clusters. For each

cluster, its overall computing resource is expressed as the number of executors it could provide.

The “executor" here is a basic resource allocation unit containing a combination of virtual CPU

and memory resources, which is adopted in popular resource managing frameworks such as YARN

[82], and utilized by computing environments such as Apache Hadoop and Spark. Different from

[51], where executors are assuming to be identical among different clusters, cluster heterogeneity is

allowed in this work. That is, different clusters in the computing environment may have diversified

executors with different computing capabilities. A heterogeneity factor (the larger the stronger)

will be assigned to each kind of such executors, representing its relative computing capability.

Furthermore, in this work, clusters are allowed to have elasticity, that is, their computing capability

in terms of executor numbers, can be temporarily expanded (with an upper bound) when necessary,

to fit workload pressure. This assumption coordinates with the trending of elastic computing

resources.

The holistic workload contains a number of continually arriving jobs, where each job can be

classified into one of the three categories[51]: streaming jobs (Cate-1), non-streaming time-

critical jobs (Cate-2) and other general non-time-critical jobs (Cate-3). As aforementioned,

streaming jobs can be regarded as conducting repetitive executions with data batches and are

inherently delay-sensitive therefore time-critical. Such a categorization of jobs helps manage hybrid

64

workload in presenting a large range of representative user analytical needs.

Arriving jobs first enter the global job buffer. For each moment t when global job buffer is non-

empty, given one job in the global buffer, the intended global resource manager selects a proper

cluster in the computing environment for execution. Here, how to derive an effective approach to

fulfill the global resource management is the main problem.

System
users

Jobs of multiple
categories

Workload of
jobs

Deep RL based
resource

management

Multi-cluster
computing

environment

Figure 5.1: An illustration of the problem architecture.

This problem is inevitably complex. Firstly, abundant information, such as job and computing

environment features and system dynamic need to be considered. Secondly, a job can have cluster-

specific difference, such as cluster-specific deadlines due to differentiated transmission overhead

and cluster-specific execution time due to cluster heterogeneity. Cluster elasticity could also change

system resource status and thus affect job execution. The model should be able to handle these

issues and provide good performance to both management goals. Solely attending to partial of the

available information or partial of the objectives can lead to unsatisfactory performances. Integrated

65

balancing between goals and short-term sacrificing yet long-term benefiting scheduling actions are

potentially desired. The extreme difficulty lays in whether, when or how such kind of trade-off

should be made, which is quite uncertain for rule-based models and brings favor to DRL-based

approaches.

The Deep Reinforcement Learning Based Approach

Our goal is to obtain an efficient resource management approach with a neural network model via

deep reinforcement learning. In this section, we state our elaborative considerations in accommodat-

ing the problem to model design and training skills, starting by a brief introduction to reinforcement

learning technique.

Introduction to Reinforcement Learning

Reinforcement learning is a mechanism that enables model improvement through continual inter-

action with the application environment defined upon several key concepts: environment, state,

episode, action and reward (or value).

Environment describes the overall world where the actual state transitions happen. State is used

to express the environment status at a moment. Based on the adopted representation, the state st

at moment t can potentially contain historical or instantaneous information of the environment.

Action represents the set of actions performable to environment at the moment. The instant reward

is a quantitative incentive feedback that the model receives from environment at a moment, whereas

the value is a form of the accumulated reward (optionally decayed) observed in a longer duration.

Definition of the value of taking an action a in state s under a decision-making policy π can be

66

formulated as below [78]:

V π(s,a) = Eπ

{
∞

∑
k=0

γ
krt+k+1 | st = s,at = a

}

where Eπ represents the expectation under policy π , rt+k+1 is the instant reward at moment t+k+1,

at is the action taken at moment t and γ is the decay factor. An episode is a round of ‘game’ that

marks the reaching of the termination state.

Reinforcement learning enables model improvement via the general interaction mechanism as

depicted in Figure 5.2: Based on environment state st at t, an action is decided by the model and

an environment state transition consequently happens. Over the time, model improvement can

be carried out by learning from collected interactive experience in purpose of maximizing action

values. Such a process is repeated multiple times until the accomplishment of training process.

Neural Network
based Scheduling

Model

Reinforcement
Learning

Mechanism

Computing Environment

Update

Action

State_(t+1)

State_t

State_t and
Reward

Figure 5.2: An illustration of reinforcement learning.

67

Reinforcement Learning Method Design

In this work, environment is the entire computational system where the overall processing of jobs

take place. The action set contains number of actions equal to the number of clusters forming the

computing infrastructure, where each action corresponds to deploying the job to that specific cluster.

An episode is the whole process of scheduling and finishing the execution of a workload consisting

of a certain number of jobs.

Environment state is composed of two main components: computing system state and scheduling

job information. Computing system state (iterative for each cluster) includes static cluster features

like its sequence number, elasticity information (including cluster’s normal capacity and maximum

capacity under expansion), heterogeneity factor (hetero factor) and dynamic features like cluster

occupation status in a past time interval and current accumulated total occurrences of missing

deadline events in cluster.

For scheduling job information, jobs in different categories can possess different attribute sets. We

utilize streaming job (Cate-1) information as a super set for description, and other job categories can

adjust to this with unambiguous accommodations. Such information includes job category, expected

hetero factor, standard execution time with respect to using executors with the expected hetero

factor, execution deadline, total duration, discrete resource request distribution and its heterogeneity

sensitivity measure to describe job’s adaptation capability to clusters with different hetero factors.

We explain some of the keywords here as below:

Heterogeneity sensitivity measure: A job’s execution time is often proportionally affected by

cluster’s hetero factor if the factor is within a given range. In this work, a job’s heterogeneity

sensitivity measure ‘sen’ (integers in [1,5] in experiment) is used to represent such range by

R = [h− sen ·ζ ,h+ sen ·ζ], where h is the job’s expected hetero factor and ζ = 10 in experiment.

68

If the cluster’s hetero factor belongs to R, this job’s execution time in cluster will be proportionally

affected from its standard execution time by the cluster hetero factor. Otherwise, if the cluster’s

hetero factor is outside the range, this job will cease to further fully reflect change in its execution

time. This corresponds to job behaviors in practice where its execution time could be affected

accordingly by executors within a range of hetero factors, yet will not fully receive benefit (or harm)

in execution time for too large hetero factor changes, due to other execution overheads.

Job’s cluster-specific difference: Job can have cluster-specific difference. Such as, job’s execution

deadline for each cluster can be different, possibly due to cluster-specific data transmission overheads

from data source, when regulating a uniform end-to-end batch execution time. It could also be due

to job’s program transmission overhead to cluster before starting the execution. Job execution time

can also be cluster-specific due to cluster heterogeneity. To lower user profiling burden, instead

of requiring cluster-specific execution times, our model only requires the standard execution time

with respect to (w.r.t.) job’s expected hetero factor and can handle heterogeneity even without the

complete execution time information.

Discrete resource request distribution: A streaming job may have resource request fluctuation

during its repetitive executions. Analogous to [51], when executing in a cluster, it is affiliated

with an length 10 array to describe its discrete resource request distribution, with each position

accounting for 10 percentage possibility. For example, if such a distribution array containing eight

30s and two 60s, it means in each execution of the job, it has 0.8 probability to request 30 executors

and 0.2 probability to request 60 executors in this cluster.

The overall composition of the state representation is presented in Table 5.1. For cluster occupation

status, we would like to use the records roughly in the latest 100 steps. In experiment, the latest

105 steps is used per input design desire, and this information is specially traversed to create a 150

dimensional vector for each cluster. Details of the traverse will be stated in Section 5.

69

Table 5.1: State representation in our deep reinforcement learning model for 5 clusters
Vector Component Dimensions
Cluster (i = 1 . . .5)
Cluster sequence number 1
Normal capacity 1
Maximum capacity if elastic 1
Cluster heterogeneity factor 1
Occupation status (latest 105 steps)* 105→ 150
Current total missing deadlines 1

775 (155×5)
Job
Category 1
Expected heterogeneity factor 1
Heterogeneity sensitivity 1
Discrete resource request distribution 10×5
Standard execution time 1×5
Execution deadline 1×5
Duration 1

64
Overall state vector 839 (775+64)
Only * row includes temporal information

The influence of deploying a job onto a cluster is destined to be long-term due to its execution

duration. Meanwhile, since performance metrics related to number of missing deadline events and

execution time statistics have significant response delay from occurring moments of their most

influential contributing factors such as inappropriate deployment or resource competition within

cluster, it is difficult to define the instantaneous action reward at any moment. In this vision, we

alternatively define the value of an action, concentrating on action’s long-term influence. In this

work, the value v(j) of an action that schedules a job j to a cluster at some moment, is defined as

follows:

v(j) =
ηc ·mih ·mic

−η j

[
M j +

te

∑
t=ts

β
Dt
(

W (t)
j +W (t)

cl

)]
−ψih ·ψic ·R j

Here, ηc and η j are the heterogeneity factor of the cluster and the expected heterogeneity factor of

70

the job, respectively. M j is the number of missing deadline events of job j where resource waiting

does not happen at execution beginning. Note that a job can have more than one missing deadline

events, such as, since a streaming job can be repetitively executed for multiple times. W (t)
j records

the happening of each missing deadline event of job j at moment t, if it does not belong to M j.

Similarly, W (t)
cl records the number of missing deadline events of all jobs in the cluster at moment t

if resource waiting happens at their execution beginning. ts and te correspond to the deployment and

termination moment of job j, respectively. β is the decay factor, and Dt records how many new jobs

have been deployed to the cluster after ts, till moment t. R j represents the overall average execution

delay ratio of job j (its average execution time divided by standard execution time, then minus 1 for

representing delay). In the experiment, weighted factors are applied to the components of v(j), we

omit its showing in the formula for simplicity.

mih and mic follow Eq. 5.1 of mΩ, where Ω services as a place holder for ‘ih’ or ‘ic’. The events

corresponding to ‘ih’ and ‘ic’ are Improper_Heterogeneity (IH) and Initial_Competition (IC),

respectively. Here, IH refers to the case where an improper cluster arrangement is caused by the

scheduling action, that the cluster heterogeneity factor is too low for the job, causing execution

deadline violation. IC refers to where resource competition (resource waiting) happens right after

the job’s deployment to the cluster designated by the scheduling action. Similarly, ψih and ψic

follow Eq. 5.1 of ψΩ, respectively. Here, PmΩ
≥ 1 and PψΩ

≥ 1.

mΩ =

 PmΩ
isEvent

1 Otherwise
ψΩ =


PψΩ

isEvent & R j > 0

1/PψΩ
isEvent & R j ≤ 0

1 Otherwise

(5.1)

The design of the value formula is originated from the consideration that when resource competition

contributes to the causing of the missing deadline event of job j, the root cause of the resource

71

competition can be complex. It could be due to the deployment of job j on a specific cluster or later

deployment of other jobs on the same cluster. To alleviate such intertwined influence when deriving

a clearer action evaluation, all missing deadline events of job j related to resource competition will

be decayed over numbers of newly arriving jobs after j. Furthermore, the number of overall missing

deadline events at any moment from all jobs in the cluster which could be caused by resource

competition is also added following the same decay pattern, in purpose of attending the potential

mutual influence of j from and to other coexisting jobs in the cluster. On the contrary, other missing

deadline events of job j without resource waiting will not be decayed over time. The factor ηc
η j

in

formula helps the model discern the potential differentiated effects of cluster heterogeneity to the

job. Such heterogeneity influence is also considered in R j due to its definition. The factors mih, mic,

ψih and ψic work as a whole to assist the proper avoidance of certain irregular behaviors which the

model should avoid.

DRL Model Structure and Decomposition of Value Definition

According to Table 5.1, the model input (RL system state) contains two types of information:

Non-temporal information describing static or accumulated properties of job and computing

environment, and temporal information related to computing environment occupation status in an

interval of past moments. There exist neural network structures more specialized in dealing with

temporal sequential information, such as Long Short-Term Memory (LSTM). LSTM has shown

effectiveness in various tasks, such as speech recognition, music modelling and language translation

[25] [90]. We plan to utilize the LSTM structure to process the temporal information portion of the

input.

Also, the action value is a vital feedback signal for RL process. In fact, the neural network

in our approach is directly performed as a value estimator. How well the action value can be

72

estimated will undoubtedly affect performance in a large extent. Nonetheless, the value definition

contains multiple components for better depicting action influence and such constitution adds up the

estimation complexity. It makes the changing behavior of the integrated action value more difficult

to be predicted. And, the possibly differentiated numerical range of components and their variation

patterns could vanish influence of some individual component, which may affect learning and the

multi-goal optimization result.

A plausible solution is to consider components in the value definition as multi-objectives in re-

inforcement learning, converting it to a Multi-Objective Reinforcement Learning (MORL) prob-

lem [81]. In a MORL problem, the value space can be composed of multiple dimensions, i.e.,

Vπ(s,a) =
(
vπ

1 (s,a), . . . ,v
π
m(s,a)

)
. With such formulations, our approach can be described as a

scalarized[80] single-policy[23, 58] learning algorithm for MORL. More specifically, a linear scalar-

ization function is utilized to regulate a united measure over the vector of the value components,

and provide a single scalar value feedback for a single policy learning problem. The scalarization

mechanism in this work can be described as [81]: ˆSV linear(s,a) = ∑
m
i=1 wi×Vi(s,a), where Vi(s,a)

is intended to be a value estimator for vπ
i and wi are weights. Now the problem becomes how to

achieve multiple value estimators Vi(s,a), one for each value component of our problem.

Based on the refined problem nature, the purpose of estimating multiple real value component

outputs via training with the same training data can be modeled as a multi-target learning (regression)

problem. Accordingly, we decide to utilize a partial network sharing skill to potentially facilitate the

process. It uses multiple networks sharing the front a few layers, where one network aims for one

of the expected value component estimators. Here, multi-target learning focuses on simultaneously

training networks as value components estimators desired by the formulated scalarized single-policy

MORL algorithm with potential intertwine, where the shared layers serve as a joint structure aiming

to capture abstract input encoding shareable and beneficial to all networks. This model construction

and learning mechanism enable the value estimation at its individual component level.

73

Input
Temporal

section

Non-temporal section

Traversed
input

LSTM
outputs

Combined
input to FC

First FC layer

Second FC layer

Output

Shared layers Individual layers
LSTM cell

LSTM cell

LSTM cell

LSTM cell

Figure 5.3: The structure of our deep neural network.

The overall network structure of this work is depicted in Figure 5.3. As illustrated, the input is

separated into temporal related and non-temporal related sections. The temporal section will first

go through the LSTM-based structure and the aggregated temporal hidden states will be integrated

with the non-temporal section in the original input to enter the fully-connected (FC) layers. The

LSTM session network and the first FC layer are the shared layers, whereas the second FC layer is

isolated for each estimator, three in total, corresponding to each of the following value components:

v1 =−
ηc ·mih ·mic

η j

(
M j +

te

∑
t=ts

β
DtW (t)

j

)

v2 =−
ηc ·mih ·mic

η j

(
te

∑
t=ts

β
DtW (t)

cl

)

v3 =−ψih ·ψic ·R j

Here v1 focuses on feedback related to missing deadline events of job j itself, v2 focuses on mutual

influence of missing deadline events of all jobs on-board the cluster, and v3 focuses on average

execution delay ratio of job j. The integrated value of an action is then decided based on the

(weighted) sum of outputs of the three network estimators.

74

Training Enhancement Skills

We apply several training enhancement skills that are suitable for the model training of the underlying

problem with the potential to increase training efficiency and performance. They are:

Cluster occupation status traverse:

The cluster occupation status in the last 105 time steps is specially traversed to generate the actual

input of the LSTM session of the model, which also forms the temporal portion of the model input.

This can be seen as a segmentation process of the original status vector, aiming at transforming it

into a series of status segments (possibly with overlaps) following the same temporal order, each as

a continual sub-sequence of the original one. Such kind of segmentation helps preserve the original

temporal series information to be captured by LSTM structure, while revealing occupation evolution

by the sub-sequence in each segment available to the LSTM cell.

For each cluster, as depicted in Figure 5.4, the process starts at the beginning of the occupation status

vector with a 10-element increment for each segment’s start-point and with length 15. Therefore,

each two consecutive segments have a 5-element overlap. Overall, the segmentation for the length

105 status vector results in 10 segments of length 15, concatenated as a 150 length vector. For totally

5 clusters as in the experiment, we have a 750 length vector as the actual temporal portion of input.

Training with decayed learning rate: We utilize Adam optimization [37] for learning rate tuning.

Here we denote it as Adam(α), where α is a base learning rate. Our exemplary experiments reveal

that a relatively large base learning rate, such as Adam(1e− 2) or Adam(1e− 3) may adversely

affect training performance. And a single base learning rate with a smaller α shows relatively

promising influence, such as Adam(1e−4). However, for these approaches, no manual decay in

the base learning rate is included.

75

We decide to further supplement a manually decayed base learning rate to Adam. More specifically,

for the first 1000 training episodes in the experiment, the learning rate is Adam(1e− 4), and

afterwards, it becomes Adam(1e− 5). Such Adam optimization with a manually decayed base

learning rate provides the potential to combine the benefit of more swift change in the early stage

and more fine tuning in the later stage of the training.

Cluster occupation status in last 105 time steps

Traverse to generate 10 vectors of length 15
Each box represents 5 elements in the vector

Figure 5.4: Traverse of cluster occupation status.

We’ve also adopted some training skills in [51], shown to be effective for training RL-based resource

management, including:

Training with randomized workload: Randomness is added to important job feature variables to

inject variations of the workload in each episode. This stimulates better state space exploration and

pressurizes the network in continually refining itself towards generalized knowledge of its duty to

suit workload variations.

Modified ε-greedy exploration: A rule-based baseline model is supplemented to guide the action

perturbation for exploration. When a random action perturbation is needed (by probability ε from the

original ε-greedy exploration), it then has another probability that this perturbation will be instead

provided directly by the supplemented baseline, otherwise, a normal random action perturbation is

76

performed. This is in purpose of letting a rule-based model inject its better-than-random knowledge

to partially guide the general exploration, such that exploration efficiency is increased.

Job Arriving
Pattern Guided

Workload
Generator

Categorical
Single Job

Generation

Deep Neural
Network based

Resource
Management

Multi-cluster
Environment

Simulation Engine

Knowledge
Replay BufferNew

Knowledge

Action Value
Calculation

Performance
Metrics Collection

Knowledge Value

Reinforcement
Learning Training

Job Generation Module Simulation Module

Random Knowledge
Retrival

Global
Job

Buffer V1

V2
V3

Query
Engine

Job Retrival Query

Value feedback for actions w.r.t. the job

Select Job and its Action with
max value in global job buffer

v1

v2

v3
Model Update

Figure 5.5: Training architecture of our deep neural network in one episode.

Solving multi-job selection dilemma: The proposed resource management can schedule one job

at a moment. So, besides deciding the scheduling action for a job, it also needs to supplementarily

select a targeted job for its scheduling, if more than one exist in the global buffer. To accomplish

this goal, designing a model to accept all jobs in the global buffer at once is difficult due to the

absence of job count upper bound and the further exacerbated exploration difficulty. Therefore in

the adopted design, our model still accepts a single job input at once, but an outer level iterator will

traverse the global job buffer where an overall value vector would be assembled to provide job and

its action selection in one integration.

The overall training architecture is shown in Figure 5.5.

Experiments

The experiments are conducted via simulation. In the experiments, the testing distributed computing

environment is set as composed of 5 clusters, with executor capabilities for each described by the

vector: [800,1200,1500,1800,2300]. Notice that here executors among different clusters can be

77

heterogeneous. Accordingly, the heterogeneity factor for each cluster is: [70,60,100,80,90]. For

elasticity, we suppose two of the clusters: the 3rd cluster and the 5th cluster have elasticity and their

resource variation behaviors are managed by the elasticity controller as described below.

