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ABSTRACT 

Alzheimer's Disease (AD) is a neurodegenerative disorder affecting over 35 million 

people. Early diagnosis and intervention are crucial for improving outcomes. Digital Cognitive 

Biomarkers (DCBs) offer a promising approach for early detection and disease management, 

quantifying cognitive processes of encoding and retrieval through a hierarchical Bayesian 

cognitive processing model using wordlist memory tests. We hypothesize that DCBs will 

correlate with classic AD cerebrospinal fluid (CSF) biomarkers (Aβ42, T-tau, p-tau) in patients 

with varying cognitive decline levels compared to healthy elderly controls. Using Alzheimer's 

Disease Neuroimaging Initiative (ADNI) data and paired Pearson correlation coefficient 

analysis, our results support the hypothesis, indicating that DCBs correlate with CSF biomarkers 

and demonstrating their potential as a noninvasive diagnostic tool for AD. Furthermore, DCBs 

exhibited improved diagnostic accuracy compared to classic AD CSF biomarkers, as indicated 

by the area under the Receiver Operating Characteristic curve analysis. DCBs hold promise for 

monitoring disease progression, response to therapeutics, and identifying patients at earlier 

disease stages. Future research should validate these findings in diverse populations and conduct 

longitudinal studies to assess DCBs' potential in tracking disease progression and treatment 

response. Integrating DCBs with other diagnostic approaches, such as neuroimaging, could 

enhance overall AD diagnosis accuracy and provide a comprehensive understanding of an 

individual's cognitive health. In conclusion, DCBs may offer a valuable, noninvasive tool for 

early diagnosis and management of Alzheimer's Disease, supporting the initial hypothesis. 
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DEDICATION 

Dedicated to my father, whose battle with Alzheimer's disease touched the lives of all who knew 

him. Your strength, kindness, and struggle continue to motivate me every day. Your memory 

will live on through the love and memories you shared with us, and I will always be grateful for 

the time we had together. Rest in peace, Dad. 
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INTRODUCTION 

Alzheimer's disease (AD) is a progressive and neurodegenerative disorder that results in 

cognitive decline, memory loss, and impaired functioning of daily activities. It is the most 

common form of dementia and is responsible for up to 70% of cases. It affects more than 35 

million people globally, and the incidence of the disease is expected to double every 20 years 

owing to population aging (Prince, 2013). Despite advances in AD research, there is still no cure 

for this disease. The current treatments available are symptomatic and only provide a modest 

improvement in symptoms for a limited time. Therefore, the development of new diagnostic 

tools and therapies is of utmost importance to provide better care to individuals with AD and 

their families. 

AD is characterized by the presence of amyloid-β (Aβ) protein plaques and 

hyperphosphorylation of tau protein, which lead to neuronal dysfunction and death. The disease 

has a long preclinical phase, which can last for many years before the onset of clinical 

symptoms. During this preclinical phase, there is an accumulation of Aβ plaques and tau tangles 

in the brain, which are thought to be the main pathological hallmarks of AD. The clinical 

symptoms of AD are thought to result from the neuronal damage and death caused by these 

pathological changes (Long, 2019). 

The current diagnostic guidelines for AD are described in three stages: preclinical, mild 

cognitive impairment (MCI), and Alzheimer's dementia. The preclinical stage is characterized by 

the presence of Aβ and tau biomarkers in cerebrospinal fluid (CSF) and brain imaging studies. 

However, it is still not possible to predict which cognitively healthy people will and will not 

advance to MCI or dementia (Sperling et al., 2011). The development of new biomarkers that 
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can accurately predict the transition from preclinical to clinical stages of the disease is critical for 

early diagnosis and intervention. Biomarkers are measurable indicators of biological processes 

that can provide valuable information about disease pathology and progression. CSF biomarkers 

for AD measure β-amyloid 42, which produces amyloid plaques in the brain, tau, and phospho-

tau, which produce tau tangles in the brain, another characteristic of Alzheimer's (Lewczuk & 

Kornhuber, 2011). These CSF biochemical indicators (biomarkers for AD) may accurately 

predict the transition from MCI to Alzheimer's dementia with a rate of over 80% (Hampel et al., 

2008). The improvement of early and noninvasive AD diagnosis is needed. It is of interest to 

investigate new noninvasive biomarkers that may be useful to add significant diagnostic value 

for the realistic monitoring of patients. The focus of AD research has changed from moderate 

AD stages to asymptomatic or preclinical phases, when the cognitive changes may be very subtle 

and challenging to assess (Rafii & Aisen, 2019). Therefore, the development of more sensitive 

biomarkers that can detect cognitive changes in the preclinical phase is crucial for the early 

diagnosis and treatment of AD.  

One promising approach to developing new biomarkers is to use Digital Cognitive 

Biomarkers (DCBs). DCBs are generated with a hierarchical Bayesian cognitive processing 

(HBCP) model that utilizes data from common World List Memory (WLM) tests (Bock et al., 

2021). WLM tests are commonly employed to detect cognitive impairment or dementia phases of 

Alzheimer's disease (AD) in patients before neuroimaging or other examinations, as well as to 

track treatment responses (Salmon & Bondi, 2009). Since the focus of AD research has changed 

to asymptomatic or preclinical phases, this has encouraged the research community to review the 

WLM tests that they employ and construct more complex scoring to attain the highest level of 

measurement precision (Aisen et al., 2017). Newly developed Digital Cognitive Biomarkers 

2 



 

 

 

   

 

 

 

 

 

    

 

  

 

 

  

(DCBs) quantify cognitive processes of encoding and retrieval and serve as biomarkers for 

diagnostics and monitoring disease progression (Bock et al., 2021). By verifying whether 

cognitive performance measured by DCBs correlates with CSF biomarkers levels, we can 

understand the potential usefulness of DCBs in early diagnosis and disease management. 

