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ABSTRACT

Typically, online social influence is analyzed using a single metric approach. However, social

influence is not monolithic; different users exercise different influences in different ways, and

influence is correlated with the user and content-specific attributes. One such attribute could be

whether the action is an initiation of a new post, a contribution to a post, or a sharing of an existing

post. Thus, this dissertation uses this platform-independent action classification and models the

influence as multiple entities and examines social networks through the perspective of behavioral

influence propagation.

Two empirical studies are present in this dissertation. The first study presents a novel method for

tracking these influence relationships over time, which we call influence cascades, and presents

a visualization technique to understand these cascades better. These influence patterns are inves-

tigated within and across online social media platforms using empirical data and comparing to a

scale-free network as a null model. Our results show that characteristics of influence cascades and

patterns of influence are, in fact, affected by the platform and the community of the users. The

second study applies the same framework to re-construct interconnected social networks and ex-

plores the significance of cross-platform influence on social media users in the influence process.

In particular, we explore the social dynamics of users with a higher number of social influence

relationships across platforms, which we call interface users, and those with fewer social influence

relationships across platforms, which we call core users. Our results find that interface users are

more vulnerable to being influenced and influential than core users. Further, our results show that

the interface users who are influenced to do initiation action exert significantly more influence on

others than those who are influenced to contribute.
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CHAPTER 1: INTRODUCTION

Online social media (OSM) platforms allow people to interact and maintain their existing social

networks as well as connect and exchange information with strangers based on their interests such

as politics, entertainment, academic field, shopping, etc. [1]. With the rapid increase of online

social media usage, social platforms now represent a large portion of daily communication and

play a major role in information diffusion throughout society. The major driving force of this

information diffusion can be identified as the social influence exerted or experienced by users in

the network. Social influence in OSM can be defined as the ability of a user’s action to affect the

actions of other users. We refer to such occurrences as social influence relationships. However, in

most cases, these relationships are asymmetric. A person who influences other users is referred to

as an influencer and the person being influenced is referred to as an influencee. Social influence

has been widely studied in many fields including marketing [2, 3, 4, 5, 6], political science [7],

human and animal behavior [8, 9, 10, 11], and communication [12, 13].

In OSM, we can classify user actions into three types: (1) initiation of a conversation or a post

(I), (2) contribution to an existing conversation or a post (C), or (3) sharing of an existing post

between conversations without changing the content (S). Since we will use these three actions and

this framework throughout this work, we will refer to it as the ICS classification. However, most

existing studies on social influence in OSM assume an implicit monolithic notion of influence, i.e.,

that a user’s influence is the same across all action types. In particular, in most of the previous work,

social influence is measured using traditional influence measurements such as centrality measures,

link topological measures, and coreness-based measures [14, 15], which were focused on the no-

tion of centrality, or structural influence. For instance, centrality measurements such as the degree,

closeness, betweenness, eigenvector, Katz centrality measurements, and their variations measure

the importance of a given node’s position in the network to propagate information, and the notion
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of importance varies for each measurement [16, 14, 17, 18, 19, 20, 21]. However, except for eigen-

vector centrality, these measurements treat the contribution of nodes to the measurement equally.

Even in the case of eigenvector centrality, the only factor taken into account is the centrality of

the connected nodes to a focal node. Further, the link topological ranking measurements including

Hyperlink-Introduced Topic Search (HITS) [22] and PageRank algorithm [23] and PageRank-like

algorithms such as TunkRank [24], InfluenceRank [25], SpreadRank [26], TURank [27], Twitter-

Rank [28], InfRank [29] assume that the value of a node depends on the number of connections

they have. Furthermore, the coreness-based measures such as the k-shell method and its variants

[9, 30, 31, 32] assume coreness of a node is more important than their connectivity or centrality to

predict the best spreaders accurately. Therefore, link topological ranking, and coreness-based mea-

sures are also structural-based measurements. In addition, some recent work used entropy-based

measurements such as graph entropy [33], friend entropy, and interaction frequency entropy [34]

to measure the social influence in OSM, as entropy captures the uncertainty and complexity of the

social influence effectively [14]. However, these measurements are also defined based upon the

network structure. As a result, these measurements cannot fully capture the behavioral influence.

However, in reality, there are differences in how users influence others through initiation, contri-

bution, and sharing actions. Disregarding these differences in behavioral influence may hinder a

comprehensive understanding of the real role of social influence in a wide variety of scenarios,

including (1) information propagation and influence maximization, (2) knowledge transfer in a

community and development of projects, such as in GitHub and Stack Overflow, (3) online in-

fluence campaigns, or (4) online brand engagement at different stages of the consumer purchase

funnel. As an example, in online marketing campaigns, some users may create original content,

some users may contribute to others’ created content, and still other users may spread the content

of others by sharing. If a marketing firm is interested in interacting with this information spread,

it may want to identify different users based upon the role they play and how those users affect
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other users. Similarly, in the learning communities and knowledge-sharing communities such as

GitHub, Stack Overflow, professional learning communities on Twitter and LinkedIn, it is essential

to have user engagement in all three types of actions: I, C, and S, to sustain the community as well

as to achieve the user and community goals.

Furthermore, though some measurements such as Twitter-Rank, InfluenceRank, InfRank, and

SpreadRank are integrated with the behavioral influence by adding the number of tweets and

retweets that users have to the measurement, these measurements are platform-specific. This limits

the generalization capabilities of the results obtained from those state-of-art methods over multi-

ple platforms. Therefore, moving beyond the monolithic notion of social influence and a single-

platform focused study will enhance the state-of-art methods.

Moreover, while there are hundreds of online social networks out there supporting a broad spec-

trum of interests and practices, nowadays, many users use more than one social media based on

their interests and needs resulting in a complex social media ecosystem [35]. The latest social me-

dia usage statistics show that today’s online social media ecosystem is more interconnected than

a few years ago. In 2018, around three quarters (73%) of the American public used at least two

social media platforms [36], whereas, in October 2021, an internet user uses or visits averagely

around 7.5 different social media platforms each month, globally [37].

This interconnected social media ecosystem allows online social media users to expand their social

ties, gain exposure to diverse information through different platforms, and exchange information

across platforms [38, 35, 39]. In turn, their actions on a specific platform are influenced by not only

the interactions from the focal platform but also the interaction from other platforms they interact

with. Not only that, being exposed to diverse information allows users to bring novel information

to the focal platform. Having access to more diverse sources of information gives users social

currency that will enable them to exert more influence on the focal platform. Therefore, the users
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who have social ties with other platforms might exert more influence compared to the rest of the

users [40, 41]. As a result, a user on multiple platforms can unknowingly generate a cascade of

actions and spread information across several platforms. For example, a Twitter user can share

a YouTube video about a product, political campaign, or a piece of celebrity news on Twitter to

initiate a tweet or reply to another tweet. Then it can follow a cascade of retweets. As a result,

a Reddit user can start a discussion in Reddit about that YouTube video. Another example is a

Twitter / Reddit discussion of technology such as cryptocurrency or software vulnerabilities can

influence a GitHub user to contribute to the codebase development in a GitHub repository.

As users can engage with their networks through I, C, and S actions, the overall effect of the in-

formation spread can be positive or negative based upon their collective behavior. On top of that,

as mentioned above, the cross-platform influence can amplify the effect of spread of information

by spreading information across platforms. Therefore, as the online social media ecosystem be-

comes more interconnected, empirical studies to understand the significance of users who have

social influence relationships across platforms are much more needed than ever before. It will

contribute to potential strategies to maximize the positive outcomes in the scenarios such as online

marketing campaigns, knowledge transfer in communities such as LinkedIn, Twitter professional

educational communities, StackOverflow learning communities, and GitHub open-source code

development communities; and to reduce the effect of the adverse outcomes in scenarios such as

miss-information spread, cyberbullying.

However, most of the work that has been done on online social influence is focused on a single

platform, and less attention has been paid to the cross-platform influence. Moreover, the existing

few studies on cross-platform influence mainly focused on the topics such as user identity linkage

across social media [42, 43], exploring sharing behavior across platforms [39, 44] macro-level

information transfer across platforms [45, 46]. There has not been an empirical study to investigate

the significance of the users who have behavioral social influence relationships across platforms.
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Purpose of the Study

The prior work on social influence analysis is mainly lacking in four aspects, which are (1) assum-

ing the monolithic notion of influence; i.e., all influence is measured using one number, (2) lack of

generalizability of the proposed algorithms or measures of influence, (3) assuming the influence as

a property of the user instead of the property of the relationship, (4) lack of studies on the signifi-

cance of the cross-platform influence on users in the influence process. Hence, the work presented

in this dissertation is focused on enhancing the literature on online social influence while filling

these literature gaps. In particular, in this study, rather than modeling the influence as a single en-

tity, I model the influence as multiple entities and examine social networks through the perspective

of behavioral influence propagation.

This dissertation presents two empirical studies. In the first study, I introduce the concept of Influ-

ence cascades to track the multiple behavioral influence relationships over time and characterize

the different social media and communities. An influence cascade can be defined as all of the

actions in a chain that start from an initial user, who was prompted by an external (outside the

social network) stimulus or intrinsic motivation to act, and the actions that the initial user then

influences other users to take, and, in turn, the actions those users influence others to take and so

forth until a user’s action no longer influence any other users to act. In other words, an influence

cascade is all of the users and events that were socially motivated and can be tracked back to an

initial user that was not motivated socially, but due to an influence outside the social network. The

presence of influence cascades indicates an underlying organizational structure. In the case of a

highly distributed community, such as those that exist on OSM, such organizational structure is not

explicitly expressed but is implicit in the users’ actions. Analyzing influence cascades allows us

to infer these underlying organizational structures. In this study, I extract influence cascades in a

variety of scenarios over multiple platforms and visualize the underlying organizational structures.
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Then, I explore the characteristics of influence cascades of OSM, and contrast the extracted OSM

influence cascades against those from scale-free networks as well.

As we are interested in behavioral influence, with the premise that any I,C, or S action that a user

can take can influence other users to do any I,C, or S actions, we defined nine types of influence

relationships that can exist between any pair of users. We use transfer entropy to quantify these

nine types of influence relationships [47] as it gives us the ability to model social influence as

multidimensional while capturing the direction and causality of the influence.

Because of the action classification used, our model is abstracted from platform event types. As a

result, we can compare influence cascades on different platforms using the same ICS classification.

Different social media platforms enable different affordances for interaction. Though the actions

on these platforms can still be characterized under the ICS classification, the algorithms and exact

implementations may alter how users utilize these different actions. Hence, this gives us the ability

to study human behavior on different platforms and determine if the affordances of the platform

affect influence cascades. This is the first study to compare influence cascades between platforms.

Furthermore, in the second study, I investigate the interconnected social media to study the signifi-

cance of cross-platform influence on social media users and the effect of the user actions that they

are influenced to perform on cross-platform influence. In particular, I explore the social dynamics

of the influential users who have a relatively higher number of social influence relationships across

platforms, which I call "Interface users", compared to the influential users who have a relatively

less number of social influence relationships across platforms, which I call the "Core users" to

understand the significance of the interface users empirically. We can identify two events when

interacting with social networks: (a) users experience influence by other users, and (b) users exert

influence on other users. When users interact across platforms, these two events can occur through

users of the focal platform and users of the other platform. Therefore, in this study, I explore the
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social dynamics of the interface users and core users based on (1) influence experienced from focal

platform influence relationships (2) influence experienced from cross-platform influence relation-

ships (3) influence exerted on focal platform users. Furthermore, we investigate the consistency

of these social dynamics in different communities. Previous work showed that different actions

of online social networks users influence other users in the network on further actions differently

[48]. We could expect that the interface users who are influenced to perform initiation action will

experience more influence, and they might exert more influence on the focal platform because they

have a higher chance to expose to novel information through the cross-platform influence and, in

turn, bring novel information to the focal platform. However, it has not been investigated empiri-

cally before. Therefore, we further analyzed interface users’ social dynamics based on the actions

they are influenced to do.

As our ICS action classification is platform-independent and transfer entropy could capture the

causal influence relationships without needing any explicit underlying link structure, our frame-

work in the first study gives us the ability to capture the influence relationships across platforms as

well. Hence, the same framework was used to quantify the influence and re-construct the intercon-

nected OSM.