Elasticity controller: Executor capacity of an elastic cluster can be expanded by an increment

amount (100), when the cluster occupation ratio in any moment of a past time window (100 steps)

is ≥ 95%. The accumulative expansion in effect can be no larger than a maximum limit (200). On

the other hand, if no occupation ≥ 95% is detected in the past time window, the expansion capacity

in effect will be returned in stages by a decrement amount (100).

Note that our approach focuses on cluster-level global resource management. To accomplish job

execution, a local intra-cluster scheduler is still needed. Our approach, instead of replacing or

intervening, will actually cooperate with the local scheduler and as a benefit has the potential to

coordinate with different local schedulers. We use a popular generic local scheduler for experiment.

Local intra-cluster scheduler: At each moment in a local cluster, if there are jobs halting and

awaiting for resource from previous moments, they are prioritized for resource satisfaction. After

that, job requests to start execution at this moment are considered for resource allocation. Whenever

queuing is needed, the same sequence as the job arrival is followed. If a job’s resource need cannot

be satisfied, it will be put into halting (resource waiting), and try again in the next moment. Here,

resource satisfaction means that the job’s executor request can be fully fulfilled by the cluster.

To compare with our deep RL-based approach, multiple rule-based baselines are considered:

Random (RAN): Jobs are deployed to one of the clusters forming the multi-cluster computing

environment solely by randomness.

Round-Robin (RR): Jobs are deployed to each cluster forming the multi-cluster computing envi-

ronment in a round-robin manner, starting from a random one at the very beginning.

78

Most Available First (MAF): Cluster with averagely most available computing capacity in a past

time window relatively for the considered job will be selected for job deployment. Here the available

computing capability for cluster i is defined as: (1−ROi)×CAPi/ERi, where ROi, CAPi and ERi

are the average occupation ratio of cluster i in the past time window, current total capacity of cluster

i (elastic capacity in effect is included) and the most likely executor amount request from the job to

cluster i, respectively.

For all baselines, the job with the least amount of worker request in the global job buffer will be

selected. Similar as before, the worker request of the job is defined as the average of the number of

executors most likely to be requested by the job with respect to each cluster. In this way, the MAF

baseline roughly mimics the idea of ‘SF-E’, which is the best baseline as presented in [51].

Additionally, we also demonstrate our DRL approach by comparing to another RL model (denoted

as RL-FC), which roughly follows the reinforcement learning approach in [51].

From the computing environment perspective, the comprehensive job submission (arriving) pattern

to the infrastructure could affect system status changing and thus be relevant to system state

transition. In experiments, we use three different stochastic job arriving patterns that are utilized in

[51] with the name Uniform, Bernoulli and Beta for thorough approach testing. However, different

from [51], where models are trained separately for each job arriving pattern, in this work, the

intended model is solely trained with the Uniform job arriving pattern, and its generality of direct

usage on other job arriving patterns will be presented. The possibility of having i as the time interval

between job arriving events for Uniform pattern is: P(i) = 1
|b−a+1|Ii∈[a,b](i) with parameter setting

a = 1 and b = 33. I is the indicator function. We refer readers to [51] for other supplemental

information about job arriving patterns and according formulas for Bernoulli and Beta patterns.

Definition of performance metrics:

79

Recall there are two major goals for our resource management: (1) reducing number of missing

deadline events during job executions, and (2) maintaining low job execution time ratio. These are

equivalent as simultaneously minimizing two metrics:

TMDL: Total number of occurrences of missing deadlines for all jobs in all clusters during the

execution of the workload.

AJER: Average job execution time ratio among all clusters, i.e.,

AJER =
Nw

∑
j=1

100 ·∑n j
k=1

(
AR jk
SR

)
n j ·Nw


where SR and AR jk are the standard execution time of job j and the execution time of job j in its

k-th running when executing in the designated cluster, respectively. n j is the number of executions

for job j and is usually larger than 1 for Cate-1 jobs. Nw is the number of total jobs in each

episode. Note that by dividing AR jk (relevant to cluster heterogeneity) with SR (irrelevant to cluster

heterogeneity), the resulting AJER is influenced by heterogeneity of the selected cluster, thereby

including the cluster heterogeneity influence into evaluation. For cluster elasticity, its influence is

also included in both TMDL and AJER implicitly.

Further, an integrated score SSSlog is defined by caring for the comprehensive performance in both

goals.

Slog = sign(S)∗ log10(max(|S|,1)) as S =−TMDL+50∗ (100−AJER)

For Slog ∈ R, the higher the better. And a score 0 for Slog can be roughly seen as equivalent to

having an average execution time same as the standard one and with no missing deadline events.

The weighting factor 50 in S is for balancing between two goals, since TMDL is an accumulative

measure for all jobs in the workload, whereas AJER is an averaged measure.

80

To facilitate qualitative comparison, three more comparative measures are defined: Fully-dominant

(F), Semi-dominant (S) and Non-dominant (N), which mean that in a testing episode, whether

the RL approach has better performance comparing to MAF, for both, only one, or none of the

performance metrics (TMDL and AJER in consideration), respectively. For 50 testing episodes

we used for approach comparison, the F/S/N scores are given as a distribution among all testing

episodes. Therefore, for performance preference, F>S>N. Before discussing the experiment results,

some training parameters are provided in Table 5.2.

Table 5.2: Some training parameters

Notation Description Value
E Number of training episodes 1500
Nw Number of jobs in each episode 1000
K Capacity of knowledge buffer 50000
B Training batch size 2000
LI Model input layer size 839
LC Input size to a LSTM cell 15
N f c1 Neurons in first FC layer 800

N f c2
Neurons in second FC layer
(identical size for three networks) 200

LO
Output layer size
(identical size for three networks) 5

Approach Performance:

Consequently, the performance comparison (in Slog) for our approach (notated as RL-LSFC) with

respect to other baseline approaches RAN, RR, and MAF, in different training episodes during the

training process, is shown in Figure 5.6. For each vertical comparison, all models are included to

compare for 50 testing episodes. The same workload is used for all models in one testing episode,

but is re-generated for each testing episode.

From it, we can observe that among baselines, Random (RAN) and Round-robin (RR) provide

similar performance and are significantly surpassed by MAF. For our RL-LSFC, it gradually

improves itself during training and surpasses all baselines during the mid of overall episodes,

81

Figure 5.6: Performance comparison (Slog) of our RL approach RL-LSFC and baseline approaches in
different training episodes.

and continues to increase its performance towards the end of training. A detailed performance

comparison between the final RL model after training and MAF is shown in Figure 5.7 and the

average statistics are shown in Table 5.3.

(a) TMDL (L) (b) AJER (L) (c) Slog (H)

Figure 5.7: Comparison of RL-LSFC and MAF for 50 testing episodes. Three sub-figures are w.r.t. TMDL,
AJER and Slog. Data in all figures are sorted uniformly in descendent by Slog of MAF for viewing convenience.
(L) Lower is better. (H) Higher is better.

We can see that our approach trained via deep reinforcement learning outperforms MAF in a

large scale. For TMDL, it reduces the occurrence of missing deadline events by 5.57 times. For

AJER, it shortens average job execution ratio by 2.92%, thus obtains a significant higher Slog score

with 2.57 comparing to −0.28. As well, RL-LSFC achieves excellent 46/50 Fully-dominant, 4/50

82

Table 5.3: Statistics w.r.t. Figure 5.7

TMDL (L) AJER (L) Slog (H) F/S/N
RL-LSFC 666111...777000 999000...333000 222...555777 46/4/0
MAF 343.84 93.22 −0.28 -

Semi-dominant and no Non-dominant in 50 testing episodes.

In fact, during experiment, a phenomenon is observed that the model obtained by our deep RL

approach can perform equivalently well or even better for workloads that is statistically “less

stressful” than the ones in training. Here, a coarse definition of the “stress” can be described as

how crowded the computing environment is during the peak period of the workload execution. The

workload “stress” can be changed via the Uniform pattern parameter b. In training, we intentionally

select b= 33, which could reasonably stress the computing environment nearing to its maximum, yet

not over-saturate the overall computing capability. And the obtained RL-LSFC could consequently

be utilized in a wide-variety of workload scenarios that is “less stressful” than training to the

computing environment. Therefore, although RL-LSFC has already shown promising performance

in b = 33 scenario, we are more caring for its performances in other “less stressful” scenarios, as

they represent a much broader variety of applicable cases. We test such generality by two testing

scenarios, one with a stress-reduced workload (b = 36), and the other with a more stress-reduced

workload (b = 40). The results are shown in Figure 5.8 and Table 5.4.

Table 5.4: Statistics w.r.t. Figure 5.8

(a)-(c) TMDL (L) AJER (L) Slog (H) F/S/N
RL-LSFC 333777...666666 888888...333222 222...777333 50/0/0
MAF 311.44 92.35 0.87 -
(d)-(f) TMDL (L) AJER (L) Slog (H) F/S/N
RL-LSFC 111999...777666 888777...111222 222...777999 50/0/0
MAF 276.1 91.95 1.55 -

83

(a) TMDL (L) (b) AJER (L) (c) Slog (H)

(d) TMDL (L) (e) AJER (L) (f) Slog (H)

Figure 5.8: Comparison of RL-LSFC and MAF in variant workloads. (a)-(c) are related to b = 36 scenario.
(d)-(f) are related to b = 40 scenario. Other instructions are the same as Figure 5.7.

We can see that as the workload gradually becomes less stressful, RL-LSFC performs even better,

and is consistently fully-dominant with respect to the MAF baseline in all testing episodes for both

scenarios. Since the stress of the computing environment could largely vary in daily usage, the

generality of the RL model to fit for such variation is certainly an apparent advantage.

Performance in other job arriving patterns

Different from [51], where a RL model is trained for each job arriving pattern, we solely train one

deep RL model based on the Uniform pattern, and present that the obtained model could work

equivalently well for other job arriving patterns directly, which is an out-of-intuition but exciting

result. To accomplish, we directly utilize the obtained RL-LSFC model with Uniform pattern onto

other two patterns, Bernoulli and Beta. The results in Figure 5.9 and Table 5.5 show that RL-LSFC

with respect to the Uniform pattern indeed can work well directly with the other two job arriving

patterns. We envision that this may because the obtained model is capable to capture intrinsic

information from the provided system status for deciding scheduling actions, and is less prone

84

and less sensitive to job arriving pattern shift. The observed irrelevancy of job arriving patterns in

experiments is a great supplement towards approach generality.

(a) TMDL (L) (b) AJER (L) (c) Slog (H)

(d) TMDL (L) (e) AJER (L) (f) Slog (H)

Figure 5.9: Comparison of obtained RL-LSFC and MAF in other job arriving patterns. (a)-(c): Bernoulli
pattern. (d)-(f): Beta pattern. Other instructions are the same as Figure 5.7.

Table 5.5: Statistics w.r.t. Figure 5.9

(a)-(c) TMDL (L) AJER (L) Slog (H) F/S/N
RL-LSFC 111333...333222 888666...666777 222...888111 50/0/0
MAF 243.18 91.75 1.92 -
(d)-(f) TMDL (L) AJER (L) Slog (H) F/S/N
RL-LSFC 333999...111444 888888...666888 222...777111 50/0/0
MAF 295.66 92.41 1.11 -

Comparison with a fully-connected layers model RL-FC

In this experiment, we would like to compare models of our approach to a RL model with fully-

connected layers based structure, which roughly follows the ideas in [51] (denoted here as RL-FC).

To strengthen the comparison, besides RL-LSFC, we intend to additionally supplement another deep

RL model variant also obtained by our approach. Actually, by the greatly separated recognition of

85

individual objectives of our MORL problem empowered by the approach architecture, we are able

to achieve variants of RL models with different balancing between objectives such as via weight

adjustment of objectives forming the scalarized value feedback signal. With such benefit, we obtain

another variant of our model, namely RL-LSFCb. It shares general conception with RL-LSFC, but

with a slightly different balancing between objectives.

Three RL approaches, RL-LSFC, RL-LSFCb and RL-FC together with the MAF baseline are put

into 50 testing episodes, results of which are shown in Figure 5.10 and Table 5.6. We can see

that although the RL-FC model achieves slightly better TMDL than RL-LSFC, it pays a too large

cost in AJER and has thus lower score in Slog than both of our models. Similar weakness of it

can also be observed in F/S/N distribution comparing to both of our models. Thus, the RL-FC

model in experiment shows weaker balancing ability between multiple optimization goals and

a weaker overall performance. Meanwhile, two of our models, RL-LSFC and RL-LSFCb show

differently prioritized yet better performance. RL-LSFCb could surpass RL-FC in all aspects, which

indicates potential advantage of our approach. But its balancing in dual-objectives causes a hit in

comprehensive score Slog comparing to RL-LSFC and promotes the RL-LSFC model as the best

performing model here. The best is, our approach grants the freedom to choose either of them per

user preference.

It is worth mentioning that we are not intending to declare an absolute structural or approach

advantage here, since a direct and thorough competition of two RL approaches requires extensive

hyper-parameter searching and tuning, which is not the main objective and beyond the scope of

this work. Nonetheless, the exemplary RL comparative experiments here show that our approach

presents decent capability in balancing multi-objectives while providing good overall scheduling

performances.

Model behavior pattern exploration

86

(a) Slog (H) (b) Dominant area (c) F/S/N distribution

Figure 5.10: Comparison of three RL models w.r.t. MAF. (a) each curve is independently sorted for viewing
convenience. In (b), we give F:2, S:1 and N:0 for scoring to show a dominant area (larger is better) of
RL-LSFC and RL-FC (RL-LSFCb is very similar to RL-LSFC here and is omitted for viewing). RL-LSFC
indeed has a much larger area (difference as in the pure purple area) than RL-FC. (c) Non-dominant column
is omitted since all models have 0 in it.

Table 5.6: Statistics w.r.t. Figure 5.10, * are our models

TMDL (L) AJER (L) Slog (H) F/S/N
RL-LSFC* 36.84 888888...777111 222...777111 555000///000///000
RL-LSFCb* 111444...777444 90.13 2.67 49/1/0
RL-FC 15.28 92.79 2.24 29/21/0
MAF 305.02 92.67 0.65 -

By observing the good performance of RL-LSFC, we would like to further explore interesting

behavior patterns of it. We firstly draw temporal job scheduling sequence in one episode (one

point for each job, as shown in Figure 5.11 (a)-(b)) of both RL-LSFC and MAF with respect to all

computing clusters, with one color representing one job category. We discover that the deep RL

model RL-LSFC indeed shows significantly differentiated scheduling pattern from MAF, which

could be coarsely summarized as RL-LSFC tends to utilize clusters with larger capacities and larger

heterogeneity factors (thus stronger computing capabilities) more during the early stage of the

episode when computing pressure is not peaked, in favor of better performance in both goals. Yet

when pressure rises, it well utilizes all cluster resource for overall performance.

Secondly, we further examine the model behavior variance for different job categories (as in Figure

87

5.11 (c)-(h)). It seems RL-LSFC can successfully distinguish jobs in different categories and provide

differentiated scheduling patterns. Such as, for streaming jobs (Cate-1), it seems to prioritize clusters

with stronger computing capability and with elasticity, presumably due to their better potentials in

suiting streaming jobs with fluctuated executor amount requests. Such differentiated job categorical

scheduling patterns are further illustrated in Figure 5.12.

(a) RL-LSFC Cate-1 (b) RL-LSFC Cate-2 (c) RL-LSFC Cate-3

Figure 5.12: Comparison of Job-Cluster scheduling pattern with respect to different job categories under

RL-LSFC control. Value axis is on logarithmic scale of job counts, angle axis is time slice. One color for

each cluster.

Summary

In this chapter, we present an elasticity-compatible resource management approach obtained via

DRL for a heterogeneous multi-cluster computing environment. In experiment, comparing to

the best baseline, it successfully reduces the occurrence of missing execution deadline events for

workloads of 1000 jobs by around 5x to 18x in different scenarios and reduces average execution

time ratio by around 2% to 5%; It also shows better performance than a previous RL based approach

with fully-connected layers. We believe this work can contribute to the progress of utilizing DRL in

tackling problems related to large-scale distributed computing environments.

88

(a) RL-LSFC overall (b) MAF overall

(c) RL-LSFC Cate-1 (d) MAF Cate-1

(e) RL-LSFC Cate-2 (f) MAF Cate-2

(g) RL-LSFC Cate-3 (h) MAF Cate-3

Figure 5.11: Job-Cluster scheduling patterns for RL-LSFC and MAF in one testing episode. One point
for each job and one color for each category. Vertical axis 1-5 are referring to cluster sequence number.
Horizontal axis is time slice.

89

CHAPTER 6: HYBRID ASYNCHRONOUS APPROACH TOWARDS

EFFICIENT PRIVACY-PRESERVING FEDERATED LEARNING

Federated learning (FL) [38] provides collaborative learning for multiple participants with attention

on aspects such as data privacy protection, large scale of participants, communication conservation

and data heterogeneity, where privacy is one of its foremost considerations [60, 6, 27]. Similar to

other forms of machine learning, FL faces challenges from privacy-targeted attacks [32, 44, 45].

The privacy information involved in FL can be majorly classified into three categories: information

of a record, information of a set of records (or class of records) and information attributed to a

specific participant.

Attacking and defending related to the first two categories are shared by many forms of machine

learning (ML) thus are widely studied and non-unique to FL. For example, membership inference

attack [72][61] attempts to induce whether a specific sample is included in the training set and

model inversion attack [101] aims at speculating properties related to the training dataset. Measures

such as record-level Differential Privacy (DP) are shown to be effective against these attacks [68].

These measures could be applied to FL as well. On the contrary, privacy related to participant-level

information is more specific to distributed learning such as FL which is less studied. Our work is

consequently concentrated on participant-level privacy protection, a characteristic and key privacy

protection aspect for FL. To defend against such kind of attacks, specific defending methods need

to be designed due to the more abstracted granularity. Participant-level DP is an option against such

attacks. However, it intrinsically requires a large scale of participants to converge [24]. Since it

perturbs participant-level information instead of hiding them, a balance between model performance

and privacy protection is needed. Another option is Homomorphic Encryption (HE), which could

compute directly on ciphertext with respect to certain arithmetic operations. However, HE is highly

90

computing-extensive and needs polynomial approximation to non-linear functions commonly used

in contemporary ML, again causing a trade-off between privacy protection and accuracy [93].

Participant-level private information during FL is in fact side-channel information that should

be hidden. With such an awareness, Secure Multi-party Computation (SMC) is employed for

hiding participant privacy during FL [8]. It is effective by securely merging information from

multiple participants without leaking individual information. Additionally, unlike DP or HE, it does

not require information perturbation nor function approximation which is much more beneficial

to model convergence. It also has better availability in many scenarios with no requirement

on scale of participants. The advantage of SMC makes it a routine technique for synchronous

federated learning (SynFL). However, SynFL suffers from the synchronization burden. Although

Asynchronous FL (AsynFL) helps eliminate such overhead [13, 53, 91], at a cost, the uncontrolled

asynchronicity greatly hinders the chance of directly applying SMC due to its decoupled nature.

With the indispensable advantages of SMC as stated, revising SMC techniques and making SMC-

alike technique available under AsynFL is becoming essential and critical. “-alike" here is referring

to the concept of having to utilize a different approach yet eventually accomplish an equivalent

privacy protection effect.