Using data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) data inventory, 

associations between DCBs and classic AD CSF biomarkers will be investigated using paired 

Pearson correlation coefficient analysis. We hypothesized that Digital Cognitive Biomarkers will 

be correlated with the AD classic CSF biomarkers Aβ42, T-tau, and p-tau in patients with 

varying levels of cognitive decline, as compared to cognitively healthy elderly population control 

participants. In addition, we assessed the diagnostic accuracy of each DCB domain separately 

and the combined DCB score for Alzheimer's disease using Receiver Operating Characteristic 

(ROC) curve analysis. The ROC curve was compared to a CSF biomarker ROC. We predicted 

our results will show that the DBCs correlate with CSF biomarkers, supporting that DCBs could 

provide valuable insight and eventually become increasingly useful in monitoring disease 

progression and response to therapeutics. In addition, DCBs could contribute to more accessible 

diagnostics available at varying levels of care throughout disease progression. With an aging 

population, we will require advances in the evaluation of the underlying cognitive process in 

individuals with dementia and Alzheimer's Disease. DCBs could prove a powerful tool in the 

characterization of underlying cognitive processes and how they are affected by aging, disease 

progression, and therapeutic interventions. 
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BACKGROUND 

Alzheimer's disease (AD) is the most prevalent neurodegenerative cause of dementia, 

accounting for 60% to 80% of dementia cases ("2022 Alzheimer's disease facts and figures”, 

2022). It affects more than 35 million individuals globally, with 6.5 million of those individuals 

in the United States ("2022 Alzheimer's disease facts and figures," 2022). Its incidence is 

predicted to double every 20 years owing to population aging (Prince et al., 2013). AD is 

characterized by alterations including the buildup of Aβ plaques and protein tau tangles in the 

brain (Rajmohan & Reddy, 2017). Neuronal loss and brain tissue damage accompany these 

alterations (Jack et al., 2018). 

Symptoms 

The current diagnostic guidelines of AD are described in 3 stages: preclinical, mild 

cognitive impairment (MCI), and Alzheimer’s dementia (Croisile et al., 2012) The preclinical 

stage includes amyloid aggregation and other brain changes that do not yet exhibit visible 

clinical symptoms (Mayo Clinic, 2018). The MCI stage includes abnormal cognitive problems 

that do not interfere with independence (Mayo Clinic, 2018). Alzheimer’s dementia includes the 

final stage in which memory and spatial problems are substantial enough to limit one's capacity 

for independent functioning (Croisile et al., 2012). The damaged areas of the brain include the 

hippocampus, frontal lobe, and temporal lobe, which are the memory, thought-related, and 

language areas of the brain, respectively (Mayo Clinic, 2018). Degeneration of cholinergic 

neurons, particularly in the basal forebrain, is also a significant contributing factor in Alzheimer's 

disease, leading to a decline in acetylcholine levels and impairing cognitive functions (Mayo 
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Clinic, 2018). As a result, memory, language, and thinking issues are frequently among the early 

signs of Alzheimer's disease (Mayo Clinic, 2018). The brain changes that lead to these symptoms 

are believed to start 20 years or more before symptoms appear ("2022 Alzheimer's disease facts 

and figures," 2022). The most well-known symptoms of AD include memory loss, decreased 

communication, disorientation, confusion, poor judgment, and behavioral abnormalities (Atri, 

2019). In addition, apathy and depression are common early symptoms, as is forgetting recent 

conversations, names, or events. Later signs and symptoms include difficulties in several motor 

functions that involve speaking, walking, and swallowing (Atri, 2019; Braak et al., 2011). 

Diagnosis 

Previously, AD could only be definitively diagnosed at death. An autopsy could reveal 

distinctive plaques and tangles (NIA, 2020). Now, AD can be identified during life with greater 

accuracy. Biomarkers can identify the plaques and tangles through specialized PET scans or by 

identifying amyloid and tau proteins in plasma and CSF (Wolk DA, 2020). A diagnostic workup 

would most likely include neurological and neuropsychological testing, a variety of brain 

imaging, and CSF biomarkers (Albert et al., 2011). Memory is tested, as well as other mental 

processes, during neuropsychological testing (Albert et al., 2011). Brain imaging can be used to 

rule out diseases other than AD that could cause similar symptoms, such as tumors or strokes. 

Typical imaging includes MRI to look for brain shrinkage in areas of the brain linked to AD and 

CT scans to rule out head traumas, strokes, and malignancies (Albert et al., 2011). Doctors may 

be able to identify certain brain alterations with specialized imaging, which is mostly utilized in 

large hospitals or clinical studies (NIA, 2022). These techniques use PET scans to evaluate the 

amount of neurofibrillary tangles and amyloid deposits in the brain. Finally, the abnormal beta-
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amyloid and tau levels in the CSF fluid may be measured using further testing (NIA, 2022). 

An international diagnostic criterion for AD was proposed by the National Institute of 

Aging-Alzheimer Association (Albert et al., 2011). Diagnosis is based on biomarkers found in 

cerebrospinal fluid (CSF), MRI, and PET, including amyloidosis, tau pathology, and 

neurodegeneration (Sperling et al., 2011). The "AD signature" in CSF, which is defined as a 

reduced concentration of Aβ42 with an increase in total tau protein (t-Tau) and 

hyperphosphorylated tau (p-Tau), is one of the most well-established molecular indicators for 

dementia (Albert et al., 2011). International standards include this CSF profile as a supportive 

diagnostic criterion (Albert et al., 2011). 

Treatment 

Although there is no known cure for Alzheimer's, there are medications that might slow 

the disease's course and alleviate some of its symptoms. Cholinesterase inhibitors and memantine 

are two types of medication now utilized to treat AD (Parsons et al., 2013). Acetylcholine, a 

neurotransmitter that Alzheimer's disease depletes in the brain, is preserved by cholinesterase 

inhibitors (Sharma, 2019). Memantine inhibits the release of the neurotransmitter glutamate, 

which stops an excessive amount of calcium from entering the brain cells and fights neuronal 

death from excitotoxicity (Robinson & Keating, 2006). The Food and Drug Administration 

(FDA) authorized aducanumab (Aduhelm) for the treatment of certain Alzheimer's patients in 

June 2021. This is the first medication authorized for use to remove amyloid plaques in the brain, 

which are a hallmark of Alzheimer's disease (Beshir et al., 2022). Unfortunately, Alzheimer's 

disease is neither reversed nor cured with aducanumab. After 18 months, it decreased the levels 

of amyloid plaque in 2 clinical studies, however, neither one saw any clinical effects (Woloshin 
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& Kesselheim, 2022). In addition, side effects, such as brain swelling, were common in patients. 

The FDA has mandated that a new study be finished by 2030 to determine whether aducanumab 

offers a meaningful benefit (Woloshin & Kesselheim, 2022). 