I consider cryptocurrency (crypto), common vulnerable exposure (CVE), interest communities on

GitHub (GH) and Twitter (TW) for the experiments in both studies. The first study results show

that the depth and the structure of influence cascades depend on the platform and community

of users. As a result of these observations, we can characterize the underlying organizational

structures of these online communities. Moreover, the second study results show that users with a

relatively higher number of social influence relationships are more vulnerable to being influenced

and influential than others. Also, our results show that the interface users who are influenced to

take the initiation actions are more influential than those who are influenced to take contribution

actions.
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Research Questions

In this dissertation the following research questions will be addressed.

1. How can we create a method to track the multitude of possible influence relationships caused

by users’ actions in online social networks at once?

2. How can that method help us characterize different social media and communities in under-

standing the structure of influence in social media platforms or communities?

3. What is the effect of cross-platform social influence relationships in the influence process?

4. How does the cross-platform influence affect the users based on the actions that they are

influenced to do, in the influence process?

Scope of the Study

Though our introduction of influence cascades is novel, previous work has examined information

cascades. However, information cascades differ in that the focus of the analysis is on the transmis-

sion of a particular piece of information and not the users influencing each other to transmit the

information. Typically, information cascades are extracted by tracing a piece of information such

as content, URL, or an image through the explicit link structures such as parent-child relationships

[49, 50, 2, 51, 10]. However, such explicit link structures are not available in many data sets or

may be incomplete [49, 52]. These studies focus on analyzing characteristics such as size, depth,

degree distributions, or the growth of such information cascades, as opposed to understanding how

one user directly influences another user.

Therefore, it should be noted that in this study, I am not following any retweet chains or reply
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chains of specific content. Influence cascades are not direct interaction chains, i.e., retweeting

chains or reply chains. Instead, influence cascades are observed from looking at the time series

of all users in the data set and observing how likely a user’s particular event causes another event

of another user. This means influence cascades do not always begin with an I action because a

root user’s I action may not be the action that influences other users, but instead, a root user’s I,

C, or S actions could all create influence chains. Also, there is a possibility to observe a C action

influencing an I relationship in the cascade since that means that we observed that when a certain

user performs contribution events, another user is likely to initiate a new thread.

Statement of Contributions

The prior work on social influence analysis is mainly lacking in four aspects; 1) assuming the

monolithic notion of influence; i.e., all influence is measured using one number, 2) lack of gen-

eralizability of the proposed algorithms or measures of influence, 3) assuming the influence as a

property of the user instead of the property of the relationship 4) lack of studies on the significance

of the cross-platform influence on users in the influence process. Hence, this dissertation makes

multiple contributions while addressing the above issues. Primarily, this dissertation presents one

of the first general methods of tracking behavioral influence relationships caused by actions on

social media, which we call influence cascades, using a platform-independent action classification

and measuring the transfer entropy between the time-series of these actions. Secondly, this work

presents a method to investigate the significance of the cross-platform influence in the influence

process, using the same framework.

Thus, in overall, the following contributions are made in this research.

1. Presenting a novel and generalizable method to track influence relationships caused by ac-
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tions of OSM.

2. Providing new insights to improve state-of-art methods that assume a monolithic notion of

influence and homogeneous populations in the social influence analysis field.

3. Presenting the evidence to show that the platform and community determine depth and struc-

ture of influence cascades.

4. Presenting a method to investigate the significance of cross-platform influence in the influ-

ence process.

5. Presenting the evidence to show that the users with a relatively higher number of social influ-

ence relationships across platforms are more vulnerable to being influenced and influential

than the others.

6. Providing provide insights for marketing firms, online community leaders, and policymakers

to make proper intervention strategies to control the spread of information or misinformation.

Statement of Originality

Parts of this dissertation have been included in conference presentations, a journal publication.

Other than the work discussed in the following list, the rest of this dissertation has not been pub-

lished publicly at the time of writing.
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CHAPTER 2: LITERATURE REVIEW

Social influence has long been studied in many areas such as information diffusion and influence

maximization [12, 9], viral marketing [2, 3], influential blogger finding [10], health applications

[53], spread of opinions and news [54, 13, 8], and so on. In these studies, social influence is

measured in many different ways. Among these methods, most of the work has focused on the

notion of centrality, or structural influence. Centrality measurements such as degree, closeness,

betweenness, eigenvector, Katz, and their variations are used widely in studies of social influence

[18, 19, 20, 21]. However, in most of these measurements except eigenvector centrality, there is

no distinction of the contribution of individual nodes to the measurement [14], and even in the

case of eigenvector centrality, the only difference is a structural difference, not behavior-based.

The number of followers, which is related to degree centrality, is used by [3, 25] to measure

influence in microblogs. However, in [3, 55, 56], the authors show that there is a weak correlation

between behavioral influence and the number of followers. Hence, these measurements are not

fully able to capture behavioral influence and state-of-art methods related to these measurements

cannot comprehensibly address the scenarios where an organization is interested in different types

of influence, as discussed in the Introduction.

In addition, some recent studies use deep learning models to capture social influence. The DeepInf

developed by Qiu et al. [57] is able to predict the binary status (active/inactive) of a user, given

the user’s underlying local network structure and the status of the near neighbors of the user.

Leung et al. [58] proposed the HPPNP model by integrating a feature from a page rank domain

to the DeepInf model and improved the performance of the DeepInf model. These models use

historical interactions to predict social influence. However, the accuracy of the prediction depends

on the underlying social network that the model uses because of the assumption that only near

neighbors influence users’ actions. In [57, 58], the authors use underlying user networks such as
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follower/followee or friendship networks for their study. Hence, these studies fail to address users’

actions that may occur when they identified posts using hashtags or keywords [59].

Another way to measure influence is based on entropy and information theory. Peng et al. [34] use

node entropy based upon the degree of a user and interaction frequency entropy to evaluate social

influence in mobile social networks. Sun and Ng [33] use graph entropy based upon the centrality

of users to measure the influence of connectors on social networks. Chen et al. [60] consider

network topology and proposed a method to rank the influential nodes by considering the Tsallis

entropy of the users and their neighbors. Transfer entropy is another entropy-based measurement

that is used to quantify influence. Transfer entropy is introduced by Schreiber [47] to capture the

cause and effect in an interaction between two coupled systems effectively. It is an information-

theoretic approach based on Shannon entropy [61] and it measures the uncertainty reduced by the

prediction of the future of a system from the past of the system by knowing the past of another

system. If two random processes are X = {Xt}t∈N and Y = {Yt}t∈N then the transfer entropy can

be defined as

T EX→Y = ∑
x,y∈Ω

P(Yt+1 = y,Yt = y,Xt = x) log
P(Yt+1 = y|Yt = y,Xt = x)

P(Yt+1 = y|Yt = y)
, (2.1)

where Ω is the sample space that includes all realizations.

VerSteeg and Galstyan [62] use this approach to quantify the influence of content on users in social

media and show that transfer entropy is able to capture some of the relationships that cannot be

captured by the follower network or mention network successfully. Moreover, He et al. [63] use

the same approach to reconstruct the underlying network structure of online social media and use

transfer entropy to measure peer influence in OSM.

Information cascades have provided us with insight into how these social networks operate. For
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example, Adar and Zhang [49] study the sharing of URLs in the blog-space by inferring their ex-

plicit link structure and implicit link structure. Explicit link structure is constructed by tracing the

provided information on the data. Implicit link structure is constructed by using a classifier that de-

pends on the blog similarity measures. Gruhl et al. [64] propose a model to study the propagation

of information in the form of topics throughout the blog space using a derived form of the inde-

pendent cascade model on a network induced by the time series of the topics and the blog which

posts that topic at that time. Further, Leskovec et al. [50] study the propagation of posts in the

blog space to discover the patterns of information propagation. The authors analyze the cascades

of blog posts by measuring the overall out-degree, in-degree, and in-degree distribution of nodes

at level L of the collection of cascades. Further, they quantify the cascades by the number of nodes

in the cascades and analyze the distribution of the cascade size over the collection of cascades

they extracted. Their results show that blog posts have weekly periodicity but they do not have

a bursty behavior. Moreover, Leskovec et al. [2] trace the diffusion of product recommendations

using emails and show that product recommendation cascades do not grow very large. Kumar et

al. [51] study the information cascades in yahoo!, Twitter, and Usenet groups by reconstructing

the information cascades using the parent-child relationships that exist in the data and explore the

distributions of size, depth, and degree of the information cascades. They show that degree distri-

butions of information cascades are close to a power law. Bakshy et al. [10] study the information

diffusion by studying the cascades of URL’s sharing on Twitter and show that information mainly

spreads through small cascades that are started by ordinary individuals while long cascades are

rare. Dow et al. [65] study the cascade of image sharing on Facebook and explore them in terms

of evaluation time and the distributions of the depth of the cascades. Further, they quantify the

predictability of sub-cascades sizes. Cadena et al. [66] show that activity cascades in Twitter are

predictive of civil unrest.

Moreover, with the variety of OSM today, people engage with multiple social media platforms
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giving them the opportunity to discuss and share their interests on multiple platforms. Hence,

researchers have become interested in studying how human behavior differs on different plat-

forms. Xiong et al. [67] propose a new approach to link GitHub and Stack Overflow accounts

using a CART decision tree and explore developer behavior on these two platforms. Waterloo et

al. [68] study how users express their emotions on WhatsApp, Facebook, Twitter, and Instagram

and find that there are differences in the patterns of emotional expression based on the platform.

Furthermore, Kim et al. [69] propose a method to estimate the information transfer across main-

stream news, social networking sites, and blogs using transfer entropy. Also, a similar study from

Bhattacharjee [46] analyzes information transfer across social media, in particular Twitter, Reddit,

and GitHub. Bhattacharjee uses symbolic transfer entropy to measure the influence from one plat-

form to the other. Our work extends this past work into the realm of influence cascades, so we can

understand not only how the same user operates on different platforms, but also whether users on

one platform influence users on other platforms.

Furthermore, as users tend to use more than one online social media, identifying the same user

across multiple platforms provide many advantages to link prediction studies and recommendation

studies. In [42], the authors present a review of key achievements of studies of user identity link-

age across social media and state-of-art algorithms that use to identify the user identities. Further,

they present a framework consisting of feature extraction such as profile features, content features,

and model construction which can be done using supervised or unsupervised ways to identify user

identities. Also, Zhou et al. [43] propose a method, which calls ACCount eMbedding (ACCM),

to identify similar users across different online social media platforms using the semantics of net-

works structures. They show that their method outperforms several state-of-art baseline methods

using real-world and synthetic data.

Moreover, as different platforms offer the features to share the content across social media, Ham

et al. [39] study the motivations of users to share the content in the social media ecosystem. They
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show that users’ preference for sharing their thoughts and feelings with others plays the most

significant role in sharing behavior. Finally, as the sharing of content across platforms may impact

both positively and negatively on society, Cody et al. [44] study the effect of recent implementation

to exclude the potentially harmful content from video recommendations on YouTube while they

did not remove the content from the platform. Their results show that this implementation reduces

the probability of sharing harmful videos across platforms.
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CHAPTER 3: INFLUENCE CASCADES: ENTROPY-BASED

CHARACTERIZATION OF BEHAVIORAL INFLUENCE PATTERNS IN

SOCIAL MEDIA

This chapter addresses research questions one and two; 1) How can we create a method to track the

multitude of possible influence relationships caused by users’ actions in online social networks at

once? 2) How can that method help us characterize different social media and communities in un-

derstanding the structure of influence in social media platforms or communities? First, we present

a method to trace the multitude of possible influence relationships caused by the users’ actions on

OSM, which we call influence cascades. We then explore the characteristics of extracted influence

cascades from cryptocurrency and cyber-vulnerability communities on GitHub and Twitter and

compare within and across platforms. Further, we compare the influence cascades of OSM against

those from the scale-free network as well.