In this regard, we propose HALE-Fed, a Hybrid Asynchronous Learning towards Efficient privacy-

preserving Fedrated learning framework. We optimize the FL server-participant structure by

supplementing a broker layer in between the server and participants, and enable our SMC-alike

technique along with asynchronicity. “Hybrid” here means the system runs asynchronously except

the broker layer, yet by our design, the system achieves near pure-asynchronous efficiency, which

is discussed in more details in Section 6. Furthermore, based on the HALE-Fed framework, we

propose an algorithm, namely Fed-SUDA, for solving practical model drifting concern for AsynFL

in heterogeneous environments. Experiments demonstrate the efficacy of both HALE-Fed and

Fed-SUDA.

91

The HALE-Fed Framework

Before introducing the architecture of HALE-Fed, let us first briefly recall the architecture of original

federated learning. It contains two major components (layers): the server and the participants.

During training process, participants obtain the latest model from the server and computes local

updates, and then send the updates information back to the server where the aggregated update

information is used to apply a model training round for model improvement. For synchronous FL,

participants join a model training round in groups and the server awaits and utilizes the aggregated

update information from the group. For asynchronous FL, each participant compute and send update

to server individually with their own pace, and the server applies model training gradually when

sufficient participant updates are received.

As previously mentioned, it is acknowledged that asynchronous organization benefits FL efficiency.

In privacy perspective, when system rules are properly configured, asynchronicity brings no extra

noteworthy privacy threat except that it hinders the appliance of SMC technique which is a strong

and foremost routine privacy protection measure. The obstruction is because vanilla asynchronous

FL hinders SMC as all participants operate individually and have no group-based mechanism. It

thus becomes a challenge but with significant rewards if one could combine the benefits of both

asynchronicity and SMC technique together. Consequently, we propose HALE-Fed that enables

SMC-alike technique along with asynchronicity in FL.

Architecture

As shown in Figure 6.1, HALE-Fed preserves the server and participant layers as in ordinary FL,

with only modifications to their operation procedures. The foremost innovation is the appending of

the broker layer. We require that the broker layer is configured with multiple (more than one) brokers

92

with similar reliability as the server. The peak computing and storage pressure in each broker by our

design is at most similar if not less than the traditional server role in FL, thus is totally realizable.

Also, having two brokers totally fulfills the desire (including privacy protection purpose), having

more than two brokers could improve protection in rare but more rigorous situations, however, could

also increase overhead. We elaborate this more in Section 6. The main components of HALE-Fed

thus are:

Model
Delivery

 upon
Request

Update
information
could reach

Server

Participant ID
could reach

Broker but not
Server

Participant-level
Privacy will not

leave out of
Participant layer

Server
Layer

Broker
Layer

Participant
Layer

Figure 6.1: Architecture of HALE-Fed.

• Server conducts model updating and provides the latest model to participants when being re-

quested.

• Participants compute local update based on the latest model from server, split the update into

shards, and send each shard to the corresponding broker.

• Brokers manage update shards from participants, coordinate with other brokers for forming update

93

components with each an aggregation of according update shards, and send update components to

server.

Participant Update Information Flow

The most significant change brought by our innovation in HALE-Fed architecture is the change in

the information flow of participant generated updates and its further induced security and efficiency

benefits. To better explain this, we highlight foremost characteristics of the proposed approach as

follows and illustrate significant participant update information flow features as in Figure 6.2 :

Broker Broker

Update-1

Shard-1

Update-2

Shard-2 Shard-3 Shard-4

Shard
based

protection

Merging
based

protection

Shard-1

Shard-3

Shard-2

Shard-4

Server
Merging

Shard 1+3 Shard 2+4

Update 1+2

Figure 6.2: Participant update information flow of HALE-Fed.

94

• In the proposed architecture, all participant generated updates will not be directly sent to server

but to all brokers instead.

• Before sending out its update, each participant splits it into shards equalling to the number of

brokers, and send each shard to the corresponding broker. Each shard contains only a portion of

its update information with mask values (obfuscation) supplemented for extra privacy protection.

• When preparing for a server update round, all brokers confirm a same list of participant generated

updates intending to be used, and each broker locally aggregates its owned shards corresponding

to the updates in the list and sends to the server. In this way, server receives a update component

from each broker in an update round, which is an aggregation of multiple participant generated

shards.

• The server will aggregate all components to recover the overall update information without loss.

After which, a round of model update is applied and the new model is enabled when updating is

finished.

• The participant update information during the entire transmission is at least protected by either

shard-based and/or merging-based protection such that private information are not exposed to

other system components (other participants, brokers and server).

• Such change in the information flow of participant generated updates has astonishing benefit that it

allows most components of the FL system to run in a asynchronous pattern meanwhile providing

opportunity for enabling SMC-alike technique. We elaborate this more in the later section.

Shard Transmission

The information transmission during such operation is formally verified by Formula 6.1. Suppose at

a certain update round, a set of W participant generated updates {Di}Wi=1 are used for composing

95

Update shard 2 from i1
with model version r1,

indexed as (i1,r1,2)

Update shard 1 from i1
with model version r1,

indexed as (i1,r1,1)

Update shard 2 from i2
with model version r2,

indexed as (i2,r2,2)

Update shard 1 from i2
with model version r2,

indexed as (i2,r2,1)

Model Update
Component 1

Model Update
Component 2

Shard Aggregation

Shard Aggregation

Component
Aggregation

Broker 1

Broker 2

Model Update
Update

Algorithm

Providing Model
upon Request

Participant Layer Broker Layer Server Layer

1 2 … … … … …

i1 i2 … … … … …

r1 r2 … … … … …

1 1 … … … … …

1 2 … … … … …

i1 i2 … … … … …

r1 r2 … … … … …

2 2 … … … … …

Figure 6.3: Procedure of HALE-Fed.

server model update, thus we should have U = ∑
W
i=1 ωiDi, where ωi is the weight for Di. spli, j

denotes the j-th split of update Di, which is equivalent to the corresponding update shard Si, j but

without the mask ma+i, j, where ∑
B
j=1 ma+i, j = 0 for ∀i and B is the total number of brokers. C j stands

for the server update component from j-th broker, which is the (weighted) sum of its local update

shards for the current round, thus C j = ∑
W
i=1 ωiSi, j.

Di =
B

∑
j=1

(spli, j) =
B

∑
j=1

(
spli, j +ma+i, j

)
=

B

∑
j=1

Si, j 1≤ i≤W

U =
B

∑
j=1

C j =
B

∑
j=1

W

∑
i=1

ωiSi, j

=
W

∑
i=1

B

∑
j=1

ωiSi, j =
W

∑
i=1

ωi

B

∑
j=1

(
spli, j +ma+i, j

)
=

W

∑
i=1

ωi

B

∑
j=1

(spli, j) =
W

∑
i=1

ωiDi

(6.1)

This formula reveals that with the entire transmission, the intended model update U remains

unchanged. This leads to the fact that with the supplement of the broker layer, the aggregated update

information is transmitted to the server without loss.

96

System Operation

Based on the previously explained mechanism, we illustrate the system operation procedure of

HALE-Fed in a model training round in more details as in Figure 6.3. For a participant, after

obtaining the latest model and compute the update, it splits the update into number of shards

equaling to the number of brokers with the adopted shard generation algorithm. The information

contained in each shard is a combination of partial update information and obfuscation values.

Each shard can be marked using the identification tuple (pi,rα ,γ), where pi represents the source

participant of the shard, rα the model version number it based on, and γ the broker id it should be

sent to. Shards are then sent to the corresponding brokers and stored in broker’s shard buffer.

Each broker will receive one corresponding shard from each participant’s update. Each broker

maintains a shard buffer to store all received shards including its shard identification tuple. The

stored shards will remain in the shard buffer until it is successfully used in a server model update

or it is decayed for more than the maximum allowed staleness. After either case, the shard will be

removed from the buffer. When enough shards are received by the broker layer, it will be responsible

for confirming a list of updates that will be used to compose the next server update. Each broker

will then compose its server update component (potentially weighted aggregation of according

participant update shards) and send to the server.

The server will aggregate all components to recover the overall update information without loss.

After which, a round of model update is applied and the new model is enabled when updating is

finished. Meanwhile, the server will always provide the currently latest available model to requested

participants.

97

Communication Failure Dealing Mechanism

As a general FL process commonly accepts the participation of many consumer level devices

which are connected via diversified networking conditions, it is possible for participants in FL to

experience temporary communication failures. Such situation is much more difficult to deal with in

traditional FL especially when SMC techniques are applied. Complex recovery mechanism is often

desired in such case due to the recovery burden in group based encryption mechanism. We will

elaborate this more in a comparison of HALE-Fed with traditional SMC in a later section. On the

contrary, such failure is much easier to deal with in HALE-Fed due to its intrinsically decoupled

operation and privacy protection mechanism.

The most complicated process during HALE-Fed’s system operation which could be influenced

by device communication failure is the participant update uploading process. This is because all

other communications of processes in HALE-Fed are one-to-one except that when participant

uploading their update in terms of shards, which is in overall an one-to-many process (sending

shards split from one participant update to all brokers). In practical realization of HALE-Fed, when

a communication failure is encountered during a participant update uploading process, either the

participant experiences network issue but remains power-on thus could recognize the situation

and can simply re-send the failed update component; or the corresponding participant is offline

persistently for a certain period that causes a sustained update inconsistency among different brokers

with respect to the corresponding participant update (some shards of the update arrive at brokers

successfully, while others don’t). In such case, this inconsistency could be noticed during update

list confirmation among brokers whenever this update is selected such that the incomplete update

could be easily discarded without further concern.

Thus it is more convenient for HALE-Fed to deal with abrupt device offline or communication

failure, which is an apparent advantage over traditional SMC techniques.

98

Threat Model and Privacy Preservation

In this work, we consider the threat model as there exists an “honest-but-curious" adversary in the

system. It means that the adversary will follow system operational rules (“honest"), but will try

to speculate information leaked from normal operations (“curious"). This is a common setting in

privacy protection tasks [5, 66, 29] and there is no constraint in this work on where this adversary

locates. Although we assume one adversary for concise description, the system is capable of

handling multiple adversaries. Firstly, the proposed system could tolerate multiple coexisting

adversaries without issues if no communication/cooperation among multiple adversaries is allowed

by proper practical system design. Secondly, even if communication/cooperation among multiple

adversaries becomes possible, the proposed system still could handle up to N adversaries as long as

there are at least N +1 brokers, so individual update information remains private to non-owners.

Therefore, in the worst case, as long as the system is capable of providing a certain number of

brokers, it can tolerate adversaries up to the similar scale. In the rest of this chapter, we use the

case with one adversary and two brokers for the purpose of providing clearer descriptions and

illustrations.

SMC-alike Functionality and Benefits of HALE-Fed

From privacy perspective, HALE-Fed guarantees that only the aggregated participant update results

could be seen by authorized system components, which effectively provides SMC-alike function-

ality. In fact, HALE-Fed provides at least equivalent effects in privacy protection comparing to

the traditional SMC which is strong and outstanding to participant-level privacy protection. It is

also free of any information perturbation or network structure restrictions. HALE-Fed enables such

top-notch unique kind of privacy protection measure in asynchronous FL world without any extra

hardware environment requirements for server and participants, and provides at least equivalent

99

privacy protection effect as traditional SMC techniques.

Comparison with traditional SMC technique

The realization of privacy protection in traditional SMC vitally relies on means including: (1)

the privacy protection mechanism requires a group based organization; (2) the masking based

information obfuscation and recovery are joint efforts among joining participants; (3) mask related

information needs to be communicated among participants.

Such requisites naturally deter SMC from native asynchronous learning where participants’ attending

are disentangled. They also hinder SMC in FL where certain practical situations are probable. For

instance, to deal with unpredictable participant disconnections, traditional SMC applies a complex

two-layer secret mark with a compromise in disconnection tolerance upper bound. This not only

exacerbates the protocol complexity but also forces the abandoning of the entire updating round if

number of disconnected participants ever exceeds the tolerance upper bound.

Furthermore, in order to reduce the massive amount of communication among all participants

related to mask information exchange, SMC opts for transmitting only the randomization seeds

used for a unified mask generator that is in prior consented by all participants. This significantly

reduces the mask communication overhead, but restricts the randomization mask to be vector

information independent (denoted here as positional masks). Such type of mask could be suitable

for obfuscating information in individual positions of the participant update vector but may not be

competent for concealing distributional information privacy that could also exist in the vector. The

later of which requires a more deliberated designed vector dependent obfuscation and randomization

mask (denoted as distributional masks) that could not be communicated merely via the transmission

of randomization seed. Therefore when facing with the protection of such distributional privacy

in the update vector, SMC encounters a dilemma between privacy protection effect and large

100

communication overhead.

Different from traditional SMC in FL where mask information needs to be communicated among

participants, the mask used in HALE-Fed can be fully decided locally by each corresponding partic-

ipant, which perfectly coincides with the decoupling nature of asynchronous FL and enables large

benefits in mark design freedom, system efficiency and communication failure dealing mechanism.

Notice that with the intrinsically completely disentangled nature of masking process in HALE-Fed,

it could naturally choose between positional masks or distributional masks for protecting privacy in

participant update vector with no apparent difference in cost. Whereas in SMC, if distributional

vector privacy is also considered, the corresponding costs can raise significantly.

Most importantly, HALE-Fed provides unparalleled functionality advantage over traditional SMC

technique in its extra suitability to asynchronous learning and more convenient failure handling

mechanism.

Benefits of HALE-Fed

We now summarize the advantages of HALE-Fed as follows:

• HALE-Fed enables effective SMC-alike technique for participant-level privacy protection in

asynchronous FL with no convergence-influencing perturbations, no specific hardware environment

requirement in server and participants, and no heavy overhead. It could also natively hide the

attending participant list of any round from non-necessary access (the broker layer could harmlessly

monitor and keep track of the list, while other system components are restricted from accessing

such), which further enhances privacy protection.

• HALE-Fed is more convenient in dealing with abrupt device offline or communication failure and

has no masking related mutual communications within system, which also yield advantages over

101

traditional SMC.

• HALE-Fed can have similar efficiency as pure-asynchronous learning. Recall that all system

components in HALE-Fed remain asynchronous except for the broker layer. However, the scale

of the broker layer is almost ignorable comparing to the scale of the participant layer, and

the insignificant broker layer coordination overhead could be well hidden among simultaneous

participant-level activities. In fact, HALE-Fed could achieve near pure-asynchronous learning wall

time as verified by experiments.

• HALE-Fed has great compatibility and plenty configurable possibilities to assemble most of

the currently available algorithms and policies. As a matter of fact, the broker layer concept

of HALE-Fed could also be utilized in SynFL for the purpose of reducing overhead related to

traditional cross-participant SMC-related coordination.

Fed-SUDA: An Asynchronous FL Algorithm in Heterogeneous Environments Using HALE-Fed

Previously, we have seen the benefits of our proposed HALE-Fed especially to asynchronous FL.

Furthermore as a underlying framework, HALE-Fed enables the possibility to support FL algorithms

built upon it. To demonstrate this advantage, we propose an asynchronous FL algorithm named

Fed-SUDA that tackles with issues of asynchronous FL with participants having heterogeneous

data (Non-IID data) and heterogeneous capabilities (shorted as HeDC) which can benefit from

HALE-Fed. Here, HeDC is another practical situation that could interfere with the applicability of

asynchronous FL.

102

Challenges Brought by HeDC

FL could often face participants with heterogeneous data and capabilities (HeDC) in practical

scenarios (we also generally refer this situation as a heterogeneous environment in later context). The

HeDC here refers to a combination of two situations: (1) heterogeneous data and (2) heterogeneous

participant computing & communication capability. Data heterogeneity refers to the situation

where participants’ data distributions are non-IID. Participant heterogeneity means that participants

may have different computing and communication capabilities that resulting in different temporal

response distribution in FL. Recall the objective function of FL:

min
x∈Rd

f (x) = min
x∈Rd

N

∑
n=1

pn fn(x)

where {pn}N
n=1 are weights and { fn}N

n=1 are local objective functions of participants due to non-

IID data distributions. N is the total number of participants. For synchronous FL in HeDC, we

could easily enforce a uniform participant sampling and adopt {pn}N
n=1 weights when assembling

according updates from participants. In this case, the influence of HeDC is mainly expressed as

the presence of stragglers that largely affects the efficiency. Asynchronous FL helps alleviate this

efficiency issue but needs attention to the resulting convergence-related side-effects of HeDC.

In AsynFL, when participants attend FL with their own paces, the differentiated temporal response

distribution implicitly enforces a different unknown sampling policy. It can implicitly deviate

the intended weights when assembling participant updates thus impair the learning process with

heterogeneous data. A type of approach [71] suggests to individually set the number of local

iterations “K” (as in FedAvg style algorithms where multiple local iterations are allowed for each

update) for different participants to balance local computing time and alleviate this issue. However,

this method has disadvantages: (1) To regulate participant heterogeneity by setting different values

of “K”, the response speed of all are regulated towards the slowest participants, which greatly harms

103

overall system efficiency; (2) Differentiated network speed could also greatly influence participants’

temporal response distribution but could not be easily regulated by setting “K”. (3) More severely

biased participant response distribution may not be well balanced by such adjustment, since the

choice of “K” could also affect and may bring adverse influence to model convergence. Therefore,

we are looking for an approach capable of dealing with asynchronous learning in HeDC more

generally without the need to entangle with an individualized “K” setting. Ideally, this algorithm

should be capable of training model in HeDC with reliable performance and privacy consideration,

meanwhile being more temporally efficient than SynFL.

Design of Fed-SUDA

In this regard, we propose an algorithm to tackle the HeDC issue for AsynFL based on the benefits

of HALE-Fed. Roughly speaking, we decompose the training process in terms of participant

episodes and enforce a participant sampling with no replacement in each episode. In other words, a

participant attends once and only once in a participant episode with its update (which can be staled).

The key idea is to buffer latest updates from some slower participants (stragglers) at the broker layer

as shadow updates (in the form of shards), and use them whenever slower participants’ updates

are needed for proceeding participant episodes. In this way, uniform sampling is unconditionally

satisfied yet the system training speed is less restricted by response speeds of slower participants.

We assume stragglers exist in system where their response speeds are much slower than the majority

of others due to HeDC, and the response time of each participant follows its own distribution with

expectation known. We then regulate a heterogeneity factor “L”. L helps decide who and how many

of the participants shall utilize the “shadow update” mechanism. Suppose the slowest expected

response speed (number of responses over unit time) among all participants is normalized to be

1, then for each participant whose relative response speed is ≤ L, its latest update will always be

104

stored. We denote the set of such participants as SP (“slow participants"), and the set of other

participants as RP (“regular participants"). In each participant episode, For participants in RP, they

join each episode on site by their latest computed response. Notice these updates could as well

be staled, since when applying a partial participation policy, updates in a participant episode are

capable of composing multiple server update rounds, thus some participant updates will become

staled during this process. For participants in SP, when update of them are needed for finishing a

participant episode, we use its buffered latest available update stored at the broker layer (shadow

update). Participants in SP will gradually renew their buffered updates based on their capability.

In this way, when participant with unit response speed finishes one response, the system is expected

to be capable of finishing approximately L participant episodes. Recall in asynchronous learning,

we often regulate that any participant update used should not be staled for more than an upper bound

“T ” (more details in Section 6). Suppose participant updates in each episode are used to compose

“S” rounds of service updates, then a participant update will reach the staleness upper bound in

“T/S” episodes. Thus, when choosing L > T/S, L has no direct impact on system efficiency. The

parameter L has the meaning of balancing buffer cost and heterogeneity tolerance, if buffer budget

is large, we may set a large L if needed to better tolerate participant heterogeneity. This shadow

updating technique could cope with different local and global updating schemes. Here we integrate

it with an asynchronous analogy of the FedAvg algorithm and denote it as Shadow Update supported

Difference Averaging descent for asynchronous Fedrated learning, shorted as Fed-SUDA.