CSF AD Biomarkers 

CSF biomarkers are a promising diagnostic tool for AD diagnosis. In the pre-clinical 

stage, NORMALassociated biomarkers already exhibit aberrant concentrations, enabling early 

AD diagnosis even before the emergence of symptoms (De Meyer et al., 2010). Due to the direct 

interaction between the brain's interstitial fluid and the CSF, CSF biomarkers are favored over 

blood/plasma biochemical indicators in AD to represent brain pathology. Through the blood-

brain barrier's constrained movement of chemicals and proteins, the CSF is protected from the 

peripheral system's direct effect (Olsson et al., 2016). As a result, CSF analysis is useful for 

identifying neurodegenerative disease biomarkers in vivo. The three primary pathological 

alterations that take place in the AD brain— amyloid (Aβ) deposition into extracellular Aβ 

plaques, the development of intracellular neurofibrillary tangles (NFTs), and neuronal loss—are 

individually linked with CSF biomarkers (Jansen et al., 2015). The transmembrane amyloid 

precursor protein (APP), which has 42 amino acids (Aβ1−42), is broken down by secretases, 

including α-secretase, β-secretase (BACE1), and γ-secretase, to produce the amyloid peptide 

(Jansen et al., 2015). A lower CSF Aβ1−42 content in AD is indicative of the extracellular Aβ 

deposits that form in the brain due to Aβ’s insoluble nature (Niemantsverdriet et al., 2017). Tau 

proteins are widely distributed in the cytoplasm of neurons, where they serve to keep 

microtubules in place (Jansen et al., 2015). Tau is hyperphosphorylated in AD due to an 

imbalance between kinases and phosphatases, which causes tau to detach from microtubules and 
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accumulate into NFT (Jansen et al., 2015). Tau and phosphorylated tau proteins are released into 

the extracellular environment throughout disease progression, leading to higher CSF tau 

concentrations in AD (Jansen et al., 2015). The development of plaques and NFT increases 

neuronal damage and, as a result, synaptic and neuronal degeneration (Jansen et al., 2015). The 

first Aβ plaques appear at least ten years before the first symptoms, most likely twenty to thirty 

years before the first symptoms, and are therefore detectable in the CSF for early diagnosis 

(Jansen et al., 2015). In contrast to CSF Aβ1-42, CSF tau biomarkers manifest later in the 

pathophysiological process, and CSF tau is more strongly linked with cognitive deterioration 

than Aβ1−42), (Buchhave et al., 2012; Savva et al., 2009). CSF biomarkers may provide accurate 

and early detection of AD pathophysiology, though an invasive lumbar puncture is required. 

Figure 1: Accumulation of p-tau and Aβ42 in a neuron and subsequent collection of CSF through lumbar puncture 
for diagnostic testing 
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Although CSF biomarkers correlate with pathophysiology, there remains a discrepancy in 

the correlation with cognitive function. According to reports, the presence of some standard 

biomarkers is correlated with cognitive function (Bertens et al., 2015; Rolstad et al., 2011). 

However, this connection is still debatable (Williams et al., 2011). Reports from earlier 

investigations on the relationship between cognitive function and biomarkers have varied (Ibarra 

et al., 2021). While numerous previous research has identified an association between episodic 

memory and biometric marker concentrations (Ibarra et al., 2021; Reijs et al., 2017), one study 

showed no correlation in several elements of cognition (Ibarra et al., 2021). 

The majority of cross-sectional investigations at various clinical phases (Vemuri et al., 

2009) were unable to establish a relationship between global cognition and CSF biomarkers 

(Spies et al., 2010). However, in one study, amyloid positive deposition was associated with 

worse cognitive performance than amyloid-negative deposition in older adults who were 

cognitively sound (Duke Han et al., 2017). Longitudinal investigations on an older population in 

good cognitive health have shown that participants who were amyloid positive had a more 

pronounced cognitive deterioration over time than those who were amyloid negative (Stomrud et 

al., 2010). A contrasting study did not find a correlation between biomarker levels and cognitive 

decline in patients with mild dementia and AD (Vemuri et al., 2010). The Mini-Mental State 

Examination (MMSE) and memory tests in AD populations were found to be negatively 

correlated with CSF total-tau levels in another investigation (Dumurgier et al., 2017). Another 

aim of this study is to further examine whether CSF biomarkers might be used to indicate AD 

cognitive deterioration utilizing the latest cognitive tests in digital cognitive biomarkers (DCB), 

given the differences between prior findings. 
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Digital Cognitive Biomarkers 

The significant socioeconomic and medical costs associated with Alzheimer's disease 

(AD) have radically changed the focus of some clinical research toward early detection and 

intervention (Cummings et al., 2018). This change has been in line with FDA advice supporting 

earlier-stage medicines and improved measuring techniques for demonstrating such therapies' 

clinically significant benefits (Bock et al., 2021). 

For certain cognitive domains, current common neuropsychological testing cannot be 

used. The Mini-Mental State Examination (MMSE( is a frequently used neuropsychological test 

in AD research (Vemuri et al., 2010). The Cambridge Cognitive Test (CAMCOG), the 

Alzheimer's Disease Assessment Scale-Cognitive Subscale (ADAS-Cog), and the Consortium to 

Establish a Registry for Alzheimer's Disease (CERAD) battery are three shorter but more 

thorough tests than the MMSE (Rami et al., 2011). Another aim of this study is to examine the 

application of DCBs in the setting of health care, where neuropsychological examination of 

underlying cognitive processes is not feasible with current testing. 

Hence, Embic Corporation’s digital cognitive biomarkers (DCBs) will be used for this 

study, which quantify underlying cognitive processes of encoding and retrieval that have been 

previously inaccessible (Bock et al., 2021). Embic’s DCBs facilitate a non-invasive and 

pragmatic approach to characterizing cognitive function at a granular level, which enables the 

identification and quantification of subtle but meaningful cognitive changes (Bock et al., 2021). 

The DBCs are obtained through the combination of Embic’s normative database of cognitively 

healthy adults, with a hierarchical Bayesian cognitive processing (HBCP) model, applied to item 

response data from commonly used wordlist learning, recall, and recognition tasks (Lee et al., 

2020). HBCP-generated DCBs revealed the capacity to identify individuals with impending 
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cognitive impairment from those who stay cognitively normal, utilizing baseline, item-response 

data from a WLM test (Bock, 2019). This study aimed to demonstrate the ability of HBCP 

models to predict amyloid presence with noninvasive cognitive testing (J. R. Bock et al., 2019). 