Methodology

First, we examine the basic concept of influence cascades, in this section. In particular, we start

by examining users who are not socially influenced themselves but exert influence on others, and

how different actions contribute to the accumulation of social influence as it progresses through

the network via influencer-influenced relationships. We use the ICS classification in order to repli-

cate our findings across two social media platforms and two different communities. We extract

social influence cascades observed in four online user communities: (1) GitHub users working on

cryptocurrency, (2) Twitter users discussing cryptocurrency, (3) GitHub users working on cyber-

vulnerabilities (CVEs), and (4) Twitter users discussing CVEs.
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We performed this 2 × 2 comparison to give us the ability to analyze both platform and subject

community differences. In regrading to answer the research questions 2, we compared the extracted

social influence cascades against those expected on an artificially generated scale-free network. By

using this scale-free model as a null model, we provide a basis of a comparison that is independent

of any of the intrinsic properties of underlying networks, to compare and contrast our results.

Therefore, we can identify what aspects are related to the particular circumstances of the platform

and community and what aspects are present in any network.

Defining Influence Relationships

In this study, we built our framework based on ICS classification. We let the set of actions a user

can perform be denoted as A = {I,C,S}. Once a user, u, performs an action, a, there is a chance

that his action influences another user, v, to preform another action, b, which we describe as a

social influence relationship of type ua → vb, where a,b ∈ A and u,v are users in the network W .

Hence, we can define nine influence relationships as follows: uI → vI , uI → vC, uI → vS, uC → vI ,

uC → vC, uC → vS, uS → vI , uS → vC, and uS → vS. As an example, we can use uI → vI to sym-

bolize an influence relationship where u’s initiation of a conversation influenced the initiation of

another conversation by v. We use transfer entropy to quantify these influences and infer causal

relationships [47]. Transfer entropy has been shown to capture influence better than other com-

monly used measures such as centrality and number of followers [62]. Also, by using transfer

entropy, we are not restricted to limitations in the follower network that may occur if a user is

influenced by, but does not follow, another user [3, 56, 59].

18



Extraction of Influence Cascades

We first quantify the magnitude of influence for each relationship ua → vb by calculating the trans-

fer entropy, from a time series of action type a of user u to the time series of action type b of user

v [70]. Next, we extract influence cascades from the pruned influence network and visualize them

as follows.

Constructing the Influence Network

Since each directed user pair ⃗(u,v) can have nine types of influence relationships ua → vb, we

define the total social influence from user u to v as a vector −→γ u,v with the corresponding influence

measurement values γuv(ab) as its vector components. If at least one influence relationship exists,

i.e., at least one non-zero influence vector component exists from u to v, then we can say that u

influences v. Accordingly, we define the influence network G(V,E) according to Equations (4.1)

and (4.2).

V = {∀u,v ∈W | ∑
a,b∈A

γuv(ab) > 0}, (3.1)

E = {{u,v}| ∑
a,b∈A

γuv(ab) > 0}. (3.2)

It must be noted that G is a directed graph. Furthermore, we attribute the influence vector com-

ponents to edge weights of G. In this manner, W is pruned of edges that have no social influence

from one user to another, forming G.
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Extracting Influence Cascades

Next, to study the characteristics and reach of the quantified influences, we extract the influence

cascades of the users as follows. Externally motivated but not socially influenced users R is defined

according to Equation (3.3).

R = {u ∈V |in−degree(u) = 0} (3.3)

In order to extract the influence cascades from any u∈ R, we first extract all the outgoing neighbors

of u, No(u), and their corresponding edges from u. We then extract all the outgoing neighbors

of users in No(u) and their corresponding edges and repeat this process until there are no more

identifiable outgoing edges. The initial user, at the top of the cascade, is called the root user and

their node level is 0. Level 0 users are chosen as those who have no incoming edges, i.e., have no

influencing users, but exert influence on other users. The node level of other users in the cascade

is labeled based on the hop distance from the level 0 user to them. Figure 3 shows an example

influence cascade using this process.

Visualization of Influence Cascades

As Figure 3 shows, the extracted cascades help analyze basic characteristics, such as the size and

length of the cascades. However, this representation does not identify whether the influencing ac-

tion was a I, C, or S. Hence, we propose a visualization technique that can integrate the information

of influence cascades as follows:

Let Li,i+1 represent the set of influence vectors flow from the ith level to (i+ 1)th level, where

i ∈ {0,1, , . . . ,n− 1} and n is the depth of the cascade. The normalized vector component of the

total social influence an action a has on an action b, γi,i+1(ab) is calculated as shown in Equation
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Figure 3.1: Example of an Influence Cascade. User u1 is selected as a root user as it has a zero
in-degree, i.e. it is not socially influenced. User u1 socially influences users {u2,u3} at level 1.
Users {u2,u3} influence users {u4,u5,u6,u7} at level 2. γ⃗ui,u j ; i, j = 1,2, . . . ,7 represent the total
influence vector from user ui to user u j.

(3.4).

γi,i+1(ab) =
∑l∈Li,i+1 l(ab)

∑
i=n−1
i=0 ∑l∈Li,i+1 l(ab)

(3.4)

We visualize the influence cascade through a Sankey diagram [71]. In the Sankey diagram, nodes

represent the influencing actions (a ∈ A), while flows represent the total magnitude of influence

exerted by this action on users at the next level of the cascade, normalized across the cascade.

Figure 3.2 shows an example of a Sankey diagram produced by the proposed method.
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Figure 3.2: Example of a Sankey diagram produced by the proposed method. The diagram visual-
izes the normalized flow of total influence, categorized by influence relationships, along the length
of a influence cascade. The nodes represent the different activity types, I: Initiation (yellow), C:
Contribution (blue), and S: Sharing (pink), and their heights represent the relative magnitude of
influence each level exerts on the next. The thickness of the blue, pink, yellow flow lines are pro-
portionate to the magnitude of the normalized total influence value that C, S, and I events have on
corresponding actions at the next level, respectively.
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Experiments

Data

We considered two OSM platforms, Twitter and GitHub for our experiments. Twitter is a popular

social networking site that allows users to post and interact with comments. Though GitHub may

not appear to be an OSM on its surface, it provides powerful tools for interaction and commenting,

allowing users to socially interact in a fashion similar to other OSM [72].

The empirical data consisted of temporal user activity related to discussions and project develop-

ment of selected cryptocurrencies (Crypto) and cyber-vulnerabilities (CVE) on both Twitter (TW)

and GitHub (GH). The data is gathered as follows:

• GH-Crypto data was collected by extracting events related to more than 20 target coins’ offi-

cial repositories, repositories labeled with target coin names, and repositories that mentioned

the target coin names in their descriptions.

• TW-Crypto data was collected by extracting all tweets from official websites related to more

than 20 target coins and by matching the target coin names, code, hashtags, etc. with the full

Twitter firehose. Extraction was limited to English language tweets and users from either

unknown countries or the UK, India, Canada, Russia, and the Netherlands.

• GH-CVE data was collected by extracting events related to any repositories that were related

to CVE at a certain point in their life cycle, found by matching CVE textual patterns against

repository descriptions and texts related to events.

• TW-CVE data was collected by matching the CVE textual patterns against the collection of

tweets extracted through the public Twitter API.
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The TW-Crypto data was extracted from the 1st of August 2018 to the 30th of November 2018

while GH-Crypto, GH-CVE, and TW-CVE data were extracted from the 1st of January 2017 to

the 31st of March 2017. The raw data sets contained 111821, 19166, 11875, and 3278 unique

users respectively. As low activity users have less impact on influencing others over time we only

considered active users who had an average monthly activity greater than five events within these

time periods. The filtered data sets contained 4170, 1784, 1989, and 92 unique users respectively.

Table 3.1 shows the categorizations of 14 different GitHub events and 4 different Twitter events

into initiation, contribution, and sharing action classes.

Table 3.1: Classification of GitHub and Twitter actions.

Initiation Contribution Sharing

GitHub CreateEvent

CommitCommentEvent,
GollumEvent,
IssueCommentEvent,
IssuesEvent, PullRequestEvent,
PullRequestReviewCom-
mentEvent, PushEvent,
DeleteEvent

ForkEvent, WatchEvent,
MemberEvent, PublicEvent,
ReleaseEvent

Twitter Tweet Reply, Quote Retweet

The extracted influence networks of GH-Crypto, TW-Crypto, GH-CVE, and TW-CVE had 1406,

3365, 151, and 80 nodes (users), respectively. Each of these influence networks consisted of 568,

2385, 111, and 45 users who were not socially influenced but influenced others (root nodes).

Experimental Setup

We began our experiment by exploring the influence cascades in our empirical networks. For com-

parison, we constructed generic scale-free networks that were similar in size as null models. As an

example, we constructed a scale-free network with 1406 nodes as a null model of GH-Crypto net-
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Figure 3.3: Examples of uniformly distributed influence cascades over scale-free networks of vary-
ing network sizes.

work which has 1406 users in its influence network. Python 3 and the NetworkX scale_free_graph

library [73] were used to generate directed scale-free networks. Except for the number of nodes,

the other parameter values were kept constant while producing the scale-free networks. Any loops

and multi-edges that resulted were removed. Next, for each resultant edge, nine random values

from U [0,1] were assigned as the magnitude of the influence of the nine influence relationships.

Given this network, we extracted the influence cascades from root nodes by identifying those nodes

that had zero in-degree, i.e., no influencing nodes. For each network, we aligned all the influence

cascades by level and aggregated the normalized total influence vector components (Equation 3.4)

by their median. For some examples of these cascades see Figure 3.3.

We explored the user distribution of influenced cascades by comparing the mean number of users

as well as the cumulative mean number of users per cascade level by platform and community. The

Jensen–Shannon (JS) Divergence test was performed to measure the similarity of user distributions

between influence cascades extracted from empirical networks and their null models as well as

between the platforms/communities.

In order to study the similarities of the structure of influence cascades in terms of the distribution of

influence from different extracted networks, we explored the residual differences between the me-

dian normalized total influence values extracted from influence cascades and those from influence
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cascades generated by the corresponding null model, both within and across platforms, by influ-

ence relationship. A Spearman’s correlation test was performed on these residuals by influence

relationship, grouping by platform and community, in order to infer the statistical significance of

the observations. The null hypothesis H0 tested, was that there is no correlation between the resid-

uals in the magnitude of influence of two platform-communities. In other words, if the comparison

was significant that means that two platforms or communities are significantly similar in terms

of the distribution of the magnitude of influence. As we have multiple comparisons, we applied

a Bonferroni correction to minimize the error rate. Therefore, we used a significance level of

0.05/9 = 0.0055 in order to consider an individual test as significant.

The computer code for extracting influence cascades, visualizations, and conducted experiments

was developed in a Jupyter notebook which is publicly available. The influence data extracted from

the OSM and code is available at https://github.com/Csenevirathna/InfluenceCascades.

The versions of the software and packages which are used are as follows: Python 3.6.3, pandas

1.0.1, NumPy 1.19.1, NetworkX 2.4, seaborn 0.9.0, Plotly 3.6.0 and, statsmodels 0.12.0.

Results

Comparisons of the mean number of users per influence cascade level by platform and commu-

nity are shown in Figure 3.4. Similarly, comparisons of the cumulative mean number of users

per cascade level by platforms and community are shown in Figure 3.5. For both of these sets of

measurements, the measurement of the corresponding scale-free null-model, matched by network

size, has been included as a control. We observed that the user distributions for the CVE commu-

nity closely followed that of their corresponding scale-free null-model, in contrast to that of the

cryptocurrency community, where a larger deviation from the scale-free null-model was observed.

This result is confirmed in Table 3.2, where the JS-divergences for each platform-community from
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their corresponding scale-free networks are shown. The JS Divergences for the CVE community

networks is a magnitude smaller than that of the cryptocurrency community networks, regardless

of platform.

Instead, we found that the distributions of users across levels were similar for the cryptocurrency

community, regardless of platform. In particular, we observed that on average the user distributions

culminate at level 4 for both cryptocurrency networks, producing influence cascades that are much

shorter than are expected based on their comparison against the corresponding scale-free null-

models. In other words, the mean user distributions over influence cascades for the cryptocurrency

community were robust across platforms, while those for the CVE community were more platform-

sensitive. This result is further confirmed in Table 3.3, where the Jensen–Shannon divergence

between each platform-community is displayed. According to this comparison, the JS divergence

is lowest within communities rather than within platforms. Furthermore, the JS divergence is

lower when comparing across platforms within the cryptocurrency community, rather than the JS

divergence when comparing across platforms within the CVE community. Also, we see that the

JS divergence between the cryptocurrency and CVE communities on Twitter is much lower than

that on GitHub. In other words, the influence structures within the cryptocurrency community are

more robust across platforms than the CVE community, and the influence structures on Twitter are

more robust across communities in comparison to those on GitHub.