Fed-SUDA is intended to merge the gap between the expected unbiased sampling and the un-

controlled asynchronous nature with conservative buffering. This will be much more difficult

without the proposed HALE-Fed, since buffering individual participant update in an ordinary

server-participant structure FL system is a significant threat to privacy. [65] proposes to use Trusted

Execution Environments (TEEs) [63] for storing asynchronous gradients at the server. However, the

TEEs are practically limited in size such that certain algorithm settings will be restricted, and such

105

method does not support SMC application with asynchronous learning. In HALE-Fed, the buffering

of any individual participant update could be safely done at the broker layer, which enlightens the

design of Fed-SUDA. Fed-SUDA could be regarded as being storage-conservative as it requires only

a portion of updates be stored and this threshold is customizable. Also, the storage is implemented

at the broker layer and be consistent with brokers’ duties for buffering participant updates, thus no

significant extra burden is applied to the system. In short, Fed-SUDA tries to correct asynchronous

FL training in HeDC and takes SMC-alike participant-level privacy protection into consideration.

It is worth noting that the FedAvg algorithm [60] for SynFL may not work if we directly adopt its

server updating scheme to asynchronous cases. Recall the global server update formula for FedAvg

(if consider partial participation) is:

Mr+1 =
1

∑i∈NW pi
∑

i∈NW

piM
(i)
r+1 (6.2)

where Mr+1 is the new (r+ 1)-th version of server model and M(i)
r+1 (i ∈ NW) are the computed

local model for participant i for the (r+1)-th round. Here NW is the set of W participants attending

current round. In this formula, the new and current versions of server models have only implicit

connection carried by the generation of M(i)
r+1 (i ∈ NW), where each M(i)

r+1 is obtained from several

local SGD steps starting from Mr. This updating scheme is suitable in synchronous situation, but

instead may cause problems in asynchronous cases. In asynchronous FL, since the participant

updates can be staled, i.e. their start-point models may not be the same letting alone be the currently

latest model, the implicit connection between consecutive versions of server models can be entirely

broken which could impair model convergence.

In Figure 6.4 (blue curve), we demonstrate how a native asynchronous conversion of FedAvg

(Asynchronous Model Averaging, briefed as AsynMA) which roughly follows Eqn. 6.2, fails to

converge when two sub-groups of overall participants keep isolatedly and alternatively updating

the global FL model and forming oscillation and divergence. Consequently, we propose to utilize

106

0 2 0 0 0 3 0 0 0 4 0 0 0 5 0 0 0 6 0 0 0 7 5 0 0
0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

Ac
cu

rac
y

N o . o f u p d a t e s

 A s y n D A
 A s y n M A

Figure 6.4: Comparison of AsynDA and AsynMA

a server updating scheme for asynchronous FL (Asynchronous Difference Averaging, denoted as

AsynDA) that conceptually follows the idea of asynchronous gradient descent, but each increment

Di = Mi,K−Mi,0 is derived from the difference of K-th and 0-th model of each participant in a local

K-iteration SGD process. Thus, it could be roughly formulated as:

Mr+1 = Mr +η
1

∑i∈NW pi
∑

i∈NW

piDi (6.3)

The benefit of AsynDA is that it constantly enables the connection of consecutive server models

during training meanwhile allowing a multi-iteration local participant-level computation. The effect

of AsynDA is as well shown in Figure 6.4 (red curve), under the same assumption, it successfully

solves the dilemma facing AsynMA and efficiently guides the model towards convergence. We

consequently adopt AsynDA scheme in implementation of asynchronous FL algorithms in this

work.

107

Asynchronicity and Staleness

The essence of asynchronous learning comes from the permission of utilizing staled participant

updates to eliminate the synchronization barriers that are constraining the training process. The

staleness is referring to the fact that the server model used for computing a participant update and

the model on which the participant update is used might be different. Quantitatively, the current

staleness of a participant generated update could be generally defined as the difference of version

numbers of the current global model and the model associated with the generation of the update.

The ingenious intent of Fed-SUDA is to completely transfer the effects of the uncontrolled sampling

bias induced by HeDC in asynchronous learning to merely variations in the staleness of the

participant updates via the utilization of the shadow updating mechanism. In this way, the crucially

disadvantageous influence of HeDC to asynchronous learning is resolved with neither significant

sacrifices in the achievable efficiency nor deterioration to synchronicity.

Recall that in asynchronous learning algorithms, it is a general requirement that the staleness of

participant updates involved in training be no greater than a upper bound T . This is in order to

maintain the desired algorithm convergence property. As previously mentioned, we follow such

convention to regulate similar staleness requirement in our algorithm. In this way, our algorithm

grants un-biased model updates and regular staleness requirement for asynchronous learning in

HeDC, eliminating the influence of HeDC, and consequently make it having analogous properties

to asynchronous learning in regular environments. Due to our algorithm design tactic in Fed-SUDA,

the staleness regulation not only could help maintaining the desired property of the proposed

algorithm, but also could become a suitable and implicit regulation for potential extreme differences

in participant heterogeneity. In other words, the system with Fed-SUDA could widely accept

the coexistence of different participant heterogeneity and only provisionally regulates the system

operation when some participant update staleness exceeds the upper bound limit. This helps to

108

achieve good asynchronous learning efficiency in a heterogeneous environment.

Algorithm

We now provide algorithmic description of HALE-Fed framework with the realization of Fed-

SUDA algorithm, as an example of system procedures for HALE-Fed when coping with algorithms.

Nonetheless, the proposed framework is compatible with a wide variety of algorithms solely by

procedure modifications. We start with introducing the notations as below.

Notation Description
N,Nrp,Nsp Number of total, RP and SP participants
W,Wrp,Wsp Number of total, RP and SP updates in a round
γ,η Participant local learning rate and server learning pace
Mcur,rcur Current model and current version (round number)
{C(r+1)

j }B
j=1 Update component from broker j for round r+1

The system repeatedly utilizes the following algorithms until the training is finished:

Participant Layer: (Algorithm 4)

When being able to join, a participant requests and receives the latest server model and then

computes the local update based on a multi-iteration local gradient descent process. Before sending

out the update, the participant decomposes it into shards equaling to the number of brokers. Then

the participant sends out each shard to the corresponding broker, which concludes a typical round

of participant duty.

109

Algorithm 4 HALE-Fed & Fed-SUDA (Participant)
• Participant {Ui}N

i=1:
∗Model request:

request current server model Mlc = Mcur and current model version ri = rcur from server;
∗ Local update:

Mi,0 = Mlc
for k in range(K): do

Sample mini batch zi,k from local data;
Generate new local update by:
Mi,k+1 = Mi,k− γ∇ f (Mi,k;zi,k);

end for
Compute Di = Mi,K−Mi,0;

∗ Send:
split Di into B shards SetB = {S j}B

j=1 where:
Di = ∑

B
j=1 S j = ∑

B
j=1(spl j +ma+j), and

mask {ma+j }B
j=1 satisfies: ∑

B
j=1 ma+j = 0;

let S(ri)
i, j = S j = spl j +ma+j for j ∈ [1, · · · ,B];

send S(ri)
i, j to broker j;

Algorithm 5 HALE-Fed & Fed-SUDA (Broker)
• Broker {Br j}B

j=1:

∗ Receive shards S(ri)
i, j :

store S(ri)
i, j in the buffer;

mark it as from participant i with version stamp ri;
∗ Upload update components:

Wrp =
Nrp
N W , Wsp =W −Wrp

if ≥Wrp shards from RP users in buffer AND no update in progress then
Select one broker as the organizer to do:
· identify current round r = rcur;
· select Wrp shards from regular buffer and Wsp shards from shadow buffer
· ensure the staleness of all shards are ≤ T (otherwise, wait for updates to

unsatisfied shards), thus forming a list of W shards: {S(rik)

ik, jk}
W
k=1;

All brokers confirm the list and do:
·C(r+1)

j = 1
∑k∈W pk

∑
W
k=1 pkS

(rik)

ik, jk ;

· send C(r+1)
j to server;

· when update succeeds, delete the Wrp shards used from regular buffer;
Increment participant episode by 1 in every N/W rounds;

end if

Broker Layer: (Algorithm 5)

110

The broker layer coordinates and manages the update shards buffer. When coordinating for an

update, one designated broker served as a broker organizer will select a potential list of updates

(shards) that will be used for the next round of server update, the list will be confirmed by other

brokers. For Fed-SUDA, this could include shadow update shards. The designation of the broker

organizer will not affect the framework functionality or benefit the potential honest-but-curious

adversary. After that, each broker will generate the aggregation of all shards in the list (as a server

update component). Then the components are sent by all brokers to the server.

Algorithm 6 HALE-Fed & Fed-SUDA (Server)
• Server:
∗ Initialization:

if no initial model then
initialize model Mcur = M0;

end if
∗Model:

maintain a current model Mcur;
if participant requests model then

send Mcur and current round number rcur to the participant;
end if

∗ Update:
if received update {C(r+1)

j }B
j=1 then

update Mr+1 = Mcur +η ∑
B
i=1C(r+1)

j ;
replace current model Mcur = Mr+1;
send success message to brokers;

end if

Server Layer: (Algorithm 6)

Server conducts the actual model updating. In each update round, It first coordinates with the

brokers to receive all updating components, and after which, aggregates all components to obtain

the aggregated information. The server will conduct an atomic model update as specified by the

algorithm and enable the new model when the update is entirely completed.

111

Experiments

The experiments in this work can be categorized into three aspects: (1) Efficacy of HALE-Fed for

participant-level privacy protection; (2) Efficiency and performance of HALE-Fed comparing to

other organization forms in regular FL. (3) Efficiency and performance of Fed-SUDA (built upon

HALE-Fed) comparing to other algorithms in FL with HeDC.

We expand the generality of experiments by varying significant experiment components including:

dataset (MNIST[18] and CIFAR-10[39]), participants’ non-IID data distributions and heteroge-

neous/homogeneous response distributions. We also compare variations of our proposed approach

with SynFL and AsynFL algorithms. As aforementioned, For SynFL, we use the most popular

FedAvg algorithm. For any AsynFL approach, the applied server updating scheme is AsynDA. We

could not identify other additional benchmark algorithms, as currently there is no other existing

asynchronous algorithms comparable that could both handle HeDC situation and provide SMC-type

participant-level privacy protection.

For all accuracy results shown in all tables of experiments, they are averaged over 2 trial runs

to alleviate randomness. In each run, we take the mean of testing accuracy in the last 5 training

rounds to improve their representativeness. The testing accuracy is obtained by using the 10000

testing images in according dataset. For different approaches, we try to let them share common

parameters when reasonable, this is for the purpose of lowering the influence of hyper-parameters

to experiments.

Efficacy of SMC-alike Technique in HALE-Fed

We first use Figure 6.5 as an illustration for the necessity of SMC-alike technique in FL by showing

what participant-level privacy could be exposed by participant updates. Note in FL, even though

112

either gradient or model weights could be the update content depending on the employed FL

algorithm, they nonetheless are equivalent for privacy perspective since obtaining a certain version

of global model in FL is straight forward (especially for the server itself) thus so is the conversion

between the two (gradient and model weights).

In Figure 6.5, we visualize part of the update content which are the gradients in the last fully-

connected layer (200×10 parameters) of neural networks from different individual participants

(with non-IID data) during one exemplary training round with MNIST classification task. Here one

sub-figure corresponds to one participant.

1 2 3 4 5 6 7 8 9 1 01
2 5
5 0
7 5

1 0 0
1 2 5
1 5 0
1 7 5
2 0 0

- 0 . 0 2 3

0 . 0 1 5

0 . 0 5 3

0 . 0 9 0

0 . 1 2 8

0 . 1 6 6

1 2 3 4 5 6 7 8 9 1 01
2 5
5 0
7 5

1 0 0
1 2 5
1 5 0
1 7 5
2 0 0

- 0 . 0 3 4

0 . 0 1 9

0 . 0 7 2

0 . 1 2 4

0 . 1 7 7

0 . 2 3 0

1 2 3 4 5 6 7 8 9 1 01
2 5
5 0
7 5

1 0 0
1 2 5
1 5 0
1 7 5
2 0 0

- 0 . 0 3 4

- 0 . 0 0 6

0 . 0 2 2

0 . 0 5 0

0 . 0 7 8

0 . 1 0 6

1 2 3 4 5 6 7 8 9 1 01
2 5
5 0
7 5

1 0 0
1 2 5
1 5 0
1 7 5
2 0 0

- 0 . 0 3 8

- 0 . 0 0 6

0 . 0 2 6

0 . 0 5 8

0 . 0 9 0

0 . 1 2 2

Figure 6.5: An illustrative example of participant-level privacy leakage.

For verification purpose, we let participants in this example possess training data of some specific

digits in the MNIST dataset. As a result, we can easily speculate the data distribution of each

shown participant by Figure 6.5. For instance, the bottom left sub-figure apparently reveals that

the participant dataset mainly contains data of digits “2” (column 3) and “5” (column 6) in MNIST

which coincides with the ground truth setting, and other sub-figures follows a similar result. Thus,

it is affirmative that individual participant updates could in fact easily expose participant-level

113

privacy and that participant-level privacy protection measure is indispensably necessary and vital to

asynchronous organization of FL where individual response pacing is its key feature.

With the enabling of SMC-alike techniques in HALE-Fed, the adversary could at most see the

aggregated update from all currently participating participants in an update round. Such as, suppose

we use updates in Figure 6.5 to compose a server update round, the aggregated update is shown

in Figure 6.6. From it, the adversary is incapable of accurately speculating any individually

specific participant privacy. And the proposed framework also natively hides the list of attending

participants of current update round from members having access to the aggregated update, which

1 2 3 4 5 6 7 8 9 1 01
2 5
5 0
7 5

1 0 0
1 2 5
1 5 0
1 7 5
2 0 0

- 0 . 1 2 8

- 0 . 0 7 2

- 0 . 0 1 6

0 . 0 4 1

0 . 0 9 7

0 . 1 5 3

Figure 6.6: Aggregated update result of Figure 6.5 updates.

serves as an additional layer of privacy protection and makes it harder to trace back any leaked

participant privacy (if leaking is possible) to the according participant identity. In practice, the

number of participant updates used to compose a server update could be significantly larger than

the 4 participants as in Figure 6.5, for instance, this number is set as 50 in later experiments. In

this way, the aggregated updates becomes more general and privacy-neutral which benefits privacy

protection. So being able to see only the aggregated update provides no privilege to the adversary

on speculating participant-level privacy.

114

Next we verify the effectiveness of the proposed shards and brokers related mechanism. Recall

that when sending out the update information, participant divides it into shards, and send each

shard to a corresponding broker. We demonstrate this process by illustrating the transforming of

the gradient content from the same model layer as previously. Specifically, we use the upper right

sub-figure of Figure 6.5 as an example and express its transformation in Figure 6.7. With a designed

dividing algorithm, it shows that the participant update could be successfully divided into two shards

and recover vice versa. We consequently verify that this process could be done smoothly in both

directions and the update information is well preserved during transformation.

It is also observable that each shard on the right could successfully hide local data patterns of the

update on the left, thus it no only hides individual positional vector information in the participant

update but also hides vector distributional privacy. In this way, the participant is safe to send out the

shards to according brokers that no broker could speculate its participant-level privacy. Note that

the user could customize the update dividing method depending on the characteristics of updates.

1 2 3 4 5 6 7 8 9 10
1

25

50

75

100

125

150

175

200

-0.155

-0.081

-0.007

0.067

0.141

0.215

1 2 3 4 5 6 7 8 9 10
1

25

50

75

100

125

150

175

200

-0.034

0.019

0.072

0.124

0.177

0.230

1 2 3 4 5 6 7 8 9 10
1

25

50

75

100

125

150

175

200

-0.232

-0.154

-0.077

0.001

0.078

0.156

Figure 6.7: Update splitting and merging.

Efficiency and Performance of HALE-Fed

We now lean our attention to verify the efficiency and training performance of HALE-Fed with

respect to other organization forms of learning: Synchronous and Asynchronous FL. Recall HALE-

Fed can be regarded as a form of (hybrid) asynchronous FL with SMC-alike technique. The other

115

comparative methods are therefore: SynFL with SMC-alike technique (abbreviated as “Syn”), and

vanilla AsynFL without SMC-alike technique (abbreviated as “Asyn”). In this experiment, we

train classifiers for MNIST dataset via FL with all these methods. For HALE-Fed, a factor which

may influence its performance is the communication overhead between brokers in the broker layer.

Consequently, we simulate two variants of HALE-Fed in this experiment, namely the HALE-L and

HALE-H, which simulate the performance of HALE-Fed when the communication cost between

brokers are low and high, correspondingly. Thus, there are in total four candidates, Syn, Asyn,

HALE-L and HALE-H.

In this experiment, there are in total 100 participants in the learning process. We divide the 50000

training MNIST images into 200 non-overlapping groups, each with 250 images of one MNIST

digit, and each of the 100 participants randomly obtains two groups with no replacement as their

local data. Thus the participant data distributions are non-IID.

2 0 0 2 0 0 0 1 0 0 0 0 5 0 0 0 0 1 5 0 0 0 0 5 0 0 0 0 00 . 0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7
0 . 8
0 . 9
1 . 0

 S y n
 A s y n
 H A L E - H
 H A L E - L

Ac
cu

rac
y

S i m u l a t e d T i m e S l i c e s

Figure 6.8: Accuracy over wall time.

The results are shown in Figure 6.8 and Table 6.1. From Figure 6.8, it is observable that all four

methods provide similar accuracy at the end of training. The huge benefits of non-SynFL approaches

116

Table 6.1: Training result

Method Accuracy Training time
Syn 0.988 45.2×104

Asyn 0.987 7.81×104

HALE-L 0.988 7.86×104

HALE-H 0.987 7.86×104

is highlighted when training wall times are considered. As in Table 6.1, SynFL finishes training

with the wall time of about 4.5×105 time slices, whereas all three non-SynFL approaches finish the

training with just about 7.8×104, which is a stunning 555...888x speedup comparing to SynFL. Among

the three non-SynFL methods, the training wall times of both HALE-L and HALE-H are almost

identical to AsynFL, which shows two important phenomena: (1) HALE-Fed has little overhead

comparing to vanilla AsynFL and (2) HALE-Fed is not very sensitive to different coordination

overheads in the broker layer. This coincides with our speculation that HALE-Fed could provide

nearing to pure asynchronous speed, but additionally supplements the vital SMC-alike participant-

level privacy protection to asynchronous FL training which is absent in vanilla AsynFL. Since

HALE-L and HALE-H perform reasonably similar to each other, we consider HALE-L condition in

later experiments.

Effectiveness of Fed-SUDA built upon HALE-Fed

Next, we focus on demonstrating the effectiveness of Fed-SUDA which is built upon HALE-Fed.

In this experiment, the HeDC setting is added to the experiment scenario. From Scenario A, we

make the following changes: (1) the participant data distribution is re-arranged. We divide the

50000 training images in sequence into 200 groups, and each participant also in sequence takes two

groups with no replacement. In this way, the first 10 participants will hold all images of the first

digit in MNIST dataset, and so on. The purpose of this is to better observe the influence of HeDC to

117

the convergence of different approaches. (2) participants now have different response distributions.