Digital cognitive biomarkers can identify more subtle cognitive changes in a patient 

(Bock et al., 2020). This may provide a new avenue for monitoring biomarker disease 

progression of biomarker through focusing specifically on differences in memory and retrieval 

(Bock et al., 2021). This study aims to further develop the use of DCBs to predict cognitive 

decline in patients and monitor stage progression through the accumulation of biomarkers. 

Successful investigations could validate the use of DCBs in the characterization of underlying 

cognitive processes and how they are affected by aging, disease progression, and therapeutic 

interventions. 

The development of more sensitive cognitive evaluation measures, such as composite 

scoring, has been the focus of several initiatives, such as PACC and ADCOMS (Donohue et al., 

2014; Wang et al., 2016). Even while these  diagnostic measures can perform better than less 

sensitive tests created to gauge the degree of dementia, as a whole PACC and ADCOMS are 

unable to foresee imminent cognitive deterioration in individuals cognitively normal. (Bock et 

al., 2021). Recently, Hierarchical Bayesian cognitive process (HBCP) models applied to data 

from a wordlist memory (WLM) test have led to the development of one such evaluation strategy 

(J. Bock et al., 2019). With this method, digital cognitive biomarkers (DCBs) may be produced 

that are related to the implicit cognitive processes of encoding, storing, and retrieval from 

different learning and memory states (J. Bock et al., 2019). Such cognitive processes are difficult 

to examine or quantify directly, but DCBs may quantify these processes and offer information 

about cognitive function that conventional evaluation methods do not (Lee et al., 2020).  
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However, due to the complex character of AD pathogenesis and its heterogeneous clinical 

presentation, it is doubtful that a single biomarker can attain the greatest possible predictive 

accuracy in patients with cognitive symptoms on its own. Therefore, it is now necessary to 

determine which additional measurements biomarkers should be combined with to produce an 

accurate prediction of future AD and to create the best diagnostic algorithm of non-invasive, 

economically viable, and readily accessible techniques for early diagnosis of AD (Palmqvist et 

al., 2021). Digital cognitive biomarkers may prove to be another easily available, noninvasive 

tool that may be utilized in conjunction with other noninvasive biomarkers, such as plasma 

phosphorylated tau, to track disease development and biomarkers early on in clinical evaluation. 
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METHODS 

Participant Data 

Data used in the preparation of this article were obtained from the Alzheimer's Disease 

Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in 2003 

as a public-private partnership, led by Principal Investigator Michael NORMAL. Weiner, MD. 

The primary goal of ADNI has been to test whether serial magnetic resonance imaging (MRI), 

positron emission tomography (PET), other biological markers, and clinical and 

neuropsychological assessment can be combined to measure the progression of mild cognitive 

impairment (MCI) and early Alzheimer's disease (AD). There were 2,258 subjects in this 

database, with 10,398 assessments Data access was granted in November 2022. 

CSF Biomarkers 

Data was acquired for CSF Aβ42, t-tau, and p-tau from the ADNI website 

(normal.loni.ucla.edu/ADNI). The ADNI procedural manual, which can be accessed at 

normal.adni-info.org, provides guidance on CSF collection and transport procedures, as well as 

procedural specifics for assessing CSF Aβ42, t-tau, and p-tau181. A summary for these 

procedures follows. 

The CSF was collected in the morning, following an overnight fast, using a 20- or 24-

gauge spinal needle. Within one hour of collection, the CSF was frozen and transported on dry 

ice to the ADNI Biomarker Core laboratory at the University of Pennsylvania Medical Center. 

The measurements for Aβ42, t-tau, and p-tau181 were conducted using the Innogenetics (INNO-

BIA AlzBio3; Ghent, Belgium) immunoassay kit-based research-use only reagents, containing 
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Label Biomarker l'liame Biomarker Description 

1 One-shot Leaming 
Probability of encoding into the DURABLY LEARNED 
State 

2 Transient Leaming 
Probability of encoding into the TRANSIENTLY 
LEARNED State 

3 Consolidated 
Probability of encoding into the DURABLY LEARNED 

Leaming 
State, following previous TRANSIENT LEARNING (N2) 

4 
Probability of encoding into the DURABLY LEARNED 

Testing Effect State, due to successful retrieval {Rl) from the 
Leaming TRANSIENTLY LEARNED State 

Rl Transient Retrieval 
Probability of retrieving from the TRANSIENTLY 
LEARNED State 

R2 Immediate Durable 
Probability ofretrieving from the DURABLY LEARNED 

Retrieval 
State 

R3 Delayed Durable 
Probability of retrieving from the DURABLY LEARNED 

Retrieval State after a 5-minute delay with distraction 

Ml Recall 
Probability of immediate recall of a non-durably stored 
episodic memory 

M2 Recall 
Probability of immediate recall of a durably stored episodic 
memory 

M3 Recall 
Probability of delayed recall of a durably stored episodic 
memory 

4D7A3 monoclonal antibody for Aβ42, AT120 monoclonal antibody for t-tau, and AT270 

monoclonal antibody for p-tau181. The multiplex xMAP Luminex platform (Luminex 

Corporation, Austin, TX) was used for the measurements. All CSF biomarker assays were 

performed in duplicate and then averaged (Shaw et al. 2009). 

Generating Digital Cognitive Biomarkers 

Embic's ten digital biomarkers, each of which assesses a certain cognitive encoding or 

retrieval process, are included in the ADNI dataset. DCBs were calculated for each ADAS-Cog 

WML assessment and were included for 2,258 subjects (10,398 assessments), dates ranging from 

5/17/2005 to 11/1/2021. 