Table 3.2: Jensen-Shannon Divergence test statistics for each empirical network from its corre-
sponding scale-free null model. JS divergences are least within CVE communities and their scale-
free null models, in comparison to that of cryptocurrency communities.

Community Platform JS-Divergence
CVE GitHub 0.0964

Crypto GitHub 0.1765
CVE Twitter 0.0858

Crypto Twitter 0.2138
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Figure 3.4: The mean total number of users at each level by platforms and communities for em-
pirical networks and their scale-free networks. The user distribution of the common vulnerable
exposure (CVE) community follows the scale-free null model closer than the cryptocurrency com-
munity.

We then compare the distributions of influence over cascade level by action for the empirical

networks against their corresponding scale-free null models matched by network size. Figure

3.6 displays the median normalized total influence exerted from lower to higher levels by action

(I,C, and S) for the four empirical networks. The same measurements for their corresponding

scale-free null models are shown in Figure 3.7. Figure 3.6 shows a clear distinction between how

different influence relationships are distributed along the cascades within platforms and across
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Figure 3.5: The cumulative sum of the mean total number of users at each level by platforms and
communities for empirical networks and their scale-free networks. The cumulative user distribu-
tion of CVE community follows the scale-free null model closer than cryptocurrency community.

Table 3.3: Jensen-Shannon Divergence test statistics between each empirical network. JS diver-
gences are least within communities and across varying platforms, in comparison to within plat-
forms across varying communities.

Community 1 Platform 1 Community 2 Platform 2 JS-Divergence
Crypto GitHub Crypto Twitter 0.1634
CVE GitHub CVE Twitter 0.1944

Crypto Twitter CVE Twitter 0.1983
Crypto GitHub CVE GitHub 0.3414
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platforms. Despite the closeness of user distributions of the CVE networks to their corresponding

scale-free null models, we observe that how influence is distributed among this community differs

from that expected through the scale-free null models. We observe a similar difference in influence

distribution from the scale-free null models for the cryptocurrency community. We observed that

GH-Crypto, TW-Crypto, and TW-CVE have a common shape to their influence cascade, with the

highest fraction of influence flow for most relationships in these platform-communities happening

towards the middle of the cascade. However, for GH-CVE this happens at the head of the cascade.

Interestingly, the distribution of influence seen in GH-CVE, which has a smaller influence network

size (151 users), is similar to that seen in the larger networks of GH-Crypto and TW-Crypto scale-

free null models (1406 and 3365 users respectively).

These results indicate that root nodes in GH-CVE are more influential compared to all of the

other users in the cascade, whereas root nodes in the cryptocurrency community and the TW-CVE

community are not very different from the other users in the cascades in terms of the amount

of influence they exert on others. This can be explained by the popularity of and interest towards

cryptocurrencies among all the users regardless of platform and difference in the interest of users on

CVE’s in different platforms. Moreover, these results indicate that influence cascades of empirical

networks have less similarity with the scale-free null models by further confirming the effect of

communities and platforms on influence cascades.

Furthermore, it was observed that not all nine influence relationships existed between every con-

secutive level of the influence cascades for any of the social networks, unlike that observed in the

scale-free null models. This means that influence exerted by users is not uniform and depends

on the type of action they are more inclined to perform given their platform and community, and

also that the preference for certain actions is heterogeneous among users of a particular platform

and community. Specifically, we observed that influence cascades of Twitter have a more equal

distribution of influence through all three actions. Instead, we observe that contribution actions

30



Figure 3.6: The median normalized total influence, by activity types I,C and S, along with the
levels of the influence cascades of the GitHub (GH)-Crypto, GH-common vulnerable exposure
(CVE), Twitter (TW)-Crypto, and TW-CVE empirical networks. The typical influence cascade in
GH-CVE is much longer than the other platform-communities and is dominated by contribution
actions influenced by contribution actions.

have more influence throughout the cascades observed on GitHub. This result can be explained by

the differences in the nature of GitHub and Twitter. That is, GitHub is a platform for developers

that are intensively involved in open source software development, but Twitter serves as a platform

to share and post short discussions.

The residuals between the median normalized total influence values by relationship, over cascade

level, of the empirical networks when compared to those of their corresponding scale-free null

models across both platforms and communities are shown in Figure 3.8. Again we observe that the

distribution of influence on GH-CVE is very different compared to that of the other three networks
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Figure 3.7: The median normalized total influence, by activity types I,C and S, along with the
levels of the uniformly distributed influence cascades over the scale-free null models corresponding
to GH-Crypto, GH-CVE, TW-Crypto, and TW-CVE influence networks by equal network size.

for almost all relationship types, except for C → S. Furthermore, we see that the differences

between cryptocurrency community influence cascades on GitHub and Twitter occur through S →

C and C → S relationships.

In the case of Spearman’s correlation tests, the null hypothesis for our experiments is that there is no

correlation between the residuals in the magnitude of influence of two platform-communities when

examined by the nine action-action relationships. The results of this test at original significance

= 0.05 (Bonferroni-corrected significance = 0.0055) are shown in Table 3.4. The only significant

correlations were observed between GitHub and Twitter within the cryptocurrency community for

most influence relationship types, with the exception of C → S and S → C. In other words, how
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influence was propagating within the cryptocurrency community over both Twitter and GitHub

were similar with the exception of contribution and sharing events. This result can be explained

by the higher importance that contribution events (such as commits, and commit comments) have

within GitHub, compared against the popularity that sharing (or retweeting) has on Twitter. In

contrast, we can state that how influence is propagated within the CVE community differs based

on the platform, Twitter or GitHub, upon which the users interact. We can also state that there

are no similarities in how influence is propagated when comparing between the two communities

on either platform. Appendix A provides further visual validation via scatter graphs for each test

above. It must be noted that an ANOVA could not be applied in place of the above correlation test

as the residuals of the influence relationships failed to satisfy the normality assumption (Further

information in Appendix A).

Discussion

We examine social networks through the perspective of influence propagation based on user ac-

tions, and compare four social networks, the cryptocurrency and CVE communities of Twitter and

GitHub. In order to facilitate cross-platform comparison, we categorized actions into three ab-

stract types that existed on multiple social media platforms: initiation, contribution, and sharing.

The influence of these actions by users on further actions by other users was measured for all nine

resulting relationships. We propose a novel method to measure and visualize the social influence

exerted by users through these actions over time. We illustrate how transfer entropy can be used as

the measurement of influence to estimate the degree to which causal relationships existed between

user actions. User pairs that had at least one influence relationship of non-zero magnitude formed

the basis of a network of influence. Users of this network that were not influenced by others, but did

exert influence on others were selected as the roots of influence cascades. The users influenced by
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these root influencers were identified recursively, extracting cascades of influence, propagated via

all nine relationships. The extracted empirical influence cascades were compared against uniform

influence cascades on scale-free networks of equal node count, as null models.

Our results indicate that the manner in which influence cascades through online social media is

affected by the social media platform and the online community. In particular, we find that the

cryptocurrency community exhibits influence structures that are similar across both GitHub and

Twitter, while this is not true for the CVE interest community. More specifically, within the cryp-

tocurrency community, we notice that the only significant difference in influence cascades exist

between relationships where contribution actions influence sharing actions, and vice versa. In

other words, the influence relationships that exist between users engaged in cryptocurrency related

development on GitHub and the influence relationships that exist between users engaged in cryp-

tocurrency discussions are similar, with the exception of contribution actions influencing sharing

actions (or sharing influencing contribution). The fact that code-development on GitHub is driven

primarily through contribution actions, such as commits and pull-requests, while Twitter is driven

by sharing actions, specifically retweets, offers an explanation for this exception. This technique

and visualization enable the automatic identification and analysis of these differences.

In contrast, there is no similarity between the influence relationships on GitHub and Twitter within

the CVE community. Additionally, we see that the influence cascades of the CVE developers on

GitHub are longer than those of the CVE discussions on Twitter. This leads us to conclude that

CVE developers on GitHub are generally more responsive to social influence than users discussing

CVE related topics on Twitter. Further, we observe generally longer cascades of contribution

actions influencing contributions actions within the CVE community on GitHub. In other words,

individuals of the CVE community are more likely to engage in contributions to GitHub projects

in the CVE domain than engage in CVE related discussions on Twitter.
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Finally, we find evidence that the influence structures of Twitter show higher similarity across

communities, compared to those of GitHub. However, we do not find any individual influence

relationships across the two communities on Twitter that show significantly similar progressions

of the magnitude of influence over cascade level.

Some of these differences in platforms versus communities may have to do with the nature of

the communities themselves. Cryptocurrencies have been a growing topic since Bitcoin was in-

troduced to the financial market as a medium of exchange. Hence, we could explain the similar

organizational structure in the Crypto community as a fact of the popularity of the cryptocurrencies

in both Twitter and GitHub. However, the structural differences in the relationships where contri-

bution actions influence sharing actions and sharing actions influence contribution actions can be

explained as a result of the different nature of the contribution and sharing actions in GitHub and

Twitter.

However, unlike cryptocurrencies, discussions of cyber-vulnerabilities maybe very different on

Twitter and GitHub. On Twitter, CVE discussions may be interesting to one group of users who

are interested in the news around CVEs, while on Github, the most active users may be individuals

who are actively trying to develop solutions to CVEs. This disparity between the types of users

engaged on Twitter versus Github is greater for the CVE community than the Cryptocurrency

community.
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Figure 3.8: The residuals between the median normalized total influence values by relationship,
over cascade level, of the empirical networks when compared to those of their corresponding scale-
free null models. Most relationships in the cryptocurrency community seem correlated despite the
difference in platform.
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Table 3.4: Spearman’s correlation for the H0: there is no correlation between the residuals in
magnitude of influence of two platform-communities by relationship, at original significance =
0.05 (Bonferroni-corrected significance = 0.0055). For each platform-community, the results for
the influence relationships compared are sorted in descending order of correlation coefficient. The
only significant correlations are observed between the influence relationships of the cryptocurrency
community on Twitter and GitHub, with the exception of C → S and S →C.

Community 1 Platform 1 Community 2 Platform 2 Influence Relationship ρ p-value

Crypto GitHub Crypto Twitter

I → I 1 0
I →C 1 0
I → S 1 0
C → I 1 0
C →C 1 0
S → I 1 0
S → S 1 0
C → S 0.8 0.2
S →C 0.4 0.6

CVE GitHub CVE Twitter

I → I 0.4 0.6
I → S 0.4 0.6
C →C 0.4 0.6
S → S 0.4 0.6
I →C 0.2 0.8
C → I 0.2 0.8
S → I 0.2 0.8
S →C 0.2 0.8
C → S -0.2 0.8

Crypto Twitter CVE Twitter

I → I 0.8 0.2
I →C 0.8 0.2
I → S 0.8 0.2
C → I 0.8 0.2
S → I 0.8 0.2
S →C 0.8 0.2
S → S 0.8 0.2
C → S 0.4 0.6
C →C -0.2 0.8

Crypto GitHub CVE GitHub

C → S 0.4 0.6
I → I 0 1
I → S 0 1
C →C 0 1
S → S 0 1
I →C -0.4 0.6
C → I -0.4 0.6
S → I -0.4 0.6
S →C -0.4 0.6
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CHAPTER 4: ENTROPY-BASED ANALYSIS OF CROSS-PLATFORM

INFLUENCE ON SOCIAL MEDIA USERS.

This chapter addresses research questions three and four; 3) What is the effect of cross-platform

social influence relationships in the influence process? 4) How does the cross-platform influence

affect the users based on the actions that they are influenced to do, in the influence process? First,

we present a method to reconstruct the underlying influence relationships in interconnected OSM

platforms and a method to investigate the cross-platform influence in the influence process. We

then compare the cross-platform influence patterns in cryptocurrency and cyber-vulnerability com-

munities on GitHub and Twitter.