Specifically, there are 80 regular participants (ID 1-80), where their expected response time could

be different but roughly smaller. And 20 slower participants (ID 81-100) , where their expected

response time is much longer than the other regular participants (about 20x-50x longer). We also

intentionally let all 20 slower participants hold all images of two digits (“8” and “9”) in MNIST

dataset, in purpose of isolating their influence for clearer experiment result observation. Here we

assume “L” is set so that the 20 slower participants will be “SP” and other participants be “RP”. We

refer this setting as experiment Scenario B.

Due to features of Fed-SUDA method, the 50 updates for each server update round partially

contain updates from RP participants which are never used previously, and shadow updates from

SP participants that have been stored and may have been used repeatedly. Therefore to be fair and

consistent with other methods, we count the number of participant updates for Fed-SUDA based on

uniqueness and avoiding redundant counting for repetitive usage of the same update.

Recall the update staleness upper bound “T " is an important parameter involved in Fed-SUDA.

In this experiment, we also generate two variations of Fed-SUDA corresponding to two different

requirements on “T " setting. Specifically, Fed-SUDA2 has a 2.5x larger setting value of “T " than

Fed-SUDA1 throughout the training process. That is, Fed-SUDA2 allows the participant updates to

be more “staled” than Fed-SUDA1. This is for the purpose of testing the influence of “T " to the

performance of Fed-SUDA. We as well include two comparative algorithms, SynFL with FedAvg

(briefed as “Syn" here, has full control on participant behavior) and AsynFL (briefed as “Asyn" here,

has no apparent control on participant behavior). In this experiment, all algorithms are protected by

SMC-alike techniques so that the concentration moves on to the proposed Fed-SUDA algorithm in

HeDC.

As a result, the accuracy of different approaches over number of updates in heterogeneous envi-

118

ronment are shown in Figure 6.9. It reveals that both “Syn" and variants of Fed-SUDA achieve

reasonable and very similar accuracy at the end of training. However on the contrary, “Asyn" shows

much worse training accuracy development and has repeating oscillations which are obvious in its

accuracy curve. As stated previously, the problem of AsynFL comes from the combination of its

unrestricted decoupled nature and the presenting of HeDC that causes an undesirable convergence

drift. As a result, training of AsynFL in this scenario either diverges or converges to an erroneous

objective. Therefore, we believe that it is unsafe to directly utilize AsynFL in HeDC situation and

argue that a kind of proactive control or correction measure for asynchronous methods (such as

those proposed in Fed-SUDA) is essential for obtaining acceptable results meanwhile attending

to training efficiency. In fact, we will later use an additional experiment in Section 6 to further

demonstrate the incorrectness of AsynFL in HeDC.

0 5 0 0 0 1 0 0 0 0 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0
0 . 0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7
0 . 8
0 . 9
1 . 0

Ac
cu

rac
y

N o . o f u p d a t e s

 A s y n
 S y n
 S U D A 1
 S U D A 2

Figure 6.9: Accuracy over number of participant updates.

Due to AsynFL being ruled out in HeDC situation, we now examine the accuracy of other remaining

approaches over the wall time which is shown in Figure 6.10 and Table 6.2. They show that both

variants of Fed-SUDA have much shorter training wall time than Syn but achieve competitive

accuracy. In fact, since Fed-SUDA2 has a more relaxed permission on update staleness, it has less

119

Table 6.2: Training result

Method Accuracy Training time
Syn 0.988 22.54×105

Fed-SUDA1 0.987 4.03×105

Fed-SUDA2 0.985 1.83×105

dependence on the updating frequency of slower participants and presents even less training wall

time than Fed-SUDA1. As a result, Fed-SUDA1 and Fed-SUDA2 respectively achieve astounding

555...666x and 111222...333x speedup over SynFL. This reveals the advantages of Fed-SUDA that it could achieve

competitive accuracy and much better training efficiency than SynFL in HeDC. It also has good

tolerance on update staleness and most importantly could correct the model convergence drift that

causes serious problems in regular AsynFL.

To better assess training efficiency of approaches, we introduce a metric, namely efficiency index

(EI), EI(u) = a(u)
t(u)0.2 , which takes both accuracy and training time into consideration. Here, a(u) and

t(u) represent the accuracy and training wall time when utilizing u updates. The exponent power

(e.g. 0.2) on the denominator is solely in purpose of balancing the scale difference in values of

accuracy and training time, which will not change the tendency and comparative relations among

different EI curves. As expected, both variants of Fed-SUDA have better efficiency than SynFL

with Fed-SUDA2 possessing the best efficiency due to the least training wall time. Note that the EI

curve normally gradually decreases since accuracy improvements in later periods of training tend to

be less prominent as the model approaches the objective, when comparing to the consistent steady

increase of training wall time throughout training.

Heterogeneous Environment with Label Noise

As seen in previous experiment in Section 6, regular AsynFL presents unsatisfactory training

convergence behavior in HeDC. To better thoroughly understand the origin of such phenomenon, we

120

5 0 0 0 2 0 0 0 0 1 0 0 0 0 0 5 0 0 0 0 0 1 5 0 0 0 0 0 3 0 0 0 0 0 0
0 . 1
0 . 5
0 . 6
0 . 7

0 . 8
0 . 8 5
0 . 9

0 . 9 5

1 . 0

Ac
cu

rac
y

S i m u l a t e d W a l l T i m e

 S y n
 S U D A 1
 S U D A 2

Figure 6.10: Accuracy over wall time.

0 5 0 0 0 1 0 0 0 0 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0
0 . 0 2

0 . 0 4

0 . 0 6

0 . 0 8

0 . 1 0

0 . 1 2

Eff
icie

nc
y I

nd
ex

N o . o f u p d a t e s

 S y n
 S U D A 1
 S U D A 2

Figure 6.11: Efficiency comparison.

conduct an experiment in HeDC with label noise. The experiment setup mostly follows the setting

in Section 6. For participant data distribution, we adopt the one as in scenario B. For heterogeneous

response distribution, we set 18 participants (ID 82-90 and ID 92-100) to be slower participants in

SP, and all other be regular participants. Consequently, participant ID “81” and “91” will be the

121

only regular participants holding training images for MNIST digits “8” and “9”, respectively. To

inject label noise, we switch the labels of all training images of these two participants.

The intention is as follows: for digits “8” and “9”, each digit will have 9 participants holding its

training data with correct labels, but be slower in temporal response distribution, and one participant

with fast response, but has wrong/noisy labels. If the learning method could correctly balance

presence of all participants such that the genuine learning objective is approached, the 10% label

noise for digits “8” and “9” should not greatly influence the model performance. However, if the

learning method could not balance the presence of the faster participants with wrong labels, letting

them be excessively represented and causing model convergence drift, then the model performance

could be dramatically deteriorated. Since label noises also exist in nowadays’ learning tasks, this

experiment as well represents a practical scenario where label noise presents simultaneously with

the appearance of heterogeneous environment.

0 5 0 0 0 1 0 0 0 0 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0 3 0 0 0 0 3 5 0 0 0
0 . 0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7
0 . 8
0 . 9
1 . 0

Ac
cu

rac
y

N o . o f u p d a t e s

 A s y n
 S y n
 S U D A

Figure 6.12: Accuracy over number of participant updates.

For this experiment, we increase the total number of updates to 35000 considering the increased

training difficulty caused by interference of the injected label noises. As presented in Figure

6.12, Asyn halts at only about 0.8 accuracy and fails again in this HeDC scenario. As expected,

122

its permissive decoupled learning feature could not regulate the immoderate representation of

participants with faster responses but with wrong labels, thus greatly hampers the original learning

objective and impairs the model convergence. On the contrary, the proposed Fed-SUDA approach

could still converges to the desired learning objective, providing comparable accuracy with Syn,

meanwhile keeping a near-asynchronous organization for saving training time. This experiment

assists a more comprehensive insight into why AsynFL could be incapable in HeDC and needs to be

substituted by approaches like Fed-SUDA and demonstrates the usability of Fed-SUDA in HeDC

even with label noises.

Additional Experiment on CIFAR-10

Table 6.3: Training result

Method
Accuracy
Milestone Timestamp

Syn 0.70 4.45×106

Fed-SUDA 0.70 0.97×106

Our additional experiments on CIFAR-10 dataset intend to show that both the proposed HALE-Fed

framework and Fed-SUDA algorithm are general for dataset larger than MNIST. Here, we integrate

the participant data distribution in Scenario A with the participant response distribution setting

in Scenario B to generate a more general heterogeneous environment. Since the unreliability

of AsynFL in HeDC, we focus on the performance of SynFL and Fed-SUDA. In Table 6.3, we

record the training timestamp where each method achieves the 0.70 accuracy milestone (the earliest

moment when the testing accuracy after each training round has been continually no less than 0.70

in five consecutive training rounds). The proposed Fed-SUDA once again achieves a good 444...666x

speedup.

123

Note that in our experiments with respect to both MNIST and CIFAR-10, we are not intending to

compete with the state-of-the-art accuracy achieved with complex and specialized network design

and training tricks. Instead, we intentionally utilize relatively lightweight network structures (a few

convolutional and fully-connected layers), which is more likely to appear in realistic FL process

where end-device capabilities are constrained. The experiments demonstrate the reliability of the

proposed approaches to practical FL process. As a result, Table 6.3 once again demonstrates the

efficacy and great training efficiency of the proposed Fed-SUDA method.

Summary

In this chapter, we propose the HALE-Fed framework, which provides SMC-alike technique for

participant-level privacy protection to asynchronous FL, and the Fed-SUDA algorithm built upon

HALE-Fed, as a reliable asynchronous FL training approach in heterogeneous environments even

when label noises exist. Our experiments verify the efficacy of both HALE-Fed and Fed-SUDA and

show that they significantly improve training efficiency of federated learning meanwhile avoiding

issues in heterogeneous environments.

124

CHAPTER 7: ASYNCHRONOUS DISTRIBUTED STOCHASTIC

GRADIENT DESCENT WITH NON-IID DATA AND HETEROGENEOUS

PARTICIPANTS

Distributed learning aims at providing collaborative learning opportunity from decentralized partici-

pants. With rapid increase of data generation and often spread data possession nowadays, larger

scale distributed data analysis and learning tasks are becoming more and more common. Some

significant characteristics of such contemporary learning missions emerge, including non-IID partic-

ipant data and participant heterogeneity. The former is mostly due to that participants nowadays are

often the distinct or even unique data origin; and the later is due to different participant computing

and networking capabilities in distributed environment. Similarly as in previous Chapter, we refer it

as “Heterogeneous Data and Capability” (“HeDC”) when both situations present.

Meanwhile, typical application of distributed learning (DL) could be mainly categorized into two

types: (1) federated learning (FL) which keeps private user data local and often assumes a large

number of participants with less reliability and non-IID user data [60]; (2) non-FL distributed

learning with usually less number of more reliable participants. In fact, both types could experience

HeDC. For FL, this is because both non-IID data and participant heterogeneity appear frequently

due to its participant scale. For non-FL DL, although traditionally it is often conducted in super-

computer or GPU cluster environment with homogeneous participants possessing IID data, modern

distributed learning could easily happen among multiple agencies or data centers as unique data

origins, such that their computing and networking capability and data distribution could be largely

different. Therefore in this work, we do not explicitly distinguish FL and non-FL distributed

learning unless otherwise stated, and refer distributed learning as the general name where HeDC

could present.

125

In perspective of organization form, DL can be majorly categorized into synchronous and asyn-

chronous cases, where the later one intends to improve efficiency by removing training synchroniza-

tion barriers. With the ever increasing task urgency, learning tasks nowadays including time-critical

ones could greatly benefit from asynchronous DL and the necessity of asynchronous organization

keeps raising higher. However, asynchronous DL with HeDC needs special consideration. Differ-

ent with synchronous case where a global participant sampling strategy can be easily controlled,

the uncontrolled asynchronous nature could bring bias to participant sampling due to participant

heterogeneity, which in combination with non-IID data distribution could cause potential model

convergence shift. Therefore, both algorithm design and corresponding theoretical analysis should

attend to such inevitable situations. However, to our best knowledge, currently there is a lack of

work specifically concentrating on algorithmic design and theoretical analysis for Aasynchronous

algorithms for Non-convex problems with Non-IID data and Participant heterogeneity (shorted

as the “ANNP” problem, i.e., non-convex asynchronous distributed learning with HeDC), which

comes this work. We do not require problem convexity because non-convexity represents a more

general and difficult case for theoretical analysis, and it includes the most general family of neural

network structures that are widely used nowadays. Our main contributions in this work are:

• We provide in-depth understanding and causal factor analysis of the model shift phenomenon in

asynchronous distributed learning with HeDC condition.

• We propose the HP-ASGD algorithm towards solving model shift issue for general asynchronous

distributed learning with HeDC condition and provide according convergence analysis.

• Our convergence result allows choosing important algorithm parameters such as the number of

gradients used in a round from a relaxed range instead of a single value during training, making it

more practical for actual applications.

126

Problem Description and HP-ASGD

In this work, we aim to provide a stochastic gradient descent algorithm and its convergence analysis

for a class of distributed learning scenarios with ANNP setting. The ANNP scenario is common

nowadays and can happen in both federated learning and other distributed learning process. We

now formulate the goal of the learning process into the following minimization problem of f (x):

min
x∈Rd

f (x) = min
x∈Rd

N

∑
n=1

pn fn(x), (7.1)

where {pn}N
n=1 are weights of { fn}N

n=1, which are denoted as p-weight. There are in total N

participants in the learning process. Rd represents the overall parameter space, and x represents one

setting of the network parameters. Each fn(x) is defined as follows:

fn(x) = EζnF(x;ζn)

F(·) here is the loss function of the target model. ζn refers to the collections of random variables

involved in local computing of participant n and E represents expectation. { fn}N
n=1 are smooth

but not necessarily convex. The dissimilarity of fn(x) for each participant n is derived from the

non-IID data assumption, which is a key characteristic of this scenario and brings more pressure to

the theoretical convergence analysis. In this work, we assume partial participation, which means

that for the k-th model update round, the server selects Mk number of gradients from participants to

execute the model update and not all participants are required to join. This assumption is directly

implied by the ANNP setting, since the asynchronous organization generally utilizes the partial

participation scheme to alleviate the straggler issue.

127

p-weight, u-weight and Their Connections with Model Shift.

The process of learning often contains presentations of randomness. With respect to distributed

learning, one possible randomness is the widely used stochastic gradient generation basing on

sampled data mini-batches. We refer this as “Data sampling randomness” (short as D-randomness)

which also exists in many other forms of machine learning. The other form of randomness is from

the participant sampling occurs in the partial participation scheme of distributed learning, we refer

this as the “Participant sampling randomness” (short as P-randomness).

In contrary to the well studied D-randomness, P-randomness is still lacking studies to provide more

in-depth description of its effects and influences to the model convergence especially in combination

with other conditions. On one aspect, this is because P-randomness may not appear in other forms

of machine learning, for instance, non-distributed learning does not have P-randomness as there is

solely a single participant in the system. On the other aspect, P-randomness in traditional distributed

learning also may neither present nor have direct impact on model convergence under certain

circumstances. For instance, full participation distributed learning does not have P-randomness

since all participants are required to attend each round. And in synchronous distributed learning

with IID data and partial participation, P-randomness may present but could not directly influence

the convergence of model due to the unified identical data distribution.

However, as mentioned in Section 1, contemporary DL often possesses key features including

Non-IID data, partial participation and participant heterogeneity. We argue that the combination

of these key features dramatically enlarges the influence of P-randomness to model convergence.

Without treating it properly, model shift could occur. In [43], it also raises the concern that the

participant sampling policy and corresponding gradient averaging policy are significant to model

convergence. However, it avoids the problem by assuming when sampling first k responses from

u participants in each round for synchronous DL with partial participation, it follows a uniform

128

Distributed
Learning

Full participation

Partial participation

Sync learning

Async learning

Homogeneous
participant

Heterogeneous
participant

P-weight in objective
function derivative

IID data

Non-IID data

Participant
sampling

Control

More

Less

Impact

Uniform

Non-uniform

P-randomness

Averaging policy

U-weight in
expected derivative

Model shift

Weight
difference?

If yes

Figure 7.1: Causal factors of model shift with respect to difference of p-weight and u-weight distributions.

Table 7.1: Notations in this work

Notation Description
x∗ The optimal solution

EζD,P(·)
Expectation on Data(D) and Parti-
cipant(P) related random variables

G̃n(x;ζ) A gradient w.r.t. fn(x), short as G̃n

Gn(x;ζ)
An update gradient uploaded to server
by participant n, short as Gn

K Number of training rounds
Mk Number of gradients used in k-th round
τk,m Delay of the m-th gradient in k-th round
γk Learning rate in k-th round

distribution. Such an assumption is less practical when having participant heterogeneity. In this

work, we assume a more general sampling distribution, discuss its discrepancy with the p-weight

distribution, and provide according algorithmic design and convergence analysis. We also provide

a comprehensive factor depict of potential model shift due to different characteristics of DL as in

Figure 7.1 and elaborate it more in the following.

P-randomness happens when partial participation is applied. On what extent this sampling process

129

could be controlled depends on other properties of the learning process. For synchronous cases,

we generally have better control to the participant sampling process due to the synchronization

barriers. For instance, [42] proposes to control the participant sampling by following the same

weight distribution as in the overall objective function. In contrary, for asynchronous cases,

participant sampling is mostly implicitly impacted by the underlying deployment environment, i.e.,

the participant heterogeneity becomes its dominant factor.

When data distribution is IID, P-randomness has no apparently direct impact on model convergence

as participants with IID data could mutually compensate each other. However, when data is non-IID,

participants are unique and participant sampling discrepancy could cause model convergence shift.

Thus in ANNP setting, the role of P-randomness should not be under-estimated. We formally state

this problem in the following with notations in Table 6. To achieve the minimum as in Formula 7.1,

we need to estimate the gradient:

∇ f (x) =
N

∑
n=1

pn∇ fn(x)

The weight distribution here is the same p-weight as in Formula 7.1. Now we pay attention to

the expectation over all random variables (with respect to both D-randomness and P-randomness,

denoted as ζD,P) of the local derivative as used in SGD algorithm (using an averaging gradient

policy without scaling) in ANNP setting: (in this case, Gm = G̃m)

EζD,P

1
Mk

Mk

∑
m=1

Gm = EζD,P

1
Mk

Mk

∑
m=1

G̃m =
N

∑
n=1

un∇ fn(x) (7.2)

We refer {un}N
n=1 in the expected derivative as the u-weight. In general, both the selected averaging

policy (including gradient scaling) and P-randomness could jointly affect the u-weight. Specifically

in Equation 7.2, as a speical case of u-weight, we properly select the averaging policy for algorithm

design purpose and also for the purpose that the influence of the P-randomness to the u-weight can

130

be separately analyzed here in this specific setting. Suppose the set of participant IDs attending an

update round is allowed to be a multiset (i.e., we may have more than one non-duplicate gradients

from a participant in one round), by counting participant gradients used in training rounds, we

have: un = E(f ren) = E
(

Nn
MA

)
in Equation 7.2 where MA is the accumulated number of gradients

used up to current round, {Nn}N
n=1 are accumulated number of gradients from each participant,

f ren = Nn/MA represents frequentness. If we temporarily exclude other potential minor influences

from system regulations, and concentrate on the foremost factor affecting u-weight in Eqn. 7.2, we

have:

un = E
(

Nn

MA

)
∼ 1/sn

∑
N
n=1 1/sn

=
1

sn ∑
N
n=1 1/sn

∀n ∈ [1,N]

where sn = Eζn(rn + cn) is the expected response time of each participant, in which rn and cn are its

computation time and communication time in a round. That is, u-weight in Equation 7.2 is mostly

affected by the P-randomness and the foremost influential factor to u-weight in this case is usually

determined by the response speed expectations of all participants. In practice, the system could

enforce other regulations influencing the P-randomness and consequently the u-weight distribution.