Table 1. Available Digital Cognitive Biomarkers for ADNI ADAS-Cog WML tests. 
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Statistical Analysis 

To analyze the associations between digital cognitive biomarkers (DCBs) and classic 

Alzheimer's disease (AD) cerebrospinal fluid (CSF) biomarkers (AΒ, t-tau, and p-tau), paired 

Pearson correlation coefficient analyses were performed with t-tau, p-tau, and AΒ as dependent 

variables in separate models. There were 2,258 subjects in this database, with 10,398 

assessments. All scores were averaged over multiple visits resulting in N=775, among which 553 

patients were diagnosed AD+ and 222 were normal. The combined DCB score is defined as 

N1+N2+N3+R1+R2+R3+M1+M2+M3. (N=775, among which 553 patients were diagnosed 

AD+ and 222 were normal.  Statistical significance was set at p < 0.001. Additionally, separate 

paired Pearson correlation coefficient analyses were conducted for each diagnostic group 

(cognitively normal, mild cognitive impairment (MCI), and AD) to investigate the relationship 

between DCB Total and the CSF biomarkers. The strength of the associations between the 

predictor variables and the dependent variables was quantified using Pearson correlation 

coefficient (r). Effect sizes were calculated using Cohen's d to compare the differences between 

the AD+ and normal groups in each domain of DCB. Receiver Operating Characteristic (ROC) 

curve analyses were performed to assess the diagnostic accuracy of each DCB domain and the 

combined DCB score for Alzheimer's disease. Area Under the Curve (AUC) values were 

calculated as a single measure of diagnostic accuracy. The diagnostic accuracy of cerebrospinal 

fluid (CSF) biomarkers, namely tau, phosphorylated tau (p-tau), and amyloid-beta (Aβ), as well 

as the total Digital Cognitive Biomarker (DCB) score, was assessed using Receiver Operating 

Characteristic (ROC) curve analysis. AUC values were compared to evaluate the diagnostic 

accuracy of each biomarker. Multinomial logistic regression analysis was conducted to examine 

the relationship between the DCB Total score and the diagnostic groups (cognitively normal, 
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mild cognitive impairment, and Alzheimer's dementia), with the cognitively normal group 

serving as the reference category. The model's goodness-of-fit and pseudo R-Square values were 

calculated to evaluate the model's performance. The software IBM SPPS Statistics was used to 

perform all statistical analyses. 
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RESULTS 

Demographics and Descriptive Analysis 

Demographic characteristics are found in Figures 1 and 2. There were 2,258 subjects in 

this database, with 10,398 assessments. The study sample included a total of 2,278 individuals, 

of whom 47% (n=1,069) were female. The participants' average age at the beginning of the study 

was 73.05 years, with a standard deviation of 7.27 years. At the start of the study, 819 

participants (36%) were found to have normal cognitive function (CN), 1,021 (45%) had mild 

cognitive impairment (MCI), and 388 (17%) were diagnosed with Alzheimer's dementia (AD). 

All scores for each assessment were averaged over multiple visits resulting in N=775, among 

which 553 patients were diagnosed AD+ and 222 were normal. The descriptive analysis of the 

data in shown in Table 1. As anticipated, noteworthy variations in CSF Aβ, p-tau, and t-tau 

levels, as well as DCB scores, were found among the three diagnostic categories. Individuals 

with AD exhibited the lowest levels of CSF Aβ, the highest levels of CSF t-tau and p-tau, and 

lower DCB sub-scores compared to the other groups. 
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Bio marker CN MCI AD 

CSF Afl, mean (SD), elJlml 205.20 (55.65) 163.07 (51.29) 139.32 (35.89) 

CSF p-tau, mean (SD), elJlml 28.24 (16.28) 37.06 (21.45) 43.49 (20.30) 

CSF I-tau, mean (SD), elJlml 73.59 (30.56) 102.61 (57.01) 120.43 (60.89) 

1, mean (SD) 0.4587 (0.07) 0.3438 (0. I 0) 0.2338 (0. I 0) 

2, mean (SD) 0.4186 (.II) 0.4370 (0.10) 0.3946 (0. I 0) 

3, mean (SD) 0.5965 (0.08) 0.5095 (0.10) 0.4549 (0.10) 

4, mean (SD) 0.2570 (0.06) 0.2444 (0.07) 0.2382 (0.07) 

RI, mean (SD) 0.3417 (0.05) 0.3355 (0.05) 0.3369 (0.06) 

R2, mean (SD) 0.8458 (0.06) 0.7893 (0.08) 0. 7332 (0.09) 

R3, mean (SD) 0.6709 (0.06) 0.5944 (0.09) 0.5260 (0.08) 

Ml, mean (SD) 0.8065 (0.06) 0.7294 (0.07) 0.6341 (0.10) 

M2, mean (SD) 0.8622 (0.05) 0.7526 (0.10) 0.6147 (0.13) 

M3, mean (SD) 0.5993 (0.07) 0.4785 (0.10) 0.3552 (0.08) 

DCB Total, mean (SD) 5.7898 (0.36) 5.0938 (0.49) 4.5583 (0.43) 

Male Female Diagnosis 1" 

°" °" Age 
7" 

■ 40-49 
■ CN 

50-S9 

6069 ■ Ma 
33" 

70-79 
■ AD 

■ 80-89 

■ Above89 
m, 

Table 2. Descriptive Analysis. CN is Cognitively Normal, MCI is Mild Cognitive Impairment, AD is Alzheimer’s 

Disease 

Figure 2. Pie charts of Age, Gender, and Diagnostic group 
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AP t-tau p-tau 

Nl 0.465** -0.438** -0.317** 

N2 0.262** -0.248** -0.076** 

N3 0.367** -0.279•• -0.187** 

N4 0.158** -0.031 * 0.004 

Rt 0.017 0.006 -0.077** 

R2 0.426** -0.406** -0.287** 

R3 0.457•• -0.421 •• -0.260** 

Ml 0.466** -0.429** -0.295•• 

M2 0.470** -0.423** -0.294** 

M3 0.499•• -0.451 ** -0.295** 

DCB Total 0.492•· -0.436** -0.288** 

Correlations of DCBs with core CSF Biomarkers 

The paired Pearson correlation coefficient analysis revealed significant associations 

between digital cognitive biomarkers (DCBs) and classic Alzheimer's disease (AD) 

cerebrospinal fluid (CSF) biomarkers (Aβ, t-tau, and p-tau) in the overall sample of 2,258 

subjects with 10,398 assessments. Table 3 presents a summary of Pearson's correlation 

coefficients (r) between CSF biomarkers and DCB Total scores. The correlations were 

significant at the 0.01 level (2-tailed) for all three CSF biomarkers. 

Table 3. Summary of Pearson’s Correlations Coefficients (r) between CSF Biomarkers and DCB. ** Correlation is 
significant at the 0.01 level (2-tailed). *Correlation is significant at the 0.05 level (2-tailed). 

When examining the relationship between DCB Total and CSF biomarkers within each 

diagnostic group (cognitively normal, mild cognitive impairment (MCI), and AD), separate 

paired Pearson correlation coefficient analyses showed significant associations as well. Table 4 
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Biomarker 
CN MCI AD 

DCB Total DCB Total DCB Total 

AB 0.3 t6·· 0.320 .. 0.217 .. 

t-tau -0.225 .. -0.298 .. -0.120 .. 

p-tau -0.179 .. -0.240 .. -0.138 .. 

provides a summary of Pearson's correlation coefficients (r) between CSF biomarkers and DCB 

Total scores per diagnostic group, with correlations significant at the 0.01 level (2-tailed). 