Methodology

This section presents the method that we used to construct the underlying influence network struc-

ture of interconnected online social networks by identifying the possible influence relationships

between users within focal platforms and across platforms. We used the ICS classification to de-

fine the influence relationships, and it allows us to model the influence platform independently.

We used transfer entropy to capture the influence relationships and quantify the influence without

needing any explicit underlying link structure. We then identified the interface users and core users

in each platform. We explored their social dynamics based on (1) influence experienced from focal

platform influence relationships, (2) influence experienced from cross-platform influence relation-

ships and (3) influence exerted on focal platform users. Finally, we did a similar investigation on

the groups of interface users, which were categorized based on the actions they were influenced to

perform.
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We performed our experiments on two social media platforms and two different communities. In

particular, we consider four online user communities: (1) GitHub users working on cryptocurrency

(2) Twitter users discussing cryptocurrency (3) GitHub users working on cyber-vulnerabilities (4)

Twitter users discussing cyber-vulnerabilities This allows us to explore the similarities and differ-

ences in social dynamics of interface users compared to the core users in different platforms and

communities.

Influence Relationships and Influence Network

An influence relationship occur when a user’s action result in another user performing an action.

As users’ different actions exert influence differently on other users to perform actions [48], we

define influence relationships based on the ICS classification. Let the set of actions be defined by

A = {I,C,S} and the interconnected social networks defined by the Z. If a user u do an action a

then it can influence user v to perform an action b by creating a social influence relationship of

type ua → vb, where u,v are users in the network Z and a,b ∈ A. Hence, these three actions result

in nine types of influence relationships in one direction as follows: uI → vI , uI → vC, uI → vS,

uC → vI , uC → vC, uC → vS, uS → vI , uS → vC, and uS → vS. Therefore, the social influence from

user u to user v is defined as a vector −→γ u,v =< γuv(ab) >, where γuv(ab) are corresponding influence

measurements.

We used transfer entropy to identify these causal influence relationships within and across plat-

forms from the empirical online social network data and quantify the influence. Transfer entropy

is an information-theoretic technique based on Shannon entropy [61] and the Schreiber introduces

it to capture the casual interactions between two random processes [47]. It measures the uncertainty

reduced by the future prediction of a random process given its past behavior and knowing another

random process’s past behavior. It has been used to measure the influence of content on users
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in social media and [62] to reconstruct the underlying network structure of online social media

successfully [63, 70, 48]. This approach is independent of the explicit underlying link structures

such as follower networks or network constructs using parent-child relationships. Therefore, it can

capture the cross-platform influence relationships and some of the relationships within platforms

that such networks cannot capture. For example, associations that exist when a user can reply to a

tweet that is found by using a keyword or hashtag without following the user who posts it [59] or

relationships that are unable to detect because of incomplete data.

We calculate the transfer entropy between the time series of a action type a of user u to the time

series of action type b of user v to quantify the magnitude of the influence of ua → vb, which is

same as γuv(ab). If there exist an at least one type of influence relationship with γuv(ab) > 0 from

users u to user v then it indicates that user u influence user v. Thus, we remove the non-influential

edges from Z and define the directed influence network Z
′
(V,E) of Z according to the equations

(4.1) and (4.2).

V = {∀u,v ∈ Z| ∑
a,b∈A

γuv(ab) > 0}, (4.1)

E = {{u,v}| ∑
a,b∈A

γuv(ab) > 0}. (4.2)

Experiments

Data

We used cryptocurrency and cyber-vulnerability interest community data on GitHub and Twitter

online social networks for our experiments. The data was extracted from 01st of January 2017

to 31st of March 2017, and they consisted of user activities related to discussions and project

development of the selected cryptocurrencies (Crypto) and cyber-vulnerabilities (CVE) on Twitter
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(TW) and GitHub (GH). GH-Crypto data was collected by querying events related to more than

20 target coins’ official repositories, repositories labeled with coin names, and the repositories that

mentioned the target coin names in their description. TW-Crypto data was collected by querying

tweets related to more than 20 target coins, and extraction was limited to English tweets. GH-

CVE data was collected by matching the CVE textual patterns with the repository descriptions and

text-related events. TW-CVE data was collected by matching the CVE textual patterns with the

collection of tweets extracted through the public API. The collected data contained 14 different

GitHub events and four different Twitter events. They were classified into initiation, contribution,

and sharing classes, same as in chapter 3, Table 3.1.

The raw data sets of GH-Crypto, TW-Crypto, GH-CVE, and TW-CVE contained 10679, 95161,

200761, and 841 unique users, respectively. We only consider the users who had more than 15

average monthly activities because less active users have less probability of influencing others

over time. The filtered data sets contained 544, 2836, 7689, and 29 unique users, respectively, and

the respective influence networks had 453, 1698, 6639, and 20 unique users.

Experimental Setup

Different platforms afford different functions in the social network ecosystem and work under

different algorithms. Also, communities on the same platform may focus on various topics. There-

fore, the social dynamics resulting from the interaction between users in a platform but for different

communities and between users across platforms for the same community might depend on both

the platform and the community. Thus, we first performed an exploratory analysis of the relative

percentage of influence relationships that users have from the other platform to the focal platform

for each platform-community.

Secondly, in order to study the social dynamics of interface users and core users, we grouped the
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users of each platform-community in the order of priority as follows: (1) sorted the users in the

descending order of the number of influence relationships coming from the other platform (equal

to the number of influencers from the other platform), (2) if there are users who have the same

number of influence relationships from the other platform then, sorted those users in ascending

order of the number of influential relationships coming from the focal platform. For example, if

we consider the GH-CVE platform-community, we first sorted the GH-CVE users in descending

order of the number of influence relationships coming from TW-CVE platform-community (i.e.,

the number of in-edges that GH-CVE users have from TW-CVE users). For example, suppose

two GH-CVE users have ten influence relationships coming from different TW-CVE users. Then

we sorted those users in ascending order of the number of influence relationships coming from

GH-CVE users. In this manner, we can guarantee that the top users prioritize the influence coming

from the other platform while the bottom users least prioritize the influence coming from the other

platform.

As we focus on two measurements of each user, namely: (a) average influence experienced by

other users and (b) average influence exerted on other users, for our exploration, we defined and

quantified them as follows.

If ui, where i = 1,2, ...,n are the influencers of a user x, the influence experienced by the user x is

defined as in the equation (4.3).

Influence Experienced by a user x =
i=n

∑
i=1

∑
a,b∈A

γuix(ab) (4.3)

Next, if v j, where j = 1,2, ...,k are influencees of user the x then the influence exerted by the user

x is defined as in the equation (4.4).
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Influence Exerted by a user x =
j=k

∑
j=1

∑
a,b∈A

γxv j(ab) (4.4)

Next, in order to investigate the significance of inference users in the process of influence compared

to core users, we grouped the users based on their focal platform-community and identified their

influencers and influencees from the focal platform-community and the other platform-community

separately. Then we calculated the magnitude of the: (1) influence experienced by focal platform

influence relationships, (2) influence experienced by cross-platform influence relationships, and

(3) influence exerted on focal platform users, using the above defined measurements and explored

whether there are significant differences between the distribution of the resulting data for interface

users and core users within and across platforms for two communities. The Kruskal-Wallis H test

(for the comparison of more than two groups) and Mann-Whitney U test (for the comparison of two

groups) were performed (significance level =0.05) accordingly to infer the statistical significance

of the observations. For multiple comparisons, Bonferroni corrected significant values were used.

Finally, we grouped the interface users as follows to investigate the interface users based on the

actions they are influenced to take. If a user u exists such that γuv(ab) > 0 for interface user v, then

user v is a interface user who influenced to do action type b. We denote interface users who are

influenced to do action type b as "Interface Users_b." Then we followed the same experiments

above on these groups.

Results

The histogram of the relative percentage of influence relationships from the other platform com-

pared to the influence relationships from the focal platform is shown in Figure 4.1. We observed

that except in GH-CVE, all the users in the other three platform-communities have at least one link
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Figure 4.1: The relative percentage of influence relationships coming to GH-CVE, TW-CVE,
GH-Crypto, and TW-Crypto from TW-CVE, GH-CVE, TW-Crypto, and GH-Crypto, respectively.
Only GH-CVE contained users who are only influenced by the influence relationships within the
focal platform-community (0 % cross-platform influence relationships). All the users in GH-CVE
and TW-Crypto have more than 50% influence relations coming from TW-CVE and GH-Crypto,
respectively. All the users in TW-CVE and GH-Crypto, have more than 50% influence relation-
ships coming from their focal platform-communities.

from the corresponding other platform. This shows that most of the users who participate in the

influence process do not limit their influence network to the focal platform but also expand their

influence network to other platforms and bring information from other platforms to the focal plat-

form. Also, this observation re-enforces the importance of studying the cross-platform influence.

Moreover, in the CVE community, all Twitter users had more influencers from GitHub than from

Twitter. At the same time, all GitHub users had more influencers from GitHub than from Twitter.

However, in the crypto community, all Twitter users had more influencers from within Twitter than

from GitHub. At the same time, all GitHub users had more influencers from Twitter than from
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within GitHub. These results can be explained by the social dynamics of how these communities

operate. Previous work showed that the cyber-vulnerabilities started to be discussed on GitHub

not only before they were discussed on Twitter but also even before they were officially published

on NVD [74]. This implies that the CVE community is a development-driven community. There-

fore, our results align with this previous finding by showing that more people tend to work on the

development related to CVEs in GitHub, which drives online discussions on Twitter. Similarly,

we can infer from our results that the crypto community is a discussion-driven community. It can

be explained by the popularity of cryptocurrencies as digital investment currencies. Because of

that, more people are sensitive to the topics related to cryptocurrencies and tend to discuss them

frequently, which drives development in GitHub.

Figure 4.2: The distributions of influence experienced by the interface users and core users from the
focal platform and the corresponding other platform. Interface users experienced more influence
than core users. The subplot titles represent the focal platform | community.
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Comparison of influence experienced by focal platform and other platform for interface users and

core users are shown in Figure 4.2. We observed that both interface users and core users on GH-

CVE and TW-Crypto platform-communities experienced more influence by the focal platform-

community than by the corresponding other platform-community. Whereas both interfaces users

and core users in GH-Crypto and TW-CVE experienced more influence by the corresponding other

platform-community than by the focal platform-community. As we saw how the influence relation-

ships distributed within the focal platform and cross-platform for both communities in Figure 4.1,

these observations are to be expected. Hence, these results also can be explained as a result of the

social dynamics of how the communities operate. Moreover, when we consider the same source

of influence, i.e., the focal platform or the other platform, we observed clearly that influence expe-

rienced by the interface users is higher than that of the core users in all the platform-communities

except TW-CVE.

These results are confirmed in the Table 4.1 and Table 4.2. Table 4.1 shows the Kruskal-Wallis

H test statistics and mean rank of the influence experienced for each group, and Table 4.2 shows

test statistics for pairwise comparison between each group. According to the Kruskal-Wallis H test

statistics, mean experienced influence values were statistically significantly different between the

four groups (groups are defined by the user status, i.e., interface users or core users; and the source

of the influence, i.e., focal platform or other platform) for all the platform-communities (asymp.p

<0.001). Further, when we consider the groups of the same source of influence, the mean influence

experienced for interface uses higher than the core users. The pairwise comparisons revealed that

there is a statistically significant difference in mean experienced influence values between all the

groups in GH-CVE, GH-Crypto, and TW-Crypto (adj.p <0.001 for all the pairwise comparisons).

In TW-CVE, the mean influence experienced between the two groups under interface users as well

as between two groups under core users are significantly different, but not between the groups of

interface users and core users who experienced the influence from the same source.
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Table 4.1: Kruskal-Wallis H test statistics for the alternative hypothesis that the distributions of
influence experienced by the interface users and core users from the focal platform and the cor-
responding other platform are significantly different. The group numbers represent the following
groups: 1- Influence experienced by the interface users from the corresponding other platform , 2-
Influence experienced by the interface users from the focal platform , 3- Influence experienced by
core users from the corresponding other platform , 4- Influence experienced by core users from the
focal platform. The alternative hypothesis is accepted for each platform-community.