Such as, there could be a participating permission policy that partially regulates if a participant is

allowed to attend the model update process at a certain moment. These could also impact u-weight

and make direct analytical approximation of u-weight unlikely. In this regard, we proposes to record

and utilize f ren = Nn/MA (the observed appealing frequency of participant n’s update up to current)

in practical deployment to actualize un in Eqn. 7.2. In later portions of this chapter, {un}N
n=1 is

referring to this set of weight in the expected derivative in Eqn. 7.2.

Recall that to ensure the correctness of the algorithm, we must require the global gradient in DL

to be unbiased. However, due to the difference of p-weight and weight in the expected derivative

caused by ANNP, the global gradient used in general asynchronous learning is in fact biased and

causes a convergence shift. Thus the model updating discrepancy between the original gradient

∑
N
n=1 pn∇ fn(x) and the biased target gradient must be compensated in the algorithm design for

131

a correct convergence result. Based on this practical model shift concern in ANNP setting, we

consequently propose HP-ASGD.

HP-ASGD: Algorithm Design.

We present HP-ASGD as an asynchronously paralleled SGD for distributed learning with non-IID

data and participant heterogeneity, which is shown in Algorithm 1. Comparing to a typical ASGD,

HP-ASGD corrects the global gradient generation by scaling the local gradient function with the

factor of pn/ f ren to statistically eliminate the shift caused by discrepancy between p-weigh and

u-weight. With such correction by scaling, it is equivalent to defining an uploaded gradient Gm

from participant m as Gm = pm
f rem

G̃m. Thus, the expectation of the updating vector over all random

variables in HP-ASGD algorithm in ANNP setting for ∀x now becomes:

EζD,P

1
Mk

Mk

∑
m=1

Gm(x;ζ) = EζP

1
Mk

Mk

∑
m=1

EζD

pm

f rem
G̃m(x;ζ)

= EζP

1
Mk

Mk

∑
m=1

∇
pm

f rem
fm(x) =

1
Mk

Mk

∑
m=1

EζP∇
pm

f rem
fm(x)

=
1

Mk

Mk

∑
m=1

N

∑
n=1

un∇
pn

un
fn(x) =

1
Mk

Mk

∑
m=1

N

∑
n=1

∇pn fn(x)

=
1

Mk

Mk

∑
m=1

∇ f (x) = ∇ f (x)

In this way, the induced potential model shift due to ANNP setting is corrected internally. Thus,

the proposed algorithm HP-ASGD should work as anticipated as a SGD style algorithm for asyn-

chronous learning in a HeDC environment.

132

Algorithm 7 HP-ASGD
Require: x1,K,{γk}K

k=1,{Mk}K
k=1

Output: xK+1
• Server:
continually receives gradients G{k,n} from participants in the background, stores in server buffer,
records its origin (i.e., participant n) and according model version (i.e., k) used for computing.
while k ≤ K: do

if len(buffer) ≥Mk then
randomly choose {Gm}Mk

m=1 gradients satisfying staleness bound from buffer.
xk+1 = xk− γk

1
Mk

∑
Mk
m=1 Gm

remove {Gm}Mk
m=1 from buffer, k = k+1

end if
end while
• Each participant n:
When be able and allowed to participate in learning:

obtain current model {xk,k} from the server,
sample a batch of data from local data, compute G{k,n} = ∇

pn
f ren

F(x;ζn) =
pn

f ren
G̃n(x;ζ)

send G{k,n} to server

HP-ASGD: Convergence Analysis.

We now provide the theoretical analysis with the following assumptions. These assumptions are

practical and analogous versions of these are also used in other works for convergence analysis

[46, 43] related to machine learning:

• Local gradient is unbiased (w.r.t. local objective):

∇ fn(x) = EζD [G̃n(x;ζ)] ∀x,∀n

• Variance of uploaded gradient is bounded:

EζD,P

(
‖Gn(x;ζ)−∇ f (x)‖2)≤ σ

2
1 ∀x,∀n

133

• Lipschitzian gradient:

‖∇ fn(y)−∇ fn(x)‖ ≤ L‖y− x‖ ∀n,∀x,y

• Random variables are independent: all random variables involved in the algorithm are indepen-

dent.

• Staleness is bounded: The gradient staleness (or delay), which is the version number difference

between model used for computing and current model for any gradient used in arbitrary k-th round

is uniformly upper-bounded, i.e. τk,m ≤ T ∀k,∀m.

• Mk is lower-bounded: Mk ≥ ML ∀k, where ML ≥ 1. Notice that this is a naturally satisfied

assumption as Mk ≥ 1 is always satisfied. In practice, we can set the lower bound ML ≥ 1 based

on needs.

With these assumptions, the main convergence results for HP-ASGD under the assumed scenario is

an ergodic convergence result in Theorem 7.0.1. It is followed by Corollary 7.0.1.1 which gives

a more direct result for the upper bound of the averaged value of E(||∇ f (xk)||2) over training

rounds, as an illustration of how ‖∇ f (xk)‖ statistically vanishes along with the training process.

Our convergence analysis in Theorem 7.0.1 and Corollary 7.0.1.1 are inspired by the convergence

analysis of algorithm for computer network in [46]. However, there are several differences and

improvements in our analysis as listed below:

• Convergence analysis in [46] is for distributed SGD in traditional DL. But ours is for the new

HP-ASGD algorithm for both FL and non-FL related distributed learning.

• Convergence analysis in [46] does not consider dissimilarity in local objective functions due to its

assumption. On the contrary, we consider such dissimilarities by assuming different { fn(x)}N
n=1

134

due to non-IID participants’ data and further consider heterogeneous participants. These change

the problem basis and bring challenges to our convergence analysis.

• Proof in [46] requires a fixed value for both the learning rate (γk = γ ,∀k) and the numbers of

gradients for partial participation (Mk = M,∀k) during training which may not be optimal or

practical in certain applications. We relax these important parameters in our proof from a fixed

value to a range of values.

We now state Theorem 7.0.1 and its Corollary.

Theorem 7.0.1. With the listed assumptions and the learning rate sequence {γk}k=1,··· ,K satisfies

γkL+2L2T γk

T

∑
κ=1

γk+κ ≤ 1

We will get the ergodic convergence rate for Algorithm 1 as

1

∑
K
k=1 γk

K

∑
k=1

γkE
(
‖∇ f (xk)‖2

)
≤

2(f (x1)− f (x∗))+∑
K
k=1

(
γ2

k L
ML

+2L2γk ∑
k−1
j=k−T γ2

j

)
σ2

1

∑
K
k=1 γk

Proof. From assumption, all { fn(x)}N
n=1 have Lipschitzian gradient with L, from the definition of

f (x), it is straight forward to deduce that f (x) also has Lipschitzian gradient with L, thus we can

have

f (xk+1)− f (xk)≤ 〈∇ f (xk),xk+1− xk〉+
L
2
‖xk+1− xk‖2

=−

〈
∇ f (xk),γk

Mk

∑
m=1

1
Mk

Gm(xk−τk,m;ζk,m
)

〉
+

γ2
k L
2

∥∥∥∥∥ Mk

∑
m=1

1
Mk

Gm(xk−τk,m;ζk,m
)

∥∥∥∥∥
2

135

Then with expectation taken on ζD,P,

EζD,P (f (xk+1)− f (xk))≤− γk〈∇ f (xk),EζD,P

(
1

Mk

Mk

∑
m=1

Gm(xk−τk,m;ζk,m
)

)
〉

+
γ2

k L
2

EζD,P

∥∥∥∥∥ Mk

∑
m=1

1
Mk

Gm(xk−τk,m;ζk,m
)

∥∥∥∥∥
2


EζD,P (f (xk+1)− f (xk))≤− γk〈∇ f (xk),
1

Mk

Mk

∑
m=1

EζD,P

(
Gm(xk−τk,m;ζk,m

)
)
〉

+
γ2

k L
2

EζD,P

∥∥∥∥∥ Mk

∑
m=1

1
Mk

Gm(xk−τk,m;ζk,m
)

∥∥∥∥∥
2


For each Gm, which is the uploaded gradient of one participant, it experiences both D-randomness

and P-randomness, thus its expectation on both randomnesses becomes (notice that ζD is equivalent

as ζm, ∀m):

EζD,PGm(x) = EζPEζDGm(x) = EζPEζD

pm

f rem
G̃m = EζP

pm

f rem
∇ fm(x)

=
N

∑
n=1

un∇
pn

un
fn(x) =

N

∑
n=1

∇pn fn(x) = ∇ f (x)

Similarly, we have EζD,P
1

Mk
∑

Mk
m=1 Gm(x) = ∇ f (x). This is an important deduction in our proof that

brings two-fold significance to the following part of the proof:

• This guarantees that the update gradient we used is unbiased and correct for global gradient

descent process. This is a fundamental and foremost basis that enables the convergence proof

of HP-ASGD for ANNP problem.

• By considering both D-randomness and P-randomness, we connect the local gradients ap-

136

peared in the partial participation directly to the gradient of the unified global objective

function ∇ f (x) instead of the local objective function ∇ fn(x), this significantly helps reducing

the upper-bound regulation form of EζD,P (f (xk+1))− f (xk) from an otherwise difficult-to-

estimate one to the easier form in the following. This approach enables a convergence result

without any residue term that is not controlled by K.

With such consideration, even with a significantly different assumption and application scenario,

we are able to alternate the form of the previous inequality to the following one which is similar to a

form appearing in the proof of [46]. In brief, the previous inequality becomes,

EζD,P (f (xk+1))− f (xk)≤−γk〈∇ f (xk),
1

Mk

Mk

∑
m=1

∇ f (xk−τk,m)〉

+
γ2

k L
2

EζD,P

∥∥∥∥∥ Mk

∑
m=1

1
Mk

Gm(xk−τk,m;ζk,m
)

∥∥∥∥∥
2


which is,

EζD,P (f (xk+1))− f (xk)≤−γk〈∇ f (xk),
1

Mk

Mk

∑
m=1

∇ f (xk−τk,m)〉

+
γ2

k L
2M2

k
EζD,P

∥∥∥∥∥ Mk

∑
m=1

Gm(xk−τk,m;ζk,m
)

∥∥∥∥∥
2


137

Since it is known that: 〈x,y〉= 1
2

(
‖x‖2 +‖y‖2−‖x− y‖2), we have

EζD,P(f (xk+1))− f (xk)

≤−γk

2

‖∇ f (xk)‖2 +

∥∥∥∥∥ 1
Mk

Mk

∑
m=1

∇ f (xk−τk,m)

∥∥∥∥∥
2

−

∥∥∥∥∥∇ f (xk)−
1

Mk

Mk

∑
m=1

∇ f (xk−τk,m)

∥∥∥∥∥
2


︸ ︷︷ ︸
T1


+

γ2
k L

2M2
k
EζD,P

∥∥∥∥∥ Mk

∑
m=1

Gm(xk−τk,m;ζk,m)

∥∥∥∥∥
2


︸ ︷︷ ︸
T2

the remaining portion of the proof can follow similar approach as in the proof of Theorem 1 in [46]

to obtain upper bound estimation for both T1 and T2. Interesting readers could read the according

section in [46] for references. Eventually, we could achieve the induction which conclude the proof

(with abbreviating EζD,P as E):

1

∑
K
k=1 γk

K

∑
k=1

γkE
(
‖∇ f (xk)‖2

)
≤

2(f (x1)− f (x∗))+∑
K
k=1

(
γ2

k L
ML

+2L2γk ∑
k−1
j=k−T γ2

j

)
σ2

1

∑
K
k=1 γk

Corollary 7.0.1.1. With the listed assumptions and set the learning rate γk to be within the range

1
C

√
f (x1)− f (x∗)

LKσ2
1

≤ γk ≤

√
f (x1)− f (x∗)

LKσ2
1

where C ≥ 1 is a selected constant for all k. If the following inequality satisfies

K ≥ 4L(f (x1)− f (x∗))(T +1)2

σ2
1

138

Then the output of Algorithm 1 satisfies the following ergodic convergence rate:

min
k∈{1,··· ,K}

E(||∇ f (xk)||2)≤
1
K

K

∑
k=1

E(||∇ f (xk)||2)≤
(4ML +1)C2

ML

√
(f (x1)− f (x∗))σ2

1 L
K

Proof. Set

γlb :=
1
C

√
f (x1)− f (x∗)

LKσ2
1

and

γub :=

√
f (x1)− f (x∗)

LKσ2
1

From the conditions, we have

γlb ≤ γk ≤ γub ≤
1

2L(T +1)

It follows that

γkL+2L2T γk

T

∑
κ=1

γk+κ ≤
1

2(T +1)
+

2T 2

4(T +1)2 <
1
2
+

1
2
= 1 ∀k

Thus condition in Theorem 3.1 is satisfied, by statement in Theorem 3.1, we have

1

∑
K
k=1 γk

K

∑
k=1

γkE
(
‖∇ f (xk)‖2

)
≤

2(f (x1)− f (x∗))+∑
K
k=1

(
γ2

k L
ML

+2L2γk ∑
k−1
j=k−T γ2

j

)
σ2

1

∑
K
k=1 γk

Also since

γlb

Kγub

K

∑
k=1

E(||∇ f (xk)||2) =
1

KC

K

∑
k=1

E(||∇ f (xk)||2)≤
1

∑
K
k=1 γk

K

∑
k=1

γkE(||∇ f (xk)||2)

we have

1
KC ∑

K
k=1E(||∇ f (xk)||2)≤

2(f (x1)− f (x∗))+∑
K
k=1

(
γ2
k L

ML
+2L2γk ∑

k−1
j=k−T γ2

j

)
σ2

1

∑
K
k=1 γk

139

≤
2(f (x1)− f (x∗))+K

(
γ2
ubL
ML

+2L2T γ3
ub

)
σ2

1

Kγlb

= 2(f (x1)− f (x∗))
Kγlb

+
LCσ2

1 γub
ML

+2L2CT σ2
1 γ2

ub

≤ 2C
√

(f (x1)− f (x∗))σ2
1 L

K + C
ML

√
(f (x1)− f (x∗))σ2

1 L
K

+2C
√

(f (x1)− f (x∗))σ2
1 L

K

= (4ML+1)C
ML

√
(f (x1)− f (x∗))σ2

1 L
K

Thus

min
k∈{1,··· ,K}

E(||∇ f (xk)||2)≤
1
K

K

∑
k=1

E(||∇ f (xk)||2)≤
(4ML +1)C2

ML

√
(f (x1)− f (x∗))σ2

1 L
K

The convergence analysis provided by Theorem 7.0.1 and Corollary 7.0.1.1 evidently show that

the proposed HP-ASGD algorithm can converge under the considered assumption with a speed of

O(1/K
1
2).

Experiments

We test the HP-ASGD algorithm in a variety of scenarios for verifying its efficacy. Since HP-ASGD

is in purpose of rectifying asynchronous SGD algorithm in HeDC environment, we include native

asynchronous SGD algorithm (for verifying the correction effect) and synchronous SGD algorithm

(for verifying efficiency) as comparative algorithms.

Two representative datasets are used including MNIST and CIFAR-10. We also vary other significant

140

experiment settings to enhance the coverage of the conducted experiments, including: (1) different

total number of participants in experiments (10 and 100 participants); (2) different data distribution

and participant heterogeneity; (3) whether or not there exist training data label noises; (4) different

ML setting which regulates at least how many participant generated updates are used for each round

of model training.

Experiment-I

The first and foremost result in our experiments is to demonstrate the model shift phenomenon

caused by native asynchronous algorithm in HeDC environments. As discussed previously, this

phenomenon inevitably causes an eventual erroneous convergence result and compromises the

original learning objective. However, the difficult part is that such shift in the independent variable

space (the network parameter space) may not be strictly proportionally reflected in the performance

metric (accuracy), because how f (x) changes with respect to a specific model shift ∆x depends on

many problem nature related factors. For native asynchronous algorithm in HeDC, when there is a

significant drop in final model performance, it is apparent that a model shift occurred. But even

when accuracy deterioration is small, the result from native asynchronous method remains dubious

and unacceptable in HeDC environments due to the highly possible existence of model shift. And

model performance with respect to such a result could easily exacerbate with even slight changes in

problem conditions.

To better illustrate the harmful model shift caused by native asynchronous algorithm, we present

the following experiment scenario which (1) commonly exists in practical distributed learning

scenarios and (2) reflects obvious model accuracy drop with respect to certain model shift. In

general DL tasks, we could frequently encounter problems where the overall training data set

contains certain amount of label “noises”. This is not only because label noises could commonly

141

exist in training set especially when dataset is large, but also because data label conflicting naturally

and reasonably exists in many practical learning problems. For instance, in a sentence “next-word”

prediction problem, non-IID training data from multiple participants will more than likely contain

different guidance for similar or even identical input and the intended model shall learn based on

the dominating tendency. Similarly, a sentiment predictor shall learn from possibly differentiating

or conflicting sentiment labels and try to catch the principal opinion.

These kinds of label noises could slow down the learning process to some extent, but shall not vitally

influence the eventual model performance due to their expected much lower proportion than regular

data. However, in HeDC environment, if model shift happens and reflects an erroneous convergence

target such that the effect of label noises are exaggerated, then not only the convergence objective

but also the eventual model performance could be vitally undermined.

We now realize such scenario by intentionally injecting label noises to MNIST dataset. For MNIST,

we utilize its 50000 training data for model learning. In this experiment, there are totally 100

participants, with each by sequence take 500 MNIST training data (also by sequence) without

overlapping. Thus participants in general have non-IID data. And for each MNIST digit, there are

exactly ten participants possessing its data. We inject label noises by perturbing all the data labels of

the first participant who holds data with respect to digit 7-9. Thus for these three digits only, there

exist 10% label noises. For participants holding data for digit 7-9 but with no label noises, we let

their expected response speeds (expected number of responses over a unit time) be generally slower,

whereas all other participants in the learning has faster response speeds. Among all participants, the

slowest expected response speed is about 20x slower than the fastest one. Since participants have

different response speeds and non-IID data, this forms a HeDC environment.

We now examine the performance of our proposed approach HP-ASGD (HP) with respect to native

synchronous (Syn) and asynchronous (Asyn) SGD approaches. In this experiment, we try to use

142

0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 0
0 . 0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7
0 . 8
0 . 9
1 . 0

Ac
cu

rac
y

U p d a t e r o u n d s

 A s y n
 S y n
 H P

(a) Accuracy over rounds

3 × 1 0 3 1 . 5 × 1 0 5 1 0 6 3 × 1 0 6
0 . 0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7
0 . 8
0 . 9
1 . 0

Ac
cu

rac
y

S i m u l a t e d t i m e s l i c e s

 A s y n
 S y n
 H P

(b) Accuracy over time slices

Figure 7.2: Accuracy comparison of different approaches.

same parameters for all approaches when applicable, including training rounds and learning rate.

For “Syn”, we set it to utilize M = 50 participant generated updates for each round and similar set

ML = 50 for “HP” and “Asyn” methods (Mk ≥ML is still variable with respect to system status

at k-th round, but generally be very close to ML = 50). The result of all methods are shown in

Figure 7.2 and the conclusions are as follows: (1) As illustrated, “Asyn” method indeed suffers

dramatic performance deterioration and clearly indicates the significant model shift. This is because

native asynchronous method could not counter the improper over-expression of participants with

label noises and fast response speeds. (2) On the contrary, both our proposed method “HP” and

native synchronous method “Syn” could still converge to the correct objective in this scenario with

similarly good accuracy (about 0.985). (3) However, when considering training efficiency, “Syn”

shows apparent and tremendous disadvantage comparing to other two approaches due to the much

longer training time. (4) “HP” is the only approach in this scenario that could achieve the desired

learning objective while maintaining high training efficiency (speedup over “Syn” is about 20), and

therefore demonstrates its great advantages.