These results suggest that DCB Total scores are significantly associated with classic AD 

CSF biomarkers (Aβ, t-tau, and p-tau) in the overall sample and within each diagnostic group. 

This indicates that digital cognitive biomarkers could potentially serve as a valuable tool in 

predicting and tracking Alzheimer's disease progression. 

Table 4. Summary of Pearson’s Correlations Coefficients (r) between CSF Biomarkers and DCB Total per 
diagnostic group. ** Correlation is significant at the 0.01 level (2-tailed). 

Diagnostic Utility of DCBs in AD 

Effect sizes of the differences between the two groups in each domain of DCB were 

calculated using Cohen's d. The analysis revealed significant differences between the AD+ and 

NORMAL groups across most of the domains of DCB. It is common to interpret effect sizes 

using benchmarks that classify them as small (d = 0.2), medium (d = 0.5), and large (d = 0.8) 

(Cohen, 1988). 
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Effect Size (Cohen's d) Effect Size Interpretation p-value 

Nl 1.78 Large <0.001 ** 

N2 0.73 Medium <0.001 ** 

N3 1.39 Large <0.001 ** 

Rl 0.22 Small 0.01 

R2 1.34 Large <0.001 ** 

R3 1.63 Large <0.001 ** 

Ml 1.58 Large <0.001 ** 

M2 1.62 Large <0.001 ** 

M3 1.98 Large <0.001 ** 

DCB Total 1.87 Large <0.001 ** 

Table 5. Summary of Effect Sizes (Cohen’s d) and interpretations between AD+ and Normal groups. ** 
Correlation is significant at the 0.01 level (2-tailed). 

The results indicated large effect sizes in most DCB domains (N1, N3, R2, R3, M1, M2, 

and M3), with Cohen's d values ranging from 1.34 to 1.98 (p <0.001), suggesting substantial 

differences between the AD+ and NORMAL groups. Moderate effect sizes were observed in N2 

(Cohen's d = 0.73, p<0.001). In contrast, R1 showed a small effect size (Cohen's d = 0.22, 

p<0.01),. Importantly, the combined DCB score demonstrated a large effect size (Cohen's d = 

1.87, p<0.001), suggesting that the composite measure effectively distinguishes between 

individuals with Alzheimer's disease and cognitively normal individuals. These findings support 

the utility of the combined DCB score as a diagnostic and research tool in Alzheimer's disease 

studies, as it demonstrates both large effect sizes and substantial differences between the AD+ 

and NORMAL groups. 
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Figure 3. Histogram graphs visualizing the difference between AD (red) and normal (green) in each domain of DCB, 

and the combined DCB score. 
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In addition to the effect sizes calculated using Cohen's d, we assessed the diagnostic 

accuracy of each DCB domain separately and the combined DCB score for Alzheimer's disease 

using Receiver Operating Characteristic (ROC) curve analysis. The area under the ROC curve 

(AUC) values were calculated to provide a measure of diagnostic accuracy. The AUC values 

range from 0.5 to 1, where a higher AUC value indicates better diagnostic accuracy. If the AUC 

value is 0.5, it means the model is not better than random chance at making predictions. Values 

closer to 1 indicate better discrimination between AD+ and NORMAL groups (Hajian-Tilaki, 

2013). The AUC values for each domain and the combined DCB score were as follows: N1 

(0.851), N2 (0.737), N3 (0.729), N4 (0.562), R1 (0.475), R2 (0.801), R3 (0.838), M1 (0.848), 

M2 (0.850), M3 (0.883), and DCB total (0.869). The AUC values indicate that several domains 

(N1, N2, N3, R2, R3, M1, M2, and M3) exhibited good diagnostic accuracy, with AUC values 

ranging from 0.729 to 0.883. In contrast, N4 and R1 showed poor diagnostic accuracy, with 

AUC values of 0.562 and 0.475, respectively. Importantly, the combined DCB score showed 

good diagnostic accuracy (AUC = 0.869), suggesting that the composite measure effectively 

differentiates between individuals with Alzheimer's disease and cognitively normal individuals. 

The sensitivity and specificity of the combined DCB score were 0.837 and 0.865, respectively, 

indicating a high true positive rate and a low false positive rate for AD diagnosis. These results 

further support the use of the combined DCB score as a valuable diagnostic and research tool in 

Alzheimer's disease studies, as it demonstrates both high diagnostic accuracy and strong ability 

to differentiate between the AD+ and normal groups. 
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DCB Scores and Clinical Diagnosis 
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0.0 0.2 0.4 0.6 0.8 1.0 

Specificity 

Figure 4. ROC graph showing the accuracy of AD diagnosis by each DCB domain separately, and by the 

combined DCB score. All scores were averaged over multiple visits. 

The maximum K-S metric and associated cutoff values were also used to determine the 

optimal threshold for distinguishing between AD+ and normal. The K-S statistics and cutoff 

values provide insights into the performance of DCBs as classifiers for distinguishing between 

patients with varying cognitive decline levels and healthy elderly controls. The M3 and DCB 

Total cutoff values demonstrate the strongest classification capabilities, reinforcing their 

potential as noninvasive diagnostic tools for AD. 
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Max K-S Cutoff 

Nl 0.558 0.3272 

N2 0.345 0.4417 

N3 0.358 0.5111 

4 0.143 0.2166 

Rl 0.042 0.3021 

R2 0.477 0.7783 

R3 0.566 0.5940 

Ml 0.542 0.7089 

M2 0.548 0.7459 

M3 0.621 0.4311 

DCB Total 0.582 5.1261 

Table 6. DCB maximum Kolmogorov-Smirnov (K-S) metric and the associated cutoff values. 