Platform-Community Group_num N Mean Rank Kruskal-Wallis H Asym.p

GH-CVE

1 3319 4529.89

11554.92 <0.001
2 3319 11097.05
3 3013 1693.29
4 3320 8181.38

TW-CVE

1 10 35.50

36.44 <0.001
2 10 15.40
3 10 25.50
4 10 5.60

GH-Crypto

1 226 790.84

766.23 <0.001
2 226 400.28
3 227 505.74
4 227 118.39

TW-Crypto

1 849 1597.43

2720.07 <0.001
2 849 2922.48
3 849 451.04
4 849 1823.05

Comparison of the influence exerted on the focal platform by the Interface users, and core users are

shown in Figure 4.3. We observed that interface users exert more influence on the focal platform

than the core users for all the platform-communities. This result is further confirmed in Table

4.3, where the Mann-Whitney U test statistics between interface users and core users are shown.

As mean rank values for interface users are higher than the core users and p-values < 0.05, for

each platform-community, we can conclude that influence exerted by the interface users on focal

platform-community users is statistically significantly higher than for core users.

Next, the comparison of the distributions of influence experienced from the focal platform and the
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Table 4.2: The test statistics of the pairwise comparison between groups in Table 4.1 for the al-
ternative hypothesis that the group i and Group j are significantly different. The group numbers
represent the following groups: 1- Influence experienced by the interface users from the corre-
sponding other platform , 2- Influence experienced by the interface users from the focal platform
, 3- Influence experienced by core users from the corresponding other platform , 4- Influence ex-
perienced by core users from the focal platform. Bonferroni adjusted p values are compared with
the significance level of 0.05 to test the alternative hypothesis.

Platform-Community Group i-Group j Test Statistic p Adj. p

GH-CVE

3-1 2836.604 <0.001 <0.001
3-4 -6488.089 <0.001 <0.001
3-2 9403.762 <0.001 <0.001
1-4 -3651.485 <0.001 <0.001
1-2 -6567.158 <0.001 <0.001
4-2 2915.673 <0.001 <0.001

TW-CVE

4-2 9.800 0.061 0.365
4-3 19.900 <0.001 0.001
4-1 29.900 <0.001 <0.001
2-3 -10.100 0.053 0.320
2-1 20.100 <0.001 0.001
3-1 10.000 0.056 0.335

GH-Crypto

4-2 281.891 <0.001 <0.001
4-3 387.357 <0.001 <0.001
4-1 672.453 <0.001 <0.001
2-3 -105.466 <0.001 <0.001
2-1 390.562 <0.001 <0.001
3-1 285.096 <0.001 <0.001

TW-Crypto

3-1 1146.392 <0.001 <0.001
3-4 -1372.015 <0.001 <0.001
3-2 2471.446 <0.001 <0.001
1-4 -225.623 <0.001 <0.001
1-2 -1325.054 <0.001 <0.001
4-2 1099.431 <0.001 <0.001

corresponding other platform between the group of interface users who are grouped according to

their behavioral role, i.e., being influenced to do the S, C, or I action, shows in Figure 4.4. We

observed that the pattern we observed for the interface users in Figure 4.2 is still preserved for

each group in all the platform-communities. i.e., influence experienced from the focal platform is
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Figure 4.3: The distributions of influence exerted on the focal platform-community by interface
users and core users. Interface users exert more influence on the focal platform-community than
core users in each platform-community. The subplot titles represent the focal platform | commu-
nity.

higher than that of the corresponding platform for each group in GH-CVE and TW-Crypto, and

influence experienced from the corresponding other platform is greater than that from the focal

platform for TW-CVE and GH-Crypto. However, it was difficult to observe a clear difference

between the distributions when we considered the same source of influence (i.e., whether from the

focal platform or the other platform).

The Kruskal-Wallis H test was performed to infer the statistical significance of the observations,

and the results are shown in Table 4.4, Table 4.5, Table 4.6, and Table 4.7. Because of the lack of

data points (< 5) in some groups in TW-CVE, we didn’t consider TW-CVE for this statistical anal-
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Table 4.3: Mann-Whitney U test statistics for the alternative hypothesis that the influence exerted
by interface users and core users on the focal platform is significantly different. (a: Asymptotic
significance value, b: exact significance value.) Group numbers represent the following groups:
1 – Influence exerted by the interface users on the focal platform-community , 2 – Influence ex-
erted by core users on the focal platform-community . The influence exerted by interface users is
significantly higher than that of core users.

Pltform-Community Group_num N Mean Rank Mann-Whitney U p

GH-CVE
1 3319 4714.94

879746.00 < 0.001a
2 3320 1925.48

TW-CVE
1 10 15.50

0.00 < 0.001b
2 10 5.50

GH-Crypto
1 226 336.66

867.00 < 0.001a
2 227 117.82

TW-Crypto
1 849 1216.52

48798.00 < 0.001a
2 849 482.48

ysis. Table 4.4 shows the Kruskal-Wallis H test statistics and mean value ranks of the experienced

influence corresponding to each group. The data revealed that at least one distribution differs sig-

nificantly from the other distributions for each considered platform-communities (asym. p-value

< 0.001). Subsequently, the test statistics of the pairwise comparison of the distributions of each

group which is shown in Table 4.5, Table 4.6, and Table 4.7 revealed the mean experienced influ-

ence from the focal platform is statically significantly higher than that from the corresponding other

platform for GH-CVE and TW-Crypto. But, the mean experienced influence from corresponding

other platform is statically significantly higher than that from the focal platform for GH-Crypto.

As we discussed earlier, this could be explained by the social dynamics of the communities.

Moreover, when comparing the groups within the same source of influence, (1) in GH-CVE, the

mean influence experienced by Interface Users_C > Interface Users_S > Interface Users_I and the

values are statistically significant only between the Interface UsersC and the Interface UsersI (adj.

p-value < 0.05) regardless of whether influence coming from the focal platform or from the TW-

CVE, (2) in GH-Crypto, mean influence experienced by Interface Users_C > Interface Users_I >
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Figure 4.4: The distributions of influence experienced from the focal platform-community and the
corresponding other platform-community by the groups of interface users, which are categorized
based on the action they are influenced to do. The subplot titles represent the focal platform |
community.

Interface Users_S but the values are not statistically significant (adj. p-value < 0.05) for any group

combination regardless of whether influence coming from the focal platform or from the TW-

Crypto, (3) in TW-Crypto, mean influence experienced by Interface Users_C > Interface Users_S

> Interface Users_I and the values are statistically significant only between the Interface Users_C

and the Interface Users_I (adj. p-value < 0.05) when the influence is coming from GH-Crypto.

These results suggest that the influence experienced by the interface users can be significantly
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different based on the actions that they are influenced to do. Still, the variations depend on the

platform and the community they work on.

Table 4.4: Kruskal-Wallis H test statistics for the alternative hypothesis that the influence experi-
enced by the interface users from the focal platform-community and from the corresponding other
platform-community are significantly different based on the action they are influenced to do, I, C,
or S. Group numbers represent the following groups: 1- Influence experienced by Interface Users_I
from the focal platform 2- Influence experienced by Interface Users_I from the other platform 3-
Influence experienced by Interface Users_C from the focal platform 4- Influence experienced by
Interface Users_C from the other platform 5- Influence experienced by Interface Users_S from
the focal platform 6- Influence experienced by Interface Users_S from the other platform. The
alternate hypothesis is accepted for each platform-community.

Platform-Community Group_num N Mean Rank Asym. p

GH-CVE

1 20 6273.35

<0.001

2 20 2299.20
3 3312 5767.90
4 3312 1860.05
5 589 6510.28
6 589 2517.21

GH-Crypto

1 6 190.83

<0.001

2 6 459.67
3 226 131.42
4 226 406.75
5 45 175.39
6 45 451.37

TW-Crypto

1 256 1490.01

<0.001

2 256 491.82
3 85 1413.68
4 85 415.98
5 697 1560.94
6 697 581.18

Finally, the distributions of exerted influence on the focal platform by the interface users based on

the action that they are influenced to do are shown in Figure 4.5. TW-CVE was not considered

for the analysis due to a small number of data points (<5) in some groups. We observed slight

variations in the amount of influence exerted by the interface users based on the actions they are
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Table 4.5: The test statistics of the pairwise comparison of the GH-CVE groups in Table 4.4 for the
alternative hypothesis that the group i and Group j are significantly different. Group numbers rep-
resent the following groups: 1- Influence experienced by Interface Users_I from the focal platform
2- Influence experienced by Interface Users_I from the other platform 3- Influence experienced
by Interface Users_C from the focal platform 4- Influence experienced by Interface Users_C from
the other platform 5- Influence experienced by Interface Users_S from the focal platform 6- Influ-
ence experienced by Interface Users_S from the other platform. Bonferroni adjusted p values are
compared with the significance level of 0.05 to test the alternative hypothesis.

Pltform-Community Group i-Group j Test Statistic p Adj. p

GH-CVE

4-2 439.151 0.387 1.000
4-6 -657.166 <0.001 <0.001
4-3 3907.849 <0.001 <0.001
4-1 4413.301 <0.001 <0.001
4-5 -4650.227 <0.001 <0.001
2-6 -218.015 0.672 1.000
2-3 -3468.698 <0.001 <0.001
2-1 3974.150 <0.001 <0.001
2-5 -4211.076 <0.001 <0.001
6-3 3250.683 <0.001 <0.001
6-1 3756.135 <0.001 <0.001
6-5 3993.061 0.000 <0.001
3-1 505.452 0.320 1.000
3-5 -742.378 <0.001 <0.001
1-5 -236.926 0.645 1.000

influenced to do. The Kruskal-Wallis H test statistics which are shown in Table 4.8 and the test

statistics of pairwise comparisons of each group which hare shown in Table 4.9 revealed that

the (1) in GH-CVE, mean influence exerted on focal platform by Interface Users_C > Interface

Users_S >Interface Users_I and the mean values are statistically significant only between Interface

Users_C and Interface Users_I (adj. p-value <0.05), (2) in GH-Crypto, mean influence exerted on

focal platform by Interface Users_C > Interface Users_I > Interface Users_S and the mean values

are statistically significant only between Interface Users_C and Interface Users_I (adj. p-value

<0.05) and , (3) in TW-Crypto, mean influence exerted on focal platform by Interface Users_C

> Interface Users_S >Interface Users_I and the mean values are statistically significant between
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Table 4.6: The test statistics of the pairwise comparison of the GH-Crypto groups in Table 4.4
for the alternative hypothesis that the group i and Group j are significantly different. Group num-
bers represent the following groups: 1- Influence experienced by Interface Users_I from the focal
platform 2- Influence experienced by Interface Users_I from the other platform 3- Influence experi-
enced by Interface Users_C from the focal platform 4- Influence experienced by Interface Users_C
from the other platform 5- Influence experienced by Interface Users_S from the focal platform 6-
Influence experienced by Interface Users_S from the other platform. Bonferroni adjusted p values
are compared with the significance level of 0.05 to test the alternative hypothesis.

Pltform-Community Group i-Group j Test Statistic p Adj. p

GH-Crypto

3-5 -43.966 0.092 1.000
3-1 59.411 0.370 1.000
3-4 -275.332 <0.001 <0.001
3-6 -319.944 <0.001 <0.001
3-2 328.244 <0.001 <0.001
3-1 15.444 0.824 1.000
3-4 231.366 <0.001 <0.001
5-6 -275.978 <0.001 <0.001
5-2 284.278 <0.001 0.001
1-4 -215.921 0.001 0.017
1-6 -260.533 <0.001 0.003
1-2 -268.833 0.004 0.054
4-6 -44.612 0.088 1.000
4-2 52.912 0.424 1.000
6-2 8.300 0.905 1.000

Interface Users_C and Interface Users_I (adj. p-value <0.05) as well as between Interface Users_C

and Interface Users_I (adj. p-value <0.05). From these results, we can conclude that there is a

significant difference in the influence exerted on the focal platform by the interface users based on

the action that they are influenced to do. Though these variations depend on the platform and the

community that they are worked on, the results show that the influence exerted by the interface

users who are influenced to do initiation action is significantly higher than that from the interface

users who are influenced to do the contribution action, in all three platform-communities that we

consider. This might result from the novelty of the information and where it is presented during a

conversation. The influence relationships across platforms allow users to bring novel information
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Table 4.7: The test statistics of the pairwise comparison of the TW-Crypto groups in Table 4.4
for the alternative hypothesis that the group i and Group j are significantly different. Group num-
bers represent the following groups: 1- Influence experienced by Interface Users_I from the focal
platform 2- Influence experienced by Interface Users_I from the other platform 3- Influence experi-
enced by Interface Users_C from the focal platform 4- Influence experienced by Interface Users_C
from the other platform 5- Influence experienced by Interface Users_S from the focal platform 6-
Influence experienced by Interface Users_S from the other platform. Bonferroni adjusted p values
are compared with the significance level of 0.05 to test the alternative hypothesis.