143

Experiment-II

In this experiment, we test a more general HeDC setting with more intense label noises. For 50000

MNIST training data, we equally divide them into 200 shards, with each shard contains 250 data.

The shard generation process is organized that the first 250 data of MNIST digit 0-9 respectively by

sequence becomes the first ten shards, and the second 250 data of MNIST digit 0-9 respectively by

sequence becomes the second ten shards, so on and so forth. When all 200 shards are generated, they

are divided by sequence into 10 groups, with each group containing 20 shards. We then permute

the sequence of shards randomly within each group. In such a way, the shard sequence generally

becomes random while maintaining a coarse overall tendency that shards with smaller ID tends to

remain in front. This is in purpose of generating a more heterogeneous non-IID participant data

distribution while keeping the convenience for injecting label noises. In this experiment, we inject

label noises by perturbing all labels of the first 750 data from each MNIST digit from 7-9. Thus the

noise label percentage now is 15% for each digit in 7-9.

We present the first 60 shard sequence after permutation as an illustrative example of the data

organization process in Figure 7.3(a), where a column represents a shard, with height for the original

shard ID and the color for corresponding MNIST digit. All shards with label noises are marked with

“N” on top. Each participant by sequence take two shards (without replacement) to form their local

data which are non-IID. Furthermore, the expected response time for one response of all participants

are shown in Figure 7.3(b).

With such a HeDC environment, we once again evaluate all three methods: “Syn”, “HP” and “Asyn”.

In this experiment, we set M = ML = 20 but allow different setting of other parameters that could

better suit each method. Notice that the setting of this experiment makes update staleness in learning

be generally larger than Experiment I, combining with the more percentage of label noises, this

experiment becomes a more difficult situation for all methods. We train all methods for sufficient

144

N N N N
N N

N N N

1 0 2 0 3 0 4 0 5 0 6 0
0

2 0

4 0

6 0

Sh
ard

 ID

S h a r d s e q u e n c e a f t e r p e r m u t a t i o n

 N o i s y s h a r d s 0
1
2
3
4
5
6
7
8
9

(a) Data distribution

0 5 0 1 0 0
0

1 0 0

2 0 0

3 0 0

4 0 0

Ex
pe

cte
d r

es
po

ns
e t

im
e

P a r t i c i p a n t I D

(b) Expected response time

0 . 7 5 0 . 8 0 . 8 5 0 . 9 0 . 9 5 0 . 9 8
0

2 × 1 0 4

5 × 1 0 4

1 0 5

2 × 1 0 5

3 × 1 0 5

4 × 1 0 5

5 × 1 0 5

Sim
ula

ted
 tim

e s
lice

s

A c c u r a c y m i l e s t o n e s

 S y n
 H P - A S G D
 A s y n

(c) Accuracy milestones

Figure 7.3: Illustrations of experiment setting and results for Experiment-II.

rounds and record the time stamps where a method reaches certain accuracy milestones in the range

of 0.75-0.98 (earliest moment when the model achieves certain testing accuracy (with respect to the

MNIST testing dataset) after each training round, for five times in a row). We present the result in

Figure 7.3(c).

As expected, the result is consistent with Experiment I that “Asyn” fails to converge due to suffering

from model shift caused by improper handling of HeDC environment. It could not reach any

milestones for accuracy higher than 0.85. Our proposed “HP” still shows much better training

efficiency than “Syn” when both methods achieve all accuracy milestones successfully. Combining

results in both Experiment I & II, it is apparent that “Asyn” is unreliable in HeDC due to its

inevitable model shift and our proposed HP-ASGD could correct such shift while maintain similar

high training efficiency with native asynchronous method. We consequently exclude “Asyn” method

from further experiments.

Experiment-III

Previous experiments have demonstrated HP-ASGD as a strong substitute for accomplishing both

efficiency and correctness in HeDC setting (i.e. ANNP problem). To better understand the property

of HP-ASGD, especially its reflection to some parameter selections, we train different variants of

145

2 . 51 . 6

8 . 2

3 . 6 5 2 . 71 . 5

8 . 7

3 . 6

1 4 . 4

5 . 8
3 . 2
1 . 4

9

3 . 2

1 5 . 6

5 . 2

2 1 . 4

7 . 6

2 0 - 3 2 0 - 7 1 0 - 3 1 0 - 7 1 0 - 1 1 5 - 3 5 - 7 5 - 1 1 5 - 1 5
0

5

1 0

1 5

2 0

2 5

3 0

3 5

De
lay

 1 0 % ~ 9 0 %
 M e a n
 D a t a

Figure 7.4: Gradient staleness (delay) of different scenarios.

HP-ASGD by varying certain parameters and record our observations. Specifically, we utilize the

same experiment setting as in Experiment II except this time without noisy labeling. This enables

faster training and could also examine the performance of HP-ASGD under HeDC without label

noise along the way.

The key parameters we examine in this experiment include the number of updates used for each

training round and the according suitable learning rates. Furthermore, in previous experiments, we

generally allow all participants to attend the learning process at any moment without restrictions.

In practical deployment, there might be situations where the system would want to restrict an

upper-bound threshold of server stored updates or simultaneous participating attendants, possibly

due to system storage or processing considerations. We consequently test out this scenario by setting

a new parameter “P”, which is an upper bound requirement for currently system stored updates

plus currently attending participants. This could regulate that neither number of stored updates

nor number of simultaneous attending participants at any moment during training exceeding an

146

upper-bound. When “P” is sufficiently large, this restriction is equivalently degenerated back to our

previous experiments. To better observe influence of parameters without other interference, we let

number of updates used for each round to be exactly equal to ML, thus in this experiment Mk = ML

for ∀k. We also denote a multiplier C such that P = C ∗ML. We test different combinations of

ML and C (thus equivalently P), and present the results in Figure 7.4, Tables 7.2 and 7.3. For any

unavailable cells (denoted with “-”) in Tables 7.2 and 7.3, it means the value of C is too large for

the corresponding value of ML that its performance in experiment shall be similar with the previous

choice of C, thus be excluded from testing.

Figure 7.4 presents the distribution of averaged update staleness for all training rounds of each

model variant obtained via HP-ASGD with different parameter settings. The horizontal label marks

each variant by “ML-C”. For instance, the first horizontal label 20-3 means this variant has ML = 20

and C = 3, thus P = 20× 3 = 60 in the according variant. From it, we observe the following

phenomena: (1) For a fixed ML, larger C thus larger P induces larger averaged update staleness. (2)

Among different values of ML, for a fixed C, the mean of the averaged update staleness is similar,

yet the variance of update staleness becomes larger with the decrease of ML. We then focus on the

Table 7.2: Suitable learning rate for different settings

ML = 5 ML = 10 ML = 20
C = 3 0.1 0.2 0.3
C = 7 0.1 0.1 0.05

C = 11 0.05 0.05 -
C = 15 0.05 - -

change of suitable learning rates for these different settings. For each setting, we train it with all

learning rates in the range [0.05,0.3] with 0.05 step-size and select the one with the best training

efficiency (fastest to achieve 0.98 accuracy milestone). The result is shown in Table 7.2 and the

observations are: (1) for each fixed ML, when C increases, the suitable learning rate becomes smaller.

This is expected since by our convergence result the increase of updates staleness could cause a

147

smaller upper bound for suitable learning rates. (2) For a fixed C value which is small, the increase

of ML could imply a larger suitable learning rate, this tendency becomes less apparent when the

fixed C value becomes larger. We speculate that this is caused by the reduce of staleness variance

with increase in ML for a fixed C. For smaller C, the shrinking of the staleness variance is more

significant proportionally, thus inducing more influence to suitable learning rate. For lager C, the

shrinking of the staleness variance is less significant.

Table 7.3: 0.98 accuracy time stamp for different settings

ML = 5 ML = 10 ML = 20
C = 3 5.30∗103 3.45∗103 2.66∗103

C = 7 2.66∗103 2.03∗103 2.20∗103

C = 11 2.63∗103 2.44∗103 -
C = 15 2.60∗103 - -

Furthermore, we verify the time stamp for each setting to reach the 0.98 accuracy milestone with its

most suitable learning rate as discovered previously, as an indication of its training efficiency. The

result of which is presented as in Table 7.3. From it, we may roughly summarize some empirical

observations: (1) generally, using a reasonably large ML may benefit the learning process, as a

server update obtained via more participant updates is more accurate in its representativeness. (2)

A suitable combination of parameter ML and C may not certainly appear at their boundary values,

a joint consideration of them with the suitable learning rate could be applied when needed by the

application scenario.

Experiment-IV

We have seen in previous experiments the performance of HP-ASGD with MNIST dataset for 100

participants (a relatively large scale of participants). In this experiment, we further examine HP-

ASGD with smaller scale of participants, which mimics the application scenario for collaborative

148

0 . 7 5 0 . 8 0 . 8 5 0 . 9 0 . 9 5 0 . 9 8
0

2 × 1 0 4

4 × 1 0 4

6 × 1 0 4

8 × 1 0 4

1 0 5

1 . 2 × 1 0 5

1 . 4 × 1 0 5

1 . 6 × 1 0 5

1 . 8 × 1 0 5

Sim
ula

ted
 tim

e s
lice

s

A c c u r a c y m i l e s t o n e s

 S y n
 H P - A S G D

Figure 7.5: Accuracy and efficiency comparison of Experiment-IV.

distributed learning among institutions/data centers (thus with smaller scale of participants).

In this experiment, there are in total 10 participants. We equally divide the MNIST training dataset

by sequence into twenty subgroups, each with 2500 images, and each participants randomly pick

two subgroups as their local data with no replacement. Thus the participants’ data are non-IID. The

response speed distribution of participants is analogous to that of the Experiment-II except with 10

total participants this time. Therefore, the overall environment is HeDC. We run “Syn” and “HP”

with their suitable learning rate and record the performance. Again, we show the moments when

each approach reach certain testing accuracy milestones as in Figure 7.5. For both approaches, they

successfully achieves all accuracy milestones, yet the proposed HP-ASGD still maintains a superior

training efficiency over Syn. The speedup of HP-ASGD at 0.98 accuracy is 4.8.

Experiment-V

We further test the performance of HP-ASGD on larger dataet. Specifically, we adopt CIFAR-10

dataset in this experiment. CIFAR-10 also contains 50000 training data, but each training image

149

0 . 5 0 . 5 5 0 . 6 0 . 6 5 0 . 7
0

5 × 1 0 5

1 0 6

1 . 5 × 1 0 6

2 × 1 0 6

2 . 5 × 1 0 6

3 × 1 0 6

3 . 5 × 1 0 6

Sim
ula

ted
 tim

e s
lice

s

A c c u r a c y m i l e s t o n e s

 S y n
 H P - A S G D

Figure 7.6: Accuracy and efficiency comparison of Experiment-V.

has larger resolution comparing to MNIST, and in overall represents a more challenging learning

scenario comparing to MNIST. We set other experiment settings similar as in Experiment-IV to

form a HeDC environment and run the two approaches “Syn” and “HP”. The accuracy milestones

in this experiment are form 0.5 to 0.7 with a 0.05 incremental step due to the increased difficulty of

CIFAR-10 dataset. The result in Figure 7.6 is as expected to be consistent with previous experiments.

Both approaches converges yet the proposed HP-ASGD still maintains a superior training efficiency

over Syn and the speedup of HP-ASGD at 0.7 accuracy is 6.2.

In all experiments shown, we do not discard participant gradients encountered due to large staleness

(i.e., it is equivalent as we set a sufficiently large staleness upper-bound T). This also shows that

HP-ASGD algorithm has presented good tolerance to gradient staleness in asynchronous learning.

Summary

In this chapter, we provide in-depth understanding for occurring conditions of the model shift

issue in asynchronous learning with non-IID data and participant heterogeneity. we then provide

150

the designed algorithm HP-ASGD as well as its convergence analysis towards solving such an

issue. Extensive experiment results show the efficacy of the proposed algorithm in providing

both correctness and high efficiency to ANNP problem comparing to baselines in various learning

environment settings.

151

CHAPTER 8: CONCLUSION

In this dissertation, we establish several approaches including framework, resource management and

algorithm design for tackling several challenges faced by the computing facility from the modern

data analysis and learning tasks. The hierarchical framework we propose enables collaborative

large-scale data analytics among multiple clusters with Apache Spark computing platform. The

reinforcement learning based resource management approach we propose allows scheduling data

analytical tasks including both general and time-critical jobs to multiple computing clusters for

better efficiency and less missing temporal deadline events. Another deep reinforcement learning

based resource management approach we design could even be elasticity-compatible and be suitable

in an underlying environment of heterogeneous computing clusters. Additionally, we establish a

new hybrid approach HALE-Fed and an algorithm Fed-SUDA for more efficient privacy-preserving

federated learning and an applicable asynchronous federated learning in a heterogeneous environ-

ment. We also propose HP-ASGD and establish its convergence result for non-convex problems, as

an asynchronous stochastic gradient descent algorithm for general distributed learning with non-IID

data and heterogeneous participants.

Experiment results demonstrate the efficacy of the proposed approaches and show benefits to the

efficiency and other significant desires of modern data analytical tasks. We hope to further extend

these techniques or develop other skills for enhancing the benefits of such approaches and will

continue exploring more possibilities towards further increasing efficiency of modern distributed

data analysis and learning tasks.

152

LIST OF REFERENCES

[1] Omid Alipourfard, Hongqiang Harry Liu, Jianshu Chen, Shivaram Venkataraman, Minlan

Yu, and Ming Zhang. Cherrypick: Adaptively unearthing the best cloud configurations for

big data analytics. In NSDI, volume 2, pages 4–2, 2017.

[2] Enda Barrett, Enda Howley, and Jim Duggan. Applying reinforcement learning towards

automating resource allocation and application scalability in the cloud. Concurrency and

Computation: Practice and Experience, 25(12):1656–1674, 2013.

[3] Andrew G Barto. Temporal difference learning. Scholarpedia, 2(11):1604, 2007.

[4] Tekin Bicer, David Chiu, and Gagan Agrawal. A framework for data-intensive computing

with cloud bursting. In 2011 IEEE international conference on cluster computing, pages

169–177. IEEE, 2011.

[5] Dan Bogdanov, Sven Laur, and Jan Willemson. Sharemind: A framework for fast privacy-

preserving computations. In European Symposium on Research in Computer Security, pages

192–206. Springer, 2008.

[6] Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex Ingerman,

Vladimir Ivanov, Chloe Kiddon, Jakub Konečnỳ, Stefano Mazzocchi, H Brendan McMahan,

et al. Towards federated learning at scale: System design. arXiv preprint arXiv:1902.01046,

2019.

[7] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H Brendan McMahan,

Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. Practical secure aggregation for

federated learning on user-held data. arXiv preprint arXiv:1611.04482, 2016.

153

[8] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H Brendan McMahan,

Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. Practical secure aggregation for

privacy-preserving machine learning. In proceedings of the 2017 ACM SIGSAC Conference

on Computer and Communications Security, pages 1175–1191, 2017.

[9] Michael Cardosa, Chenyu Wang, Anshuman Nangia, Abhishek Chandra, and Jon Weissman.

Exploring mapreduce efficiency with highly-distributed data. In Proceedings of the second

international workshop on MapReduce and its applications, pages 27–34, 2011.

[10] Zheng Chai, Yujing Chen, Liang Zhao, Yue Cheng, and Huzefa Rangwala. Fedat: A

communication-efficient federated learning method with asynchronous tiers under non-iid

data. arXiv preprint arXiv:2010.05958, 2020.

[11] Guillaume Maurice Jean-Bernard Chaslot Chaslot. Monte-carlo tree search. PhD thesis,

Maastricht University, 2010.

[12] Lei Chen, Wei Lu, Xiaoping Che, Weiwei Xing, Liqiang Wang, and Yong Yang. Mrsim:

Mitigating reducer skew in mapreduce. In 2017 31st International Conference on Advanced

Information Networking and Applications Workshops (WAINA), pages 379–384. IEEE, 2017.

[13] Ming Chen, Bingcheng Mao, and Tianyi Ma. Efficient and robust asynchronous federated

learning with stragglers. In Submitted to International Conference on Learning Representa-

tions, 2019.

[14] Mingxi Cheng, Ji Li, and Shahin Nazarian. Drl-cloud: Deep reinforcement learning-based

resource provisioning and task scheduling for cloud service providers. In Proceedings of the

23rd Asia and South Pacific Design Automation Conference, pages 129–134. IEEE Press,

2018.

154

[15] Christopher M De Sa, Ce Zhang, Kunle Olukotun, and Christopher Ré. Taming the wild: A

unified analysis of hogwild-style algorithms. In Advances in neural information processing

systems, pages 2674–2682, 2015.

[16] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large clusters.

Communications of the ACM, 51(1):107–113, 2008.

[17] Deepmind. Deepmind. https://deepmind.com/.

[18] Li Deng. The mnist database of handwritten digit images for machine learning research.

IEEE Signal Processing Magazine, 29(6):141–142, 2012.

[19] John C Duchi, Sorathan Chaturapruek, and Christopher Ré. Asynchronous stochastic convex

optimization. arXiv preprint arXiv:1508.00882, 2015.

[20] Xavier Dutreilh, Sergey Kirgizov, Olga Melekhova, Jacques Malenfant, Nicolas Rivierre,

and Isis Truck. Using reinforcement learning for autonomic resource allocation in clouds:

towards a fully automated workflow. In ICAS 2011, The Seventh International Conference

on Autonomic and Autonomous Systems, pages 67–74, 2011.

[21] Ahmed Eldawy and Mohamed F Mokbel. Spatialhadoop: A mapreduce framework for spatial

data. In 2015 IEEE 31st international conference on Data Engineering, pages 1352–1363.

IEEE, 2015.

[22] Marwa Elteir, Heshan Lin, and Wu-chun Feng. Enhancing mapreduce via asynchronous

data processing. In 2010 IEEE 16th International Conference on Parallel and Distributed

Systems, pages 397–405. IEEE, 2010.

[23] Zoltán Gábor, Zsolt Kalmár, and Csaba Szepesvári. Multi-criteria reinforcement learning. In

ICML, volume 98, pages 197–205, 1998.

155

[24] R. C. Geyer, T. Klein, and M. Nabi. Differentially Private Federated Learning: A Client

Level Perspective. ArXiv e-prints, December 2017.

[25] Klaus Greff, Rupesh K Srivastava, Jan Koutník, Bas R Steunebrink, and Jürgen Schmidhuber.

Lstm: A search space odyssey. IEEE transactions on neural networks and learning systems,

28(10):2222–2232, 2016.

[26] Otkrist Gupta and Ramesh Raskar. Distributed learning of deep neural network over multiple

agents. Journal of Network and Computer Applications, 116:1–8, 2018.

[27] Andrew Hard, Kanishka Rao, Rajiv Mathews, Swaroop Ramaswamy, Françoise Beaufays,

Sean Augenstein, Hubert Eichner, Chloé Kiddon, and Daniel Ramage. Federated learning

for mobile keyboard prediction. arXiv preprint arXiv:1811.03604, 2018.

[28] He Huang, Liqiang Wang, En-Jui Lee, and Po Chen. An mpi-cuda implementation and

optimization for parallel sparse equations and least squares (lsqr). Procedia Computer

Science, 9:76–85, 2012.