Comparing DCB Predictability to Gold Standard CSF Biomarkers 

We assessed the diagnostic accuracy of cerebrospinal fluid (CSF) biomarkers, namely 

tau, phosphorylated tau (p-tau), and amyloid-beta (Aβ), as well as the total Digital Cognitive 

Biomarker (DCB) score for distinguishing between Alzheimer's disease (AD) patients and 

cognitively normal (CN) individuals. The diagnostic accuracy was evaluated using Receiver 

Operating Characteristic (ROC) curve analysis, and the Area Under the Curve (AUC) values 

were compared. For the CSF biomarkers, the AUC values were as follows: tau (AUC = 0.671), 

p-tau (AUC = 0.681), and Aβ (AUC = 0.717). Among these biomarkers, Aβ showed the highest 

diagnostic accuracy in distinguishing AD+ from NORMAL individuals. However, the total DCB 

score demonstrated a notably higher diagnostic accuracy, with an AUC value of 0.869. Thus, 
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with this sample, the total DCB score outperforms the CSF biomarkers in differentiating between 

AD+ and NORMAL participants. In conclusion, our results indicate that the total DCB score 

may serve as a more accurate diagnostic tool for Alzheimer's disease compared to traditional 

CSF biomarkers. Further research is warranted to validate these findings and explore the 

potential clinical utility of the DCB score in the early detection and monitoring of AD. 

A B 

Figure 5. ROC graph showing the accuracy of differentiating between AD+ and Normal participants by 

CSF biomarkers and by the combined DCB score. 
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Predicted Probabilities of Diagnostic Groups by DCB Total Score 

In order to examine the relationship between the DCB Total score and the diagnostic 

groups (cognitively normal, mild cognitive impairment, and Alzheimer's dementia), a 

multinomial logistic regression analysis was conducted. Multinomial logistic regression is a type 

of regression analysis used when the outcome variable has more than two categories (Liang et 

al., 2020). The cognitively normal group served as the reference category in the analysis. The 

model showed a significant fit to the data (Likelihood Ratio Test: χ²(2) = 4065.42, p < .001). The 

goodness-of-fit tests also indicated a significant fit (Pearson χ²(1516) = 6946.07, p < .001; 

Deviance χ²(1516) = 6051.43, p < .001). Pseudo R-Square ranges from 0 to 1, with 1 indicating a 

perfect fit of the model to the data. The pseudo R-Square values suggested that the model was a 

good fit for the data and that the DCB Total score was a useful predictor of the diagnostic group 

membership (Cox and Snell: .520, Nagelkerke: .587, McFadden: .340). 

The parameter estimates provide more information on the relationship between the DCB 

Total score and the different diagnostic groups. The analysis revealed that a one-unit increase in 

the DCB Total score was associated with a decrease in the likelihood of having mild cognitive 

impairment or Alzheimer's dementia compared to the cognitively normal group. In other words, 

individuals with higher DCB Total scores are less likely to have mild cognitive impairment or 

Alzheimer's dementia than those with lower scores. The estimates from the analysis suggest that 

with a one-unit increase in the DCB Total score, the likelihood of having mild cognitive 

impairment compared to the cognitively normal group is reduced by a factor of 0.029, and the 

likelihood of having Alzheimer's dementia compared to the cognitively normal group is reduced 

by a factor of 0.002. These results indicate that the DCB Total score is a useful tool for 

predicting cognitive impairment and can help identify individuals who may be at risk for 
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Figure 6: Predicted probabilities of diagnostic groups (CN, MCI, and AD) based on DCB Total scores. The graph 

illustrates the relationship between the DCB Total scores and the likelihood of an individual being classified into 

one of the three diagnostic groups: cognitively normal (CN), mild cognitive impairment (MCI), or Alzheimer's 

dementia (AD). 
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DISCUSSION 

DCB and CSF Biomarker Correlations 

The present study aimed to investigate the associations between digital cognitive 

biomarkers (DCBs) and classic Alzheimer's disease (AD) cerebrospinal fluid (CSF) biomarkers 

(Aβ, t-tau, and p-tau) in a large sample of 2,258 subjects with 10,398 assessments. Our findings 

revealed significant associations between DCB Total scores and all three CSF biomarkers (Aβ, t-

tau, and p-tau) in the overall sample and within each diagnostic group (cognitively normal, mild 

cognitive impairment (MCI), and AD). These results suggest that DCBs may have the potential 

to serve as a valuable tool in predicting and tracking AD progression, providing support for the 

use of digital cognitive assessment in clinical settings. 

The observed negative correlation between DCB Total scores and Aβ levels indicates that 

as the DCB Total scores increase, Aβ levels decrease, which is consistent with the pathological 

changes observed in AD. Conversely, the positive correlations between DCB Total scores and 

both t-tau and p-tau levels suggest that as the DCB Total scores increase, t-tau and p-tau levels 

also increase, reflecting the presence of neurofibrillary tangles and neuronal damage in AD. 

Notably, the significant associations between DCB Total scores and CSF biomarkers 

were observed across all diagnostic groups, indicating that DCBs might be useful in detecting 

early signs of cognitive decline and monitoring disease course throughout the AD continuum. 

Early detection of cognitive decline is crucial for timely intervention and management of AD, as 

well as for the development of novel therapeutic strategies (Cummings et al., 2017; Hampel et 

al., 2018). 

In conclusion, our study demonstrated significant associations between digital cognitive 
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biomarkers and classic AD cerebrospinal fluid biomarkers, suggesting the potential of DCBs as a 

valuable tool for predicting and tracking AD progression. These findings provide support for the 

use of digital cognitive assessment in clinical settings and highlight the importance of further 

research to establish the clinical relevance of these associations and validate the use of digital 

cognitive biomarkers in AD assessment and management. 

Comparison of Diagnostic Utility of DCBs and CSF Biomarkers 

In our study, we also sought to compare the diagnostic utility of Digital Cognitive 

Biomarkers (DCBs) and classic AD cerebrospinal fluid (CSF) biomarkers by examining 

Receiver Operating Characteristic (ROC) curves. ROC curves provide a graphical representation 

of the trade-off between sensitivity (true positive rate) and specificity (false positive rate) for 

different cut-off points of a diagnostic test. The area under the curve (AUC) serves as an overall 

measure of diagnostic accuracy, with an AUC of 1.0 indicating perfect discrimination and an 

AUC of 0.5 representing no discrimination beyond chance. 