Pltform-Community Group i-Group j Test Statistic p Adj. p

TW-Crypto

4-2 75.836 0.312 1.000
4-6 -165.197 0.016 0.247
4-3 997.694 <0.001 <0.001
4-1 1074.031 <0.001 <0.001
4-5 -1144.956 <0.001 <0.001
2-6 -89.361 0.041 0.620
2-3 -921.858 <0.001 <0.001
2-1 998.195 <0.001 <0.001
2-5 -1069.120 <0.001 <0.001
6-3 832.497 <0.001 <0.001
6-1 908.834 <0.001 <0.001
6-5 979.759 <0.001 <0.001
3-1 76.337 0.309 1.000
3-5 -147.262 0.032 0.487
1-5 -70.925 0.105 1.000

to the focal platform. Suppose the novel information they obtain is used to initiate a post rather

than contributing to a post in the middle of an existing conversation. In that case, that information

could gain more attraction from the other users.
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Figure 4.5: The distributions of influence exerted on the focal platform-community by the groups
of interface users, which are categorized based on the action they are influenced to do. The subplot
titles represent the focal platform | community.
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Table 4.8: Kruskal-Wallis H test statistics for the alternate hypothesis that the amount of Influence
Exerted on the focal platform by the interface users based on the action they are influenced to do, I,
C, or S are significantly different. The group numbers represent the following groups: 1- Influence
exerted by the Interface Users_S on the focal platform 2- Influence exerted by the Interface Users_C
on the focal platform 3- Influence exerted by the Interface Users_I on the focal platform .

Platform-Community Group_num N Mean Rank Asym. p

GH-CVE
1 20 2344.85

<0.0012 3312 1836.78
3 589 2646.49

GH-Crypto
1 6 185.67

<0.0012 226 130.04
3 45 177.79

TW-Crypto
1 256 465.11

<0.0012 85 423.42
3 697 551.19

Table 4.9: The test statistics of the pairwise comparison between the groups in Table 4.8 for the
alternate hypothesis that the group i and Group j are significantly different. The group numbers
represent the following groups: 1- Influence exerted by the Interface Users_S on the focal platform
2- Influence exerted by the Interface Users_C on the focal platform 3- Influence exerted by the
Interface Users_I on the focal platform.

Platform-Community Group i-Group j Test Statistic p Adj.p

GH-CVE
2-1 508.074 0.045 0.136
2-3 -809.710 0.000 0.000
1-3 -301.636 0.241 0.724

GH-Crypto
2-3 -47.751 0.000 0.001
2-1 55.629 0.093 0.280
3-1 7.878 0.821 1.000

TW-Crypto
2-1 41.694 0.267 0.800
2-3 -127.776 0.000 0.001
1-3 -86.082 0.000 0.000
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Discussion

We investigated the cross-platform influence in the influence process of social media users by

comparing four social networks, the cryptocurrency and CVE communities of GitHub and Twitter.

First, we used platform-independent action classification, which are initiation, contribution, and

sharing, to model influence as a multidimensional entity. Then we used transfer entropy to capture

the nine types of casual influence relationships resulting from those three actions and quantify the

influence. Finally, with the premise that the existence of at least one type of influence relation-

ship between a user pair implies the social influence relationship between them, we reconstruct

the influence network of the interconnected social media platforms using the identified influence

relationships.

In order to explore the cross-platform influence in the influence process, we analyzed the influence

experienced from the focal platform and cross-platform and the influence exerted on the focal

platform by two groups of users: interface users and core users. Interface users are users in the

focal platform with a relatively higher number of influence relationships coming from the other

platform. Conversely, core users are users in the focal platform with relatively fewer influence

relationships coming from the other platform. Further, we execute the same analysis between the

groups of interface users categorized by the action they are influenced to perform.

Our results from an exploratory analysis of the distribution of the number of influence relationships

within the platform and across the platforms for two communities find evidence that users do not

always tend to form more ties within the focal platform. Instead, their primary source of influence,

i.e., the focal platform or the other platform, depends on the social dynamics of how the community

operates. In particular, we find that GitHub users have more influence relationships from within

GitHub than from Twitter in the CVE community, which is development-driven. But, Twitter users

have more influence relationships from GitHub than from within Twitter. In contrast, we observe
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the opposite pattern in the discussion-driven cryptocurrency community. Subsequently, our re-

sults indicate that the interface users and core users of the GitHub CVE community and Twitter

cryptocurrency community experienced more influence from the focal platform than from Twit-

ter and GitHub, respectively. In contrast, GitHub cryptocurrency and Twitter CVE communities

experienced more influence from Twitter and GitHub, respectively, than from their focal platform.

Nevertheless, the comparison between interface users and core users revealed that interface users

experienced significantly greater influence than core users. Moreover, it shows that interface users

are more influential than core users. The fact that interface users have a higher chance than the

core users to expose to novel information and bring them to the focal platform explains this result.

Moreover, we find significant differences in influence experienced by the interface users based on

the actions they are influenced to do in GitHub CVE and Twitter cryptocurrency communities. In

particular, we find those interface users who are influenced to do initiation actions are significantly

more vulnerable to being influenced than those who are influenced to make contributions. This

indicates that users interact across platforms more to initiate posts in the focal platform than con-

tribute to the existing content. Furthermore, our results from GitHub CVE, GitHub, and Twitter

cryptocurrency communities reveal significant differences between the influence exerted on the

focal platform based on the action that interface users influence to do. However, our results show

that the interface users who are influenced to do initiation are more influential than those influ-

enced to contribute across all platforms and communities. As contribution actions happen in the

middle of an existing conversation/post, they might attract fewer users than initial posts result-

ing in the difference between the effect of initiation and contribution action on further actions by

other users. These results lead us to conclude that there are significant differences in the influence

experienced by interface users and the influence exerted by them on others based on the actions

they are influenced to do. However, these differences will vary depending on the platform and the

community.
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CHAPTER 5: CONCLUSIONS

Even though online social influence has long been studied, this research area still has a lot of space

to grow because of the growing complexity of the online social media ecosystem. In this disserta-

tion, I present a method to examine social networks through the perspective of behavioral influence

propagation by addressing four drawbacks in the previous literature; 1) assuming the monolithic

notion of influence; i.e., all influence is measured using one number, 2) lack of generalizability

of the proposed algorithms or measures of influence, 3) assuming the influence as a property of

the user instead of the property of the relationship, and 4) lack of studies on the significance of

the cross-platform influence on users in the influence process. As influence can depend on many

factors, users’ actions can be one such factor, and different actions may influence users differently.

However, assuming a monolithic notion of influence hinders the comprehensive understanding

of such behavioral influences. Further, the lack of generalizability of proposed algorithms limits

comparing and contrasting the results over different platforms. Further, as both users play a role in

an influence relationship, assuming the influence as a user’s property will reduce the accuracy of

results. Moreover, as the number of different OSM used by OSM users is growing, treating OSM

platforms as independent entities might overlook the advantages and disadvantages of information

spread across platforms.

Therefore, to address these issues, first, I produce a transfer-entropy-based method to measure be-

havioral influence between online social media users. As transfer entropy captures the relationships

between two random processes, it helps to model the influence as a property of the relationship.

This method abstracts user actions into initiation, contribution, and sharing actions, allowing us

to analyze users’ social influence on different platforms and across platforms. We use this action

classification to define influence relationships. Then, I examine how the strength of influence re-

lationships vary between interest cryptocurrency and CVE communities and across GitHub and
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Twitter platforms. Finally, we compare the empirical results against social influence propagation

patterns expected by scale-free null models. Our findings show that characteristics of influence

cascades and the patterns of influence are determined by the platform and community of the users.

Secondly, I use the same framework to reconstruct the interconnected OSM and investigate the

cross-platform influence in the influence process of OSM users, as it does not limit us from ana-

lyzing the cross-platform influence relationships. Then I examine the social dynamics between the

users with a relatively higher number of influence relationships coming from the corresponding

cross-platform and those with the relatively fewer influence relationships coming from the corre-

sponding cross-platform. The experiments consider the empirical data of Cryptocurrency and the

CVE community on GitHub and Twitter platforms. Our results indicate that the interface users

experience greater influence than core users. Also, results show that the interface users exert more

influence on the focal platform than the core users. Moreover, our results show that interface users

who are influenced to do initiation action exert more influence than those who are influenced to do

contribution action.

Therefore, through this research, we extend the existing literature by discarding the traditional

monolithic notion of influence and by providing new insights into the differences and similarities

of how social influence propagates within and across different communities and platforms. Overall,

our study contributes to science by (1) presenting a novel and generalized method to track influence

relationships caused by actions of OSM, (2) providing new insights to improve state-of-art methods

that assume a monolithic notion of influence and homogeneous populations in the social influence

analysis field, (3) characterizing influence cascades caused by actions of social network media

across platforms and communities and presenting the evidence to show that the depth and structure

of influence cascades are determined by the platform and community, (4) presenting a method to

investigate the significance of cross-platform influence in the influence process, (5) presenting the

evidence to show that the users with a relatively higher number of social influence relationships
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across platforms are more vulnerable to being influenced and influential than the others, and (6)

providing insights for marketing firms, online community leaders, and policymakers to develop

intervention strategies to control the spread of information or misinformation.

Future Work

Although we have analyzed networks within the confines of two platforms and two communities

in this study, it is exciting to explore the influence cascades and cross-platform influence of other

communities and platforms in the future. For example, both communities we focused on in this

study are related to technology. However, the communities related to entertainment or information

operations might show utterly different influence cascade structures and cross-platform influence

patterns. Also, even if we consider misinformation related to health and politics, we might see

different behavioral structural properties. We believe that this would be beneficial to the research

community.
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APPENDIX A: SUPPLEMENTARY MATERIALS - STATISTICAL TESTS

63



Spearman’s Correlation Test

We present here scatter plots corresponding to each Spearman’s correlation test which we perform.

We observe that except Crypto community (Figure A.1) neither CVE community (Figure A.2)

nor GitHub (Figure A.3), Twitter (Figure A.4) platforms shown to have clear monotonic relation.

Further, we observe that contribution to sharing and sharing to contribution influence relationships

in the Crypto community not showing a clear monotonic relation.
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Figure A.1: The scatter plot of residuals of median total influence values of GitHub and Twitter
platforms in Crypto community.
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Figure A.2: The scatter plot of residuals of median total influence values of GitHub and Twitter
platforms in CVE community.
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Figure A.3: The scatter plot of residuals of median total influence values of Crypto and CVE
community in GitHub.
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Figure A.4: The scatter plot of residuals of median total influence values of Crypto and CVE
community in Twitter.
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Factorial ANOVA Test

We examine the use of the factorial ANOVA test as a statistical significance test to infer the similar-

ities of the structure of the influence cascades across platforms and communities. Forty influence

cascades are chosen randomly from the set of influence cascades extracted from each empirical in-

fluence networks. The residual values between total normalized influence vector components and

the median total normalized influence vector components of the influence cascades from the cor-

responding scale-free network are calculated. Data is grouped by platform-community, influence

relationships, and level, and the normality of each data set was examined using the Shapiro-Wilk

test. The p-values are compared with 0.05. Not all the data sets were able to satisfy the normality

assumption as shown in Tables A.1, A.2, A.3, and A.4.
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Table A.1: Test statistics of factorial ANOVA (Part I).