[29] Nathaniel Husted, Steven Myers, Abhi Shelat, and Paul Grubbs. Gpu and cpu parallelization

of honest-but-curious secure two-party computation. In Proceedings of the 29th Annual

Computer Security Applications Conference, pages 169–178, 2013.

[30] Chao Jin, Christian Vecchiola, and Rajkumar Buyya. Mrpga: an extension of mapreduce for

parallelizing genetic algorithms. In 2008 IEEE Fourth International Conference on eScience,

pages 214–221. IEEE, 2008.

[31] Gregory Kahn, Adam Villaflor, Bosen Ding, Pieter Abbeel, and Sergey Levine. Self-

supervised deep reinforcement learning with generalized computation graphs for robot

navigation. In 2018 IEEE International Conference on Robotics and Automation (ICRA),

pages 1–8. IEEE, 2018.

156

[32] Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Ar-

jun Nitin Bhagoji, Keith Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings,

et al. Advances and open problems in federated learning. arXiv preprint arXiv:1912.04977,

2019.

[33] Renuga Kanagavelu, Zengxiang Li, Juniarto Samsudin, Yechao Yang, Feng Yang, Rick

Siow Mong Goh, Mervyn Cheah, Praewpiraya Wiwatphonthana, Khajonpong Akkarajitsakul,

and Shangguang Wang. Two-phase multi-party computation enabled privacy-preserving

federated learning. In 2020 20th IEEE/ACM International Symposium on Cluster, Cloud and

Internet Computing (CCGRID), pages 410–419. IEEE, 2020.

[34] A Kala Karun and K Chitharanjan. A review on hadoop—hdfs infrastructure extensions. In

2013 IEEE conference on information & communication technologies, pages 132–137. IEEE,

2013.

[35] Ahmed Khaled, Konstantin Mishchenko, and Peter Richtárik. First analysis of local gd on

heterogeneous data. arXiv preprint arXiv:1909.04715, 2019.

[36] Hatim Khouzaimi, Romain Laroche, and Fabrice Lefèvre. Reinforcement learning for turn-

taking management in incremental spoken dialogue systems. In IJCAI, pages 2831–2837,

2016.

[37] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv

preprint arXiv:1412.6980, 2014.

[38] Jakub Konečnỳ, Brendan McMahan, and Daniel Ramage. Federated optimization: Distributed

optimization beyond the datacenter. arXiv preprint arXiv:1511.03575, 2015.

[39] Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report,

University of Toronto, 2009.

157

[40] Kyong-Ha Lee, Yoon-Joon Lee, Hyunsik Choi, Yon Dohn Chung, and Bongki Moon. Parallel

data processing with mapreduce: a survey. AcM sIGMoD record, 40(4):11–20, 2012.

[41] Teng Li, Zhiyuan Xu, Jian Tang, and Yanzhi Wang. Model-free control for distributed stream

data processing using deep reinforcement learning. Proceedings of the VLDB Endowment,

11(6):705–718, 2018.

[42] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia

Smith. Federated optimization in heterogeneous networks. arXiv preprint arXiv:1812.06127,

2018.

[43] Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. On the conver-

gence of fedavg on non-iid data. arXiv preprint arXiv:1907.02189, 2019.

[44] Yanan Li, Shusen Yang, Xuebin Ren, and Cong Zhao. Asynchronous federated learning with

differential privacy for edge intelligence. arXiv preprint arXiv:1912.07902, 2019.

[45] Dragos Lia and Mihai Togan. Privacy-preserving machine learning using federated learning

and secure aggregation. In 2020 12th International Conference on Electronics, Computers

and Artificial Intelligence (ECAI), pages 1–6. IEEE, 2020.

[46] Xiangru Lian, Yijun Huang, Yuncheng Li, and Ji Liu. Asynchronous parallel stochastic

gradient for nonconvex optimization. In Advances in Neural Information Processing Systems,

pages 2737–2745, 2015.

[47] Guangdeng Liao, Kushal Datta, and Theodore L Willke. Gunther: Search-based auto-tuning

of mapreduce. In European Conference on Parallel Processing, pages 406–419. Springer,

2013.

[48] Ning Liu, Zhe Li, Jielong Xu, Zhiyuan Xu, Sheng Lin, Qinru Qiu, Jian Tang, and Yanzhi

Wang. A hierarchical framework of cloud resource allocation and power management using

158

deep reinforcement learning. In 2017 IEEE 37th International Conference on Distributed

Computing Systems (ICDCS), pages 372–382. IEEE, 2017.

[49] Teng Liu, Xiaosong Hu, Shengbo Eben Li, and Dongpu Cao. Reinforcement learning

optimized look-ahead energy management of a parallel hybrid electric vehicle. IEEE/ASME

Transactions on Mechatronics, 22(4):1497–1507, 2017.

[50] Zixia Liu, Liqiang Wang, and Gang Quan. Deep reinforcement learning based elasticity-

compatible heterogeneous resource management for time-critical computing. In 49th Inter-

national Conference on Parallel Processing-ICPP, pages 1–11, 2020.

[51] Zixia Liu, Hong Zhang, Bingbing Rao, and Liqiang Wang. A reinforcement learning

based resource management approach for time-critical workloads in distributed computing

environment. In 2018 IEEE International Conference on Big Data (Big Data), pages 252–261.

IEEE, 2018.

[52] Zixia Liu, Hong Zhang, and Liqiang Wang. Hierarchical spark: A multi-cluster big data

computing framework. In Cloud Computing (CLOUD), 2017 IEEE 10th International

Conference on, pages 90–97. IEEE, 2017.

[53] Xiaofeng Lu, Yuying Liao, Pietro Lio, and Pan Hui. Privacy-preserving asynchronous

federated learning mechanism for edge network computing. IEEE Access, 8:48970–48981,

2020.

[54] Yuan Luo, Zhenhua Guo, Yiming Sun, Beth Plale, Judy Qiu, and Wilfred W Li. A hierarchical

framework for cross-domain mapreduce execution. In Proceedings of the second international

workshop on Emerging computational methods for the life sciences, pages 15–22, 2011.

159

[55] Yuan Luo, Beth Plale, Zhenhua Guo, Wilfred W Li, Judy Qiu, and Yiming Sun. Hierarchical

mapreduce: towards simplified cross-domain data processing. Concurrency and Computation:

Practice and Experience, 26(4):878–893, 2014.

[56] Hongyi Ma, Liqiang Wang, and Krishanthan Krishnamoorthy. Detecting thread-safety

violations in hybrid openmp/mpi programs. In 2015 IEEE International Conference on

Cluster Computing, pages 460–463. IEEE, 2015.

[57] Hongyi Ma, Liqiang Wang, Byung Chul Tak, Long Wang, and Chunqiang Tang. Auto-tuning

performance of mpi parallel programs using resource management in container-based virtual

cloud. In 2016 IEEE 9th International Conference on Cloud Computing (CLOUD), pages

545–552. IEEE, 2016.

[58] Shie Mannor and Nahum Shimkin. A geometric approach to multi-criterion reinforcement

learning. Journal of machine learning research, 5(Apr):325–360, 2004.

[59] Hongzi Mao, Mohammad Alizadeh, Ishai Menache, and Srikanth Kandula. Resource

management with deep reinforcement learning. In Proceedings of the 15th ACM Workshop

on Hot Topics in Networks, pages 50–56. ACM, 2016.

[60] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.

Communication-efficient learning of deep networks from decentralized data. In Artificial

Intelligence and Statistics, pages 1273–1282. PMLR, 2017.

[61] Luca Melis, Congzheng Song, Emiliano De Cristofaro, and Vitaly Shmatikov. Inference

attacks against collaborative learning. arXiv preprint arXiv:1805.04049, 13, 2018.

[62] N Metropolis. Monte carlo method. From Cardinals to Chaos: Reflection on the Life and

Legacy of Stanislaw Ulam, page 125, 1989.

160

[63] Fan Mo, Hamed Haddadi, Kleomenis Katevas, Eduard Marin, Diego Perino, and Nicolas

Kourtellis. Ppfl: privacy-preserving federated learning with trusted execution environments.

In Proceedings of the 19th Annual International Conference on Mobile Systems, Applications,

and Services, pages 94–108, 2021.

[64] Jyoti Nandimath, Ekata Banerjee, Ankur Patil, Pratima Kakade, Saumitra Vaidya, and Di-

vyansh Chaturvedi. Big data analysis using apache hadoop. In 2013 IEEE 14th International

Conference on Information Reuse & Integration (IRI), pages 700–703. IEEE, 2013.

[65] John Nguyen, Kshitiz Malik, Hongyuan Zhan, Ashkan Yousefpour, Michael Rabbat, Mani

Malek, and Dzmitry Huba. Federated learning with buffered asynchronous aggregation.

arXiv preprint arXiv:2106.06639, 2021.

[66] AJ Paverd, Andrew Martin, and Ian Brown. Modelling and automatically analysing privacy

properties for honest-but-curious adversaries. Tech. Rep, 2014.

[67] Junjie Peng, Xuejun Zhang, Zhou Lei, Bofeng Zhang, Wu Zhang, and Qing Li. Comparison of

several cloud computing platforms. In 2009 Second international symposium on information

science and engineering, pages 23–27. IEEE, 2009.

[68] Jia Qian and Lars Kai Hansen. What can we learn from gradients? arXiv preprint

arXiv:2010.15718, 2020.

[69] Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. Hogwild!: A lock-free

approach to parallelizing stochastic gradient descent. Advances in neural information

processing systems, 24:693–701, 2011.

[70] Elsa Rizk, Stefan Vlaski, and Ali H Sayed. Dynamic federated learning. arXiv preprint

arXiv:2002.08782, 2020.

161

[71] Elsa Rizk, Stefan Vlaski, and Ali H Sayed. Dynamic federated learning. arXiv preprint

arXiv:2002.08782, 2020.

[72] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference

attacks against machine learning models. In 2017 IEEE Symposium on Security and Privacy

(SP), pages 3–18. IEEE, 2017.

[73] David Silver et al. Mastering the game of go with deep neural networks and tree search.

Nature, 529(7587):484–489, 2016.

[74] David Silver et al. Mastering the game of go without human knowledge. Nature,

550(7676):354, 2017.

[75] Sebastian U Stich. Local sgd converges fast and communicates little. arXiv preprint

arXiv:1805.09767, 2018.

[76] Zhibo Sun, Hong Zhang, Zixia Liu, Chen Xu, and Liqiang Wang. Migrating gis big data

computing from hadoop to spark: an exemplary study using twitter. In 2016 IEEE 9th

International Conference on Cloud Computing (CLOUD), pages 351–358. IEEE, 2016.

[77] James Supancic III and Deva Ramanan. Tracking as online decision-making: Learning

a policy from streaming videos with reinforcement learning. In Proceedings of the IEEE

International Conference on Computer Vision, pages 322–331, 2017.

[78] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press,

2018.

[79] Javid Taheri, Albert Y Zomaya, Pascal Bouvry, and Samee U Khan. Hopfield neural network

for simultaneous job scheduling and data replication in grids. Future Generation Computer

Systems, 29(8):1885–1900, 2013.

162

[80] Kristof Van Moffaert, Madalina M Drugan, and Ann Nowé. Scalarized multi-objective

reinforcement learning: Novel design techniques. In 2013 IEEE Symposium on Adaptive

Dynamic Programming and Reinforcement Learning (ADPRL), pages 191–199. IEEE, 2013.

[81] Kristof Van Moffaert and Ann Nowé. Multi-objective reinforcement learning using sets of

pareto dominating policies. The Journal of Machine Learning Research, 15(1):3483–3512,

2014.

[82] Vinod Kumar Vavilapalli et al. Apache hadoop yarn: Yet another resource negotiator. In

Proceedings of the 4th annual Symposium on Cloud Computing, page 5. ACM, 2013.

[83] Guolu Wang, Jungang Xu, and Ben He. A novel method for tuning configuration parameters

of spark based on machine learning. In High Performance Computing and Communications,

pages 586–593. IEEE, 2016.

[84] Jianyu Wang and Gauri Joshi. Cooperative sgd: A unified framework for the design and

analysis of communication-efficient sgd algorithms. arXiv preprint arXiv:1808.07576, 2018.

[85] Lei Wang, Dongxiang Zhang, Lianli Gao, Jingkuan Song, Long Guo, and Heng Tao Shen.

Mathdqn: Solving arithmetic word problems via deep reinforcement learning. In Thirty-

Second AAAI Conference on Artificial Intelligence, 2018.

[86] Liqiang Wang, Shiyong Lu, Xubo Fei, Artem Chebotko, H Victoria Bryant, and Jeffrey L

Ram. Atomicity and provenance support for pipelined scientific workflows. Future Genera-

tion Computer Systems, 25(5):568–576, 2009.

[87] Shiqiang Wang, Tiffany Tuor, Theodoros Salonidis, Kin K Leung, Christian Makaya, Ting

He, and Kevin Chan. Adaptive federated learning in resource constrained edge computing

systems. IEEE Journal on Selected Areas in Communications, 37(6):1205–1221, 2019.

163

[88] Jun Wu, Xin Xu, Pengcheng Zhang, and Chunming Liu. A novel multi-agent reinforcement

learning approach for job scheduling in grid computing. Future Generation Computer

Systems, 27(5):430–439, 2011.

[89] Wentai Wu, Ligang He, Weiwei Lin, Rui Mao, Carsten Maple, and Stephen A Jarvis. Safa: a

semi-asynchronous protocol for fast federated learning with low overhead. IEEE Transactions

on Computers, 2020.

[90] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolfgang

Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al. Google’s neural

machine translation system: Bridging the gap between human and machine translation. arXiv

preprint arXiv:1609.08144, 2016.

[91] Cong Xie, Sanmi Koyejo, and Indranil Gupta. Asynchronous federated optimization. arXiv

preprint arXiv:1903.03934, 2019.

[92] Hung-chih Yang, Ali Dasdan, Ruey-Lung Hsiao, and D Stott Parker. Map-reduce-merge:

simplified relational data processing on large clusters. In Proceedings of the 2007 ACM

SIGMOD international conference on Management of data, pages 1029–1040, 2007.

[93] Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. Federated machine learning:

Concept and applications. ACM Transactions on Intelligent Systems and Technology (TIST),

10(2):1–19, 2019.

[94] Nezih Yigitbasi, Theodore L Willke, Guangdeng Liao, and Dick Epema. Towards machine

learning-based auto-tuning of mapreduce. In 2013 IEEE 21st International Symposium on

Modelling, Analysis and Simulation of Computer and Telecommunication Systems, pages

11–20. IEEE, 2013.

164

[95] Hao Yu, Rong Jin, and Sen Yang. On the linear speedup analysis of communication efficient

momentum sgd for distributed non-convex optimization. arXiv preprint arXiv:1905.03817,

2019.

[96] Hong Zhang, Hai Huang, and Liqiang Wang. Mrapid: An efficient short job optimizer

on hadoop. In 2017 IEEE International Parallel and Distributed Processing Symposium

(IPDPS), pages 459–468. IEEE, 2017.

[97] Hong Zhang, Hai Huang, and Liqiang Wang. Meteor: Optimizing spark-on-yarn for short

applications. Future Generation Computer Systems, 101:262–271, 2019.

[98] Hong Zhang, Zhibo Sun, Zixia Liu, Chen Xu, and Liqiang Wang. Dart: A geographic

information system on hadoop. In Cloud Computing (CLOUD), 2015 IEEE 8th International

Conference on, pages 90–97. IEEE, 2015.

[99] Hong Zhang, Liqiang Wang, and Hai Huang. Smarth: Enabling multi-pipeline data transfer

in hdfs. In 2014 43rd International Conference on Parallel Processing, pages 30–39. IEEE,

2014.

[100] Fan Zhou and Guojing Cong. On the convergence properties of a k-step averaging stochastic

gradient descent algorithm for nonconvex optimization. arXiv preprint arXiv:1708.01012,

2017.

[101] Ligeng Zhu and Song Han. Deep leakage from gradients. In Federated Learning, pages

17–31. Springer, 2020.

165

	Towards More Efficient Collaborative Distributed Data Analysis and Learning
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1: INTRODUCTION
	Features of Modern Data Analysis and Data Learning Tasks
	Challenges Facing Computing Facilities
	Our Contributions

	CHAPTER 2: LITERATURE REVIEW
	Parallel and Distributed Data Analysis
	Reinforcement Learning based Resource Management
	Elasticity-compatible Resource Management
	Efficient Privacy-preserving Federated Learning
	Convergence Analysis of Distributed Learning Algorithms

	CHAPTER 3: COLLABORATIVE DATA ANALYTICS AMONG MULTIPLE CLUSTERS
	Architecture of Hierarchical Spark
	Workflow Model

	Scheduling Algorithm
	Performance Model
	Scheduling Algorithm and Evaluation Function

	Implementation Issues
	Global Controller and Distributed Daemon
	File Transfer

	Experiments
	Summary

	CHAPTER 4: RESOURCE MANAGEMENT FOR TIME-CRITICAL COMPUTING IN A MULTI-CLUSTER ENVIRONMENT
	Problem Description
	The Reinforcement Learning Based Approach
	Concept Definition and Value Function Design
	Neural Network and Reinforcement Learning Method Design
	Strategies in Accommodating and Improving RL based Approach
	Enabling resource management target selection among multiple applications
	Improved epsilon-greedy strategy for more effective and efficient RL process
	Training with randomized workloads

	RL Training Algorithm for Resource Management

	Experiment Results
	Job Arriving Patterns
	By Bernoulli process
	By Uniform distribution
	By Beta distribution

	Rule-based Baseline Resource Managers
	Evaluation Metrics
	Quantitative Measurement
	Comparative Methods

	Performance Comparison

	Summary

	CHAPTER 5: ELASTICITY-COMPATIBLE SCHEDULING FOR TIME-CRITICAL COMPUTING IN HETEROGENEOUS ENVIRONMENTS
	Problem Description
	The Deep Reinforcement Learning Based Approach
	Introduction to Reinforcement Learning
	Reinforcement Learning Method Design
	DRL Model Structure and Decomposition of Value Definition
	Training Enhancement Skills

	Experiments
	Summary

	CHAPTER 6: HYBRID ASYNCHRONOUS APPROACH TOWARDS EFFICIENT PRIVACY-PRESERVING FEDERATED LEARNING
	The HALE-Fed Framework
	Architecture
	Participant Update Information Flow
	Shard Transmission
	System Operation
	Communication Failure Dealing Mechanism
	Threat Model and Privacy Preservation
	SMC-alike Functionality and Benefits of HALE-Fed
	Comparison with traditional SMC technique
	Benefits of HALE-Fed

	Fed-SUDA: An Asynchronous FL Algorithm in Heterogeneous Environments Using HALE-Fed
	Challenges Brought by HeDC
	Design of Fed-SUDA
	Asynchronicity and Staleness
	Algorithm

	Experiments
	Efficacy of SMC-alike Technique in HALE-Fed
	Efficiency and Performance of HALE-Fed
	Effectiveness of Fed-SUDA built upon HALE-Fed
	Heterogeneous Environment with Label Noise
	Additional Experiment on CIFAR-10

	Summary

	CHAPTER 7: ASYNCHRONOUS DISTRIBUTED STOCHASTIC GRADIENT DESCENT WITH NON-IID DATA AND HETEROGENEOUS PARTICIPANTS
	Problem Description and HP-ASGD
	p-weight, u-weight and Their Connections with Model Shift.
	HP-ASGD: Algorithm Design.
	HP-ASGD: Convergence Analysis.

	Experiments
	Experiment-I
	Experiment-II
	Experiment-III
	Experiment-IV
	Experiment-V

	Summary

	CHAPTER 8: CONCLUSION
	LIST OF REFERENCES