Our analysis of the ROC curves revealed that the DCBs demonstrated improved 

diagnostic accuracy to classic AD CSF biomarkers, as indicated by the AUC values. The 

combined DCB score exhibited good diagnostic accuracy (AUC = 0.869) in differentiating 

between AD patients and cognitively normal individuals and outperformed the diagnostic 

accuracy of traditional CSF biomarkers. This finding supports the idea that DCBs hold promise 

as an alternative or complementary diagnostic tool for Alzheimer's disease, especially 

considering the noninvasive nature of the DCBs. While CSF biomarkers require an invasive 

lumbar puncture procedure to obtain the sample, DCBs can be derived from common WLM 

tests, making them a cheaper and safer/risk-free option for patients. This makes DCBs a more 
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attractive option for routine clinical use and large-scale screening efforts.. Moreover, our 

examination of the ROC curves revealed potential cut-off points for DCBs that maximize both 

sensitivity and specificity, providing an optimal balance for early detection and accurate 

diagnosis of Alzheimer’s disease. By utilizing these cut-off points, clinicians could potentially 

identify individuals at higher risk of developing AD, allowing for more targeted interventions in 

the preclinical stages of the disease. 

It is important to note, however, that while the diagnostic accuracy of DCBs is promising, 

they may not be able to fully replace CSF biomarkers in all clinical scenarios. CSF biomarkers 

can provide direct insights into the underlying pathological processes of AD, such as amyloid-β 

and tau protein accumulation. In some cases, this information may be critical for distinguishing 

between AD and other neurodegenerative disorders with overlapping clinical presentations. 

Therefore, the integration of DCBs with CSF biomarkers and other diagnostic tools, such as 

neuroimaging, could potentially enhance the overall accuracy of AD diagnosis and offer a more 

comprehensive understanding of an individual's cognitive health. 

There are some additional limitations to our study that should be acknowledged. Firstly, 

our study did not include all demographics of the patients. Therefore, it is unclear how 

representative our study sample is of the broader population, and whether the diagnostic 

accuracy of DCBs may differ across different demographic groups. Secondly, while the ADNI 

dataset is a valuable resource for studying AD, it may not fully capture the diversity of 

individuals with AD in clinical practice. Thirdly, our study only examined the diagnostic 

accuracy of DCBs in differentiating AD patients from cognitively normal individuals. Further 

research is needed to investigate the utility of DCBs in differentiating AD from other 

neurodegenerative disorders. Lastly, the study was conducted using data from a cross-sectional 
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study design, which limits the ability to draw causal inferences between DCBs and AD. Future 

longitudinal studies are needed to evaluate the potential of DCBs as predictive markers of 

disease progression and treatment response 

.In conclusion, our analysis of the ROC curves suggests that DCBs have comparable 

diagnostic utility to classic AD CSF biomarkers, further supporting their potential as a 

noninvasive diagnostic tool for early detection and disease management in Alzheimer's disease. 

Future research should explore the optimal cut-off points for DCBs in various populations and 

settings, as well as the potential benefits of integrating DCBs with other diagnostic approaches to 

improve the overall accuracy and comprehensiveness of AD diagnosis. 

Predicted Probabilities of Diagnostic Groups by DCB Total Score 

Our study also aimed to investigate the connection between Digital Cognitive Biomarkers 

(DCBs) and the diagnostic groups of Alzheimer's disease (AD) using multinomial regression 

analysis. The findings revealed significant associations between the DCB Total score and the 

likelihood of an individual being in one of the three diagnostic groups (cognitively normal, mild 

cognitive impairment, and Alzheimer's dementia), showcasing the potential of multinomial 

regression in AD research. 

The analysis demonstrated that, as the DCB Total score increased, the odds of being 

classified as cognitively normal increased, while the odds of being classified as having mild 

cognitive impairment or Alzheimer's dementia decreased. This suggests that the DCB Total score 

can serve as a useful diagnostic indicator of cognitive impairment in individuals. The model's 

pseudo R-squared values indicate that a considerable portion of the variance in diagnostic group 
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membership is accounted for by the DCB Total score, emphasizing the effectiveness of DCBs in 

predicting an individual's cognitive status. The likelihood ratio tests showed that adding the DCB 

Total score significantly improved the model fit, reinforcing the importance of DCBs when 

predicting diagnostic group membership. This result highlights the potential of multinomial 

regression in uncovering complex relationships between multiple categorical outcomes and 

predictor variables. Multinomial regression allowed us to examine the associations between the 

DCB Total score and the different diagnostic groups simultaneously, offering a more efficient 

and robust method for understanding the role of DCBs in AD diagnosis. 

In conclusion, our findings show that multinomial regression analysis is useful for 

understanding the relationship between Digital Cognitive Biomarkers and diagnostic group 

membership in Alzheimer's disease research. The DCB Total score displayed strong associations 

with diagnostic group membership, emphasizing the potential of DCBs as a valuable diagnostic 

tool. 
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FUTURE DIRECTIONS 

Our study demonstrated the potential of Digital Cognitive Biomarkers (DCBs) as a 

promising diagnostic tool for Alzheimer's disease, showing improved diagnostic utility to classic 

AD CSF biomarkers. However, there remain several areas for future research to further 

investigate the potential benefits of DCBs and their applications in clinical practice. One 

important area of interest is to investigate the ability of DCB variables to predict the time to 

conversion from CN to MCI, a stage that often precedes Alzheimer's dementia. By identifying 

individuals at higher risk of progressing from CN to MCI, clinicians may be better equipped to 

implement early interventions that could potentially slow the progression of the disease or 

mitigate cognitive decline. Longitudinal studies tracking participants with varying baseline 

cognitive statuses and examining the predictive power of DCBs for conversion to MCI will be 

critical in this regard. 

It would also be valuable to explore the potential synergistic effects of combining DCBs 

with other diagnostic tools, such as neuroimaging and CSF biomarkers, to create a 

comprehensive diagnostic framework for Alzheimer's disease. A multimodal approach may yield 

greater accuracy and provide clinicians with a more detailed understanding of an individual's 

cognitive health and disease progression. 

Finally, investigating the utility of DCBs in monitoring treatment response and disease 

progression over time could offer valuable insights for clinicians and researchers alike. By 

tracking the changes in DCB variables following various therapeutic interventions, researchers 

may be able to identify the most effective treatments for AD and better understand the 

underlying mechanisms through which these therapies exert their effects. 

In summary, our study provides a foundation for further exploration of Digital Cognitive 
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Biomarkers as a noninvasive diagnostic tool for Alzheimer's disease. Future research should aim 

to expand upon these findings by examining the diagnostic accuracy of DCBs within distinct 

diagnostic groups, investigating their predictive power for conversion from CN to MCI, and 

exploring their applicability across diagnostic approaches. Ultimately, these efforts could pave 

the way for more effective early detection management of Alzheimer's disease, with the potential 

to reduce healthcare costs and improve patient outcomes. 
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