Platform-Community Influence Relationship Level Statistics p-value H0
GitHub-CVE contributionTocontribution 1 0.78 2.72E-06 rejected
GitHub-CVE contributionTocontribution 2 0.9 1.79E-03 rejected
GitHub-CVE contributionTocontribution 3 0.93 1.53E-02 rejected
GitHub-CVE contributionTocontribution 4 0.8 8.28E-06 rejected
GitHub-CVE contributionToinitiation 1 0.39 1.04E-11 rejected
GitHub-CVE contributionToinitiation 2 1 1.00E+00 not rejected
GitHub-CVE contributionToinitiation 3 1 1.00E+00 not rejected
GitHub-CVE contributionToinitiation 4 1 1.00E+00 not rejected
GitHub-CVE contributionTosharing 1 0.23 3.25E-13 rejected
GitHub-CVE contributionTosharing 2 0.64 1.05E-08 rejected
GitHub-CVE contributionTosharing 3 0.61 4.91E-09 rejected
GitHub-CVE contributionTosharing 4 1 1.00E+00 not rejected
GitHub-CVE initiationTocontribution 1 0.39 1.04E-11 rejected
GitHub-CVE initiationTocontribution 2 1 1.00E+00 not rejected
GitHub-CVE initiationTocontribution 3 1 1.00E+00 not rejected
GitHub-CVE initiationTocontribution 4 1 1.00E+00 not rejected
GitHub-CVE initiationToinitiation 1 1 1.00E+00 not rejected
GitHub-CVE initiationToinitiation 2 1 1.00E+00 not rejected
GitHub-CVE initiationToinitiation 3 1 1.00E+00 not rejected
GitHub-CVE initiationToinitiation 4 1 1.00E+00 not rejected
GitHub-CVE initiationTosharing 1 1 1.00E+00 not rejected
GitHub-CVE initiationTosharing 2 1 1.00E+00 not rejected
GitHub-CVE initiationTosharing 3 1 1.00E+00 not rejected
GitHub-CVE initiationTosharing 4 1 1.00E+00 not rejected
GitHub-CVE sharingTocontribution 1 0.23 3.25E-13 rejected
GitHub-CVE sharingTocontribution 2 1 1.00E+00 not rejected
GitHub-CVE sharingTocontribution 3 1 1.00E+00 not rejected
GitHub-CVE sharingTocontribution 4 1 1.00E+00 not rejected
GitHub-CVE sharingToinitiation 1 1 1.00E+00 not rejected
GitHub-CVE sharingToinitiation 2 1 1.00E+00 not rejected
GitHub-CVE sharingToinitiation 3 1 1.00E+00 not rejected
GitHub-CVE sharingToinitiation 4 1 1.00E+00 not rejected
GitHub-CVE sharingTosharing 1 1 1.00E+00 not rejected
GitHub-CVE sharingTosharing 2 1 1.00E+00 not rejected
GitHub-CVE sharingTosharing 3 1 1.00E+00 not rejected
GitHub-CVE sharingTosharing 4 1 1.00E+00 not rejected
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Table A.2: Test statistics of factorial ANOVA (Part II).

Platform-Community Influence Relationship Level Statistics p-value H0
GitHub-Crypto contributionTocontribution 1 0.73 3.02E-07 rejected
GitHub-Crypto contributionTocontribution 2 0.89 1.32E-03 rejected
GitHub-Crypto contributionTocontribution 3 0.91 3.21E-03 rejected
GitHub-Crypto contributionTocontribution 4 0.3 1.36E-12 rejected
GitHub-Crypto contributionToinitiation 1 0.42 2.43E-11 rejected
GitHub-Crypto contributionToinitiation 2 0.77 2.07E-06 rejected
GitHub-Crypto contributionToinitiation 3 0.77 2.11E-06 rejected
GitHub-Crypto contributionToinitiation 4 1 1.00E+00 not rejected
GitHub-Crypto contributionTosharing 1 1 1.00E+00 not rejected
GitHub-Crypto contributionTosharing 2 0.95 5.75E-02 not rejected
GitHub-Crypto contributionTosharing 3 0.95 5.75E-02 not rejected
GitHub-Crypto contributionTosharing 4 1 1.00E+00 not rejected
GitHub-Crypto initiationTocontribution 1 0.15 6.64E-14 rejected
GitHub-Crypto initiationTocontribution 2 0.6 3.49E-09 rejected
GitHub-Crypto initiationTocontribution 3 0.57 1.13E-09 rejected
GitHub-Crypto initiationTocontribution 4 1 1.00E+00 not rejected
GitHub-Crypto initiationToinitiation 1 1 1.00E+00 not rejected
GitHub-Crypto initiationToinitiation 2 0.63 7.16E-09 rejected
GitHub-Crypto initiationToinitiation 3 0.23 3.25E-13 rejected
GitHub-Crypto initiationToinitiation 4 1 1.00E+00 not rejected
GitHub-Crypto initiationTosharing 1 1 1.00E+00 not rejected
GitHub-Crypto initiationTosharing 2 0.6 3.26E-09 rejected
GitHub-Crypto initiationTosharing 3 0.15 6.64E-14 rejected
GitHub-Crypto initiationTosharing 4 1 1.00E+00 not rejected
GitHub-Crypto sharingTocontribution 1 0.65 1.72E-08 rejected
GitHub-Crypto sharingTocontribution 2 0.65 1.68E-08 rejected
GitHub-Crypto sharingTocontribution 3 0.77 1.70E-06 rejected
GitHub-Crypto sharingTocontribution 4 1 1.00E+00 not rejected
GitHub-Crypto sharingToinitiation 1 0.15 6.64E-14 rejected
GitHub-Crypto sharingToinitiation 2 0.29 1.19E-12 rejected
GitHub-Crypto sharingToinitiation 3 1 1.00E+00 not rejected
GitHub-Crypto sharingToinitiation 4 1 1.00E+00 not rejected
GitHub-Crypto sharingTosharing 1 1 1.00E+00 not rejected
GitHub-Crypto sharingTosharing 2 0.15 6.64E-14 rejected
GitHub-Crypto sharingTosharing 3 1 1.00E+00 not rejected
GitHub-Crypto sharingTosharing 4 1 1.00E+00 not rejected
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Table A.3: Test statistics of factorial ANOVA (Part III).

Platform-Community Influence Relationship Level Statistics p-value H0
Twitter-CVE contributionTocontribution 1 0.15 6.64E-14 rejected
Twitter-CVE contributionTocontribution 2 1 1.00E+00 not rejected
Twitter-CVE contributionTocontribution 3 1 1.00E+00 not rejected
Twitter-CVE contributionTocontribution 4 1 1.00E+00 not rejected
Twitter-CVE contributionToinitiation 1 0.15 6.64E-14 rejected
Twitter-CVE contributionToinitiation 2 0.62 5.59E-09 rejected
Twitter-CVE contributionToinitiation 3 0.15 6.64E-14 rejected
Twitter-CVE contributionToinitiation 4 1 1.00E+00 not rejected
Twitter-CVE contributionTosharing 1 0.22 2.81E-13 rejected
Twitter-CVE contributionTosharing 2 0.63 7.17E-09 rejected
Twitter-CVE contributionTosharing 3 0.61 4.53E-09 rejected
Twitter-CVE contributionTosharing 4 1 1.00E+00 not rejected
Twitter-CVE initiationTocontribution 1 0.59 2.07E-09 rejected
Twitter-CVE initiationTocontribution 2 0.65 1.67E-08 rejected
Twitter-CVE initiationTocontribution 3 1 1.00E+00 not rejected
Twitter-CVE initiationTocontribution 4 1 1.00E+00 not rejected
Twitter-CVE initiationToinitiation 1 0.79 4.87E-06 rejected
Twitter-CVE initiationToinitiation 2 0.85 9.62E-05 rejected
Twitter-CVE initiationToinitiation 3 0.74 4.97E-07 rejected
Twitter-CVE initiationToinitiation 4 1 1.00E+00 not rejected
Twitter-CVE initiationTosharing 1 0.62 6.69E-09 rejected
Twitter-CVE initiationTosharing 2 0.8 7.55E-06 rejected
Twitter-CVE initiationTosharing 3 0.64 1.21E-08 rejected
Twitter-CVE initiationTosharing 4 1 1.00E+00 not rejected
Twitter-CVE sharingTocontribution 1 0.15 6.64E-14 rejected
Twitter-CVE sharingTocontribution 2 0.54 5.09E-10 rejected
Twitter-CVE sharingTocontribution 3 0.23 3.25E-13 rejected
Twitter-CVE sharingTocontribution 4 1 1.00E+00 not rejected
Twitter-CVE sharingToinitiation 1 0.45 4.74E-11 rejected
Twitter-CVE sharingToinitiation 2 0.7 1.17E-07 rejected
Twitter-CVE sharingToinitiation 3 0.44 3.48E-11 rejected
Twitter-CVE sharingToinitiation 4 1 1.00E+00 not rejected
Twitter-CVE sharingTosharing 1 0.33 2.45E-12 rejected
Twitter-CVE sharingTosharing 2 0.71 1.30E-07 rejected
Twitter-CVE sharingTosharing 3 0.46 6.44E-11 rejected
Twitter-CVE sharingTosharing 4 1 1.00E+00 not rejected
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Table A.4: Test statistics of factorial ANOVA (Part IV).

Platform-Community Influence Relationship Level Statistics p-value H0
Twitter-Crypto contributionTocontribution 1 0.36 5.16E-12 rejected
Twitter-Crypto contributionTocontribution 2 0.65 1.40E-08 rejected
Twitter-Crypto contributionTocontribution 3 0.56 8.47E-10 rejected
Twitter-Crypto contributionTocontribution 4 1 1.00E+00 not rejected
Twitter-Crypto contributionToinitiation 1 0.53 3.80E-10 rejected
Twitter-Crypto contributionToinitiation 2 0.69 7.75E-08 rejected
Twitter-Crypto contributionToinitiation 3 0.52 2.98E-10 rejected
Twitter-Crypto contributionToinitiation 4 1 1.00E+00 not rejected
Twitter-Crypto contributionTosharing 1 0.26 6.03E-13 rejected
Twitter-Crypto contributionTosharing 2 0.61 4.73E-09 rejected
Twitter-Crypto contributionTosharing 3 0.55 6.01E-10 rejected
Twitter-Crypto contributionTosharing 4 1 1.00E+00 not rejected
Twitter-Crypto initiationTocontribution 1 0.42 1.96E-11 rejected
Twitter-Crypto initiationTocontribution 2 0.36 5.14E-12 rejected
Twitter-Crypto initiationTocontribution 3 0.36 5.42E-12 rejected
Twitter-Crypto initiationTocontribution 4 0.15 6.64E-14 rejected
Twitter-Crypto initiationToinitiation 1 0.45 4.32E-11 rejected
Twitter-Crypto initiationToinitiation 2 0.36 5.45E-12 rejected
Twitter-Crypto initiationToinitiation 3 0.22 2.70E-13 rejected
Twitter-Crypto initiationToinitiation 4 0.15 6.64E-14 rejected
Twitter-Crypto initiationTosharing 1 0.31 1.83E-12 rejected
Twitter-Crypto initiationTosharing 2 0.25 5.11E-13 rejected
Twitter-Crypto initiationTosharing 3 0.24 3.90E-13 rejected
Twitter-Crypto initiationTosharing 4 0.15 6.64E-14 rejected
Twitter-Crypto sharingTocontribution 1 0.67 2.85E-08 rejected
Twitter-Crypto sharingTocontribution 2 0.64 1.25E-08 rejected
Twitter-Crypto sharingTocontribution 3 0.58 1.52E-09 rejected
Twitter-Crypto sharingTocontribution 4 0.15 6.64E-14 rejected
Twitter-Crypto sharingToinitiation 1 0.75 7.77E-07 rejected
Twitter-Crypto sharingToinitiation 2 0.79 4.20E-06 rejected
Twitter-Crypto sharingToinitiation 3 0.49 1.37E-10 rejected
Twitter-Crypto sharingToinitiation 4 1 1.00E+00 not rejected
Twitter-Crypto sharingTosharing 1 0.71 1.30E-07 rejected
Twitter-Crypto sharingTosharing 2 0.58 1.55E-09 rejected
Twitter-Crypto sharingTosharing 3 0.48 1.06E-10 rejected
Twitter-Crypto sharingTosharing 4 0.15 6.64E-14 rejected
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